xref: /linux/drivers/net/can/rcar/rcar_canfd.c (revision bca5cfbb694d66a1c482d0c347eee80f6afbc870)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6 
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23 
24 #include <linux/bitfield.h>
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/can/dev.h>
28 #include <linux/clk.h>
29 #include <linux/errno.h>
30 #include <linux/ethtool.h>
31 #include <linux/interrupt.h>
32 #include <linux/iopoll.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/netdevice.h>
37 #include <linux/of.h>
38 #include <linux/phy/phy.h>
39 #include <linux/platform_device.h>
40 #include <linux/reset.h>
41 #include <linux/types.h>
42 
43 #define RCANFD_DRV_NAME			"rcar_canfd"
44 
45 /* Global register bits */
46 
47 /* RSCFDnCFDGRMCFG */
48 #define RCANFD_GRMCFG_RCMC		BIT(0)
49 
50 /* RSCFDnCFDGCFG / RSCFDnGCFG */
51 #define RCANFD_GCFG_EEFE		BIT(6)
52 #define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
53 #define RCANFD_GCFG_DCS			BIT(4)
54 #define RCANFD_GCFG_DCE			BIT(1)
55 #define RCANFD_GCFG_TPRI		BIT(0)
56 
57 /* RSCFDnCFDGCTR / RSCFDnGCTR */
58 #define RCANFD_GCTR_TSRST		BIT(16)
59 #define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
60 #define RCANFD_GCTR_THLEIE		BIT(10)
61 #define RCANFD_GCTR_MEIE		BIT(9)
62 #define RCANFD_GCTR_DEIE		BIT(8)
63 #define RCANFD_GCTR_GSLPR		BIT(2)
64 #define RCANFD_GCTR_GMDC_MASK		(0x3)
65 #define RCANFD_GCTR_GMDC_GOPM		(0x0)
66 #define RCANFD_GCTR_GMDC_GRESET		(0x1)
67 #define RCANFD_GCTR_GMDC_GTEST		(0x2)
68 
69 /* RSCFDnCFDGSTS / RSCFDnGSTS */
70 #define RCANFD_GSTS_GRAMINIT		BIT(3)
71 #define RCANFD_GSTS_GSLPSTS		BIT(2)
72 #define RCANFD_GSTS_GHLTSTS		BIT(1)
73 #define RCANFD_GSTS_GRSTSTS		BIT(0)
74 /* Non-operational status */
75 #define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
76 
77 /* RSCFDnCFDGERFL / RSCFDnGERFL */
78 #define RCANFD_GERFL_EEF		GENMASK(23, 16)
79 #define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
80 #define RCANFD_GERFL_THLES		BIT(2)
81 #define RCANFD_GERFL_MES		BIT(1)
82 #define RCANFD_GERFL_DEF		BIT(0)
83 
84 #define RCANFD_GERFL_ERR(gpriv, x) \
85 ({\
86 	typeof(gpriv) (_gpriv) = (gpriv); \
87 	((x) & ((FIELD_PREP(RCANFD_GERFL_EEF, (_gpriv)->channels_mask)) | \
88 		RCANFD_GERFL_MES | ((_gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))); \
89 })
90 
91 /* AFL Rx rules registers */
92 
93 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
94 #define RCANFD_GAFLECTR_AFLDAE		BIT(8)
95 #define RCANFD_GAFLECTR_AFLPN(gpriv, page_num)	((page_num) & (gpriv)->info->max_aflpn)
96 
97 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
98 #define RCANFD_GAFLID_GAFLLB		BIT(29)
99 
100 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
101 #define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
102 
103 /* Channel register bits */
104 
105 /* RSCFDnCmCFG - Classical CAN only */
106 #define RCANFD_CFG_SJW(x)		(((x) & 0x3) << 24)
107 #define RCANFD_CFG_TSEG2(x)		(((x) & 0x7) << 20)
108 #define RCANFD_CFG_TSEG1(x)		(((x) & 0xf) << 16)
109 #define RCANFD_CFG_BRP(x)		(((x) & 0x3ff) << 0)
110 
111 /* RSCFDnCFDCmNCFG - CAN FD only */
112 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
113 	(((x) & ((gpriv)->info->nom_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->ntseg2)
114 
115 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
116 	(((x) & ((gpriv)->info->nom_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->ntseg1)
117 
118 #define RCANFD_NCFG_NSJW(gpriv, x) \
119 	(((x) & ((gpriv)->info->nom_bittiming->sjw_max - 1)) << (gpriv)->info->sh->nsjw)
120 
121 #define RCANFD_NCFG_NBRP(x)		(((x) & 0x3ff) << 0)
122 
123 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
124 #define RCANFD_CCTR_CTME		BIT(24)
125 #define RCANFD_CCTR_ERRD		BIT(23)
126 #define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
127 #define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
128 #define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
129 #define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
130 #define RCANFD_CCTR_TDCVFIE		BIT(19)
131 #define RCANFD_CCTR_SOCOIE		BIT(18)
132 #define RCANFD_CCTR_EOCOIE		BIT(17)
133 #define RCANFD_CCTR_TAIE		BIT(16)
134 #define RCANFD_CCTR_ALIE		BIT(15)
135 #define RCANFD_CCTR_BLIE		BIT(14)
136 #define RCANFD_CCTR_OLIE		BIT(13)
137 #define RCANFD_CCTR_BORIE		BIT(12)
138 #define RCANFD_CCTR_BOEIE		BIT(11)
139 #define RCANFD_CCTR_EPIE		BIT(10)
140 #define RCANFD_CCTR_EWIE		BIT(9)
141 #define RCANFD_CCTR_BEIE		BIT(8)
142 #define RCANFD_CCTR_CSLPR		BIT(2)
143 #define RCANFD_CCTR_CHMDC_MASK		(0x3)
144 #define RCANFD_CCTR_CHDMC_COPM		(0x0)
145 #define RCANFD_CCTR_CHDMC_CRESET	(0x1)
146 #define RCANFD_CCTR_CHDMC_CHLT		(0x2)
147 
148 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
149 #define RCANFD_CSTS_COMSTS		BIT(7)
150 #define RCANFD_CSTS_RECSTS		BIT(6)
151 #define RCANFD_CSTS_TRMSTS		BIT(5)
152 #define RCANFD_CSTS_BOSTS		BIT(4)
153 #define RCANFD_CSTS_EPSTS		BIT(3)
154 #define RCANFD_CSTS_SLPSTS		BIT(2)
155 #define RCANFD_CSTS_HLTSTS		BIT(1)
156 #define RCANFD_CSTS_CRSTSTS		BIT(0)
157 
158 #define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
159 #define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
160 
161 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
162 #define RCANFD_CERFL_ADERR		BIT(14)
163 #define RCANFD_CERFL_B0ERR		BIT(13)
164 #define RCANFD_CERFL_B1ERR		BIT(12)
165 #define RCANFD_CERFL_CERR		BIT(11)
166 #define RCANFD_CERFL_AERR		BIT(10)
167 #define RCANFD_CERFL_FERR		BIT(9)
168 #define RCANFD_CERFL_SERR		BIT(8)
169 #define RCANFD_CERFL_ALF		BIT(7)
170 #define RCANFD_CERFL_BLF		BIT(6)
171 #define RCANFD_CERFL_OVLF		BIT(5)
172 #define RCANFD_CERFL_BORF		BIT(4)
173 #define RCANFD_CERFL_BOEF		BIT(3)
174 #define RCANFD_CERFL_EPF		BIT(2)
175 #define RCANFD_CERFL_EWF		BIT(1)
176 #define RCANFD_CERFL_BEF		BIT(0)
177 
178 #define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
179 
180 /* RSCFDnCFDCmDCFG */
181 #define RCANFD_DCFG_DSJW(gpriv, x)	(((x) & ((gpriv)->info->data_bittiming->sjw_max - 1)) << 24)
182 
183 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
184 	(((x) & ((gpriv)->info->data_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->dtseg2)
185 
186 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
187 	(((x) & ((gpriv)->info->data_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->dtseg1)
188 
189 #define RCANFD_DCFG_DBRP(x)		(((x) & 0xff) << 0)
190 
191 /* RSCFDnCFDCmFDCFG */
192 #define RCANFD_GEN4_FDCFG_CLOE		BIT(30)
193 #define RCANFD_GEN4_FDCFG_FDOE		BIT(28)
194 #define RCANFD_FDCFG_TDCE		BIT(9)
195 #define RCANFD_FDCFG_TDCOC		BIT(8)
196 #define RCANFD_FDCFG_TDCO(x)		(((x) & 0x7f) >> 16)
197 
198 /* RSCFDnCFDRFCCx */
199 #define RCANFD_RFCC_RFIM		BIT(12)
200 #define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
201 #define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
202 #define RCANFD_RFCC_RFIE		BIT(1)
203 #define RCANFD_RFCC_RFE			BIT(0)
204 
205 /* RSCFDnCFDRFSTSx */
206 #define RCANFD_RFSTS_RFIF		BIT(3)
207 #define RCANFD_RFSTS_RFMLT		BIT(2)
208 #define RCANFD_RFSTS_RFFLL		BIT(1)
209 #define RCANFD_RFSTS_RFEMP		BIT(0)
210 
211 /* RSCFDnCFDRFIDx */
212 #define RCANFD_RFID_RFIDE		BIT(31)
213 #define RCANFD_RFID_RFRTR		BIT(30)
214 
215 /* RSCFDnCFDRFPTRx */
216 #define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
217 #define RCANFD_RFPTR_RFPTR(x)		(((x) >> 16) & 0xfff)
218 #define RCANFD_RFPTR_RFTS(x)		(((x) >> 0) & 0xffff)
219 
220 /* RSCFDnCFDRFFDSTSx */
221 #define RCANFD_RFFDSTS_RFFDF		BIT(2)
222 #define RCANFD_RFFDSTS_RFBRS		BIT(1)
223 #define RCANFD_RFFDSTS_RFESI		BIT(0)
224 
225 /* Common FIFO bits */
226 
227 /* RSCFDnCFDCFCCk */
228 #define RCANFD_CFCC_CFTML(gpriv, cftml) \
229 ({\
230 	typeof(gpriv) (_gpriv) = (gpriv); \
231 	(((cftml) & (_gpriv)->info->max_cftml) << (_gpriv)->info->sh->cftml); \
232 })
233 #define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << (gpriv)->info->sh->cfm)
234 #define RCANFD_CFCC_CFIM		BIT(12)
235 #define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << (gpriv)->info->sh->cfdc)
236 #define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
237 #define RCANFD_CFCC_CFTXIE		BIT(2)
238 #define RCANFD_CFCC_CFE			BIT(0)
239 
240 /* RSCFDnCFDCFSTSk */
241 #define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
242 #define RCANFD_CFSTS_CFTXIF		BIT(4)
243 #define RCANFD_CFSTS_CFMLT		BIT(2)
244 #define RCANFD_CFSTS_CFFLL		BIT(1)
245 #define RCANFD_CFSTS_CFEMP		BIT(0)
246 
247 /* RSCFDnCFDCFIDk */
248 #define RCANFD_CFID_CFIDE		BIT(31)
249 #define RCANFD_CFID_CFRTR		BIT(30)
250 #define RCANFD_CFID_CFID_MASK(x)	((x) & 0x1fffffff)
251 
252 /* RSCFDnCFDCFPTRk */
253 #define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
254 #define RCANFD_CFPTR_CFPTR(x)		(((x) & 0xfff) << 16)
255 #define RCANFD_CFPTR_CFTS(x)		(((x) & 0xff) << 0)
256 
257 /* RSCFDnCFDCFFDCSTSk */
258 #define RCANFD_CFFDCSTS_CFFDF		BIT(2)
259 #define RCANFD_CFFDCSTS_CFBRS		BIT(1)
260 #define RCANFD_CFFDCSTS_CFESI		BIT(0)
261 
262 /* This controller supports either Classical CAN only mode or CAN FD only mode.
