xref: /linux/drivers/net/can/xilinx_can.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
3  *
4  * Copyright (C) 2012 - 2022 Xilinx, Inc.
5  * Copyright (C) 2009 PetaLogix. All rights reserved.
6  * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
7  *
8  * Description:
9  * This driver is developed for AXI CAN IP, AXI CANFD IP, CANPS and CANFD PS Controller.
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/ethtool.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/property.h>
25 #include <linux/skbuff.h>
26 #include <linux/spinlock.h>
27 #include <linux/string.h>
28 #include <linux/types.h>
29 #include <linux/can/dev.h>
30 #include <linux/can/error.h>
31 #include <linux/phy/phy.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/reset.h>
34 #include <linux/u64_stats_sync.h>
35 
36 #define DRIVER_NAME	"xilinx_can"
37 
38 /* CAN registers set */
39 enum xcan_reg {
40 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
41 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
42 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
43 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
44 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
45 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
46 	XCAN_SR_OFFSET		= 0x18, /* Status */
47 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
48 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
49 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
50 
51 	/* not on CAN FD cores */
52 	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
53 	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
54 	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
55 
56 	/* only on CAN FD cores */
57 	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
58 					  * Prescaler
59 					  */
60 	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
61 	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
62 
63 	/* only on AXI CAN cores */
64 	XCAN_ECC_CFG_OFFSET	= 0xC8, /* ECC Configuration */
65 	XCAN_TXTLFIFO_ECC_OFFSET	= 0xCC, /* TXTL FIFO ECC error counter */
66 	XCAN_TXOLFIFO_ECC_OFFSET	= 0xD0, /* TXOL FIFO ECC error counter */
67 	XCAN_RXFIFO_ECC_OFFSET	= 0xD4, /* RX FIFO ECC error counter */
68 
69 	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
70 	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
71 	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
72 	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
73 	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
74 	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
75 	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
76 };
77 
78 #define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
79 #define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
80 #define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
81 #define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
82 #define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
83 
84 #define XCAN_CANFD_FRAME_SIZE		0x48
85 #define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
86 					 XCAN_CANFD_FRAME_SIZE * (n))
87 #define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
88 					 XCAN_CANFD_FRAME_SIZE * (n))
89 #define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
90 					 XCAN_CANFD_FRAME_SIZE * (n))
91 
92 /* the single TX mailbox used by this driver on CAN FD HW */
93 #define XCAN_TX_MAILBOX_IDX		0
94 
95 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
96 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
97 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
98 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
99 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
100 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
101 #define XCAN_BRPR_TDCO_MASK		GENMASK(12, 8)  /* TDCO */
102 #define XCAN_2_BRPR_TDCO_MASK		GENMASK(13, 8)  /* TDCO for CANFD 2.0 */
103 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
104 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
105 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
106 #define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
107 #define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
108 #define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
109 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
110 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
111 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
112 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
113 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
114 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
115 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
116 #define XCAN_SR_TDCV_MASK		GENMASK(22, 16) /* TDCV Value */
117 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
118 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
119 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
120 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
121 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
122 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
123 #define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
124 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
125 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
126 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
127 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
128 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
129 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
130 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
131 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
132 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
133 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
134 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
135 #define XCAN_IXR_E2BERX_MASK		BIT(23) /* RX FIFO two bit ECC error */
136 #define XCAN_IXR_E1BERX_MASK		BIT(22) /* RX FIFO one bit ECC error */
137 #define XCAN_IXR_E2BETXOL_MASK		BIT(21) /* TXOL FIFO two bit ECC error */
138 #define XCAN_IXR_E1BETXOL_MASK		BIT(20) /* TXOL FIFO One bit ECC error */
139 #define XCAN_IXR_E2BETXTL_MASK		BIT(19) /* TXTL FIFO Two bit ECC error */
140 #define XCAN_IXR_E1BETXTL_MASK		BIT(18) /* TXTL FIFO One bit ECC error */
141 #define XCAN_IXR_ECC_MASK		(XCAN_IXR_E2BERX_MASK | \
142 					XCAN_IXR_E1BERX_MASK | \
143 					XCAN_IXR_E2BETXOL_MASK | \
144 					XCAN_IXR_E1BETXOL_MASK | \
145 					XCAN_IXR_E2BETXTL_MASK | \
146 					XCAN_IXR_E1BETXTL_MASK)
147 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
148 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
149 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
150 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
151 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
152 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
153 #define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
154 #define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
155 #define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
156 #define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
157 #define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
158 #define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
159 #define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
160 #define XCAN_ECC_CFG_REECRX_MASK	BIT(2) /* Reset RX FIFO ECC error counters */
161 #define XCAN_ECC_CFG_REECTXOL_MASK	BIT(1) /* Reset TXOL FIFO ECC error counters */
162 #define XCAN_ECC_CFG_REECTXTL_MASK	BIT(0) /* Reset TXTL FIFO ECC error counters */
163 #define XCAN_ECC_1BIT_CNT_MASK		GENMASK(15, 0) /* FIFO ECC 1bit count mask */
164 #define XCAN_ECC_2BIT_CNT_MASK		GENMASK(31, 16) /* FIFO ECC 2bit count mask */
165 
166 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
167 #define XCAN_BRPR_TDC_ENABLE		BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
168 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
169 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
170 #define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
171 #define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
172 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
173 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
174 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
175 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
176 
177 /* CAN frame length constants */
178 #define XCAN_FRAME_MAX_DATA_LEN		8
179 #define XCANFD_DW_BYTES			4
180 #define XCAN_TIMEOUT			(1 * HZ)
181 
182 /* TX-FIFO-empty interrupt available */
183 #define XCAN_FLAG_TXFEMP	0x0001
184 /* RX Match Not Finished interrupt available */
185 #define XCAN_FLAG_RXMNF		0x0002
186 /* Extended acceptance filters with control at 0xE0 */
187 #define XCAN_FLAG_EXT_FILTERS	0x0004
188 /* TX mailboxes instead of TX FIFO */
189 #define XCAN_FLAG_TX_MAILBOXES	0x0008
190 /* RX FIFO with each buffer in separate registers at 0x1100
191  * instead of the regular FIFO at 0x50
192  */
193 #define XCAN_FLAG_RX_FIFO_MULTI	0x0010
194 #define XCAN_FLAG_CANFD_2	0x0020
195 
196 enum xcan_ip_type {
197 	XAXI_CAN = 0,
198 	XZYNQ_CANPS,
199 	XAXI_CANFD,
200 	XAXI_CANFD_2_0,
201 };
202 
203 struct xcan_devtype_data {
204 	enum xcan_ip_type cantype;
205 	unsigned int flags;
206 	const struct can_bittiming_const *bittiming_const;
207 	const char *bus_clk_name;
208 	unsigned int btr_ts2_shift;
209 	unsigned int btr_sjw_shift;
210 };
211 
212 /**
213  * struct xcan_priv - This definition define CAN driver instance
214  * @can:			CAN private data structure.
