1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/bitfield.h> 25 #include <linux/bitmap.h> 26 #include <linux/bitops.h> 27 #include <linux/can/dev.h> 28 #include <linux/clk.h> 29 #include <linux/errno.h> 30 #include <linux/ethtool.h> 31 #include <linux/interrupt.h> 32 #include <linux/iopoll.h> 33 #include <linux/kernel.h> 34 #include <linux/module.h> 35 #include <linux/moduleparam.h> 36 #include <linux/netdevice.h> 37 #include <linux/of.h> 38 #include <linux/phy/phy.h> 39 #include <linux/platform_device.h> 40 #include <linux/reset.h> 41 #include <linux/types.h> 42 43 #define RCANFD_DRV_NAME "rcar_canfd" 44 45 /* Global register bits */ 46 47 /* RSCFDnCFDGRMCFG */ 48 #define RCANFD_GRMCFG_RCMC BIT(0) 49 50 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 51 #define RCANFD_GCFG_EEFE BIT(6) 52 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 53 #define RCANFD_GCFG_DCS BIT(4) 54 #define RCANFD_GCFG_DCE BIT(1) 55 #define RCANFD_GCFG_TPRI BIT(0) 56 57 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 58 #define RCANFD_GCTR_TSRST BIT(16) 59 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 60 #define RCANFD_GCTR_THLEIE BIT(10) 61 #define RCANFD_GCTR_MEIE BIT(9) 62 #define RCANFD_GCTR_DEIE BIT(8) 63 #define RCANFD_GCTR_GSLPR BIT(2) 64 #define RCANFD_GCTR_GMDC_MASK (0x3) 65 #define RCANFD_GCTR_GMDC_GOPM (0x0) 66 #define RCANFD_GCTR_GMDC_GRESET (0x1) 67 #define RCANFD_GCTR_GMDC_GTEST (0x2) 68 69 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 70 #define RCANFD_GSTS_GRAMINIT BIT(3) 71 #define RCANFD_GSTS_GSLPSTS BIT(2) 72 #define RCANFD_GSTS_GHLTSTS BIT(1) 73 #define RCANFD_GSTS_GRSTSTS BIT(0) 74 /* Non-operational status */ 75 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 76 77 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 78 #define RCANFD_GERFL_EEF GENMASK(23, 16) 79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 80 #define RCANFD_GERFL_THLES BIT(2) 81 #define RCANFD_GERFL_MES BIT(1) 82 #define RCANFD_GERFL_DEF BIT(0) 83 84 #define RCANFD_GERFL_ERR(gpriv, x) \ 85 ({\ 86 typeof(gpriv) (_gpriv) = (gpriv); \ 87 ((x) & ((FIELD_PREP(RCANFD_GERFL_EEF, (_gpriv)->channels_mask)) | \ 88 RCANFD_GERFL_MES | ((_gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))); \ 89 }) 90 91 /* AFL Rx rules registers */ 92 93 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 94 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 95 #define RCANFD_GAFLECTR_AFLPN(gpriv, page_num) ((page_num) & (gpriv)->info->max_aflpn) 96 97 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 98 #define RCANFD_GAFLID_GAFLLB BIT(29) 99 100 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 101 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 102 103 /* Channel register bits */ 104 105 /* RSCFDnCmCFG - Classical CAN only */ 106 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 107 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 108 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 109 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 110 111 /* RSCFDnCFDCmNCFG - CAN FD only */ 112 #define RCANFD_NCFG_NTSEG2(gpriv, x) \ 113 (((x) & ((gpriv)->info->nom_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->ntseg2) 114 115 #define RCANFD_NCFG_NTSEG1(gpriv, x) \ 116 (((x) & ((gpriv)->info->nom_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->ntseg1) 117 118 #define RCANFD_NCFG_NSJW(gpriv, x) \ 119 (((x) & ((gpriv)->info->nom_bittiming->sjw_max - 1)) << (gpriv)->info->sh->nsjw) 120 121 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 122 123 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 124 #define RCANFD_CCTR_CTME BIT(24) 125 #define RCANFD_CCTR_ERRD BIT(23) 126 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 127 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 128 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 129 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 130 #define RCANFD_CCTR_TDCVFIE BIT(19) 131 #define RCANFD_CCTR_SOCOIE BIT(18) 132 #define RCANFD_CCTR_EOCOIE BIT(17) 133 #define RCANFD_CCTR_TAIE BIT(16) 134 #define RCANFD_CCTR_ALIE BIT(15) 135 #define RCANFD_CCTR_BLIE BIT(14) 136 #define RCANFD_CCTR_OLIE BIT(13) 137 #define RCANFD_CCTR_BORIE BIT(12) 138 #define RCANFD_CCTR_BOEIE BIT(11) 139 #define RCANFD_CCTR_EPIE BIT(10) 140 #define RCANFD_CCTR_EWIE BIT(9) 141 #define RCANFD_CCTR_BEIE BIT(8) 142 #define RCANFD_CCTR_CSLPR BIT(2) 143 #define RCANFD_CCTR_CHMDC_MASK (0x3) 144 #define RCANFD_CCTR_CHDMC_COPM (0x0) 145 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 146 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 147 148 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 149 #define RCANFD_CSTS_COMSTS BIT(7) 150 #define RCANFD_CSTS_RECSTS BIT(6) 151 #define RCANFD_CSTS_TRMSTS BIT(5) 152 #define RCANFD_CSTS_BOSTS BIT(4) 153 #define RCANFD_CSTS_EPSTS BIT(3) 154 #define RCANFD_CSTS_SLPSTS BIT(2) 155 #define RCANFD_CSTS_HLTSTS BIT(1) 156 #define RCANFD_CSTS_CRSTSTS BIT(0) 157 158 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 159 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 160 161 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 162 #define RCANFD_CERFL_ADERR BIT(14) 163 #define RCANFD_CERFL_B0ERR BIT(13) 164 #define RCANFD_CERFL_B1ERR BIT(12) 165 #define RCANFD_CERFL_CERR BIT(11) 166 #define RCANFD_CERFL_AERR BIT(10) 167 #define RCANFD_CERFL_FERR BIT(9) 168 #define RCANFD_CERFL_SERR BIT(8) 169 #define RCANFD_CERFL_ALF BIT(7) 170 #define RCANFD_CERFL_BLF BIT(6) 171 #define RCANFD_CERFL_OVLF BIT(5) 172 #define RCANFD_CERFL_BORF BIT(4) 173 #define RCANFD_CERFL_BOEF BIT(3) 174 #define RCANFD_CERFL_EPF BIT(2) 175 #define RCANFD_CERFL_EWF BIT(1) 176 #define RCANFD_CERFL_BEF BIT(0) 177 178 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 179 180 /* RSCFDnCFDCmDCFG */ 181 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & ((gpriv)->info->data_bittiming->sjw_max - 1)) << 24) 182 183 #define RCANFD_DCFG_DTSEG2(gpriv, x) \ 184 (((x) & ((gpriv)->info->data_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->dtseg2) 185 186 #define RCANFD_DCFG_DTSEG1(gpriv, x) \ 187 (((x) & ((gpriv)->info->data_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->dtseg1) 188 189 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 190 191 /* RSCFDnCFDCmFDCFG */ 192 #define RCANFD_GEN4_FDCFG_CLOE BIT(30) 193 #define RCANFD_GEN4_FDCFG_FDOE BIT(28) 194 #define RCANFD_FDCFG_TDCO GENMASK(23, 16) 195 #define RCANFD_FDCFG_TDCE BIT(9) 196 #define RCANFD_FDCFG_TDCOC BIT(8) 197 198 /* RSCFDnCFDCmFDSTS */ 199 #define RCANFD_FDSTS_SOC GENMASK(31, 24) 200 #define RCANFD_FDSTS_EOC GENMASK(23, 16) 201 #define RCANFD_GEN4_FDSTS_TDCVF BIT(15) 202 #define RCANFD_GEN4_FDSTS_PNSTS GENMASK(13, 12) 203 #define RCANFD_FDSTS_SOCO BIT(9) 204 #define RCANFD_FDSTS_EOCO BIT(8) 205 #define RCANFD_FDSTS_TDCVF BIT(7) 206 #define RCANFD_FDSTS_TDCR GENMASK(7, 0) 207 208 /* RSCFDnCFDRFCCx */ 209 #define RCANFD_RFCC_RFIM BIT(12) 210 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 211 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 212 #define RCANFD_RFCC_RFIE BIT(1) 213 #define RCANFD_RFCC_RFE BIT(0) 214 215 /* RSCFDnCFDRFSTSx */ 216 #define RCANFD_RFSTS_RFIF BIT(3) 217 #define RCANFD_RFSTS_RFMLT BIT(2) 218 #define RCANFD_RFSTS_RFFLL BIT(1) 219 #define RCANFD_RFSTS_RFEMP BIT(0) 220 221 /* RSCFDnCFDRFIDx */ 222 #define RCANFD_RFID_RFIDE BIT(31) 223 #define RCANFD_RFID_RFRTR BIT(30) 224 225 /* RSCFDnCFDRFPTRx */ 226 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 227 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff) 228 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff) 229 230 /* RSCFDnCFDRFFDSTSx */ 231 #define RCANFD_RFFDSTS_RFFDF BIT(2) 232 #define RCANFD_RFFDSTS_RFBRS BIT(1) 233 #define RCANFD_RFFDSTS_RFESI BIT(0) 234 235 /* Common FIFO bits */ 236 237 /* RSCFDnCFDCFCCk */ 238 #define RCANFD_CFCC_CFTML(gpriv, cftml) \ 239 ({\ 240 typeof(gpriv) (_gpriv) = (gpriv); \ 241 (((cftml) & (_gpriv)->info->max_cftml) << (_gpriv)->info->sh->cftml); \ 242 }) 243 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << (gpriv)->info->sh->cfm) 244 #define RCANFD_CFCC_CFIM BIT(12) 245 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << (gpriv)->info->sh->cfdc) 246 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 247 #define RCANFD_CFCC_CFTXIE BIT(2) 248 #define RCANFD_CFCC_CFE BIT(0) 249 250 /* RSCFDnCFDCFSTSk */ 251 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 252 #define RCANFD_CFSTS_CFTXIF BIT(4) 253 #define RCANFD_CFSTS_CFMLT BIT(2) 254 #define RCANFD_CFSTS_CFFLL BIT(1) 255 #define RCANFD_CFSTS_CFEMP BIT(0) 256 257 /* RSCFDnCFDCFIDk */ 258 #define RCANFD_CFID_CFIDE BIT(31) 259 #define RCANFD_CFID_CFRTR BIT(30) 260 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff) 261 262 /* RSCFDnCFDCFPTRk */ 263 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 264 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16) 265 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0) 266 267 /* RSCFDnCFDCFFDCSTSk */ 268 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 269 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 270 #define RCANFD_CFFDCSTS_CFESI BIT(0) 271 272 /* This controller supports either Classical CAN only mode or CAN FD only mode. 273 * These modes are supported in two separate set of register maps & names. 274 * However, some of the register offsets are common for both modes. Those 275 * offsets are listed below as Common registers. 