263  * These modes are supported in two separate set of register maps & names.
264  * However, some of the register offsets are common for both modes. Those
265  * offsets are listed below as Common registers.
266  *
267  * The CAN FD only mode specific registers & Classical CAN only mode specific
268  * registers are listed separately. Their register names starts with
269  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
270  */
271 
272 /* Common registers */
273 
274 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
275 #define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
276 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
277 #define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
278 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
279 #define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
280 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
281 #define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
282 
283 /* RSCFDnCFDGCFG / RSCFDnGCFG */
284 #define RCANFD_GCFG			(0x0084)
285 /* RSCFDnCFDGCTR / RSCFDnGCTR */
286 #define RCANFD_GCTR			(0x0088)
287 /* RSCFDnCFDGCTS / RSCFDnGCTS */
288 #define RCANFD_GSTS			(0x008c)
289 /* RSCFDnCFDGERFL / RSCFDnGERFL */
290 #define RCANFD_GERFL			(0x0090)
291 /* RSCFDnCFDGTSC / RSCFDnGTSC */
292 #define RCANFD_GTSC			(0x0094)
293 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
294 #define RCANFD_GAFLECTR			(0x0098)
295 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
296 #define RCANFD_GAFLCFG(w)		(0x009c + (0x04 * (w)))
297 /* RSCFDnCFDRMNB / RSCFDnRMNB */
298 #define RCANFD_RMNB			(0x00a4)
299 /* RSCFDnCFDRMND / RSCFDnRMND */
300 #define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
301 
302 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
303 #define RCANFD_RFCC(gpriv, x)		((gpriv)->info->regs->rfcc + (0x04 * (x)))
304 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
305 #define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
306 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
307 #define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
308 
309 /* Common FIFO Control registers */
310 
311 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
312 #define RCANFD_CFCC(gpriv, ch, idx) \
313 	((gpriv)->info->regs->cfcc + (0x0c * (ch)) + (0x04 * (idx)))
314 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
315 #define RCANFD_CFSTS(gpriv, ch, idx) \
316 	((gpriv)->info->regs->cfsts + (0x0c * (ch)) + (0x04 * (idx)))
317 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
318 #define RCANFD_CFPCTR(gpriv, ch, idx) \
319 	((gpriv)->info->regs->cfpctr + (0x0c * (ch)) + (0x04 * (idx)))
320 
321 /* RSCFDnCFDFESTS / RSCFDnFESTS */
322 #define RCANFD_FESTS			(0x0238)
323 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
324 #define RCANFD_FFSTS			(0x023c)
325 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
326 #define RCANFD_FMSTS			(0x0240)
327 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
328 #define RCANFD_RFISTS			(0x0244)
329 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
330 #define RCANFD_CFRISTS			(0x0248)
331 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
332 #define RCANFD_CFTISTS			(0x024c)
333 
334 /* RSCFDnCFDTMCp / RSCFDnTMCp */
335 #define RCANFD_TMC(p)			(0x0250 + (0x01 * (p)))
336 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
337 #define RCANFD_TMSTS(p)			(0x02d0 + (0x01 * (p)))
338 
339 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
340 #define RCANFD_TMTRSTS(y)		(0x0350 + (0x04 * (y)))
341 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
342 #define RCANFD_TMTARSTS(y)		(0x0360 + (0x04 * (y)))
343 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
344 #define RCANFD_TMTCSTS(y)		(0x0370 + (0x04 * (y)))
345 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
346 #define RCANFD_TMTASTS(y)		(0x0380 + (0x04 * (y)))
347 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
348 #define RCANFD_TMIEC(y)			(0x0390 + (0x04 * (y)))
349 
350 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
351 #define RCANFD_TXQCC(m)			(0x03a0 + (0x04 * (m)))
352 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
353 #define RCANFD_TXQSTS(m)		(0x03c0 + (0x04 * (m)))
354 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
355 #define RCANFD_TXQPCTR(m)		(0x03e0 + (0x04 * (m)))
356 
357 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
358 #define RCANFD_THLCC(m)			(0x0400 + (0x04 * (m)))
359 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
360 #define RCANFD_THLSTS(m)		(0x0420 + (0x04 * (m)))
361 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
362 #define RCANFD_THLPCTR(m)		(0x0440 + (0x04 * (m)))
363 
364 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
365 #define RCANFD_GTINTSTS0		(0x0460)
366 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
367 #define RCANFD_GTINTSTS1		(0x0464)
368 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
369 #define RCANFD_GTSTCFG			(0x0468)
370 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
371 #define RCANFD_GTSTCTR			(0x046c)
372 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
373 #define RCANFD_GLOCKK			(0x047c)
374 /* RSCFDnCFDGRMCFG */
375 #define RCANFD_GRMCFG			(0x04fc)
376 
377 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
378 #define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
379 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
380 #define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
381 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
382 #define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
383 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
384 #define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
385 
386 /* Classical CAN only mode register map */
387 
388 /* RSCFDnGAFLXXXj offset */
389 #define RCANFD_C_GAFL_OFFSET		(0x0500)
390 
391 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
392 #define RCANFD_C_RMID(q)		(0x0600 + (0x10 * (q)))
393 #define RCANFD_C_RMPTR(q)		(0x0604 + (0x10 * (q)))
394 #define RCANFD_C_RMDF0(q)		(0x0608 + (0x10 * (q)))
395 #define RCANFD_C_RMDF1(q)		(0x060c + (0x10 * (q)))
396 
397 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
398 #define RCANFD_C_RFOFFSET	(0x0e00)
399 #define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
400 #define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
401 #define RCANFD_C_RFDF(x, df) \
402 		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
403 
404 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
405 #define RCANFD_C_CFOFFSET		(0x0e80)
406 
407 #define RCANFD_C_CFID(ch, idx) \
408 	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
409 
410 #define RCANFD_C_CFPTR(ch, idx)	\
411 	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
412 
413 #define RCANFD_C_CFDF(ch, idx, df) \
414 	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
415 
416 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
417 #define RCANFD_C_TMID(p)		(0x1000 + (0x10 * (p)))
418 #define RCANFD_C_TMPTR(p)		(0x1004 + (0x10 * (p)))
419 #define RCANFD_C_TMDF0(p)		(0x1008 + (0x10 * (p)))
420 #define RCANFD_C_TMDF1(p)		(0x100c + (0x10 * (p)))
421 
422 /* RSCFDnTHLACCm */
423 #define RCANFD_C_THLACC(m)		(0x1800 + (0x04 * (m)))
424 /* RSCFDnRPGACCr */
425 #define RCANFD_C_RPGACC(r)		(0x1900 + (0x04 * (r)))
426 
427 /* R-Car Gen4 Classical and CAN FD mode specific register map */
428 #define RCANFD_GEN4_FDCFG(m)		(0x1404 + (0x20 * (m)))
429 
430 #define RCANFD_GEN4_GAFL_OFFSET		(0x1800)
431 
432 /* CAN FD mode specific register map */
433 
434 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
435 #define RCANFD_F_DCFG(gpriv, m)		((gpriv)->info->regs->f_dcfg + (0x20 * (m)))
436 #define RCANFD_F_CFDCFG(m)		(0x0504 + (0x20 * (m)))
437 #define RCANFD_F_CFDCTR(m)		(0x0508 + (0x20 * (m)))
438 #define RCANFD_F_CFDSTS(m)		(0x050c + (0x20 * (m)))
439 #define RCANFD_F_CFDCRC(m)		(0x0510 + (0x20 * (m)))
440 
441 /* RSCFDnCFDGAFLXXXj offset */
442 #define RCANFD_F_GAFL_OFFSET		(0x1000)
443 
444 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
445 #define RCANFD_F_RMID(q)		(0x2000 + (0x20 * (q)))
446 #define RCANFD_F_RMPTR(q)		(0x2004 + (0x20 * (q)))
447 #define RCANFD_F_RMFDSTS(q)		(0x2008 + (0x20 * (q)))
448 #define RCANFD_F_RMDF(q, b)		(0x200c + (0x04 * (b)) + (0x20 * (q)))
449 
450 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
451 #define RCANFD_F_RFOFFSET(gpriv)	((gpriv)->info->regs->rfoffset)
452 #define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
453 #define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
454 #define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
455 #define RCANFD_F_RFDF(gpriv, x, df) \
456 	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
457 
458 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
459 #define RCANFD_F_CFOFFSET(gpriv)	((gpriv)->info->regs->cfoffset)
460 
461 #define RCANFD_F_CFID(gpriv, ch, idx) \
462 	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
463 
464 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
465 	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
466 
467 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
468 	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
469 
470 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
471 	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
472 	 (0x04 * (df)))
473 
474 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
475 #define RCANFD_F_TMID(p)		(0x4000 + (0x20 * (p)))
476 #define RCANFD_F_TMPTR(p)		(0x4004 + (0x20 * (p)))
477 #define RCANFD_F_TMFDCTR(p)		(0x4008 + (0x20 * (p)))
478 #define RCANFD_F_TMDF(p, b)		(0x400c + (0x20 * (p)) + (0x04 * (b)))
479 
480 /* RSCFDnCFDTHLACCm */
481 #define RCANFD_F_THLACC(m)		(0x6000 + (0x04 * (m)))
482 /* RSCFDnCFDRPGACCr */
483 #define RCANFD_F_RPGACC(r)		(0x6400 + (0x04 * (r)))
484 
485 /* Constants */
486 #define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
487 #define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
488 
489 #define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
490 #define RCANFD_CHANNELS_MASK		BIT((RCANFD_NUM_CHANNELS) - 1)
491 
492 #define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
493 #define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
494 
495 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
496  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
497  * number is added to RFFIFO index.