215  * @tx_lock:			Lock for synchronizing TX interrupt handling
216  * @tx_head:			Tx CAN packets ready to send on the queue
217  * @tx_tail:			Tx CAN packets successfully sended on the queue
218  * @tx_max:			Maximum number packets the driver can send
219  * @napi:			NAPI structure
220  * @read_reg:			For reading data from CAN registers
221  * @write_reg:			For writing data to CAN registers
222  * @dev:			Network device data structure
223  * @reg_base:			Ioremapped address to registers
224  * @irq_flags:			For request_irq()
225  * @bus_clk:			Pointer to struct clk
226  * @can_clk:			Pointer to struct clk
227  * @devtype:			Device type specific constants
228  * @transceiver:		Optional pointer to associated CAN transceiver
229  * @rstc:			Pointer to reset control
230  * @ecc_enable:			ECC enable flag
231  * @syncp:			synchronization for ECC error stats
232  * @ecc_rx_2_bit_errors:	RXFIFO 2bit ECC count
233  * @ecc_rx_1_bit_errors:	RXFIFO 1bit ECC count
234  * @ecc_txol_2_bit_errors:	TXOLFIFO 2bit ECC count
235  * @ecc_txol_1_bit_errors:	TXOLFIFO 1bit ECC count
236  * @ecc_txtl_2_bit_errors:	TXTLFIFO 2bit ECC count
237  * @ecc_txtl_1_bit_errors:	TXTLFIFO 1bit ECC count
238  */
239 struct xcan_priv {
240 	struct can_priv can;
241 	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
242 	unsigned int tx_head;
243 	unsigned int tx_tail;
244 	unsigned int tx_max;
245 	struct napi_struct napi;
246 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
247 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
248 			  u32 val);
249 	struct device *dev;
250 	void __iomem *reg_base;
251 	unsigned long irq_flags;
252 	struct clk *bus_clk;
253 	struct clk *can_clk;
254 	struct xcan_devtype_data devtype;
255 	struct phy *transceiver;
256 	struct reset_control *rstc;
257 	bool ecc_enable;
258 	struct u64_stats_sync syncp;
259 	u64_stats_t ecc_rx_2_bit_errors;
260 	u64_stats_t ecc_rx_1_bit_errors;
261 	u64_stats_t ecc_txol_2_bit_errors;
262 	u64_stats_t ecc_txol_1_bit_errors;
263 	u64_stats_t ecc_txtl_2_bit_errors;
264 	u64_stats_t ecc_txtl_1_bit_errors;
265 };
266 
267 /* CAN Bittiming constants as per Xilinx CAN specs */
268 static const struct can_bittiming_const xcan_bittiming_const = {
269 	.name = DRIVER_NAME,
270 	.tseg1_min = 1,
271 	.tseg1_max = 16,
272 	.tseg2_min = 1,
273 	.tseg2_max = 8,
274 	.sjw_max = 4,
275 	.brp_min = 1,
276 	.brp_max = 256,
277 	.brp_inc = 1,
278 };
279 
280 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
281 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
282 	.name = DRIVER_NAME,
283 	.tseg1_min = 1,
284 	.tseg1_max = 64,
285 	.tseg2_min = 1,
286 	.tseg2_max = 16,
287 	.sjw_max = 16,
288 	.brp_min = 1,
289 	.brp_max = 256,
290 	.brp_inc = 1,
291 };
292 
293 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
294 static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
295 	.name = DRIVER_NAME,
296 	.tseg1_min = 1,
297 	.tseg1_max = 16,
298 	.tseg2_min = 1,
299 	.tseg2_max = 8,
300 	.sjw_max = 8,
301 	.brp_min = 1,
302 	.brp_max = 256,
303 	.brp_inc = 1,
304 };
305 
306 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
307 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
308 	.name = DRIVER_NAME,
309 	.tseg1_min = 1,
310 	.tseg1_max = 256,
311 	.tseg2_min = 1,
312 	.tseg2_max = 128,
313 	.sjw_max = 128,
314 	.brp_min = 1,
315 	.brp_max = 256,
316 	.brp_inc = 1,
317 };
318 
319 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
320 static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
321 	.name = DRIVER_NAME,
322 	.tseg1_min = 1,
323 	.tseg1_max = 32,
324 	.tseg2_min = 1,
325 	.tseg2_max = 16,
326 	.sjw_max = 16,
327 	.brp_min = 1,
328 	.brp_max = 256,
329 	.brp_inc = 1,
330 };
331 
332 /* Transmission Delay Compensation constants for CANFD 1.0 */
333 static const struct can_tdc_const xcan_tdc_const_canfd = {
334 	.tdcv_min = 0,
335 	.tdcv_max = 0, /* Manual mode not supported. */
336 	.tdco_min = 0,
337 	.tdco_max = 32,
338 	.tdcf_min = 0, /* Filter window not supported */
339 	.tdcf_max = 0,
340 };
341 
342 /* Transmission Delay Compensation constants for CANFD 2.0 */
343 static const struct can_tdc_const xcan_tdc_const_canfd2 = {
344 	.tdcv_min = 0,
345 	.tdcv_max = 0, /* Manual mode not supported. */
346 	.tdco_min = 0,
347 	.tdco_max = 64,
348 	.tdcf_min = 0, /* Filter window not supported */
349 	.tdcf_max = 0,
350 };
351 
352 enum xcan_stats_type {
353 	XCAN_ECC_RX_2_BIT_ERRORS,
354 	XCAN_ECC_RX_1_BIT_ERRORS,
355 	XCAN_ECC_TXOL_2_BIT_ERRORS,
356 	XCAN_ECC_TXOL_1_BIT_ERRORS,
357 	XCAN_ECC_TXTL_2_BIT_ERRORS,
358 	XCAN_ECC_TXTL_1_BIT_ERRORS,
359 };
360 
361 static const char xcan_priv_flags_strings[][ETH_GSTRING_LEN] = {
362 	[XCAN_ECC_RX_2_BIT_ERRORS] = "ecc_rx_2_bit_errors",
363 	[XCAN_ECC_RX_1_BIT_ERRORS] = "ecc_rx_1_bit_errors",
364 	[XCAN_ECC_TXOL_2_BIT_ERRORS] = "ecc_txol_2_bit_errors",
365 	[XCAN_ECC_TXOL_1_BIT_ERRORS] = "ecc_txol_1_bit_errors",
366 	[XCAN_ECC_TXTL_2_BIT_ERRORS] = "ecc_txtl_2_bit_errors",
367 	[XCAN_ECC_TXTL_1_BIT_ERRORS] = "ecc_txtl_1_bit_errors",
368 };
369 
370 /**
371  * xcan_write_reg_le - Write a value to the device register little endian
372  * @priv:	Driver private data structure
373  * @reg:	Register offset
374  * @val:	Value to write at the Register offset
375  *
376  * Write data to the paricular CAN register
377  */
378 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
379 			      u32 val)
380 {
381 	iowrite32(val, priv->reg_base + reg);
382 }
383 
384 /**
385  * xcan_read_reg_le - Read a value from the device register little endian
386  * @priv:	Driver private data structure
387  * @reg:	Register offset
388  *
389  * Read data from the particular CAN register
390  * Return: value read from the CAN register
391  */
392 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
393 {
394 	return ioread32(priv->reg_base + reg);
395 }
396 
397 /**
398  * xcan_write_reg_be - Write a value to the device register big endian
399  * @priv:	Driver private data structure
400  * @reg:	Register offset
401  * @val:	Value to write at the Register offset
402  *
403  * Write data to the paricular CAN register
404  */
405 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
406 			      u32 val)
407 {
408 	iowrite32be(val, priv->reg_base + reg);
409 }
410 
411 /**
412  * xcan_read_reg_be - Read a value from the device register big endian
413  * @priv:	Driver private data structure
414  * @reg:	Register offset
415  *
416  * Read data from the particular CAN register
417  * Return: value read from the CAN register
418  */
419 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
420 {
421 	return ioread32be(priv->reg_base + reg);
422 }
423 
424 /**
425  * xcan_rx_int_mask - Get the mask for the receive interrupt
426  * @priv:	Driver private data structure
427  *
428  * Return: The receive interrupt mask used by the driver on this HW
429  */
430 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
431 {
432 	/* RXNEMP is better suited for our use case as it cannot be cleared
433 	 * while the FIFO is non-empty, but CAN FD HW does not have it
434 	 */
435 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
436 		return XCAN_IXR_RXOK_MASK;
437 	else
438 		return XCAN_IXR_RXNEMP_MASK;
439 }
440 
441 /**
442  * set_reset_mode - Resets the CAN device mode
443  * @ndev:	Pointer to net_device structure
444  *
445  * This is the driver reset mode routine.The driver
446  * enters into configuration mode.
447  *
448  * Return: 0 on success and failure value on error
449  */
450 static int set_reset_mode(struct net_device *ndev)
451 {
452 	struct xcan_priv *priv = netdev_priv(ndev);
453 	unsigned long timeout;
454 
455 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
456 
457 	timeout = jiffies + XCAN_TIMEOUT;
458 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
459 		if (time_after(jiffies, timeout)) {
460 			netdev_warn(ndev, "timed out for config mode\n");
461 			return -ETIMEDOUT;
462 		}
463 		usleep_range(500, 10000);
464 	}
465 
466 	/* reset clears FIFOs */
467 	priv->tx_head = 0;
468 	priv->tx_tail = 0;
469 
470 	return 0;
471 }
472 
473 /**
474  * xcan_set_bittiming - CAN set bit timing routine
475  * @ndev:	Pointer to net_device structure
476  *
477  * This is the driver set bittiming  routine.
478  * Return: 0 on success and failure value on error
479  */
480 static int xcan_set_bittiming(struct net_device *ndev)
481 {
482 	struct xcan_priv *priv = netdev_priv(ndev);
483 	struct can_bittiming *bt = &priv->can.bittiming;
484 	struct can_bittiming *dbt = &priv->can.data_bittiming;
485 	u32 btr0, btr1;
486 	u32 is_config_mode;
487 
488 	/* Check whether Xilinx CAN is in configuration mode.
489 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
490 	 */
491 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
492 				XCAN_SR_CONFIG_MASK;
493 	if (!is_config_mode) {
494 		netdev_alert(ndev,
495 			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
496 		return -EPERM;
497 	}
498 
499 	/* Setting Baud Rate prescaler value in BRPR Register */
500 	btr0 = (bt->brp - 1);
501 
502 	/* Setting Time Segment 1 in BTR Register */
503 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
504 
505 	/* Setting Time Segment 2 in BTR Register */
506 	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
507 
508 	/* Setting Synchronous jump width in BTR Register */
509 	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
510 
511 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
512 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
513 
514 	if (priv->devtype.cantype == XAXI_CANFD ||
515 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
516 		/* Setting Baud Rate prescaler value in F_BRPR Register */
517 		btr0 = dbt->brp - 1;
518 		if (can_tdc_is_enabled(&priv->can)) {
519 			if (priv->devtype.cantype == XAXI_CANFD)
520 				btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
521 					XCAN_BRPR_TDC_ENABLE;
522 			else
523 				btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
524 					XCAN_BRPR_TDC_ENABLE;
525 		}
526 
527 		/* Setting Time Segment 1 in BTR Register */
528 		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
529 
530 		/* Setting Time Segment 2 in BTR Register */
531 		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
532 
533 		/* Setting Synchronous jump width in BTR Register */
534 		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
535 
536 		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
537 		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
538 	}
539 
540 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
541 		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
542 		   priv->read_reg(priv, XCAN_BTR_OFFSET));
543 
544 	return 0;
545 }
546 
547 /**
548  * xcan_chip_start - This the drivers start routine
549  * @ndev:	Pointer to net_device structure
550  *
551  * This is the drivers start routine.
