1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/bitfield.h> 25 #include <linux/bitmap.h> 26 #include <linux/bitops.h> 27 #include <linux/can/dev.h> 28 #include <linux/clk.h> 29 #include <linux/errno.h> 30 #include <linux/ethtool.h> 31 #include <linux/interrupt.h> 32 #include <linux/iopoll.h> 33 #include <linux/kernel.h> 34 #include <linux/module.h> 35 #include <linux/moduleparam.h> 36 #include <linux/netdevice.h> 37 #include <linux/of.h> 38 #include <linux/phy/phy.h> 39 #include <linux/platform_device.h> 40 #include <linux/reset.h> 41 #include <linux/types.h> 42 43 #define RCANFD_DRV_NAME "rcar_canfd" 44 45 /* Global register bits */ 46 47 /* RSCFDnCFDGRMCFG */ 48 #define RCANFD_GRMCFG_RCMC BIT(0) 49 50 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 51 #define RCANFD_GCFG_EEFE BIT(6) 52 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 53 #define RCANFD_GCFG_DCS BIT(4) 54 #define RCANFD_GCFG_DCE BIT(1) 55 #define RCANFD_GCFG_TPRI BIT(0) 56 57 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 58 #define RCANFD_GCTR_TSRST BIT(16) 59 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 60 #define RCANFD_GCTR_THLEIE BIT(10) 61 #define RCANFD_GCTR_MEIE BIT(9) 62 #define RCANFD_GCTR_DEIE BIT(8) 63 #define RCANFD_GCTR_GSLPR BIT(2) 64 #define RCANFD_GCTR_GMDC_MASK (0x3) 65 #define RCANFD_GCTR_GMDC_GOPM (0x0) 66 #define RCANFD_GCTR_GMDC_GRESET (0x1) 67 #define RCANFD_GCTR_GMDC_GTEST (0x2) 68 69 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 70 #define RCANFD_GSTS_GRAMINIT BIT(3) 71 #define RCANFD_GSTS_GSLPSTS BIT(2) 72 #define RCANFD_GSTS_GHLTSTS BIT(1) 73 #define RCANFD_GSTS_GRSTSTS BIT(0) 74 /* Non-operational status */ 75 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 76 77 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 78 #define RCANFD_GERFL_EEF GENMASK(23, 16) 79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 80 #define RCANFD_GERFL_THLES BIT(2) 81 #define RCANFD_GERFL_MES BIT(1) 82 #define RCANFD_GERFL_DEF BIT(0) 83 84 #define RCANFD_GERFL_ERR(gpriv, x) \ 85 ({\ 86 typeof(gpriv) (_gpriv) = (gpriv); \ 87 ((x) & ((FIELD_PREP(RCANFD_GERFL_EEF, (_gpriv)->channels_mask)) | \ 88 RCANFD_GERFL_MES | ((_gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))); \ 89 }) 90 91 /* AFL Rx rules registers */ 92 93 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 94 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 95 #define RCANFD_GAFLECTR_AFLPN(gpriv, page_num) ((page_num) & (gpriv)->info->max_aflpn) 96 97 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 98 #define RCANFD_GAFLID_GAFLLB BIT(29) 99 100 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 101 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 102 103 /* Channel register bits */ 104 105 /* RSCFDnCmCFG - Classical CAN only */ 106 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 107 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 108 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 109 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 110 111 /* RSCFDnCFDCmNCFG - CAN FD only */ 112 #define RCANFD_NCFG_NTSEG2(gpriv, x) \ 113 (((x) & ((gpriv)->info->nom_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->ntseg2) 114 115 #define RCANFD_NCFG_NTSEG1(gpriv, x) \ 116 (((x) & ((gpriv)->info->nom_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->ntseg1) 117 118 #define RCANFD_NCFG_NSJW(gpriv, x) \ 119 (((x) & ((gpriv)->info->nom_bittiming->sjw_max - 1)) << (gpriv)->info->sh->nsjw) 120 121 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 122 123 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 124 #define RCANFD_CCTR_CTME BIT(24) 125 #define RCANFD_CCTR_ERRD BIT(23) 126 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 127 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 128 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 129 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 130 #define RCANFD_CCTR_TDCVFIE BIT(19) 131 #define RCANFD_CCTR_SOCOIE BIT(18) 132 #define RCANFD_CCTR_EOCOIE BIT(17) 133 #define RCANFD_CCTR_TAIE BIT(16) 134 #define RCANFD_CCTR_ALIE BIT(15) 135 #define RCANFD_CCTR_BLIE BIT(14) 136 #define RCANFD_CCTR_OLIE BIT(13) 137 #define RCANFD_CCTR_BORIE BIT(12) 138 #define RCANFD_CCTR_BOEIE BIT(11) 139 #define RCANFD_CCTR_EPIE BIT(10) 140 #define RCANFD_CCTR_EWIE BIT(9) 141 #define RCANFD_CCTR_BEIE BIT(8) 142 #define RCANFD_CCTR_CSLPR BIT(2) 143 #define RCANFD_CCTR_CHMDC_MASK (0x3) 144 #define RCANFD_CCTR_CHDMC_COPM (0x0) 145 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 146 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 147 148 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 149 #define RCANFD_CSTS_COMSTS BIT(7) 150 #define RCANFD_CSTS_RECSTS BIT(6) 151 #define RCANFD_CSTS_TRMSTS BIT(5) 152 #define RCANFD_CSTS_BOSTS BIT(4) 153 #define RCANFD_CSTS_EPSTS BIT(3) 154 #define RCANFD_CSTS_SLPSTS BIT(2) 155 #define RCANFD_CSTS_HLTSTS BIT(1) 156 #define RCANFD_CSTS_CRSTSTS BIT(0) 157 158 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 159 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 160 161 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 162 #define RCANFD_CERFL_ADERR BIT(14) 163 #define RCANFD_CERFL_B0ERR BIT(13) 164 #define RCANFD_CERFL_B1ERR BIT(12) 165 #define RCANFD_CERFL_CERR BIT(11) 166 #define RCANFD_CERFL_AERR BIT(10) 167 #define RCANFD_CERFL_FERR BIT(9) 168 #define RCANFD_CERFL_SERR BIT(8) 169 #define RCANFD_CERFL_ALF BIT(7) 170 #define RCANFD_CERFL_BLF BIT(6) 171 #define RCANFD_CERFL_OVLF BIT(5) 172 #define RCANFD_CERFL_BORF BIT(4) 173 #define RCANFD_CERFL_BOEF BIT(3) 174 #define RCANFD_CERFL_EPF BIT(2) 175 #define RCANFD_CERFL_EWF BIT(1) 176 #define RCANFD_CERFL_BEF BIT(0) 177 178 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 179 180 /* RSCFDnCFDCmDCFG */ 181 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & ((gpriv)->info->data_bittiming->sjw_max - 1)) << 24) 182 183 #define RCANFD_DCFG_DTSEG2(gpriv, x) \ 184 (((x) & ((gpriv)->info->data_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->dtseg2) 185 186 #define RCANFD_DCFG_DTSEG1(gpriv, x) \ 187 (((x) & ((gpriv)->info->data_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->dtseg1) 