498  */
499 #define RCANFD_RFFIFO_IDX		0
500 
501 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
502  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
503  */
504 #define RCANFD_CFFIFO_IDX		0
505 
506 struct rcar_canfd_global;
507 
508 struct rcar_canfd_regs {
509 	u16 rfcc;	/* RX FIFO Configuration/Control Register */
510 	u16 cfcc;	/* Common FIFO Configuration/Control Register */
511 	u16 cfsts;	/* Common FIFO Status Register */
512 	u16 cfpctr;	/* Common FIFO Pointer Control Register */
513 	u16 f_dcfg;	/* Global FD Configuration Register */
514 	u16 rfoffset;	/* Receive FIFO buffer access ID register */
515 	u16 cfoffset;	/* Transmit/receive FIFO buffer access ID register */
516 };
517 
518 struct rcar_canfd_shift_data {
519 	u8 ntseg2;	/* Nominal Bit Rate Time Segment 2 Control */
520 	u8 ntseg1;	/* Nominal Bit Rate Time Segment 1 Control */
521 	u8 nsjw;	/* Nominal Bit Rate Resynchronization Jump Width Control */
522 	u8 dtseg2;	/* Data Bit Rate Time Segment 2 Control */
523 	u8 dtseg1;	/* Data Bit Rate Time Segment 1 Control */
524 	u8 cftml;	/* Common FIFO TX Message Buffer Link */
525 	u8 cfm;		/* Common FIFO Mode */
526 	u8 cfdc;	/* Common FIFO Depth Configuration */
527 };
528 
529 struct rcar_canfd_hw_info {
530 	const struct can_bittiming_const *nom_bittiming;
531 	const struct can_bittiming_const *data_bittiming;
532 	const struct rcar_canfd_regs *regs;
533 	const struct rcar_canfd_shift_data *sh;
534 	u8 rnc_field_width;
535 	u8 max_aflpn;
536 	u8 max_cftml;
537 	u8 max_channels;
538 	u8 postdiv;
539 	/* hardware features */
540 	unsigned shared_global_irqs:1;	/* Has shared global irqs */
541 	unsigned multi_channel_irqs:1;	/* Has multiple channel irqs */
542 	unsigned ch_interface_mode:1;	/* Has channel interface mode */
543 	unsigned shared_can_regs:1;	/* Has shared classical can registers */
544 	unsigned external_clk:1;	/* Has external clock */
545 };
546 
547 /* Channel priv data */
548 struct rcar_canfd_channel {
549 	struct can_priv can;			/* Must be the first member */
550 	struct net_device *ndev;
551 	struct rcar_canfd_global *gpriv;	/* Controller reference */
552 	void __iomem *base;			/* Register base address */
553 	struct phy *transceiver;		/* Optional transceiver */
554 	struct napi_struct napi;
555 	u32 tx_head;				/* Incremented on xmit */
556 	u32 tx_tail;				/* Incremented on xmit done */
557 	u32 channel;				/* Channel number */
558 	spinlock_t tx_lock;			/* To protect tx path */
559 };
560 
561 /* Global priv data */
562 struct rcar_canfd_global {
563 	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
564 	void __iomem *base;		/* Register base address */
565 	struct platform_device *pdev;	/* Respective platform device */
566 	struct clk *clkp;		/* Peripheral clock */
567 	struct clk *can_clk;		/* fCAN clock */
568 	unsigned long channels_mask;	/* Enabled channels mask */
569 	bool extclk;			/* CANFD or Ext clock */
570 	bool fdmode;			/* CAN FD or Classical CAN only mode */
571 	struct reset_control *rstc1;
572 	struct reset_control *rstc2;
573 	const struct rcar_canfd_hw_info *info;
574 };
575 
576 /* CAN FD mode nominal rate constants */
577 static const struct can_bittiming_const rcar_canfd_gen3_nom_bittiming_const = {
578 	.name = RCANFD_DRV_NAME,
579 	.tseg1_min = 2,
580 	.tseg1_max = 128,
581 	.tseg2_min = 2,
582 	.tseg2_max = 32,
583 	.sjw_max = 32,
584 	.brp_min = 1,
585 	.brp_max = 1024,
586 	.brp_inc = 1,
587 };
588 
589 static const struct can_bittiming_const rcar_canfd_gen4_nom_bittiming_const = {
590 	.name = RCANFD_DRV_NAME,
591 	.tseg1_min = 2,
592 	.tseg1_max = 256,
593 	.tseg2_min = 2,
594 	.tseg2_max = 128,
595 	.sjw_max = 128,
596 	.brp_min = 1,
597 	.brp_max = 1024,
598 	.brp_inc = 1,
599 };
600 
601 /* CAN FD mode data rate constants */
602 static const struct can_bittiming_const rcar_canfd_gen3_data_bittiming_const = {
603 	.name = RCANFD_DRV_NAME,
604 	.tseg1_min = 2,
605 	.tseg1_max = 16,
606 	.tseg2_min = 2,
607 	.tseg2_max = 8,
608 	.sjw_max = 8,
609 	.brp_min = 1,
610 	.brp_max = 256,
611 	.brp_inc = 1,
612 };
613 
614 static const struct can_bittiming_const rcar_canfd_gen4_data_bittiming_const = {
615 	.name = RCANFD_DRV_NAME,
616 	.tseg1_min = 2,
617 	.tseg1_max = 32,
618 	.tseg2_min = 2,
619 	.tseg2_max = 16,
620 	.sjw_max = 16,
621 	.brp_min = 1,
622 	.brp_max = 256,
623 	.brp_inc = 1,
624 };
625 
626 /* Classical CAN mode bitrate constants */
627 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
628 	.name = RCANFD_DRV_NAME,
629 	.tseg1_min = 4,
630 	.tseg1_max = 16,
631 	.tseg2_min = 2,
632 	.tseg2_max = 8,
633 	.sjw_max = 4,
634 	.brp_min = 1,
635 	.brp_max = 1024,
636 	.brp_inc = 1,
637 };
638 
639 static const struct rcar_canfd_regs rcar_gen3_regs = {
640 	.rfcc = 0x00b8,
641 	.cfcc = 0x0118,
642 	.cfsts = 0x0178,
643 	.cfpctr = 0x01d8,
644 	.f_dcfg = 0x0500,
645 	.rfoffset = 0x3000,
646 	.cfoffset = 0x3400,
647 };
648 
649 static const struct rcar_canfd_regs rcar_gen4_regs = {
650 	.rfcc = 0x00c0,
651 	.cfcc = 0x0120,
652 	.cfsts = 0x01e0,
653 	.cfpctr = 0x0240,
654 	.f_dcfg = 0x1400,
655 	.rfoffset = 0x6000,
656 	.cfoffset = 0x6400,
657 };
658 
659 static const struct rcar_canfd_shift_data rcar_gen3_shift_data = {
660 	.ntseg2 = 24,
661 	.ntseg1 = 16,
662 	.nsjw = 11,
663 	.dtseg2 = 20,
664 	.dtseg1 = 16,
665 	.cftml = 20,
666 	.cfm = 16,
667 	.cfdc = 8,
668 };
669 
670 static const struct rcar_canfd_shift_data rcar_gen4_shift_data = {
671 	.ntseg2 = 25,
672 	.ntseg1 = 17,
673 	.nsjw = 10,
674 	.dtseg2 = 16,
675 	.dtseg1 = 8,
676 	.cftml = 16,
677 	.cfm = 8,
678 	.cfdc = 21,
679 };
680 
681 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
682 	.nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const,
683 	.data_bittiming = &rcar_canfd_gen3_data_bittiming_const,
684 	.regs = &rcar_gen3_regs,
685 	.sh = &rcar_gen3_shift_data,
686 	.rnc_field_width = 8,
687 	.max_aflpn = 31,
688 	.max_cftml = 15,
689 	.max_channels = 2,
690 	.postdiv = 2,
691 	.shared_global_irqs = 1,
692 	.ch_interface_mode = 0,
693 	.shared_can_regs = 0,
694 	.external_clk = 1,
695 };
696 
697 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
698 	.nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const,
699 	.data_bittiming = &rcar_canfd_gen4_data_bittiming_const,
700 	.regs = &rcar_gen4_regs,
701 	.sh = &rcar_gen4_shift_data,
702 	.rnc_field_width = 16,
703 	.max_aflpn = 127,
704 	.max_cftml = 31,
705 	.max_channels = 8,
706 	.postdiv = 2,
707 	.shared_global_irqs = 1,
708 	.ch_interface_mode = 1,
709 	.shared_can_regs = 1,
710 	.external_clk = 1,
711 };
712 
713 static const struct rcar_canfd_hw_info rzg2l_hw_info = {
714 	.nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const,
715 	.data_bittiming = &rcar_canfd_gen3_data_bittiming_const,
716 	.regs = &rcar_gen3_regs,
717 	.sh = &rcar_gen3_shift_data,
718 	.rnc_field_width = 8,
719 	.max_aflpn = 31,
720 	.max_cftml = 15,
721 	.max_channels = 2,
722 	.postdiv = 1,
723 	.multi_channel_irqs = 1,
724 	.ch_interface_mode = 0,
725 	.shared_can_regs = 0,
726 	.external_clk = 1,
727 };
728 
729 static const struct rcar_canfd_hw_info r9a09g047_hw_info = {
730 	.nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const,
731 	.data_bittiming = &rcar_canfd_gen4_data_bittiming_const,
732 	.regs = &rcar_gen4_regs,
733 	.sh = &rcar_gen4_shift_data,
734 	.rnc_field_width = 16,
735 	.max_aflpn = 63,
736 	.max_cftml = 31,
737 	.max_channels = 6,
738 	.postdiv = 1,
739 	.multi_channel_irqs = 1,
740 	.ch_interface_mode = 1,
741 	.shared_can_regs = 1,
742 	.external_clk = 0,
743 };
744 
745 /* Helper functions */
746 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
747 {
748 	u32 data = readl(reg);
749 
750 	data &= ~mask;
751 	data |= (val & mask);
752 	writel(data, reg);
753 }
754 
755 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
756 {
757 	return readl(base + offset);
758 }
759 
760 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
761 {
762 	writel(val, base + offset);
763 }
764 
765 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
766 {
767 	rcar_canfd_update(val, val, base + reg);
768 }
769 
770 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
771 {
772 	rcar_canfd_update(val, 0, base + reg);
773 }
774 
775 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
776 				  u32 mask, u32 val)
777 {
778 	rcar_canfd_update(mask, val, base + reg);
779 }
780 
781 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
782 				struct canfd_frame *cf, u32 off)
783 {
784 	u32 i, lwords;
785 
786 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
787 	for (i = 0; i < lwords; i++)
788 		*((u32 *)cf->data + i) =
789 			rcar_canfd_read(priv->base, off + i * sizeof(u32));
790 }
791 
792 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
793 				struct canfd_frame *cf, u32 off)
794 {
795 	u32 i, lwords;
796 
797 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
798 	for (i = 0; i < lwords; i++)
799 		rcar_canfd_write(priv->base, off + i * sizeof(u32),
800 				 *((u32 *)cf->data + i));
801 }
802 
803 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
804 {
805 	u32 i;
806 
807 	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
808 		can_free_echo_skb(ndev, i, NULL);
809 }
810 
811 static void rcar_canfd_setrnc(struct rcar_canfd_global *gpriv, unsigned int ch,
812 			      unsigned int num_rules)
813 {
814 	unsigned int rnc_stride = 32 / gpriv->info->rnc_field_width;
815 	unsigned int shift = 32 - (ch % rnc_stride + 1) * gpriv->info->rnc_field_width;
816 	unsigned int w = ch / rnc_stride;
817 	u32 rnc = num_rules << shift;
818 
819 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(w), rnc);
820 }
821 
822 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
