xref: /linux/drivers/net/can/xilinx_can.c (revision 3e5c291c7942d0909a48bc5ec1b9bba136465166)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
3  *
4  * Copyright (C) 2012 - 2022 Xilinx, Inc.
5  * Copyright (C) 2009 PetaLogix. All rights reserved.
6  * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
7  *
8  * Description:
9  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/platform_device.h>
24 #include <linux/skbuff.h>
25 #include <linux/spinlock.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/can/dev.h>
29 #include <linux/can/error.h>
30 #include <linux/pm_runtime.h>
31 
32 #define DRIVER_NAME	"xilinx_can"
33 
34 /* CAN registers set */
35 enum xcan_reg {
36 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
37 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
38 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
39 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
40 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
41 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
42 	XCAN_SR_OFFSET		= 0x18, /* Status */
43 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
44 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
45 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
46 
47 	/* not on CAN FD cores */
48 	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
49 	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
50 	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
51 
52 	/* only on CAN FD cores */
53 	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
54 					  * Prescaler
55 					  */
56 	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
57 	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
58 	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
59 	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
60 	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
61 	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
62 	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
63 	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
64 	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
65 };
66 
67 #define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
68 #define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
69 #define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
70 #define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
71 #define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
72 
73 #define XCAN_CANFD_FRAME_SIZE		0x48
74 #define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
75 					 XCAN_CANFD_FRAME_SIZE * (n))
76 #define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
77 					 XCAN_CANFD_FRAME_SIZE * (n))
78 #define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
79 					 XCAN_CANFD_FRAME_SIZE * (n))
80 
81 /* the single TX mailbox used by this driver on CAN FD HW */
82 #define XCAN_TX_MAILBOX_IDX		0
83 
84 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
85 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
86 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
87 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
88 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
89 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
90 #define XCAN_BRPR_TDCO_MASK		GENMASK(12, 8)  /* TDCO */
91 #define XCAN_2_BRPR_TDCO_MASK		GENMASK(13, 8)  /* TDCO for CANFD 2.0 */
92 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
93 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
94 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
95 #define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
96 #define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
97 #define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
98 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
99 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
100 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
101 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
102 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
103 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
104 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
105 #define XCAN_SR_TDCV_MASK		GENMASK(22, 16) /* TDCV Value */
106 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
107 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
108 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
109 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
110 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
111 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
112 #define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
113 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
114 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
115 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
116 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
117 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
118 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
119 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
120 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
121 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
122 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
123 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
124 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
125 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
126 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
127 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
128 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
129 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
130 #define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
131 #define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
132 #define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
133 #define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
134 #define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
135 #define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
136 #define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
137 
138 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
139 #define XCAN_BRPR_TDC_ENABLE		BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
140 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
141 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
142 #define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
143 #define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
144 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
145 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
146 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
147 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
148 
149 /* CAN frame length constants */
150 #define XCAN_FRAME_MAX_DATA_LEN		8
151 #define XCANFD_DW_BYTES			4
152 #define XCAN_TIMEOUT			(1 * HZ)
153 
154 /* TX-FIFO-empty interrupt available */
155 #define XCAN_FLAG_TXFEMP	0x0001
156 /* RX Match Not Finished interrupt available */
157 #define XCAN_FLAG_RXMNF		0x0002
158 /* Extended acceptance filters with control at 0xE0 */
159 #define XCAN_FLAG_EXT_FILTERS	0x0004
160 /* TX mailboxes instead of TX FIFO */
161 #define XCAN_FLAG_TX_MAILBOXES	0x0008
162 /* RX FIFO with each buffer in separate registers at 0x1100
163  * instead of the regular FIFO at 0x50
164  */
165 #define XCAN_FLAG_RX_FIFO_MULTI	0x0010
166 #define XCAN_FLAG_CANFD_2	0x0020
167 
168 enum xcan_ip_type {
169 	XAXI_CAN = 0,
170 	XZYNQ_CANPS,
171 	XAXI_CANFD,
172 	XAXI_CANFD_2_0,
173 };
174 
175 struct xcan_devtype_data {
176 	enum xcan_ip_type cantype;
177 	unsigned int flags;
178 	const struct can_bittiming_const *bittiming_const;
179 	const char *bus_clk_name;
180 	unsigned int btr_ts2_shift;
181 	unsigned int btr_sjw_shift;
182 };
183 
184 /**
185  * struct xcan_priv - This definition define CAN driver instance
186  * @can:			CAN private data structure.
187  * @tx_lock:			Lock for synchronizing TX interrupt handling
188  * @tx_head:			Tx CAN packets ready to send on the queue
189  * @tx_tail:			Tx CAN packets successfully sended on the queue
190  * @tx_max:			Maximum number packets the driver can send
191  * @napi:			NAPI structure
192  * @read_reg:			For reading data from CAN registers
193  * @write_reg:			For writing data to CAN registers
194  * @dev:			Network device data structure
195  * @reg_base:			Ioremapped address to registers
196  * @irq_flags:			For request_irq()
197  * @bus_clk:			Pointer to struct clk
198  * @can_clk:			Pointer to struct clk
199  * @devtype:			Device type specific constants
200  */
201 struct xcan_priv {
202 	struct can_priv can;
203 	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
204 	unsigned int tx_head;
205 	unsigned int tx_tail;
206 	unsigned int tx_max;
207 	struct napi_struct napi;
208 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
209 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
210 			  u32 val);
211 	struct device *dev;
212 	void __iomem *reg_base;
213 	unsigned long irq_flags;
