1 // SPDX-License-Identifier: GPL-2.0-only 2 /* CAN driver for Geschwister Schneider USB/CAN devices 3 * and bytewerk.org candleLight USB CAN interfaces. 4 * 5 * Copyright (C) 2013-2016 Geschwister Schneider Technologie-, 6 * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt). 7 * Copyright (C) 2016 Hubert Denkmair 8 * Copyright (c) 2023 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de> 9 * 10 * Many thanks to all socketcan devs! 11 */ 12 13 #include <linux/bitfield.h> 14 #include <linux/clocksource.h> 15 #include <linux/ethtool.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/netdevice.h> 19 #include <linux/signal.h> 20 #include <linux/timecounter.h> 21 #include <linux/units.h> 22 #include <linux/usb.h> 23 #include <linux/workqueue.h> 24 25 #include <linux/can.h> 26 #include <linux/can/dev.h> 27 #include <linux/can/error.h> 28 #include <linux/can/rx-offload.h> 29 30 /* Device specific constants */ 31 #define USB_GS_USB_1_VENDOR_ID 0x1d50 32 #define USB_GS_USB_1_PRODUCT_ID 0x606f 33 34 #define USB_CANDLELIGHT_VENDOR_ID 0x1209 35 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323 36 37 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2 38 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f 39 40 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0 41 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8 42 43 #define USB_XYLANTA_SAINT3_VENDOR_ID 0x16d0 44 #define USB_XYLANTA_SAINT3_PRODUCT_ID 0x0f30 45 46 #define GS_USB_ENDPOINT_IN 1 47 #define GS_USB_ENDPOINT_OUT 2 48 49 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts 50 * for timer overflow (will be after ~71 minutes) 51 */ 52 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ) 53 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800 54 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC < 55 CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2); 56 57 /* Device specific constants */ 58 enum gs_usb_breq { 59 GS_USB_BREQ_HOST_FORMAT = 0, 60 GS_USB_BREQ_BITTIMING, 61 GS_USB_BREQ_MODE, 62 GS_USB_BREQ_BERR, 63 GS_USB_BREQ_BT_CONST, 64 GS_USB_BREQ_DEVICE_CONFIG, 65 GS_USB_BREQ_TIMESTAMP, 66 GS_USB_BREQ_IDENTIFY, 67 GS_USB_BREQ_GET_USER_ID, 68 GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID, 69 GS_USB_BREQ_SET_USER_ID, 70 GS_USB_BREQ_DATA_BITTIMING, 71 GS_USB_BREQ_BT_CONST_EXT, 72 GS_USB_BREQ_SET_TERMINATION, 73 GS_USB_BREQ_GET_TERMINATION, 74 GS_USB_BREQ_GET_STATE, 75 }; 76 77 enum gs_can_mode { 78 /* reset a channel. turns it off */ 79 GS_CAN_MODE_RESET = 0, 80 /* starts a channel */ 81 GS_CAN_MODE_START 82 }; 83 84 enum gs_can_state { 85 GS_CAN_STATE_ERROR_ACTIVE = 0, 86 GS_CAN_STATE_ERROR_WARNING, 87 GS_CAN_STATE_ERROR_PASSIVE, 88 GS_CAN_STATE_BUS_OFF, 89 GS_CAN_STATE_STOPPED, 90 GS_CAN_STATE_SLEEPING 91 }; 92 93 enum gs_can_identify_mode { 94 GS_CAN_IDENTIFY_OFF = 0, 95 GS_CAN_IDENTIFY_ON 96 }; 97 98 enum gs_can_termination_state { 99 GS_CAN_TERMINATION_STATE_OFF = 0, 100 GS_CAN_TERMINATION_STATE_ON 101 }; 102 103 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED 104 #define GS_USB_TERMINATION_ENABLED 120 105 106 /* data types passed between host and device */ 107 108 /* The firmware on the original USB2CAN by Geschwister Schneider 109 * Technologie Entwicklungs- und Vertriebs UG exchanges all data 110 * between the host and the device in host byte order. This is done 111 * with the struct gs_host_config::byte_order member, which is sent 112 * first to indicate the desired byte order. 113 * 114 * The widely used open source firmware candleLight doesn't support 115 * this feature and exchanges the data in little endian byte order. 116 */ 117 struct gs_host_config { 118 __le32 byte_order; 119 } __packed; 120 121 struct gs_device_config { 122 u8 reserved1; 123 u8 reserved2; 124 u8 reserved3; 125 u8 icount; 126 __le32 sw_version; 127 __le32 hw_version; 128 } __packed; 129 130 #define GS_CAN_MODE_NORMAL 0 131 #define GS_CAN_MODE_LISTEN_ONLY BIT(0) 132 #define GS_CAN_MODE_LOOP_BACK BIT(1) 133 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2) 134 #define GS_CAN_MODE_ONE_SHOT BIT(3) 135 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4) 136 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */ 137 /* GS_CAN_FEATURE_USER_ID BIT(6) */ 138 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7) 139 #define GS_CAN_MODE_FD BIT(8) 140 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */ 141 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */ 142 /* GS_CAN_FEATURE_TERMINATION BIT(11) */ 143 #define GS_CAN_MODE_BERR_REPORTING BIT(12) 144 /* GS_CAN_FEATURE_GET_STATE BIT(13) */ 145 146 struct gs_device_mode { 147 __le32 mode; 148 __le32 flags; 149 } __packed; 150 151 struct gs_device_state { 152 __le32 state; 153 __le32 rxerr; 154 __le32 txerr; 155 } __packed; 156 157 struct gs_device_bittiming { 158 __le32 prop_seg; 159 __le32 phase_seg1; 160 __le32 phase_seg2; 161 __le32 sjw; 162 __le32 brp; 163 } __packed; 164 165 struct gs_identify_mode { 166 __le32 mode; 167 } __packed; 168 169 struct gs_device_termination_state { 170 __le32 state; 171 } __packed; 172 173 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0) 174 #define GS_CAN_FEATURE_LOOP_BACK BIT(1) 175 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2) 176 #define GS_CAN_FEATURE_ONE_SHOT BIT(3) 177 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4) 178 #define GS_CAN_FEATURE_IDENTIFY BIT(5) 179 #define GS_CAN_FEATURE_USER_ID BIT(6) 180 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7) 181 #define GS_CAN_FEATURE_FD BIT(8) 182 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) 183 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10) 184 #define GS_CAN_FEATURE_TERMINATION BIT(11) 