188 189 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 190 191 /* RSCFDnCFDCmFDCFG */ 192 #define RCANFD_GEN4_FDCFG_CLOE BIT(30) 193 #define RCANFD_GEN4_FDCFG_FDOE BIT(28) 194 #define RCANFD_FDCFG_TDCO GENMASK(23, 16) 195 #define RCANFD_FDCFG_TDCE BIT(9) 196 #define RCANFD_FDCFG_TDCOC BIT(8) 197 198 /* RSCFDnCFDCmFDSTS */ 199 #define RCANFD_FDSTS_SOC GENMASK(31, 24) 200 #define RCANFD_FDSTS_EOC GENMASK(23, 16) 201 #define RCANFD_GEN4_FDSTS_TDCVF BIT(15) 202 #define RCANFD_GEN4_FDSTS_PNSTS GENMASK(13, 12) 203 #define RCANFD_FDSTS_SOCO BIT(9) 204 #define RCANFD_FDSTS_EOCO BIT(8) 205 #define RCANFD_FDSTS_TDCVF BIT(7) 206 #define RCANFD_FDSTS_TDCR GENMASK(7, 0) 207 208 /* RSCFDnCFDRFCCx */ 209 #define RCANFD_RFCC_RFIM BIT(12) 210 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 211 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 212 #define RCANFD_RFCC_RFIE BIT(1) 213 #define RCANFD_RFCC_RFE BIT(0) 214 215 /* RSCFDnCFDRFSTSx */ 216 #define RCANFD_RFSTS_RFIF BIT(3) 217 #define RCANFD_RFSTS_RFMLT BIT(2) 218 #define RCANFD_RFSTS_RFFLL BIT(1) 219 #define RCANFD_RFSTS_RFEMP BIT(0) 220 221 /* RSCFDnCFDRFIDx */ 222 #define RCANFD_RFID_RFIDE BIT(31) 223 #define RCANFD_RFID_RFRTR BIT(30) 224 225 /* RSCFDnCFDRFPTRx */ 226 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 227 228 /* RSCFDnCFDRFFDSTSx */ 229 #define RCANFD_RFFDSTS_RFFDF BIT(2) 230 #define RCANFD_RFFDSTS_RFBRS BIT(1) 231 #define RCANFD_RFFDSTS_RFESI BIT(0) 232 233 /* Common FIFO bits */ 234 235 /* RSCFDnCFDCFCCk */ 236 #define RCANFD_CFCC_CFTML(gpriv, cftml) \ 237 ({\ 238 typeof(gpriv) (_gpriv) = (gpriv); \ 239 (((cftml) & (_gpriv)->info->max_cftml) << (_gpriv)->info->sh->cftml); \ 240 }) 241 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << (gpriv)->info->sh->cfm) 242 #define RCANFD_CFCC_CFIM BIT(12) 243 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << (gpriv)->info->sh->cfdc) 244 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 245 #define RCANFD_CFCC_CFTXIE BIT(2) 246 #define RCANFD_CFCC_CFE BIT(0) 247 248 /* RSCFDnCFDCFSTSk */ 249 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 250 #define RCANFD_CFSTS_CFTXIF BIT(4) 251 #define RCANFD_CFSTS_CFMLT BIT(2) 252 #define RCANFD_CFSTS_CFFLL BIT(1) 253 #define RCANFD_CFSTS_CFEMP BIT(0) 254 255 /* RSCFDnCFDCFIDk */ 256 #define RCANFD_CFID_CFIDE BIT(31) 257 #define RCANFD_CFID_CFRTR BIT(30) 258 259 /* RSCFDnCFDCFPTRk */ 260 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 261 262 /* RSCFDnCFDCFFDCSTSk */ 263 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 264 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 265 #define RCANFD_CFFDCSTS_CFESI BIT(0) 266 267 /* This controller supports either Classical CAN only mode or CAN FD only mode. 268 * These modes are supported in two separate set of register maps & names. 269 * However, some of the register offsets are common for both modes. Those 270 * offsets are listed below as Common registers. 271 * 272 * The CAN FD only mode specific registers & Classical CAN only mode specific 273 * registers are listed separately. Their register names starts with 274 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 275 */ 276 277 /* Common registers */ 278 279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 280 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 282 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 284 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 286 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 287 288 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 289 #define RCANFD_GCFG (0x0084) 290 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 291 #define RCANFD_GCTR (0x0088) 292 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 293 #define RCANFD_GSTS (0x008c) 294 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 295 #define RCANFD_GERFL (0x0090) 296 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 297 #define RCANFD_GTSC (0x0094) 298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 299 #define RCANFD_GAFLECTR (0x0098) 300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */ 301 #define RCANFD_GAFLCFG(w) (0x009c + (0x04 * (w))) 302 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 303 #define RCANFD_RMNB (0x00a4) 304 /* RSCFDnCFDRMND / RSCFDnRMND */ 305 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 306 307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 308 #define RCANFD_RFCC(gpriv, x) ((gpriv)->info->regs->rfcc + (0x04 * (x))) 309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 310 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20) 311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 312 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40) 313 314 /* Common FIFO Control registers */ 315 316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 317 #define RCANFD_CFCC(gpriv, ch, idx) \ 318 ((gpriv)->info->regs->cfcc + (0x0c * (ch)) + (0x04 * (idx))) 319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 320 #define RCANFD_CFSTS(gpriv, ch, idx) \ 321 ((gpriv)->info->regs->cfsts + (0x0c * (ch)) + (0x04 * (idx))) 322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 323 #define RCANFD_CFPCTR(gpriv, ch, idx) \ 324 ((gpriv)->info->regs->cfpctr + (0x0c * (ch)) + (0x04 * (idx))) 325 326 /* RSCFDnCFDGRMCFG */ 327 #define RCANFD_GRMCFG (0x04fc) 328 329 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 330 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 331 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 332 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 333 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 334 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 335 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 336 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 337 338 /* Classical CAN only mode register map */ 339 340 /* RSCFDnGAFLXXXj offset */ 341 #define RCANFD_C_GAFL_OFFSET (0x0500) 342 343 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 344 #define RCANFD_C_RFOFFSET (0x0e00) 345 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 346 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x))) 347 #define