214 	struct clk *bus_clk;
215 	struct clk *can_clk;
216 	struct xcan_devtype_data devtype;
217 };
218 
219 /* CAN Bittiming constants as per Xilinx CAN specs */
220 static const struct can_bittiming_const xcan_bittiming_const = {
221 	.name = DRIVER_NAME,
222 	.tseg1_min = 1,
223 	.tseg1_max = 16,
224 	.tseg2_min = 1,
225 	.tseg2_max = 8,
226 	.sjw_max = 4,
227 	.brp_min = 1,
228 	.brp_max = 256,
229 	.brp_inc = 1,
230 };
231 
232 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
233 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
234 	.name = DRIVER_NAME,
235 	.tseg1_min = 1,
236 	.tseg1_max = 64,
237 	.tseg2_min = 1,
238 	.tseg2_max = 16,
239 	.sjw_max = 16,
240 	.brp_min = 1,
241 	.brp_max = 256,
242 	.brp_inc = 1,
243 };
244 
245 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
246 static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
247 	.name = DRIVER_NAME,
248 	.tseg1_min = 1,
249 	.tseg1_max = 16,
250 	.tseg2_min = 1,
251 	.tseg2_max = 8,
252 	.sjw_max = 8,
253 	.brp_min = 1,
254 	.brp_max = 256,
255 	.brp_inc = 1,
256 };
257 
258 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
259 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
260 	.name = DRIVER_NAME,
261 	.tseg1_min = 1,
262 	.tseg1_max = 256,
263 	.tseg2_min = 1,
264 	.tseg2_max = 128,
265 	.sjw_max = 128,
266 	.brp_min = 1,
267 	.brp_max = 256,
268 	.brp_inc = 1,
269 };
270 
271 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
272 static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
273 	.name = DRIVER_NAME,
274 	.tseg1_min = 1,
275 	.tseg1_max = 32,
276 	.tseg2_min = 1,
277 	.tseg2_max = 16,
278 	.sjw_max = 16,
279 	.brp_min = 1,
280 	.brp_max = 256,
281 	.brp_inc = 1,
282 };
283 
284 /* Transmission Delay Compensation constants for CANFD 1.0 */
285 static const struct can_tdc_const xcan_tdc_const_canfd = {
286 	.tdcv_min = 0,
287 	.tdcv_max = 0, /* Manual mode not supported. */
288 	.tdco_min = 0,
289 	.tdco_max = 32,
290 	.tdcf_min = 0, /* Filter window not supported */
291 	.tdcf_max = 0,
292 };
293 
294 /* Transmission Delay Compensation constants for CANFD 2.0 */
295 static const struct can_tdc_const xcan_tdc_const_canfd2 = {
296 	.tdcv_min = 0,
297 	.tdcv_max = 0, /* Manual mode not supported. */
298 	.tdco_min = 0,
299 	.tdco_max = 64,
300 	.tdcf_min = 0, /* Filter window not supported */
301 	.tdcf_max = 0,
302 };
303 
304 /**
305  * xcan_write_reg_le - Write a value to the device register little endian
306  * @priv:	Driver private data structure
307  * @reg:	Register offset
308  * @val:	Value to write at the Register offset
309  *
310  * Write data to the paricular CAN register
311  */
312 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
313 			      u32 val)
314 {
315 	iowrite32(val, priv->reg_base + reg);
316 }
317 
318 /**
319  * xcan_read_reg_le - Read a value from the device register little endian
320  * @priv:	Driver private data structure
321  * @reg:	Register offset
322  *
323  * Read data from the particular CAN register
324  * Return: value read from the CAN register
325  */
326 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
327 {
328 	return ioread32(priv->reg_base + reg);
329 }
330 
331 /**
332  * xcan_write_reg_be - Write a value to the device register big endian
333  * @priv:	Driver private data structure
334  * @reg:	Register offset
335  * @val:	Value to write at the Register offset
336  *
337  * Write data to the paricular CAN register
338  */
339 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
340 			      u32 val)
341 {
342 	iowrite32be(val, priv->reg_base + reg);
343 }
344 
345 /**
346  * xcan_read_reg_be - Read a value from the device register big endian
347  * @priv:	Driver private data structure
348  * @reg:	Register offset
349  *
350  * Read data from the particular CAN register
351  * Return: value read from the CAN register
352  */
353 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
354 {
355 	return ioread32be(priv->reg_base + reg);
356 }
357 
358 /**
359  * xcan_rx_int_mask - Get the mask for the receive interrupt
360  * @priv:	Driver private data structure
361  *
362  * Return: The receive interrupt mask used by the driver on this HW
363  */
364 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
365 {
366 	/* RXNEMP is better suited for our use case as it cannot be cleared
367 	 * while the FIFO is non-empty, but CAN FD HW does not have it
368 	 */
369 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
370 		return XCAN_IXR_RXOK_MASK;
371 	else
372 		return XCAN_IXR_RXNEMP_MASK;
373 }
374 
375 /**
376  * set_reset_mode - Resets the CAN device mode
377  * @ndev:	Pointer to net_device structure
378  *
379  * This is the driver reset mode routine.The driver
380  * enters into configuration mode.
381  *
382  * Return: 0 on success and failure value on error
383  */
384 static int set_reset_mode(struct net_device *ndev)
385 {
386 	struct xcan_priv *priv = netdev_priv(ndev);
387 	unsigned long timeout;
388 
389 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
390 
391 	timeout = jiffies + XCAN_TIMEOUT;
392 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
393 		if (time_after(jiffies, timeout)) {
394 			netdev_warn(ndev, "timed out for config mode\n");
395 			return -ETIMEDOUT;
396 		}
397 		usleep_range(500, 10000);
398 	}
399 
400 	/* reset clears FIFOs */
401 	priv->tx_head = 0;
402 	priv->tx_tail = 0;
403 
404 	return 0;
405 }
406 
407 /**
408  * xcan_set_bittiming - CAN set bit timing routine
409  * @ndev:	Pointer to net_device structure
410  *
411  * This is the driver set bittiming  routine.
412  * Return: 0 on success and failure value on error
413  */
414 static int xcan_set_bittiming(struct net_device *ndev)
415 {
416 	struct xcan_priv *priv = netdev_priv(ndev);
417 	struct can_bittiming *bt = &priv->can.bittiming;
418 	struct can_bittiming *dbt = &priv->can.data_bittiming;
419 	u32 btr0, btr1;
420 	u32 is_config_mode;
421 
422 	/* Check whether Xilinx CAN is in configuration mode.
423 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
424 	 */
425 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
426 				XCAN_SR_CONFIG_MASK;
427 	if (!is_config_mode) {
428 		netdev_alert(ndev,
429 			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
430 		return -EPERM;
431 	}
432 
433 	/* Setting Baud Rate prescaler value in BRPR Register */
434 	btr0 = (bt->brp - 1);
435 
436 	/* Setting Time Segment 1 in BTR Register */
437 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
438 
439 	/* Setting Time Segment 2 in BTR Register */
440 	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
441 
442 	/* Setting Synchronous jump width in BTR Register */
443 	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
444 
445 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
446 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
447 
448 	if (priv->devtype.cantype == XAXI_CANFD ||
449 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
450 		/* Setting Baud Rate prescaler value in F_BRPR Register */
451 		btr0 = dbt->brp - 1;
452 		if (can_tdc_is_enabled(&priv->can)) {
453 			if (priv->devtype.cantype == XAXI_CANFD)
454 				btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
455 					XCAN_BRPR_TDC_ENABLE;
456 			else
457 				btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
458 					XCAN_BRPR_TDC_ENABLE;
459 		}
460 
461 		/* Setting Time Segment 1 in BTR Register */
462 		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
463 
464 		/* Setting Time Segment 2 in BTR Register */
465 		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
466 
467 		/* Setting Synchronous jump width in BTR Register */
468 		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
469 
470 		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
471 		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
472 	}
473 
474 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
475 		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
476 		   priv->read_reg(priv, XCAN_BTR_OFFSET));
477 
478 	return 0;
479 }
480 
481 /**
482  * xcan_chip_start - This the drivers start routine
483  * @ndev:	Pointer to net_device structure
484  *
485  * This is the drivers start routine.
486  * Based on the State of the CAN device it puts
487  * the CAN device into a proper mode.
488  *
489  * Return: 0 on success and failure value on error
490  */
491 static int xcan_chip_start(struct net_device *ndev)
492 {
493 	struct xcan_priv *priv = netdev_priv(ndev);
494 	u32 reg_msr;
495 	int err;
496 	u32 ier;
497 
498 	/* Check if it is in reset mode */
499 	err = set_reset_mode(ndev);
500 	if (err < 0)
501 		return err;
502 
503 	err = xcan_set_bittiming(ndev);
504 	if (err < 0)
505 		return err;
506 
507 	/* Enable interrupts
508 	 *
509 	 * We enable the ERROR interrupt even with
510 	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
511 	 * dedicated interrupt for a state change to
512 	 * ERROR_WARNING/ERROR_PASSIVE.
