xref: /linux/drivers/net/can/rcar/rcar_canfd.c (revision c5fbdf0ba7c1a6ed52dc3650bee73ce00c86cf7f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6 
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23 
24 #include <linux/bitfield.h>
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/can/dev.h>
28 #include <linux/clk.h>
29 #include <linux/errno.h>
30 #include <linux/ethtool.h>
31 #include <linux/interrupt.h>
32 #include <linux/iopoll.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/netdevice.h>
37 #include <linux/of.h>
38 #include <linux/phy/phy.h>
39 #include <linux/platform_device.h>
40 #include <linux/reset.h>
41 #include <linux/types.h>
42 
43 #define RCANFD_DRV_NAME			"rcar_canfd"
44 
45 /* Global register bits */
46 
47 /* RSCFDnCFDGRMCFG */
48 #define RCANFD_GRMCFG_RCMC		BIT(0)
49 
50 /* RSCFDnCFDGCFG / RSCFDnGCFG */
51 #define RCANFD_GCFG_EEFE		BIT(6)
52 #define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
53 #define RCANFD_GCFG_DCS			BIT(4)
54 #define RCANFD_GCFG_DCE			BIT(1)
55 #define RCANFD_GCFG_TPRI		BIT(0)
56 
57 /* RSCFDnCFDGCTR / RSCFDnGCTR */
58 #define RCANFD_GCTR_TSRST		BIT(16)
59 #define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
60 #define RCANFD_GCTR_THLEIE		BIT(10)
61 #define RCANFD_GCTR_MEIE		BIT(9)
62 #define RCANFD_GCTR_DEIE		BIT(8)
63 #define RCANFD_GCTR_GSLPR		BIT(2)
64 #define RCANFD_GCTR_GMDC_MASK		(0x3)
65 #define RCANFD_GCTR_GMDC_GOPM		(0x0)
66 #define RCANFD_GCTR_GMDC_GRESET		(0x1)
67 #define RCANFD_GCTR_GMDC_GTEST		(0x2)
68 
69 /* RSCFDnCFDGSTS / RSCFDnGSTS */
70 #define RCANFD_GSTS_GRAMINIT		BIT(3)
71 #define RCANFD_GSTS_GSLPSTS		BIT(2)
72 #define RCANFD_GSTS_GHLTSTS		BIT(1)
73 #define RCANFD_GSTS_GRSTSTS		BIT(0)
74 /* Non-operational status */
75 #define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
76 
77 /* RSCFDnCFDGERFL / RSCFDnGERFL */
78 #define RCANFD_GERFL_EEF		GENMASK(23, 16)
79 #define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
80 #define RCANFD_GERFL_THLES		BIT(2)
81 #define RCANFD_GERFL_MES		BIT(1)
82 #define RCANFD_GERFL_DEF		BIT(0)
83 
84 #define RCANFD_GERFL_ERR(gpriv, x) \
85 ({\
86 	typeof(gpriv) (_gpriv) = (gpriv); \
87 	((x) & ((FIELD_PREP(RCANFD_GERFL_EEF, (_gpriv)->channels_mask)) | \
88 		RCANFD_GERFL_MES | ((_gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))); \
89 })
90 
91 /* AFL Rx rules registers */
92 
93 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
94 #define RCANFD_GAFLECTR_AFLDAE		BIT(8)
95 #define RCANFD_GAFLECTR_AFLPN(gpriv, page_num)	((page_num) & (gpriv)->info->max_aflpn)
96 
97 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
98 #define RCANFD_GAFLID_GAFLLB		BIT(29)
99 
100 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
101 #define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
102 
103 /* Channel register bits */
104 
105 /* RSCFDnCmCFG - Classical CAN only */
106 #define RCANFD_CFG_SJW(x)		(((x) & 0x3) << 24)
107 #define RCANFD_CFG_TSEG2(x)		(((x) & 0x7) << 20)
108 #define RCANFD_CFG_TSEG1(x)		(((x) & 0xf) << 16)
109 #define RCANFD_CFG_BRP(x)		(((x) & 0x3ff) << 0)
110 
111 /* RSCFDnCFDCmNCFG - CAN FD only */
112 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
113 	(((x) & ((gpriv)->info->nom_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->ntseg2)
114 
115 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
116 	(((x) & ((gpriv)->info->nom_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->ntseg1)
117 
118 #define RCANFD_NCFG_NSJW(gpriv, x) \
119 	(((x) & ((gpriv)->info->nom_bittiming->sjw_max - 1)) << (gpriv)->info->sh->nsjw)
120 
121 #define RCANFD_NCFG_NBRP(x)		(((x) & 0x3ff) << 0)
122 
123 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
124 #define RCANFD_CCTR_CTME		BIT(24)
125 #define RCANFD_CCTR_ERRD		BIT(23)
126 #define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
127 #define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
128 #define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
129 #define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
130 #define RCANFD_CCTR_TDCVFIE		BIT(19)
131 #define RCANFD_CCTR_SOCOIE		BIT(18)
132 #define RCANFD_CCTR_EOCOIE		BIT(17)
133 #define RCANFD_CCTR_TAIE		BIT(16)
134 #define RCANFD_CCTR_ALIE		BIT(15)
135 #define RCANFD_CCTR_BLIE		BIT(14)
136 #define RCANFD_CCTR_OLIE		BIT(13)
137 #define RCANFD_CCTR_BORIE		BIT(12)
138 #define RCANFD_CCTR_BOEIE		BIT(11)
139 #define RCANFD_CCTR_EPIE		BIT(10)
140 #define RCANFD_CCTR_EWIE		BIT(9)
141 #define RCANFD_CCTR_BEIE		BIT(8)
142 #define RCANFD_CCTR_CSLPR		BIT(2)
143 #define RCANFD_CCTR_CHMDC_MASK		(0x3)
144 #define RCANFD_CCTR_CHDMC_COPM		(0x0)
145 #define RCANFD_CCTR_CHDMC_CRESET	(0x1)
146 #define RCANFD_CCTR_CHDMC_CHLT		(0x2)
147 
148 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
149 #define RCANFD_CSTS_COMSTS		BIT(7)
150 #define RCANFD_CSTS_RECSTS		BIT(6)
151 #define RCANFD_CSTS_TRMSTS		BIT(5)
152 #define RCANFD_CSTS_BOSTS		BIT(4)
153 #define RCANFD_CSTS_EPSTS		BIT(3)
154 #define RCANFD_CSTS_SLPSTS		BIT(2)
155 #define RCANFD_CSTS_HLTSTS		BIT(1)
156 #define RCANFD_CSTS_CRSTSTS		BIT(0)
157 
158 #define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
159 #define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
160 
161 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
162 #define RCANFD_CERFL_ADERR		BIT(14)
163 #define RCANFD_CERFL_B0ERR		BIT(13)
164 #define RCANFD_CERFL_B1ERR		BIT(12)
165 #define RCANFD_CERFL_CERR		BIT(11)
166 #define RCANFD_CERFL_AERR		BIT(10)
167 #define RCANFD_CERFL_FERR		BIT(9)
168 #define RCANFD_CERFL_SERR		BIT(8)
169 #define RCANFD_CERFL_ALF		BIT(7)
170 #define RCANFD_CERFL_BLF		BIT(6)
171 #define RCANFD_CERFL_OVLF		BIT(5)
172 #define RCANFD_CERFL_BORF		BIT(4)
173 #define RCANFD_CERFL_BOEF		BIT(3)
174 #define RCANFD_CERFL_EPF		BIT(2)
175 #define RCANFD_CERFL_EWF		BIT(1)
176 #define RCANFD_CERFL_BEF		BIT(0)
177 
178 #define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
179 
180 /* RSCFDnCFDCmDCFG */
181 #define RCANFD_DCFG_DSJW(gpriv, x)	(((x) & ((gpriv)->info->data_bittiming->sjw_max - 1)) << 24)
182 
183 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
184 	(((x) & ((gpriv)->info->data_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->dtseg2)
185 
186 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
187 	(((x) & ((gpriv)->info->data_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->dtseg1)
188 
189 #define RCANFD_DCFG_DBRP(x)		(((x) & 0xff) << 0)
190 
191 /* RSCFDnCFDCmFDCFG */
192 #define RCANFD_GEN4_FDCFG_CLOE		BIT(30)
193 #define RCANFD_GEN4_FDCFG_FDOE		BIT(28)
194 #define RCANFD_FDCFG_TDCO		GENMASK(23, 16)
195 #define RCANFD_FDCFG_TDCE		BIT(9)
196 #define RCANFD_FDCFG_TDCOC		BIT(8)
197 
198 /* RSCFDnCFDCmFDSTS */
199 #define RCANFD_FDSTS_SOC		GENMASK(31, 24)
200 #define RCANFD_FDSTS_EOC		GENMASK(23, 16)
201 #define RCANFD_GEN4_FDSTS_TDCVF		BIT(15)
202 #define RCANFD_GEN4_FDSTS_PNSTS		GENMASK(13, 12)
203 #define RCANFD_FDSTS_SOCO		BIT(9)
204 #define RCANFD_FDSTS_EOCO		BIT(8)
205 #define RCANFD_FDSTS_TDCVF		BIT(7)
206 #define RCANFD_FDSTS_TDCR		GENMASK(7, 0)
207 
208 /* RSCFDnCFDRFCCx */
209 #define RCANFD_RFCC_RFIM		BIT(12)
210 #define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
211 #define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
212 #define RCANFD_RFCC_RFIE		BIT(1)
213 #define RCANFD_RFCC_RFE			BIT(0)
214 
215 /* RSCFDnCFDRFSTSx */
216 #define RCANFD_RFSTS_RFIF		BIT(3)
217 #define RCANFD_RFSTS_RFMLT		BIT(2)
218 #define RCANFD_RFSTS_RFFLL		BIT(1)
219 #define RCANFD_RFSTS_RFEMP		BIT(0)
220 
221 /* RSCFDnCFDRFIDx */
222 #define RCANFD_RFID_RFIDE		BIT(31)
223 #define RCANFD_RFID_RFRTR		BIT(30)
224 
225 /* RSCFDnCFDRFPTRx */
226 #define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
227 #define RCANFD_RFPTR_RFPTR(x)		(((x) >> 16) & 0xfff)
228 #define RCANFD_RFPTR_RFTS(x)		(((x) >> 0) & 0xffff)
229 
230 /* RSCFDnCFDRFFDSTSx */
231 #define RCANFD_RFFDSTS_RFFDF		BIT(2)
232 #define RCANFD_RFFDSTS_RFBRS		BIT(1)
233 #define RCANFD_RFFDSTS_RFESI		BIT(0)
234 
235 /* Common FIFO bits */
236 
237 /* RSCFDnCFDCFCCk */
238 #define RCANFD_CFCC_CFTML(gpriv, cftml) \
239 ({\
240 	typeof(gpriv) (_gpriv) = (gpriv); \
241 	(((cftml) & (_gpriv)->info->max_cftml) << (_gpriv)->info->sh->cftml); \
242 })
243 #define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << (gpriv)->info->sh->cfm)
244 #define RCANFD_CFCC_CFIM		BIT(12)
245 #define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << (gpriv)->info->sh->cfdc)
246 #define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
247 #define RCANFD_CFCC_CFTXIE		BIT(2)
248 #define RCANFD_CFCC_CFE			BIT(0)
249 
250 /* RSCFDnCFDCFSTSk */
251 #define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
252 #define RCANFD_CFSTS_CFTXIF		BIT(4)
253 #define RCANFD_CFSTS_CFMLT		BIT(2)
254 #define RCANFD_CFSTS_CFFLL		BIT(1)
255 #define RCANFD_CFSTS_CFEMP		BIT(0)
256 
257 /* RSCFDnCFDCFIDk */
258 #define RCANFD_CFID_CFIDE		BIT(31)
259 #define RCANFD_CFID_CFRTR		BIT(30)
260 #define RCANFD_CFID_CFID_MASK(x)	((x) & 0x1fffffff)
261 
262 /* RSCFDnCFDCFPTRk */
263 #define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
264 #define RCANFD_CFPTR_CFPTR(x)		(((x) & 0xfff) << 16)
265 #define RCANFD_CFPTR_CFTS(x)		(((x) & 0xff) << 0)
266 
267 /* RSCFDnCFDCFFDCSTSk */
268 #define RCANFD_CFFDCSTS_CFFDF		BIT(2)
269 #define RCANFD_CFFDCSTS_CFBRS		BIT(1)
270 #define RCANFD_CFFDCSTS_CFESI		BIT(0)
271 
272 /* This controller supports either Classical CAN only mode or CAN FD only mode.