RCANFD_C_RFDF(x, df) \ 348 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df))) 349 350 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 351 #define RCANFD_C_CFOFFSET (0x0e80) 352 353 #define RCANFD_C_CFID(ch, idx) \ 354 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx))) 355 356 #define RCANFD_C_CFPTR(ch, idx) \ 357 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx))) 358 359 #define RCANFD_C_CFDF(ch, idx, df) \ 360 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df))) 361 362 /* R-Car Gen4 Classical and CAN FD mode specific register map */ 363 #define RCANFD_GEN4_GAFL_OFFSET (0x1800) 364 365 /* CAN FD mode specific register map */ 366 367 /* RSCFDnCFDCmXXX -> gpriv->fcbase[m].xxx */ 368 struct rcar_canfd_f_c { 369 u32 dcfg; 370 u32 cfdcfg; 371 u32 cfdctr; 372 u32 cfdsts; 373 u32 cfdcrc; 374 u32 pad[3]; 375 }; 376 377 /* RSCFDnCFDGAFLXXXj offset */ 378 #define RCANFD_F_GAFL_OFFSET (0x1000) 379 380 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 381 #define RCANFD_F_RFOFFSET(gpriv) ((gpriv)->info->regs->rfoffset) 382 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x))) 383 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x))) 384 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x))) 385 #define RCANFD_F_RFDF(gpriv, x, df) \ 386 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df))) 387 388 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 389 #define RCANFD_F_CFOFFSET(gpriv) ((gpriv)->info->regs->cfoffset) 390 391 #define RCANFD_F_CFID(gpriv, ch, idx) \ 392 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx))) 393 394 #define RCANFD_F_CFPTR(gpriv, ch, idx) \ 395 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx))) 396 397 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \ 398 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx))) 399 400 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \ 401 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \ 402 (0x04 * (df))) 403 404 /* Constants */ 405 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 406 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 407 408 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */ 409 410 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 411 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 412 413 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 414 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 415 * number is added to RFFIFO index. 416 */ 417 #define RCANFD_RFFIFO_IDX 0 418 419 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 420 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 421 */ 422 #define RCANFD_CFFIFO_IDX 0 423 424 struct rcar_canfd_global; 425 426 struct rcar_canfd_regs { 427 u16 rfcc; /* RX FIFO Configuration/Control Register */ 428 u16 cfcc; /* Common FIFO Configuration/Control Register */ 429 u16 cfsts; /* Common FIFO Status Register */ 430 u16 cfpctr; /* Common FIFO Pointer Control Register */ 431 u16 coffset; /* Channel Data Bitrate Configuration Register */ 432 u16 rfoffset; /* Receive FIFO buffer access ID register */ 433 u16 cfoffset; /* Transmit/receive FIFO buffer access ID register */ 434 }; 435 436 struct rcar_canfd_shift_data { 437 u8 ntseg2; /* Nominal Bit Rate Time Segment 2 Control */ 438 u8 ntseg1; /* Nominal Bit Rate Time Segment 1 Control */ 439 u8 nsjw; /* Nominal Bit Rate Resynchronization Jump Width Control */ 440 u8 dtseg2; /* Data Bit Rate Time Segment 2 Control */ 441 u8 dtseg1; /* Data Bit Rate Time Segment 1 Control */ 442 u8 cftml; /* Common FIFO TX Message Buffer Link */ 443 u8 cfm; /* Common FIFO Mode */ 444 u8 cfdc; /* Common FIFO Depth Configuration */ 445 }; 446 447 struct rcar_canfd_hw_info { 448 const struct can_bittiming_const *nom_bittiming; 449 const struct can_bittiming_const *data_bittiming; 450 const struct can_tdc_const *tdc_const; 451 const struct rcar_canfd_regs *regs; 452 const struct rcar_canfd_shift_data *sh; 453 u8 rnc_field_width; 454 u8 max_aflpn; 455 u8 max_cftml; 456 u8 max_channels; 457 u8 postdiv; 458 /* hardware features */ 459 unsigned shared_global_irqs:1; /* Has shared global irqs */ 460 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */ 461 unsigned ch_interface_mode:1; /* Has channel interface mode */ 462 unsigned shared_can_regs:1; /* Has shared classical can registers */ 463 unsigned external_clk:1; /* Has external clock */ 464 }; 465 466 /* Channel priv data */ 467 struct rcar_canfd_channel { 468 struct can_priv can; /* Must be the first member */ 469 struct net_device *ndev; 470 struct rcar_canfd_global *gpriv; /* Controller reference */ 471 void __iomem *base; /* Register base address */ 472 struct phy *transceiver; /* Optional transceiver */ 473 struct napi_struct napi; 474 u32 tx_head; /* Incremented on xmit */ 475 u32 tx_tail; /* Incremented on xmit done */ 476 u32 channel; /* Channel number */ 477 spinlock_t tx_lock; /* To protect tx path */ 478 }; 479 480 /* Global priv data */ 481 struct rcar_canfd_global { 482 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 483 void __iomem *base; /* Register base address */ 484 struct rcar_canfd_f_c __iomem *fcbase; 485 struct platform_device *pdev; /* Respective platform device */ 486 struct clk *clkp; /* Peripheral clock */ 487 struct clk *can_clk; /* fCAN clock */ 488 unsigned long channels_mask; /* Enabled channels mask */ 489 bool extclk; /* CANFD or Ext clock */ 490 bool fdmode; /* CAN FD or Classical CAN only mode */ 491 struct reset_control *rstc1; 492 struct reset_control *rstc2; 493 const struct rcar_canfd_hw_info *info; 494 }; 495 496 /* CAN FD mode nominal rate constants */ 497 static const struct can_bittiming_const rcar_canfd_gen3_nom_bittiming_const = { 498 .name = RCANFD_DRV_NAME, 499 .tseg1_min = 2, 500 .tseg1_max = 128, 501 .tseg2_min = 2, 502 .tseg2_max = 32, 503 .sjw_max = 32, 504 .brp_min = 1, 505 .brp_max = 1024, 506 .brp_inc = 1, 507 }; 508 509 static const struct can_bittiming_const rcar_canfd_gen4_nom_bittiming_const = { 510 .name = RCANFD_DRV_NAME, 511 .tseg1_min = 2, 512 .tseg1_max = 256, 513 .tseg2_min = 2, 514 .tseg2_max = 128, 515 .sjw_max = 128, 516 .brp_min = 1, 517 .brp_max = 1024, 518 .brp_inc = 1, 519 }; 520 521 /* CAN FD mode data rate constants */ 522 static const struct can_bittiming_const rcar_canfd_gen3_data_bittiming_const = { 523 .name = RCANFD_DRV_NAME, 524 .tseg1_min = 2, 525 .tseg1_max = 16, 526 .tseg2_min = 2, 527 .tseg2_max = 8, 528 .sjw_max = 8, 529 .brp_min = 1, 530 .brp_max = 256, 531 .brp_inc = 1, 532 }; 533 534 static const struct can_bittiming_const rcar_canfd_gen4_data_bittiming_const = { 535 .name = RCANFD_DRV_NAME, 536 .tseg1_min = 2, 537 .tseg1_max = 32, 538 .tseg2_min = 2, 539 .tseg2_max = 16, 540 .sjw_max = 16, 541 .brp_min = 1, 542 .brp_max = 256, 543 .brp_inc = 1, 544 }; 545 546 /* Classical CAN mode bitrate constants */ 547 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 548 .name = RCANFD_DRV_NAME, 549 .tseg1_min = 4, 550 .tseg1_max = 16, 551 .tseg2_min = 2, 552 .tseg2_max = 8, 553 .sjw_max = 4, 554 .brp_min = 1, 555 .brp_max = 1024, 556 .brp_inc = 1, 557 }; 558 559 /* CAN FD Transmission Delay Compensation constants */ 560 static const struct can_tdc_const rcar_canfd_gen3_tdc_const = { 561 .tdcv_min = 1, 562 .tdcv_max = 128, 563 .tdco_min = 1, 564 .tdco_max = 128, 565 .tdcf_min = 0, /* Filter window not supported */ 566 .tdcf_max = 0, 567 }; 568 569 static const struct can_tdc_const rcar_canfd_gen4_tdc_const = { 570 .tdcv_min = 1, 571 .tdcv_max = 256, 572 .tdco_min = 1, 573 .tdco_max = 256, 574 .tdcf_min = 0, /* Filter window not supported */ 575 .tdcf_max = 0, 576 }; 577 578 static const struct rcar_canfd_regs rcar_gen3_regs = { 579 .rfcc = 0x00b8, 580 .cfcc = 0x0118, 581 .cfsts = 0x0178, 582 .cfpctr = 0x01d8, 583 .coffset = 0x0500, 584 .rfoffset = 0x3000, 585 .cfoffset = 0x3400, 586 }; 587 588 static const struct rcar_canfd_regs rcar_gen4_regs = { 589 .rfcc = 0x00c0, 590 .cfcc = 0x0120, 591 .cfsts = 0x01e0, 592 .cfpctr = 0x0240, 593 .coffset = 0x1400, 594 .rfoffset = 0x6000, 595 .cfoffset = 0x6400, 596 }; 597 598 static const struct rcar_canfd_shift_data rcar_gen3_shift_data = { 599 .ntseg2 = 24, 600 .ntseg1 = 16, 601 .nsjw = 11, 602 .dtseg2 = 20, 603 .dtseg1 = 16, 604 .cftml = 20, 605 .cfm = 16, 606 .cfdc = 8, 607 }; 608 609 static const struct rcar_canfd_shift_data rcar_gen4_shift_data = { 610 .ntseg2 = 25, 611 .ntseg1 = 17, 612 .nsjw = 10, 613 .dtseg2 = 16, 614 .dtseg1 = 8, 615 .cftml = 16, 616 .cfm = 8, 617 .cfdc = 21, 618 }; 619 620 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = { 621 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const, 622 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const, 623 .tdc_const = &rcar_canfd_gen3_tdc_const, 624 .regs = &rcar_gen3_regs, 625 .sh = &rcar_gen3_shift_data, 626 .rnc_field_width = 8, 627 .max_aflpn = 31, 628 .max_cftml = 15, 629 .max_channels = 2, 630 .postdiv = 2, 631 .shared_global_irqs = 1, 632 .ch_interface_mode = 0, 633 .shared_can_regs = 0, 634 .external_clk = 1, 635 }; 636 637 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = { 638 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const, 639 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const, 640 .tdc_const = &rcar_canfd_gen4_tdc_const, 641 .regs = &rcar_gen4_regs, 642 .sh = &rcar_gen4_shift_data, 643 .rnc_field_width = 16, 644 .max_aflpn = 127, 645 .max_cftml = 31, 646 .max_channels = 8, 647 .postdiv = 2, 648 .shared_global_irqs = 1, 649 .ch_interface_mode = 1, 650 .shared_can_regs = 1, 651 .external_clk = 1, 652 }; 653 654 static const struct rcar_canfd_hw_info rzg2l_hw_info = { 655 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const, 656 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const, 657 .tdc_const = &rcar_canfd_gen3_tdc_const, 658 .regs = &rcar_gen3_regs, 659 .sh = &rcar_gen3_shift_data, 660 .rnc_field_width = 8, 661 .max_aflpn = 31, 662 .max_cftml = 15, 663 .max_channels = 2, 664 .postdiv = 1, 665 .multi_channel_irqs = 1, 666 .ch_interface_mode = 0, 667 .shared_can_regs = 0, 668 .external_clk = 1, 669 }; 670 671 static const struct rcar_canfd_hw_info r9a09g047_hw_info = { 672 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const, 673 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const, 674 .tdc_const = &rcar_canfd_gen4_tdc_const, 675 .regs = &rcar_gen4_regs, 676 .sh = &rcar_gen4_shift_data, 677 .rnc_field_width = 16, 678 .max_aflpn = 63, 679 .max_cftml = 31, 680 .max_channels = 6, 681 .postdiv = 1, 682 .multi_channel_irqs = 1, 683 .ch_interface_mode = 1, 684 .shared_can_regs = 1, 685 .external_clk = 0, 686 }; 687 688 /* Helper functions */ 689 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 690 { 691 u32 data = readl(reg); 692 693 data &= ~mask; 694 data |= (val & mask); 695 writel(data, reg); 696 } 697 698 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 699 { 700 return readl(base + offset); 701 } 702 703 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 704 { 705 writel(val, base + offset); 706 } 707 708 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 709 { 710 rcar_canfd_update(val, val, base + reg); 711 } 712 713 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 714 { 715 rcar_canfd_update(val, 0, base + reg); 716 } 717 718 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 719 u32 mask, u32 val) 720 { 721 rcar_canfd_update(mask, val, base + reg); 722 } 723 724 static void rcar_canfd_set_bit_reg(void __iomem *addr, u32 val) 725 { 726 rcar_canfd_update(val, val, addr); 727 } 728 729 static void rcar_canfd_update_bit_reg(void __iomem *addr, u32 mask, u32 val) 730 { 731 rcar_canfd_update(mask, val, addr); 732 } 733 734 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 735 struct canfd_frame *cf, u32 off) 736 { 737 u32 *data = (u32 *)cf->data; 738 u32 i, lwords; 739 740 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 741 for (i = 0; i < lwords; i++) 742 data[i] = rcar_canfd_read(priv->base, off + i * sizeof(u32)); 743 } 744 745 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 746 struct canfd_frame *cf, u32 off) 747 { 748 const u32 *data = (u32 *)cf->data; 749 u32 i, lwords; 750 751 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 752 for (i = 0; i < lwords; i++) 753 rcar_canfd_write(priv->base, off + i * sizeof(u32), data[i]); 754 } 755 756 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 757 { 758 