513 	 */
514 	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
515 		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
516 		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
517 		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
518 
519 	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
520 		ier |= XCAN_IXR_RXMNF_MASK;
521 
522 	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
523 
524 	/* Check whether it is loopback mode or normal mode  */
525 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
526 		reg_msr = XCAN_MSR_LBACK_MASK;
527 	else
528 		reg_msr = 0x0;
529 
530 	/* enable the first extended filter, if any, as cores with extended
531 	 * filtering default to non-receipt if all filters are disabled
532 	 */
533 	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
534 		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
535 
536 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
537 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
538 
539 	netdev_dbg(ndev, "status:#x%08x\n",
540 		   priv->read_reg(priv, XCAN_SR_OFFSET));
541 
542 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
543 	return 0;
544 }
545 
546 /**
547  * xcan_do_set_mode - This sets the mode of the driver
548  * @ndev:	Pointer to net_device structure
549  * @mode:	Tells the mode of the driver
550  *
551  * This check the drivers state and calls the corresponding modes to set.
552  *
553  * Return: 0 on success and failure value on error
554  */
555 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
556 {
557 	int ret;
558 
559 	switch (mode) {
560 	case CAN_MODE_START:
561 		ret = xcan_chip_start(ndev);
562 		if (ret < 0) {
563 			netdev_err(ndev, "xcan_chip_start failed!\n");
564 			return ret;
565 		}
566 		netif_wake_queue(ndev);
567 		break;
568 	default:
569 		ret = -EOPNOTSUPP;
570 		break;
571 	}
572 
573 	return ret;
574 }
575 
576 /**
577  * xcan_write_frame - Write a frame to HW
578  * @ndev:		Pointer to net_device structure
579  * @skb:		sk_buff pointer that contains data to be Txed
580  * @frame_offset:	Register offset to write the frame to
581  */
582 static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
583 			     int frame_offset)
584 {
585 	u32 id, dlc, data[2] = {0, 0};
586 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
587 	u32 ramoff, dwindex = 0, i;
588 	struct xcan_priv *priv = netdev_priv(ndev);
589 
590 	/* Watch carefully on the bit sequence */
591 	if (cf->can_id & CAN_EFF_FLAG) {
592 		/* Extended CAN ID format */
593 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
594 			XCAN_IDR_ID2_MASK;
595 		id |= (((cf->can_id & CAN_EFF_MASK) >>
596 			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
597 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
598 
599 		/* The substibute remote TX request bit should be "1"
600 		 * for extended frames as in the Xilinx CAN datasheet
601 		 */
602 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
603 
604 		if (cf->can_id & CAN_RTR_FLAG)
605 			/* Extended frames remote TX request */
606 			id |= XCAN_IDR_RTR_MASK;
607 	} else {
608 		/* Standard CAN ID format */
609 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
610 			XCAN_IDR_ID1_MASK;
611 
612 		if (cf->can_id & CAN_RTR_FLAG)
613 			/* Standard frames remote TX request */
614 			id |= XCAN_IDR_SRR_MASK;
615 	}
616 
617 	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
618 	if (can_is_canfd_skb(skb)) {
619 		if (cf->flags & CANFD_BRS)
620 			dlc |= XCAN_DLCR_BRS_MASK;
621 		dlc |= XCAN_DLCR_EDL_MASK;
622 	}
623 
624 	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
625 	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
626 		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
627 	else
628 		can_put_echo_skb(skb, ndev, 0, 0);
629 
630 	priv->tx_head++;
631 
632 	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
633 	/* If the CAN frame is RTR frame this write triggers transmission
634 	 * (not on CAN FD)
635 	 */
636 	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
637 	if (priv->devtype.cantype == XAXI_CANFD ||
638 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
639 		for (i = 0; i < cf->len; i += 4) {
640 			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
641 					(dwindex * XCANFD_DW_BYTES);
642 			priv->write_reg(priv, ramoff,
643 					be32_to_cpup((__be32 *)(cf->data + i)));
644 			dwindex++;
645 		}
646 	} else {
647 		if (cf->len > 0)
648 			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
649 		if (cf->len > 4)
650 			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
651 
652 		if (!(cf->can_id & CAN_RTR_FLAG)) {
653 			priv->write_reg(priv,
654 					XCAN_FRAME_DW1_OFFSET(frame_offset),
655 					data[0]);
656 			/* If the CAN frame is Standard/Extended frame this
657 			 * write triggers transmission (not on CAN FD)
658 			 */
659 			priv->write_reg(priv,
660 					XCAN_FRAME_DW2_OFFSET(frame_offset),
661 					data[1]);
662 		}
663 	}
664 }
665 
666 /**
667  * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
668  * @skb:	sk_buff pointer that contains data to be Txed
669  * @ndev:	Pointer to net_device structure
670  *
671  * Return: 0 on success, -ENOSPC if FIFO is full.
672  */
673 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
674 {
675 	struct xcan_priv *priv = netdev_priv(ndev);
676 	unsigned long flags;
677 
678 	/* Check if the TX buffer is full */
679 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
680 			XCAN_SR_TXFLL_MASK))
681 		return -ENOSPC;
682 
683 	spin_lock_irqsave(&priv->tx_lock, flags);
684 
685 	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
686 
687 	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
688 	if (priv->tx_max > 1)
689 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
690 
691 	/* Check if the TX buffer is full */
692 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
693 		netif_stop_queue(ndev);
694 
695 	spin_unlock_irqrestore(&priv->tx_lock, flags);
696 
697 	return 0;
698 }
699 
700 /**
701  * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
702  * @skb:	sk_buff pointer that contains data to be Txed
703  * @ndev:	Pointer to net_device structure
704  *
705  * Return: 0 on success, -ENOSPC if there is no space
706  */
707 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
708 {
709 	struct xcan_priv *priv = netdev_priv(ndev);
710 	unsigned long flags;
711 
712 	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
713 		     BIT(XCAN_TX_MAILBOX_IDX)))
714 		return -ENOSPC;
715 
716 	spin_lock_irqsave(&priv->tx_lock, flags);
717 
718 	xcan_write_frame(ndev, skb,
719 			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
720 
721 	/* Mark buffer as ready for transmit */
722 	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
723 
724 	netif_stop_queue(ndev);
725 
726 	spin_unlock_irqrestore(&priv->tx_lock, flags);
727 
728 	return 0;
729 }
730 
731 /**
732  * xcan_start_xmit - Starts the transmission
733  * @skb:	sk_buff pointer that contains data to be Txed
734  * @ndev:	Pointer to net_device structure
735  *
736  * This function is invoked from upper layers to initiate transmission.
737  *
738  * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
739  */
740 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
741 {
742 	struct xcan_priv *priv = netdev_priv(ndev);
743 	int ret;
744 
745 	if (can_dropped_invalid_skb(ndev, skb))
746 		return NETDEV_TX_OK;
747 
748 	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
749 		ret = xcan_start_xmit_mailbox(skb, ndev);
750 	else
751 		ret = xcan_start_xmit_fifo(skb, ndev);
752 
753 	if (ret < 0) {
754 		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
755 		netif_stop_queue(ndev);
756 		return NETDEV_TX_BUSY;
757 	}
758 
759 	return NETDEV_TX_OK;
760 }
761 
762 /**
763  * xcan_rx -  Is called from CAN isr to complete the received
764  *		frame  processing
765  * @ndev:	Pointer to net_device structure
766  * @frame_base:	Register offset to the frame to be read
767  *
768  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
769  * does minimal processing and invokes "netif_receive_skb" to complete further
770  * processing.
771  * Return: 1 on success and 0 on failure.