273  * These modes are supported in two separate set of register maps & names.
274  * However, some of the register offsets are common for both modes. Those
275  * offsets are listed below as Common registers.
276  *
277  * The CAN FD only mode specific registers & Classical CAN only mode specific
278  * registers are listed separately. Their register names starts with
279  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
280  */
281 
282 /* Common registers */
283 
284 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
285 #define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
286 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
287 #define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
288 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
289 #define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
290 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
291 #define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
292 
293 /* RSCFDnCFDGCFG / RSCFDnGCFG */
294 #define RCANFD_GCFG			(0x0084)
295 /* RSCFDnCFDGCTR / RSCFDnGCTR */
296 #define RCANFD_GCTR			(0x0088)
297 /* RSCFDnCFDGCTS / RSCFDnGCTS */
298 #define RCANFD_GSTS			(0x008c)
299 /* RSCFDnCFDGERFL / RSCFDnGERFL */
300 #define RCANFD_GERFL			(0x0090)
301 /* RSCFDnCFDGTSC / RSCFDnGTSC */
302 #define RCANFD_GTSC			(0x0094)
303 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
304 #define RCANFD_GAFLECTR			(0x0098)
305 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
306 #define RCANFD_GAFLCFG(w)		(0x009c + (0x04 * (w)))
307 /* RSCFDnCFDRMNB / RSCFDnRMNB */
308 #define RCANFD_RMNB			(0x00a4)
309 /* RSCFDnCFDRMND / RSCFDnRMND */
310 #define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
311 
312 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
313 #define RCANFD_RFCC(gpriv, x)		((gpriv)->info->regs->rfcc + (0x04 * (x)))
314 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
315 #define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
316 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
317 #define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
318 
319 /* Common FIFO Control registers */
320 
321 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
322 #define RCANFD_CFCC(gpriv, ch, idx) \
323 	((gpriv)->info->regs->cfcc + (0x0c * (ch)) + (0x04 * (idx)))
324 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
325 #define RCANFD_CFSTS(gpriv, ch, idx) \
326 	((gpriv)->info->regs->cfsts + (0x0c * (ch)) + (0x04 * (idx)))
327 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
328 #define RCANFD_CFPCTR(gpriv, ch, idx) \
329 	((gpriv)->info->regs->cfpctr + (0x0c * (ch)) + (0x04 * (idx)))
330 
331 /* RSCFDnCFDFESTS / RSCFDnFESTS */
332 #define RCANFD_FESTS			(0x0238)
333 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
334 #define RCANFD_FFSTS			(0x023c)
335 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
336 #define RCANFD_FMSTS			(0x0240)
337 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
338 #define RCANFD_RFISTS			(0x0244)
339 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
340 #define RCANFD_CFRISTS			(0x0248)
341 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
342 #define RCANFD_CFTISTS			(0x024c)
343 
344 /* RSCFDnCFDTMCp / RSCFDnTMCp */
345 #define RCANFD_TMC(p)			(0x0250 + (0x01 * (p)))
346 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
347 #define RCANFD_TMSTS(p)			(0x02d0 + (0x01 * (p)))
348 
349 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
350 #define RCANFD_TMTRSTS(y)		(0x0350 + (0x04 * (y)))
351 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
352 #define RCANFD_TMTARSTS(y)		(0x0360 + (0x04 * (y)))
353 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
354 #define RCANFD_TMTCSTS(y)		(0x0370 + (0x04 * (y)))
355 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
356 #define RCANFD_TMTASTS(y)		(0x0380 + (0x04 * (y)))
357 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
358 #define RCANFD_TMIEC(y)			(0x0390 + (0x04 * (y)))
359 
360 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
361 #define RCANFD_TXQCC(m)			(0x03a0 + (0x04 * (m)))
362 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
363 #define RCANFD_TXQSTS(m)		(0x03c0 + (0x04 * (m)))
364 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
365 #define RCANFD_TXQPCTR(m)		(0x03e0 + (0x04 * (m)))
366 
367 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
368 #define RCANFD_THLCC(m)			(0x0400 + (0x04 * (m)))
369 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
370 #define RCANFD_THLSTS(m)		(0x0420 + (0x04 * (m)))
371 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
372 #define RCANFD_THLPCTR(m)		(0x0440 + (0x04 * (m)))
373 
374 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
375 #define RCANFD_GTINTSTS0		(0x0460)
376 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
377 #define RCANFD_GTINTSTS1		(0x0464)
378 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
379 #define RCANFD_GTSTCFG			(0x0468)
380 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
381 #define RCANFD_GTSTCTR			(0x046c)
382 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
383 #define RCANFD_GLOCKK			(0x047c)
384 /* RSCFDnCFDGRMCFG */
385 #define RCANFD_GRMCFG			(0x04fc)
386 
387 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
388 #define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
389 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
390 #define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
391 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
392 #define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
393 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
394 #define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
395 
396 /* Classical CAN only mode register map */
397 
398 /* RSCFDnGAFLXXXj offset */
399 #define RCANFD_C_GAFL_OFFSET		(0x0500)
400 
401 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
402 #define RCANFD_C_RMID(q)		(0x0600 + (0x10 * (q)))
403 #define RCANFD_C_RMPTR(q)		(0x0604 + (0x10 * (q)))
404 #define RCANFD_C_RMDF0(q)		(0x0608 + (0x10 * (q)))
405 #define RCANFD_C_RMDF1(q)		(0x060c + (0x10 * (q)))
406 
407 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
408 #define RCANFD_C_RFOFFSET	(0x0e00)
409 #define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
410 #define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
411 #define RCANFD_C_RFDF(x, df) \
412 		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
413 
414 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
415 #define RCANFD_C_CFOFFSET		(0x0e80)
416 
417 #define RCANFD_C_CFID(ch, idx) \
418 	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
419 
420 #define RCANFD_C_CFPTR(ch, idx)	\
421 	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
422 
423 #define RCANFD_C_CFDF(ch, idx, df) \
424 	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
425 
426 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
427 #define RCANFD_C_TMID(p)		(0x1000 + (0x10 * (p)))
428 #define RCANFD_C_TMPTR(p)		(0x1004 + (0x10 * (p)))
429 #define RCANFD_C_TMDF0(p)		(0x1008 + (0x10 * (p)))
430 #define RCANFD_C_TMDF1(p)		(0x100c + (0x10 * (p)))
431 
432 /* RSCFDnTHLACCm */
433 #define RCANFD_C_THLACC(m)		(0x1800 + (0x04 * (m)))
434 /* RSCFDnRPGACCr */
435 #define RCANFD_C_RPGACC(r)		(0x1900 + (0x04 * (r)))
436 
437 /* R-Car Gen4 Classical and CAN FD mode specific register map */
438 #define RCANFD_GEN4_GAFL_OFFSET		(0x1800)
439 
440 /* CAN FD mode specific register map */
441 
442 /* RSCFDnCFDCmXXX -> gpriv->fcbase[m].xxx */
443 struct rcar_canfd_f_c {
444 	u32 dcfg;
445 	u32 cfdcfg;
446 	u32 cfdctr;
447 	u32 cfdsts;
448 	u32 cfdcrc;
449 	u32 pad[3];
450 };
451 
452 /* RSCFDnCFDGAFLXXXj offset */
453 #define RCANFD_F_GAFL_OFFSET		(0x1000)
454 
455 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
456 #define RCANFD_F_RMID(q)		(0x2000 + (0x20 * (q)))
457 #define RCANFD_F_RMPTR(q)		(0x2004 + (0x20 * (q)))
458 #define RCANFD_F_RMFDSTS(q)		(0x2008 + (0x20 * (q)))
459 #define RCANFD_F_RMDF(q, b)		(0x200c + (0x04 * (b)) + (0x20 * (q)))
460 
461 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
462 #define RCANFD_F_RFOFFSET(gpriv)	((gpriv)->info->regs->rfoffset)
463 #define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
464 #define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
465 #define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
466 #define RCANFD_F_RFDF(gpriv, x, df) \
467 	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
468 
469 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
470 #define RCANFD_F_CFOFFSET(gpriv)	((gpriv)->info->regs->cfoffset)
471 
472 #define RCANFD_F_CFID(gpriv, ch, idx) \
473 	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
474 
475 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
476 	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
477 
478 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
479 	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
480 
481 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
482 	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
483 	 (0x04 * (df)))
484 
485 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
486 #define RCANFD_F_TMID(p)		(0x4000 + (0x20 * (p)))
487 #define RCANFD_F_TMPTR(p)		(0x4004 + (0x20 * (p)))
488 #define RCANFD_F_TMFDCTR(p)		(0x4008 + (0x20 * (p)))
489 #define RCANFD_F_TMDF(p, b)		(0x400c + (0x20 * (p)) + (0x04 * (b)))
490 
491 /* RSCFDnCFDTHLACCm */
492 #define RCANFD_F_THLACC(m)		(0x6000 + (0x04 * (m)))
493 /* RSCFDnCFDRPGACCr */
494 #define RCANFD_F_RPGACC(r)		(0x6400 + (0x04 * (r)))
495 
496 /* Constants */
497 #define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
498 #define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
499 
500 #define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
501 #define RCANFD_CHANNELS_MASK		BIT((RCANFD_NUM_CHANNELS) - 1)
502 
503 #define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
504 #define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
505 
506 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
507  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
508  * number is added to RFFIFO index.