823 {
824 	if (gpriv->info->ch_interface_mode) {
825 		u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
826 					    : RCANFD_GEN4_FDCFG_CLOE;
827 
828 		for_each_set_bit(ch, &gpriv->channels_mask,
829 				 gpriv->info->max_channels)
830 			rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch),
831 					   val);
832 	} else {
833 		if (gpriv->fdmode)
834 			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
835 					   RCANFD_GRMCFG_RCMC);
836 		else
837 			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
838 					     RCANFD_GRMCFG_RCMC);
839 	}
840 }
841 
842 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
843 {
844 	u32 sts, ch;
845 	int err;
846 
847 	/* Check RAMINIT flag as CAN RAM initialization takes place
848 	 * after the MCU reset
849 	 */
850 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
851 				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
852 	if (err) {
853 		dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
854 		return err;
855 	}
856 
857 	/* Transition to Global Reset mode */
858 	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
859 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
860 			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
861 
862 	/* Ensure Global reset mode */
863 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
864 				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
865 	if (err) {
866 		dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
867 		return err;
868 	}
869 
870 	/* Reset Global error flags */
871 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
872 
873 	/* Set the controller into appropriate mode */
874 	rcar_canfd_set_mode(gpriv);
875 
876 	/* Transition all Channels to reset mode */
877 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
878 		rcar_canfd_clear_bit(gpriv->base,
879 				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
880 
881 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
882 				      RCANFD_CCTR_CHMDC_MASK,
883 				      RCANFD_CCTR_CHDMC_CRESET);
884 
885 		/* Ensure Channel reset mode */
886 		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
887 					 (sts & RCANFD_CSTS_CRSTSTS),
888 					 2, 500000);
889 		if (err) {
890 			dev_dbg(&gpriv->pdev->dev,
891 				"channel %u reset failed\n", ch);
892 			return err;
893 		}
894 	}
895 	return 0;
896 }
897 
898 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
899 {
900 	u32 cfg, ch;
901 
902 	/* Global configuration settings */
903 
904 	/* ECC Error flag Enable */
905 	cfg = RCANFD_GCFG_EEFE;
906 
907 	if (gpriv->fdmode)
908 		/* Truncate payload to configured message size RFPLS */
909 		cfg |= RCANFD_GCFG_CMPOC;
910 
911 	/* Set External Clock if selected */
912 	if (gpriv->extclk)
913 		cfg |= RCANFD_GCFG_DCS;
914 
915 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
916 
917 	/* Channel configuration settings */
918 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
919 		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
920 				   RCANFD_CCTR_ERRD);
921 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
922 				      RCANFD_CCTR_BOM_MASK,
923 				      RCANFD_CCTR_BOM_BENTRY);
924 	}
925 }
926 
927 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
928 					   u32 ch, u32 rule_entry)
929 {
930 	unsigned int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES;
931 	u32 rule_entry_index = rule_entry % 16;
932 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
933 
934 	/* Enable write access to entry */
935 	page = RCANFD_GAFL_PAGENUM(rule_entry);
936 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
937 			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
938 			    RCANFD_GAFLECTR_AFLDAE));
939 
940 	/* Write number of rules for channel */
941 	rcar_canfd_setrnc(gpriv, ch, num_rules);
942 	if (gpriv->info->shared_can_regs)
943 		offset = RCANFD_GEN4_GAFL_OFFSET;
944 	else if (gpriv->fdmode)
945 		offset = RCANFD_F_GAFL_OFFSET;
946 	else
947 		offset = RCANFD_C_GAFL_OFFSET;
948 
949 	/* Accept all IDs */
950 	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0);
951 	/* IDE or RTR is not considered for matching */
952 	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0);
953 	/* Any data length accepted */
954 	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0);
955 	/* Place the msg in corresponding Rx FIFO entry */
956 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index),
957 			   RCANFD_GAFLP1_GAFLFDP(ridx));
958 
959 	/* Disable write access to page */
960 	rcar_canfd_clear_bit(gpriv->base,
961 			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
962 }
963 
964 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
965 {
966 	/* Rx FIFO is used for reception */
967 	u32 cfg;
968 	u16 rfdc, rfpls;
969 
970 	/* Select Rx FIFO based on channel */
971 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
972 
973 	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
974 	if (gpriv->fdmode)
975 		rfpls = 7;	/* b111 - Max 64 bytes payload */
976 	else
977 		rfpls = 0;	/* b000 - Max 8 bytes payload */
978 
979 	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
980 		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
981 	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
982 }
983 
984 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
985 {
986 	/* Tx/Rx(Common) FIFO configured in Tx mode is
987 	 * used for transmission
988 	 *
989 	 * Each channel has 3 Common FIFO dedicated to them.
990 	 * Use the 1st (index 0) out of 3
991 	 */
992 	u32 cfg;
993 	u16 cftml, cfm, cfdc, cfpls;
994 
995 	cftml = 0;		/* 0th buffer */
996 	cfm = 1;		/* b01 - Transmit mode */
997 	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
998 	if (gpriv->fdmode)
999 		cfpls = 7;	/* b111 - Max 64 bytes payload */
1000 	else
1001 		cfpls = 0;	/* b000 - Max 8 bytes payload */
1002 
1003 	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
1004 		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
1005 		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
1006 	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
1007 
1008 	if (gpriv->fdmode)
1009 		/* Clear FD mode specific control/status register */
1010 		rcar_canfd_write(gpriv->base,
1011 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
1012 }
1013 
1014 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
1015 {
1016 	u32 ctr;
1017 
1018 	/* Clear any stray error interrupt flags */
1019 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
1020 
1021 	/* Global interrupts setup */
1022 	ctr = RCANFD_GCTR_MEIE;
1023 	if (gpriv->fdmode)
1024 		ctr |= RCANFD_GCTR_CFMPOFIE;
1025 
1026 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
1027 }
1028 
1029 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
1030 						 *gpriv)
1031 {
1032 	/* Disable all interrupts */
1033 	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
1034 
1035 	/* Clear any stray error interrupt flags */
1036 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
1037 }
1038 
1039 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
1040 						 *priv)
1041 {
1042 	u32 ctr, ch = priv->channel;
1043 
1044 	/* Clear any stray error flags */
1045 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
1046 
1047 	/* Channel interrupts setup */
1048 	ctr = (RCANFD_CCTR_TAIE |
1049 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
1050 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
1051 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
1052 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
1053 	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
1054 }
1055 
1056 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
1057 						  *priv)
1058 {
1059 	u32 ctr, ch = priv->channel;
1060 
1061 	ctr = (RCANFD_CCTR_TAIE |
1062 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
1063 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
1064 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
1065 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
1066 	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
1067 
1068 	/* Clear any stray error flags */
1069 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
1070 }
1071 
1072 static void rcar_canfd_global_error(struct net_device *ndev)
1073 {
1074 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1075 	struct rcar_canfd_global *gpriv = priv->gpriv;
1076 	struct net_device_stats *stats = &ndev->stats;
1077 	u32 ch = priv->channel;
1078 	u32 gerfl, sts;
1079 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1080 
1081 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1082 	if (gerfl & FIELD_PREP(RCANFD_GERFL_EEF, BIT(ch))) {
1083 		netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
1084 		stats->tx_dropped++;
1085 	}
1086 	if (gerfl & RCANFD_GERFL_MES) {
1087 		sts = rcar_canfd_read(priv->base,
1088 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1089 		if (sts & RCANFD_CFSTS_CFMLT) {
1090 			netdev_dbg(ndev, "Tx Message Lost flag\n");
1091 			stats->tx_dropped++;
1092 			rcar_canfd_write(priv->base,
1093 					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1094 					 sts & ~RCANFD_CFSTS_CFMLT);
1095 		}
1096 
1097 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1098 		if (sts & RCANFD_RFSTS_RFMLT) {
1099 			netdev_dbg(ndev, "Rx Message Lost flag\n");
1100 			stats->rx_dropped++;
1101 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1102 					 sts & ~RCANFD_RFSTS_RFMLT);
1103 		}
1104 	}
1105 	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
1106 		/* Message Lost flag will be set for respective channel
1107 		 * when this condition happens with counters and flags
1108 		 * already updated.