772  */
773 static int xcan_rx(struct net_device *ndev, int frame_base)
774 {
775 	struct xcan_priv *priv = netdev_priv(ndev);
776 	struct net_device_stats *stats = &ndev->stats;
777 	struct can_frame *cf;
778 	struct sk_buff *skb;
779 	u32 id_xcan, dlc, data[2] = {0, 0};
780 
781 	skb = alloc_can_skb(ndev, &cf);
782 	if (unlikely(!skb)) {
783 		stats->rx_dropped++;
784 		return 0;
785 	}
786 
787 	/* Read a frame from Xilinx zynq CANPS */
788 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
789 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
790 				   XCAN_DLCR_DLC_SHIFT;
791 
792 	/* Change Xilinx CAN data length format to socketCAN data format */
793 	cf->len = can_cc_dlc2len(dlc);
794 
795 	/* Change Xilinx CAN ID format to socketCAN ID format */
796 	if (id_xcan & XCAN_IDR_IDE_MASK) {
797 		/* The received frame is an Extended format frame */
798 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
799 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
800 				XCAN_IDR_ID2_SHIFT;
801 		cf->can_id |= CAN_EFF_FLAG;
802 		if (id_xcan & XCAN_IDR_RTR_MASK)
803 			cf->can_id |= CAN_RTR_FLAG;
804 	} else {
805 		/* The received frame is a standard format frame */
806 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
807 				XCAN_IDR_ID1_SHIFT;
808 		if (id_xcan & XCAN_IDR_SRR_MASK)
809 			cf->can_id |= CAN_RTR_FLAG;
810 	}
811 
812 	/* DW1/DW2 must always be read to remove message from RXFIFO */
813 	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
814 	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
815 
816 	if (!(cf->can_id & CAN_RTR_FLAG)) {
817 		/* Change Xilinx CAN data format to socketCAN data format */
818 		if (cf->len > 0)
819 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
820 		if (cf->len > 4)
821 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
822 
823 		stats->rx_bytes += cf->len;
824 	}
825 	stats->rx_packets++;
826 
827 	netif_receive_skb(skb);
828 
829 	return 1;
830 }
831 
832 /**
833  * xcanfd_rx -  Is called from CAN isr to complete the received
834  *		frame  processing
835  * @ndev:	Pointer to net_device structure
836  * @frame_base:	Register offset to the frame to be read
837  *
838  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
839  * does minimal processing and invokes "netif_receive_skb" to complete further
840  * processing.
841  * Return: 1 on success and 0 on failure.
842  */
843 static int xcanfd_rx(struct net_device *ndev, int frame_base)
844 {
845 	struct xcan_priv *priv = netdev_priv(ndev);
846 	struct net_device_stats *stats = &ndev->stats;
847 	struct canfd_frame *cf;
848 	struct sk_buff *skb;
849 	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
850 
851 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
852 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
853 	if (dlc & XCAN_DLCR_EDL_MASK)
854 		skb = alloc_canfd_skb(ndev, &cf);
855 	else
856 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
857 
858 	if (unlikely(!skb)) {
859 		stats->rx_dropped++;
860 		return 0;
861 	}
862 
863 	/* Change Xilinx CANFD data length format to socketCAN data
864 	 * format
865 	 */
866 	if (dlc & XCAN_DLCR_EDL_MASK)
867 		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
868 				  XCAN_DLCR_DLC_SHIFT);
869 	else
870 		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
871 					  XCAN_DLCR_DLC_SHIFT);
872 
873 	/* Change Xilinx CAN ID format to socketCAN ID format */
874 	if (id_xcan & XCAN_IDR_IDE_MASK) {
875 		/* The received frame is an Extended format frame */
876 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
877 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
878 				XCAN_IDR_ID2_SHIFT;
879 		cf->can_id |= CAN_EFF_FLAG;
880 		if (id_xcan & XCAN_IDR_RTR_MASK)
881 			cf->can_id |= CAN_RTR_FLAG;
882 	} else {
883 		/* The received frame is a standard format frame */
884 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
885 				XCAN_IDR_ID1_SHIFT;
886 		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
887 					XCAN_IDR_SRR_MASK))
888 			cf->can_id |= CAN_RTR_FLAG;
889 	}
890 
891 	/* Check the frame received is FD or not*/
892 	if (dlc & XCAN_DLCR_EDL_MASK) {
893 		for (i = 0; i < cf->len; i += 4) {
894 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
895 					(dwindex * XCANFD_DW_BYTES);
896 			data[0] = priv->read_reg(priv, dw_offset);
897 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
898 			dwindex++;
899 		}
900 	} else {
901 		for (i = 0; i < cf->len; i += 4) {
902 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
903 			data[0] = priv->read_reg(priv, dw_offset + i);
904 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
905 		}
906 	}
907 
908 	if (!(cf->can_id & CAN_RTR_FLAG))
909 		stats->rx_bytes += cf->len;
910 	stats->rx_packets++;
911 
912 	netif_receive_skb(skb);
913 
914 	return 1;
915 }
916 
917 /**
918  * xcan_current_error_state - Get current error state from HW
919  * @ndev:	Pointer to net_device structure
920  *
921  * Checks the current CAN error state from the HW. Note that this
922  * only checks for ERROR_PASSIVE and ERROR_WARNING.
923  *
924  * Return:
925  * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
926  * otherwise.
927  */
928 static enum can_state xcan_current_error_state(struct net_device *ndev)
929 {
930 	struct xcan_priv *priv = netdev_priv(ndev);
931 	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
932 
933 	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
934 		return CAN_STATE_ERROR_PASSIVE;
935 	else if (status & XCAN_SR_ERRWRN_MASK)
936 		return CAN_STATE_ERROR_WARNING;
937 	else
938 		return CAN_STATE_ERROR_ACTIVE;
939 }
940 
941 /**
942  * xcan_set_error_state - Set new CAN error state
943  * @ndev:	Pointer to net_device structure
944  * @new_state:	The new CAN state to be set
945  * @cf:		Error frame to be populated or NULL
946  *
947  * Set new CAN error state for the device, updating statistics and
948  * populating the error frame if given.
949  */
950 static void xcan_set_error_state(struct net_device *ndev,
951 				 enum can_state new_state,
952 				 struct can_frame *cf)
953 {
954 	struct xcan_priv *priv = netdev_priv(ndev);
955 	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
956 	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
957 	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
958 	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
959 	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
960 
961 	/* non-ERROR states are handled elsewhere */
962 	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
963 		return;
964 
965 	can_change_state(ndev, cf, tx_state, rx_state);
966 
967 	if (cf) {
968 		cf->can_id |= CAN_ERR_CNT;
969 		cf->data[6] = txerr;
970 		cf->data[7] = rxerr;
971 	}
972 }
973 
974 /**
975  * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
976  * @ndev:	Pointer to net_device structure
977  *
978  * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
979  * the performed RX/TX has caused it to drop to a lesser state and set
980  * the interface state accordingly.
981  */
982 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
983 {
984 	struct xcan_priv *priv = netdev_priv(ndev);
985 	enum can_state old_state = priv->can.state;
986 	enum can_state new_state;
987 
988 	/* changing error state due to successful frame RX/TX can only
989 	 * occur from these states
990 	 */
991 	if (old_state != CAN_STATE_ERROR_WARNING &&
992 	    old_state != CAN_STATE_ERROR_PASSIVE)
993 		return;
994 
995 	new_state = xcan_current_error_state(ndev);
996 
997 	if (new_state != old_state) {
998 		struct sk_buff *skb;
999 		struct can_frame *cf;
1000 
1001 		skb = alloc_can_err_skb(ndev, &cf);
1002 
1003 		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1004 
1005 		if (skb)
1006 			netif_rx(skb);
1007 	}
1008 }
1009 
1010 /**
1011  * xcan_err_interrupt - error frame Isr
1012  * @ndev:	net_device pointer
1013  * @isr:	interrupt status register value
1014  *
1015  * This is the CAN error interrupt and it will
1016  * check the type of error and forward the error
1017  * frame to upper layers.