509  */
510 #define RCANFD_RFFIFO_IDX		0
511 
512 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
513  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
514  */
515 #define RCANFD_CFFIFO_IDX		0
516 
517 struct rcar_canfd_global;
518 
519 struct rcar_canfd_regs {
520 	u16 rfcc;	/* RX FIFO Configuration/Control Register */
521 	u16 cfcc;	/* Common FIFO Configuration/Control Register */
522 	u16 cfsts;	/* Common FIFO Status Register */
523 	u16 cfpctr;	/* Common FIFO Pointer Control Register */
524 	u16 coffset;	/* Channel Data Bitrate Configuration Register */
525 	u16 rfoffset;	/* Receive FIFO buffer access ID register */
526 	u16 cfoffset;	/* Transmit/receive FIFO buffer access ID register */
527 };
528 
529 struct rcar_canfd_shift_data {
530 	u8 ntseg2;	/* Nominal Bit Rate Time Segment 2 Control */
531 	u8 ntseg1;	/* Nominal Bit Rate Time Segment 1 Control */
532 	u8 nsjw;	/* Nominal Bit Rate Resynchronization Jump Width Control */
533 	u8 dtseg2;	/* Data Bit Rate Time Segment 2 Control */
534 	u8 dtseg1;	/* Data Bit Rate Time Segment 1 Control */
535 	u8 cftml;	/* Common FIFO TX Message Buffer Link */
536 	u8 cfm;		/* Common FIFO Mode */
537 	u8 cfdc;	/* Common FIFO Depth Configuration */
538 };
539 
540 struct rcar_canfd_hw_info {
541 	const struct can_bittiming_const *nom_bittiming;
542 	const struct can_bittiming_const *data_bittiming;
543 	const struct can_tdc_const *tdc_const;
544 	const struct rcar_canfd_regs *regs;
545 	const struct rcar_canfd_shift_data *sh;
546 	u8 rnc_field_width;
547 	u8 max_aflpn;
548 	u8 max_cftml;
549 	u8 max_channels;
550 	u8 postdiv;
551 	/* hardware features */
552 	unsigned shared_global_irqs:1;	/* Has shared global irqs */
553 	unsigned multi_channel_irqs:1;	/* Has multiple channel irqs */
554 	unsigned ch_interface_mode:1;	/* Has channel interface mode */
555 	unsigned shared_can_regs:1;	/* Has shared classical can registers */
556 	unsigned external_clk:1;	/* Has external clock */
557 };
558 
559 /* Channel priv data */
560 struct rcar_canfd_channel {
561 	struct can_priv can;			/* Must be the first member */
562 	struct net_device *ndev;
563 	struct rcar_canfd_global *gpriv;	/* Controller reference */
564 	void __iomem *base;			/* Register base address */
565 	struct phy *transceiver;		/* Optional transceiver */
566 	struct napi_struct napi;
567 	u32 tx_head;				/* Incremented on xmit */
568 	u32 tx_tail;				/* Incremented on xmit done */
569 	u32 channel;				/* Channel number */
570 	spinlock_t tx_lock;			/* To protect tx path */
571 };
572 
573 /* Global priv data */
574 struct rcar_canfd_global {
575 	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
576 	void __iomem *base;		/* Register base address */
577 	struct rcar_canfd_f_c __iomem *fcbase;
578 	struct platform_device *pdev;	/* Respective platform device */
579 	struct clk *clkp;		/* Peripheral clock */
580 	struct clk *can_clk;		/* fCAN clock */
581 	unsigned long channels_mask;	/* Enabled channels mask */
582 	bool extclk;			/* CANFD or Ext clock */
583 	bool fdmode;			/* CAN FD or Classical CAN only mode */
584 	struct reset_control *rstc1;
585 	struct reset_control *rstc2;
586 	const struct rcar_canfd_hw_info *info;
587 };
588 
589 /* CAN FD mode nominal rate constants */
590 static const struct can_bittiming_const rcar_canfd_gen3_nom_bittiming_const = {
591 	.name = RCANFD_DRV_NAME,
592 	.tseg1_min = 2,
593 	.tseg1_max = 128,
594 	.tseg2_min = 2,
595 	.tseg2_max = 32,
596 	.sjw_max = 32,
597 	.brp_min = 1,
598 	.brp_max = 1024,
599 	.brp_inc = 1,
600 };
601 
602 static const struct can_bittiming_const rcar_canfd_gen4_nom_bittiming_const = {
603 	.name = RCANFD_DRV_NAME,
604 	.tseg1_min = 2,
605 	.tseg1_max = 256,
606 	.tseg2_min = 2,
607 	.tseg2_max = 128,
608 	.sjw_max = 128,
609 	.brp_min = 1,
610 	.brp_max = 1024,
611 	.brp_inc = 1,
612 };
613 
614 /* CAN FD mode data rate constants */
615 static const struct can_bittiming_const rcar_canfd_gen3_data_bittiming_const = {
616 	.name = RCANFD_DRV_NAME,
617 	.tseg1_min = 2,
618 	.tseg1_max = 16,
619 	.tseg2_min = 2,
620 	.tseg2_max = 8,
621 	.sjw_max = 8,
622 	.brp_min = 1,
623 	.brp_max = 256,
624 	.brp_inc = 1,
625 };
626 
627 static const struct can_bittiming_const rcar_canfd_gen4_data_bittiming_const = {
628 	.name = RCANFD_DRV_NAME,
629 	.tseg1_min = 2,
630 	.tseg1_max = 32,
631 	.tseg2_min = 2,
632 	.tseg2_max = 16,
633 	.sjw_max = 16,
634 	.brp_min = 1,
635 	.brp_max = 256,
636 	.brp_inc = 1,
637 };
638 
639 /* Classical CAN mode bitrate constants */
640 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
641 	.name = RCANFD_DRV_NAME,
642 	.tseg1_min = 4,
643 	.tseg1_max = 16,
644 	.tseg2_min = 2,
645 	.tseg2_max = 8,
646 	.sjw_max = 4,
647 	.brp_min = 1,
648 	.brp_max = 1024,
649 	.brp_inc = 1,
650 };
651 
652 /* CAN FD Transmission Delay Compensation constants */
653 static const struct can_tdc_const rcar_canfd_gen3_tdc_const = {
654 	.tdcv_min = 1,
655 	.tdcv_max = 128,
656 	.tdco_min = 1,
657 	.tdco_max = 128,
658 	.tdcf_min = 0,	/* Filter window not supported */
659 	.tdcf_max = 0,
660 };
661 
662 static const struct can_tdc_const rcar_canfd_gen4_tdc_const = {
663 	.tdcv_min = 1,
664 	.tdcv_max = 256,
665 	.tdco_min = 1,
666 	.tdco_max = 256,
667 	.tdcf_min = 0,	/* Filter window not supported */
668 	.tdcf_max = 0,
669 };
670 
671 static const struct rcar_canfd_regs rcar_gen3_regs = {
672 	.rfcc = 0x00b8,
673 	.cfcc = 0x0118,
674 	.cfsts = 0x0178,
675 	.cfpctr = 0x01d8,
676 	.coffset = 0x0500,
677 	.rfoffset = 0x3000,
678 	.cfoffset = 0x3400,
679 };
680 
681 static const struct rcar_canfd_regs rcar_gen4_regs = {
682 	.rfcc = 0x00c0,
683 	.cfcc = 0x0120,
684 	.cfsts = 0x01e0,
685 	.cfpctr = 0x0240,
686 	.coffset = 0x1400,
687 	.rfoffset = 0x6000,
688 	.cfoffset = 0x6400,
689 };
690 
691 static const struct rcar_canfd_shift_data rcar_gen3_shift_data = {
692 	.ntseg2 = 24,
693 	.ntseg1 = 16,
694 	.nsjw = 11,
695 	.dtseg2 = 20,
696 	.dtseg1 = 16,
697 	.cftml = 20,
698 	.cfm = 16,
699 	.cfdc = 8,
700 };
701 
702 static const struct rcar_canfd_shift_data rcar_gen4_shift_data = {
703 	.ntseg2 = 25,
704 	.ntseg1 = 17,
705 	.nsjw = 10,
706 	.dtseg2 = 16,
707 	.dtseg1 = 8,
708 	.cftml = 16,
709 	.cfm = 8,
710 	.cfdc = 21,
711 };
712 
713 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
714 	.nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const,
715 	.data_bittiming = &rcar_canfd_gen3_data_bittiming_const,
716 	.tdc_const = &rcar_canfd_gen3_tdc_const,
717 	.regs = &rcar_gen3_regs,
718 	.sh = &rcar_gen3_shift_data,
719 	.rnc_field_width = 8,
720 	.max_aflpn = 31,
721 	.max_cftml = 15,
722 	.max_channels = 2,
723 	.postdiv = 2,
724 	.shared_global_irqs = 1,
725 	.ch_interface_mode = 0,
726 	.shared_can_regs = 0,
727 	.external_clk = 1,
728 };
729 
730 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
731 	.nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const,
732 	.data_bittiming = &rcar_canfd_gen4_data_bittiming_const,
733 	.tdc_const = &rcar_canfd_gen4_tdc_const,
734 	.regs = &rcar_gen4_regs,
735 	.sh = &rcar_gen4_shift_data,
736 	.rnc_field_width = 16,
737 	.max_aflpn = 127,
738 	.max_cftml = 31,
739 	.max_channels = 8,
740 	.postdiv = 2,
741 	.shared_global_irqs = 1,
742 	.ch_interface_mode = 1,
743 	.shared_can_regs = 1,
744 	.external_clk = 1,
745 };
746 
747 static const struct rcar_canfd_hw_info rzg2l_hw_info = {
748 	.nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const,
749 	.data_bittiming = &rcar_canfd_gen3_data_bittiming_const,
750 	.tdc_const = &rcar_canfd_gen3_tdc_const,
751 	.regs = &rcar_gen3_regs,
752 	.sh = &rcar_gen3_shift_data,
753 	.rnc_field_width = 8,
754 	.max_aflpn = 31,
755 	.max_cftml = 15,
756 	.max_channels = 2,
757 	.postdiv = 1,
758 	.multi_channel_irqs = 1,
759 	.ch_interface_mode = 0,
760 	.shared_can_regs = 0,
761 	.external_clk = 1,
762 };
763 
764 static const struct rcar_canfd_hw_info r9a09g047_hw_info = {
765 	.nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const,
766 	.data_bittiming = &rcar_canfd_gen4_data_bittiming_const,
767 	.tdc_const = &rcar_canfd_gen4_tdc_const,
768 	.regs = &rcar_gen4_regs,
769 	.sh = &rcar_gen4_shift_data,