1109 		 */
1110 		netdev_dbg(ndev, "global payload overflow interrupt\n");
1111 	}
1112 
1113 	/* Clear all global error interrupts. Only affected channels bits
1114 	 * get cleared
1115 	 */
1116 	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
1117 }
1118 
1119 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
1120 			     u16 txerr, u16 rxerr)
1121 {
1122 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1123 	struct net_device_stats *stats = &ndev->stats;
1124 	struct can_frame *cf;
1125 	struct sk_buff *skb;
1126 	u32 ch = priv->channel;
1127 
1128 	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
1129 
1130 	/* Propagate the error condition to the CAN stack */
1131 	skb = alloc_can_err_skb(ndev, &cf);
1132 	if (!skb) {
1133 		stats->rx_dropped++;
1134 		return;
1135 	}
1136 
1137 	/* Channel error interrupts */
1138 	if (cerfl & RCANFD_CERFL_BEF) {
1139 		netdev_dbg(ndev, "Bus error\n");
1140 		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1141 		cf->data[2] = CAN_ERR_PROT_UNSPEC;
1142 		priv->can.can_stats.bus_error++;
1143 	}
1144 	if (cerfl & RCANFD_CERFL_ADERR) {
1145 		netdev_dbg(ndev, "ACK Delimiter Error\n");
1146 		stats->tx_errors++;
1147 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1148 	}
1149 	if (cerfl & RCANFD_CERFL_B0ERR) {
1150 		netdev_dbg(ndev, "Bit Error (dominant)\n");
1151 		stats->tx_errors++;
1152 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1153 	}
1154 	if (cerfl & RCANFD_CERFL_B1ERR) {
1155 		netdev_dbg(ndev, "Bit Error (recessive)\n");
1156 		stats->tx_errors++;
1157 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1158 	}
1159 	if (cerfl & RCANFD_CERFL_CERR) {
1160 		netdev_dbg(ndev, "CRC Error\n");
1161 		stats->rx_errors++;
1162 		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1163 	}
1164 	if (cerfl & RCANFD_CERFL_AERR) {
1165 		netdev_dbg(ndev, "ACK Error\n");
1166 		stats->tx_errors++;
1167 		cf->can_id |= CAN_ERR_ACK;
1168 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1169 	}
1170 	if (cerfl & RCANFD_CERFL_FERR) {
1171 		netdev_dbg(ndev, "Form Error\n");
1172 		stats->rx_errors++;
1173 		cf->data[2] |= CAN_ERR_PROT_FORM;
1174 	}
1175 	if (cerfl & RCANFD_CERFL_SERR) {
1176 		netdev_dbg(ndev, "Stuff Error\n");
1177 		stats->rx_errors++;
1178 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1179 	}
1180 	if (cerfl & RCANFD_CERFL_ALF) {
1181 		netdev_dbg(ndev, "Arbitration lost Error\n");
1182 		priv->can.can_stats.arbitration_lost++;
1183 		cf->can_id |= CAN_ERR_LOSTARB;
1184 		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1185 	}
1186 	if (cerfl & RCANFD_CERFL_BLF) {
1187 		netdev_dbg(ndev, "Bus Lock Error\n");
1188 		stats->rx_errors++;
1189 		cf->can_id |= CAN_ERR_BUSERROR;
1190 	}
1191 	if (cerfl & RCANFD_CERFL_EWF) {
1192 		netdev_dbg(ndev, "Error warning interrupt\n");
1193 		priv->can.state = CAN_STATE_ERROR_WARNING;
1194 		priv->can.can_stats.error_warning++;
1195 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1196 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1197 			CAN_ERR_CRTL_RX_WARNING;
1198 		cf->data[6] = txerr;
1199 		cf->data[7] = rxerr;
1200 	}
1201 	if (cerfl & RCANFD_CERFL_EPF) {
1202 		netdev_dbg(ndev, "Error passive interrupt\n");
1203 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1204 		priv->can.can_stats.error_passive++;
1205 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1206 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1207 			CAN_ERR_CRTL_RX_PASSIVE;
1208 		cf->data[6] = txerr;
1209 		cf->data[7] = rxerr;
1210 	}
1211 	if (cerfl & RCANFD_CERFL_BOEF) {
1212 		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1213 		rcar_canfd_tx_failure_cleanup(ndev);
1214 		priv->can.state = CAN_STATE_BUS_OFF;
1215 		priv->can.can_stats.bus_off++;
1216 		can_bus_off(ndev);
1217 		cf->can_id |= CAN_ERR_BUSOFF;
1218 	}
1219 	if (cerfl & RCANFD_CERFL_OVLF) {
1220 		netdev_dbg(ndev,
1221 			   "Overload Frame Transmission error interrupt\n");
1222 		stats->tx_errors++;
1223 		cf->can_id |= CAN_ERR_PROT;
1224 		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1225 	}
1226 
1227 	/* Clear channel error interrupts that are handled */
1228 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1229 			 RCANFD_CERFL_ERR(~cerfl));
1230 	netif_rx(skb);
1231 }
1232 
1233 static void rcar_canfd_tx_done(struct net_device *ndev)
1234 {
1235 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1236 	struct rcar_canfd_global *gpriv = priv->gpriv;
1237 	struct net_device_stats *stats = &ndev->stats;
1238 	u32 sts;
1239 	unsigned long flags;
1240 	u32 ch = priv->channel;
1241 
1242 	do {
1243 		u8 unsent, sent;
1244 
1245 		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1246 		stats->tx_packets++;
1247 		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1248 
1249 		spin_lock_irqsave(&priv->tx_lock, flags);
1250 		priv->tx_tail++;
1251 		sts = rcar_canfd_read(priv->base,
1252 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1253 		unsent = RCANFD_CFSTS_CFMC(sts);
1254 
1255 		/* Wake producer only when there is room */
1256 		if (unsent != RCANFD_FIFO_DEPTH)
1257 			netif_wake_queue(ndev);
1258 
1259 		if (priv->tx_head - priv->tx_tail <= unsent) {
1260 			spin_unlock_irqrestore(&priv->tx_lock, flags);
1261 			break;
1262 		}
1263 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1264 
1265 	} while (1);
1266 
1267 	/* Clear interrupt */
1268 	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1269 			 sts & ~RCANFD_CFSTS_CFTXIF);
1270 }
1271 
1272 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1273 {
1274 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1275 	struct net_device *ndev = priv->ndev;
1276 	u32 gerfl;
1277 
1278 	/* Handle global error interrupts */
1279 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1280 	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1281 		rcar_canfd_global_error(ndev);
1282 }
1283 
1284 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1285 {
1286 	struct rcar_canfd_global *gpriv = dev_id;
1287 	u32 ch;
1288 
1289 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1290 		rcar_canfd_handle_global_err(gpriv, ch);
1291 
1292 	return IRQ_HANDLED;
1293 }
1294 
1295 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1296 {
1297 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1298 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1299 	u32 sts, cc;
1300 
1301 	/* Handle Rx interrupts */
1302 	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1303 	cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1304 	if (likely(sts & RCANFD_RFSTS_RFIF &&
1305 		   cc & RCANFD_RFCC_RFIE)) {
1306 		if (napi_schedule_prep(&priv->napi)) {
1307 			/* Disable Rx FIFO interrupts */
1308 			rcar_canfd_clear_bit(priv->base,
1309 					     RCANFD_RFCC(gpriv, ridx),
1310 					     RCANFD_RFCC_RFIE);
1311 			__napi_schedule(&priv->napi);
1312 		}
1313 	}
1314 }
1315 
1316 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1317 {
1318 	struct rcar_canfd_global *gpriv = dev_id;
1319 	u32 ch;
1320 
1321 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1322 		rcar_canfd_handle_global_receive(gpriv, ch);
1323 
1324 	return IRQ_HANDLED;
1325 }
1326 
1327 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1328 {
1329 	struct rcar_canfd_global *gpriv = dev_id;
1330 	u32 ch;
1331 
1332 	/* Global error interrupts still indicate a condition specific
1333 	 * to a channel. RxFIFO interrupt is a global interrupt.