552  * Based on the State of the CAN device it puts
553  * the CAN device into a proper mode.
554  *
555  * Return: 0 on success and failure value on error
556  */
557 static int xcan_chip_start(struct net_device *ndev)
558 {
559 	struct xcan_priv *priv = netdev_priv(ndev);
560 	u32 reg_msr;
561 	int err;
562 	u32 ier;
563 
564 	/* Check if it is in reset mode */
565 	err = set_reset_mode(ndev);
566 	if (err < 0)
567 		return err;
568 
569 	err = xcan_set_bittiming(ndev);
570 	if (err < 0)
571 		return err;
572 
573 	/* Enable interrupts
574 	 *
575 	 * We enable the ERROR interrupt even with
576 	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
577 	 * dedicated interrupt for a state change to
578 	 * ERROR_WARNING/ERROR_PASSIVE.
579 	 */
580 	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
581 		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
582 		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
583 		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
584 
585 	if (priv->ecc_enable)
586 		ier |= XCAN_IXR_ECC_MASK;
587 
588 	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
589 		ier |= XCAN_IXR_RXMNF_MASK;
590 
591 	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
592 
593 	/* Check whether it is loopback mode or normal mode  */
594 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
595 		reg_msr = XCAN_MSR_LBACK_MASK;
596 	else
597 		reg_msr = 0x0;
598 
599 	/* enable the first extended filter, if any, as cores with extended
600 	 * filtering default to non-receipt if all filters are disabled
601 	 */
602 	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
603 		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
604 
605 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
606 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
607 
608 	netdev_dbg(ndev, "status:#x%08x\n",
609 		   priv->read_reg(priv, XCAN_SR_OFFSET));
610 
611 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
612 	return 0;
613 }
614 
615 /**
616  * xcan_do_set_mode - This sets the mode of the driver
617  * @ndev:	Pointer to net_device structure
618  * @mode:	Tells the mode of the driver
619  *
620  * This check the drivers state and calls the corresponding modes to set.
621  *
622  * Return: 0 on success and failure value on error
623  */
624 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
625 {
626 	int ret;
627 
628 	switch (mode) {
629 	case CAN_MODE_START:
630 		ret = xcan_chip_start(ndev);
631 		if (ret < 0) {
632 			netdev_err(ndev, "xcan_chip_start failed!\n");
633 			return ret;
634 		}
635 		netif_wake_queue(ndev);
636 		break;
637 	default:
638 		ret = -EOPNOTSUPP;
639 		break;
640 	}
641 
642 	return ret;
643 }
644 
645 /**
646  * xcan_write_frame - Write a frame to HW
647  * @ndev:		Pointer to net_device structure
648  * @skb:		sk_buff pointer that contains data to be Txed
649  * @frame_offset:	Register offset to write the frame to
650  */
651 static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
652 			     int frame_offset)
653 {
654 	u32 id, dlc, data[2] = {0, 0};
655 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
656 	u32 ramoff, dwindex = 0, i;
657 	struct xcan_priv *priv = netdev_priv(ndev);
658 
659 	/* Watch carefully on the bit sequence */
660 	if (cf->can_id & CAN_EFF_FLAG) {
661 		/* Extended CAN ID format */
662 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
663 			XCAN_IDR_ID2_MASK;
664 		id |= (((cf->can_id & CAN_EFF_MASK) >>
665 			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
666 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
667 
668 		/* The substibute remote TX request bit should be "1"
669 		 * for extended frames as in the Xilinx CAN datasheet
670 		 */
671 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
672 
673 		if (cf->can_id & CAN_RTR_FLAG)
674 			/* Extended frames remote TX request */
675 			id |= XCAN_IDR_RTR_MASK;
676 	} else {
677 		/* Standard CAN ID format */
678 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
679 			XCAN_IDR_ID1_MASK;
680 
681 		if (cf->can_id & CAN_RTR_FLAG)
682 			/* Standard frames remote TX request */
683 			id |= XCAN_IDR_SRR_MASK;
684 	}
685 
686 	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
687 	if (can_is_canfd_skb(skb)) {
688 		if (cf->flags & CANFD_BRS)
689 			dlc |= XCAN_DLCR_BRS_MASK;
690 		dlc |= XCAN_DLCR_EDL_MASK;
691 	}
692 
693 	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
694 	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
695 		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
696 	else
697 		can_put_echo_skb(skb, ndev, 0, 0);
698 
699 	priv->tx_head++;
700 
701 	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
702 	/* If the CAN frame is RTR frame this write triggers transmission
703 	 * (not on CAN FD)
704 	 */
705 	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
706 	if (priv->devtype.cantype == XAXI_CANFD ||
707 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
708 		for (i = 0; i < cf->len; i += 4) {
709 			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
710 					(dwindex * XCANFD_DW_BYTES);
711 			priv->write_reg(priv, ramoff,
712 					be32_to_cpup((__be32 *)(cf->data + i)));
713 			dwindex++;
714 		}
715 	} else {
716 		if (cf->len > 0)
717 			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
718 		if (cf->len > 4)
719 			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
720 
721 		if (!(cf->can_id & CAN_RTR_FLAG)) {
722 			priv->write_reg(priv,
723 					XCAN_FRAME_DW1_OFFSET(frame_offset),
724 					data[0]);
725 			/* If the CAN frame is Standard/Extended frame this
726 			 * write triggers transmission (not on CAN FD)
727 			 */
728 			priv->write_reg(priv,
729 					XCAN_FRAME_DW2_OFFSET(frame_offset),
730 					data[1]);
731 		}
732 	}
733 }
734 
735 /**
736  * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
737  * @skb:	sk_buff pointer that contains data to be Txed
738  * @ndev:	Pointer to net_device structure
739  *
740  * Return: 0 on success, -ENOSPC if FIFO is full.
741  */
742 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
743 {
744 	struct xcan_priv *priv = netdev_priv(ndev);
745 	unsigned long flags;
746 
747 	/* Check if the TX buffer is full */
748 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
749 			XCAN_SR_TXFLL_MASK))
750 		return -ENOSPC;
751 
752 	spin_lock_irqsave(&priv->tx_lock, flags);
753 
754 	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
755 
756 	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
757 	if (priv->tx_max > 1)
758 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
759 
760 	/* Check if the TX buffer is full */
761 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
762 		netif_stop_queue(ndev);
763 
764 	spin_unlock_irqrestore(&priv->tx_lock, flags);
765 
766 	return 0;
767 }
768 
769 /**
770  * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
771  * @skb:	sk_buff pointer that contains data to be Txed
772  * @ndev:	Pointer to net_device structure
773  *
774  * Return: 0 on success, -ENOSPC if there is no space
775  */
776 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
777 {
778 	struct xcan_priv *priv = netdev_priv(ndev);
779 	unsigned long flags;
780 
781 	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
782 		     BIT(XCAN_TX_MAILBOX_IDX)))
783 		return -ENOSPC;
784 
785 	spin_lock_irqsave(&priv->tx_lock, flags);
786 
787 	xcan_write_frame(ndev, skb,
788 			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
789 
790 	/* Mark buffer as ready for transmit */
791 	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
792 
793 	netif_stop_queue(ndev);
794 
795 	spin_unlock_irqrestore(&priv->tx_lock, flags);
796 
797 	return 0;
798 }
799 
800 /**
801  * xcan_start_xmit - Starts the transmission
802  * @skb:	sk_buff pointer that contains data to be Txed
803  * @ndev:	Pointer to net_device structure
804  *
805  * This function is invoked from upper layers to initiate transmission.
806  *
807  * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
808  */
809 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
810 {
811 	struct xcan_priv *priv = netdev_priv(ndev);
812 	int ret;
813 
814 	if (can_dev_dropped_skb(ndev, skb))
815 		return NETDEV_TX_OK;
816 
817 	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
818 		ret = xcan_start_xmit_mailbox(skb, ndev);
819 	else
820 		ret = xcan_start_xmit_fifo(skb, ndev);
821 
822 	if (ret < 0) {
823 		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
824 		netif_stop_queue(ndev);
825 		return NETDEV_TX_BUSY;
826 	}
827 
828 	return NETDEV_TX_OK;
829 }
830 
831 /**
832  * xcan_rx -  Is called from CAN isr to complete the received
833  *		frame  processing
834  * @ndev:	Pointer to net_device structure
835  * @frame_base:	Register offset to the frame to be read
836  *
837  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
838  * does minimal processing and invokes "netif_receive_skb" to complete further
839  * processing.