770 	.rnc_field_width = 16,
771 	.max_aflpn = 63,
772 	.max_cftml = 31,
773 	.max_channels = 6,
774 	.postdiv = 1,
775 	.multi_channel_irqs = 1,
776 	.ch_interface_mode = 1,
777 	.shared_can_regs = 1,
778 	.external_clk = 0,
779 };
780 
781 /* Helper functions */
782 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
783 {
784 	u32 data = readl(reg);
785 
786 	data &= ~mask;
787 	data |= (val & mask);
788 	writel(data, reg);
789 }
790 
791 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
792 {
793 	return readl(base + offset);
794 }
795 
796 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
797 {
798 	writel(val, base + offset);
799 }
800 
801 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
802 {
803 	rcar_canfd_update(val, val, base + reg);
804 }
805 
806 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
807 {
808 	rcar_canfd_update(val, 0, base + reg);
809 }
810 
811 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
812 				  u32 mask, u32 val)
813 {
814 	rcar_canfd_update(mask, val, base + reg);
815 }
816 
817 static void rcar_canfd_set_bit_reg(void __iomem *addr, u32 val)
818 {
819 	rcar_canfd_update(val, val, addr);
820 }
821 
822 static void rcar_canfd_update_bit_reg(void __iomem *addr, u32 mask, u32 val)
823 {
824 	rcar_canfd_update(mask, val, addr);
825 }
826 
827 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
828 				struct canfd_frame *cf, u32 off)
829 {
830 	u32 *data = (u32 *)cf->data;
831 	u32 i, lwords;
832 
833 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
834 	for (i = 0; i < lwords; i++)
835 		data[i] = rcar_canfd_read(priv->base, off + i * sizeof(u32));
836 }
837 
838 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
839 				struct canfd_frame *cf, u32 off)
840 {
841 	const u32 *data = (u32 *)cf->data;
842 	u32 i, lwords;
843 
844 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
845 	for (i = 0; i < lwords; i++)
846 		rcar_canfd_write(priv->base, off + i * sizeof(u32), data[i]);
847 }
848 
849 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
850 {
851 	u32 i;
852 
853 	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
854 		can_free_echo_skb(ndev, i, NULL);
855 }
856 
857 static void rcar_canfd_set_rnc(struct rcar_canfd_global *gpriv, unsigned int ch,
858 			       unsigned int num_rules)
859 {
860 	unsigned int rnc_stride = 32 / gpriv->info->rnc_field_width;
861 	unsigned int shift = 32 - (ch % rnc_stride + 1) * gpriv->info->rnc_field_width;
862 	unsigned int w = ch / rnc_stride;
863 	u32 rnc = num_rules << shift;
864 
865 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(w), rnc);
866 }
867 
868 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
869 {
870 	if (gpriv->info->ch_interface_mode) {
871 		u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
872 					    : RCANFD_GEN4_FDCFG_CLOE;
873 
874 		for_each_set_bit(ch, &gpriv->channels_mask,
875 				 gpriv->info->max_channels)
876 			rcar_canfd_set_bit_reg(&gpriv->fcbase[ch].cfdcfg, val);
877 	} else {
878 		if (gpriv->fdmode)
879 			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
880 					   RCANFD_GRMCFG_RCMC);
881 		else
882 			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
883 					     RCANFD_GRMCFG_RCMC);
884 	}
885 }
886 
887 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
888 {
889 	struct device *dev = &gpriv->pdev->dev;
890 	u32 sts, ch;
891 	int err;
892 
893 	/* Check RAMINIT flag as CAN RAM initialization takes place
894 	 * after the MCU reset
895 	 */
896 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
897 				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
898 	if (err) {
899 		dev_dbg(dev, "global raminit failed\n");
900 		return err;
901 	}
902 
903 	/* Transition to Global Reset mode */
904 	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
905 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
906 			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
907 
908 	/* Ensure Global reset mode */
909 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
910 				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
911 	if (err) {
912 		dev_dbg(dev, "global reset failed\n");
913 		return err;
914 	}
915 
916 	/* Reset Global error flags */
917 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
918 
919 	/* Set the controller into appropriate mode */
920 	rcar_canfd_set_mode(gpriv);
921 
922 	/* Transition all Channels to reset mode */
923 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
924 		rcar_canfd_clear_bit(gpriv->base,
925 				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
926 
927 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
928 				      RCANFD_CCTR_CHMDC_MASK,
929 				      RCANFD_CCTR_CHDMC_CRESET);
930 
931 		/* Ensure Channel reset mode */
932 		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
933 					 (sts & RCANFD_CSTS_CRSTSTS),
934 					 2, 500000);
935 		if (err) {
936 			dev_dbg(dev, "channel %u reset failed\n", ch);
937 			return err;
938 		}
939 	}
940 	return 0;
941 }
942 
943 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
944 {
945 	u32 cfg, ch;
946 
947 	/* Global configuration settings */
948 
949 	/* ECC Error flag Enable */
950 	cfg = RCANFD_GCFG_EEFE;
951 
952 	if (gpriv->fdmode)
953 		/* Truncate payload to configured message size RFPLS */
954 		cfg |= RCANFD_GCFG_CMPOC;
955 
956 	/* Set External Clock if selected */
957 	if (gpriv->extclk)
958 		cfg |= RCANFD_GCFG_DCS;
959 
960 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
961 
962 	/* Channel configuration settings */
963 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
964 		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
965 				   RCANFD_CCTR_ERRD);
966 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
967 				      RCANFD_CCTR_BOM_MASK,
968 				      RCANFD_CCTR_BOM_BENTRY);
969 	}
970 }
971 
972 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
973 					   u32 ch, u32 rule_entry)
974 {
975 	unsigned int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES;
976 	u32 rule_entry_index = rule_entry % 16;
977 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
978 
979 	/* Enable write access to entry */
980 	page = RCANFD_GAFL_PAGENUM(rule_entry);
981 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
982 			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
983 			    RCANFD_GAFLECTR_AFLDAE));
984 
985 	/* Write number of rules for channel */
986 	rcar_canfd_set_rnc(gpriv, ch, num_rules);
987 	if (gpriv->info->shared_can_regs)
988 		offset = RCANFD_GEN4_GAFL_OFFSET;
989 	else if (gpriv->fdmode)
990 		offset = RCANFD_F_GAFL_OFFSET;
991 	else
992 		offset = RCANFD_C_GAFL_OFFSET;
993 
994 	/* Accept all IDs */
995 	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0);
996 	/* IDE or RTR is not considered for matching */
997 	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0);
998 	/* Any data length accepted */
999 	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0);
1000 	/* Place the msg in corresponding Rx FIFO entry */
1001 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index),
1002 			   RCANFD_GAFLP1_GAFLFDP(ridx));
1003 
1004 	/* Disable write access to page */
1005 	rcar_canfd_clear_bit(gpriv->base,
1006 			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
1007 }
1008 
1009 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
1010 {
1011 	/* Rx FIFO is used for reception */
1012 	u32 cfg;
1013 	u16 rfdc, rfpls;
1014 
1015 	/* Select Rx FIFO based on channel */
1016 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1017 
1018 	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
1019 	if (gpriv->fdmode)
1020 		rfpls = 7;	/* b111 - Max 64 bytes payload */
1021 	else
1022 		rfpls = 0;	/* b000 - Max 8 bytes payload */
1023 
1024 	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
1025 		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
1026 	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
1027 }
1028 
1029 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
1030 {
1031 	/* Tx/Rx(Common) FIFO configured in Tx mode is
1032 	 * used for transmission
1033 	 *
1034 	 * Each channel has 3 Common FIFO dedicated to them.