185 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12) 186 #define GS_CAN_FEATURE_GET_STATE BIT(13) 187 #define GS_CAN_FEATURE_MASK GENMASK(13, 0) 188 189 /* internal quirks - keep in GS_CAN_FEATURE space for now */ 190 191 /* CANtact Pro original firmware: 192 * BREQ DATA_BITTIMING overlaps with GET_USER_ID 193 */ 194 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31) 195 196 struct gs_device_bt_const { 197 __le32 feature; 198 __le32 fclk_can; 199 __le32 tseg1_min; 200 __le32 tseg1_max; 201 __le32 tseg2_min; 202 __le32 tseg2_max; 203 __le32 sjw_max; 204 __le32 brp_min; 205 __le32 brp_max; 206 __le32 brp_inc; 207 } __packed; 208 209 struct gs_device_bt_const_extended { 210 __le32 feature; 211 __le32 fclk_can; 212 __le32 tseg1_min; 213 __le32 tseg1_max; 214 __le32 tseg2_min; 215 __le32 tseg2_max; 216 __le32 sjw_max; 217 __le32 brp_min; 218 __le32 brp_max; 219 __le32 brp_inc; 220 221 __le32 dtseg1_min; 222 __le32 dtseg1_max; 223 __le32 dtseg2_min; 224 __le32 dtseg2_max; 225 __le32 dsjw_max; 226 __le32 dbrp_min; 227 __le32 dbrp_max; 228 __le32 dbrp_inc; 229 } __packed; 230 231 #define GS_CAN_FLAG_OVERFLOW BIT(0) 232 #define GS_CAN_FLAG_FD BIT(1) 233 #define GS_CAN_FLAG_BRS BIT(2) 234 #define GS_CAN_FLAG_ESI BIT(3) 235 236 struct classic_can { 237 u8 data[8]; 238 } __packed; 239 240 struct classic_can_ts { 241 u8 data[8]; 242 __le32 timestamp_us; 243 } __packed; 244 245 struct classic_can_quirk { 246 u8 data[8]; 247 u8 quirk; 248 } __packed; 249 250 struct canfd { 251 u8 data[64]; 252 } __packed; 253 254 struct canfd_ts { 255 u8 data[64]; 256 __le32 timestamp_us; 257 } __packed; 258 259 struct canfd_quirk { 260 u8 data[64]; 261 u8 quirk; 262 } __packed; 263 264 struct gs_host_frame { 265 u32 echo_id; 266 __le32 can_id; 267 268 u8 can_dlc; 269 u8 channel; 270 u8 flags; 271 u8 reserved; 272 273 union { 274 DECLARE_FLEX_ARRAY(struct classic_can, classic_can); 275 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts); 276 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk); 277 DECLARE_FLEX_ARRAY(struct canfd, canfd); 278 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts); 279 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk); 280 }; 281 } __packed; 282 /* The GS USB devices make use of the same flags and masks as in 283 * linux/can.h and linux/can/error.h, and no additional mapping is necessary. 284 */ 285 286 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */ 287 #define GS_MAX_TX_URBS 10 288 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */ 289 #define GS_MAX_RX_URBS 30 290 #define GS_NAPI_WEIGHT 32 291 292 /* Maximum number of interfaces the driver supports per device. 293 * Current hardware only supports 3 interfaces. The future may vary. 294 */ 295 #define GS_MAX_INTF 3 296 297 struct gs_tx_context { 298 struct gs_can *dev; 299 unsigned int echo_id; 300 }; 301 302 struct gs_can { 303 struct can_priv can; /* must be the first member */ 304 305 struct can_rx_offload offload; 306 struct gs_usb *parent; 307 308 struct net_device *netdev; 309 struct usb_device *udev; 310 311 struct can_bittiming_const bt_const, data_bt_const; 312 unsigned int channel; /* channel number */ 313 314 u32 feature; 315 unsigned int hf_size_tx; 316 317 /* This lock prevents a race condition between xmit and receive. */ 318 spinlock_t tx_ctx_lock; 319 struct gs_tx_context tx_context[GS_MAX_TX_URBS]; 320 321 struct usb_anchor tx_submitted; 322 atomic_t active_tx_urbs; 323 }; 324 325 /* usb interface struct */ 326 struct gs_usb { 327 struct gs_can *canch[GS_MAX_INTF]; 328 struct usb_anchor rx_submitted; 329 struct usb_device *udev; 330 331 /* time counter for hardware timestamps */ 332 struct cyclecounter cc; 333 struct timecounter tc; 334 spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */ 335 struct delayed_work timestamp; 336 337 unsigned int hf_size_rx; 338 u8 active_channels; 339 }; 340 341 /* 'allocate' a tx context. 342 * returns a valid tx context or NULL if there is no space. 343 */ 344 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev) 345 { 346 int i = 0; 347 unsigned long flags; 348 349 spin_lock_irqsave(&dev->tx_ctx_lock, flags); 350 351 for (; i < GS_MAX_TX_URBS; i++) { 352 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) { 353 dev->tx_context[i].echo_id = i; 354 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); 355 return &dev->tx_context[i]; 356 } 357 } 358 359 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); 360 return NULL; 361 } 362 363 /* releases a tx context 364 */ 365 static void gs_free_tx_context(struct gs_tx_context *txc) 366 { 367 txc->echo_id = GS_MAX_TX_URBS; 368 } 369 370 /* Get a tx context by id. 371 */ 372 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev, 373 unsigned int id) 374 { 375 unsigned long flags; 376 377 if (id < GS_MAX_TX_URBS) { 378 spin_lock_irqsave(&dev->tx_ctx_lock, flags); 379 if (dev->tx_context[id].echo_id == id) { 380 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); 381 return &dev->tx_context[id]; 382 } 383 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); 384 } 385 return NULL; 386 } 387 388 static int gs_cmd_reset(struct gs_can *dev) 389 { 390 struct gs_device_mode dm = { 391 .mode = cpu_to_le32(GS_CAN_MODE_RESET), 392 }; 393 394 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE, 395 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 396 dev->channel, 0, &dm, sizeof(dm), 1000, 397 GFP_KERNEL); 398 } 399 400 static inline int gs_usb_get_timestamp(const struct gs_usb *parent, 401 u32 *timestamp_p) 402 { 403 __le32 timestamp; 404 int rc; 405 406 rc = usb_control_msg_recv(parent->udev, 0, GS_USB_BREQ_TIMESTAMP, 407 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 