1018  */
1019 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1020 {
1021 	struct xcan_priv *priv = netdev_priv(ndev);
1022 	struct net_device_stats *stats = &ndev->stats;
1023 	struct can_frame cf = { };
1024 	u32 err_status;
1025 
1026 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1027 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1028 
1029 	if (isr & XCAN_IXR_BSOFF_MASK) {
1030 		priv->can.state = CAN_STATE_BUS_OFF;
1031 		priv->can.can_stats.bus_off++;
1032 		/* Leave device in Config Mode in bus-off state */
1033 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1034 		can_bus_off(ndev);
1035 		cf.can_id |= CAN_ERR_BUSOFF;
1036 	} else {
1037 		enum can_state new_state = xcan_current_error_state(ndev);
1038 
1039 		if (new_state != priv->can.state)
1040 			xcan_set_error_state(ndev, new_state, &cf);
1041 	}
1042 
1043 	/* Check for Arbitration lost interrupt */
1044 	if (isr & XCAN_IXR_ARBLST_MASK) {
1045 		priv->can.can_stats.arbitration_lost++;
1046 		cf.can_id |= CAN_ERR_LOSTARB;
1047 		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1048 	}
1049 
1050 	/* Check for RX FIFO Overflow interrupt */
1051 	if (isr & XCAN_IXR_RXOFLW_MASK) {
1052 		stats->rx_over_errors++;
1053 		stats->rx_errors++;
1054 		cf.can_id |= CAN_ERR_CRTL;
1055 		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1056 	}
1057 
1058 	/* Check for RX Match Not Finished interrupt */
1059 	if (isr & XCAN_IXR_RXMNF_MASK) {
1060 		stats->rx_dropped++;
1061 		stats->rx_errors++;
1062 		netdev_err(ndev, "RX match not finished, frame discarded\n");
1063 		cf.can_id |= CAN_ERR_CRTL;
1064 		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1065 	}
1066 
1067 	/* Check for error interrupt */
1068 	if (isr & XCAN_IXR_ERROR_MASK) {
1069 		bool berr_reporting = false;
1070 
1071 		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1072 			berr_reporting = true;
1073 			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1074 		}
1075 
1076 		/* Check for Ack error interrupt */
1077 		if (err_status & XCAN_ESR_ACKER_MASK) {
1078 			stats->tx_errors++;
1079 			if (berr_reporting) {
1080 				cf.can_id |= CAN_ERR_ACK;
1081 				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1082 			}
1083 		}
1084 
1085 		/* Check for Bit error interrupt */
1086 		if (err_status & XCAN_ESR_BERR_MASK) {
1087 			stats->tx_errors++;
1088 			if (berr_reporting) {
1089 				cf.can_id |= CAN_ERR_PROT;
1090 				cf.data[2] = CAN_ERR_PROT_BIT;
1091 			}
1092 		}
1093 
1094 		/* Check for Stuff error interrupt */
1095 		if (err_status & XCAN_ESR_STER_MASK) {
1096 			stats->rx_errors++;
1097 			if (berr_reporting) {
1098 				cf.can_id |= CAN_ERR_PROT;
1099 				cf.data[2] = CAN_ERR_PROT_STUFF;
1100 			}
1101 		}
1102 
1103 		/* Check for Form error interrupt */
1104 		if (err_status & XCAN_ESR_FMER_MASK) {
1105 			stats->rx_errors++;
1106 			if (berr_reporting) {
1107 				cf.can_id |= CAN_ERR_PROT;
1108 				cf.data[2] = CAN_ERR_PROT_FORM;
1109 			}
1110 		}
1111 
1112 		/* Check for CRC error interrupt */
1113 		if (err_status & XCAN_ESR_CRCER_MASK) {
1114 			stats->rx_errors++;
1115 			if (berr_reporting) {
1116 				cf.can_id |= CAN_ERR_PROT;
1117 				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1118 			}
1119 		}
1120 		priv->can.can_stats.bus_error++;
1121 	}
1122 
1123 	if (cf.can_id) {
1124 		struct can_frame *skb_cf;
1125 		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1126 
1127 		if (skb) {
1128 			skb_cf->can_id |= cf.can_id;
1129 			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1130 			netif_rx(skb);
1131 		}
1132 	}
1133 
1134 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1135 		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1136 }
1137 
1138 /**
1139  * xcan_state_interrupt - It will check the state of the CAN device
1140  * @ndev:	net_device pointer
1141  * @isr:	interrupt status register value
1142  *
1143  * This will checks the state of the CAN device
1144  * and puts the device into appropriate state.
1145  */
1146 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1147 {
1148 	struct xcan_priv *priv = netdev_priv(ndev);
1149 
1150 	/* Check for Sleep interrupt if set put CAN device in sleep state */
1151 	if (isr & XCAN_IXR_SLP_MASK)
1152 		priv->can.state = CAN_STATE_SLEEPING;
1153 
1154 	/* Check for Wake up interrupt if set put CAN device in Active state */
1155 	if (isr & XCAN_IXR_WKUP_MASK)
1156 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1157 }
1158 
1159 /**
1160  * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1161  * @priv:	Driver private data structure
1162  *
1163  * Return: Register offset of the next frame in RX FIFO.
1164  */
1165 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1166 {
1167 	int offset;
1168 
1169 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1170 		u32 fsr, mask;
1171 
1172 		/* clear RXOK before the is-empty check so that any newly
1173 		 * received frame will reassert it without a race
1174 		 */
1175 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1176 
1177 		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1178 
1179 		/* check if RX FIFO is empty */
1180 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1181 			mask = XCAN_2_FSR_FL_MASK;
1182 		else
1183 			mask = XCAN_FSR_FL_MASK;
1184 
1185 		if (!(fsr & mask))
1186 			return -ENOENT;
1187 
1188 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1189 			offset =
1190 			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1191 		else
1192 			offset =
1193 			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1194 
1195 	} else {
1196 		/* check if RX FIFO is empty */
1197 		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1198 		      XCAN_IXR_RXNEMP_MASK))
1199 			return -ENOENT;
1200 
1201 		/* frames are read from a static offset */
1202 		offset = XCAN_RXFIFO_OFFSET;
1203 	}
1204 
1205 	return offset;
1206 }
1207 
1208 /**
1209  * xcan_rx_poll - Poll routine for rx packets (NAPI)
1210  * @napi:	napi structure pointer
1211  * @quota:	Max number of rx packets to be processed.
1212  *
1213  * This is the poll routine for rx part.
1214  * It will process the packets maximux quota value.