1035 	 * Use the 1st (index 0) out of 3
1036 	 */
1037 	u32 cfg;
1038 	u16 cftml, cfm, cfdc, cfpls;
1039 
1040 	cftml = 0;		/* 0th buffer */
1041 	cfm = 1;		/* b01 - Transmit mode */
1042 	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
1043 	if (gpriv->fdmode)
1044 		cfpls = 7;	/* b111 - Max 64 bytes payload */
1045 	else
1046 		cfpls = 0;	/* b000 - Max 8 bytes payload */
1047 
1048 	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
1049 		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
1050 		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
1051 	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
1052 
1053 	if (gpriv->fdmode)
1054 		/* Clear FD mode specific control/status register */
1055 		rcar_canfd_write(gpriv->base,
1056 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
1057 }
1058 
1059 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
1060 {
1061 	u32 ctr;
1062 
1063 	/* Clear any stray error interrupt flags */
1064 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
1065 
1066 	/* Global interrupts setup */
1067 	ctr = RCANFD_GCTR_MEIE;
1068 	if (gpriv->fdmode)
1069 		ctr |= RCANFD_GCTR_CFMPOFIE;
1070 
1071 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
1072 }
1073 
1074 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
1075 						 *gpriv)
1076 {
1077 	/* Disable all interrupts */
1078 	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
1079 
1080 	/* Clear any stray error interrupt flags */
1081 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
1082 }
1083 
1084 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
1085 						 *priv)
1086 {
1087 	u32 ctr, ch = priv->channel;
1088 
1089 	/* Clear any stray error flags */
1090 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
1091 
1092 	/* Channel interrupts setup */
1093 	ctr = (RCANFD_CCTR_TAIE |
1094 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
1095 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
1096 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
1097 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
1098 	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
1099 }
1100 
1101 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
1102 						  *priv)
1103 {
1104 	u32 ctr, ch = priv->channel;
1105 
1106 	ctr = (RCANFD_CCTR_TAIE |
1107 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
1108 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
1109 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
1110 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
1111 	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
1112 
1113 	/* Clear any stray error flags */
1114 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
1115 }
1116 
1117 static void rcar_canfd_global_error(struct net_device *ndev)
1118 {
1119 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1120 	struct rcar_canfd_global *gpriv = priv->gpriv;
1121 	struct net_device_stats *stats = &ndev->stats;
1122 	u32 ch = priv->channel;
1123 	u32 gerfl, sts;
1124 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1125 
1126 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1127 	if (gerfl & FIELD_PREP(RCANFD_GERFL_EEF, BIT(ch))) {
1128 		netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
1129 		stats->tx_dropped++;
1130 	}
1131 	if (gerfl & RCANFD_GERFL_MES) {
1132 		sts = rcar_canfd_read(priv->base,
1133 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1134 		if (sts & RCANFD_CFSTS_CFMLT) {
1135 			netdev_dbg(ndev, "Tx Message Lost flag\n");
1136 			stats->tx_dropped++;
1137 			rcar_canfd_write(priv->base,
1138 					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1139 					 sts & ~RCANFD_CFSTS_CFMLT);
1140 		}
1141 
1142 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1143 		if (sts & RCANFD_RFSTS_RFMLT) {
1144 			netdev_dbg(ndev, "Rx Message Lost flag\n");
1145 			stats->rx_dropped++;
1146 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1147 					 sts & ~RCANFD_RFSTS_RFMLT);
1148 		}
1149 	}
1150 	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
1151 		/* Message Lost flag will be set for respective channel
1152 		 * when this condition happens with counters and flags
1153 		 * already updated.
1154 		 */
1155 		netdev_dbg(ndev, "global payload overflow interrupt\n");
1156 	}
1157 
1158 	/* Clear all global error interrupts. Only affected channels bits
1159 	 * get cleared
1160 	 */
1161 	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
1162 }
1163 
1164 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
1165 			     u16 txerr, u16 rxerr)
1166 {
1167 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1168 	struct net_device_stats *stats = &ndev->stats;
1169 	struct can_frame *cf;
1170 	struct sk_buff *skb;
1171 	u32 ch = priv->channel;
1172 
1173 	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
1174 
1175 	/* Propagate the error condition to the CAN stack */
1176 	skb = alloc_can_err_skb(ndev, &cf);
1177 	if (!skb) {
1178 		stats->rx_dropped++;
1179 		return;
1180 	}
1181 
1182 	/* Channel error interrupts */
1183 	if (cerfl & RCANFD_CERFL_BEF) {
1184 		netdev_dbg(ndev, "Bus error\n");
1185 		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1186 		cf->data[2] = CAN_ERR_PROT_UNSPEC;
1187 		priv->can.can_stats.bus_error++;
1188 	}
1189 	if (cerfl & RCANFD_CERFL_ADERR) {
1190 		netdev_dbg(ndev, "ACK Delimiter Error\n");
1191 		stats->tx_errors++;
1192 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1193 	}
1194 	if (cerfl & RCANFD_CERFL_B0ERR) {
1195 		netdev_dbg(ndev, "Bit Error (dominant)\n");
1196 		stats->tx_errors++;
1197 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1198 	}
1199 	if (cerfl & RCANFD_CERFL_B1ERR) {
1200 		netdev_dbg(ndev, "Bit Error (recessive)\n");
1201 		stats->tx_errors++;
1202 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1203 	}
1204 	if (cerfl & RCANFD_CERFL_CERR) {
1205 		netdev_dbg(ndev, "CRC Error\n");
1206 		stats->rx_errors++;
1207 		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1208 	}
1209 	if (cerfl & RCANFD_CERFL_AERR) {
1210 		netdev_dbg(ndev, "ACK Error\n");
1211 		stats->tx_errors++;
1212 		cf->can_id |= CAN_ERR_ACK;
1213 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1214 	}
1215 	if (cerfl & RCANFD_CERFL_FERR) {
1216 		netdev_dbg(ndev, "Form Error\n");
1217 		stats->rx_errors++;
1218 		cf->data[2] |= CAN_ERR_PROT_FORM;
1219 	}
1220 	if (cerfl & RCANFD_CERFL_SERR) {
1221 		netdev_dbg(ndev, "Stuff Error\n");
1222 		stats->rx_errors++;
1223 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1224 	}
1225 	if (cerfl & RCANFD_CERFL_ALF) {
1226 		netdev_dbg(ndev, "Arbitration lost Error\n");
1227 		priv->can.can_stats.arbitration_lost++;
1228 		cf->can_id |= CAN_ERR_LOSTARB;
1229 		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1230 	}
1231 	if (cerfl & RCANFD_CERFL_BLF) {
1232 		netdev_dbg(ndev, "Bus Lock Error\n");
1233 		stats->rx_errors++;
1234 		cf->can_id |= CAN_ERR_BUSERROR;
1235 	}
1236 	if (cerfl & RCANFD_CERFL_EWF) {
1237 		netdev_dbg(ndev, "Error warning interrupt\n");
1238 		priv->can.state = CAN_STATE_ERROR_WARNING;
1239 		priv->can.can_stats.error_warning++;
1240 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1241 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1242 			CAN_ERR_CRTL_RX_WARNING;
1243 		cf->data[6] = txerr;
1244 		cf->data[7] = rxerr;
1245 	}
1246 	if (cerfl & RCANFD_CERFL_EPF) {
1247 		netdev_dbg(ndev, "Error passive interrupt\n");
1248 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1249 		priv->can.can_stats.error_passive++;
1250 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1251 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1252 			CAN_ERR_CRTL_RX_PASSIVE;
1253 		cf->data[6] = txerr;
1254 		cf->data[7] = rxerr;
1255 	}
1256 	if (cerfl & RCANFD_CERFL_BOEF) {
1257 		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1258 		rcar_canfd_tx_failure_cleanup(ndev);
1259 		priv->can.state = CAN_STATE_BUS_OFF;
1260 		priv->can.can_stats.bus_off++;
1261 		can_bus_off(ndev);
1262 		cf->can_id |= CAN_ERR_BUSOFF;
1263 	}
1264 	if (cerfl & RCANFD_CERFL_OVLF) {
1265 		netdev_dbg(ndev,
1266 			   "Overload Frame Transmission error interrupt\n");
1267 		stats->tx_errors++;
1268 		cf->can_id |= CAN_ERR_PROT;
1269 		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1270 	}
1271 
1272 	/* Clear channel error interrupts that are handled */
1273 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1274 			 RCANFD_CERFL_ERR(~cerfl));
1275 	netif_rx(skb);
1276 }
1277 
1278 static void rcar_canfd_tx_done(struct net_device *ndev)
1279 {
1280 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1281 	struct rcar_canfd_global *gpriv = priv->gpriv;
1282 	struct net_device_stats *stats = &ndev->stats;
1283 	u32 sts;
1284 	unsigned long flags;
1285 	u32 ch = priv->channel;
1286 
1287 	do {
1288 		u8 unsent, sent;
1289 
1290 		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1291 		stats->tx_packets++;
1292 		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1293 
1294 		spin_lock_irqsave(&priv->tx_lock, flags);
1295 		priv->tx_tail++;
1296 		sts = rcar_canfd_read(priv->base,
1297 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1298 		unsent = RCANFD_CFSTS_CFMC(sts);
1299 
1300 		/* Wake producer only when there is room */
1301 		if (unsent != RCANFD_FIFO_DEPTH)
1302 			netif_wake_queue(ndev);
1303 
1304 		if (priv->tx_head - priv->tx_tail <= unsent) {
1305 			spin_unlock_irqrestore(&priv->tx_lock, flags);
1306 			break;
1307 		}
1308 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1309 
1310 	} while (1);
1311 
1312 	/* Clear interrupt */
1313 	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1314 			 sts & ~RCANFD_CFSTS_CFTXIF);
1315 }
1316 
1317 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1318 {
1319 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1320 	struct net_device *ndev = priv->ndev;
1321 	u32 gerfl;
1322 
1323 	/* Handle global error interrupts */
1324 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1325 	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1326 		rcar_canfd_global_error(ndev);
1327 }
1328 
1329 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1330 {
1331 	struct rcar_canfd_global *gpriv = dev_id;
1332 	u32 ch;
1333 
1334 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1335 		rcar_canfd_handle_global_err(gpriv, ch);
1336 
1337 	return IRQ_HANDLED;
1338 }
1339 
1340 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1341 {
1342 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1343 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1344 	u32 sts, cc;
1345 
1346 	/* Handle Rx interrupts */
1347 	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1348 	cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1349 	if (likely(sts & RCANFD_RFSTS_RFIF &&
1350 		   cc & RCANFD_RFCC_RFIE)) {
1351 		if (napi_schedule_prep(&priv->napi)) {
1352 			/* Disable Rx FIFO interrupts */
1353 			rcar_canfd_clear_bit(priv->base,
1354 					     RCANFD_RFCC(gpriv, ridx),
1355 					     RCANFD_RFCC_RFIE);
1356 			__napi_schedule(&priv->napi);
1357 		}
1358 	}
1359 }
1360 
1361 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1362 {
1363 	struct rcar_canfd_global *gpriv = dev_id;
1364 	u32 ch;
1365 
1366 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1367 		rcar_canfd_handle_global_receive(gpriv, ch);
1368 
1369 	return IRQ_HANDLED;
1370 }
1371 
1372 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1373 {
1374 	struct rcar_canfd_global *gpriv = dev_id;
1375 	u32 ch;
1376 
1377 	/* Global error interrupts still indicate a condition specific
1378 	 * to a channel. RxFIFO interrupt is a global interrupt.