840  * Return: 1 on success and 0 on failure.
841  */
842 static int xcan_rx(struct net_device *ndev, int frame_base)
843 {
844 	struct xcan_priv *priv = netdev_priv(ndev);
845 	struct net_device_stats *stats = &ndev->stats;
846 	struct can_frame *cf;
847 	struct sk_buff *skb;
848 	u32 id_xcan, dlc, data[2] = {0, 0};
849 
850 	skb = alloc_can_skb(ndev, &cf);
851 	if (unlikely(!skb)) {
852 		stats->rx_dropped++;
853 		return 0;
854 	}
855 
856 	/* Read a frame from Xilinx zynq CANPS */
857 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
858 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
859 				   XCAN_DLCR_DLC_SHIFT;
860 
861 	/* Change Xilinx CAN data length format to socketCAN data format */
862 	cf->len = can_cc_dlc2len(dlc);
863 
864 	/* Change Xilinx CAN ID format to socketCAN ID format */
865 	if (id_xcan & XCAN_IDR_IDE_MASK) {
866 		/* The received frame is an Extended format frame */
867 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
868 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
869 				XCAN_IDR_ID2_SHIFT;
870 		cf->can_id |= CAN_EFF_FLAG;
871 		if (id_xcan & XCAN_IDR_RTR_MASK)
872 			cf->can_id |= CAN_RTR_FLAG;
873 	} else {
874 		/* The received frame is a standard format frame */
875 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
876 				XCAN_IDR_ID1_SHIFT;
877 		if (id_xcan & XCAN_IDR_SRR_MASK)
878 			cf->can_id |= CAN_RTR_FLAG;
879 	}
880 
881 	/* DW1/DW2 must always be read to remove message from RXFIFO */
882 	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
883 	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
884 
885 	if (!(cf->can_id & CAN_RTR_FLAG)) {
886 		/* Change Xilinx CAN data format to socketCAN data format */
887 		if (cf->len > 0)
888 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
889 		if (cf->len > 4)
890 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
891 
892 		stats->rx_bytes += cf->len;
893 	}
894 	stats->rx_packets++;
895 
896 	netif_receive_skb(skb);
897 
898 	return 1;
899 }
900 
901 /**
902  * xcanfd_rx -  Is called from CAN isr to complete the received
903  *		frame  processing
904  * @ndev:	Pointer to net_device structure
905  * @frame_base:	Register offset to the frame to be read
906  *
907  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
908  * does minimal processing and invokes "netif_receive_skb" to complete further
909  * processing.
910  * Return: 1 on success and 0 on failure.
911  */
912 static int xcanfd_rx(struct net_device *ndev, int frame_base)
913 {
914 	struct xcan_priv *priv = netdev_priv(ndev);
915 	struct net_device_stats *stats = &ndev->stats;
916 	struct canfd_frame *cf;
917 	struct sk_buff *skb;
918 	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
919 
920 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
921 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
922 	if (dlc & XCAN_DLCR_EDL_MASK)
923 		skb = alloc_canfd_skb(ndev, &cf);
924 	else
925 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
926 
927 	if (unlikely(!skb)) {
928 		stats->rx_dropped++;
929 		return 0;
930 	}
931 
932 	/* Change Xilinx CANFD data length format to socketCAN data
933 	 * format
934 	 */
935 	if (dlc & XCAN_DLCR_EDL_MASK)
936 		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
937 				  XCAN_DLCR_DLC_SHIFT);
938 	else
939 		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
940 					  XCAN_DLCR_DLC_SHIFT);
941 
942 	/* Change Xilinx CAN ID format to socketCAN ID format */
943 	if (id_xcan & XCAN_IDR_IDE_MASK) {
944 		/* The received frame is an Extended format frame */
945 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
946 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
947 				XCAN_IDR_ID2_SHIFT;
948 		cf->can_id |= CAN_EFF_FLAG;
949 		if (id_xcan & XCAN_IDR_RTR_MASK)
950 			cf->can_id |= CAN_RTR_FLAG;
951 	} else {
952 		/* The received frame is a standard format frame */
953 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
954 				XCAN_IDR_ID1_SHIFT;
955 		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
956 					XCAN_IDR_SRR_MASK))
957 			cf->can_id |= CAN_RTR_FLAG;
958 	}
959 
960 	/* Check the frame received is FD or not*/
961 	if (dlc & XCAN_DLCR_EDL_MASK) {
962 		for (i = 0; i < cf->len; i += 4) {
963 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
964 					(dwindex * XCANFD_DW_BYTES);
965 			data[0] = priv->read_reg(priv, dw_offset);
966 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
967 			dwindex++;
968 		}
969 	} else {
970 		for (i = 0; i < cf->len; i += 4) {
971 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
972 			data[0] = priv->read_reg(priv, dw_offset + i);
973 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
974 		}
975 	}
976 
977 	if (!(cf->can_id & CAN_RTR_FLAG))
978 		stats->rx_bytes += cf->len;
979 	stats->rx_packets++;
980 
981 	netif_receive_skb(skb);
982 
983 	return 1;
984 }
985 
986 /**
987  * xcan_current_error_state - Get current error state from HW
988  * @ndev:	Pointer to net_device structure
989  *
990  * Checks the current CAN error state from the HW. Note that this
991  * only checks for ERROR_PASSIVE and ERROR_WARNING.
992  *
993  * Return:
994  * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
995  * otherwise.
996  */
997 static enum can_state xcan_current_error_state(struct net_device *ndev)
998 {
999 	struct xcan_priv *priv = netdev_priv(ndev);
1000 	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
1001 
1002 	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
1003 		return CAN_STATE_ERROR_PASSIVE;
1004 	else if (status & XCAN_SR_ERRWRN_MASK)
1005 		return CAN_STATE_ERROR_WARNING;
1006 	else
1007 		return CAN_STATE_ERROR_ACTIVE;
1008 }
1009 
1010 /**
1011  * xcan_set_error_state - Set new CAN error state
1012  * @ndev:	Pointer to net_device structure
1013  * @new_state:	The new CAN state to be set
1014  * @cf:		Error frame to be populated or NULL
1015  *
1016  * Set new CAN error state for the device, updating statistics and
1017  * populating the error frame if given.
1018  */
1019 static void xcan_set_error_state(struct net_device *ndev,
1020 				 enum can_state new_state,
1021 				 struct can_frame *cf)
1022 {
1023 	struct xcan_priv *priv = netdev_priv(ndev);
1024 	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
1025 	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
1026 	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
1027 	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
1028 	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
1029 
1030 	/* non-ERROR states are handled elsewhere */
1031 	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
1032 		return;
1033 
1034 	can_change_state(ndev, cf, tx_state, rx_state);
1035 
1036 	if (cf) {
1037 		cf->can_id |= CAN_ERR_CNT;
1038 		cf->data[6] = txerr;
1039 		cf->data[7] = rxerr;
1040 	}
1041 }
1042 
1043 /**
1044  * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
1045  * @ndev:	Pointer to net_device structure
1046  *
1047  * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
1048  * the performed RX/TX has caused it to drop to a lesser state and set
1049  * the interface state accordingly.
1050  */
1051 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
1052 {
1053 	struct xcan_priv *priv = netdev_priv(ndev);
1054 	enum can_state old_state = priv->can.state;
1055 	enum can_state new_state;
1056 
1057 	/* changing error state due to successful frame RX/TX can only
1058 	 * occur from these states
1059 	 */
1060 	if (old_state != CAN_STATE_ERROR_WARNING &&
1061 	    old_state != CAN_STATE_ERROR_PASSIVE)
1062 		return;
1063 
1064 	new_state = xcan_current_error_state(ndev);
1065 
1066 	if (new_state != old_state) {
1067 		struct sk_buff *skb;
1068 		struct can_frame *cf;
1069 
1070 		skb = alloc_can_err_skb(ndev, &cf);
1071 
1072 		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1073 
1074 		if (skb)
1075 			netif_rx(skb);
1076 	}
1077 }
1078 
1079 /**
1080  * xcan_err_interrupt - error frame Isr
1081  * @ndev:	net_device pointer
1082  * @isr:	interrupt status register value
1083  *
1084  * This is the CAN error interrupt and it will
1085  * check the type of error and forward the error
1086  * frame to upper layers.