1334 	 */
1335 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1336 		rcar_canfd_handle_global_err(gpriv, ch);
1337 		rcar_canfd_handle_global_receive(gpriv, ch);
1338 	}
1339 	return IRQ_HANDLED;
1340 }
1341 
1342 static void rcar_canfd_state_change(struct net_device *ndev,
1343 				    u16 txerr, u16 rxerr)
1344 {
1345 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1346 	struct net_device_stats *stats = &ndev->stats;
1347 	enum can_state rx_state, tx_state, state = priv->can.state;
1348 	struct can_frame *cf;
1349 	struct sk_buff *skb;
1350 
1351 	/* Handle transition from error to normal states */
1352 	if (txerr < 96 && rxerr < 96)
1353 		state = CAN_STATE_ERROR_ACTIVE;
1354 	else if (txerr < 128 && rxerr < 128)
1355 		state = CAN_STATE_ERROR_WARNING;
1356 
1357 	if (state != priv->can.state) {
1358 		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1359 			   state, priv->can.state, txerr, rxerr);
1360 		skb = alloc_can_err_skb(ndev, &cf);
1361 		if (!skb) {
1362 			stats->rx_dropped++;
1363 			return;
1364 		}
1365 		tx_state = txerr >= rxerr ? state : 0;
1366 		rx_state = txerr <= rxerr ? state : 0;
1367 
1368 		can_change_state(ndev, cf, tx_state, rx_state);
1369 		netif_rx(skb);
1370 	}
1371 }
1372 
1373 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1374 {
1375 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1376 	struct net_device *ndev = priv->ndev;
1377 	u32 sts;
1378 
1379 	/* Handle Tx interrupts */
1380 	sts = rcar_canfd_read(priv->base,
1381 			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1382 	if (likely(sts & RCANFD_CFSTS_CFTXIF))
1383 		rcar_canfd_tx_done(ndev);
1384 }
1385 
1386 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1387 {
1388 	struct rcar_canfd_channel *priv = dev_id;
1389 
1390 	rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1391 
1392 	return IRQ_HANDLED;
1393 }
1394 
1395 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1396 {
1397 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1398 	struct net_device *ndev = priv->ndev;
1399 	u16 txerr, rxerr;
1400 	u32 sts, cerfl;
1401 
1402 	/* Handle channel error interrupts */
1403 	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1404 	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1405 	txerr = RCANFD_CSTS_TECCNT(sts);
1406 	rxerr = RCANFD_CSTS_RECCNT(sts);
1407 	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1408 		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1409 
1410 	/* Handle state change to lower states */
1411 	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1412 		     priv->can.state != CAN_STATE_BUS_OFF))
1413 		rcar_canfd_state_change(ndev, txerr, rxerr);
1414 }
1415 
1416 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1417 {
1418 	struct rcar_canfd_channel *priv = dev_id;
1419 
1420 	rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1421 
1422 	return IRQ_HANDLED;
1423 }
1424 
1425 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1426 {
1427 	struct rcar_canfd_global *gpriv = dev_id;
1428 	u32 ch;
1429 
1430 	/* Common FIFO is a per channel resource */
1431 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1432 		rcar_canfd_handle_channel_err(gpriv, ch);
1433 		rcar_canfd_handle_channel_tx(gpriv, ch);
1434 	}
1435 
1436 	return IRQ_HANDLED;
1437 }
1438 
1439 static void rcar_canfd_set_bittiming(struct net_device *dev)
1440 {
1441 	struct rcar_canfd_channel *priv = netdev_priv(dev);
1442 	struct rcar_canfd_global *gpriv = priv->gpriv;
1443 	const struct can_bittiming *bt = &priv->can.bittiming;
1444 	const struct can_bittiming *dbt = &priv->can.fd.data_bittiming;
1445 	u16 brp, sjw, tseg1, tseg2;
1446 	u32 cfg;
1447 	u32 ch = priv->channel;
1448 
1449 	/* Nominal bit timing settings */
1450 	brp = bt->brp - 1;
1451 	sjw = bt->sjw - 1;
1452 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1453 	tseg2 = bt->phase_seg2 - 1;
1454 
1455 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1456 		/* CAN FD only mode */
1457 		cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1458 		       RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1459 
1460 		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1461 		netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1462 			   brp, sjw, tseg1, tseg2);
1463 
1464 		/* Data bit timing settings */
1465 		brp = dbt->brp - 1;
1466 		sjw = dbt->sjw - 1;
1467 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1468 		tseg2 = dbt->phase_seg2 - 1;
1469 
1470 		cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1471 		       RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1472 
1473 		rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg);
1474 		netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1475 			   brp, sjw, tseg1, tseg2);
1476 	} else {
1477 		/* Classical CAN only mode */
1478 		if (gpriv->info->shared_can_regs) {
1479 			cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1480 			       RCANFD_NCFG_NBRP(brp) |
1481 			       RCANFD_NCFG_NSJW(gpriv, sjw) |
1482 			       RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1483 		} else {
1484 			cfg = (RCANFD_CFG_TSEG1(tseg1) |
1485 			       RCANFD_CFG_BRP(brp) |
1486 			       RCANFD_CFG_SJW(sjw) |
1487 			       RCANFD_CFG_TSEG2(tseg2));
1488 		}
1489 
1490 		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1491 		netdev_dbg(priv->ndev,
1492 			   "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1493 			   brp, sjw, tseg1, tseg2);
1494 	}
1495 }
1496 
1497 static int rcar_canfd_start(struct net_device *ndev)
1498 {
1499 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1500 	struct rcar_canfd_global *gpriv = priv->gpriv;
1501 	int err = -EOPNOTSUPP;
1502 	u32 sts, ch = priv->channel;
1503 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1504 
1505 	rcar_canfd_set_bittiming(ndev);
1506 
1507 	rcar_canfd_enable_channel_interrupts(priv);
1508 
1509 	/* Set channel to Operational mode */
1510 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1511 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1512 
1513 	/* Verify channel mode change */
1514 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1515 				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1516 	if (err) {
1517 		netdev_err(ndev, "channel %u communication state failed\n", ch);
1518 		goto fail_mode_change;
1519 	}
1520 
1521 	/* Enable Common & Rx FIFO */
1522 	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1523 			   RCANFD_CFCC_CFE);
1524 	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1525 
1526 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1527 	return 0;
1528 
1529 fail_mode_change:
1530 	rcar_canfd_disable_channel_interrupts(priv);
1531 	return err;
1532 }
1533 
1534 static int rcar_canfd_open(struct net_device *ndev)
1535 {
1536 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1537 	struct rcar_canfd_global *gpriv = priv->gpriv;
1538 	int err;
1539 
1540 	err = phy_power_on(priv->transceiver);
1541 	if (err) {
1542 		netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1543 		return err;
1544 	}
1545 
1546 	/* Peripheral clock is already enabled in probe */
1547 	err = clk_prepare_enable(gpriv->can_clk);
1548 	if (err) {
1549 		netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1550 		goto out_phy;
1551 	}
1552 
1553 	err = open_candev(ndev);
1554 	if (err) {
1555 		netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1556 		goto out_can_clock;
1557 	}
1558 
1559 	napi_enable(&priv->napi);
1560 	err = rcar_canfd_start(ndev);
1561 	if (err)
1562 		goto out_close;
1563 	netif_start_queue(ndev);
1564 	return 0;
1565 out_close:
1566 	napi_disable(&priv->napi);
1567 	close_candev(ndev);
1568 out_can_clock:
1569 	clk_disable_unprepare(gpriv->can_clk);
1570 out_phy:
1571 	phy_power_off(priv->transceiver);
1572 	return err;
1573 }
1574 
1575 static void rcar_canfd_stop(struct net_device *ndev)
1576 {
1577 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1578 	struct rcar_canfd_global *gpriv = priv->gpriv;
1579 	int err;
1580 	u32 sts, ch = priv->channel;
1581 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1582 
1583 	/* Transition to channel reset mode  */
1584 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1585 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1586 
1587 	/* Check Channel reset mode */
1588 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1589 				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1590 	if (err)
1591 		netdev_err(ndev, "channel %u reset failed\n", ch);
1592 
1593 	rcar_canfd_disable_channel_interrupts(priv);
1594 
1595 	/* Disable Common & Rx FIFO */
1596 	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1597 			     RCANFD_CFCC_CFE);
1598 	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1599 
1600 	/* Set the state as STOPPED */
1601 	priv->can.state = CAN_STATE_STOPPED;
1602 }
1603 
1604 static int rcar_canfd_close(struct net_device *ndev)
1605 {
1606 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1607 	struct rcar_canfd_global *gpriv = priv->gpriv;
1608 
1609 	netif_stop_queue(ndev);
1610 	rcar_canfd_stop(ndev);
1611 	napi_disable(&priv->napi);
1612 	clk_disable_unprepare(gpriv->can_clk);
1613 	close_candev(ndev);
1614 	phy_power_off(priv->transceiver);
1615 	return 0;
1616 }
1617 
1618 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1619 					 struct net_device *ndev)
1620 {
1621 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1622 	struct rcar_canfd_global *gpriv = priv->gpriv;
1623 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1624 	u32 sts = 0, id, dlc;
1625 	unsigned long flags;
1626 	u32 ch = priv->channel;
1627 
1628 	if (can_dev_dropped_skb(ndev, skb))
1629 		return NETDEV_TX_OK;
1630 
1631 	if (cf->can_id & CAN_EFF_FLAG) {
1632 		id = cf->can_id & CAN_EFF_MASK;
1633 		id |= RCANFD_CFID_CFIDE;
1634 	} else {
1635 		id = cf->can_id & CAN_SFF_MASK;
1636 	}
1637 
1638 	if (cf->can_id & CAN_RTR_FLAG)
1639 		id |= RCANFD_CFID_CFRTR;
1640 
1641 	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1642 
