1 // SPDX-License-Identifier: GPL-2.0-only 2 /* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface 3 * 4 * MCP2510 support and bug fixes by Christian Pellegrin 5 * <chripell@evolware.org> 6 * 7 * Copyright 2009 Christian Pellegrin EVOL S.r.l. 8 * 9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved. 10 * Written under contract by: 11 * Chris Elston, Katalix Systems, Ltd. 12 * 13 * Based on Microchip MCP251x CAN controller driver written by 14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd. 15 * 16 * Based on CAN bus driver for the CCAN controller written by 17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix 18 * - Simon Kallweit, intefo AG 19 * Copyright 2007 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/can/core.h> 24 #include <linux/can/dev.h> 25 #include <linux/clk.h> 26 #include <linux/completion.h> 27 #include <linux/delay.h> 28 #include <linux/device.h> 29 #include <linux/ethtool.h> 30 #include <linux/freezer.h> 31 #include <linux/gpio.h> 32 #include <linux/gpio/driver.h> 33 #include <linux/interrupt.h> 34 #include <linux/io.h> 35 #include <linux/iopoll.h> 36 #include <linux/kernel.h> 37 #include <linux/module.h> 38 #include <linux/netdevice.h> 39 #include <linux/platform_device.h> 40 #include <linux/property.h> 41 #include <linux/regulator/consumer.h> 42 #include <linux/slab.h> 43 #include <linux/spi/spi.h> 44 #include <linux/uaccess.h> 45 46 /* SPI interface instruction set */ 47 #define INSTRUCTION_WRITE 0x02 48 #define INSTRUCTION_READ 0x03 49 #define INSTRUCTION_BIT_MODIFY 0x05 50 #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n)) 51 #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94) 52 #define INSTRUCTION_RESET 0xC0 53 #define RTS_TXB0 0x01 54 #define RTS_TXB1 0x02 55 #define RTS_TXB2 0x04 56 #define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07)) 57 58 /* MPC251x registers */ 59 #define BFPCTRL 0x0c 60 # define BFPCTRL_B0BFM BIT(0) 61 # define BFPCTRL_B1BFM BIT(1) 62 # define BFPCTRL_BFM(n) (BFPCTRL_B0BFM << (n)) 63 # define BFPCTRL_BFM_MASK GENMASK(1, 0) 64 # define BFPCTRL_B0BFE BIT(2) 65 # define BFPCTRL_B1BFE BIT(3) 66 # define BFPCTRL_BFE(n) (BFPCTRL_B0BFE << (n)) 67 # define BFPCTRL_BFE_MASK GENMASK(3, 2) 68 # define BFPCTRL_B0BFS BIT(4) 69 # define BFPCTRL_B1BFS BIT(5) 70 # define BFPCTRL_BFS(n) (BFPCTRL_B0BFS << (n)) 71 # define BFPCTRL_BFS_MASK GENMASK(5, 4) 72 #define TXRTSCTRL 0x0d 73 # define TXRTSCTRL_B0RTSM BIT(0) 74 # define TXRTSCTRL_B1RTSM BIT(1) 75 # define TXRTSCTRL_B2RTSM BIT(2) 76 # define TXRTSCTRL_RTSM(n) (TXRTSCTRL_B0RTSM << (n)) 77 # define TXRTSCTRL_RTSM_MASK GENMASK(2, 0) 78 # define TXRTSCTRL_B0RTS BIT(3) 79 # define TXRTSCTRL_B1RTS BIT(4) 80 # define TXRTSCTRL_B2RTS BIT(5) 81 # define TXRTSCTRL_RTS(n) (TXRTSCTRL_B0RTS << (n)) 82 # define TXRTSCTRL_RTS_MASK GENMASK(5, 3) 83 #define CANSTAT 0x0e 84 #define CANCTRL 0x0f 85 # define CANCTRL_REQOP_MASK 0xe0 86 # define CANCTRL_REQOP_CONF 0x80 87 # define CANCTRL_REQOP_LISTEN_ONLY 0x60 88 # define CANCTRL_REQOP_LOOPBACK 0x40 89 # define CANCTRL_REQOP_SLEEP 0x20 90 # define CANCTRL_REQOP_NORMAL 0x00 91 # define CANCTRL_OSM 0x08 92 # define CANCTRL_ABAT 0x10 93 #define TEC 0x1c 94 #define REC 0x1d 95 #define CNF1 0x2a 96 # define CNF1_SJW_SHIFT 6 97 #define CNF2 0x29 98 # define CNF2_BTLMODE 0x80 99 # define CNF2_SAM 0x40 100 # define CNF2_PS1_SHIFT 3 101 #define CNF3 0x28 102 # define CNF3_SOF 0x08 103 # define CNF3_WAKFIL 0x04 104 # define CNF3_PHSEG2_MASK 0x07 105 #define CANINTE 0x2b 106 # define CANINTE_MERRE 0x80 107 # define CANINTE_WAKIE 0x40 108 # define CANINTE_ERRIE 0x20 109 # define CANINTE_TX2IE 0x10 110 # define CANINTE_TX1IE 0x08 111 # define CANINTE_TX0IE 0x04 112 # define CANINTE_RX1IE 0x02 113 # define CANINTE_RX0IE 0x01 114 #define CANINTF 0x2c 115 # define CANINTF_MERRF 0x80 116 # define CANINTF_WAKIF 0x40 117 # define CANINTF_ERRIF 0x20 118 # define CANINTF_TX2IF 0x10 119 # define CANINTF_TX1IF 0x08 120 # define CANINTF_TX0IF 0x04 121 # define CANINTF_RX1IF 0x02 122 # define CANINTF_RX0IF 0x01 123 # define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF) 124 # define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF) 125 # define CANINTF_ERR (CANINTF_ERRIF) 126 #define EFLG 0x2d 127 # define EFLG_EWARN 0x01 128 # define EFLG_RXWAR 0x02 129 # define EFLG_TXWAR 0x04 130 # define EFLG_RXEP 0x08 131 # define EFLG_TXEP 0x10 132 # define EFLG_TXBO 0x20 133 # define EFLG_RX0OVR 0x40 134 # define EFLG_RX1OVR 0x80 135 #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF) 136 # define TXBCTRL_ABTF 0x40 137 # define TXBCTRL_MLOA 0x20 138 # define TXBCTRL_TXERR 0x10 139 # define TXBCTRL_TXREQ 0x08 140 #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF) 141 # define SIDH_SHIFT 3 142 #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF) 143 # define SIDL_SID_MASK 7 144 # define SIDL_SID_SHIFT 5 145 # define SIDL_EXIDE_SHIFT 3 146 # define SIDL_EID_SHIFT 16 147 # define SIDL_EID_MASK 3 148 #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF) 149 #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF) 150 #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF) 151 # define DLC_RTR_SHIFT 6 152 #define TXBCTRL_OFF 0 153 #define TXBSIDH_OFF 1 154 #define TXBSIDL_OFF 2 155 #define TXBEID8_OFF 3 156 #define TXBEID0_OFF 4 157 #define TXBDLC_OFF 5 158 #define TXBDAT_OFF 6 159 #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF) 160 # define RXBCTRL_BUKT 0x04 161 # define RXBCTRL_RXM0 0x20 162 # define RXBCTRL_RXM1 0x40 163 #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF) 164 # define RXBSIDH_SHIFT 3 165 #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF) 166 # define RXBSIDL_IDE 0x08 167 # define RXBSIDL_SRR 0x10 168 # define RXBSIDL_EID 3 169 # define RXBSIDL_SHIFT 5 170 #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF) 171 #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF) 172 #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF) 173 # define RXBDLC_LEN_MASK 0x0f 174 # define RXBDLC_RTR 0x40 175 #define RXBCTRL_OFF 0 176 #define RXBSIDH_OFF 1 177 #define RXBSIDL_OFF 2 178 #define RXBEID8_OFF 3 179 #define RXBEID0_OFF 4 180 #define RXBDLC_OFF 5 181 #define RXBDAT_OFF 6 182 #define RXFSID(n) ((n < 3) ? 