1087  */
1088 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1089 {
1090 	struct xcan_priv *priv = netdev_priv(ndev);
1091 	struct net_device_stats *stats = &ndev->stats;
1092 	struct can_frame cf = { };
1093 	u32 err_status;
1094 
1095 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1096 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1097 
1098 	if (isr & XCAN_IXR_BSOFF_MASK) {
1099 		priv->can.state = CAN_STATE_BUS_OFF;
1100 		priv->can.can_stats.bus_off++;
1101 		/* Leave device in Config Mode in bus-off state */
1102 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1103 		can_bus_off(ndev);
1104 		cf.can_id |= CAN_ERR_BUSOFF;
1105 	} else {
1106 		enum can_state new_state = xcan_current_error_state(ndev);
1107 
1108 		if (new_state != priv->can.state)
1109 			xcan_set_error_state(ndev, new_state, &cf);
1110 	}
1111 
1112 	/* Check for Arbitration lost interrupt */
1113 	if (isr & XCAN_IXR_ARBLST_MASK) {
1114 		priv->can.can_stats.arbitration_lost++;
1115 		cf.can_id |= CAN_ERR_LOSTARB;
1116 		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1117 	}
1118 
1119 	/* Check for RX FIFO Overflow interrupt */
1120 	if (isr & XCAN_IXR_RXOFLW_MASK) {
1121 		stats->rx_over_errors++;
1122 		stats->rx_errors++;
1123 		cf.can_id |= CAN_ERR_CRTL;
1124 		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1125 	}
1126 
1127 	/* Check for RX Match Not Finished interrupt */
1128 	if (isr & XCAN_IXR_RXMNF_MASK) {
1129 		stats->rx_dropped++;
1130 		stats->rx_errors++;
1131 		netdev_err(ndev, "RX match not finished, frame discarded\n");
1132 		cf.can_id |= CAN_ERR_CRTL;
1133 		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1134 	}
1135 
1136 	/* Check for error interrupt */
1137 	if (isr & XCAN_IXR_ERROR_MASK) {
1138 		bool berr_reporting = false;
1139 
1140 		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1141 			berr_reporting = true;
1142 			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1143 		}
1144 
1145 		/* Check for Ack error interrupt */
1146 		if (err_status & XCAN_ESR_ACKER_MASK) {
1147 			stats->tx_errors++;
1148 			if (berr_reporting) {
1149 				cf.can_id |= CAN_ERR_ACK;
1150 				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1151 			}
1152 		}
1153 
1154 		/* Check for Bit error interrupt */
1155 		if (err_status & XCAN_ESR_BERR_MASK) {
1156 			stats->tx_errors++;
1157 			if (berr_reporting) {
1158 				cf.can_id |= CAN_ERR_PROT;
1159 				cf.data[2] = CAN_ERR_PROT_BIT;
1160 			}
1161 		}
1162 
1163 		/* Check for Stuff error interrupt */
1164 		if (err_status & XCAN_ESR_STER_MASK) {
1165 			stats->rx_errors++;
1166 			if (berr_reporting) {
1167 				cf.can_id |= CAN_ERR_PROT;
1168 				cf.data[2] = CAN_ERR_PROT_STUFF;
1169 			}
1170 		}
1171 
1172 		/* Check for Form error interrupt */
1173 		if (err_status & XCAN_ESR_FMER_MASK) {
1174 			stats->rx_errors++;
1175 			if (berr_reporting) {
1176 				cf.can_id |= CAN_ERR_PROT;
1177 				cf.data[2] = CAN_ERR_PROT_FORM;
1178 			}
1179 		}
1180 
1181 		/* Check for CRC error interrupt */
1182 		if (err_status & XCAN_ESR_CRCER_MASK) {
1183 			stats->rx_errors++;
1184 			if (berr_reporting) {
1185 				cf.can_id |= CAN_ERR_PROT;
1186 				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1187 			}
1188 		}
1189 		priv->can.can_stats.bus_error++;
1190 	}
1191 
1192 	if (priv->ecc_enable && isr & XCAN_IXR_ECC_MASK) {
1193 		u32 reg_rx_ecc, reg_txol_ecc, reg_txtl_ecc;
1194 
1195 		reg_rx_ecc = priv->read_reg(priv, XCAN_RXFIFO_ECC_OFFSET);
1196 		reg_txol_ecc = priv->read_reg(priv, XCAN_TXOLFIFO_ECC_OFFSET);
1197 		reg_txtl_ecc = priv->read_reg(priv, XCAN_TXTLFIFO_ECC_OFFSET);
1198 
1199 		/* The counter reaches its maximum at 0xffff and does not overflow.
1200 		 * Accept the small race window between reading and resetting ECC counters.
1201 		 */
1202 		priv->write_reg(priv, XCAN_ECC_CFG_OFFSET, XCAN_ECC_CFG_REECRX_MASK |
1203 				XCAN_ECC_CFG_REECTXOL_MASK | XCAN_ECC_CFG_REECTXTL_MASK);
1204 
1205 		u64_stats_update_begin(&priv->syncp);
1206 
1207 		if (isr & XCAN_IXR_E2BERX_MASK) {
1208 			u64_stats_add(&priv->ecc_rx_2_bit_errors,
1209 				      FIELD_GET(XCAN_ECC_2BIT_CNT_MASK, reg_rx_ecc));
1210 		}
1211 
1212 		if (isr & XCAN_IXR_E1BERX_MASK) {
1213 			u64_stats_add(&priv->ecc_rx_1_bit_errors,
1214 				      FIELD_GET(XCAN_ECC_1BIT_CNT_MASK, reg_rx_ecc));
1215 		}
1216 
1217 		if (isr & XCAN_IXR_E2BETXOL_MASK) {
1218 			u64_stats_add(&priv->ecc_txol_2_bit_errors,
1219 				      FIELD_GET(XCAN_ECC_2BIT_CNT_MASK, reg_txol_ecc));
1220 		}
1221 
1222 		if (isr & XCAN_IXR_E1BETXOL_MASK) {
1223 			u64_stats_add(&priv->ecc_txol_1_bit_errors,
1224 				      FIELD_GET(XCAN_ECC_1BIT_CNT_MASK, reg_txol_ecc));
1225 		}
1226 
1227 		if (isr & XCAN_IXR_E2BETXTL_MASK) {
1228 			u64_stats_add(&priv->ecc_txtl_2_bit_errors,
1229 				      FIELD_GET(XCAN_ECC_2BIT_CNT_MASK, reg_txtl_ecc));
1230 		}
1231 
1232 		if (isr & XCAN_IXR_E1BETXTL_MASK) {
1233 			u64_stats_add(&priv->ecc_txtl_1_bit_errors,
1234 				      FIELD_GET(XCAN_ECC_1BIT_CNT_MASK, reg_txtl_ecc));
1235 		}
1236 
1237 		u64_stats_update_end(&priv->syncp);
1238 	}
1239 
1240 	if (cf.can_id) {
1241 		struct can_frame *skb_cf;
1242 		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1243 
1244 		if (skb) {
1245 			skb_cf->can_id |= cf.can_id;
1246 			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1247 			netif_rx(skb);
1248 		}
1249 	}
1250 
1251 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1252 		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1253 }
1254 
1255 /**
1256  * xcan_state_interrupt - It will check the state of the CAN device
1257  * @ndev:	net_device pointer
1258  * @isr:	interrupt status register value
1259  *
1260  * This will checks the state of the CAN device
1261  * and puts the device into appropriate state.
1262  */
1263 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1264 {
1265 	struct xcan_priv *priv = netdev_priv(ndev);
1266 
1267 	/* Check for Sleep interrupt if set put CAN device in sleep state */
1268 	if (isr & XCAN_IXR_SLP_MASK)
1269 		priv->can.state = CAN_STATE_SLEEPING;
1270 
1271 	/* Check for Wake up interrupt if set put CAN device in Active state */
1272 	if (isr & XCAN_IXR_WKUP_MASK)
1273 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1274 }
1275 
1276 /**
1277  * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1278  * @priv:	Driver private data structure
1279  *
1280  * Return: Register offset of the next frame in RX FIFO.
1281  */
1282 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1283 {
1284 	int offset;
1285 
1286 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1287 		u32 fsr, mask;
1288 
1289 		/* clear RXOK before the is-empty check so that any newly
1290 		 * received frame will reassert it without a race
1291 		 */
1292 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1293 
1294 		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1295 
1296 		/* check if RX FIFO is empty */
1297 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1298 			mask = XCAN_2_FSR_FL_MASK;
1299 		else
1300 			mask = XCAN_FSR_FL_MASK;
1301 
1302 		if (!(fsr & mask))
1303 			return -ENOENT;
1304 
1305 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1306 			offset =
1307 			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1308 		else
1309 			offset =
1310 			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1311 
1312 	} else {
1313 		/* check if RX FIFO is empty */
1314 		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1315 		      XCAN_IXR_RXNEMP_MASK))
1316 			return -ENOENT;
1317 
1318 		/* frames are read from a static offset */
1319 		offset = XCAN_RXFIFO_OFFSET;
1320 	}
1321 
1322 	return offset;
1323 }
1324 
1325 /**
1326  * xcan_rx_poll - Poll routine for rx packets (NAPI)
1327  * @napi:	napi structure pointer
1328  * @quota:	Max number of rx packets to be processed.
1329  *
1330  * This is the poll routine for rx part.
1331  * It will process the packets maximux quota value.