408 0, 0, 409 ×tamp, sizeof(timestamp), 410 USB_CTRL_GET_TIMEOUT, 411 GFP_KERNEL); 412 if (rc) 413 return rc; 414 415 *timestamp_p = le32_to_cpu(timestamp); 416 417 return 0; 418 } 419 420 static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock) 421 { 422 struct gs_usb *parent = container_of(cc, struct gs_usb, cc); 423 u32 timestamp = 0; 424 int err; 425 426 lockdep_assert_held(&parent->tc_lock); 427 428 /* drop lock for synchronous USB transfer */ 429 spin_unlock_bh(&parent->tc_lock); 430 err = gs_usb_get_timestamp(parent, ×tamp); 431 spin_lock_bh(&parent->tc_lock); 432 if (err) 433 dev_err(&parent->udev->dev, 434 "Error %d while reading timestamp. HW timestamps may be inaccurate.", 435 err); 436 437 return timestamp; 438 } 439 440 static void gs_usb_timestamp_work(struct work_struct *work) 441 { 442 struct delayed_work *delayed_work = to_delayed_work(work); 443 struct gs_usb *parent; 444 445 parent = container_of(delayed_work, struct gs_usb, timestamp); 446 spin_lock_bh(&parent->tc_lock); 447 timecounter_read(&parent->tc); 448 spin_unlock_bh(&parent->tc_lock); 449 450 schedule_delayed_work(&parent->timestamp, 451 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ); 452 } 453 454 static void gs_usb_skb_set_timestamp(struct gs_can *dev, 455 struct sk_buff *skb, u32 timestamp) 456 { 457 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 458 struct gs_usb *parent = dev->parent; 459 u64 ns; 460 461 spin_lock_bh(&parent->tc_lock); 462 ns = timecounter_cyc2time(&parent->tc, timestamp); 463 spin_unlock_bh(&parent->tc_lock); 464 465 hwtstamps->hwtstamp = ns_to_ktime(ns); 466 } 467 468 static void gs_usb_timestamp_init(struct gs_usb *parent) 469 { 470 struct cyclecounter *cc = &parent->cc; 471 472 cc->read = gs_usb_timestamp_read; 473 cc->mask = CYCLECOUNTER_MASK(32); 474 cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ); 475 cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift); 476 477 spin_lock_init(&parent->tc_lock); 478 spin_lock_bh(&parent->tc_lock); 479 timecounter_init(&parent->tc, &parent->cc, ktime_get_real_ns()); 480 spin_unlock_bh(&parent->tc_lock); 481 482 INIT_DELAYED_WORK(&parent->timestamp, gs_usb_timestamp_work); 483 schedule_delayed_work(&parent->timestamp, 484 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ); 485 } 486 487 static void gs_usb_timestamp_stop(struct gs_usb *parent) 488 { 489 cancel_delayed_work_sync(&parent->timestamp); 490 } 491 492 static void gs_update_state(struct gs_can *dev, struct can_frame *cf) 493 { 494 struct can_device_stats *can_stats = &dev->can.can_stats; 495 496 if (cf->can_id & CAN_ERR_RESTARTED) { 497 dev->can.state = CAN_STATE_ERROR_ACTIVE; 498 can_stats->restarts++; 499 } else if (cf->can_id & CAN_ERR_BUSOFF) { 500 dev->can.state = CAN_STATE_BUS_OFF; 501 can_stats->bus_off++; 502 } else if (cf->can_id & CAN_ERR_CRTL) { 503 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) || 504 (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) { 505 dev->can.state = CAN_STATE_ERROR_WARNING; 506 can_stats->error_warning++; 507 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) || 508 (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) { 509 dev->can.state = CAN_STATE_ERROR_PASSIVE; 510 can_stats->error_passive++; 511 } else { 512 dev->can.state = CAN_STATE_ERROR_ACTIVE; 513 } 514 } 515 } 516 517 static u32 gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb, 518 const struct gs_host_frame *hf) 519 { 520 u32 timestamp; 521 522 if (hf->flags & GS_CAN_FLAG_FD) 523 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us); 524 else 525 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us); 526 527 if (skb) 528 gs_usb_skb_set_timestamp(dev, skb, timestamp); 529 530 return timestamp; 531 } 532 533 static void gs_usb_rx_offload(struct gs_can *dev, struct sk_buff *skb, 534 const struct gs_host_frame *hf) 535 { 536 struct can_rx_offload *offload = &dev->offload; 537 int rc; 538 539 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) { 540 const u32 ts = gs_usb_set_timestamp(dev, skb, hf); 541 542 rc = can_rx_offload_queue_timestamp(offload, skb, ts); 543 } else { 544 rc = can_rx_offload_queue_tail(offload, skb); 545 } 546 547 if (rc) 548 dev->netdev->stats.rx_fifo_errors++; 549 } 550 551 static unsigned int 552 gs_usb_get_echo_skb(struct gs_can *dev, struct sk_buff *skb, 553 const struct gs_host_frame *hf) 554 { 555 struct can_rx_offload *offload = &dev->offload; 556 const u32 echo_id = hf->echo_id; 557 unsigned int len; 558 559 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) { 560 const u32 ts = gs_usb_set_timestamp(dev, skb, hf); 561 562 len = can_rx_offload_get_echo_skb_queue_timestamp(offload, echo_id, 563 ts, NULL); 564 } else { 565 len = can_rx_offload_get_echo_skb_queue_tail(offload, echo_id, 566 NULL); 567 } 568 569 return len; 570 } 571 572 static void gs_usb_receive_bulk_callback(struct urb *urb) 573 { 574 struct gs_usb *parent = urb->context; 575 struct gs_can *dev; 576 struct net_device *netdev; 577 int rc; 578 struct net_device_stats *stats; 579 struct gs_host_frame *hf = urb->transfer_buffer; 580 struct gs_tx_context *txc; 581 struct can_frame *cf; 582 struct canfd_frame *cfd; 583 struct sk_buff *skb; 584 585 BUG_ON(!parent); 586 587 switch (urb->status) { 588 case 0: /* success */ 589 break; 590 case -ENOENT: 591 case -ESHUTDOWN: 592 return; 593 default: 594 /* do not resubmit aborted urbs. eg: when device goes down */ 595 return; 596 } 597 598 /* device reports out of range channel id */ 599 if (hf->channel >= GS_MAX_INTF) 600 goto device_detach; 601 602 dev = parent->canch[hf->channel]; 603 604 netdev = dev->netdev; 605 stats = &netdev->stats; 606 607 if (!netif_device_present(netdev)) 