0 : 4) 183 #define RXFSIDH(n) ((n) * 4 + RXFSID(n)) 184 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n)) 185 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n)) 186 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n)) 187 #define RXMSIDH(n) ((n) * 4 + 0x20) 188 #define RXMSIDL(n) ((n) * 4 + 0x21) 189 #define RXMEID8(n) ((n) * 4 + 0x22) 190 #define RXMEID0(n) ((n) * 4 + 0x23) 191 192 #define GET_BYTE(val, byte) \ 193 (((val) >> ((byte) * 8)) & 0xff) 194 #define SET_BYTE(val, byte) \ 195 (((val) & 0xff) << ((byte) * 8)) 196 197 /* Buffer size required for the largest SPI transfer (i.e., reading a 198 * frame) 199 */ 200 #define CAN_FRAME_MAX_DATA_LEN 8 201 #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN) 202 #define CAN_FRAME_MAX_BITS 128 203 204 #define TX_ECHO_SKB_MAX 1 205 206 #define MCP251X_OST_DELAY_MS (5) 207 208 #define DEVICE_NAME "mcp251x" 209 210 static const struct can_bittiming_const mcp251x_bittiming_const = { 211 .name = DEVICE_NAME, 212 .tseg1_min = 3, 213 .tseg1_max = 16, 214 .tseg2_min = 2, 215 .tseg2_max = 8, 216 .sjw_max = 4, 217 .brp_min = 1, 218 .brp_max = 64, 219 .brp_inc = 1, 220 }; 221 222 enum mcp251x_model { 223 CAN_MCP251X_MCP2510 = 0x2510, 224 CAN_MCP251X_MCP2515 = 0x2515, 225 CAN_MCP251X_MCP25625 = 0x25625, 226 }; 227 228 struct mcp251x_priv { 229 struct can_priv can; 230 struct net_device *net; 231 struct spi_device *spi; 232 enum mcp251x_model model; 233 234 struct mutex mcp_lock; /* SPI device lock */ 235 236 u8 *spi_tx_buf; 237 u8 *spi_rx_buf; 238 239 struct sk_buff *tx_skb; 240 241 struct workqueue_struct *wq; 242 struct work_struct tx_work; 243 struct work_struct restart_work; 244 245 int force_quit; 246 int after_suspend; 247 #define AFTER_SUSPEND_UP 1 248 #define AFTER_SUSPEND_DOWN 2 249 #define AFTER_SUSPEND_POWER 4 250 #define AFTER_SUSPEND_RESTART 8 251 int restart_tx; 252 bool tx_busy; 253 254 struct regulator *power; 255 struct regulator *transceiver; 256 struct clk *clk; 257 #ifdef CONFIG_GPIOLIB 258 struct gpio_chip gpio; 259 u8 reg_bfpctrl; 260 #endif 261 }; 262 263 #define MCP251X_IS(_model) \ 264 static inline int mcp251x_is_##_model(struct spi_device *spi) \ 265 { \ 266 struct mcp251x_priv *priv = spi_get_drvdata(spi); \ 267 return priv->model == CAN_MCP251X_MCP##_model; \ 268 } 269 270 MCP251X_IS(2510); 271 272 static void mcp251x_clean(struct net_device *net) 273 { 274 struct mcp251x_priv *priv = netdev_priv(net); 275 276 if (priv->tx_skb || priv->tx_busy) 277 net->stats.tx_errors++; 278 dev_kfree_skb(priv->tx_skb); 279 if (priv->tx_busy) 280 can_free_echo_skb(priv->net, 0, NULL); 281 priv->tx_skb = NULL; 282 priv->tx_busy = false; 283 } 284 285 /* Note about handling of error return of mcp251x_spi_trans: accessing 286 * registers via SPI is not really different conceptually than using 287 * normal I/O assembler instructions, although it's much more 288 * complicated from a practical POV. So it's not advisable to always 289 * check the return value of this function. Imagine that every 290 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0) 291 * error();", it would be a great mess (well there are some situation 292 * when exception handling C++ like could be useful after all). So we 293 * just check that transfers are OK at the beginning of our 294 * conversation with the chip and to avoid doing really nasty things 295 * (like injecting bogus packets in the network stack). 296 */ 297 static int mcp251x_spi_trans(struct spi_device *spi, int len) 298 { 299 struct mcp251x_priv *priv = spi_get_drvdata(spi); 300 struct spi_transfer t = { 301 .tx_buf = priv->spi_tx_buf, 302 .rx_buf = priv->spi_rx_buf, 303 .len = len, 304 .cs_change = 0, 305 }; 306 struct spi_message m; 307 int ret; 308 309 spi_message_init(&m); 310 spi_message_add_tail(&t, &m); 311 312 ret = spi_sync(spi, &m); 313 if (ret) 314 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret); 315 return ret; 316 } 317 318 static int mcp251x_spi_write(struct spi_device *spi, int len) 319 { 320 struct mcp251x_priv *priv = spi_get_drvdata(spi); 321 int ret; 322 323 ret = spi_write(spi, priv->spi_tx_buf, len); 324 if (ret) 325 dev_err(&spi->dev, "spi write failed: ret = %d\n", ret); 326 327 return ret; 328 } 329 330 static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg) 331 { 332 struct mcp251x_priv *priv = spi_get_drvdata(spi); 333 u8 val = 0; 334 335 priv->spi_tx_buf[0] = INSTRUCTION_READ; 336 priv->spi_tx_buf[1] = reg; 337 338 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) { 339 spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1); 340 } else { 341 mcp251x_spi_trans(spi, 3); 342 val = priv->spi_rx_buf[2]; 343 } 344 345 return val; 346 } 347 348 static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2) 349 { 350 struct mcp251x_priv *priv = spi_get_drvdata(spi); 351 352 