1332  *
1333  * Return: number of packets received
1334  */
1335 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1336 {
1337 	struct net_device *ndev = napi->dev;
1338 	struct xcan_priv *priv = netdev_priv(ndev);
1339 	u32 ier;
1340 	int work_done = 0;
1341 	int frame_offset;
1342 
1343 	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1344 	       (work_done < quota)) {
1345 		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1346 			work_done += xcanfd_rx(ndev, frame_offset);
1347 		else
1348 			work_done += xcan_rx(ndev, frame_offset);
1349 
1350 		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1351 			/* increment read index */
1352 			priv->write_reg(priv, XCAN_FSR_OFFSET,
1353 					XCAN_FSR_IRI_MASK);
1354 		else
1355 			/* clear rx-not-empty (will actually clear only if
1356 			 * empty)
1357 			 */
1358 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1359 					XCAN_IXR_RXNEMP_MASK);
1360 	}
1361 
1362 	if (work_done)
1363 		xcan_update_error_state_after_rxtx(ndev);
1364 
1365 	if (work_done < quota) {
1366 		if (napi_complete_done(napi, work_done)) {
1367 			ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1368 			ier |= xcan_rx_int_mask(priv);
1369 			priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1370 		}
1371 	}
1372 	return work_done;
1373 }
1374 
1375 /**
1376  * xcan_tx_interrupt - Tx Done Isr
1377  * @ndev:	net_device pointer
1378  * @isr:	Interrupt status register value
1379  */
1380 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1381 {
1382 	struct xcan_priv *priv = netdev_priv(ndev);
1383 	struct net_device_stats *stats = &ndev->stats;
1384 	unsigned int frames_in_fifo;
1385 	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1386 	unsigned long flags;
1387 	int retries = 0;
1388 
1389 	/* Synchronize with xmit as we need to know the exact number
1390 	 * of frames in the FIFO to stay in sync due to the TXFEMP
1391 	 * handling.
1392 	 * This also prevents a race between netif_wake_queue() and
1393 	 * netif_stop_queue().
1394 	 */
1395 	spin_lock_irqsave(&priv->tx_lock, flags);
1396 
1397 	frames_in_fifo = priv->tx_head - priv->tx_tail;
1398 
1399 	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1400 		/* clear TXOK anyway to avoid getting back here */
1401 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1402 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1403 		return;
1404 	}
1405 
1406 	/* Check if 2 frames were sent (TXOK only means that at least 1
1407 	 * frame was sent).
1408 	 */
1409 	if (frames_in_fifo > 1) {
1410 		WARN_ON(frames_in_fifo > priv->tx_max);
1411 
1412 		/* Synchronize TXOK and isr so that after the loop:
1413 		 * (1) isr variable is up-to-date at least up to TXOK clear
1414 		 *     time. This avoids us clearing a TXOK of a second frame
1415 		 *     but not noticing that the FIFO is now empty and thus
1416 		 *     marking only a single frame as sent.
1417 		 * (2) No TXOK is left. Having one could mean leaving a
1418 		 *     stray TXOK as we might process the associated frame
1419 		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1420 		 *     clear to satisfy (1).
1421 		 */
1422 		while ((isr & XCAN_IXR_TXOK_MASK) &&
1423 		       !WARN_ON(++retries == 100)) {
1424 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1425 					XCAN_IXR_TXOK_MASK);
1426 			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1427 		}
1428 
1429 		if (isr & XCAN_IXR_TXFEMP_MASK) {
1430 			/* nothing in FIFO anymore */
1431 			frames_sent = frames_in_fifo;
1432 		}
1433 	} else {
1434 		/* single frame in fifo, just clear TXOK */
1435 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1436 	}
1437 
1438 	while (frames_sent--) {
1439 		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1440 						    priv->tx_max, NULL);
1441 		priv->tx_tail++;
1442 		stats->tx_packets++;
1443 	}
1444 
1445 	netif_wake_queue(ndev);
1446 
1447 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1448 
1449 	xcan_update_error_state_after_rxtx(ndev);
1450 }
1451 
1452 /**
1453  * xcan_interrupt - CAN Isr
1454  * @irq:	irq number
1455  * @dev_id:	device id pointer
1456  *
1457  * This is the xilinx CAN Isr. It checks for the type of interrupt
1458  * and invokes the corresponding ISR.
1459  *
1460  * Return:
1461  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1462  */
1463 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1464 {
1465 	struct net_device *ndev = (struct net_device *)dev_id;
1466 	struct xcan_priv *priv = netdev_priv(ndev);
1467 	u32 isr_errors, mask;
1468 	u32 isr, ier;
1469 	u32 rx_int_mask = xcan_rx_int_mask(priv);
1470 
1471 	/* Get the interrupt status from Xilinx CAN */
1472 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1473 	if (!isr)
1474 		return IRQ_NONE;
1475 
1476 	/* Check for the type of interrupt and Processing it */
1477 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1478 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1479 				XCAN_IXR_WKUP_MASK));
1480 		xcan_state_interrupt(ndev, isr);
1481 	}
1482 
1483 	/* Check for Tx interrupt and Processing it */
1484 	if (isr & XCAN_IXR_TXOK_MASK)
1485 		xcan_tx_interrupt(ndev, isr);
1486 
1487 	mask = XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1488 		XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1489 		XCAN_IXR_RXMNF_MASK;
1490 
1491 	if (priv->ecc_enable)
1492 		mask |= XCAN_IXR_ECC_MASK;
1493 
1494 	/* Check for the type of error interrupt and Processing it */
1495 	isr_errors = isr & mask;
1496 	if (isr_errors) {
1497 		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1498 		xcan_err_interrupt(ndev, isr);
1499 	}
1500 
1501 	/* Check for the type of receive interrupt and Processing it */
1502 	if (isr & rx_int_mask) {
1503 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1504 		ier &= ~rx_int_mask;
1505 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1506 		napi_schedule(&priv->napi);
1507 	}
1508 	return IRQ_HANDLED;
1509 }
1510 
1511 /**
1512  * xcan_chip_stop - Driver stop routine
1513  * @ndev:	Pointer to net_device structure
1514  *
1515  * This is the drivers stop routine. It will disable the
1516  * interrupts and put the device into configuration mode.
1517  */
1518 static void xcan_chip_stop(struct net_device *ndev)
1519 {
1520 	struct xcan_priv *priv = netdev_priv(ndev);
1521 	int ret;
1522 
1523 	/* Disable interrupts and leave the can in configuration mode */
1524 	ret = set_reset_mode(ndev);
1525 	if (ret < 0)
1526 		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1527 
1528 	priv->can.state = CAN_STATE_STOPPED;
1529 }
1530 
1531 /**
1532  * xcan_open - Driver open routine
1533  * @ndev:	Pointer to net_device structure
1534  *
1535  * This is the driver open routine.
1536  * Return: 0 on success and failure value on error
1537  */
1538 static int xcan_open(struct net_device *ndev)
1539 {
1540 	struct xcan_priv *priv = netdev_priv(ndev);
1541 	int ret;
1542 
1543 	ret = phy_power_on(priv->transceiver);
1544 	if (ret)
1545 		return ret;
1546 
1547 	ret = pm_runtime_get_sync(priv->dev);
1548 	if (ret < 0) {
1549 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1550 			   __func__, ret);
1551 		goto err;
1552 	}
1553 
1554 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1555 			  ndev->name, ndev);
1556 	if (ret < 0) {
1557 		netdev_err(ndev, "irq allocation for CAN failed\n");
1558 		goto err;
1559 	}
1560 
1561 	/* Set chip into reset mode */
1562 	ret = set_reset_mode(ndev);
1563 	if (ret < 0) {
1564 		netdev_err(ndev, "mode resetting failed!\n");
1565 		goto err_irq;
1566 	}
1567 
1568 	/* Common open */
1569 	ret = open_candev(ndev);
1570 	if (ret)
1571 		goto err_irq;
1572 
1573 	ret = xcan_chip_start(ndev);
1574 	if (ret < 0) {
1575 		netdev_err(ndev, "xcan_chip_start failed!\n");
1576 		goto err_candev;
1577 	}
1578 
1579 	napi_enable(&priv->napi);
1580 	netif_start_queue(ndev);
1581 
1582 	return 0;
1583 
1584 err_candev:
1585 	close_candev(ndev);
1586 err_irq:
1587 	free_irq(ndev->irq, ndev);
1588 err:
1589 	pm_runtime_put(priv->dev);
1590 	phy_power_off(priv->transceiver);
1591 
1592 	return ret;
1593 }
1594 
1595 /**
1596  * xcan_close - Driver close routine
1597  * @ndev:	Pointer to net_device structure
1598  *
1599  * Return: 0 always
1600  */
1601 static int xcan_close(struct net_device *ndev)
1602 {
1603 	struct xcan_priv *priv = netdev_priv(ndev);
1604 
1605 	netif_stop_queue(ndev);
1606 	napi_disable(&priv->napi);
1607 	xcan_chip_stop(ndev);
1608 	free_irq(ndev->irq, ndev);
1609 	close_candev(ndev);
1610 
1611 	pm_runtime_put(priv->dev);
1612 	phy_power_off(priv->transceiver);
1613 
1614 	return 0;
1615 }
1616 
1617 /**
1618  * xcan_get_berr_counter - error counter routine
1619  * @ndev:	Pointer to net_device structure
1620  * @bec:	Pointer to can_berr_counter structure
1621  *
1622  * This is the driver error counter routine.