u32 i; 759 760 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 761 can_free_echo_skb(ndev, i, NULL); 762 } 763 764 static void rcar_canfd_set_rnc(struct rcar_canfd_global *gpriv, unsigned int ch, 765 unsigned int num_rules) 766 { 767 unsigned int rnc_stride = 32 / gpriv->info->rnc_field_width; 768 unsigned int shift = 32 - (ch % rnc_stride + 1) * gpriv->info->rnc_field_width; 769 unsigned int w = ch / rnc_stride; 770 u32 rnc = num_rules << shift; 771 772 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(w), rnc); 773 } 774 775 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv) 776 { 777 if (gpriv->info->ch_interface_mode) { 778 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE 779 : RCANFD_GEN4_FDCFG_CLOE; 780 781 for_each_set_bit(ch, &gpriv->channels_mask, 782 gpriv->info->max_channels) 783 rcar_canfd_set_bit_reg(&gpriv->fcbase[ch].cfdcfg, val); 784 } else { 785 if (gpriv->fdmode) 786 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 787 RCANFD_GRMCFG_RCMC); 788 else 789 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 790 RCANFD_GRMCFG_RCMC); 791 } 792 } 793 794 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 795 { 796 struct device *dev = &gpriv->pdev->dev; 797 u32 sts, ch; 798 int err; 799 800 /* Check RAMINIT flag as CAN RAM initialization takes place 801 * after the MCU reset 802 */ 803 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 804 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 805 if (err) { 806 dev_dbg(dev, "global raminit failed\n"); 807 return err; 808 } 809 810 /* Transition to Global Reset mode */ 811 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 812 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 813 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 814 815 /* Ensure Global reset mode */ 816 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 817 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 818 if (err) { 819 dev_dbg(dev, "global reset failed\n"); 820 return err; 821 } 822 823 /* Reset Global error flags */ 824 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 825 826 /* Set the controller into appropriate mode */ 827 rcar_canfd_set_mode(gpriv); 828 829 /* Transition all Channels to reset mode */ 830 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 831 rcar_canfd_clear_bit(gpriv->base, 832 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 833 834 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 835 RCANFD_CCTR_CHMDC_MASK, 836 RCANFD_CCTR_CHDMC_CRESET); 837 838 /* Ensure Channel reset mode */ 839 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 840 (sts & RCANFD_CSTS_CRSTSTS), 841 2, 500000); 842 if (err) { 843 dev_dbg(dev, "channel %u reset failed\n", ch); 844 return err; 845 } 846 } 847 return 0; 848 } 849 850 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 851 { 852 u32 cfg, ch; 853 854 /* Global configuration settings */ 855 856 /* ECC Error flag Enable */ 857 cfg = RCANFD_GCFG_EEFE; 858 859 if (gpriv->fdmode) 860 /* Truncate payload to configured message size RFPLS */ 861 cfg |= RCANFD_GCFG_CMPOC; 862 863 /* Set External Clock if selected */ 864 if (gpriv->extclk) 865 cfg |= RCANFD_GCFG_DCS; 866 867 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 868 869 /* Channel configuration settings */ 870 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 871 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 872 RCANFD_CCTR_ERRD); 873 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 874 RCANFD_CCTR_BOM_MASK, 875 RCANFD_CCTR_BOM_BENTRY); 876 } 877 } 878 879 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 880 u32 ch, u32 rule_entry) 881 { 882 unsigned int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES; 883 u32 rule_entry_index = rule_entry % 16; 884 u32 ridx = ch + RCANFD_RFFIFO_IDX; 885 886 /* Enable write access to entry */ 887 page = RCANFD_GAFL_PAGENUM(rule_entry); 888 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 889 (RCANFD_GAFLECTR_AFLPN(gpriv, page) | 890 RCANFD_GAFLECTR_AFLDAE)); 891 892 /* Write number of rules for channel */ 893 rcar_canfd_set_rnc(gpriv, ch, num_rules); 894 if (gpriv->info->shared_can_regs) 895 offset = RCANFD_GEN4_GAFL_OFFSET; 896 else if (gpriv->fdmode) 897 offset = RCANFD_F_GAFL_OFFSET; 898 else 899 offset = RCANFD_C_GAFL_OFFSET; 900 901 /* Accept all IDs */ 902 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0); 903 /* IDE or RTR is not considered for matching */ 904 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0); 905 /* Any data length accepted */ 906 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0); 907 /* Place the msg in corresponding Rx FIFO entry */ 908 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index), 909 RCANFD_GAFLP1_GAFLFDP(ridx)); 910 911 /* Disable write access to page */ 912 rcar_canfd_clear_bit(gpriv->base, 913 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 914 } 915 916 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 917 { 918 /* Rx FIFO is used for reception */ 919 u32 cfg; 920 u16 rfdc, rfpls; 921 922 /* Select Rx FIFO based on channel */ 923 u32 ridx = ch + RCANFD_RFFIFO_IDX; 924 925 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 926 if (gpriv->fdmode) 927 rfpls = 7; /* b111 - Max 64 bytes payload */ 928 else 929 rfpls = 0; /* b000 - Max 8 bytes payload */ 930 931 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 932 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 933 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg); 934 } 935 936 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 937 { 938 /* Tx/Rx(Common) FIFO configured in Tx mode is 939 * used for transmission 940 * 941 * Each channel has 3 Common FIFO dedicated to them. 942 * Use the 1st (index 0) out of 3 943 */ 944 u32 cfg; 945 u16 cftml, cfm, cfdc, cfpls; 946 947 cftml = 0; /* 0th buffer */ 948 cfm = 1; /* b01 - Transmit mode */ 949 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 950 if (gpriv->fdmode) 951 cfpls = 7; /* b111 - Max 64 bytes payload */ 952 else 953 cfpls = 0; /* b000 - Max 8 bytes payload */ 954 955 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) | 956 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) | 