priv->spi_tx_buf[0] = INSTRUCTION_READ; 353 priv->spi_tx_buf[1] = reg; 354 355 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) { 356 u8 val[2] = { 0 }; 357 358 spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2); 359 *v1 = val[0]; 360 *v2 = val[1]; 361 } else { 362 mcp251x_spi_trans(spi, 4); 363 364 *v1 = priv->spi_rx_buf[2]; 365 *v2 = priv->spi_rx_buf[3]; 366 } 367 } 368 369 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val) 370 { 371 struct mcp251x_priv *priv = spi_get_drvdata(spi); 372 373 priv->spi_tx_buf[0] = INSTRUCTION_WRITE; 374 priv->spi_tx_buf[1] = reg; 375 priv->spi_tx_buf[2] = val; 376 377 mcp251x_spi_write(spi, 3); 378 } 379 380 static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2) 381 { 382 struct mcp251x_priv *priv = spi_get_drvdata(spi); 383 384 priv->spi_tx_buf[0] = INSTRUCTION_WRITE; 385 priv->spi_tx_buf[1] = reg; 386 priv->spi_tx_buf[2] = v1; 387 priv->spi_tx_buf[3] = v2; 388 389 mcp251x_spi_write(spi, 4); 390 } 391 392 static void mcp251x_write_bits(struct spi_device *spi, u8 reg, 393 u8 mask, u8 val) 394 { 395 struct mcp251x_priv *priv = spi_get_drvdata(spi); 396 397 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY; 398 priv->spi_tx_buf[1] = reg; 399 priv->spi_tx_buf[2] = mask; 400 priv->spi_tx_buf[3] = val; 401 402 mcp251x_spi_write(spi, 4); 403 } 404 405 static u8 mcp251x_read_stat(struct spi_device *spi) 406 { 407 return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK; 408 } 409 410 #define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \ 411 readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \ 412 delay_us, timeout_us) 413 414 #ifdef CONFIG_GPIOLIB 415 enum { 416 MCP251X_GPIO_TX0RTS = 0, /* inputs */ 417 MCP251X_GPIO_TX1RTS, 418 MCP251X_GPIO_TX2RTS, 419 MCP251X_GPIO_RX0BF, /* outputs */ 420 MCP251X_GPIO_RX1BF, 421 }; 422 423 #define MCP251X_GPIO_INPUT_MASK \ 424 GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS) 425 #define MCP251X_GPIO_OUTPUT_MASK \ 426 GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF) 427 428 static const char * const mcp251x_gpio_names[] = { 429 [MCP251X_GPIO_TX0RTS] = "TX0RTS", /* inputs */ 430 [MCP251X_GPIO_TX1RTS] = "TX1RTS", 431 [MCP251X_GPIO_TX2RTS] = "TX2RTS", 432 [MCP251X_GPIO_RX0BF] = "RX0BF", /* outputs */ 433 [MCP251X_GPIO_RX1BF] = "RX1BF", 434 }; 435 436 static inline bool mcp251x_gpio_is_input(unsigned int offset) 437 { 438 return offset <= MCP251X_GPIO_TX2RTS; 439 } 440 441 static int mcp251x_gpio_request(struct gpio_chip *chip, 442 unsigned int offset) 443 { 444 struct mcp251x_priv *priv = gpiochip_get_data(chip); 445 u8 val; 446 447 /* nothing to be done for inputs */ 448 if (mcp251x_gpio_is_input(offset)) 449 return 0; 450 451 val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF); 452 453 mutex_lock(&priv->mcp_lock); 454 mcp251x_write_bits(priv->spi, BFPCTRL, val, val); 455 mutex_unlock(&priv->mcp_lock); 456 457 priv->reg_bfpctrl |= val; 458 459 return 0; 460 } 461 462 static void mcp251x_gpio_free(struct gpio_chip *chip, 463 unsigned int offset) 464 { 465 struct mcp251x_priv *priv = gpiochip_get_data(chip); 466 u8 val; 467 468 /* nothing to be done for inputs */ 469 if (mcp251x_gpio_is_input(offset)) 470 return; 471 472 val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF); 473 474 mutex_lock(&priv->mcp_lock); 475 mcp251x_write_bits(priv->spi, BFPCTRL, val, 0); 476 mutex_unlock(&priv->mcp_lock); 477 478 priv->reg_bfpctrl &= ~val; 479 } 480 481 static int mcp251x_gpio_get_direction(struct gpio_chip *chip, 482 unsigned int offset) 483 { 484 if (mcp251x_gpio_is_input(offset)) 485 return GPIOF_DIR_IN; 486 487 return GPIOF_DIR_OUT; 488 } 489 490 static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset) 491 { 492 struct mcp251x_priv *priv = gpiochip_get_data(chip); 493 u8 reg, mask, val; 494 495 if (mcp251x_gpio_is_input(offset)) { 496 reg = TXRTSCTRL; 497 mask = TXRTSCTRL_RTS(offset); 498 } else { 499 reg = BFPCTRL; 500 mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF); 501 } 502 503 mutex_lock(&priv->mcp_lock); 504 val = mcp251x_read_reg(priv->spi, reg); 505 mutex_unlock(&priv->mcp_lock); 506 507 return !!(val & mask); 508 } 509 510 static int mcp251x_gpio_get_multiple(struct gpio_chip *chip, 511 unsigned long *maskp, unsigned long *bitsp) 512 { 513 struct mcp251x_priv *priv = gpiochip_get_data(chip); 514 unsigned long bits = 0; 515 u8 val; 516 517 mutex_lock(&priv->mcp_lock); 518 if (maskp[0] & MCP251X_GPIO_INPUT_MASK) { 519 val = mcp251x_read_reg(priv->spi, TXRTSCTRL); 520 val = FIELD_GET(TXRTSCTRL_RTS_MASK, val); 521 bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val); 522 } 523 if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) { 524 val = mcp251x_read_reg(priv->spi, BFPCTRL); 525 val = FIELD_GET(BFPCTRL_BFS_MASK, val); 526 bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val); 527 } 528 mutex_unlock(&priv->mcp_lock); 529 530 bitsp[0] = bits; 531 return 0; 532 } 533 534 static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset, 535 int value) 536 { 537 struct mcp251x_priv *priv = gpiochip_get_data(chip); 538 u8 mask, val; 539 540 mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF); 541 val = value ? mask : 0; 542 543 mutex_lock(&priv->mcp_lock); 544 mcp251x_write_bits(priv->spi, BFPCTRL, mask, val); 545 mutex_unlock(&priv->mcp_lock); 546 547 priv->reg_bfpctrl &= ~mask; 548 priv->reg_bfpctrl |= val; 549 } 550 551 static void 552 mcp251x_gpio_set_multiple(struct gpio_chip *chip, 553 unsigned long *maskp, unsigned long *bitsp) 554 { 555 