1623  * Return: 0 on success and failure value on error
1624  */
1625 static int xcan_get_berr_counter(const struct net_device *ndev,
1626 				 struct can_berr_counter *bec)
1627 {
1628 	struct xcan_priv *priv = netdev_priv(ndev);
1629 	int ret;
1630 
1631 	ret = pm_runtime_get_sync(priv->dev);
1632 	if (ret < 0) {
1633 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1634 			   __func__, ret);
1635 		pm_runtime_put(priv->dev);
1636 		return ret;
1637 	}
1638 
1639 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1640 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1641 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1642 
1643 	pm_runtime_put(priv->dev);
1644 
1645 	return 0;
1646 }
1647 
1648 /**
1649  * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1650  * @ndev:	Pointer to net_device structure
1651  * @tdcv:	Pointer to TDCV value
1652  *
1653  * Return: 0 on success
1654  */
1655 static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1656 {
1657 	struct xcan_priv *priv = netdev_priv(ndev);
1658 
1659 	*tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1660 
1661 	return 0;
1662 }
1663 
1664 static void xcan_get_strings(struct net_device *ndev, u32 stringset, u8 *buf)
1665 {
1666 	switch (stringset) {
1667 	case ETH_SS_STATS:
1668 		memcpy(buf, &xcan_priv_flags_strings,
1669 		       sizeof(xcan_priv_flags_strings));
1670 	}
1671 }
1672 
1673 static int xcan_get_sset_count(struct net_device *netdev, int sset)
1674 {
1675 	switch (sset) {
1676 	case ETH_SS_STATS:
1677 		return ARRAY_SIZE(xcan_priv_flags_strings);
1678 	default:
1679 		return -EOPNOTSUPP;
1680 	}
1681 }
1682 
1683 static void xcan_get_ethtool_stats(struct net_device *ndev,
1684 				   struct ethtool_stats *stats, u64 *data)
1685 {
1686 	struct xcan_priv *priv = netdev_priv(ndev);
1687 	unsigned int start;
1688 
1689 	do {
1690 		start = u64_stats_fetch_begin(&priv->syncp);
1691 
1692 		data[XCAN_ECC_RX_2_BIT_ERRORS] = u64_stats_read(&priv->ecc_rx_2_bit_errors);
1693 		data[XCAN_ECC_RX_1_BIT_ERRORS] = u64_stats_read(&priv->ecc_rx_1_bit_errors);
1694 		data[XCAN_ECC_TXOL_2_BIT_ERRORS] = u64_stats_read(&priv->ecc_txol_2_bit_errors);
1695 		data[XCAN_ECC_TXOL_1_BIT_ERRORS] = u64_stats_read(&priv->ecc_txol_1_bit_errors);
1696 		data[XCAN_ECC_TXTL_2_BIT_ERRORS] = u64_stats_read(&priv->ecc_txtl_2_bit_errors);
1697 		data[XCAN_ECC_TXTL_1_BIT_ERRORS] = u64_stats_read(&priv->ecc_txtl_1_bit_errors);
1698 	} while (u64_stats_fetch_retry(&priv->syncp, start));
1699 }
1700 
1701 static const struct net_device_ops xcan_netdev_ops = {
1702 	.ndo_open	= xcan_open,
1703 	.ndo_stop	= xcan_close,
1704 	.ndo_start_xmit	= xcan_start_xmit,
1705 	.ndo_change_mtu	= can_change_mtu,
1706 };
1707 
1708 static const struct ethtool_ops xcan_ethtool_ops = {
1709 	.get_ts_info = ethtool_op_get_ts_info,
1710 	.get_strings = xcan_get_strings,
1711 	.get_sset_count = xcan_get_sset_count,
1712 	.get_ethtool_stats = xcan_get_ethtool_stats,
1713 };
1714 
1715 /**
1716  * xcan_suspend - Suspend method for the driver
1717  * @dev:	Address of the device structure
1718  *
1719  * Put the driver into low power mode.
1720  * Return: 0 on success and failure value on error
1721  */
1722 static int __maybe_unused xcan_suspend(struct device *dev)
1723 {
1724 	struct net_device *ndev = dev_get_drvdata(dev);
1725 
1726 	if (netif_running(ndev)) {
1727 		netif_stop_queue(ndev);
1728 		netif_device_detach(ndev);
1729 		xcan_chip_stop(ndev);
1730 	}
1731 
1732 	return pm_runtime_force_suspend(dev);
1733 }
1734 
1735 /**
1736  * xcan_resume - Resume from suspend
1737  * @dev:	Address of the device structure
1738  *
1739  * Resume operation after suspend.
1740  * Return: 0 on success and failure value on error
1741  */
1742 static int __maybe_unused xcan_resume(struct device *dev)
1743 {
1744 	struct net_device *ndev = dev_get_drvdata(dev);
1745 	int ret;
1746 
1747 	ret = pm_runtime_force_resume(dev);
1748 	if (ret) {
1749 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1750 		return ret;
1751 	}
1752 
1753 	if (netif_running(ndev)) {
1754 		ret = xcan_chip_start(ndev);
1755 		if (ret) {
1756 			dev_err(dev, "xcan_chip_start failed on resume\n");
1757 			return ret;
1758 		}
1759 
1760 		netif_device_attach(ndev);
1761 		netif_start_queue(ndev);
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 /**
1768  * xcan_runtime_suspend - Runtime suspend method for the driver
1769  * @dev:	Address of the device structure
1770  *
1771  * Put the driver into low power mode.
1772  * Return: 0 always
1773  */
1774 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1775 {
1776 	struct net_device *ndev = dev_get_drvdata(dev);
1777 	struct xcan_priv *priv = netdev_priv(ndev);
1778 
1779 	clk_disable_unprepare(priv->bus_clk);
1780 	clk_disable_unprepare(priv->can_clk);
1781 
1782 	return 0;
1783 }
1784 
1785 /**
1786  * xcan_runtime_resume - Runtime resume from suspend
1787  * @dev:	Address of the device structure
1788  *
1789  * Resume operation after suspend.
1790  * Return: 0 on success and failure value on error
1791  */
1792 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1793 {
1794 	struct net_device *ndev = dev_get_drvdata(dev);
1795 	struct xcan_priv *priv = netdev_priv(ndev);
1796 	int ret;
1797 
1798 	ret = clk_prepare_enable(priv->bus_clk);
1799 	if (ret) {
1800 		dev_err(dev, "Cannot enable clock.\n");
1801 		return ret;
1802 	}
1803 	ret = clk_prepare_enable(priv->can_clk);
1804 	if (ret) {
1805 		dev_err(dev, "Cannot enable clock.\n");
1806 		clk_disable_unprepare(priv->bus_clk);
1807 		return ret;
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 static const struct dev_pm_ops xcan_dev_pm_ops = {
1814 	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1815 	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1816 };
1817 
1818 static const struct xcan_devtype_data xcan_zynq_data = {
1819 	.cantype = XZYNQ_CANPS,
1820 	.flags = XCAN_FLAG_TXFEMP,
1821 	.bittiming_const = &xcan_bittiming_const,
1822 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1823 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1824 	.bus_clk_name = "pclk",
1825 };
1826 
1827 static const struct xcan_devtype_data xcan_axi_data = {
1828 	.cantype = XAXI_CAN,
1829 	.bittiming_const = &xcan_bittiming_const,
1830 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1831 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1832 	.bus_clk_name = "s_axi_aclk",
1833 };
1834 
1835 static const struct xcan_devtype_data xcan_canfd_data = {
1836 	.cantype = XAXI_CANFD,
1837 	.flags = XCAN_FLAG_EXT_FILTERS |
1838 		 XCAN_FLAG_RXMNF |
1839 		 XCAN_FLAG_TX_MAILBOXES |
1840 		 XCAN_FLAG_RX_FIFO_MULTI,
1841 	.bittiming_const = &xcan_bittiming_const_canfd,
1842 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1843 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1844 	.bus_clk_name = "s_axi_aclk",
1845 };
1846 
1847 static const struct xcan_devtype_data xcan_canfd2_data = {
1848 	.cantype = XAXI_CANFD_2_0,
1849 	.flags = XCAN_FLAG_EXT_FILTERS |
1850 		 XCAN_FLAG_RXMNF |
1851 		 XCAN_FLAG_TX_MAILBOXES |
1852 		 XCAN_FLAG_CANFD_2 |
1853 		 XCAN_FLAG_RX_FIFO_MULTI,
1854 	.bittiming_const = &xcan_bittiming_const_canfd2,
1855 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1856 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1857 	.bus_clk_name = "s_axi_aclk",
1858 };
1859 
1860 /* Match table for OF platform binding */
1861 static const struct of_device_id xcan_of_match[] = {
1862 	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1863 	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1864 	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1865 	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1866 	{ /* end of list */ },
1867 };
1868 MODULE_DEVICE_TABLE(of, xcan_of_match);
1869 
1870 /**
1871  * xcan_probe - Platform registration call
1872  * @pdev:	Handle to the platform device structure
1873  *
1874  * This function does all the memory allocation and registration for the CAN
1875  * device.