1643 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1644 		rcar_canfd_write(priv->base,
1645 				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1646 		rcar_canfd_write(priv->base,
1647 				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1648 
1649 		if (can_is_canfd_skb(skb)) {
1650 			/* CAN FD frame format */
1651 			sts |= RCANFD_CFFDCSTS_CFFDF;
1652 			if (cf->flags & CANFD_BRS)
1653 				sts |= RCANFD_CFFDCSTS_CFBRS;
1654 
1655 			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1656 				sts |= RCANFD_CFFDCSTS_CFESI;
1657 		}
1658 
1659 		rcar_canfd_write(priv->base,
1660 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1661 
1662 		rcar_canfd_put_data(priv, cf,
1663 				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1664 	} else {
1665 		rcar_canfd_write(priv->base,
1666 				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1667 		rcar_canfd_write(priv->base,
1668 				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1669 		rcar_canfd_put_data(priv, cf,
1670 				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1671 	}
1672 
1673 	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1674 
1675 	spin_lock_irqsave(&priv->tx_lock, flags);
1676 	priv->tx_head++;
1677 
1678 	/* Stop the queue if we've filled all FIFO entries */
1679 	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1680 		netif_stop_queue(ndev);
1681 
1682 	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1683 	 * pointer for the Common FIFO
1684 	 */
1685 	rcar_canfd_write(priv->base,
1686 			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1687 
1688 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1689 	return NETDEV_TX_OK;
1690 }
1691 
1692 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1693 {
1694 	struct net_device_stats *stats = &priv->ndev->stats;
1695 	struct rcar_canfd_global *gpriv = priv->gpriv;
1696 	struct canfd_frame *cf;
1697 	struct sk_buff *skb;
1698 	u32 sts = 0, id, dlc;
1699 	u32 ch = priv->channel;
1700 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1701 
1702 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1703 		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1704 		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1705 
1706 		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1707 
1708 		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1709 		    sts & RCANFD_RFFDSTS_RFFDF)
1710 			skb = alloc_canfd_skb(priv->ndev, &cf);
1711 		else
1712 			skb = alloc_can_skb(priv->ndev,
1713 					    (struct can_frame **)&cf);
1714 	} else {
1715 		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1716 		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1717 		skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1718 	}
1719 
1720 	if (!skb) {
1721 		stats->rx_dropped++;
1722 		return;
1723 	}
1724 
1725 	if (id & RCANFD_RFID_RFIDE)
1726 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1727 	else
1728 		cf->can_id = id & CAN_SFF_MASK;
1729 
1730 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1731 		if (sts & RCANFD_RFFDSTS_RFFDF)
1732 			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1733 		else
1734 			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1735 
1736 		if (sts & RCANFD_RFFDSTS_RFESI) {
1737 			cf->flags |= CANFD_ESI;
1738 			netdev_dbg(priv->ndev, "ESI Error\n");
1739 		}
1740 
1741 		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1742 			cf->can_id |= CAN_RTR_FLAG;
1743 		} else {
1744 			if (sts & RCANFD_RFFDSTS_RFBRS)
1745 				cf->flags |= CANFD_BRS;
1746 
1747 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1748 		}
1749 	} else {
1750 		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1751 		if (id & RCANFD_RFID_RFRTR)
1752 			cf->can_id |= CAN_RTR_FLAG;
1753 		else if (gpriv->info->shared_can_regs)
1754 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1755 		else
1756 			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1757 	}
1758 
1759 	/* Write 0xff to RFPC to increment the CPU-side
1760 	 * pointer of the Rx FIFO
1761 	 */
1762 	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1763 
1764 	if (!(cf->can_id & CAN_RTR_FLAG))
1765 		stats->rx_bytes += cf->len;
1766 	stats->rx_packets++;
1767 	netif_receive_skb(skb);
1768 }
1769 
1770 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1771 {
1772 	struct rcar_canfd_channel *priv =
1773 		container_of(napi, struct rcar_canfd_channel, napi);
1774 	struct rcar_canfd_global *gpriv = priv->gpriv;
1775 	int num_pkts;
1776 	u32 sts;
1777 	u32 ch = priv->channel;
1778 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1779 
1780 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1781 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1782 		/* Check FIFO empty condition */
1783 		if (sts & RCANFD_RFSTS_RFEMP)
1784 			break;
1785 
1786 		rcar_canfd_rx_pkt(priv);
1787 
1788 		/* Clear interrupt bit */
1789 		if (sts & RCANFD_RFSTS_RFIF)
1790 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1791 					 sts & ~RCANFD_RFSTS_RFIF);
1792 	}
1793 
1794 	/* All packets processed */
1795 	if (num_pkts < quota) {
1796 		if (napi_complete_done(napi, num_pkts)) {
1797 			/* Enable Rx FIFO interrupts */
1798 			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1799 					   RCANFD_RFCC_RFIE);
1800 		}
1801 	}
1802 	return num_pkts;
1803 }
1804 
1805 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1806 {
1807 	int err;
1808 
1809 	switch (mode) {
1810 	case CAN_MODE_START:
1811 		err = rcar_canfd_start(ndev);
1812 		if (err)
1813 			return err;
1814 		netif_wake_queue(ndev);
1815 		return 0;
1816 	default:
1817 		return -EOPNOTSUPP;
1818 	}
1819 }
1820 
1821 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1822 				       struct can_berr_counter *bec)
1823 {
1824 	struct rcar_canfd_channel *priv = netdev_priv(dev);
1825 	u32 val, ch = priv->channel;
1826 
1827 	/* Peripheral clock is already enabled in probe */
1828 	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1829 	bec->txerr = RCANFD_CSTS_TECCNT(val);
1830 	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1831 	return 0;
1832 }
1833 
1834 static const struct net_device_ops rcar_canfd_netdev_ops = {
1835 	.ndo_open = rcar_canfd_open,
1836 	.ndo_stop = rcar_canfd_close,
1837 	.ndo_start_xmit = rcar_canfd_start_xmit,
1838 	.ndo_change_mtu = can_change_mtu,
1839 };
1840 
1841 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1842 	.get_ts_info = ethtool_op_get_ts_info,
1843 };
1844 
1845 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1846 				    u32 fcan_freq, struct phy *transceiver)
1847 {
1848 	const struct rcar_canfd_hw_info *info = gpriv->info;
1849 	struct platform_device *pdev = gpriv->pdev;
1850 	struct device *dev = &pdev->dev;
1851 	struct rcar_canfd_channel *priv;
1852 	struct net_device *ndev;
1853 	int err = -ENODEV;
1854 
1855 	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1856 	if (!ndev)
1857 		return -ENOMEM;
1858 
1859 	priv = netdev_priv(ndev);
1860 
1861 	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1862 	ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1863 	ndev->flags |= IFF_ECHO;
1864 	priv->ndev = ndev;
1865 	priv->base = gpriv->base;
1866 	priv->transceiver = transceiver;
1867 	priv->channel = ch;
1868 	priv->gpriv = gpriv;
1869 	if (transceiver)
1870 		priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1871 	priv->can.clock.freq = fcan_freq;
1872 	dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1873 
1874 	if (info->multi_channel_irqs) {
1875 		char *irq_name;
1876 		char name[10];
1877 		int err_irq;
1878 		int tx_irq;
1879 
1880 		scnprintf(name, sizeof(name), "ch%u_err", ch);
1881 		err_irq = platform_get_irq_byname(pdev, name);
1882 		if (err_irq < 0) {
1883 			err = err_irq;
1884 			goto fail;
1885 		}
1886 
1887 		scnprintf(name, sizeof(name), "ch%u_trx", ch);
1888 		tx_irq = platform_get_irq_byname(pdev, name);
1889 		if (tx_irq < 0) {
1890 			err = tx_irq;
1891 			goto fail;
1892 		}
1893 
1894 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1895 					  ch);
1896 		if (!irq_name) {
1897 			err = -ENOMEM;
1898 			goto fail;
1899 		}
1900 		err = devm_request_irq(dev, err_irq,
1901 				       rcar_canfd_channel_err_interrupt, 0,
1902 				       irq_name, priv);
1903 		if (err) {
1904 			dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1905 				err_irq, ERR_PTR(err));
1906 			goto fail;
1907 		}
1908 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1909 					  ch);
1910 		if (!irq_name) {
1911 			err = -ENOMEM;
1912 			goto fail;
1913 		}
1914 		err = devm_request_irq(dev, tx_irq,
1915 				       rcar_canfd_channel_tx_interrupt, 0,
1916 				       irq_name, priv);
1917 		if (err) {
1918 			dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1919 				tx_irq, ERR_PTR(err));
1920 			goto fail;
1921 		}
1922 	}
1923 
1924 	if (gpriv->fdmode) {
1925 		priv->can.bittiming_const = gpriv->info->nom_bittiming;
1926 		priv->can.fd.data_bittiming_const = gpriv->info->data_bittiming;
1927 
1928 		/* Controller starts in CAN FD only mode */
1929 		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1930 		if (err)
1931 			goto fail;
1932 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1933 	} else {
1934 		/* Controller starts in Classical CAN only mode */
1935 		priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1936 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1937 	}
1938 
1939 	priv->can.do_set_mode = rcar_canfd_do_set_mode;
1940 	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1941 	SET_NETDEV_DEV(ndev, dev);
1942 
1943 	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1944 			      RCANFD_NAPI_WEIGHT);
1945 	spin_lock_init(&priv->tx_lock);
1946 	gpriv->ch[priv->channel] = priv;
1947 	err = register_candev(ndev);
1948 	if (err) {
1949 		dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
1950 		goto fail_candev;
1951 	}
1952 	dev_info(dev, "device registered (channel %u)\n", priv->channel);
1953 	return 0;
1954 
1955 fail_candev:
1956 	netif_napi_del(&priv->napi);