608 return; 609 610 if (!netif_running(netdev)) 611 goto resubmit_urb; 612 613 if (hf->echo_id == -1) { /* normal rx */ 614 if (hf->flags & GS_CAN_FLAG_FD) { 615 skb = alloc_canfd_skb(netdev, &cfd); 616 if (!skb) 617 return; 618 619 cfd->can_id = le32_to_cpu(hf->can_id); 620 cfd->len = can_fd_dlc2len(hf->can_dlc); 621 if (hf->flags & GS_CAN_FLAG_BRS) 622 cfd->flags |= CANFD_BRS; 623 if (hf->flags & GS_CAN_FLAG_ESI) 624 cfd->flags |= CANFD_ESI; 625 626 memcpy(cfd->data, hf->canfd->data, cfd->len); 627 } else { 628 skb = alloc_can_skb(netdev, &cf); 629 if (!skb) 630 return; 631 632 cf->can_id = le32_to_cpu(hf->can_id); 633 can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode); 634 635 memcpy(cf->data, hf->classic_can->data, 8); 636 637 /* ERROR frames tell us information about the controller */ 638 if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG) 639 gs_update_state(dev, cf); 640 } 641 642 gs_usb_rx_offload(dev, skb, hf); 643 } else { /* echo_id == hf->echo_id */ 644 if (hf->echo_id >= GS_MAX_TX_URBS) { 645 netdev_err(netdev, 646 "Unexpected out of range echo id %u\n", 647 hf->echo_id); 648 goto resubmit_urb; 649 } 650 651 txc = gs_get_tx_context(dev, hf->echo_id); 652 653 /* bad devices send bad echo_ids. */ 654 if (!txc) { 655 netdev_err(netdev, 656 "Unexpected unused echo id %u\n", 657 hf->echo_id); 658 goto resubmit_urb; 659 } 660 661 skb = dev->can.echo_skb[hf->echo_id]; 662 stats->tx_packets++; 663 stats->tx_bytes += gs_usb_get_echo_skb(dev, skb, hf); 664 gs_free_tx_context(txc); 665 666 atomic_dec(&dev->active_tx_urbs); 667 668 netif_wake_queue(netdev); 669 } 670 671 if (hf->flags & GS_CAN_FLAG_OVERFLOW) { 672 stats->rx_over_errors++; 673 stats->rx_errors++; 674 675 skb = alloc_can_err_skb(netdev, &cf); 676 if (!skb) 677 goto resubmit_urb; 678 679 cf->can_id |= CAN_ERR_CRTL; 680 cf->len = CAN_ERR_DLC; 681 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 682 683 gs_usb_rx_offload(dev, skb, hf); 684 } 685 686 can_rx_offload_irq_finish(&dev->offload); 687 688 resubmit_urb: 689 usb_fill_bulk_urb(urb, parent->udev, 690 usb_rcvbulkpipe(parent->udev, GS_USB_ENDPOINT_IN), 691 hf, dev->parent->hf_size_rx, 692 gs_usb_receive_bulk_callback, parent); 693 694 rc = usb_submit_urb(urb, GFP_ATOMIC); 695 696 /* USB failure take down all interfaces */ 697 if (rc == -ENODEV) { 698 device_detach: 699 for (rc = 0; rc < GS_MAX_INTF; rc++) { 700 if (parent->canch[rc]) 701 netif_device_detach(parent->canch[rc]->netdev); 702 } 703 } 704 } 705 706 static int gs_usb_set_bittiming(struct net_device *netdev) 707 { 708 struct gs_can *dev = netdev_priv(netdev); 709 struct can_bittiming *bt = &dev->can.bittiming; 710 struct gs_device_bittiming dbt = { 711 .prop_seg = cpu_to_le32(bt->prop_seg), 712 .phase_seg1 = cpu_to_le32(bt->phase_seg1), 713 .phase_seg2 = cpu_to_le32(bt->phase_seg2), 714 .sjw = cpu_to_le32(bt->sjw), 715 .brp = cpu_to_le32(bt->brp), 716 }; 717 718 /* request bit timings */ 719 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING, 720 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 721 dev->channel, 0, &dbt, sizeof(dbt), 1000, 722 GFP_KERNEL); 723 } 724 725 static int gs_usb_set_data_bittiming(struct net_device *netdev) 726 { 727 struct gs_can *dev = netdev_priv(netdev); 728 struct can_bittiming *bt = &dev->can.data_bittiming; 729 struct gs_device_bittiming dbt = { 730 .prop_seg = cpu_to_le32(bt->prop_seg), 731 .phase_seg1 = cpu_to_le32(bt->phase_seg1), 732 .phase_seg2 = cpu_to_le32(bt->phase_seg2), 733 .sjw = cpu_to_le32(bt->sjw), 734 .brp = cpu_to_le32(bt->brp), 735 }; 736 u8 request = GS_USB_BREQ_DATA_BITTIMING; 737 738 if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO) 739 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING; 740 741 /* request data bit timings */ 742 return usb_control_msg_send(dev->udev, 0, request, 743 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 744 dev->channel, 0, &dbt, sizeof(dbt), 1000, 745 GFP_KERNEL); 746 } 747 748 static void gs_usb_xmit_callback(struct urb *urb) 749 { 750 struct gs_tx_context *txc = urb->context; 751 struct gs_can *dev = txc->dev; 752 struct net_device *netdev = dev->netdev; 753 754 if (urb->status) 755 netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id); 756 } 757 758 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb, 759 struct net_device *netdev) 760 { 761 struct gs_can *dev = netdev_priv(netdev); 762 struct net_device_stats *stats = &dev->netdev->stats; 763 struct urb *urb; 764 struct gs_host_frame *hf; 765 struct can_frame *cf; 766 struct canfd_frame *cfd; 767 int rc; 768 unsigned int idx; 769 struct gs_tx_context *txc; 770 771 if (can_dev_dropped_skb(netdev, skb)) 772 return NETDEV_TX_OK; 773 774 /* find an empty context to keep track of transmission */ 775 txc = gs_alloc_tx_context(dev); 776 if (!txc) 777 return NETDEV_TX_BUSY; 778 779 /* create a URB, and a buffer for it */ 780 urb = usb_alloc_urb(0, GFP_ATOMIC); 781 if (!urb) 782 goto nomem_urb; 783 784 hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC); 785 if (!hf) 786 goto nomem_hf; 787 788 idx = txc->echo_id; 789 790 if (idx >= GS_MAX_TX_URBS) { 791 netdev_err(netdev, "Invalid tx context %u\n", idx); 792 goto badidx; 793 } 794 795 hf->echo_id = idx; 796 hf->channel = dev->channel; 797 hf->flags = 0; 798 hf->reserved = 0; 799 800 if (can_is_canfd_skb(skb)) { 801 cfd = (struct canfd_frame *)skb->data; 802 803 hf->can_id = cpu_to_le32(cfd->can_id); 804 hf->can_dlc = can_fd_len2dlc(cfd->len); 805 hf->flags |= GS_CAN_FLAG_FD; 806 if (cfd->flags & CANFD_BRS) 807 hf->flags |= GS_CAN_FLAG_BRS; 808 if (cfd->flags & CANFD_ESI) 809 hf->flags |= GS_CAN_FLAG_ESI; 810 811 memcpy(hf->canfd->data, cfd->data, cfd->len); 