struct mcp251x_priv *priv = gpiochip_get_data(chip); 556 u8 mask, val; 557 558 mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]); 559 mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask); 560 561 val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]); 562 val = FIELD_PREP(BFPCTRL_BFS_MASK, val); 563 564 if (!mask) 565 return; 566 567 mutex_lock(&priv->mcp_lock); 568 mcp251x_write_bits(priv->spi, BFPCTRL, mask, val); 569 mutex_unlock(&priv->mcp_lock); 570 571 priv->reg_bfpctrl &= ~mask; 572 priv->reg_bfpctrl |= val; 573 } 574 575 static void mcp251x_gpio_restore(struct spi_device *spi) 576 { 577 struct mcp251x_priv *priv = spi_get_drvdata(spi); 578 579 mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl); 580 } 581 582 static int mcp251x_gpio_setup(struct mcp251x_priv *priv) 583 { 584 struct gpio_chip *gpio = &priv->gpio; 585 586 if (!device_property_present(&priv->spi->dev, "gpio-controller")) 587 return 0; 588 589 /* gpiochip handles TX[0..2]RTS and RX[0..1]BF */ 590 gpio->label = priv->spi->modalias; 591 gpio->parent = &priv->spi->dev; 592 gpio->owner = THIS_MODULE; 593 gpio->request = mcp251x_gpio_request; 594 gpio->free = mcp251x_gpio_free; 595 gpio->get_direction = mcp251x_gpio_get_direction; 596 gpio->get = mcp251x_gpio_get; 597 gpio->get_multiple = mcp251x_gpio_get_multiple; 598 gpio->set = mcp251x_gpio_set; 599 gpio->set_multiple = mcp251x_gpio_set_multiple; 600 gpio->base = -1; 601 gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names); 602 gpio->names = mcp251x_gpio_names; 603 gpio->can_sleep = true; 604 605 return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv); 606 } 607 #else 608 static inline void mcp251x_gpio_restore(struct spi_device *spi) 609 { 610 } 611 612 static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv) 613 { 614 return 0; 615 } 616 #endif 617 618 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf, 619 int len, int tx_buf_idx) 620 { 621 struct mcp251x_priv *priv = spi_get_drvdata(spi); 622 623 if (mcp251x_is_2510(spi)) { 624 int i; 625 626 for (i = 1; i < TXBDAT_OFF + len; i++) 627 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i, 628 buf[i]); 629 } else { 630 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len); 631 mcp251x_spi_write(spi, TXBDAT_OFF + len); 632 } 633 } 634 635 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame, 636 int tx_buf_idx) 637 { 638 struct mcp251x_priv *priv = spi_get_drvdata(spi); 639 u32 sid, eid, exide, rtr; 640 u8 buf[SPI_TRANSFER_BUF_LEN]; 641 642 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */ 643 if (exide) 644 sid = (frame->can_id & CAN_EFF_MASK) >> 18; 645 else 646 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */ 647 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */ 648 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */ 649 650 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx); 651 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT; 652 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) | 653 (exide << SIDL_EXIDE_SHIFT) | 654 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK); 655 buf[TXBEID8_OFF] = GET_BYTE(eid, 1); 656 buf[TXBEID0_OFF] = GET_BYTE(eid, 0); 657 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len; 658 memcpy(buf + TXBDAT_OFF, frame->data, frame->len); 659 mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx); 660 661 /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */ 662 priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx); 663 mcp251x_spi_write(priv->spi, 1); 664 } 665 666 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf, 667 int buf_idx) 668 { 669 struct mcp251x_priv *priv = spi_get_drvdata(spi); 670 671 if (mcp251x_is_2510(spi)) { 672 int i, len; 673 674 for (i = 1; i < RXBDAT_OFF; i++) 675 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i); 676 677 len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK); 678 for (; i < (RXBDAT_OFF + len); i++) 679 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i); 680 } else { 681 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx); 682 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) { 683 spi_write_then_read(spi, priv->spi_tx_buf, 1, 684 priv->spi_rx_buf, 685 SPI_TRANSFER_BUF_LEN); 686 memcpy(buf + 1, priv->spi_rx_buf, 687 SPI_TRANSFER_BUF_LEN - 1); 688 } else { 689 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN); 690 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN); 691 } 692 } 693 } 694 695 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx) 696 { 697 struct mcp251x_priv *priv = spi_get_drvdata(spi); 698 struct sk_buff *skb; 699 struct can_frame *frame; 700 u8 buf[SPI_TRANSFER_BUF_LEN]; 701 702 skb = alloc_can_skb(priv->net, &frame); 703 if (!skb) { 704 dev_err(&spi->dev, "cannot allocate RX skb\n"); 705 priv->net->stats.rx_dropped++; 706 return; 707 } 708 709 mcp251x_hw_rx_frame(spi, buf, buf_idx); 710 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) { 711 /* Extended ID format */ 712 frame->can_id = CAN_EFF_FLAG; 713 frame->can_id |= 714 /* Extended ID part */ 715 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) | 716 SET_BYTE(buf[RXBEID8_OFF], 1) | 717 SET_BYTE(buf[RXBEID0_OFF], 0) | 718 /* Standard ID part */ 719 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) | 720 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18); 721 /* Remote transmission request */ 722 if (buf[RXBDLC_OFF] & RXBDLC_RTR) 723 frame->can_id |= CAN_RTR_FLAG; 724 } else { 725 /* Standard ID format */ 726 frame->can_id = 727 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) | 728 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT); 729 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR) 730 frame->can_id |= CAN_RTR_FLAG; 731 } 732 /* Data length */ 733 frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK); 734 if (!