276 * 277 * The CAN FD only mode specific registers & Classical CAN only mode specific 278 * registers are listed separately. Their register names starts with 279 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 280 */ 281 282 /* Common registers */ 283 284 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 285 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 286 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 287 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 288 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 289 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 290 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 291 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 292 293 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 294 #define RCANFD_GCFG (0x0084) 295 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 296 #define RCANFD_GCTR (0x0088) 297 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 298 #define RCANFD_GSTS (0x008c) 299 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 300 #define RCANFD_GERFL (0x0090) 301 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 302 #define RCANFD_GTSC (0x0094) 303 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 304 #define RCANFD_GAFLECTR (0x0098) 305 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */ 306 #define RCANFD_GAFLCFG(w) (0x009c + (0x04 * (w))) 307 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 308 #define RCANFD_RMNB (0x00a4) 309 /* RSCFDnCFDRMND / RSCFDnRMND */ 310 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 311 312 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 313 #define RCANFD_RFCC(gpriv, x) ((gpriv)->info->regs->rfcc + (0x04 * (x))) 314 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 315 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20) 316 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 317 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40) 318 319 /* Common FIFO Control registers */ 320 321 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 322 #define RCANFD_CFCC(gpriv, ch, idx) \ 323 ((gpriv)->info->regs->cfcc + (0x0c * (ch)) + (0x04 * (idx))) 324 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 325 #define RCANFD_CFSTS(gpriv, ch, idx) \ 326 ((gpriv)->info->regs->cfsts + (0x0c * (ch)) + (0x04 * (idx))) 327 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 328 #define RCANFD_CFPCTR(gpriv, ch, idx) \ 329 ((gpriv)->info->regs->cfpctr + (0x0c * (ch)) + (0x04 * (idx))) 330 331 /* RSCFDnCFDFESTS / RSCFDnFESTS */ 332 #define RCANFD_FESTS (0x0238) 333 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */ 334 #define RCANFD_FFSTS (0x023c) 335 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */ 336 #define RCANFD_FMSTS (0x0240) 337 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */ 338 #define RCANFD_RFISTS (0x0244) 339 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */ 340 #define RCANFD_CFRISTS (0x0248) 341 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */ 342 #define RCANFD_CFTISTS (0x024c) 343 344 /* RSCFDnCFDTMCp / RSCFDnTMCp */ 345 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p))) 346 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */ 347 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p))) 348 349 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */ 350 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y))) 351 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */ 352 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y))) 353 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */ 354 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y))) 355 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */ 356 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y))) 357 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */ 358 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y))) 359 360 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */ 361 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m))) 362 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */ 363 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m))) 364 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */ 365 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m))) 366 367 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */ 368 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m))) 369 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */ 370 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m))) 371 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */ 372 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m))) 373 374 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */ 375 #define RCANFD_GTINTSTS0 (0x0460) 376 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */ 377 #define RCANFD_GTINTSTS1 (0x0464) 378 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */ 379 #define RCANFD_GTSTCFG (0x0468) 380 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */ 381 #define RCANFD_GTSTCTR (0x046c) 382 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */ 383 #define RCANFD_GLOCKK (0x047c) 384 /* RSCFDnCFDGRMCFG */ 385 #define RCANFD_GRMCFG (0x04fc) 386 387 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 388 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 389 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 390 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 391 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 392 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 393 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 394 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 395 396 /* Classical CAN only mode register map */ 397 398 /* RSCFDnGAFLXXXj offset */ 399 #define RCANFD_C_GAFL_OFFSET (0x0500) 400 401 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */ 402 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q))) 403 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q))) 404 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q))) 405 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q))) 406 407 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 408 #define RCANFD_C_RFOFFSET (0x0e00) 409 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 410 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x))) 411 #define RCANFD_C_RFDF(x, df) \ 412 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df))) 413 414 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 415 #define RCANFD_C_CFOFFSET (0x0e80) 416 417 #define RCANFD_C_CFID(ch, idx) \ 418 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx))) 419 420 #define RCANFD_C_CFPTR(ch, idx) \ 421 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx))) 422 423 #define RCANFD_C_CFDF(ch, idx, df) \ 424 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df))) 425 426 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */ 427 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p))) 428 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p))) 429 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p))) 430 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p))) 431 432 /* RSCFDnTHLACCm */ 433 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m))) 434 /* RSCFDnRPGACCr */ 435 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r))) 436 437 /* R-Car Gen4 Classical and CAN FD mode specific register map */ 438 #define RCANFD_GEN4_GAFL_OFFSET (0x1800) 439 440 /* CAN FD mode specific register map */ 441 442 /* RSCFDnCFDCmXXX -> gpriv->fcbase[m].xxx */ 443 struct rcar_canfd_f_c { 444 u32 dcfg; 445 u32 cfdcfg; 446 u32 cfdctr; 447 u32 cfdsts; 448 u32 cfdcrc; 449 u32 pad[3]; 450 }; 451 452 /* RSCFDnCFDGAFLXXXj offset */ 453 #define RCANFD_F_GAFL_OFFSET (0x1000) 454 455 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */ 456 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q))) 457 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q))) 458 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q))) 459 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q))) 460 461 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 462 #define RCANFD_F_RFOFFSET(gpriv) ((gpriv)->info->regs->rfoffset) 463 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x))) 464 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x))) 465 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x))) 466 #define RCANFD_F_RFDF(gpriv, x, df) \ 467 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df))) 468 469 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 470 #define RCANFD_F_CFOFFSET(gpriv) ((gpriv)->info->regs->cfoffset) 471 472 #define RCANFD_F_CFID(gpriv, ch, idx) \ 473 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx))) 474 475 #define RCANFD_F_CFPTR(gpriv, ch, idx) \ 476 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx))) 477 478 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \ 479 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx))) 480 481 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \ 482 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \ 483 (0x04 * (df))) 484 485 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */ 486 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p))) 487 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p))) 488 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p))) 489 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b))) 490 491 /* RSCFDnCFDTHLACCm */ 492 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m))) 493 /* RSCFDnCFDRPGACCr */ 494 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r))) 495 496 /* Constants */ 497 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 498 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 499 500 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */ 501 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1) 502 503 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 504 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 505 506 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 507 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 508 * number is added to RFFIFO index. 