1379 	 */
1380 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1381 		rcar_canfd_handle_global_err(gpriv, ch);
1382 		rcar_canfd_handle_global_receive(gpriv, ch);
1383 	}
1384 	return IRQ_HANDLED;
1385 }
1386 
1387 static void rcar_canfd_state_change(struct net_device *ndev,
1388 				    u16 txerr, u16 rxerr)
1389 {
1390 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1391 	struct net_device_stats *stats = &ndev->stats;
1392 	enum can_state rx_state, tx_state, state = priv->can.state;
1393 	struct can_frame *cf;
1394 	struct sk_buff *skb;
1395 
1396 	/* Handle transition from error to normal states */
1397 	if (txerr < 96 && rxerr < 96)
1398 		state = CAN_STATE_ERROR_ACTIVE;
1399 	else if (txerr < 128 && rxerr < 128)
1400 		state = CAN_STATE_ERROR_WARNING;
1401 
1402 	if (state != priv->can.state) {
1403 		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1404 			   state, priv->can.state, txerr, rxerr);
1405 		skb = alloc_can_err_skb(ndev, &cf);
1406 		if (!skb) {
1407 			stats->rx_dropped++;
1408 			return;
1409 		}
1410 		tx_state = txerr >= rxerr ? state : 0;
1411 		rx_state = txerr <= rxerr ? state : 0;
1412 
1413 		can_change_state(ndev, cf, tx_state, rx_state);
1414 		netif_rx(skb);
1415 	}
1416 }
1417 
1418 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1419 {
1420 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1421 	struct net_device *ndev = priv->ndev;
1422 	u32 sts;
1423 
1424 	/* Handle Tx interrupts */
1425 	sts = rcar_canfd_read(priv->base,
1426 			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1427 	if (likely(sts & RCANFD_CFSTS_CFTXIF))
1428 		rcar_canfd_tx_done(ndev);
1429 }
1430 
1431 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1432 {
1433 	struct rcar_canfd_channel *priv = dev_id;
1434 
1435 	rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1436 
1437 	return IRQ_HANDLED;
1438 }
1439 
1440 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1441 {
1442 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1443 	struct net_device *ndev = priv->ndev;
1444 	u16 txerr, rxerr;
1445 	u32 sts, cerfl;
1446 
1447 	/* Handle channel error interrupts */
1448 	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1449 	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1450 	txerr = RCANFD_CSTS_TECCNT(sts);
1451 	rxerr = RCANFD_CSTS_RECCNT(sts);
1452 	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1453 		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1454 
1455 	/* Handle state change to lower states */
1456 	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1457 		     priv->can.state != CAN_STATE_BUS_OFF))
1458 		rcar_canfd_state_change(ndev, txerr, rxerr);
1459 }
1460 
1461 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1462 {
1463 	struct rcar_canfd_channel *priv = dev_id;
1464 
1465 	rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1466 
1467 	return IRQ_HANDLED;
1468 }
1469 
1470 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1471 {
1472 	struct rcar_canfd_global *gpriv = dev_id;
1473 	u32 ch;
1474 
1475 	/* Common FIFO is a per channel resource */
1476 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1477 		rcar_canfd_handle_channel_err(gpriv, ch);
1478 		rcar_canfd_handle_channel_tx(gpriv, ch);
1479 	}
1480 
1481 	return IRQ_HANDLED;
1482 }
1483 
1484 static void rcar_canfd_set_bittiming(struct net_device *ndev)
1485 {
1486 	u32 mask = RCANFD_FDCFG_TDCO | RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC;
1487 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1488 	struct rcar_canfd_global *gpriv = priv->gpriv;
1489 	const struct can_bittiming *bt = &priv->can.bittiming;
1490 	const struct can_bittiming *dbt = &priv->can.fd.data_bittiming;
1491 	const struct can_tdc_const *tdc_const = priv->can.fd.tdc_const;
1492 	const struct can_tdc *tdc = &priv->can.fd.tdc;
1493 	u32 cfg, tdcmode = 0, tdco = 0;
1494 	u16 brp, sjw, tseg1, tseg2;
1495 	u32 ch = priv->channel;
1496 
1497 	/* Nominal bit timing settings */
1498 	brp = bt->brp - 1;
1499 	sjw = bt->sjw - 1;
1500 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1501 	tseg2 = bt->phase_seg2 - 1;
1502 
1503 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1504 		cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1505 		       RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1506 	} else {
1507 		cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) |
1508 		       RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2));
1509 	}
1510 
1511 	rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1512 
1513 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD))
1514 		return;
1515 
1516 	/* Data bit timing settings */
1517 	brp = dbt->brp - 1;
1518 	sjw = dbt->sjw - 1;
1519 	tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1520 	tseg2 = dbt->phase_seg2 - 1;
1521 
1522 	cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1523 	       RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1524 
1525 	writel(cfg, &gpriv->fcbase[ch].dcfg);
1526 
1527 	/* Transceiver Delay Compensation */
1528 	if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO) {
1529 		/* TDC enabled, measured + offset */
1530 		tdcmode = RCANFD_FDCFG_TDCE;
1531 		tdco = tdc->tdco - 1;
1532 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL) {
1533 		/* TDC enabled, offset only */
1534 		tdcmode = RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC;
1535 		tdco = min(tdc->tdcv + tdc->tdco, tdc_const->tdco_max) - 1;
1536 	}
1537 
1538 	rcar_canfd_update_bit_reg(&gpriv->fcbase[ch].cfdcfg, mask,
1539 				  tdcmode | FIELD_PREP(RCANFD_FDCFG_TDCO, tdco));
1540 }
1541 
1542 static int rcar_canfd_start(struct net_device *ndev)
1543 {
1544 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1545 	struct rcar_canfd_global *gpriv = priv->gpriv;
1546 	int err = -EOPNOTSUPP;
1547 	u32 sts, ch = priv->channel;
1548 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1549 
1550 	rcar_canfd_set_bittiming(ndev);
1551 
1552 	rcar_canfd_enable_channel_interrupts(priv);
1553 
1554 	/* Set channel to Operational mode */
1555 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1556 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1557 
1558 	/* Verify channel mode change */
1559 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1560 				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1561 	if (err) {
1562 		netdev_err(ndev, "channel %u communication state failed\n", ch);
1563 		goto fail_mode_change;
1564 	}
1565 
1566 	/* Enable Common & Rx FIFO */
1567 	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1568 			   RCANFD_CFCC_CFE);
1569 	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1570 
1571 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1572 	return 0;
1573 
1574 fail_mode_change:
1575 	rcar_canfd_disable_channel_interrupts(priv);
1576 	return err;
1577 }
1578 
1579 static int rcar_canfd_open(struct net_device *ndev)
1580 {
1581 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1582 	struct rcar_canfd_global *gpriv = priv->gpriv;
1583 	int err;
1584 
1585 	err = phy_power_on(priv->transceiver);
1586 	if (err) {
1587 		netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1588 		return err;
1589 	}
1590 
1591 	/* Peripheral clock is already enabled in probe */
1592 	err = clk_prepare_enable(gpriv->can_clk);
1593 	if (err) {
1594 		netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1595 		goto out_phy;
1596 	}
1597 
1598 	err = open_candev(ndev);
1599 	if (err) {
1600 		netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1601 		goto out_can_clock;
1602 	}
1603 
1604 	napi_enable(&priv->napi);
1605 	err = rcar_canfd_start(ndev);
1606 	if (err)
1607 		goto out_close;
1608 	netif_start_queue(ndev);
1609 	return 0;
1610 out_close:
1611 	napi_disable(&priv->napi);
1612 	close_candev(ndev);
1613 out_can_clock:
1614 	clk_disable_unprepare(gpriv->can_clk);
1615 out_phy:
1616 	phy_power_off(priv->transceiver);
1617 	return err;
1618 }
1619 
1620 static void rcar_canfd_stop(struct net_device *ndev)
1621 {
1622 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1623 	struct rcar_canfd_global *gpriv = priv->gpriv;
1624 	int err;
1625 	u32 sts, ch = priv->channel;
1626 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1627 
1628 	/* Transition to channel reset mode  */
1629 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1630 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1631 
1632 	/* Check Channel reset mode */
1633 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1634 				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1635 	if (err)
1636 		netdev_err(ndev, "channel %u reset failed\n", ch);
1637 
1638 	rcar_canfd_disable_channel_interrupts(priv);
1639 
1640 	/* Disable Common & Rx FIFO */
1641 	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1642 			     RCANFD_CFCC_CFE);
1643 	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1644 
1645 	/* Set the state as STOPPED */
1646 	priv->can.state = CAN_STATE_STOPPED;
1647 }
1648 
1649 static int rcar_canfd_close(struct net_device *ndev)
1650 {
1651 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1652 	struct rcar_canfd_global *gpriv = priv->gpriv;
1653 
1654 	netif_stop_queue(ndev);
1655 	rcar_canfd_stop(ndev);
1656 	napi_disable(&priv->napi);
1657 	clk_disable_unprepare(gpriv->can_clk);
1658 	close_candev(ndev);
1659 	phy_power_off(priv->transceiver);
1660 	return 0;
1661 }
1662 
1663 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1664 					 struct net_device *ndev)
1665 {
1666 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1667 	struct rcar_canfd_global *gpriv = priv->gpriv;
1668 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1669 	u32 sts = 0, id, dlc;
1670 	unsigned long flags;
1671 	u32 ch = priv->channel;
1672 
1673 	if (can_dev_dropped_skb(ndev, skb))
1674 		return NETDEV_TX_OK;
1675 
1676 	if (cf->can_id & CAN_EFF_FLAG) {
1677 		id = cf->can_id & CAN_EFF_MASK;
1678 		id |= RCANFD_CFID_CFIDE;
1679 	} else {
1680 		id = cf->can_id & CAN_SFF_MASK;
1681 	}
1682 
1683 	if (cf->can_id & CAN_RTR_FLAG)
1684 		id |= RCANFD_CFID_CFRTR;
1685 
1686 	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1687 
1688 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1689 		rcar_canfd_write(priv->base,
1690 				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1691 		rcar_canfd_write(priv->base,
1692 				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1693 