1215  *
1216  * Return: number of packets received
1217  */
1218 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1219 {
1220 	struct net_device *ndev = napi->dev;
1221 	struct xcan_priv *priv = netdev_priv(ndev);
1222 	u32 ier;
1223 	int work_done = 0;
1224 	int frame_offset;
1225 
1226 	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1227 	       (work_done < quota)) {
1228 		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1229 			work_done += xcanfd_rx(ndev, frame_offset);
1230 		else
1231 			work_done += xcan_rx(ndev, frame_offset);
1232 
1233 		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1234 			/* increment read index */
1235 			priv->write_reg(priv, XCAN_FSR_OFFSET,
1236 					XCAN_FSR_IRI_MASK);
1237 		else
1238 			/* clear rx-not-empty (will actually clear only if
1239 			 * empty)
1240 			 */
1241 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1242 					XCAN_IXR_RXNEMP_MASK);
1243 	}
1244 
1245 	if (work_done)
1246 		xcan_update_error_state_after_rxtx(ndev);
1247 
1248 	if (work_done < quota) {
1249 		if (napi_complete_done(napi, work_done)) {
1250 			ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1251 			ier |= xcan_rx_int_mask(priv);
1252 			priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1253 		}
1254 	}
1255 	return work_done;
1256 }
1257 
1258 /**
1259  * xcan_tx_interrupt - Tx Done Isr
1260  * @ndev:	net_device pointer
1261  * @isr:	Interrupt status register value
1262  */
1263 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1264 {
1265 	struct xcan_priv *priv = netdev_priv(ndev);
1266 	struct net_device_stats *stats = &ndev->stats;
1267 	unsigned int frames_in_fifo;
1268 	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1269 	unsigned long flags;
1270 	int retries = 0;
1271 
1272 	/* Synchronize with xmit as we need to know the exact number
1273 	 * of frames in the FIFO to stay in sync due to the TXFEMP
1274 	 * handling.
1275 	 * This also prevents a race between netif_wake_queue() and
1276 	 * netif_stop_queue().
1277 	 */
1278 	spin_lock_irqsave(&priv->tx_lock, flags);
1279 
1280 	frames_in_fifo = priv->tx_head - priv->tx_tail;
1281 
1282 	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1283 		/* clear TXOK anyway to avoid getting back here */
1284 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1285 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1286 		return;
1287 	}
1288 
1289 	/* Check if 2 frames were sent (TXOK only means that at least 1
1290 	 * frame was sent).
1291 	 */
1292 	if (frames_in_fifo > 1) {
1293 		WARN_ON(frames_in_fifo > priv->tx_max);
1294 
1295 		/* Synchronize TXOK and isr so that after the loop:
1296 		 * (1) isr variable is up-to-date at least up to TXOK clear
1297 		 *     time. This avoids us clearing a TXOK of a second frame
1298 		 *     but not noticing that the FIFO is now empty and thus
1299 		 *     marking only a single frame as sent.
1300 		 * (2) No TXOK is left. Having one could mean leaving a
1301 		 *     stray TXOK as we might process the associated frame
1302 		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1303 		 *     clear to satisfy (1).
1304 		 */
1305 		while ((isr & XCAN_IXR_TXOK_MASK) &&
1306 		       !WARN_ON(++retries == 100)) {
1307 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1308 					XCAN_IXR_TXOK_MASK);
1309 			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1310 		}
1311 
1312 		if (isr & XCAN_IXR_TXFEMP_MASK) {
1313 			/* nothing in FIFO anymore */
1314 			frames_sent = frames_in_fifo;
1315 		}
1316 	} else {
1317 		/* single frame in fifo, just clear TXOK */
1318 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1319 	}
1320 
1321 	while (frames_sent--) {
1322 		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1323 						    priv->tx_max, NULL);
1324 		priv->tx_tail++;
1325 		stats->tx_packets++;
1326 	}
1327 
1328 	netif_wake_queue(ndev);
1329 
1330 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1331 
1332 	xcan_update_error_state_after_rxtx(ndev);
1333 }
1334 
1335 /**
1336  * xcan_interrupt - CAN Isr
1337  * @irq:	irq number
1338  * @dev_id:	device id pointer
1339  *
1340  * This is the xilinx CAN Isr. It checks for the type of interrupt
1341  * and invokes the corresponding ISR.
1342  *
1343  * Return:
1344  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1345  */
1346 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1347 {
1348 	struct net_device *ndev = (struct net_device *)dev_id;
1349 	struct xcan_priv *priv = netdev_priv(ndev);
1350 	u32 isr, ier;
1351 	u32 isr_errors;
1352 	u32 rx_int_mask = xcan_rx_int_mask(priv);
1353 
1354 	/* Get the interrupt status from Xilinx CAN */
1355 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1356 	if (!isr)
1357 		return IRQ_NONE;
1358 
1359 	/* Check for the type of interrupt and Processing it */
1360 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1361 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1362 				XCAN_IXR_WKUP_MASK));
1363 		xcan_state_interrupt(ndev, isr);
1364 	}
1365 
1366 	/* Check for Tx interrupt and Processing it */
1367 	if (isr & XCAN_IXR_TXOK_MASK)
1368 		xcan_tx_interrupt(ndev, isr);
1369 
1370 	/* Check for the type of error interrupt and Processing it */
1371 	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1372 			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1373 			    XCAN_IXR_RXMNF_MASK);
1374 	if (isr_errors) {
1375 		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1376 		xcan_err_interrupt(ndev, isr);
1377 	}
1378 
1379 	/* Check for the type of receive interrupt and Processing it */
1380 	if (isr & rx_int_mask) {
1381 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1382 		ier &= ~rx_int_mask;
1383 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1384 		napi_schedule(&priv->napi);
1385 	}
1386 	return IRQ_HANDLED;
1387 }
1388 
1389 /**
1390  * xcan_chip_stop - Driver stop routine
1391  * @ndev:	Pointer to net_device structure
1392  *
1393  * This is the drivers stop routine. It will disable the
1394  * interrupts and put the device into configuration mode.
1395  */
1396 static void xcan_chip_stop(struct net_device *ndev)
1397 {
1398 	struct xcan_priv *priv = netdev_priv(ndev);
1399 	int ret;
1400 
1401 	/* Disable interrupts and leave the can in configuration mode */
1402 	ret = set_reset_mode(ndev);
1403 	if (ret < 0)
1404 		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1405 
1406 	priv->can.state = CAN_STATE_STOPPED;
1407 }
1408 
1409 /**
1410  * xcan_open - Driver open routine
1411  * @ndev:	Pointer to net_device structure
1412  *
1413  * This is the driver open routine.
1414  * Return: 0 on success and failure value on error
1415  */
1416 static int xcan_open(struct net_device *ndev)
1417 {
1418 	struct xcan_priv *priv = netdev_priv(ndev);
1419 	int ret;
1420 
1421 	ret = pm_runtime_get_sync(priv->dev);
1422 	if (ret < 0) {
1423 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1424 			   __func__, ret);
1425 		goto err;
1426 	}
1427 
1428 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1429 			  ndev->name, ndev);
1430 	if (ret < 0) {
1431 		netdev_err(ndev, "irq allocation for CAN failed\n");
1432 		goto err;
1433 	}
1434 
1435 	/* Set chip into reset mode */
1436 	ret = set_reset_mode(ndev);
1437 	if (ret < 0) {
1438 		netdev_err(ndev, "mode resetting failed!\n");
1439 		goto err_irq;
1440 	}
1441 
1442 	/* Common open */
1443 	ret = open_candev(ndev);
1444 	if (ret)
1445 		goto err_irq;
1446 
1447 	ret = xcan_chip_start(ndev);
1448 	if (ret < 0) {
1449 		netdev_err(ndev, "xcan_chip_start failed!\n");
1450 		goto err_candev;
1451 	}
1452 
1453 	napi_enable(&priv->napi);
1454 	netif_start_queue(ndev);
1455 
1456 	return 0;
1457 
1458 err_candev:
1459 	close_candev(ndev);
1460 err_irq:
1461 	free_irq(ndev->irq, ndev);
1462 err:
1463 	pm_runtime_put(priv->dev);
1464 
1465 	return ret;
1466 }
1467 
1468 /**
1469  * xcan_close - Driver close routine
1470  * @ndev:	Pointer to net_device structure
1471  *
1472  * Return: 0 always
1473  */
1474 static int xcan_close(struct net_device *ndev)
1475 {
1476 	struct xcan_priv *priv = netdev_priv(ndev);
1477 
1478 	netif_stop_queue(ndev);
1479 	napi_disable(&priv->napi);
1480 	xcan_chip_stop(ndev);
1481 	free_irq(ndev->irq, ndev);
1482 	close_candev(ndev);
1483 
1484 	pm_runtime_put(priv->dev);
1485 
1486 	return 0;
1487 }
1488 
1489 /**
1490  * xcan_get_berr_counter - error counter routine
1491  * @ndev:	Pointer to net_device structure
1492  * @bec:	Pointer to can_berr_counter structure
1493  *
1494  * This is the driver error counter routine.