509 */ 510 #define RCANFD_RFFIFO_IDX 0 511 512 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 513 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 514 */ 515 #define RCANFD_CFFIFO_IDX 0 516 517 struct rcar_canfd_global; 518 519 struct rcar_canfd_regs { 520 u16 rfcc; /* RX FIFO Configuration/Control Register */ 521 u16 cfcc; /* Common FIFO Configuration/Control Register */ 522 u16 cfsts; /* Common FIFO Status Register */ 523 u16 cfpctr; /* Common FIFO Pointer Control Register */ 524 u16 coffset; /* Channel Data Bitrate Configuration Register */ 525 u16 rfoffset; /* Receive FIFO buffer access ID register */ 526 u16 cfoffset; /* Transmit/receive FIFO buffer access ID register */ 527 }; 528 529 struct rcar_canfd_shift_data { 530 u8 ntseg2; /* Nominal Bit Rate Time Segment 2 Control */ 531 u8 ntseg1; /* Nominal Bit Rate Time Segment 1 Control */ 532 u8 nsjw; /* Nominal Bit Rate Resynchronization Jump Width Control */ 533 u8 dtseg2; /* Data Bit Rate Time Segment 2 Control */ 534 u8 dtseg1; /* Data Bit Rate Time Segment 1 Control */ 535 u8 cftml; /* Common FIFO TX Message Buffer Link */ 536 u8 cfm; /* Common FIFO Mode */ 537 u8 cfdc; /* Common FIFO Depth Configuration */ 538 }; 539 540 struct rcar_canfd_hw_info { 541 const struct can_bittiming_const *nom_bittiming; 542 const struct can_bittiming_const *data_bittiming; 543 const struct can_tdc_const *tdc_const; 544 const struct rcar_canfd_regs *regs; 545 const struct rcar_canfd_shift_data *sh; 546 u8 rnc_field_width; 547 u8 max_aflpn; 548 u8 max_cftml; 549 u8 max_channels; 550 u8 postdiv; 551 /* hardware features */ 552 unsigned shared_global_irqs:1; /* Has shared global irqs */ 553 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */ 554 unsigned ch_interface_mode:1; /* Has channel interface mode */ 555 unsigned shared_can_regs:1; /* Has shared classical can registers */ 556 unsigned external_clk:1; /* Has external clock */ 557 }; 558 559 /* Channel priv data */ 560 struct rcar_canfd_channel { 561 struct can_priv can; /* Must be the first member */ 562 struct net_device *ndev; 563 struct rcar_canfd_global *gpriv; /* Controller reference */ 564 void __iomem *base; /* Register base address */ 565 struct phy *transceiver; /* Optional transceiver */ 566 struct napi_struct napi; 567 u32 tx_head; /* Incremented on xmit */ 568 u32 tx_tail; /* Incremented on xmit done */ 569 u32 channel; /* Channel number */ 570 spinlock_t tx_lock; /* To protect tx path */ 571 }; 572 573 /* Global priv data */ 574 struct rcar_canfd_global { 575 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 576 void __iomem *base; /* Register base address */ 577 struct rcar_canfd_f_c __iomem *fcbase; 578 struct platform_device *pdev; /* Respective platform device */ 579 struct clk *clkp; /* Peripheral clock */ 580 struct clk *can_clk; /* fCAN clock */ 581 unsigned long channels_mask; /* Enabled channels mask */ 582 bool extclk; /* CANFD or Ext clock */ 583 bool fdmode; /* CAN FD or Classical CAN only mode */ 584 struct reset_control *rstc1; 585 struct reset_control *rstc2; 586 const struct rcar_canfd_hw_info *info; 587 }; 588 589 /* CAN FD mode nominal rate constants */ 590 static const struct can_bittiming_const rcar_canfd_gen3_nom_bittiming_const = { 591 .name = RCANFD_DRV_NAME, 592 .tseg1_min = 2, 593 .tseg1_max = 128, 594 .tseg2_min = 2, 595 .tseg2_max = 32, 596 .sjw_max = 32, 597 .brp_min = 1, 598 .brp_max = 1024, 599 .brp_inc = 1, 600 }; 601 602 static const struct can_bittiming_const rcar_canfd_gen4_nom_bittiming_const = { 603 .name = RCANFD_DRV_NAME, 604 .tseg1_min = 2, 605 .tseg1_max = 256, 606 .tseg2_min = 2, 607 .tseg2_max = 128, 608 .sjw_max = 128, 609 .brp_min = 1, 610 .brp_max = 1024, 611 .brp_inc = 1, 612 }; 613 614 /* CAN FD mode data rate constants */ 615 static const struct can_bittiming_const rcar_canfd_gen3_data_bittiming_const = { 616 .name = RCANFD_DRV_NAME, 617 .tseg1_min = 2, 618 .tseg1_max = 16, 619 .tseg2_min = 2, 620 .tseg2_max = 8, 621 .sjw_max = 8, 622 .brp_min = 1, 623 .brp_max = 256, 624 .brp_inc = 1, 625 }; 626 627 static const struct can_bittiming_const rcar_canfd_gen4_data_bittiming_const = { 628 .name = RCANFD_DRV_NAME, 629 .tseg1_min = 2, 630 .tseg1_max = 32, 631 .tseg2_min = 2, 632 .tseg2_max = 16, 633 .sjw_max = 16, 634 .brp_min = 1, 635 .brp_max = 256, 636 .brp_inc = 1, 637 }; 638 639 /* Classical CAN mode bitrate constants */ 640 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 641 .name = RCANFD_DRV_NAME, 642 .tseg1_min = 4, 643 .tseg1_max = 16, 644 .tseg2_min = 2, 645 .tseg2_max = 8, 646 .sjw_max = 4, 647 .brp_min = 1, 648 .brp_max = 1024, 649 .brp_inc = 1, 650 }; 651 652 /* CAN FD Transmission Delay Compensation constants */ 653 static const struct can_tdc_const rcar_canfd_gen3_tdc_const = { 654 .tdcv_min = 1, 655 .tdcv_max = 128, 656 .tdco_min = 1, 657 .tdco_max = 128, 658 .tdcf_min = 0, /* Filter window not supported */ 659 .tdcf_max = 0, 660 }; 661 662 static const struct can_tdc_const rcar_canfd_gen4_tdc_const = { 663 .tdcv_min = 1, 664 .tdcv_max = 256, 665 .tdco_min = 1, 666 .tdco_max = 256, 667 .tdcf_min = 0, /* Filter window not supported */ 668 .tdcf_max = 0, 669 }; 670 671 static const struct rcar_canfd_regs rcar_gen3_regs = { 672 .rfcc = 0x00b8, 673 .cfcc = 0x0118, 674 .cfsts = 0x0178, 675 .cfpctr = 0x01d8, 676 .coffset = 0x0500, 677 .rfoffset = 0x3000, 678 .cfoffset = 0x3400, 679 }; 680 681 static const struct rcar_canfd_regs rcar_gen4_regs = { 682 .rfcc = 0x00c0, 683 .cfcc = 0x0120, 684 .cfsts = 0x01e0, 685 .cfpctr = 0x0240, 686 .coffset = 0x1400, 687 .rfoffset = 0x6000, 688 .cfoffset = 0x6400, 689 }; 690 691 static const struct rcar_canfd_shift_data rcar_gen3_shift_data = { 692 .ntseg2 = 24, 693 .ntseg1 = 16, 694 .nsjw = 11, 695 .dtseg2 = 20, 696 .dtseg1 = 16, 697 .cftml = 20, 698 .cfm = 16, 699 .cfdc = 8, 700 }; 701 702 static const struct rcar_canfd_shift_data rcar_gen4_shift_data = { 703 .ntseg2 = 25, 704 .ntseg1 = 17, 705 .nsjw = 10, 706 .dtseg2 = 16, 707 .dtseg1 = 8, 708 .cftml = 16, 709 .cfm = 8, 710 .cfdc = 21, 711 }; 712 713 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = { 714 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const, 715 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const, 716 .tdc_const = &rcar_canfd_gen3_tdc_const, 717 .regs = &rcar_gen3_regs, 718 .sh = &rcar_gen3_shift_data, 719 .rnc_field_width = 8, 720 .max_aflpn = 31, 721 .max_cftml = 15, 722 .max_channels = 2, 723 .postdiv = 2, 724 .shared_global_irqs = 1, 725 .ch_interface_mode = 0, 726 .shared_can_regs = 0, 727 .external_clk = 1, 728 }; 729 730 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = { 731 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const, 732 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const, 733 .tdc_const = &rcar_canfd_gen4_tdc_const, 734 .regs = &rcar_gen4_regs, 735 .sh = &rcar_gen4_shift_data, 736 .rnc_field_width = 16, 737 .max_aflpn = 127, 738 .max_cftml = 31, 739 .max_channels = 8, 740 .postdiv = 2, 741 .shared_global_irqs = 1, 742 .ch_interface_mode = 1, 743 .shared_can_regs = 1, 744 .external_clk = 1, 745 }; 746 747 static const struct rcar_canfd_hw_info rzg2l_hw_info = { 748 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const, 749 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const, 750 .tdc_const = &rcar_canfd_gen3_tdc_const, 751 .regs = &rcar_gen3_regs, 752 .sh = &rcar_gen3_shift_data, 753 .rnc_field_width = 8, 754 .max_aflpn = 31, 755 .max_cftml = 15, 756 .max_channels = 2, 757 .postdiv = 1, 758 .multi_channel_irqs = 1, 759 .ch_interface_mode = 0, 760 .shared_can_regs = 0, 761 .external_clk = 1, 762 }; 763 764 static const struct rcar_canfd_hw_info r9a09g047_hw_info = { 765 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const, 766 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const, 767 .tdc_const = &rcar_canfd_gen4_tdc_const, 768 .regs = &rcar_gen4_regs, 769 .sh = &rcar_gen4_shift_data, 770 .rnc_field_width = 16, 771 .max_aflpn = 63, 772 .max_cftml = 31, 773 .max_channels = 6, 774 .postdiv = 1, 775 .multi_channel_irqs = 1, 776 .ch_interface_mode = 1, 777 .shared_can_regs = 1, 778 .external_clk = 0, 779 }; 780 781 /* Helper functions */ 782 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 783 { 784 u32 data = readl(reg); 785 786 data &= ~mask; 787 data |= (val & mask); 788 writel(data, reg); 789 } 790 791 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 792 { 793 return readl(base + offset); 794 } 795 796 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 797 { 798 writel(val, base + offset); 799 } 800 801 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 802 { 803 rcar_canfd_update(val, val, base + reg); 804 } 805 806 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 807 { 808 rcar_canfd_update(val, 0, base + reg); 809 } 810 811 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 812 u32 mask, u32 val) 813 { 814 rcar_canfd_update(mask, val, base + reg); 815 } 816 817 static void rcar_canfd_set_bit_reg(void __iomem *addr, u32 val) 818 { 819 rcar_canfd_update(val, val, addr); 