812 } else { 813 cf = (struct can_frame *)skb->data; 814 815 hf->can_id = cpu_to_le32(cf->can_id); 816 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode); 817 818 memcpy(hf->classic_can->data, cf->data, cf->len); 819 } 820 821 usb_fill_bulk_urb(urb, dev->udev, 822 usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT), 823 hf, dev->hf_size_tx, 824 gs_usb_xmit_callback, txc); 825 826 urb->transfer_flags |= URB_FREE_BUFFER; 827 usb_anchor_urb(urb, &dev->tx_submitted); 828 829 can_put_echo_skb(skb, netdev, idx, 0); 830 831 atomic_inc(&dev->active_tx_urbs); 832 833 rc = usb_submit_urb(urb, GFP_ATOMIC); 834 if (unlikely(rc)) { /* usb send failed */ 835 atomic_dec(&dev->active_tx_urbs); 836 837 can_free_echo_skb(netdev, idx, NULL); 838 gs_free_tx_context(txc); 839 840 usb_unanchor_urb(urb); 841 842 if (rc == -ENODEV) { 843 netif_device_detach(netdev); 844 } else { 845 netdev_err(netdev, "usb_submit failed (err=%d)\n", rc); 846 stats->tx_dropped++; 847 } 848 } else { 849 /* Slow down tx path */ 850 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS) 851 netif_stop_queue(netdev); 852 } 853 854 /* let usb core take care of this urb */ 855 usb_free_urb(urb); 856 857 return NETDEV_TX_OK; 858 859 badidx: 860 kfree(hf); 861 nomem_hf: 862 usb_free_urb(urb); 863 864 nomem_urb: 865 gs_free_tx_context(txc); 866 dev_kfree_skb(skb); 867 stats->tx_dropped++; 868 return NETDEV_TX_OK; 869 } 870 871 static int gs_can_open(struct net_device *netdev) 872 { 873 struct gs_can *dev = netdev_priv(netdev); 874 struct gs_usb *parent = dev->parent; 875 struct gs_device_mode dm = { 876 .mode = cpu_to_le32(GS_CAN_MODE_START), 877 }; 878 struct gs_host_frame *hf; 879 struct urb *urb = NULL; 880 u32 ctrlmode; 881 u32 flags = 0; 882 int rc, i; 883 884 rc = open_candev(netdev); 885 if (rc) 886 return rc; 887 888 ctrlmode = dev->can.ctrlmode; 889 if (ctrlmode & CAN_CTRLMODE_FD) { 890 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX) 891 dev->hf_size_tx = struct_size(hf, canfd_quirk, 1); 892 else 893 dev->hf_size_tx = struct_size(hf, canfd, 1); 894 } else { 895 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX) 896 dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1); 897 else 898 dev->hf_size_tx = struct_size(hf, classic_can, 1); 899 } 900 901 can_rx_offload_enable(&dev->offload); 902 903 if (!parent->active_channels) { 904 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 905 gs_usb_timestamp_init(parent); 906 907 for (i = 0; i < GS_MAX_RX_URBS; i++) { 908 u8 *buf; 909 910 /* alloc rx urb */ 911 urb = usb_alloc_urb(0, GFP_KERNEL); 912 if (!urb) { 913 rc = -ENOMEM; 914 goto out_usb_kill_anchored_urbs; 915 } 916 917 /* alloc rx buffer */ 918 buf = kmalloc(dev->parent->hf_size_rx, 919 GFP_KERNEL); 920 if (!buf) { 921 rc = -ENOMEM; 922 goto out_usb_free_urb; 923 } 924 925 /* fill, anchor, and submit rx urb */ 926 usb_fill_bulk_urb(urb, 927 dev->udev, 928 usb_rcvbulkpipe(dev->udev, 929 GS_USB_ENDPOINT_IN), 930 buf, 931 dev->parent->hf_size_rx, 932 gs_usb_receive_bulk_callback, parent); 933 urb->transfer_flags |= URB_FREE_BUFFER; 934 935 usb_anchor_urb(urb, &parent->rx_submitted); 936 937 rc = usb_submit_urb(urb, GFP_KERNEL); 938 if (rc) { 939 if (rc == -ENODEV) 940 netif_device_detach(dev->netdev); 941 942 netdev_err(netdev, 943 "usb_submit_urb() failed, error %pe\n", 944 ERR_PTR(rc)); 945 946 goto out_usb_unanchor_urb; 947 } 948 949 /* Drop reference, 950 * USB core will take care of freeing it 951 */ 952 usb_free_urb(urb); 953 } 954 } 955 956 /* flags */ 957 if (ctrlmode & CAN_CTRLMODE_LOOPBACK) 958 flags |= GS_CAN_MODE_LOOP_BACK; 959 960 if (ctrlmode & CAN_CTRLMODE_LISTENONLY) 961 flags |= GS_CAN_MODE_LISTEN_ONLY; 962 963 if (ctrlmode & CAN_CTRLMODE_3_SAMPLES) 964 flags |= GS_CAN_MODE_TRIPLE_SAMPLE; 965 966 if (ctrlmode & CAN_CTRLMODE_ONE_SHOT) 967 flags |= GS_CAN_MODE_ONE_SHOT; 968 969 if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING) 970 flags |= GS_CAN_MODE_BERR_REPORTING; 971 972 if (ctrlmode & CAN_CTRLMODE_FD) 973 flags |= GS_CAN_MODE_FD; 974 975 /* if hardware supports timestamps, enable it */ 976 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 977 flags |= GS_CAN_MODE_HW_TIMESTAMP; 978 979 /* finally start device */ 980 dev->can.state = CAN_STATE_ERROR_ACTIVE; 981 dm.flags = cpu_to_le32(flags); 982 rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE, 983 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 984 dev->channel, 0, &dm, sizeof(dm), 1000, 985 GFP_KERNEL); 986 if (rc) { 987 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc); 988 dev->can.state = CAN_STATE_STOPPED; 989 990 goto out_usb_kill_anchored_urbs; 991 } 992 993 parent->active_channels++; 994 if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)) 995 netif_start_queue(netdev); 996 997 return 0; 998 999 out_usb_unanchor_urb: 1000 usb_unanchor_urb(urb); 1001 out_usb_free_urb: 1002 usb_free_urb(urb); 1003 out_usb_kill_anchored_urbs: 1004 if (!parent->active_channels) { 1005 usb_kill_anchored_urbs(&dev->tx_submitted); 1006 1007 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1008 gs_usb_timestamp_stop(parent); 1009 } 1010 1011 can_rx_offload_disable(&dev->offload); 1012 close_candev(netdev); 1013 1014 return rc; 1015 } 1016 1017 static int gs_usb_get_state(const struct net_device *netdev, 1018 struct can_berr_counter *bec, 1019 enum can_state *state) 1020 { 1021 struct gs_can *dev = netdev_priv(netdev); 1022 struct gs_device_state ds; 1023 int rc; 1024 1025 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE, 1026 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1027 dev->channel, 0, 1028 &ds, sizeof(ds), 1029 USB_CTRL_GET_TIMEOUT, 1030 GFP_KERNEL); 1031 if (rc) 