1876  *
1877  * Return: 0 on success and failure value on error
1878  */
1879 static int xcan_probe(struct platform_device *pdev)
1880 {
1881 	struct net_device *ndev;
1882 	struct xcan_priv *priv;
1883 	struct phy *transceiver;
1884 	const struct xcan_devtype_data *devtype;
1885 	void __iomem *addr;
1886 	int ret;
1887 	int rx_max, tx_max;
1888 	u32 hw_tx_max = 0, hw_rx_max = 0;
1889 	const char *hw_tx_max_property;
1890 
1891 	/* Get the virtual base address for the device */
1892 	addr = devm_platform_ioremap_resource(pdev, 0);
1893 	if (IS_ERR(addr)) {
1894 		ret = PTR_ERR(addr);
1895 		goto err;
1896 	}
1897 
1898 	devtype = device_get_match_data(&pdev->dev);
1899 
1900 	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1901 			     "tx-mailbox-count" : "tx-fifo-depth";
1902 
1903 	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1904 				   &hw_tx_max);
1905 	if (ret < 0) {
1906 		dev_err(&pdev->dev, "missing %s property\n",
1907 			hw_tx_max_property);
1908 		goto err;
1909 	}
1910 
1911 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1912 				   &hw_rx_max);
1913 	if (ret < 0) {
1914 		dev_err(&pdev->dev,
1915 			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1916 		goto err;
1917 	}
1918 
1919 	/* With TX FIFO:
1920 	 *
1921 	 * There is no way to directly figure out how many frames have been
1922 	 * sent when the TXOK interrupt is processed. If TXFEMP
1923 	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1924 	 * to determine if 1 or 2 frames have been sent.
1925 	 * Theoretically we should be able to use TXFWMEMP to determine up
1926 	 * to 3 frames, but it seems that after putting a second frame in the
1927 	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1928 	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1929 	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1930 	 * completely synchronized with the rest of the bits?
1931 	 *
1932 	 * With TX mailboxes:
1933 	 *
1934 	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1935 	 * we submit frames one at a time.
1936 	 */
1937 	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1938 	    (devtype->flags & XCAN_FLAG_TXFEMP))
1939 		tx_max = min(hw_tx_max, 2U);
1940 	else
1941 		tx_max = 1;
1942 
1943 	rx_max = hw_rx_max;
1944 
1945 	/* Create a CAN device instance */
1946 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1947 	if (!ndev)
1948 		return -ENOMEM;
1949 
1950 	priv = netdev_priv(ndev);
1951 	priv->ecc_enable = of_property_read_bool(pdev->dev.of_node, "xlnx,has-ecc");
1952 	priv->dev = &pdev->dev;
1953 	priv->can.bittiming_const = devtype->bittiming_const;
1954 	priv->can.do_set_mode = xcan_do_set_mode;
1955 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1956 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1957 					CAN_CTRLMODE_BERR_REPORTING;
1958 	priv->rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1959 	if (IS_ERR(priv->rstc)) {
1960 		dev_err(&pdev->dev, "Cannot get CAN reset.\n");
1961 		ret = PTR_ERR(priv->rstc);
1962 		goto err_free;
1963 	}
1964 
1965 	ret = reset_control_reset(priv->rstc);
1966 	if (ret)
1967 		goto err_free;
1968 
1969 	if (devtype->cantype == XAXI_CANFD) {
1970 		priv->can.data_bittiming_const =
1971 			&xcan_data_bittiming_const_canfd;
1972 		priv->can.tdc_const = &xcan_tdc_const_canfd;
1973 	}
1974 
1975 	if (devtype->cantype == XAXI_CANFD_2_0) {
1976 		priv->can.data_bittiming_const =
1977 			&xcan_data_bittiming_const_canfd2;
1978 		priv->can.tdc_const = &xcan_tdc_const_canfd2;
1979 	}
1980 
1981 	if (devtype->cantype == XAXI_CANFD ||
1982 	    devtype->cantype == XAXI_CANFD_2_0) {
1983 		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1984 						CAN_CTRLMODE_TDC_AUTO;
1985 		priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1986 	}
1987 
1988 	priv->reg_base = addr;
1989 	priv->tx_max = tx_max;
1990 	priv->devtype = *devtype;
1991 	spin_lock_init(&priv->tx_lock);
1992 
1993 	/* Get IRQ for the device */
1994 	ret = platform_get_irq(pdev, 0);
1995 	if (ret < 0)
1996 		goto err_reset;
1997 
1998 	ndev->irq = ret;
1999 
2000 	ndev->flags |= IFF_ECHO;	/* We support local echo */
2001 
2002 	platform_set_drvdata(pdev, ndev);
2003 	SET_NETDEV_DEV(ndev, &pdev->dev);
2004 	ndev->netdev_ops = &xcan_netdev_ops;
2005 	ndev->ethtool_ops = &xcan_ethtool_ops;
2006 
2007 	/* Getting the CAN can_clk info */
2008 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
2009 	if (IS_ERR(priv->can_clk)) {
2010 		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
2011 				    "device clock not found\n");
2012 		goto err_reset;
2013 	}
2014 
2015 	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
2016 	if (IS_ERR(priv->bus_clk)) {
2017 		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
2018 				    "bus clock not found\n");
2019 		goto err_reset;
2020 	}
2021 
2022 	transceiver = devm_phy_optional_get(&pdev->dev, NULL);
2023 	if (IS_ERR(transceiver)) {
2024 		ret = PTR_ERR(transceiver);
2025 		dev_err_probe(&pdev->dev, ret, "failed to get phy\n");
2026 		goto err_reset;
2027 	}
2028 	priv->transceiver = transceiver;
2029 
2030 	priv->write_reg = xcan_write_reg_le;
2031 	priv->read_reg = xcan_read_reg_le;
2032 
2033 	pm_runtime_enable(&pdev->dev);
2034 	ret = pm_runtime_get_sync(&pdev->dev);
2035 	if (ret < 0) {
2036 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
2037 			   __func__, ret);
2038 		goto err_disableclks;
2039 	}
2040 
2041 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
2042 		priv->write_reg = xcan_write_reg_be;
2043 		priv->read_reg = xcan_read_reg_be;
2044 	}
2045 
2046 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
2047 
2048 	netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
2049 
2050 	ret = register_candev(ndev);
2051 	if (ret) {
2052 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
2053 		goto err_disableclks;
2054 	}
2055 
2056 	of_can_transceiver(ndev);
2057 	pm_runtime_put(&pdev->dev);
2058 
2059 	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
2060 		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
2061 		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
2062 	}
2063 
2064 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
2065 		   priv->reg_base, ndev->irq, priv->can.clock.freq,
2066 		   hw_tx_max, priv->tx_max);
2067 
2068 	if (priv->ecc_enable) {
2069 		/* Reset FIFO ECC counters */
2070 		priv->write_reg(priv, XCAN_ECC_CFG_OFFSET, XCAN_ECC_CFG_REECRX_MASK |
2071 			XCAN_ECC_CFG_REECTXOL_MASK | XCAN_ECC_CFG_REECTXTL_MASK);
2072 	}
2073 	return 0;
2074 
2075 err_disableclks:
2076 	pm_runtime_put(priv->dev);
2077 	pm_runtime_disable(&pdev->dev);
2078 err_reset:
2079 	reset_control_assert(priv->rstc);
2080 err_free:
2081 	free_candev(ndev);
2082 err:
2083 	return ret;
2084 }
2085 
2086 /**
2087  * xcan_remove - Unregister the device after releasing the resources
2088  * @pdev:	Handle to the platform device structure
2089  *
2090  * This function frees all the resources allocated to the device.
2091  * Return: 0 always
2092  */
2093 static void xcan_remove(struct platform_device *pdev)
2094 {
2095 	struct net_device *ndev = platform_get_drvdata(pdev);
2096 	struct xcan_priv *priv = netdev_priv(ndev);
2097 
2098 	unregister_candev(ndev);
2099 	pm_runtime_disable(&pdev->dev);
2100 	reset_control_assert(priv->rstc);
2101 	free_candev(ndev);
2102 }
2103 
2104 static struct platform_driver xcan_driver = {
2105 	.probe = xcan_probe,
2106 	.remove = xcan_remove,
2107 	.driver	= {
2108 		.name = DRIVER_NAME,
2109 		.pm = &xcan_dev_pm_ops,
2110 		.of_match_table	= xcan_of_match,
2111 	},
2112 };
2113 
2114 module_platform_driver(xcan_driver);
2115 
2116 MODULE_LICENSE("GPL");
2117 MODULE_AUTHOR("Xilinx Inc");
2118 MODULE_DESCRIPTION("Xilinx CAN interface");
2119