820 } 821 822 static void rcar_canfd_update_bit_reg(void __iomem *addr, u32 mask, u32 val) 823 { 824 rcar_canfd_update(mask, val, addr); 825 } 826 827 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 828 struct canfd_frame *cf, u32 off) 829 { 830 u32 *data = (u32 *)cf->data; 831 u32 i, lwords; 832 833 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 834 for (i = 0; i < lwords; i++) 835 data[i] = rcar_canfd_read(priv->base, off + i * sizeof(u32)); 836 } 837 838 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 839 struct canfd_frame *cf, u32 off) 840 { 841 const u32 *data = (u32 *)cf->data; 842 u32 i, lwords; 843 844 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 845 for (i = 0; i < lwords; i++) 846 rcar_canfd_write(priv->base, off + i * sizeof(u32), data[i]); 847 } 848 849 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 850 { 851 u32 i; 852 853 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 854 can_free_echo_skb(ndev, i, NULL); 855 } 856 857 static void rcar_canfd_set_rnc(struct rcar_canfd_global *gpriv, unsigned int ch, 858 unsigned int num_rules) 859 { 860 unsigned int rnc_stride = 32 / gpriv->info->rnc_field_width; 861 unsigned int shift = 32 - (ch % rnc_stride + 1) * gpriv->info->rnc_field_width; 862 unsigned int w = ch / rnc_stride; 863 u32 rnc = num_rules << shift; 864 865 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(w), rnc); 866 } 867 868 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv) 869 { 870 if (gpriv->info->ch_interface_mode) { 871 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE 872 : RCANFD_GEN4_FDCFG_CLOE; 873 874 for_each_set_bit(ch, &gpriv->channels_mask, 875 gpriv->info->max_channels) 876 rcar_canfd_set_bit_reg(&gpriv->fcbase[ch].cfdcfg, val); 877 } else { 878 if (gpriv->fdmode) 879 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 880 RCANFD_GRMCFG_RCMC); 881 else 882 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 883 RCANFD_GRMCFG_RCMC); 884 } 885 } 886 887 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 888 { 889 struct device *dev = &gpriv->pdev->dev; 890 u32 sts, ch; 891 int err; 892 893 /* Check RAMINIT flag as CAN RAM initialization takes place 894 * after the MCU reset 895 */ 896 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 897 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 898 if (err) { 899 dev_dbg(dev, "global raminit failed\n"); 900 return err; 901 } 902 903 /* Transition to Global Reset mode */ 904 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 905 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 906 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 907 908 /* Ensure Global reset mode */ 909 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 910 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 911 if (err) { 912 dev_dbg(dev, "global reset failed\n"); 913 return err; 914 } 915 916 /* Reset Global error flags */ 917 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 918 919 /* Set the controller into appropriate mode */ 920 rcar_canfd_set_mode(gpriv); 921 922 /* Transition all Channels to reset mode */ 923 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 924 rcar_canfd_clear_bit(gpriv->base, 925 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 926 927 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 928 RCANFD_CCTR_CHMDC_MASK, 929 RCANFD_CCTR_CHDMC_CRESET); 930 931 /* Ensure Channel reset mode */ 932 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 933 (sts & RCANFD_CSTS_CRSTSTS), 934 2, 500000); 935 if (err) { 936 dev_dbg(dev, "channel %u reset failed\n", ch); 937 return err; 938 } 939 } 940 return 0; 941 } 942 943 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 944 { 945 u32 cfg, ch; 946 947 /* Global configuration settings */ 948 949 /* ECC Error flag Enable */ 950 cfg = RCANFD_GCFG_EEFE; 951 952 if (gpriv->fdmode) 953 /* Truncate payload to configured message size RFPLS */ 954 cfg |= RCANFD_GCFG_CMPOC; 955 956 /* Set External Clock if selected */ 957 if (gpriv->extclk) 958 cfg |= RCANFD_GCFG_DCS; 959 960 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 961 962 /* Channel configuration settings */ 963 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 964 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 965 RCANFD_CCTR_ERRD); 966 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 967 RCANFD_CCTR_BOM_MASK, 968 RCANFD_CCTR_BOM_BENTRY); 969 } 970 } 971 972 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 973 u32 ch, u32 rule_entry) 974 { 975 unsigned int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES; 976 u32 rule_entry_index = rule_entry % 16; 977 u32 ridx = ch + RCANFD_RFFIFO_IDX; 978 979 /* Enable write access to entry */ 980 page = RCANFD_GAFL_PAGENUM(rule_entry); 981 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 982 (RCANFD_GAFLECTR_AFLPN(gpriv, page) | 983 RCANFD_GAFLECTR_AFLDAE)); 984 985 /* Write number of rules for channel */ 986 rcar_canfd_set_rnc(gpriv, ch, num_rules); 987 if (gpriv->info->shared_can_regs) 988 offset = RCANFD_GEN4_GAFL_OFFSET; 989 else if (gpriv->fdmode) 990 offset = RCANFD_F_GAFL_OFFSET; 991 else 992 offset = RCANFD_C_GAFL_OFFSET; 993 994 /* Accept all IDs */ 995 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0); 996 /* IDE or RTR is not considered for matching */ 997 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0); 998 /* Any data length accepted */ 999 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0); 1000 /* Place the msg in corresponding Rx FIFO entry */ 1001 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index), 1002 RCANFD_GAFLP1_GAFLFDP(ridx)); 1003 1004 /* Disable write access to page */ 1005 rcar_canfd_clear_bit(gpriv->base, 1006 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 1007 } 1008 1009 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 1010 { 1011 /* Rx FIFO is used for reception */ 1012 u32 cfg; 1013 u16 rfdc, rfpls; 1014 1015 /* Select Rx FIFO based on channel */ 1016 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1017 1018 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 1019 if (gpriv->fdmode) 1020 rfpls = 7; /* b111 - Max 64 bytes payload */ 1021 else 1022 rfpls = 0; /* b000 - Max 8 bytes payload */ 1023 1024 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 1025 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 1026 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg); 1027 } 1028 1029 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 1030 { 1031 /* Tx/Rx(Common) FIFO configured in Tx mode is 1032 * used for transmission 1033 * 1034 * Each channel has 3 Common FIFO dedicated to them. 1035 * Use the 1st (index 0) out of 3 1036 */ 1037 u32 cfg; 1038 u16 cftml, cfm, cfdc, cfpls; 1039 1040 cftml = 0; /* 0th buffer */ 1041 cfm = 1; /* b01 - Transmit mode */ 1042 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 1043 if (gpriv->fdmode) 1044 cfpls = 7; /* b111 - Max 64 bytes payload */ 1045 else 1046 cfpls = 0; /* b000 - Max 8 bytes payload */ 1047 1048 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) | 1049 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) | 1050 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 1051 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg); 1052 1053 if (gpriv->fdmode) 1054 /* Clear FD mode specific control/status register */ 1055 rcar_canfd_write(gpriv->base, 1056 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0); 1057 } 1058 1059 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 1060 { 1061 u32 ctr; 1062 1063 /* Clear any stray error interrupt flags */ 1064 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 1065 1066 /* Global interrupts setup */ 1067 ctr = RCANFD_GCTR_MEIE; 1068 if (gpriv->fdmode) 1069 ctr |= RCANFD_GCTR_CFMPOFIE; 1070 1071 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 1072 } 1073 1074 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 1075 *gpriv) 1076 { 1077 /* Disable all interrupts */ 1078 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 1079 1080 /* Clear any stray error interrupt flags */ 1081 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 1082 } 1083 1084 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 1085 *priv) 1086 { 1087 u32 ctr, ch = priv->channel; 1088 1089 /* Clear any stray error flags */ 1090 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 1091 1092 /* Channel interrupts setup */ 1093 ctr = (RCANFD_CCTR_TAIE | 1094 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 1095 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 1096 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 1097 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 1098 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 1099 } 1100 1101 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 1102 *priv) 1103 { 1104 u32 ctr, ch = priv->channel; 1105 1106 ctr = (RCANFD_CCTR_TAIE | 1107 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 1108 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 1109 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 1110 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 1111 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 1112 1113 /* Clear any stray error flags */ 1114 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 1115 } 1116 1117 static void rcar_canfd_global_error(struct net_device *ndev) 1118 { 1119 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1120 struct rcar_canfd_global *gpriv = priv->gpriv; 1121 struct net_device_stats *stats = &ndev->stats; 1122 u32 ch = priv->channel; 1123 u32 gerfl, sts; 1124 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1125 1126 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1127 if (gerfl & FIELD_PREP(RCANFD_GERFL_EEF, BIT(ch))) { 1128 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch); 1129 stats->tx_dropped++; 1130 } 1131 if (gerfl & RCANFD_GERFL_MES) { 1132 sts = rcar_canfd_read(priv->base, 1133 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1134 if (sts & RCANFD_CFSTS_CFMLT) { 1135 netdev_dbg(ndev, "Tx Message Lost flag\n"); 1136 stats->tx_dropped++; 1137 rcar_canfd_write(priv->base, 1138 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1139 sts & ~RCANFD_CFSTS_CFMLT); 1140 } 1141 1142 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1143 if (sts & RCANFD_RFSTS_RFMLT) { 1144 netdev_dbg(ndev, "Rx Message Lost flag\n"); 1145 stats->rx_dropped++; 1146 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1147 sts & ~RCANFD_RFSTS_RFMLT); 1148 } 1149 } 1150 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 1151 /* Message Lost flag will be set for respective channel 1152 * when this condition happens with counters and flags 1153 * already updated. 