1032 return rc; 1033 1034 if (le32_to_cpu(ds.state) >= CAN_STATE_MAX) 1035 return -EOPNOTSUPP; 1036 1037 *state = le32_to_cpu(ds.state); 1038 bec->txerr = le32_to_cpu(ds.txerr); 1039 bec->rxerr = le32_to_cpu(ds.rxerr); 1040 1041 return 0; 1042 } 1043 1044 static int gs_usb_can_get_berr_counter(const struct net_device *netdev, 1045 struct can_berr_counter *bec) 1046 { 1047 enum can_state state; 1048 1049 return gs_usb_get_state(netdev, bec, &state); 1050 } 1051 1052 static int gs_can_close(struct net_device *netdev) 1053 { 1054 int rc; 1055 struct gs_can *dev = netdev_priv(netdev); 1056 struct gs_usb *parent = dev->parent; 1057 1058 netif_stop_queue(netdev); 1059 1060 /* Stop polling */ 1061 parent->active_channels--; 1062 if (!parent->active_channels) { 1063 usb_kill_anchored_urbs(&parent->rx_submitted); 1064 1065 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1066 gs_usb_timestamp_stop(parent); 1067 } 1068 1069 /* Stop sending URBs */ 1070 usb_kill_anchored_urbs(&dev->tx_submitted); 1071 atomic_set(&dev->active_tx_urbs, 0); 1072 1073 dev->can.state = CAN_STATE_STOPPED; 1074 1075 /* reset the device */ 1076 gs_cmd_reset(dev); 1077 1078 /* reset tx contexts */ 1079 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) { 1080 dev->tx_context[rc].dev = dev; 1081 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS; 1082 } 1083 1084 can_rx_offload_disable(&dev->offload); 1085 1086 /* close the netdev */ 1087 close_candev(netdev); 1088 1089 return 0; 1090 } 1091 1092 static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1093 { 1094 const struct gs_can *dev = netdev_priv(netdev); 1095 1096 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1097 return can_eth_ioctl_hwts(netdev, ifr, cmd); 1098 1099 return -EOPNOTSUPP; 1100 } 1101 1102 static const struct net_device_ops gs_usb_netdev_ops = { 1103 .ndo_open = gs_can_open, 1104 .ndo_stop = gs_can_close, 1105 .ndo_start_xmit = gs_can_start_xmit, 1106 .ndo_change_mtu = can_change_mtu, 1107 .ndo_eth_ioctl = gs_can_eth_ioctl, 1108 }; 1109 1110 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify) 1111 { 1112 struct gs_can *dev = netdev_priv(netdev); 1113 struct gs_identify_mode imode; 1114 1115 if (do_identify) 1116 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON); 1117 else 1118 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF); 1119 1120 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY, 1121 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1122 dev->channel, 0, &imode, sizeof(imode), 100, 1123 GFP_KERNEL); 1124 } 1125 1126 /* blink LED's for finding the this interface */ 1127 static int gs_usb_set_phys_id(struct net_device *netdev, 1128 enum ethtool_phys_id_state state) 1129 { 1130 const struct gs_can *dev = netdev_priv(netdev); 1131 int rc = 0; 1132 1133 if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY)) 1134 return -EOPNOTSUPP; 1135 1136 switch (state) { 1137 case ETHTOOL_ID_ACTIVE: 1138 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON); 1139 break; 1140 case ETHTOOL_ID_INACTIVE: 1141 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF); 1142 break; 1143 default: 1144 break; 1145 } 1146 1147 return rc; 1148 } 1149 1150 static int gs_usb_get_ts_info(struct net_device *netdev, 1151 struct kernel_ethtool_ts_info *info) 1152 { 1153 struct gs_can *dev = netdev_priv(netdev); 1154 1155 /* report if device supports HW timestamps */ 1156 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1157 return can_ethtool_op_get_ts_info_hwts(netdev, info); 1158 1159 return ethtool_op_get_ts_info(netdev, info); 1160 } 1161 1162 static const struct ethtool_ops gs_usb_ethtool_ops = { 1163 .set_phys_id = gs_usb_set_phys_id, 1164 .get_ts_info = gs_usb_get_ts_info, 1165 }; 1166 1167 static int gs_usb_get_termination(struct net_device *netdev, u16 *term) 1168 { 1169 struct gs_can *dev = netdev_priv(netdev); 1170 struct gs_device_termination_state term_state; 1171 int rc; 1172 1173 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION, 1174 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1175 dev->channel, 0, 1176 &term_state, sizeof(term_state), 1000, 1177 GFP_KERNEL); 1178 if (rc) 1179 return rc; 1180 1181 if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON)) 1182 *term = GS_USB_TERMINATION_ENABLED; 1183 else 1184 *term = GS_USB_TERMINATION_DISABLED; 1185 1186 return 0; 1187 } 1188 1189 static int gs_usb_set_termination(struct net_device *netdev, u16 term) 1190 { 1191 struct gs_can *dev = netdev_priv(netdev); 1192 struct gs_device_termination_state term_state; 1193 1194 if (term == GS_USB_TERMINATION_ENABLED) 1195 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON); 1196 else 1197 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF); 1198 1199 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION, 1200 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1201 dev->channel, 0, 1202 &term_state, sizeof(term_state), 1000, 1203 GFP_KERNEL); 1204 } 1205 1206 static const u16 gs_usb_termination_const[] = { 1207 GS_USB_TERMINATION_DISABLED, 1208 GS_USB_TERMINATION_ENABLED 1209 }; 1210 1211 static struct gs_can *gs_make_candev(unsigned int channel, 1212 struct usb_interface *intf, 1213 struct gs_device_config *dconf) 1214 { 1215 struct gs_can *dev; 1216 struct net_device *netdev; 1217 int rc; 1218 struct gs_device_bt_const_extended bt_const_extended; 1219 struct gs_device_bt_const bt_const; 1220 u32 feature; 1221 1222 /* fetch bit timing constants */ 1223 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0, 1224 GS_USB_BREQ_BT_CONST, 1225 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1226 channel, 0, &bt_const, sizeof(bt_const), 1000, 1227 GFP_KERNEL); 1228 1229 if (rc) { 