957 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 958 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg); 959 960 if (gpriv->fdmode) 961 /* Clear FD mode specific control/status register */ 962 rcar_canfd_write(gpriv->base, 963 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0); 964 } 965 966 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 967 { 968 u32 ctr; 969 970 /* Clear any stray error interrupt flags */ 971 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 972 973 /* Global interrupts setup */ 974 ctr = RCANFD_GCTR_MEIE; 975 if (gpriv->fdmode) 976 ctr |= RCANFD_GCTR_CFMPOFIE; 977 978 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 979 } 980 981 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 982 *gpriv) 983 { 984 /* Disable all interrupts */ 985 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 986 987 /* Clear any stray error interrupt flags */ 988 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 989 } 990 991 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 992 *priv) 993 { 994 u32 ctr, ch = priv->channel; 995 996 /* Clear any stray error flags */ 997 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 998 999 /* Channel interrupts setup */ 1000 ctr = (RCANFD_CCTR_TAIE | 1001 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 1002 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 1003 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 1004 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 1005 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 1006 } 1007 1008 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 1009 *priv) 1010 { 1011 u32 ctr, ch = priv->channel; 1012 1013 ctr = (RCANFD_CCTR_TAIE | 1014 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 1015 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 1016 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 1017 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 1018 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 1019 1020 /* Clear any stray error flags */ 1021 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 1022 } 1023 1024 static void rcar_canfd_global_error(struct net_device *ndev) 1025 { 1026 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1027 struct rcar_canfd_global *gpriv = priv->gpriv; 1028 struct net_device_stats *stats = &ndev->stats; 1029 u32 ch = priv->channel; 1030 u32 gerfl, sts; 1031 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1032 1033 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1034 if (gerfl & FIELD_PREP(RCANFD_GERFL_EEF, BIT(ch))) { 1035 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch); 1036 stats->tx_dropped++; 1037 } 1038 if (gerfl & RCANFD_GERFL_MES) { 1039 sts = rcar_canfd_read(priv->base, 1040 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1041 if (sts & RCANFD_CFSTS_CFMLT) { 1042 netdev_dbg(ndev, "Tx Message Lost flag\n"); 1043 stats->tx_dropped++; 1044 rcar_canfd_write(priv->base, 1045 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1046 sts & ~RCANFD_CFSTS_CFMLT); 1047 } 1048 1049 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1050 if (sts & RCANFD_RFSTS_RFMLT) { 1051 netdev_dbg(ndev, "Rx Message Lost flag\n"); 1052 stats->rx_dropped++; 1053 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1054 sts & ~RCANFD_RFSTS_RFMLT); 1055 } 1056 } 1057 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 1058 /* Message Lost flag will be set for respective channel 1059 * when this condition happens with counters and flags 1060 * already updated. 1061 */ 1062 netdev_dbg(ndev, "global payload overflow interrupt\n"); 1063 } 1064 1065 /* Clear all global error interrupts. Only affected channels bits 1066 * get cleared 1067 */ 1068 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 1069 } 1070 1071 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 1072 u16 txerr, u16 rxerr) 1073 { 1074 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1075 struct net_device_stats *stats = &ndev->stats; 1076 struct can_frame *cf; 1077 struct sk_buff *skb; 1078 u32 ch = priv->channel; 1079 1080 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 1081 1082 /* Propagate the error condition to the CAN stack */ 1083 skb = alloc_can_err_skb(ndev, &cf); 1084 if (!skb) { 1085 stats->rx_dropped++; 1086 return; 1087 } 1088 1089 /* Channel error interrupts */ 1090 if (cerfl & RCANFD_CERFL_BEF) { 1091 netdev_dbg(ndev, "Bus error\n"); 1092 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 1093 cf->data[2] = CAN_ERR_PROT_UNSPEC; 1094 priv->can.can_stats.bus_error++; 1095 } 1096 if (cerfl & RCANFD_CERFL_ADERR) { 1097 netdev_dbg(ndev, "ACK Delimiter Error\n"); 1098 stats->tx_errors++; 1099 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 1100 } 1101 if (cerfl & RCANFD_CERFL_B0ERR) { 1102 netdev_dbg(ndev, "Bit Error (dominant)\n"); 1103 stats->tx_errors++; 1104 cf->data[2] |= CAN_ERR_PROT_BIT0; 1105 } 1106 if (cerfl & RCANFD_CERFL_B1ERR) { 1107 netdev_dbg(ndev, "Bit Error (recessive)\n"); 1108 stats->tx_errors++; 1109 cf->data[2] |= CAN_ERR_PROT_BIT1; 1110 } 1111 if (cerfl & RCANFD_CERFL_CERR) { 1112 netdev_dbg(ndev, "CRC Error\n"); 1113 stats->rx_errors++; 1114 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 1115 } 1116 if (cerfl & RCANFD_CERFL_AERR) { 1117 netdev_dbg(ndev, "ACK Error\n"); 1118 stats->tx_errors++; 1119 cf->can_id |= CAN_ERR_ACK; 1120 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 1121 } 1122 if (cerfl & RCANFD_CERFL_FERR) { 1123 netdev_dbg(ndev, "Form Error\n"); 1124 stats->rx_errors++; 1125 cf->data[2] |= CAN_ERR_PROT_FORM; 1126 } 1127 if (cerfl & RCANFD_CERFL_SERR) { 1128 netdev_dbg(ndev, "Stuff Error\n"); 1129 stats->rx_errors++; 1130 cf->data[2] |= CAN_ERR_PROT_STUFF; 1131 } 1132 if (cerfl & RCANFD_CERFL_ALF) { 1133 netdev_dbg(ndev, "Arbitration lost Error\n"); 1134 priv->can.can_stats.arbitration_lost++; 1135 cf->can_id |= CAN_ERR_LOSTARB; 1136 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 1137 } 1138 if (cerfl & RCANFD_CERFL_BLF) { 1139 netdev_dbg(ndev, "Bus Lock Error\n"); 1140 stats->rx_errors++; 1141 cf->can_id |= CAN_ERR_BUSERROR; 1142 } 1143 if (cerfl & RCANFD_CERFL_EWF) { 1144 netdev_dbg(ndev, "Error