1154 */ 1155 netdev_dbg(ndev, "global payload overflow interrupt\n"); 1156 } 1157 1158 /* Clear all global error interrupts. Only affected channels bits 1159 * get cleared 1160 */ 1161 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 1162 } 1163 1164 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 1165 u16 txerr, u16 rxerr) 1166 { 1167 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1168 struct net_device_stats *stats = &ndev->stats; 1169 struct can_frame *cf; 1170 struct sk_buff *skb; 1171 u32 ch = priv->channel; 1172 1173 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 1174 1175 /* Propagate the error condition to the CAN stack */ 1176 skb = alloc_can_err_skb(ndev, &cf); 1177 if (!skb) { 1178 stats->rx_dropped++; 1179 return; 1180 } 1181 1182 /* Channel error interrupts */ 1183 if (cerfl & RCANFD_CERFL_BEF) { 1184 netdev_dbg(ndev, "Bus error\n"); 1185 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 1186 cf->data[2] = CAN_ERR_PROT_UNSPEC; 1187 priv->can.can_stats.bus_error++; 1188 } 1189 if (cerfl & RCANFD_CERFL_ADERR) { 1190 netdev_dbg(ndev, "ACK Delimiter Error\n"); 1191 stats->tx_errors++; 1192 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 1193 } 1194 if (cerfl & RCANFD_CERFL_B0ERR) { 1195 netdev_dbg(ndev, "Bit Error (dominant)\n"); 1196 stats->tx_errors++; 1197 cf->data[2] |= CAN_ERR_PROT_BIT0; 1198 } 1199 if (cerfl & RCANFD_CERFL_B1ERR) { 1200 netdev_dbg(ndev, "Bit Error (recessive)\n"); 1201 stats->tx_errors++; 1202 cf->data[2] |= CAN_ERR_PROT_BIT1; 1203 } 1204 if (cerfl & RCANFD_CERFL_CERR) { 1205 netdev_dbg(ndev, "CRC Error\n"); 1206 stats->rx_errors++; 1207 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 1208 } 1209 if (cerfl & RCANFD_CERFL_AERR) { 1210 netdev_dbg(ndev, "ACK Error\n"); 1211 stats->tx_errors++; 1212 cf->can_id |= CAN_ERR_ACK; 1213 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 1214 } 1215 if (cerfl & RCANFD_CERFL_FERR) { 1216 netdev_dbg(ndev, "Form Error\n"); 1217 stats->rx_errors++; 1218 cf->data[2] |= CAN_ERR_PROT_FORM; 1219 } 1220 if (cerfl & RCANFD_CERFL_SERR) { 1221 netdev_dbg(ndev, "Stuff Error\n"); 1222 stats->rx_errors++; 1223 cf->data[2] |= CAN_ERR_PROT_STUFF; 1224 } 1225 if (cerfl & RCANFD_CERFL_ALF) { 1226 netdev_dbg(ndev, "Arbitration lost Error\n"); 1227 priv->can.can_stats.arbitration_lost++; 1228 cf->can_id |= CAN_ERR_LOSTARB; 1229 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 1230 } 1231 if (cerfl & RCANFD_CERFL_BLF) { 1232 netdev_dbg(ndev, "Bus Lock Error\n"); 1233 stats->rx_errors++; 1234 cf->can_id |= CAN_ERR_BUSERROR; 1235 } 1236 if (cerfl & RCANFD_CERFL_EWF) { 1237 netdev_dbg(ndev, "Error warning interrupt\n"); 1238 priv->can.state = CAN_STATE_ERROR_WARNING; 1239 priv->can.can_stats.error_warning++; 1240 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1241 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1242 CAN_ERR_CRTL_RX_WARNING; 1243 cf->data[6] = txerr; 1244 cf->data[7] = rxerr; 1245 } 1246 if (cerfl & RCANFD_CERFL_EPF) { 1247 netdev_dbg(ndev, "Error passive interrupt\n"); 1248 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1249 priv->can.can_stats.error_passive++; 1250 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1251 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1252 CAN_ERR_CRTL_RX_PASSIVE; 1253 cf->data[6] = txerr; 1254 cf->data[7] = rxerr; 1255 } 1256 if (cerfl & RCANFD_CERFL_BOEF) { 1257 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1258 rcar_canfd_tx_failure_cleanup(ndev); 1259 priv->can.state = CAN_STATE_BUS_OFF; 1260 priv->can.can_stats.bus_off++; 1261 can_bus_off(ndev); 1262 cf->can_id |= CAN_ERR_BUSOFF; 1263 } 1264 if (cerfl & RCANFD_CERFL_OVLF) { 1265 netdev_dbg(ndev, 1266 "Overload Frame Transmission error interrupt\n"); 1267 stats->tx_errors++; 1268 cf->can_id |= CAN_ERR_PROT; 1269 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1270 } 1271 1272 /* Clear channel error interrupts that are handled */ 1273 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1274 RCANFD_CERFL_ERR(~cerfl)); 1275 netif_rx(skb); 1276 } 1277 1278 static void rcar_canfd_tx_done(struct net_device *ndev) 1279 { 1280 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1281 struct rcar_canfd_global *gpriv = priv->gpriv; 1282 struct net_device_stats *stats = &ndev->stats; 1283 u32 sts; 1284 unsigned long flags; 1285 u32 ch = priv->channel; 1286 1287 do { 1288 u8 unsent, sent; 1289 1290 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1291 stats->tx_packets++; 1292 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1293 1294 spin_lock_irqsave(&priv->tx_lock, flags); 1295 priv->tx_tail++; 1296 sts = rcar_canfd_read(priv->base, 1297 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1298 unsent = RCANFD_CFSTS_CFMC(sts); 1299 1300 /* Wake producer only when there is room */ 1301 if (unsent != RCANFD_FIFO_DEPTH) 1302 netif_wake_queue(ndev); 1303 1304 if (priv->tx_head - priv->tx_tail <= unsent) { 1305 spin_unlock_irqrestore(&priv->tx_lock, flags); 1306 break; 1307 } 1308 spin_unlock_irqrestore(&priv->tx_lock, flags); 1309 1310 } while (1); 1311 1312 /* Clear interrupt */ 1313 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1314 sts & ~RCANFD_CFSTS_CFTXIF); 1315 } 1316 1317 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1318 { 1319 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1320 struct net_device *ndev = priv->ndev; 1321 u32 gerfl; 1322 1323 /* Handle global error interrupts */ 1324 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1325 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1326 rcar_canfd_global_error(ndev); 1327 } 1328 1329 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1330 { 1331 struct rcar_canfd_global *gpriv = dev_id; 1332 u32 ch; 1333 1334 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1335 rcar_canfd_handle_global_err(gpriv, ch); 1336 1337 return IRQ_HANDLED; 1338 } 1339 1340 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1341 { 1342 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1343 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1344 u32 sts, cc; 1345 1346 /* Handle Rx interrupts */ 1347 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1348 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx)); 1349 if (likely(sts & RCANFD_RFSTS_RFIF && 1350 cc & RCANFD_RFCC_RFIE)) { 1351 if (napi_schedule_prep(&priv->napi)) { 1352 /* Disable Rx FIFO interrupts */ 1353 rcar_canfd_clear_bit(priv->base, 1354 RCANFD_RFCC(gpriv, ridx), 1355 RCANFD_RFCC_RFIE); 1356 __napi_schedule(&priv->napi); 1357 } 1358 } 1359 } 1360 1361 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1362 { 1363 struct rcar_canfd_global *gpriv = dev_id; 1364 u32 ch; 1365 1366 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1367 rcar_canfd_handle_global_receive(gpriv, ch); 1368 1369 return IRQ_HANDLED; 1370 } 1371 1372 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1373 { 1374 struct rcar_canfd_global *gpriv = dev_id; 1375 u32 ch; 1376 1377 /* Global error interrupts still indicate a condition specific 1378 * to a channel. RxFIFO interrupt is a global interrupt. 