1694 		if (can_is_canfd_skb(skb)) {
1695 			/* CAN FD frame format */
1696 			sts |= RCANFD_CFFDCSTS_CFFDF;
1697 			if (cf->flags & CANFD_BRS)
1698 				sts |= RCANFD_CFFDCSTS_CFBRS;
1699 
1700 			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1701 				sts |= RCANFD_CFFDCSTS_CFESI;
1702 		}
1703 
1704 		rcar_canfd_write(priv->base,
1705 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1706 
1707 		rcar_canfd_put_data(priv, cf,
1708 				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1709 	} else {
1710 		rcar_canfd_write(priv->base,
1711 				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1712 		rcar_canfd_write(priv->base,
1713 				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1714 		rcar_canfd_put_data(priv, cf,
1715 				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1716 	}
1717 
1718 	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1719 
1720 	spin_lock_irqsave(&priv->tx_lock, flags);
1721 	priv->tx_head++;
1722 
1723 	/* Stop the queue if we've filled all FIFO entries */
1724 	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1725 		netif_stop_queue(ndev);
1726 
1727 	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1728 	 * pointer for the Common FIFO
1729 	 */
1730 	rcar_canfd_write(priv->base,
1731 			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1732 
1733 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1734 	return NETDEV_TX_OK;
1735 }
1736 
1737 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1738 {
1739 	struct net_device *ndev = priv->ndev;
1740 	struct net_device_stats *stats = &ndev->stats;
1741 	struct rcar_canfd_global *gpriv = priv->gpriv;
1742 	struct canfd_frame *cf;
1743 	struct sk_buff *skb;
1744 	u32 sts = 0, id, dlc;
1745 	u32 ch = priv->channel;
1746 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1747 
1748 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1749 		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1750 		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1751 
1752 		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1753 
1754 		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1755 		    sts & RCANFD_RFFDSTS_RFFDF)
1756 			skb = alloc_canfd_skb(ndev, &cf);
1757 		else
1758 			skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
1759 	} else {
1760 		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1761 		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1762 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
1763 	}
1764 
1765 	if (!skb) {
1766 		stats->rx_dropped++;
1767 		return;
1768 	}
1769 
1770 	if (id & RCANFD_RFID_RFIDE)
1771 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1772 	else
1773 		cf->can_id = id & CAN_SFF_MASK;
1774 
1775 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1776 		if (sts & RCANFD_RFFDSTS_RFFDF)
1777 			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1778 		else
1779 			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1780 
1781 		if (sts & RCANFD_RFFDSTS_RFESI) {
1782 			cf->flags |= CANFD_ESI;
1783 			netdev_dbg(ndev, "ESI Error\n");
1784 		}
1785 
1786 		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1787 			cf->can_id |= CAN_RTR_FLAG;
1788 		} else {
1789 			if (sts & RCANFD_RFFDSTS_RFBRS)
1790 				cf->flags |= CANFD_BRS;
1791 
1792 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1793 		}
1794 	} else {
1795 		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1796 		if (id & RCANFD_RFID_RFRTR)
1797 			cf->can_id |= CAN_RTR_FLAG;
1798 		else if (gpriv->info->shared_can_regs)
1799 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1800 		else
1801 			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1802 	}
1803 
1804 	/* Write 0xff to RFPC to increment the CPU-side
1805 	 * pointer of the Rx FIFO
1806 	 */
1807 	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1808 
1809 	if (!(cf->can_id & CAN_RTR_FLAG))
1810 		stats->rx_bytes += cf->len;
1811 	stats->rx_packets++;
1812 	netif_receive_skb(skb);
1813 }
1814 
1815 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1816 {
1817 	struct rcar_canfd_channel *priv =
1818 		container_of(napi, struct rcar_canfd_channel, napi);
1819 	struct rcar_canfd_global *gpriv = priv->gpriv;
1820 	int num_pkts;
1821 	u32 sts;
1822 	u32 ch = priv->channel;
1823 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1824 
1825 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1826 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1827 		/* Check FIFO empty condition */
1828 		if (sts & RCANFD_RFSTS_RFEMP)
1829 			break;
1830 
1831 		rcar_canfd_rx_pkt(priv);
1832 
1833 		/* Clear interrupt bit */
1834 		if (sts & RCANFD_RFSTS_RFIF)
1835 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1836 					 sts & ~RCANFD_RFSTS_RFIF);
1837 	}
1838 
1839 	/* All packets processed */
1840 	if (num_pkts < quota) {
1841 		if (napi_complete_done(napi, num_pkts)) {
1842 			/* Enable Rx FIFO interrupts */
1843 			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1844 					   RCANFD_RFCC_RFIE);
1845 		}
1846 	}
1847 	return num_pkts;
1848 }
1849 
1850 static unsigned int rcar_canfd_get_tdcr(struct rcar_canfd_global *gpriv,
1851 					unsigned int ch)
1852 {
1853 	u32 sts = readl(&gpriv->fcbase[ch].cfdsts);
1854 	u32 tdcr = FIELD_GET(RCANFD_FDSTS_TDCR, sts);
1855 
1856 	return tdcr & (gpriv->info->tdc_const->tdcv_max - 1);
1857 }
1858 
1859 static int rcar_canfd_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1860 {
1861 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1862 	u32 tdco = priv->can.fd.tdc.tdco;
1863 	u32 tdcr;
1864 
1865 	/* Transceiver Delay Compensation Result */
1866 	tdcr = rcar_canfd_get_tdcr(priv->gpriv, priv->channel) + 1;
1867 
1868 	*tdcv = tdcr < tdco ? 0 : tdcr - tdco;
1869 
1870 	return 0;
1871 }
1872 
1873 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1874 {
1875 	int err;
1876 
1877 	switch (mode) {
1878 	case CAN_MODE_START:
1879 		err = rcar_canfd_start(ndev);
1880 		if (err)
1881 			return err;
1882 		netif_wake_queue(ndev);
1883 		return 0;
1884 	default:
1885 		return -EOPNOTSUPP;
1886 	}
1887 }
1888 
1889 static int rcar_canfd_get_berr_counter(const struct net_device *ndev,
1890 				       struct can_berr_counter *bec)
1891 {
1892 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1893 	u32 val, ch = priv->channel;
1894 
1895 	/* Peripheral clock is already enabled in probe */
1896 	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1897 	bec->txerr = RCANFD_CSTS_TECCNT(val);
1898 	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1899 	return 0;
1900 }
1901 
1902 static const struct net_device_ops rcar_canfd_netdev_ops = {
1903 	.ndo_open = rcar_canfd_open,
1904 	.ndo_stop = rcar_canfd_close,
1905 	.ndo_start_xmit = rcar_canfd_start_xmit,
1906 	.ndo_change_mtu = can_change_mtu,
1907 };
1908 
1909 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1910 	.get_ts_info = ethtool_op_get_ts_info,
1911 };
1912 
1913 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1914 				    u32 fcan_freq, struct phy *transceiver)
1915 {
1916 	const struct rcar_canfd_hw_info *info = gpriv->info;
1917 	struct platform_device *pdev = gpriv->pdev;
1918 	struct device *dev = &pdev->dev;
1919 	struct rcar_canfd_channel *priv;
1920 	struct net_device *ndev;
1921 	int err = -ENODEV;
1922 
1923 	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1924 	if (!ndev)
1925 		return -ENOMEM;
1926 
1927 	priv = netdev_priv(ndev);
1928 
1929 	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1930 	ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1931 	ndev->flags |= IFF_ECHO;
1932 	priv->ndev = ndev;
1933 	priv->base = gpriv->base;
1934 	priv->transceiver = transceiver;
1935 	priv->channel = ch;
1936 	priv->gpriv = gpriv;
1937 	if (transceiver)
1938 		priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1939 	priv->can.clock.freq = fcan_freq;
1940 	dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1941 
1942 	if (info->multi_channel_irqs) {
1943 		char *irq_name;
1944 		char name[10];
1945 		int err_irq;
1946 		int tx_irq;
1947 
1948 		scnprintf(name, sizeof(name), "ch%u_err", ch);
1949 		err_irq = platform_get_irq_byname(pdev, name);
1950 		if (err_irq < 0) {
1951 			err = err_irq;
1952 			goto fail;
1953 		}
1954 
1955 		scnprintf(name, sizeof(name), "ch%u_trx", ch);
1956 		tx_irq = platform_get_irq_byname(pdev, name);
1957 		if (tx_irq < 0) {
1958 			err = tx_irq;
1959 			goto fail;
1960 		}
1961 
1962 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1963 					  ch);
1964 		if (!irq_name) {
1965 			err = -ENOMEM;
1966 			goto fail;
1967 		}
1968 		err = devm_request_irq(dev, err_irq,
1969 				       rcar_canfd_channel_err_interrupt, 0,
1970 				       irq_name, priv);
1971 		if (err) {
1972 			dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1973 				err_irq, ERR_PTR(err));
1974 			goto fail;
1975 		}
1976 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1977 					  ch);
1978 		if (!irq_name) {
1979 			err = -ENOMEM;
1980 			goto fail;
1981 		}
1982 		err = devm_request_irq(dev, tx_irq,
1983 				       rcar_canfd_channel_tx_interrupt, 0,
1984 				       irq_name, priv);
1985 		if (err) {
1986 			dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1987 				tx_irq, ERR_PTR(err));
1988 			goto fail;
1989 		}
1990 	}
1991 
1992 	if (gpriv->fdmode) {
1993 		priv->can.bittiming_const = gpriv->info->nom_bittiming;
1994 		priv->can.fd.data_bittiming_const = gpriv->info->data_bittiming;
1995 		priv->can.fd.tdc_const = gpriv->info->tdc_const;
1996 
1997 		/* Controller starts in CAN FD only mode */
1998 		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1999 		if (err)
2000 			goto fail;
2001 
2002 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING |
2003 					       CAN_CTRLMODE_TDC_AUTO |
2004 					       CAN_CTRLMODE_TDC_MANUAL;
2005 		priv->can.fd.do_get_auto_tdcv = rcar_canfd_get_auto_tdcv;
2006 	} else {
2007 		/* Controller starts in Classical CAN only mode */
2008 		priv->can.bittiming_const = &rcar_canfd_bittiming_const;
2009 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
2010 	}
2011 
2012 	priv->can.do_set_mode = rcar_canfd_do_set_mode;
2013 	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
2014 	SET_NETDEV_DEV(ndev, dev);
2015 
2016 	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
2017 			      RCANFD_NAPI_WEIGHT);
2018 	spin_lock_init(&priv->tx_lock);