1957 fail:
1958 	free_candev(ndev);
1959 	return err;
1960 }
1961 
1962 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1963 {
1964 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1965 
1966 	if (priv) {
1967 		unregister_candev(priv->ndev);
1968 		netif_napi_del(&priv->napi);
1969 		free_candev(priv->ndev);
1970 	}
1971 }
1972 
1973 static int rcar_canfd_probe(struct platform_device *pdev)
1974 {
1975 	struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
1976 	const struct rcar_canfd_hw_info *info;
1977 	struct device *dev = &pdev->dev;
1978 	void __iomem *addr;
1979 	u32 sts, ch, fcan_freq;
1980 	struct rcar_canfd_global *gpriv;
1981 	struct device_node *of_child;
1982 	unsigned long channels_mask = 0;
1983 	int err, ch_irq, g_irq;
1984 	int g_err_irq, g_recc_irq;
1985 	u32 rule_entry = 0;
1986 	bool fdmode = true;			/* CAN FD only mode - default */
1987 	char name[9] = "channelX";
1988 	struct clk *clk_ram;
1989 	int i;
1990 
1991 	info = of_device_get_match_data(dev);
1992 
1993 	if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
1994 		fdmode = false;			/* Classical CAN only mode */
1995 
1996 	for (i = 0; i < info->max_channels; ++i) {
1997 		name[7] = '0' + i;
1998 		of_child = of_get_available_child_by_name(dev->of_node, name);
1999 		if (of_child) {
2000 			channels_mask |= BIT(i);
2001 			transceivers[i] = devm_of_phy_optional_get(dev,
2002 							of_child, NULL);
2003 			of_node_put(of_child);
2004 		}
2005 		if (IS_ERR(transceivers[i]))
2006 			return PTR_ERR(transceivers[i]);
2007 	}
2008 
2009 	if (info->shared_global_irqs) {
2010 		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
2011 		if (ch_irq < 0) {
2012 			/* For backward compatibility get irq by index */
2013 			ch_irq = platform_get_irq(pdev, 0);
2014 			if (ch_irq < 0)
2015 				return ch_irq;
2016 		}
2017 
2018 		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
2019 		if (g_irq < 0) {
2020 			/* For backward compatibility get irq by index */
2021 			g_irq = platform_get_irq(pdev, 1);
2022 			if (g_irq < 0)
2023 				return g_irq;
2024 		}
2025 	} else {
2026 		g_err_irq = platform_get_irq_byname(pdev, "g_err");
2027 		if (g_err_irq < 0)
2028 			return g_err_irq;
2029 
2030 		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
2031 		if (g_recc_irq < 0)
2032 			return g_recc_irq;
2033 	}
2034 
2035 	/* Global controller context */
2036 	gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
2037 	if (!gpriv)
2038 		return -ENOMEM;
2039 
2040 	gpriv->pdev = pdev;
2041 	gpriv->channels_mask = channels_mask;
2042 	gpriv->fdmode = fdmode;
2043 	gpriv->info = info;
2044 
2045 	gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
2046 	if (IS_ERR(gpriv->rstc1))
2047 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
2048 				     "failed to get rstp_n\n");
2049 
2050 	gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
2051 	if (IS_ERR(gpriv->rstc2))
2052 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
2053 				     "failed to get rstc_n\n");
2054 
2055 	/* Peripheral clock */
2056 	gpriv->clkp = devm_clk_get(dev, "fck");
2057 	if (IS_ERR(gpriv->clkp))
2058 		return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
2059 				     "cannot get peripheral clock\n");
2060 
2061 	/* fCAN clock: Pick External clock. If not available fallback to
2062 	 * CANFD clock
2063 	 */
2064 	gpriv->can_clk = devm_clk_get(dev, "can_clk");
2065 	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
2066 		gpriv->can_clk = devm_clk_get(dev, "canfd");
2067 		if (IS_ERR(gpriv->can_clk))
2068 			return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
2069 					     "cannot get canfd clock\n");
2070 
2071 		/* CANFD clock may be further divided within the IP */
2072 		fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv;
2073 	} else {
2074 		fcan_freq = clk_get_rate(gpriv->can_clk);
2075 		gpriv->extclk = gpriv->info->external_clk;
2076 	}
2077 
2078 	clk_ram = devm_clk_get_optional_enabled(dev, "ram_clk");
2079 	if (IS_ERR(clk_ram))
2080 		return dev_err_probe(dev, PTR_ERR(clk_ram),
2081 				     "cannot get enabled ram clock\n");
2082 
2083 	addr = devm_platform_ioremap_resource(pdev, 0);
2084 	if (IS_ERR(addr)) {
2085 		err = PTR_ERR(addr);
2086 		goto fail_dev;
2087 	}
2088 	gpriv->base = addr;
2089 
2090 	/* Request IRQ that's common for both channels */
2091 	if (info->shared_global_irqs) {
2092 		err = devm_request_irq(dev, ch_irq,
2093 				       rcar_canfd_channel_interrupt, 0,
2094 				       "canfd.ch_int", gpriv);
2095 		if (err) {
2096 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2097 				ch_irq, ERR_PTR(err));
2098 			goto fail_dev;
2099 		}
2100 
2101 		err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
2102 				       0, "canfd.g_int", gpriv);
2103 		if (err) {
2104 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2105 				g_irq, ERR_PTR(err));
2106 			goto fail_dev;
2107 		}
2108 	} else {
2109 		err = devm_request_irq(dev, g_recc_irq,
2110 				       rcar_canfd_global_receive_fifo_interrupt, 0,
2111 				       "canfd.g_recc", gpriv);
2112 
2113 		if (err) {
2114 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2115 				g_recc_irq, ERR_PTR(err));
2116 			goto fail_dev;
2117 		}
2118 
2119 		err = devm_request_irq(dev, g_err_irq,
2120 				       rcar_canfd_global_err_interrupt, 0,
2121 				       "canfd.g_err", gpriv);
2122 		if (err) {
2123 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2124 				g_err_irq, ERR_PTR(err));
2125 			goto fail_dev;
2126 		}
2127 	}
2128 
2129 	err = reset_control_reset(gpriv->rstc1);
2130 	if (err)
2131 		goto fail_dev;
2132 	err = reset_control_reset(gpriv->rstc2);
2133 	if (err) {
2134 		reset_control_assert(gpriv->rstc1);
2135 		goto fail_dev;
2136 	}
2137 
2138 	/* Enable peripheral clock for register access */
2139 	err = clk_prepare_enable(gpriv->clkp);
2140 	if (err) {
2141 		dev_err(dev, "failed to enable peripheral clock: %pe\n",
2142 			ERR_PTR(err));
2143 		goto fail_reset;
2144 	}
2145 
2146 	err = rcar_canfd_reset_controller(gpriv);
2147 	if (err) {
2148 		dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2149 		goto fail_clk;
2150 	}
2151 
2152 	/* Controller in Global reset & Channel reset mode */
2153 	rcar_canfd_configure_controller(gpriv);
2154 
2155 	/* Configure per channel attributes */
2156 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2157 		/* Configure Channel's Rx fifo */
2158 		rcar_canfd_configure_rx(gpriv, ch);
2159 
2160 		/* Configure Channel's Tx (Common) fifo */
2161 		rcar_canfd_configure_tx(gpriv, ch);
2162 
2163 		/* Configure receive rules */
2164 		rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry);
2165 		rule_entry += RCANFD_CHANNEL_NUMRULES;
2166 	}
2167 
2168 	/* Configure common interrupts */
2169 	rcar_canfd_enable_global_interrupts(gpriv);
2170 
2171 	/* Start Global operation mode */
2172 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2173 			      RCANFD_GCTR_GMDC_GOPM);
2174 
2175 	/* Verify mode change */
2176 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2177 				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2178 	if (err) {
2179 		dev_err(dev, "global operational mode failed\n");
2180 		goto fail_mode;
2181 	}
2182 
2183 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2184 		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2185 					       transceivers[ch]);
2186 		if (err)
2187 			goto fail_channel;
2188 	}
2189 
2190 	platform_set_drvdata(pdev, gpriv);
2191 	dev_info(dev, "global operational state (%s clk, %s mode)\n",
2192 		 gpriv->extclk ? "ext" : "canfd",
2193 		 gpriv->fdmode ? "fd" : "classical");
2194 	return 0;
2195 
2196 fail_channel:
2197 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2198 		rcar_canfd_channel_remove(gpriv, ch);
2199 fail_mode:
2200 	rcar_canfd_disable_global_interrupts(gpriv);
2201 fail_clk:
2202 	clk_disable_unprepare(gpriv->clkp);
2203 fail_reset:
2204 	reset_control_assert(gpriv->rstc1);
2205 	reset_control_assert(gpriv->rstc2);
2206 fail_dev:
2207 	return err;
2208 }
2209 
2210 static void rcar_canfd_remove(struct platform_device *pdev)
2211 {
2212 	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2213 	u32 ch;
2214 
2215 	rcar_canfd_reset_controller(gpriv);
2216 	rcar_canfd_disable_global_interrupts(gpriv);
2217 
2218 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2219 		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2220 		rcar_canfd_channel_remove(gpriv, ch);
2221 	}
2222 
2223 	/* Enter global sleep mode */
2224 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2225 	clk_disable_unprepare(gpriv->clkp);
2226 	reset_control_assert(gpriv->rstc1);
2227 	reset_control_assert(gpriv->rstc2);
2228 }
2229 
2230 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2231 {
2232 	return 0;
2233 }
2234 
2235 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2236 {
2237 	return 0;
2238 }
2239 
2240 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2241 			 rcar_canfd_resume);
2242 
2243 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2244 	{ .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2245 	{ .compatible = "renesas,r9a09g047-canfd", .data = &r9a09g047_hw_info },
2246 	{ .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2247 	{ .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2248 	{ .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2249 	{ }
2250 };
2251 
2252 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2253 
2254 static struct platform_driver rcar_canfd_driver = {
2255 	.driver = {
2256 		.name = RCANFD_DRV_NAME,
2257 		.of_match_table = of_match_ptr(rcar_canfd_of_table),
2258 		.pm = &rcar_canfd_pm_ops,
2259 	},
2260 	.probe = rcar_canfd_probe,
2261 	.remove = rcar_canfd_remove,
2262 };
2263 
2264 module_platform_driver(rcar_canfd_driver);
2265 
2266 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2267 MODULE_LICENSE("GPL");
2268 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2269 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2270