warning interrupt\n"); 1145 priv->can.state = CAN_STATE_ERROR_WARNING; 1146 priv->can.can_stats.error_warning++; 1147 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1148 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1149 CAN_ERR_CRTL_RX_WARNING; 1150 cf->data[6] = txerr; 1151 cf->data[7] = rxerr; 1152 } 1153 if (cerfl & RCANFD_CERFL_EPF) { 1154 netdev_dbg(ndev, "Error passive interrupt\n"); 1155 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1156 priv->can.can_stats.error_passive++; 1157 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1158 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1159 CAN_ERR_CRTL_RX_PASSIVE; 1160 cf->data[6] = txerr; 1161 cf->data[7] = rxerr; 1162 } 1163 if (cerfl & RCANFD_CERFL_BOEF) { 1164 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1165 rcar_canfd_tx_failure_cleanup(ndev); 1166 priv->can.state = CAN_STATE_BUS_OFF; 1167 priv->can.can_stats.bus_off++; 1168 can_bus_off(ndev); 1169 cf->can_id |= CAN_ERR_BUSOFF; 1170 } 1171 if (cerfl & RCANFD_CERFL_OVLF) { 1172 netdev_dbg(ndev, 1173 "Overload Frame Transmission error interrupt\n"); 1174 stats->tx_errors++; 1175 cf->can_id |= CAN_ERR_PROT; 1176 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1177 } 1178 1179 /* Clear channel error interrupts that are handled */ 1180 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1181 RCANFD_CERFL_ERR(~cerfl)); 1182 netif_rx(skb); 1183 } 1184 1185 static void rcar_canfd_tx_done(struct net_device *ndev) 1186 { 1187 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1188 struct rcar_canfd_global *gpriv = priv->gpriv; 1189 struct net_device_stats *stats = &ndev->stats; 1190 u32 sts; 1191 unsigned long flags; 1192 u32 ch = priv->channel; 1193 1194 do { 1195 u8 unsent, sent; 1196 1197 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1198 stats->tx_packets++; 1199 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1200 1201 spin_lock_irqsave(&priv->tx_lock, flags); 1202 priv->tx_tail++; 1203 sts = rcar_canfd_read(priv->base, 1204 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1205 unsent = RCANFD_CFSTS_CFMC(sts); 1206 1207 /* Wake producer only when there is room */ 1208 if (unsent != RCANFD_FIFO_DEPTH) 1209 netif_wake_queue(ndev); 1210 1211 if (priv->tx_head - priv->tx_tail <= unsent) { 1212 spin_unlock_irqrestore(&priv->tx_lock, flags); 1213 break; 1214 } 1215 spin_unlock_irqrestore(&priv->tx_lock, flags); 1216 1217 } while (1); 1218 1219 /* Clear interrupt */ 1220 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1221 sts & ~RCANFD_CFSTS_CFTXIF); 1222 } 1223 1224 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1225 { 1226 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1227 struct net_device *ndev = priv->ndev; 1228 u32 gerfl; 1229 1230 /* Handle global error interrupts */ 1231 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1232 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1233 rcar_canfd_global_error(ndev); 1234 } 1235 1236 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1237 { 1238 struct rcar_canfd_global *gpriv = dev_id; 1239 u32 ch; 1240 1241 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1242 rcar_canfd_handle_global_err(gpriv, ch); 1243 1244 return IRQ_HANDLED; 1245 } 1246 1247 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1248 { 1249 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1250 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1251 u32 sts, cc; 1252 1253 /* Handle Rx interrupts */ 1254 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1255 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx)); 1256 if (likely(sts & RCANFD_RFSTS_RFIF && 1257 cc & RCANFD_RFCC_RFIE)) { 1258 if (napi_schedule_prep(&priv->napi)) { 1259 /* Disable Rx FIFO interrupts */ 1260 rcar_canfd_clear_bit(priv->base, 1261 RCANFD_RFCC(gpriv, ridx), 1262 RCANFD_RFCC_RFIE); 1263 __napi_schedule(&priv->napi); 1264 } 1265 } 1266 } 1267 1268 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1269 { 1270 struct rcar_canfd_global *gpriv = dev_id; 1271 u32 ch; 1272 1273 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1274 rcar_canfd_handle_global_receive(gpriv, ch); 1275 1276 return IRQ_HANDLED; 1277 } 1278 1279 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1280 { 1281 struct rcar_canfd_global *gpriv = dev_id; 1282 u32 ch; 1283 1284 /* Global error interrupts still indicate a condition specific 1285 * to a channel. RxFIFO interrupt is a global interrupt. 1286 */ 1287 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1288 rcar_canfd_handle_global_err(gpriv, ch); 1289 rcar_canfd_handle_global_receive(gpriv, ch); 1290 } 1291 return IRQ_HANDLED; 1292 } 1293 1294 static void rcar_canfd_state_change(struct net_device *ndev, 1295 u16 txerr, u16 rxerr) 1296 { 1297 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1298 struct net_device_stats *stats = &ndev->stats; 1299 enum can_state rx_state, tx_state, state = priv->can.state; 1300 struct can_frame *cf; 1301 struct sk_buff *skb; 1302 1303 /* Handle transition from error to normal states */ 1304 if (txerr < 96 && rxerr < 96) 1305 state = CAN_STATE_ERROR_ACTIVE; 1306 else if (txerr < 128 && rxerr < 128) 1307 state = CAN_STATE_ERROR_WARNING; 1308 1309 if (state != priv->can.state) { 1310 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1311 state, priv->can.state, txerr, rxerr); 1312 skb = alloc_can_err_skb(ndev, &cf); 1313 if (!skb) { 1314 stats->rx_dropped++; 1315 return; 1316 } 1317 tx_state = txerr >= rxerr ? state : 0; 1318 rx_state = txerr <= rxerr ? state : 0; 1319 1320 can_change_state(ndev, cf, tx_state, rx_state); 1321 netif_rx(skb); 1322 } 1323 } 1324 1325 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1326 { 1327 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1328 struct net_device *ndev = priv->ndev; 1329 u32 sts; 1330 1331 /* Handle Tx interrupts */ 1332 sts = rcar_canfd_read(priv->base, 1333 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1334 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1335 rcar_canfd_tx_done(ndev); 1336 } 1337 1338 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1339 { 1340 struct rcar_canfd_channel *priv = dev_id; 1341 1342 