1495  * Return: 0 on success and failure value on error
1496  */
1497 static int xcan_get_berr_counter(const struct net_device *ndev,
1498 				 struct can_berr_counter *bec)
1499 {
1500 	struct xcan_priv *priv = netdev_priv(ndev);
1501 	int ret;
1502 
1503 	ret = pm_runtime_get_sync(priv->dev);
1504 	if (ret < 0) {
1505 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1506 			   __func__, ret);
1507 		pm_runtime_put(priv->dev);
1508 		return ret;
1509 	}
1510 
1511 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1512 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1513 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1514 
1515 	pm_runtime_put(priv->dev);
1516 
1517 	return 0;
1518 }
1519 
1520 /**
1521  * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1522  * @ndev:	Pointer to net_device structure
1523  * @tdcv:	Pointer to TDCV value
1524  *
1525  * Return: 0 on success
1526  */
1527 static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1528 {
1529 	struct xcan_priv *priv = netdev_priv(ndev);
1530 
1531 	*tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1532 
1533 	return 0;
1534 }
1535 
1536 static const struct net_device_ops xcan_netdev_ops = {
1537 	.ndo_open	= xcan_open,
1538 	.ndo_stop	= xcan_close,
1539 	.ndo_start_xmit	= xcan_start_xmit,
1540 	.ndo_change_mtu	= can_change_mtu,
1541 };
1542 
1543 /**
1544  * xcan_suspend - Suspend method for the driver
1545  * @dev:	Address of the device structure
1546  *
1547  * Put the driver into low power mode.
1548  * Return: 0 on success and failure value on error
1549  */
1550 static int __maybe_unused xcan_suspend(struct device *dev)
1551 {
1552 	struct net_device *ndev = dev_get_drvdata(dev);
1553 
1554 	if (netif_running(ndev)) {
1555 		netif_stop_queue(ndev);
1556 		netif_device_detach(ndev);
1557 		xcan_chip_stop(ndev);
1558 	}
1559 
1560 	return pm_runtime_force_suspend(dev);
1561 }
1562 
1563 /**
1564  * xcan_resume - Resume from suspend
1565  * @dev:	Address of the device structure
1566  *
1567  * Resume operation after suspend.
1568  * Return: 0 on success and failure value on error
1569  */
1570 static int __maybe_unused xcan_resume(struct device *dev)
1571 {
1572 	struct net_device *ndev = dev_get_drvdata(dev);
1573 	int ret;
1574 
1575 	ret = pm_runtime_force_resume(dev);
1576 	if (ret) {
1577 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1578 		return ret;
1579 	}
1580 
1581 	if (netif_running(ndev)) {
1582 		ret = xcan_chip_start(ndev);
1583 		if (ret) {
1584 			dev_err(dev, "xcan_chip_start failed on resume\n");
1585 			return ret;
1586 		}
1587 
1588 		netif_device_attach(ndev);
1589 		netif_start_queue(ndev);
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 /**
1596  * xcan_runtime_suspend - Runtime suspend method for the driver
1597  * @dev:	Address of the device structure
1598  *
1599  * Put the driver into low power mode.
1600  * Return: 0 always
1601  */
1602 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1603 {
1604 	struct net_device *ndev = dev_get_drvdata(dev);
1605 	struct xcan_priv *priv = netdev_priv(ndev);
1606 
1607 	clk_disable_unprepare(priv->bus_clk);
1608 	clk_disable_unprepare(priv->can_clk);
1609 
1610 	return 0;
1611 }
1612 
1613 /**
1614  * xcan_runtime_resume - Runtime resume from suspend
1615  * @dev:	Address of the device structure
1616  *
1617  * Resume operation after suspend.
1618  * Return: 0 on success and failure value on error
1619  */
1620 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1621 {
1622 	struct net_device *ndev = dev_get_drvdata(dev);
1623 	struct xcan_priv *priv = netdev_priv(ndev);
1624 	int ret;
1625 
1626 	ret = clk_prepare_enable(priv->bus_clk);
1627 	if (ret) {
1628 		dev_err(dev, "Cannot enable clock.\n");
1629 		return ret;
1630 	}
1631 	ret = clk_prepare_enable(priv->can_clk);
1632 	if (ret) {
1633 		dev_err(dev, "Cannot enable clock.\n");
1634 		clk_disable_unprepare(priv->bus_clk);
1635 		return ret;
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 static const struct dev_pm_ops xcan_dev_pm_ops = {
1642 	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1643 	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1644 };
1645 
1646 static const struct xcan_devtype_data xcan_zynq_data = {
1647 	.cantype = XZYNQ_CANPS,
1648 	.flags = XCAN_FLAG_TXFEMP,
1649 	.bittiming_const = &xcan_bittiming_const,
1650 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1651 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1652 	.bus_clk_name = "pclk",
1653 };
1654 
1655 static const struct xcan_devtype_data xcan_axi_data = {
1656 	.cantype = XAXI_CAN,
1657 	.bittiming_const = &xcan_bittiming_const,
1658 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1659 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1660 	.bus_clk_name = "s_axi_aclk",
1661 };
1662 
1663 static const struct xcan_devtype_data xcan_canfd_data = {
1664 	.cantype = XAXI_CANFD,
1665 	.flags = XCAN_FLAG_EXT_FILTERS |
1666 		 XCAN_FLAG_RXMNF |
1667 		 XCAN_FLAG_TX_MAILBOXES |
1668 		 XCAN_FLAG_RX_FIFO_MULTI,
1669 	.bittiming_const = &xcan_bittiming_const_canfd,
1670 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1671 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1672 	.bus_clk_name = "s_axi_aclk",
1673 };
1674 
1675 static const struct xcan_devtype_data xcan_canfd2_data = {
1676 	.cantype = XAXI_CANFD_2_0,
1677 	.flags = XCAN_FLAG_EXT_FILTERS |
1678 		 XCAN_FLAG_RXMNF |
1679 		 XCAN_FLAG_TX_MAILBOXES |
1680 		 XCAN_FLAG_CANFD_2 |
1681 		 XCAN_FLAG_RX_FIFO_MULTI,
1682 	.bittiming_const = &xcan_bittiming_const_canfd2,
1683 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1684 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1685 	.bus_clk_name = "s_axi_aclk",
1686 };
1687 
1688 /* Match table for OF platform binding */
1689 static const struct of_device_id xcan_of_match[] = {
1690 	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1691 	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1692 	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1693 	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1694 	{ /* end of list */ },
1695 };
1696 MODULE_DEVICE_TABLE(of, xcan_of_match);
1697 
1698 /**
1699  * xcan_probe - Platform registration call
1700  * @pdev:	Handle to the platform device structure
1701  *
1702  * This function does all the memory allocation and registration for the CAN
1703  * device.