(frame->can_id & CAN_RTR_FLAG)) { 735 memcpy(frame->data, buf + RXBDAT_OFF, frame->len); 736 737 priv->net->stats.rx_bytes += frame->len; 738 } 739 priv->net->stats.rx_packets++; 740 741 netif_rx(skb); 742 } 743 744 static void mcp251x_hw_sleep(struct spi_device *spi) 745 { 746 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP); 747 } 748 749 /* May only be called when device is sleeping! */ 750 static int mcp251x_hw_wake(struct spi_device *spi) 751 { 752 u8 value; 753 int ret; 754 755 /* Force wakeup interrupt to wake device, but don't execute IST */ 756 disable_irq(spi->irq); 757 mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF); 758 759 /* Wait for oscillator startup timer after wake up */ 760 mdelay(MCP251X_OST_DELAY_MS); 761 762 /* Put device into config mode */ 763 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF); 764 765 /* Wait for the device to enter config mode */ 766 ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF, 767 MCP251X_OST_DELAY_MS * 1000, 768 USEC_PER_SEC); 769 if (ret) { 770 dev_err(&spi->dev, "MCP251x didn't enter in config mode\n"); 771 return ret; 772 } 773 774 /* Disable and clear pending interrupts */ 775 mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00); 776 enable_irq(spi->irq); 777 778 return 0; 779 } 780 781 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb, 782 struct net_device *net) 783 { 784 struct mcp251x_priv *priv = netdev_priv(net); 785 struct spi_device *spi = priv->spi; 786 787 if (priv->tx_skb || priv->tx_busy) { 788 dev_warn(&spi->dev, "hard_xmit called while tx busy\n"); 789 return NETDEV_TX_BUSY; 790 } 791 792 if (can_dev_dropped_skb(net, skb)) 793 return NETDEV_TX_OK; 794 795 netif_stop_queue(net); 796 priv->tx_skb = skb; 797 queue_work(priv->wq, &priv->tx_work); 798 799 return NETDEV_TX_OK; 800 } 801 802 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode) 803 { 804 struct mcp251x_priv *priv = netdev_priv(net); 805 806 switch (mode) { 807 case CAN_MODE_START: 808 mcp251x_clean(net); 809 /* We have to delay work since SPI I/O may sleep */ 810 priv->can.state = CAN_STATE_ERROR_ACTIVE; 811 priv->restart_tx = 1; 812 if (priv->can.restart_ms == 0) 813 priv->after_suspend = AFTER_SUSPEND_RESTART; 814 queue_work(priv->wq, &priv->restart_work); 815 break; 816 default: 817 return -EOPNOTSUPP; 818 } 819 820 return 0; 821 } 822 823 static int mcp251x_set_normal_mode(struct spi_device *spi) 824 { 825 struct mcp251x_priv *priv = spi_get_drvdata(spi); 826 u8 value; 827 int ret; 828 829 /* Enable interrupts */ 830 mcp251x_write_reg(spi, CANINTE, 831 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE | 832 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE); 833 834 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 835 /* Put device into loopback mode */ 836 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK); 837 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) { 838 /* Put device into listen-only mode */ 839 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY); 840 } else { 841 /* Put device into normal mode */ 842 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL); 843 844 /* Wait for the device to enter normal mode */ 845 ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0, 846 MCP251X_OST_DELAY_MS * 1000, 847 USEC_PER_SEC); 848 if (ret) { 849 dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n"); 850 return ret; 851 } 852 } 853 priv->can.state = CAN_STATE_ERROR_ACTIVE; 854 return 0; 855 } 856 857 static int mcp251x_do_set_bittiming(struct net_device *net) 858 { 859 struct mcp251x_priv *priv = netdev_priv(net); 860 struct can_bittiming *bt = &priv->can.bittiming; 861 struct spi_device *spi = priv->spi; 862 863 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) | 864 (bt->brp - 1)); 865 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE | 866 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ? 867 CNF2_SAM : 0) | 868 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) | 869 (bt->prop_seg - 1)); 870 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK, 871 (bt->phase_seg2 - 1)); 872 dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n", 873 mcp251x_read_reg(spi, CNF1), 874 mcp251x_read_reg(spi, CNF2), 875 mcp251x_read_reg(spi, CNF3)); 876 877 return 0; 878 } 879 880 static int mcp251x_setup(struct net_device *net, struct spi_device *spi) 881 { 882 mcp251x_do_set_bittiming(net); 883 884 mcp251x_write_reg(spi, RXBCTRL(0), 885 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1); 886 mcp251x_write_reg(spi, RXBCTRL(1), 887 RXBCTRL_RXM0 | RXBCTRL_RXM1); 888 return 0; 889 } 890 891 static int mcp251x_hw_reset(struct spi_device *spi) 892 { 893 struct mcp251x_priv *priv = spi_get_drvdata(spi); 894 u8 value; 895 int ret; 896 897 /* Wait for oscillator startup timer after power up */ 898 mdelay(MCP251X_OST_DELAY_MS); 899 900 priv->spi_tx_buf[0] = INSTRUCTION_RESET; 901 ret = mcp251x_spi_write(spi, 1); 902 if (ret) 903 return ret; 904 905 /* Wait for oscillator startup timer after reset */ 906 mdelay(MCP251X_OST_DELAY_MS); 907 908 /* Wait for reset to finish */ 909 ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF, 910 MCP251X_OST_DELAY_MS * 1000, 911 USEC_PER_SEC); 912 if (ret) 