1230 dev_err(&intf->dev, 1231 "Couldn't get bit timing const for channel %d (%pe)\n", 1232 channel, ERR_PTR(rc)); 1233 return ERR_PTR(rc); 1234 } 1235 1236 /* create netdev */ 1237 netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS); 1238 if (!netdev) { 1239 dev_err(&intf->dev, "Couldn't allocate candev\n"); 1240 return ERR_PTR(-ENOMEM); 1241 } 1242 1243 dev = netdev_priv(netdev); 1244 1245 netdev->netdev_ops = &gs_usb_netdev_ops; 1246 netdev->ethtool_ops = &gs_usb_ethtool_ops; 1247 1248 netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */ 1249 netdev->dev_id = channel; 1250 1251 /* dev setup */ 1252 strcpy(dev->bt_const.name, KBUILD_MODNAME); 1253 dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min); 1254 dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max); 1255 dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min); 1256 dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max); 1257 dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max); 1258 dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min); 1259 dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max); 1260 dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc); 1261 1262 dev->udev = interface_to_usbdev(intf); 1263 dev->netdev = netdev; 1264 dev->channel = channel; 1265 1266 init_usb_anchor(&dev->tx_submitted); 1267 atomic_set(&dev->active_tx_urbs, 0); 1268 spin_lock_init(&dev->tx_ctx_lock); 1269 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) { 1270 dev->tx_context[rc].dev = dev; 1271 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS; 1272 } 1273 1274 /* can setup */ 1275 dev->can.state = CAN_STATE_STOPPED; 1276 dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can); 1277 dev->can.bittiming_const = &dev->bt_const; 1278 dev->can.do_set_bittiming = gs_usb_set_bittiming; 1279 1280 dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC; 1281 1282 feature = le32_to_cpu(bt_const.feature); 1283 dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature); 1284 if (feature & GS_CAN_FEATURE_LISTEN_ONLY) 1285 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY; 1286 1287 if (feature & GS_CAN_FEATURE_LOOP_BACK) 1288 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK; 1289 1290 if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE) 1291 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES; 1292 1293 if (feature & GS_CAN_FEATURE_ONE_SHOT) 1294 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT; 1295 1296 if (feature & GS_CAN_FEATURE_FD) { 1297 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD; 1298 /* The data bit timing will be overwritten, if 1299 * GS_CAN_FEATURE_BT_CONST_EXT is set. 1300 */ 1301 dev->can.data_bittiming_const = &dev->bt_const; 1302 dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming; 1303 } 1304 1305 if (feature & GS_CAN_FEATURE_TERMINATION) { 1306 rc = gs_usb_get_termination(netdev, &dev->can.termination); 1307 if (rc) { 1308 dev->feature &= ~GS_CAN_FEATURE_TERMINATION; 1309 1310 dev_info(&intf->dev, 1311 "Disabling termination support for channel %d (%pe)\n", 1312 channel, ERR_PTR(rc)); 1313 } else { 1314 dev->can.termination_const = gs_usb_termination_const; 1315 dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const); 1316 dev->can.do_set_termination = gs_usb_set_termination; 1317 } 1318 } 1319 1320 if (feature & GS_CAN_FEATURE_BERR_REPORTING) 1321 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING; 1322 1323 if (feature & GS_CAN_FEATURE_GET_STATE) 1324 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter; 1325 1326 /* The CANtact Pro from LinkLayer Labs is based on the 1327 * LPC54616 µC, which is affected by the NXP LPC USB transfer 1328 * erratum. However, the current firmware (version 2) doesn't 1329 * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the 1330 * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround 1331 * this issue. 1332 * 1333 * For the GS_USB_BREQ_DATA_BITTIMING USB control message the 1334 * CANtact Pro firmware uses a request value, which is already 1335 * used by the candleLight firmware for a different purpose 1336 * (GS_USB_BREQ_GET_USER_ID). Set the feature 1337 * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this 1338 * issue. 1339 */ 1340 if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) && 1341 dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) && 1342 dev->udev->manufacturer && dev->udev->product && 1343 !strcmp(dev->udev->manufacturer, "LinkLayer Labs") && 1344 !strcmp(dev->udev->product, "CANtact Pro") && 1345 (le32_to_cpu(dconf->sw_version) <= 2)) 1346 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX | 1347 GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO; 1348 1349 /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */ 1350 if (!(le32_to_cpu(dconf->sw_version) > 1 && 1351 feature & GS_CAN_FEATURE_IDENTIFY)) 1352 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY; 1353 1354 /* fetch extended bit timing constants if device has feature 1355 * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT 1356 */ 1357 if (feature & GS_CAN_FEATURE_FD && 1358 feature & GS_CAN_FEATURE_BT_CONST_EXT) { 1359 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0, 1360 GS_USB_BREQ_BT_CONST_EXT, 1361 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1362 channel, 0, &bt_const_extended, 1363 sizeof(bt_const_extended), 1364 1000, GFP_KERNEL); 1365 if (rc) { 1366 dev_err(&intf->dev, 1367 "Couldn't get extended bit timing const for channel %d (%pe)\n", 1368 channel, ERR_PTR(rc)); 1369 goto out_free_candev; 1370 } 1371 1372 strcpy(dev->data_bt_const.name, KBUILD_MODNAME); 1373 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min); 1374 