2019 	gpriv->ch[priv->channel] = priv;
2020 	err = register_candev(ndev);
2021 	if (err) {
2022 		dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
2023 		goto fail_candev;
2024 	}
2025 	dev_info(dev, "device registered (channel %u)\n", priv->channel);
2026 	return 0;
2027 
2028 fail_candev:
2029 	netif_napi_del(&priv->napi);
2030 fail:
2031 	free_candev(ndev);
2032 	return err;
2033 }
2034 
2035 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
2036 {
2037 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
2038 
2039 	if (priv) {
2040 		unregister_candev(priv->ndev);
2041 		netif_napi_del(&priv->napi);
2042 		free_candev(priv->ndev);
2043 	}
2044 }
2045 
2046 static int rcar_canfd_probe(struct platform_device *pdev)
2047 {
2048 	struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
2049 	const struct rcar_canfd_hw_info *info;
2050 	struct device *dev = &pdev->dev;
2051 	void __iomem *addr;
2052 	u32 sts, ch, fcan_freq;
2053 	struct rcar_canfd_global *gpriv;
2054 	struct device_node *of_child;
2055 	unsigned long channels_mask = 0;
2056 	int err, ch_irq, g_irq;
2057 	int g_err_irq, g_recc_irq;
2058 	u32 rule_entry = 0;
2059 	bool fdmode = true;			/* CAN FD only mode - default */
2060 	char name[9] = "channelX";
2061 	struct clk *clk_ram;
2062 	int i;
2063 
2064 	info = of_device_get_match_data(dev);
2065 
2066 	if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
2067 		fdmode = false;			/* Classical CAN only mode */
2068 
2069 	for (i = 0; i < info->max_channels; ++i) {
2070 		name[7] = '0' + i;
2071 		of_child = of_get_available_child_by_name(dev->of_node, name);
2072 		if (of_child) {
2073 			channels_mask |= BIT(i);
2074 			transceivers[i] = devm_of_phy_optional_get(dev,
2075 							of_child, NULL);
2076 			of_node_put(of_child);
2077 		}
2078 		if (IS_ERR(transceivers[i]))
2079 			return PTR_ERR(transceivers[i]);
2080 	}
2081 
2082 	if (info->shared_global_irqs) {
2083 		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
2084 		if (ch_irq < 0) {
2085 			/* For backward compatibility get irq by index */
2086 			ch_irq = platform_get_irq(pdev, 0);
2087 			if (ch_irq < 0)
2088 				return ch_irq;
2089 		}
2090 
2091 		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
2092 		if (g_irq < 0) {
2093 			/* For backward compatibility get irq by index */
2094 			g_irq = platform_get_irq(pdev, 1);
2095 			if (g_irq < 0)
2096 				return g_irq;
2097 		}
2098 	} else {
2099 		g_err_irq = platform_get_irq_byname(pdev, "g_err");
2100 		if (g_err_irq < 0)
2101 			return g_err_irq;
2102 
2103 		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
2104 		if (g_recc_irq < 0)
2105 			return g_recc_irq;
2106 	}
2107 
2108 	/* Global controller context */
2109 	gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
2110 	if (!gpriv)
2111 		return -ENOMEM;
2112 
2113 	gpriv->pdev = pdev;
2114 	gpriv->channels_mask = channels_mask;
2115 	gpriv->fdmode = fdmode;
2116 	gpriv->info = info;
2117 
2118 	gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
2119 	if (IS_ERR(gpriv->rstc1))
2120 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
2121 				     "failed to get rstp_n\n");
2122 
2123 	gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
2124 	if (IS_ERR(gpriv->rstc2))
2125 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
2126 				     "failed to get rstc_n\n");
2127 
2128 	/* Peripheral clock */
2129 	gpriv->clkp = devm_clk_get(dev, "fck");
2130 	if (IS_ERR(gpriv->clkp))
2131 		return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
2132 				     "cannot get peripheral clock\n");
2133 
2134 	/* fCAN clock: Pick External clock. If not available fallback to
2135 	 * CANFD clock
2136 	 */
2137 	gpriv->can_clk = devm_clk_get(dev, "can_clk");
2138 	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
2139 		gpriv->can_clk = devm_clk_get(dev, "canfd");
2140 		if (IS_ERR(gpriv->can_clk))
2141 			return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
2142 					     "cannot get canfd clock\n");
2143 
2144 		/* CANFD clock may be further divided within the IP */
2145 		fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv;
2146 	} else {
2147 		fcan_freq = clk_get_rate(gpriv->can_clk);
2148 		gpriv->extclk = gpriv->info->external_clk;
2149 	}
2150 
2151 	clk_ram = devm_clk_get_optional_enabled(dev, "ram_clk");
2152 	if (IS_ERR(clk_ram))
2153 		return dev_err_probe(dev, PTR_ERR(clk_ram),
2154 				     "cannot get enabled ram clock\n");
2155 
2156 	addr = devm_platform_ioremap_resource(pdev, 0);
2157 	if (IS_ERR(addr)) {
2158 		err = PTR_ERR(addr);
2159 		goto fail_dev;
2160 	}
2161 	gpriv->base = addr;
2162 	gpriv->fcbase = addr + gpriv->info->regs->coffset;
2163 
2164 	/* Request IRQ that's common for both channels */
2165 	if (info->shared_global_irqs) {
2166 		err = devm_request_irq(dev, ch_irq,
2167 				       rcar_canfd_channel_interrupt, 0,
2168 				       "canfd.ch_int", gpriv);
2169 		if (err) {
2170 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2171 				ch_irq, ERR_PTR(err));
2172 			goto fail_dev;
2173 		}
2174 
2175 		err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
2176 				       0, "canfd.g_int", gpriv);
2177 		if (err) {
2178 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2179 				g_irq, ERR_PTR(err));
2180 			goto fail_dev;
2181 		}
2182 	} else {
2183 		err = devm_request_irq(dev, g_recc_irq,
2184 				       rcar_canfd_global_receive_fifo_interrupt, 0,
2185 				       "canfd.g_recc", gpriv);
2186 
2187 		if (err) {
2188 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2189 				g_recc_irq, ERR_PTR(err));
2190 			goto fail_dev;
2191 		}
2192 
2193 		err = devm_request_irq(dev, g_err_irq,
2194 				       rcar_canfd_global_err_interrupt, 0,
2195 				       "canfd.g_err", gpriv);
2196 		if (err) {
2197 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2198 				g_err_irq, ERR_PTR(err));
2199 			goto fail_dev;
2200 		}
2201 	}
2202 
2203 	err = reset_control_reset(gpriv->rstc1);
2204 	if (err)
2205 		goto fail_dev;
2206 	err = reset_control_reset(gpriv->rstc2);
2207 	if (err) {
2208 		reset_control_assert(gpriv->rstc1);
2209 		goto fail_dev;
2210 	}
2211 
2212 	/* Enable peripheral clock for register access */
2213 	err = clk_prepare_enable(gpriv->clkp);
2214 	if (err) {
2215 		dev_err(dev, "failed to enable peripheral clock: %pe\n",
2216 			ERR_PTR(err));
2217 		goto fail_reset;
2218 	}
2219 
2220 	err = rcar_canfd_reset_controller(gpriv);
2221 	if (err) {
2222 		dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2223 		goto fail_clk;
2224 	}
2225 
2226 	/* Controller in Global reset & Channel reset mode */
2227 	rcar_canfd_configure_controller(gpriv);
2228 
2229 	/* Configure per channel attributes */
2230 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2231 		/* Configure Channel's Rx fifo */
2232 		rcar_canfd_configure_rx(gpriv, ch);
2233 
2234 		/* Configure Channel's Tx (Common) fifo */
2235 		rcar_canfd_configure_tx(gpriv, ch);
2236 
2237 		/* Configure receive rules */
2238 		rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry);
2239 		rule_entry += RCANFD_CHANNEL_NUMRULES;
2240 	}
2241 
2242 	/* Configure common interrupts */
2243 	rcar_canfd_enable_global_interrupts(gpriv);
2244 
2245 	/* Start Global operation mode */
2246 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2247 			      RCANFD_GCTR_GMDC_GOPM);
2248 
2249 	/* Verify mode change */
2250 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2251 				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2252 	if (err) {
2253 		dev_err(dev, "global operational mode failed\n");
2254 		goto fail_mode;
2255 	}
2256 
2257 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2258 		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2259 					       transceivers[ch]);
2260 		if (err)
2261 			goto fail_channel;
2262 	}
2263 
2264 	platform_set_drvdata(pdev, gpriv);
2265 	dev_info(dev, "global operational state (%s clk, %s mode)\n",
2266 		 gpriv->extclk ? "ext" : "canfd",
2267 		 gpriv->fdmode ? "fd" : "classical");
2268 	return 0;
2269 
2270 fail_channel:
2271 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2272 		rcar_canfd_channel_remove(gpriv, ch);
2273 fail_mode:
2274 	rcar_canfd_disable_global_interrupts(gpriv);
2275 fail_clk:
2276 	clk_disable_unprepare(gpriv->clkp);
2277 fail_reset:
2278 	reset_control_assert(gpriv->rstc1);
2279 	reset_control_assert(gpriv->rstc2);
2280 fail_dev:
2281 	return err;
2282 }
2283 
2284 static void rcar_canfd_remove(struct platform_device *pdev)
2285 {
2286 	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2287 	u32 ch;
2288 
2289 	rcar_canfd_reset_controller(gpriv);
2290 	rcar_canfd_disable_global_interrupts(gpriv);
2291 
2292 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2293 		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2294 		rcar_canfd_channel_remove(gpriv, ch);
2295 	}
2296 
2297 	/* Enter global sleep mode */
2298 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2299 	clk_disable_unprepare(gpriv->clkp);
2300 	reset_control_assert(gpriv->rstc1);
2301 	reset_control_assert(gpriv->rstc2);
2302 }
2303 
2304 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2305 {
2306 	return 0;
2307 }
2308 
2309 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2310 {
2311 	return 0;
2312 }
2313 
2314 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2315 			 rcar_canfd_resume);
2316 
2317 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2318 	{ .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2319 	{ .compatible = "renesas,r9a09g047-canfd", .data = &r9a09g047_hw_info },
2320 	{ .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2321 	{ .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2322 	{ .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2323 	{ }
2324 };
2325 
2326 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2327 
2328 static struct platform_driver rcar_canfd_driver = {
2329 	.driver = {
2330 		.name = RCANFD_DRV_NAME,
2331 		.of_match_table = of_match_ptr(rcar_canfd_of_table),
2332 		.pm = &rcar_canfd_pm_ops,
2333 	},
2334 	.probe = rcar_canfd_probe,
2335 	.remove = rcar_canfd_remove,
2336 };
2337 
2338 module_platform_driver(rcar_canfd_driver);
2339 
2340 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2341 MODULE_LICENSE("GPL");
2342 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2343 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2344