1379 */ 1380 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1381 rcar_canfd_handle_global_err(gpriv, ch); 1382 rcar_canfd_handle_global_receive(gpriv, ch); 1383 } 1384 return IRQ_HANDLED; 1385 } 1386 1387 static void rcar_canfd_state_change(struct net_device *ndev, 1388 u16 txerr, u16 rxerr) 1389 { 1390 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1391 struct net_device_stats *stats = &ndev->stats; 1392 enum can_state rx_state, tx_state, state = priv->can.state; 1393 struct can_frame *cf; 1394 struct sk_buff *skb; 1395 1396 /* Handle transition from error to normal states */ 1397 if (txerr < 96 && rxerr < 96) 1398 state = CAN_STATE_ERROR_ACTIVE; 1399 else if (txerr < 128 && rxerr < 128) 1400 state = CAN_STATE_ERROR_WARNING; 1401 1402 if (state != priv->can.state) { 1403 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1404 state, priv->can.state, txerr, rxerr); 1405 skb = alloc_can_err_skb(ndev, &cf); 1406 if (!skb) { 1407 stats->rx_dropped++; 1408 return; 1409 } 1410 tx_state = txerr >= rxerr ? state : 0; 1411 rx_state = txerr <= rxerr ? state : 0; 1412 1413 can_change_state(ndev, cf, tx_state, rx_state); 1414 netif_rx(skb); 1415 } 1416 } 1417 1418 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1419 { 1420 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1421 struct net_device *ndev = priv->ndev; 1422 u32 sts; 1423 1424 /* Handle Tx interrupts */ 1425 sts = rcar_canfd_read(priv->base, 1426 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1427 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1428 rcar_canfd_tx_done(ndev); 1429 } 1430 1431 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1432 { 1433 struct rcar_canfd_channel *priv = dev_id; 1434 1435 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel); 1436 1437 return IRQ_HANDLED; 1438 } 1439 1440 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1441 { 1442 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1443 struct net_device *ndev = priv->ndev; 1444 u16 txerr, rxerr; 1445 u32 sts, cerfl; 1446 1447 /* Handle channel error interrupts */ 1448 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1449 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1450 txerr = RCANFD_CSTS_TECCNT(sts); 1451 rxerr = RCANFD_CSTS_RECCNT(sts); 1452 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1453 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1454 1455 /* Handle state change to lower states */ 1456 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1457 priv->can.state != CAN_STATE_BUS_OFF)) 1458 rcar_canfd_state_change(ndev, txerr, rxerr); 1459 } 1460 1461 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1462 { 1463 struct rcar_canfd_channel *priv = dev_id; 1464 1465 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel); 1466 1467 return IRQ_HANDLED; 1468 } 1469 1470 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1471 { 1472 struct rcar_canfd_global *gpriv = dev_id; 1473 u32 ch; 1474 1475 /* Common FIFO is a per channel resource */ 1476 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1477 rcar_canfd_handle_channel_err(gpriv, ch); 1478 rcar_canfd_handle_channel_tx(gpriv, ch); 1479 } 1480 1481 return IRQ_HANDLED; 1482 } 1483 1484 static void rcar_canfd_set_bittiming(struct net_device *ndev) 1485 { 1486 u32 mask = RCANFD_FDCFG_TDCO | RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC; 1487 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1488 struct rcar_canfd_global *gpriv = priv->gpriv; 1489 const struct can_bittiming *bt = &priv->can.bittiming; 1490 const struct can_bittiming *dbt = &priv->can.fd.data_bittiming; 1491 const struct can_tdc_const *tdc_const = priv->can.fd.tdc_const; 1492 const struct can_tdc *tdc = &priv->can.fd.tdc; 1493 u32 cfg, tdcmode = 0, tdco = 0; 1494 u16 brp, sjw, tseg1, tseg2; 1495 u32 ch = priv->channel; 1496 1497 /* Nominal bit timing settings */ 1498 brp = bt->brp - 1; 1499 sjw = bt->sjw - 1; 1500 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1501 tseg2 = bt->phase_seg2 - 1; 1502 1503 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1504 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) | 1505 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1506 } else { 1507 cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) | 1508 RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2)); 1509 } 1510 1511 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1512 1513 if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD)) 1514 return; 1515 1516 /* Data bit timing settings */ 1517 brp = dbt->brp - 1; 1518 sjw = dbt->sjw - 1; 1519 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1520 tseg2 = dbt->phase_seg2 - 1; 1521 1522 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) | 1523 RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2)); 1524 1525 writel(cfg, &gpriv->fcbase[ch].dcfg); 1526 1527 /* Transceiver Delay Compensation */ 1528 if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO) { 1529 /* TDC enabled, measured + offset */ 1530 tdcmode = RCANFD_FDCFG_TDCE; 1531 tdco = tdc->tdco - 1; 1532 } else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL) { 1533 /* TDC enabled, offset only */ 1534 tdcmode = RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC; 1535 tdco = min(tdc->tdcv + tdc->tdco, tdc_const->tdco_max) - 1; 1536 } 1537 1538 rcar_canfd_update_bit_reg(&gpriv->fcbase[ch].cfdcfg, mask, 1539 tdcmode | FIELD_PREP(RCANFD_FDCFG_TDCO, tdco)); 1540 } 1541 1542 static int rcar_canfd_start(struct net_device *ndev) 1543 { 1544 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1545 struct rcar_canfd_global *gpriv = priv->gpriv; 1546 int err = -EOPNOTSUPP; 1547 u32 sts, ch = priv->channel; 1548 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1549 1550 rcar_canfd_set_bittiming(ndev); 1551 1552 rcar_canfd_enable_channel_interrupts(priv); 1553 1554 /* Set channel to Operational mode */ 1555 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1556 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1557 1558 /* Verify channel mode change */ 1559 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1560 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1561 if (err) { 1562 netdev_err(ndev, "channel %u communication state failed\n", ch); 1563 goto fail_mode_change; 1564 } 1565 1566 /* Enable Common & Rx FIFO */ 1567 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1568 RCANFD_CFCC_CFE); 1569 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1570 1571 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1572 return 0; 1573 1574 fail_mode_change: 1575 rcar_canfd_disable_channel_interrupts(priv); 1576 return err; 1577 } 1578 1579 static int rcar_canfd_open(struct net_device *ndev) 1580 { 1581 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1582 struct rcar_canfd_global *gpriv = priv->gpriv; 1583 int err; 1584 1585 err = phy_power_on(priv->transceiver); 1586 if (err) { 1587 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err)); 1588 return err; 1589 } 1590 1591 /* Peripheral clock is already enabled in probe */ 1592 err = clk_prepare_enable(gpriv->can_clk); 1593 if (err) { 1594 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err)); 1595 goto out_phy; 1596 } 1597 1598 err = open_candev(ndev); 1599 if (err) { 1600 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err)); 1601 goto out_can_clock; 1602 } 1603 1604 napi_enable(&priv->napi); 1605 err = rcar_canfd_start(ndev); 1606 if (err) 1607 goto out_close; 1608 netif_start_queue(ndev); 1609 return 0; 1610 out_close: 1611 napi_disable(&priv->napi); 1612 close_candev(ndev); 1613 out_can_clock: 1614 clk_disable_unprepare(gpriv->can_clk); 1615 out_phy: 1616 phy_power_off(priv->transceiver); 1617 return err; 1618 } 1619 1620 static void rcar_canfd_stop(struct net_device *ndev) 1621 { 1622 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1623 struct rcar_canfd_global *gpriv = priv->gpriv; 1624 int err; 1625 u32 sts, ch = priv->channel; 1626 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1627 1628 /* Transition to channel reset mode */ 1629 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1630 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1631 1632 /* Check Channel reset mode */ 1633 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1634 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1635 if (err) 1636 netdev_err(ndev, "channel %u reset failed\n", ch); 1637 1638 rcar_canfd_disable_channel_interrupts(priv); 1639 1640 /* Disable Common & Rx FIFO */ 1641 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1642 RCANFD_CFCC_CFE); 1643 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1644 1645 /* Set the state as STOPPED */ 1646 priv->can.state = CAN_STATE_STOPPED; 1647 } 1648 1649 static int rcar_canfd_close(struct net_device *ndev) 1650 { 1651 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1652 struct rcar_canfd_global *gpriv = priv->gpriv; 1653 1654 netif_stop_queue(ndev); 1655 rcar_canfd_stop(ndev); 1656 napi_disable(&priv->napi); 1657 clk_disable_unprepare(gpriv->can_clk); 1658 close_candev(ndev); 1659 phy_power_off(priv->transceiver); 1660 return 0; 1661 } 1662 1663 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1664 struct net_device *ndev) 1665 { 1666 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1667 struct rcar_canfd_global *gpriv = priv->gpriv; 1668 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1669 u32 sts = 0, id, dlc; 1670 unsigned long flags; 1671 u32 ch = priv->channel; 1672 1673 if (can_dev_dropped_skb(ndev, skb)) 1674 return NETDEV_TX_OK; 1675 1676 if (cf->can_id & CAN_EFF_FLAG) { 1677 id = cf->can_id & CAN_EFF_MASK; 1678 id |= RCANFD_CFID_CFIDE; 1679 } else { 1680 id = cf->can_id & CAN_SFF_MASK; 1681 } 1682 1683 if (cf->can_id & CAN_RTR_FLAG) 1684 id |= RCANFD_CFID_CFRTR; 1685 1686 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1687 1688 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1689 rcar_canfd_write(priv->base, 1690 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id); 1691 rcar_canfd_write(priv->base, 1692 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc); 1693 1694 if (can_is_canfd_skb(skb)) { 1695 /* CAN FD frame format */ 1696 sts |= RCANFD_CFFDCSTS_CFFDF; 1697 if (cf->flags & CANFD_BRS) 1698 sts |= RCANFD_CFFDCSTS_CFBRS; 1699 1700 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1701 sts |= RCANFD_CFFDCSTS_CFESI; 1702 } 1703 1704 rcar_canfd_write(priv->base, 1705 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts); 1706 1707 rcar_canfd_put_data(priv, cf, 1708 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0)); 1709 } else { 1710 rcar_canfd_write(priv->base, 1711 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1712 rcar_canfd_write(priv->base, 1713 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1714 