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max); 1375 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min); 1376 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max); 1377 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max); 1378 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min); 1379 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max); 1380 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc); 1381 1382 dev->can.data_bittiming_const = &dev->data_bt_const; 1383 } 1384 1385 can_rx_offload_add_manual(netdev, &dev->offload, GS_NAPI_WEIGHT); 1386 SET_NETDEV_DEV(netdev, &intf->dev); 1387 1388 rc = register_candev(dev->netdev); 1389 if (rc) { 1390 dev_err(&intf->dev, 1391 "Couldn't register candev for channel %d (%pe)\n", 1392 channel, ERR_PTR(rc)); 1393 goto out_can_rx_offload_del; 1394 } 1395 1396 return dev; 1397 1398 out_can_rx_offload_del: 1399 can_rx_offload_del(&dev->offload); 1400 out_free_candev: 1401 free_candev(dev->netdev); 1402 return ERR_PTR(rc); 1403 } 1404 1405 static void gs_destroy_candev(struct gs_can *dev) 1406 { 1407 unregister_candev(dev->netdev); 1408 can_rx_offload_del(&dev->offload); 1409 free_candev(dev->netdev); 1410 } 1411 1412 static int gs_usb_probe(struct usb_interface *intf, 1413 const struct usb_device_id *id) 1414 { 1415 struct usb_device *udev = interface_to_usbdev(intf); 1416 struct gs_host_frame *hf; 1417 struct gs_usb *parent; 1418 struct gs_host_config hconf = { 1419 .byte_order = cpu_to_le32(0x0000beef), 1420 }; 1421 struct gs_device_config dconf; 1422 unsigned int icount, i; 1423 int rc; 1424 1425 /* send host config */ 1426 rc = usb_control_msg_send(udev, 0, 1427 GS_USB_BREQ_HOST_FORMAT, 1428 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1429 1, intf->cur_altsetting->desc.bInterfaceNumber, 1430 &hconf, sizeof(hconf), 1000, 1431 GFP_KERNEL); 1432 if (rc) { 1433 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc); 1434 return rc; 1435 } 1436 1437 /* read device config */ 1438 rc = usb_control_msg_recv(udev, 0, 1439 GS_USB_BREQ_DEVICE_CONFIG, 1440 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1441 1, intf->cur_altsetting->desc.bInterfaceNumber, 1442 &dconf, sizeof(dconf), 1000, 1443 GFP_KERNEL); 1444 if (rc) { 1445 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n", 1446 rc); 1447 return rc; 1448 } 1449 1450 icount = dconf.icount + 1; 1451 dev_info(&intf->dev, "Configuring for %u interfaces\n", icount); 1452 1453 if (icount > GS_MAX_INTF) { 1454 dev_err(&intf->dev, 1455 "Driver cannot handle more that %u CAN interfaces\n", 1456 GS_MAX_INTF); 1457 return -EINVAL; 1458 } 1459 1460 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 1461 if (!parent) 1462 return -ENOMEM; 1463 1464 init_usb_anchor(&parent->rx_submitted); 1465 1466 usb_set_intfdata(intf, parent); 1467 parent->udev = udev; 1468 1469 for (i = 0; i < icount; i++) { 1470 unsigned int hf_size_rx = 0; 1471 1472 parent->canch[i] = gs_make_candev(i, intf, &dconf); 1473 if (IS_ERR_OR_NULL(parent->canch[i])) { 1474 /* save error code to return later */ 1475 rc = PTR_ERR(parent->canch[i]); 1476 1477 /* on failure destroy previously created candevs */ 1478 icount = i; 1479 for (i = 0; i < icount; i++) 1480 gs_destroy_candev(parent->canch[i]); 1481 1482 usb_kill_anchored_urbs(&parent->rx_submitted); 1483 kfree(parent); 1484 return rc; 1485 } 1486 parent->canch[i]->parent = parent; 1487 1488 /* set RX packet size based on FD and if hardware 1489 * timestamps are supported. 1490 */ 1491 if (parent->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) { 1492 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1493 hf_size_rx = struct_size(hf, canfd_ts, 1); 1494 else 1495 hf_size_rx = struct_size(hf, canfd, 1); 1496 } else { 1497 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1498 hf_size_rx = struct_size(hf, classic_can_ts, 1); 1499 else 1500 hf_size_rx = struct_size(hf, classic_can, 1); 1501 } 1502 parent->hf_size_rx = max(parent->hf_size_rx, hf_size_rx); 1503 } 1504 1505 return 0; 1506 } 1507 1508 static void gs_usb_disconnect(struct usb_interface *intf) 1509 { 1510 struct gs_usb *parent = usb_get_intfdata(intf); 1511 unsigned int i; 1512 1513 usb_set_intfdata(intf, NULL); 1514 1515 if (!parent) { 1516 dev_err(&intf->dev, "Disconnect (nodata)\n"); 1517 return; 1518 } 1519 1520 for (i = 0; i < GS_MAX_INTF; i++) 1521 if (parent->canch[i]) 1522 gs_destroy_candev(parent->canch[i]); 1523 1524 kfree(parent); 1525 } 1526 1527 static const struct usb_device_id gs_usb_table[] = { 1528 { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID, 1529 USB_GS_USB_1_PRODUCT_ID, 0) }, 1530 { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID, 1531 USB_CANDLELIGHT_PRODUCT_ID, 0) }, 1532 { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID, 1533 USB_CES_CANEXT_FD_PRODUCT_ID, 0) }, 1534 { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID, 1535 USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) }, 1536 { USB_DEVICE_INTERFACE_NUMBER(USB_XYLANTA_SAINT3_VENDOR_ID, 1537 USB_XYLANTA_SAINT3_PRODUCT_ID, 0) }, 1538 {} /* Terminating entry */ 1539 }; 1540 1541 MODULE_DEVICE_TABLE(usb, gs_usb_table); 1542 1543 static struct usb_driver gs_usb_driver = { 1544 .name = KBUILD_MODNAME, 1545 .probe = gs_usb_probe, 1546 .disconnect = gs_usb_disconnect, 1547 .id_table = gs_usb_table, 1548 }; 1549 1550 module_usb_driver(gs_usb_driver); 1551 1552 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>"); 1553 MODULE_DESCRIPTION( 1554 "Socket CAN device driver for Geschwister Schneider Technologie-, " 1555 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n" 1556 "and bytewerk.org candleLight USB CAN interfaces."); 1557 MODULE_LICENSE("GPL v2"); 1558