913 dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n"); 914 return ret; 915 } 916 917 static int mcp251x_hw_probe(struct spi_device *spi) 918 { 919 u8 ctrl; 920 int ret; 921 922 ret = mcp251x_hw_reset(spi); 923 if (ret) 924 return ret; 925 926 ctrl = mcp251x_read_reg(spi, CANCTRL); 927 928 dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl); 929 930 /* Check for power up default value */ 931 if ((ctrl & 0x17) != 0x07) 932 return -ENODEV; 933 934 return 0; 935 } 936 937 static int mcp251x_power_enable(struct regulator *reg, int enable) 938 { 939 if (IS_ERR_OR_NULL(reg)) 940 return 0; 941 942 if (enable) 943 return regulator_enable(reg); 944 else 945 return regulator_disable(reg); 946 } 947 948 static int mcp251x_stop(struct net_device *net) 949 { 950 struct mcp251x_priv *priv = netdev_priv(net); 951 struct spi_device *spi = priv->spi; 952 953 close_candev(net); 954 955 priv->force_quit = 1; 956 free_irq(spi->irq, priv); 957 958 mutex_lock(&priv->mcp_lock); 959 960 /* Disable and clear pending interrupts */ 961 mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00); 962 963 mcp251x_write_reg(spi, TXBCTRL(0), 0); 964 mcp251x_clean(net); 965 966 mcp251x_hw_sleep(spi); 967 968 mcp251x_power_enable(priv->transceiver, 0); 969 970 priv->can.state = CAN_STATE_STOPPED; 971 972 mutex_unlock(&priv->mcp_lock); 973 974 return 0; 975 } 976 977 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1) 978 { 979 struct sk_buff *skb; 980 struct can_frame *frame; 981 982 skb = alloc_can_err_skb(net, &frame); 983 if (skb) { 984 frame->can_id |= can_id; 985 frame->data[1] = data1; 986 netif_rx(skb); 987 } else { 988 netdev_err(net, "cannot allocate error skb\n"); 989 } 990 } 991 992 static void mcp251x_tx_work_handler(struct work_struct *ws) 993 { 994 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv, 995 tx_work); 996 struct spi_device *spi = priv->spi; 997 struct net_device *net = priv->net; 998 struct can_frame *frame; 999 1000 mutex_lock(&priv->mcp_lock); 1001 if (priv->tx_skb) { 1002 if (priv->can.state == CAN_STATE_BUS_OFF) { 1003 mcp251x_clean(net); 1004 } else { 1005 frame = (struct can_frame *)priv->tx_skb->data; 1006 1007 if (frame->len > CAN_FRAME_MAX_DATA_LEN) 1008 frame->len = CAN_FRAME_MAX_DATA_LEN; 1009 mcp251x_hw_tx(spi, frame, 0); 1010 priv->tx_busy = true; 1011 can_put_echo_skb(priv->tx_skb, net, 0, 0); 1012 priv->tx_skb = NULL; 1013 } 1014 } 1015 mutex_unlock(&priv->mcp_lock); 1016 } 1017 1018 static void mcp251x_restart_work_handler(struct work_struct *ws) 1019 { 1020 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv, 1021 restart_work); 1022 struct spi_device *spi = priv->spi; 1023 struct net_device *net = priv->net; 1024 1025 mutex_lock(&priv->mcp_lock); 1026 if (priv->after_suspend) { 1027 if (priv->after_suspend & AFTER_SUSPEND_POWER) { 1028 mcp251x_hw_reset(spi); 1029 mcp251x_setup(net, spi); 1030 mcp251x_gpio_restore(spi); 1031 } else { 1032 mcp251x_hw_wake(spi); 1033 } 1034 priv->force_quit = 0; 1035 if (priv->after_suspend & AFTER_SUSPEND_RESTART) { 1036 mcp251x_set_normal_mode(spi); 1037 } else if (priv->after_suspend & AFTER_SUSPEND_UP) { 1038 netif_device_attach(net); 1039 mcp251x_clean(net); 1040 mcp251x_set_normal_mode(spi); 1041 netif_wake_queue(net); 1042 } else { 1043 mcp251x_hw_sleep(spi); 1044 } 1045 priv->after_suspend = 0; 1046 } 1047 1048 if (priv->restart_tx) { 1049 priv->restart_tx = 0; 1050 mcp251x_write_reg(spi, TXBCTRL(0), 0); 1051 mcp251x_clean(net); 1052 netif_wake_queue(net); 1053 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0); 1054 } 1055 mutex_unlock(&priv->mcp_lock); 1056 } 1057 1058 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id) 1059 { 1060 struct mcp251x_priv *priv = dev_id; 1061 struct spi_device *spi = priv->spi; 1062 struct net_device *net = priv->net; 1063 1064 mutex_lock(&priv->mcp_lock); 1065 while (!priv->force_quit) { 1066 enum can_state new_state; 1067 u8 intf, eflag; 1068 u8 clear_intf = 0; 1069 int can_id = 0, data1 = 0; 1070 1071 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag); 1072 1073 /* receive buffer 0 */ 1074 if (intf & CANINTF_RX0IF) { 1075 mcp251x_hw_rx(spi, 0); 1076 /* Free one buffer ASAP 1077 * (The MCP2515/25625 does this automatically.) 1078 */ 1079 if (mcp251x_is_2510(spi)) 1080 mcp251x_write_bits(spi, CANINTF, 1081 CANINTF_RX0IF, 0x00); 1082 1083 /* check if buffer 1 is already known to be full, no need to re-read */ 1084 if (!(intf & CANINTF_RX1IF)) { 1085 u8 intf1, eflag1; 1086 1087 /* intf needs to be read again to avoid a race condition */ 1088 mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1); 1089 1090 /* combine flags from both operations for error handling */ 1091 intf |= intf1; 1092 eflag |= eflag1; 1093 } 1094 } 1095 1096 /* receive buffer 1 */ 1097 if (intf & CANINTF_RX1IF) { 1098 mcp251x_hw_rx(spi, 1); 1099 /* The MCP2515/25625 does this automatically. */ 1100 if (mcp251x_is_2510(spi)) 1101 clear_intf |= CANINTF_RX1IF; 1102 } 1103 1104 /* mask out flags we don't care about */ 1105 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR; 1106 1107 /* any error or tx interrupt we need to clear? */ 1108 if (intf & (CANINTF_ERR | CANINTF_TX)) 1109 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX); 1110 if (clear_intf) 1111 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00); 1112 1113 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) 1114 mcp251x_write_bits(spi, EFLG, eflag, 0x00); 1115 1116 /* Update can state */ 1117 if (eflag & EFLG_TXBO) { 1118 new_state = CAN_STATE_BUS_OFF; 