rcar_canfd_put_data(priv, cf, 1715 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1716 } 1717 1718 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1719 1720 spin_lock_irqsave(&priv->tx_lock, flags); 1721 priv->tx_head++; 1722 1723 /* Stop the queue if we've filled all FIFO entries */ 1724 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1725 netif_stop_queue(ndev); 1726 1727 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1728 * pointer for the Common FIFO 1729 */ 1730 rcar_canfd_write(priv->base, 1731 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff); 1732 1733 spin_unlock_irqrestore(&priv->tx_lock, flags); 1734 return NETDEV_TX_OK; 1735 } 1736 1737 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1738 { 1739 struct net_device *ndev = priv->ndev; 1740 struct net_device_stats *stats = &ndev->stats; 1741 struct rcar_canfd_global *gpriv = priv->gpriv; 1742 struct canfd_frame *cf; 1743 struct sk_buff *skb; 1744 u32 sts = 0, id, dlc; 1745 u32 ch = priv->channel; 1746 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1747 1748 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1749 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx)); 1750 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx)); 1751 1752 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx)); 1753 1754 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && 1755 sts & RCANFD_RFFDSTS_RFFDF) 1756 skb = alloc_canfd_skb(ndev, &cf); 1757 else 1758 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 1759 } else { 1760 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1761 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1762 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 1763 } 1764 1765 if (!skb) { 1766 stats->rx_dropped++; 1767 return; 1768 } 1769 1770 if (id & RCANFD_RFID_RFIDE) 1771 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1772 else 1773 cf->can_id = id & CAN_SFF_MASK; 1774 1775 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1776 if (sts & RCANFD_RFFDSTS_RFFDF) 1777 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1778 else 1779 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1780 1781 if (sts & RCANFD_RFFDSTS_RFESI) { 1782 cf->flags |= CANFD_ESI; 1783 netdev_dbg(ndev, "ESI Error\n"); 1784 } 1785 1786 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1787 cf->can_id |= CAN_RTR_FLAG; 1788 } else { 1789 if (sts & RCANFD_RFFDSTS_RFBRS) 1790 cf->flags |= CANFD_BRS; 1791 1792 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1793 } 1794 } else { 1795 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1796 if (id & RCANFD_RFID_RFRTR) 1797 cf->can_id |= CAN_RTR_FLAG; 1798 else if (gpriv->info->shared_can_regs) 1799 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1800 else 1801 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1802 } 1803 1804 /* Write 0xff to RFPC to increment the CPU-side 1805 * pointer of the Rx FIFO 1806 */ 1807 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff); 1808 1809 if (!(cf->can_id & CAN_RTR_FLAG)) 1810 stats->rx_bytes += cf->len; 1811 stats->rx_packets++; 1812 netif_receive_skb(skb); 1813 } 1814 1815 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1816 { 1817 struct rcar_canfd_channel *priv = 1818 container_of(napi, struct rcar_canfd_channel, napi); 1819 struct rcar_canfd_global *gpriv = priv->gpriv; 1820 int num_pkts; 1821 u32 sts; 1822 u32 ch = priv->channel; 1823 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1824 1825 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1826 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1827 /* Check FIFO empty condition */ 1828 if (sts & RCANFD_RFSTS_RFEMP) 1829 break; 1830 1831 rcar_canfd_rx_pkt(priv); 1832 1833 /* Clear interrupt bit */ 1834 if (sts & RCANFD_RFSTS_RFIF) 1835 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1836 sts & ~RCANFD_RFSTS_RFIF); 1837 } 1838 1839 /* All packets processed */ 1840 if (num_pkts < quota) { 1841 if (napi_complete_done(napi, num_pkts)) { 1842 /* Enable Rx FIFO interrupts */ 1843 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), 1844 RCANFD_RFCC_RFIE); 1845 } 1846 } 1847 return num_pkts; 1848 } 1849 1850 static unsigned int rcar_canfd_get_tdcr(struct rcar_canfd_global *gpriv, 1851 unsigned int ch) 1852 { 1853 u32 sts = readl(&gpriv->fcbase[ch].cfdsts); 1854 u32 tdcr = FIELD_GET(RCANFD_FDSTS_TDCR, sts); 1855 1856 return tdcr & (gpriv->info->tdc_const->tdcv_max - 1); 1857 } 1858 1859 static int rcar_canfd_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv) 1860 { 1861 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1862 u32 tdco = priv->can.fd.tdc.tdco; 1863 u32 tdcr; 1864 1865 /* Transceiver Delay Compensation Result */ 1866 tdcr = rcar_canfd_get_tdcr(priv->gpriv, priv->channel) + 1; 1867 1868 *tdcv = tdcr < tdco ? 0 : tdcr - tdco; 1869 1870 return 0; 1871 } 1872 1873 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1874 { 1875 int err; 1876 1877 switch (mode) { 1878 case CAN_MODE_START: 1879 err = rcar_canfd_start(ndev); 1880 if (err) 1881 return err; 1882 netif_wake_queue(ndev); 1883 return 0; 1884 default: 1885 return -EOPNOTSUPP; 1886 } 1887 } 1888 1889 static int rcar_canfd_get_berr_counter(const struct net_device *ndev, 1890 struct can_berr_counter *bec) 1891 { 1892 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1893 u32 val, ch = priv->channel; 1894 1895 /* Peripheral clock is already enabled in probe */ 1896 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1897 bec->txerr = RCANFD_CSTS_TECCNT(val); 1898 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1899 return 0; 1900 } 1901 1902 static const struct net_device_ops rcar_canfd_netdev_ops = { 1903 .ndo_open = rcar_canfd_open, 1904 .ndo_stop = rcar_canfd_close, 1905 .ndo_start_xmit = rcar_canfd_start_xmit, 1906 .ndo_change_mtu = can_change_mtu, 1907 }; 1908 1909 static const struct ethtool_ops rcar_canfd_ethtool_ops = { 1910 .get_ts_info = ethtool_op_get_ts_info, 1911 }; 1912 1913 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1914 u32 fcan_freq, struct phy *transceiver) 1915 { 1916 const struct rcar_canfd_hw_info *info = gpriv->info; 1917 struct platform_device *pdev = gpriv->pdev; 1918 struct device *dev = &pdev->dev; 1919 struct rcar_canfd_channel *priv; 1920 struct net_device *ndev; 1921 int err = -ENODEV; 1922 1923 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1924 if (!ndev) 1925 return -ENOMEM; 1926 1927 priv = netdev_priv(ndev); 1928 1929 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1930 ndev->ethtool_ops = &rcar_canfd_ethtool_ops; 1931 ndev->flags |= IFF_ECHO; 1932 priv->ndev = ndev; 1933 priv->base = gpriv->base; 1934 priv->transceiver = transceiver; 1935 priv->channel = ch; 1936 priv->gpriv = gpriv; 1937 if (transceiver) 1938 priv->can.bitrate_max = transceiver->attrs.max_link_rate; 1939 priv->can.clock.freq = fcan_freq; 1940 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq); 1941 1942 if (info->multi_channel_irqs) { 1943 char *irq_name; 1944 char name[10]; 1945 int err_irq; 1946 int tx_irq; 1947 1948 scnprintf(name, sizeof(name), "ch%u_err", ch); 1949 err_irq = platform_get_irq_byname(pdev, name); 1950 if (err_irq < 0) { 1951 err = err_irq; 1952 goto fail; 1953 } 1954 1955 scnprintf(name, sizeof(name), "ch%u_trx", ch); 1956 tx_irq = platform_get_irq_byname(pdev, name); 1957 if (tx_irq < 0) { 1958 err = tx_irq; 1959 goto fail; 1960 } 1961 1962 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err", 1963 ch); 1964 if (!irq_name) { 1965 err = -ENOMEM; 1966 goto fail; 1967 } 1968 err = devm_request_irq(dev, err_irq, 1969 rcar_canfd_channel_err_interrupt, 0, 1970 irq_name, priv); 1971 if (err) { 1972 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n", 1973 err_irq, ERR_PTR(err)); 1974 goto fail; 1975 } 1976 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx", 1977 ch); 1978 if (!irq_name) { 1979 err = -ENOMEM; 1980 goto fail; 1981 } 1982 err = devm_request_irq(dev, tx_irq, 1983 rcar_canfd_channel_tx_interrupt, 0, 1984 irq_name, priv); 1985 if (err) { 1986 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n", 1987 tx_irq, ERR_PTR(err)); 1988 goto fail; 1989 } 1990 } 1991 1992 if (gpriv->fdmode) { 1993 priv->can.bittiming_const = gpriv->info->nom_bittiming; 1994 priv->can.fd.data_bittiming_const = gpriv->info->data_bittiming; 1995 priv->can.fd.tdc_const = gpriv->info->tdc_const; 1996 1997 /* Controller starts in CAN FD only mode */ 1998 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1999 if (err) 2000 goto fail; 2001 2002 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING | 2003 CAN_CTRLMODE_TDC_AUTO | 2004 CAN_CTRLMODE_TDC_MANUAL; 2005 priv->can.fd.do_get_auto_tdcv = rcar_canfd_get_auto_tdcv; 2006 } else { 2007 /* Controller starts in Classical CAN only mode */ 2008 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 2009 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 2010 } 2011 2012 priv->can.do_set_mode = rcar_canfd_do_set_mode; 2013 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 2014 SET_NETDEV_DEV(ndev, dev); 2015 2016 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll, 2017 RCANFD_NAPI_WEIGHT); 2018 spin_lock_init(&priv->tx_lock); 2019 gpriv->ch[priv->channel] = priv; 2020 err = register_candev(ndev); 2021 if (err) { 2022 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err)); 2023 goto fail_candev; 2024 } 2025 dev_info(dev, "device registered (channel %u)\n", priv->channel); 2026 return 0; 2027 2028 fail_candev: 2029 netif_napi_del(&priv->napi); 2030 fail: 2031 free_candev(ndev); 