1704  *
1705  * Return: 0 on success and failure value on error
1706  */
1707 static int xcan_probe(struct platform_device *pdev)
1708 {
1709 	struct net_device *ndev;
1710 	struct xcan_priv *priv;
1711 	const struct of_device_id *of_id;
1712 	const struct xcan_devtype_data *devtype = &xcan_axi_data;
1713 	void __iomem *addr;
1714 	int ret;
1715 	int rx_max, tx_max;
1716 	u32 hw_tx_max = 0, hw_rx_max = 0;
1717 	const char *hw_tx_max_property;
1718 
1719 	/* Get the virtual base address for the device */
1720 	addr = devm_platform_ioremap_resource(pdev, 0);
1721 	if (IS_ERR(addr)) {
1722 		ret = PTR_ERR(addr);
1723 		goto err;
1724 	}
1725 
1726 	of_id = of_match_device(xcan_of_match, &pdev->dev);
1727 	if (of_id && of_id->data)
1728 		devtype = of_id->data;
1729 
1730 	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1731 			     "tx-mailbox-count" : "tx-fifo-depth";
1732 
1733 	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1734 				   &hw_tx_max);
1735 	if (ret < 0) {
1736 		dev_err(&pdev->dev, "missing %s property\n",
1737 			hw_tx_max_property);
1738 		goto err;
1739 	}
1740 
1741 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1742 				   &hw_rx_max);
1743 	if (ret < 0) {
1744 		dev_err(&pdev->dev,
1745 			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1746 		goto err;
1747 	}
1748 
1749 	/* With TX FIFO:
1750 	 *
1751 	 * There is no way to directly figure out how many frames have been
1752 	 * sent when the TXOK interrupt is processed. If TXFEMP
1753 	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1754 	 * to determine if 1 or 2 frames have been sent.
1755 	 * Theoretically we should be able to use TXFWMEMP to determine up
1756 	 * to 3 frames, but it seems that after putting a second frame in the
1757 	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1758 	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1759 	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1760 	 * completely synchronized with the rest of the bits?
1761 	 *
1762 	 * With TX mailboxes:
1763 	 *
1764 	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1765 	 * we submit frames one at a time.
1766 	 */
1767 	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1768 	    (devtype->flags & XCAN_FLAG_TXFEMP))
1769 		tx_max = min(hw_tx_max, 2U);
1770 	else
1771 		tx_max = 1;
1772 
1773 	rx_max = hw_rx_max;
1774 
1775 	/* Create a CAN device instance */
1776 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1777 	if (!ndev)
1778 		return -ENOMEM;
1779 
1780 	priv = netdev_priv(ndev);
1781 	priv->dev = &pdev->dev;
1782 	priv->can.bittiming_const = devtype->bittiming_const;
1783 	priv->can.do_set_mode = xcan_do_set_mode;
1784 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1785 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1786 					CAN_CTRLMODE_BERR_REPORTING;
1787 
1788 	if (devtype->cantype == XAXI_CANFD) {
1789 		priv->can.data_bittiming_const =
1790 			&xcan_data_bittiming_const_canfd;
1791 		priv->can.tdc_const = &xcan_tdc_const_canfd;
1792 	}
1793 
1794 	if (devtype->cantype == XAXI_CANFD_2_0) {
1795 		priv->can.data_bittiming_const =
1796 			&xcan_data_bittiming_const_canfd2;
1797 		priv->can.tdc_const = &xcan_tdc_const_canfd2;
1798 	}
1799 
1800 	if (devtype->cantype == XAXI_CANFD ||
1801 	    devtype->cantype == XAXI_CANFD_2_0) {
1802 		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1803 						CAN_CTRLMODE_TDC_AUTO;
1804 		priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1805 	}
1806 
1807 	priv->reg_base = addr;
1808 	priv->tx_max = tx_max;
1809 	priv->devtype = *devtype;
1810 	spin_lock_init(&priv->tx_lock);
1811 
1812 	/* Get IRQ for the device */
1813 	ret = platform_get_irq(pdev, 0);
1814 	if (ret < 0)
1815 		goto err_free;
1816 
1817 	ndev->irq = ret;
1818 
1819 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1820 
1821 	platform_set_drvdata(pdev, ndev);
1822 	SET_NETDEV_DEV(ndev, &pdev->dev);
1823 	ndev->netdev_ops = &xcan_netdev_ops;
1824 
1825 	/* Getting the CAN can_clk info */
1826 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1827 	if (IS_ERR(priv->can_clk)) {
1828 		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1829 				    "device clock not found\n");
1830 		goto err_free;
1831 	}
1832 
1833 	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1834 	if (IS_ERR(priv->bus_clk)) {
1835 		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1836 				    "bus clock not found\n");
1837 		goto err_free;
1838 	}
1839 
1840 	priv->write_reg = xcan_write_reg_le;
1841 	priv->read_reg = xcan_read_reg_le;
1842 
1843 	pm_runtime_enable(&pdev->dev);
1844 	ret = pm_runtime_get_sync(&pdev->dev);
1845 	if (ret < 0) {
1846 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1847 			   __func__, ret);
1848 		goto err_disableclks;
1849 	}
1850 
1851 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1852 		priv->write_reg = xcan_write_reg_be;
1853 		priv->read_reg = xcan_read_reg_be;
1854 	}
1855 
1856 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1857 
1858 	netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
1859 
1860 	ret = register_candev(ndev);
1861 	if (ret) {
1862 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1863 		goto err_disableclks;
1864 	}
1865 
1866 	pm_runtime_put(&pdev->dev);
1867 
1868 	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1869 		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1870 		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1871 	}
1872 
1873 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1874 		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1875 		   hw_tx_max, priv->tx_max);
1876 
1877 	return 0;
1878 
1879 err_disableclks:
1880 	pm_runtime_put(priv->dev);
1881 	pm_runtime_disable(&pdev->dev);
1882 err_free:
1883 	free_candev(ndev);
1884 err:
1885 	return ret;
1886 }
1887 
1888 /**
1889  * xcan_remove - Unregister the device after releasing the resources
1890  * @pdev:	Handle to the platform device structure
1891  *
1892  * This function frees all the resources allocated to the device.
1893  * Return: 0 always
1894  */
1895 static int xcan_remove(struct platform_device *pdev)
1896 {
1897 	struct net_device *ndev = platform_get_drvdata(pdev);
1898 
1899 	unregister_candev(ndev);
1900 	pm_runtime_disable(&pdev->dev);
1901 	free_candev(ndev);
1902 
1903 	return 0;
1904 }
1905 
1906 static struct platform_driver xcan_driver = {
1907 	.probe = xcan_probe,
1908 	.remove	= xcan_remove,
1909 	.driver	= {
1910 		.name = DRIVER_NAME,
1911 		.pm = &xcan_dev_pm_ops,
1912 		.of_match_table	= xcan_of_match,
1913 	},
1914 };
1915 
1916 module_platform_driver(xcan_driver);
1917 
1918 MODULE_LICENSE("GPL");
1919 MODULE_AUTHOR("Xilinx Inc");
1920 MODULE_DESCRIPTION("Xilinx CAN interface");
1921