1119 can_id |= CAN_ERR_BUSOFF; 1120 } else if (eflag & EFLG_TXEP) { 1121 new_state = CAN_STATE_ERROR_PASSIVE; 1122 can_id |= CAN_ERR_CRTL; 1123 data1 |= CAN_ERR_CRTL_TX_PASSIVE; 1124 } else if (eflag & EFLG_RXEP) { 1125 new_state = CAN_STATE_ERROR_PASSIVE; 1126 can_id |= CAN_ERR_CRTL; 1127 data1 |= CAN_ERR_CRTL_RX_PASSIVE; 1128 } else if (eflag & EFLG_TXWAR) { 1129 new_state = CAN_STATE_ERROR_WARNING; 1130 can_id |= CAN_ERR_CRTL; 1131 data1 |= CAN_ERR_CRTL_TX_WARNING; 1132 } else if (eflag & EFLG_RXWAR) { 1133 new_state = CAN_STATE_ERROR_WARNING; 1134 can_id |= CAN_ERR_CRTL; 1135 data1 |= CAN_ERR_CRTL_RX_WARNING; 1136 } else { 1137 new_state = CAN_STATE_ERROR_ACTIVE; 1138 } 1139 1140 /* Update can state statistics */ 1141 switch (priv->can.state) { 1142 case CAN_STATE_ERROR_ACTIVE: 1143 if (new_state >= CAN_STATE_ERROR_WARNING && 1144 new_state <= CAN_STATE_BUS_OFF) 1145 priv->can.can_stats.error_warning++; 1146 fallthrough; 1147 case CAN_STATE_ERROR_WARNING: 1148 if (new_state >= CAN_STATE_ERROR_PASSIVE && 1149 new_state <= CAN_STATE_BUS_OFF) 1150 priv->can.can_stats.error_passive++; 1151 break; 1152 default: 1153 break; 1154 } 1155 priv->can.state = new_state; 1156 1157 if (intf & CANINTF_ERRIF) { 1158 /* Handle overflow counters */ 1159 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) { 1160 if (eflag & EFLG_RX0OVR) { 1161 net->stats.rx_over_errors++; 1162 net->stats.rx_errors++; 1163 } 1164 if (eflag & EFLG_RX1OVR) { 1165 net->stats.rx_over_errors++; 1166 net->stats.rx_errors++; 1167 } 1168 can_id |= CAN_ERR_CRTL; 1169 data1 |= CAN_ERR_CRTL_RX_OVERFLOW; 1170 } 1171 mcp251x_error_skb(net, can_id, data1); 1172 } 1173 1174 if (priv->can.state == CAN_STATE_BUS_OFF) { 1175 if (priv->can.restart_ms == 0) { 1176 priv->force_quit = 1; 1177 priv->can.can_stats.bus_off++; 1178 can_bus_off(net); 1179 mcp251x_hw_sleep(spi); 1180 break; 1181 } 1182 } 1183 1184 if (intf == 0) 1185 break; 1186 1187 if (intf & CANINTF_TX) { 1188 if (priv->tx_busy) { 1189 net->stats.tx_packets++; 1190 net->stats.tx_bytes += can_get_echo_skb(net, 0, 1191 NULL); 1192 priv->tx_busy = false; 1193 } 1194 netif_wake_queue(net); 1195 } 1196 } 1197 mutex_unlock(&priv->mcp_lock); 1198 return IRQ_HANDLED; 1199 } 1200 1201 static int mcp251x_open(struct net_device *net) 1202 { 1203 struct mcp251x_priv *priv = netdev_priv(net); 1204 struct spi_device *spi = priv->spi; 1205 unsigned long flags = 0; 1206 int ret; 1207 1208 ret = open_candev(net); 1209 if (ret) { 1210 dev_err(&spi->dev, "unable to set initial baudrate!\n"); 1211 return ret; 1212 } 1213 1214 mutex_lock(&priv->mcp_lock); 1215 mcp251x_power_enable(priv->transceiver, 1); 1216 1217 priv->force_quit = 0; 1218 priv->tx_skb = NULL; 1219 priv->tx_busy = false; 1220 1221 if (!dev_fwnode(&spi->dev)) 1222 flags = IRQF_TRIGGER_FALLING; 1223 1224 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist, 1225 flags | IRQF_ONESHOT, dev_name(&spi->dev), 1226 priv); 1227 if (ret) { 1228 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq); 1229 goto out_close; 1230 } 1231 1232 ret = mcp251x_hw_wake(spi); 1233 if (ret) 1234 goto out_free_irq; 1235 ret = mcp251x_setup(net, spi); 1236 if (ret) 1237 goto out_free_irq; 1238 ret = mcp251x_set_normal_mode(spi); 1239 if (ret) 1240 goto out_free_irq; 1241 1242 netif_wake_queue(net); 1243 mutex_unlock(&priv->mcp_lock); 1244 1245 return 0; 1246 1247 out_free_irq: 1248 free_irq(spi->irq, priv); 1249 mcp251x_hw_sleep(spi); 1250 out_close: 1251 mcp251x_power_enable(priv->transceiver, 0); 1252 close_candev(net); 1253 mutex_unlock(&priv->mcp_lock); 1254 return ret; 1255 } 1256 1257 static const struct net_device_ops mcp251x_netdev_ops = { 1258 .ndo_open = mcp251x_open, 1259 .ndo_stop = mcp251x_stop, 1260 .ndo_start_xmit = mcp251x_hard_start_xmit, 1261 .ndo_change_mtu = can_change_mtu, 1262 }; 1263 1264 static const struct ethtool_ops mcp251x_ethtool_ops = { 1265 .get_ts_info = ethtool_op_get_ts_info, 1266 }; 1267 1268 static const struct of_device_id mcp251x_of_match[] = { 1269 { 1270 .compatible = "microchip,mcp2510", 1271 .data = (void *)CAN_MCP251X_MCP2510, 1272 }, 1273 { 1274 .compatible = "microchip,mcp2515", 1275 .data = (void *)CAN_MCP251X_MCP2515, 1276 }, 1277 { 1278 .compatible = "microchip,mcp25625", 1279 .data = (void *)CAN_MCP251X_MCP25625, 1280 }, 1281 { } 1282 }; 1283 MODULE_DEVICE_TABLE(of, mcp251x_of_match); 1284 1285 static const struct spi_device_id mcp251x_id_table[] = { 1286 { 1287 .name = "mcp2510", 1288 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2510, 1289 }, 1290 { 1291 .name = "mcp2515", 1292 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2515, 1293 }, 1294 { 1295 .name = "mcp25625", 1296 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP25625, 1297 }, 1298 { } 1299 }; 1300 MODULE_DEVICE_TABLE(spi, mcp251x_id_table); 1301 1302 static int mcp251x_can_probe(struct spi_device *spi) 1303 { 1304 const void *match = device_get_match_data(&spi->dev); 1305 struct net_device *net; 1306 struct mcp251x_priv *priv; 1307 struct clk *clk; 1308 u32 freq; 1309 int ret; 1310 1311 clk = devm_clk_get_optional(&spi->dev, NULL); 1312 if (IS_ERR(clk)) 1313 return PTR_ERR(clk); 1314 1315 freq = clk_get_rate(clk); 1316 if (freq == 0) 1317 device_property_read_u32(&spi->dev, "clock-frequency", &freq); 1318 1319 /* Sanity check */ 1320 if (freq < 1000000 || freq > 25000000) 1321 return -ERANGE; 1322 1323 /* Allocate can/net device */ 1324 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX); 1325 if (!net) 1326 return -ENOMEM; 1327 1328 