2032 return err; 2033 } 2034 2035 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 2036 { 2037 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 2038 2039 if (priv) { 2040 unregister_candev(priv->ndev); 2041 netif_napi_del(&priv->napi); 2042 free_candev(priv->ndev); 2043 } 2044 } 2045 2046 static int rcar_canfd_probe(struct platform_device *pdev) 2047 { 2048 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, }; 2049 const struct rcar_canfd_hw_info *info; 2050 struct device *dev = &pdev->dev; 2051 void __iomem *addr; 2052 u32 sts, ch, fcan_freq; 2053 struct rcar_canfd_global *gpriv; 2054 struct device_node *of_child; 2055 unsigned long channels_mask = 0; 2056 int err, ch_irq, g_irq; 2057 int g_err_irq, g_recc_irq; 2058 u32 rule_entry = 0; 2059 bool fdmode = true; /* CAN FD only mode - default */ 2060 char name[9] = "channelX"; 2061 struct clk *clk_ram; 2062 int i; 2063 2064 info = of_device_get_match_data(dev); 2065 2066 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd")) 2067 fdmode = false; /* Classical CAN only mode */ 2068 2069 for (i = 0; i < info->max_channels; ++i) { 2070 name[7] = '0' + i; 2071 of_child = of_get_available_child_by_name(dev->of_node, name); 2072 if (of_child) { 2073 channels_mask |= BIT(i); 2074 transceivers[i] = devm_of_phy_optional_get(dev, 2075 of_child, NULL); 2076 of_node_put(of_child); 2077 } 2078 if (IS_ERR(transceivers[i])) 2079 return PTR_ERR(transceivers[i]); 2080 } 2081 2082 if (info->shared_global_irqs) { 2083 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 2084 if (ch_irq < 0) { 2085 /* For backward compatibility get irq by index */ 2086 ch_irq = platform_get_irq(pdev, 0); 2087 if (ch_irq < 0) 2088 return ch_irq; 2089 } 2090 2091 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 2092 if (g_irq < 0) { 2093 /* For backward compatibility get irq by index */ 2094 g_irq = platform_get_irq(pdev, 1); 2095 if (g_irq < 0) 2096 return g_irq; 2097 } 2098 } else { 2099 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 2100 if (g_err_irq < 0) 2101 return g_err_irq; 2102 2103 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 2104 if (g_recc_irq < 0) 2105 return g_recc_irq; 2106 } 2107 2108 /* Global controller context */ 2109 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL); 2110 if (!gpriv) 2111 return -ENOMEM; 2112 2113 gpriv->pdev = pdev; 2114 gpriv->channels_mask = channels_mask; 2115 gpriv->fdmode = fdmode; 2116 gpriv->info = info; 2117 2118 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n"); 2119 if (IS_ERR(gpriv->rstc1)) 2120 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1), 2121 "failed to get rstp_n\n"); 2122 2123 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n"); 2124 if (IS_ERR(gpriv->rstc2)) 2125 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2), 2126 "failed to get rstc_n\n"); 2127 2128 /* Peripheral clock */ 2129 gpriv->clkp = devm_clk_get(dev, "fck"); 2130 if (IS_ERR(gpriv->clkp)) 2131 return dev_err_probe(dev, PTR_ERR(gpriv->clkp), 2132 "cannot get peripheral clock\n"); 2133 2134 /* fCAN clock: Pick External clock. If not available fallback to 2135 * CANFD clock 2136 */ 2137 gpriv->can_clk = devm_clk_get(dev, "can_clk"); 2138 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 2139 gpriv->can_clk = devm_clk_get(dev, "canfd"); 2140 if (IS_ERR(gpriv->can_clk)) 2141 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk), 2142 "cannot get canfd clock\n"); 2143 2144 /* CANFD clock may be further divided within the IP */ 2145 fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv; 2146 } else { 2147 fcan_freq = clk_get_rate(gpriv->can_clk); 2148 gpriv->extclk = gpriv->info->external_clk; 2149 } 2150 2151 clk_ram = devm_clk_get_optional_enabled(dev, "ram_clk"); 2152 if (IS_ERR(clk_ram)) 2153 return dev_err_probe(dev, PTR_ERR(clk_ram), 2154 "cannot get enabled ram clock\n"); 2155 2156 addr = devm_platform_ioremap_resource(pdev, 0); 2157 if (IS_ERR(addr)) { 2158 err = PTR_ERR(addr); 2159 goto fail_dev; 2160 } 2161 gpriv->base = addr; 2162 gpriv->fcbase = addr + gpriv->info->regs->coffset; 2163 2164 /* Request IRQ that's common for both channels */ 2165 if (info->shared_global_irqs) { 2166 err = devm_request_irq(dev, ch_irq, 2167 rcar_canfd_channel_interrupt, 0, 2168 "canfd.ch_int", gpriv); 2169 if (err) { 2170 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2171 ch_irq, ERR_PTR(err)); 2172 goto fail_dev; 2173 } 2174 2175 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt, 2176 0, "canfd.g_int", gpriv); 2177 if (err) { 2178 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2179 g_irq, ERR_PTR(err)); 2180 goto fail_dev; 2181 } 2182 } else { 2183 err = devm_request_irq(dev, g_recc_irq, 2184 rcar_canfd_global_receive_fifo_interrupt, 0, 2185 "canfd.g_recc", gpriv); 2186 2187 if (err) { 2188 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2189 g_recc_irq, ERR_PTR(err)); 2190 goto fail_dev; 2191 } 2192 2193 err = devm_request_irq(dev, g_err_irq, 2194 rcar_canfd_global_err_interrupt, 0, 2195 "canfd.g_err", gpriv); 2196 if (err) { 2197 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2198 g_err_irq, ERR_PTR(err)); 2199 goto fail_dev; 2200 } 2201 } 2202 2203 err = reset_control_reset(gpriv->rstc1); 2204 if (err) 2205 goto fail_dev; 2206 err = reset_control_reset(gpriv->rstc2); 2207 if (err) { 2208 reset_control_assert(gpriv->rstc1); 2209 goto fail_dev; 2210 } 2211 2212 /* Enable peripheral clock for register access */ 2213 err = clk_prepare_enable(gpriv->clkp); 2214 if (err) { 2215 dev_err(dev, "failed to enable peripheral clock: %pe\n", 2216 ERR_PTR(err)); 2217 goto fail_reset; 2218 } 2219 2220 err = rcar_canfd_reset_controller(gpriv); 2221 if (err) { 2222 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err)); 2223 goto fail_clk; 2224 } 2225 2226 /* Controller in Global reset & Channel reset mode */ 2227 rcar_canfd_configure_controller(gpriv); 2228 2229 /* Configure per channel attributes */ 2230 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2231 /* Configure Channel's Rx fifo */ 2232 rcar_canfd_configure_rx(gpriv, ch); 2233 2234 /* Configure Channel's Tx (Common) fifo */ 2235 rcar_canfd_configure_tx(gpriv, ch); 2236 2237 /* Configure receive rules */ 2238 rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry); 2239 rule_entry += RCANFD_CHANNEL_NUMRULES; 2240 } 2241 2242 /* Configure common interrupts */ 2243 rcar_canfd_enable_global_interrupts(gpriv); 2244 2245 /* Start Global operation mode */ 2246 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 2247 RCANFD_GCTR_GMDC_GOPM); 2248 2249 /* Verify mode change */ 2250 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 2251 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 2252 if (err) { 2253 dev_err(dev, "global operational mode failed\n"); 2254 goto fail_mode; 2255 } 2256 2257 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2258 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq, 2259 transceivers[ch]); 2260 if (err) 2261 goto fail_channel; 2262 } 2263 2264 platform_set_drvdata(pdev, gpriv); 2265 dev_info(dev, "global operational state (%s clk, %s mode)\n", 2266 gpriv->extclk ? "ext" : "canfd", 2267 gpriv->fdmode ? "fd" : "classical"); 2268 return 0; 2269 2270 fail_channel: 2271 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) 2272 rcar_canfd_channel_remove(gpriv, ch); 2273 fail_mode: 2274 rcar_canfd_disable_global_interrupts(gpriv); 2275 fail_clk: 2276 clk_disable_unprepare(gpriv->clkp); 2277 fail_reset: 2278 reset_control_assert(gpriv->rstc1); 2279 reset_control_assert(gpriv->rstc2); 2280 fail_dev: 2281 return err; 2282 } 2283 2284 static void rcar_canfd_remove(struct platform_device *pdev) 2285 { 2286 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 2287 u32 ch; 2288 2289 rcar_canfd_reset_controller(gpriv); 2290 rcar_canfd_disable_global_interrupts(gpriv); 2291 2292 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2293 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 2294 rcar_canfd_channel_remove(gpriv, ch); 2295 } 2296 2297 /* Enter global sleep mode */ 2298 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2299 clk_disable_unprepare(gpriv->clkp); 2300 reset_control_assert(gpriv->rstc1); 2301 reset_control_assert(gpriv->rstc2); 2302 } 2303 2304 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2305 { 2306 return 0; 2307 } 2308 2309 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2310 { 2311 return 0; 2312 } 2313 2314 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2315 rcar_canfd_resume); 2316 2317 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2318 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info }, 2319 { .compatible = "renesas,r9a09g047-canfd", .data = &r9a09g047_hw_info }, 2320 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info }, 2321 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info }, 2322 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info }, 2323 { } 2324 }; 2325 2326 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2327 2328 static struct platform_driver rcar_canfd_driver = { 2329 .driver = { 2330 .name = RCANFD_DRV_NAME, 2331 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2332 .pm = &rcar_canfd_pm_ops, 2333 }, 2334 .probe = rcar_canfd_probe, 2335 .remove = rcar_canfd_remove, 2336 }; 2337 2338 module_platform_driver(rcar_canfd_driver); 2339 2340 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2341 MODULE_LICENSE("GPL"); 2342 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2343 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2344