ret = clk_prepare_enable(clk); 1329 if (ret) 1330 goto out_free; 1331 1332 net->netdev_ops = &mcp251x_netdev_ops; 1333 net->ethtool_ops = &mcp251x_ethtool_ops; 1334 net->flags |= IFF_ECHO; 1335 1336 priv = netdev_priv(net); 1337 priv->can.bittiming_const = &mcp251x_bittiming_const; 1338 priv->can.do_set_mode = mcp251x_do_set_mode; 1339 priv->can.clock.freq = freq / 2; 1340 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES | 1341 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY; 1342 if (match) 1343 priv->model = (enum mcp251x_model)(uintptr_t)match; 1344 else 1345 priv->model = spi_get_device_id(spi)->driver_data; 1346 priv->net = net; 1347 priv->clk = clk; 1348 1349 spi_set_drvdata(spi, priv); 1350 1351 /* Configure the SPI bus */ 1352 spi->bits_per_word = 8; 1353 if (mcp251x_is_2510(spi)) 1354 spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000; 1355 else 1356 spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000; 1357 ret = spi_setup(spi); 1358 if (ret) 1359 goto out_clk; 1360 1361 priv->power = devm_regulator_get_optional(&spi->dev, "vdd"); 1362 priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver"); 1363 if ((PTR_ERR(priv->power) == -EPROBE_DEFER) || 1364 (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) { 1365 ret = -EPROBE_DEFER; 1366 goto out_clk; 1367 } 1368 1369 ret = mcp251x_power_enable(priv->power, 1); 1370 if (ret) 1371 goto out_clk; 1372 1373 priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM, 1374 0); 1375 if (!priv->wq) { 1376 ret = -ENOMEM; 1377 goto out_clk; 1378 } 1379 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler); 1380 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler); 1381 1382 priv->spi = spi; 1383 mutex_init(&priv->mcp_lock); 1384 1385 priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN, 1386 GFP_KERNEL); 1387 if (!priv->spi_tx_buf) { 1388 ret = -ENOMEM; 1389 goto error_probe; 1390 } 1391 1392 priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN, 1393 GFP_KERNEL); 1394 if (!priv->spi_rx_buf) { 1395 ret = -ENOMEM; 1396 goto error_probe; 1397 } 1398 1399 SET_NETDEV_DEV(net, &spi->dev); 1400 1401 /* Here is OK to not lock the MCP, no one knows about it yet */ 1402 ret = mcp251x_hw_probe(spi); 1403 if (ret) { 1404 if (ret == -ENODEV) 1405 dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n", 1406 priv->model); 1407 goto error_probe; 1408 } 1409 1410 mcp251x_hw_sleep(spi); 1411 1412 ret = register_candev(net); 1413 if (ret) 1414 goto error_probe; 1415 1416 ret = mcp251x_gpio_setup(priv); 1417 if (ret) 1418 goto out_unregister_candev; 1419 1420 netdev_info(net, "MCP%x successfully initialized.\n", priv->model); 1421 return 0; 1422 1423 out_unregister_candev: 1424 unregister_candev(net); 1425 1426 error_probe: 1427 destroy_workqueue(priv->wq); 1428 priv->wq = NULL; 1429 mcp251x_power_enable(priv->power, 0); 1430 1431 out_clk: 1432 clk_disable_unprepare(clk); 1433 1434 out_free: 1435 free_candev(net); 1436 1437 dev_err(&spi->dev, "Probe failed, err=%d\n", -ret); 1438 return ret; 1439 } 1440 1441 static void mcp251x_can_remove(struct spi_device *spi) 1442 { 1443 struct mcp251x_priv *priv = spi_get_drvdata(spi); 1444 struct net_device *net = priv->net; 1445 1446 unregister_candev(net); 1447 1448 mcp251x_power_enable(priv->power, 0); 1449 1450 destroy_workqueue(priv->wq); 1451 priv->wq = NULL; 1452 1453 clk_disable_unprepare(priv->clk); 1454 1455 free_candev(net); 1456 } 1457 1458 static int __maybe_unused mcp251x_can_suspend(struct device *dev) 1459 { 1460 struct spi_device *spi = to_spi_device(dev); 1461 struct mcp251x_priv *priv = spi_get_drvdata(spi); 1462 struct net_device *net = priv->net; 1463 1464 priv->force_quit = 1; 1465 disable_irq(spi->irq); 1466 /* Note: at this point neither IST nor workqueues are running. 1467 * open/stop cannot be called anyway so locking is not needed 1468 */ 1469 if (netif_running(net)) { 1470 netif_device_detach(net); 1471 1472 mcp251x_hw_sleep(spi); 1473 mcp251x_power_enable(priv->transceiver, 0); 1474 priv->after_suspend = AFTER_SUSPEND_UP; 1475 } else { 1476 priv->after_suspend = AFTER_SUSPEND_DOWN; 1477 } 1478 1479 mcp251x_power_enable(priv->power, 0); 1480 priv->after_suspend |= AFTER_SUSPEND_POWER; 1481 1482 return 0; 1483 } 1484 1485 static int __maybe_unused mcp251x_can_resume(struct device *dev) 1486 { 1487 struct spi_device *spi = to_spi_device(dev); 1488 struct mcp251x_priv *priv = spi_get_drvdata(spi); 1489 1490 if (priv->after_suspend & AFTER_SUSPEND_POWER) 1491 mcp251x_power_enable(priv->power, 1); 1492 if (priv->after_suspend & AFTER_SUSPEND_UP) 1493 mcp251x_power_enable(priv->transceiver, 1); 1494 1495 if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP)) 1496 queue_work(priv->wq, &priv->restart_work); 1497 else 1498 priv->after_suspend = 0; 1499 1500 priv->force_quit = 0; 1501 enable_irq(spi->irq); 1502 return 0; 1503 } 1504 1505 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend, 1506 mcp251x_can_resume); 1507 1508 static struct spi_driver mcp251x_can_driver = { 1509 .driver = { 1510 .name = DEVICE_NAME, 1511 .of_match_table = mcp251x_of_match, 1512 .pm = &mcp251x_can_pm_ops, 1513 }, 1514 .id_table = mcp251x_id_table, 1515 .probe = mcp251x_can_probe, 1516 .remove = mcp251x_can_remove, 1517 }; 1518 module_spi_driver(mcp251x_can_driver); 1519 1520 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, " 1521 "Christian Pellegrin <chripell@evolware.org>"); 1522 MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver"); 1523 MODULE_LICENSE("GPL v2"); 1524