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel); 1343 1344 return IRQ_HANDLED; 1345 } 1346 1347 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1348 { 1349 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1350 struct net_device *ndev = priv->ndev; 1351 u16 txerr, rxerr; 1352 u32 sts, cerfl; 1353 1354 /* Handle channel error interrupts */ 1355 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1356 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1357 txerr = RCANFD_CSTS_TECCNT(sts); 1358 rxerr = RCANFD_CSTS_RECCNT(sts); 1359 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1360 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1361 1362 /* Handle state change to lower states */ 1363 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1364 priv->can.state != CAN_STATE_BUS_OFF)) 1365 rcar_canfd_state_change(ndev, txerr, rxerr); 1366 } 1367 1368 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1369 { 1370 struct rcar_canfd_channel *priv = dev_id; 1371 1372 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel); 1373 1374 return IRQ_HANDLED; 1375 } 1376 1377 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1378 { 1379 struct rcar_canfd_global *gpriv = dev_id; 1380 u32 ch; 1381 1382 /* Common FIFO is a per channel resource */ 1383 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1384 rcar_canfd_handle_channel_err(gpriv, ch); 1385 rcar_canfd_handle_channel_tx(gpriv, ch); 1386 } 1387 1388 return IRQ_HANDLED; 1389 } 1390 1391 static void rcar_canfd_set_bittiming(struct net_device *ndev) 1392 { 1393 u32 mask = RCANFD_FDCFG_TDCO | RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC; 1394 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1395 struct rcar_canfd_global *gpriv = priv->gpriv; 1396 const struct can_bittiming *bt = &priv->can.bittiming; 1397 const struct can_bittiming *dbt = &priv->can.fd.data_bittiming; 1398 const struct can_tdc_const *tdc_const = priv->can.fd.tdc_const; 1399 const struct can_tdc *tdc = &priv->can.fd.tdc; 1400 u32 cfg, tdcmode = 0, tdco = 0; 1401 u16 brp, sjw, tseg1, tseg2; 1402 u32 ch = priv->channel; 1403 1404 /* Nominal bit timing settings */ 1405 brp = bt->brp - 1; 1406 sjw = bt->sjw - 1; 1407 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1408 tseg2 = bt->phase_seg2 - 1; 1409 1410 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1411 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) | 1412 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1413 } else { 1414 cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) | 1415 RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2)); 1416 } 1417 1418 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1419 1420 if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD)) 1421 return; 1422 1423 /* Data bit timing settings */ 1424 brp = dbt->brp - 1; 1425 sjw = dbt->sjw - 1; 1426 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1427 tseg2 = dbt->phase_seg2 - 1; 1428 1429 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) | 1430 RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2)); 1431 1432 writel(cfg, &gpriv->fcbase[ch].dcfg); 1433 1434 /* Transceiver Delay Compensation */ 1435 if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO) { 1436 /* TDC enabled, measured + offset */ 1437 tdcmode = RCANFD_FDCFG_TDCE; 1438 tdco = tdc->tdco - 1; 1439 } else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL) { 1440 /* TDC enabled, offset only */ 1441 tdcmode = RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC; 1442 tdco = min(tdc->tdcv + tdc->tdco, tdc_const->tdco_max) - 1; 1443 } 1444 1445 rcar_canfd_update_bit_reg(&gpriv->fcbase[ch].cfdcfg, mask, 1446 tdcmode | FIELD_PREP(RCANFD_FDCFG_TDCO, tdco)); 1447 } 1448 1449 static int rcar_canfd_start(struct net_device *ndev) 1450 { 1451 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1452 struct rcar_canfd_global *gpriv = priv->gpriv; 1453 int err = -EOPNOTSUPP; 1454 u32 sts, ch = priv->channel; 1455 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1456 1457 rcar_canfd_set_bittiming(ndev); 1458 1459 rcar_canfd_enable_channel_interrupts(priv); 1460 1461 /* Set channel to Operational mode */ 1462 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1463 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1464 1465 /* Verify channel mode change */ 1466 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1467 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1468 if (err) { 1469 netdev_err(ndev, "channel %u communication state failed\n", ch); 1470 goto fail_mode_change; 1471 } 1472 1473 /* Enable Common & Rx FIFO */ 1474 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1475 RCANFD_CFCC_CFE); 1476 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1477 1478 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1479 return 0; 1480 1481 fail_mode_change: 1482 rcar_canfd_disable_channel_interrupts(priv); 1483 return err; 1484 } 1485 1486 static int rcar_canfd_open(struct net_device *ndev) 1487 { 1488 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1489 struct rcar_canfd_global *gpriv = priv->gpriv; 1490 int err; 1491 1492 err = phy_power_on(priv->transceiver); 1493 if (err) { 1494 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err)); 1495 return err; 1496 } 1497 1498 /* Peripheral clock is already enabled in probe */ 1499 err = clk_prepare_enable(gpriv->can_clk); 1500 if (err) { 1501 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err)); 1502 goto out_phy; 1503 } 1504 1505 err = open_candev(ndev); 1506 if (err) { 1507 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err)); 1508 goto out_can_clock; 1509 } 1510 1511 napi_enable(&priv->napi); 1512 err = rcar_canfd_start(ndev); 1513 if (err) 1514 goto out_close; 1515 netif_start_queue(ndev); 1516 return 0; 1517 out_close: 1518 napi_disable(&priv->napi); 1519 close_candev(ndev); 1520 out_can_clock: 1521 clk_disable_unprepare(gpriv->can_clk); 1522 out_phy: 1523 phy_power_off(priv->transceiver); 1524 return err; 1525 } 1526 1527 static void rcar_canfd_stop(struct net_device *ndev) 1528 { 1529 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1530 struct rcar_canfd_global *gpriv = priv->gpriv; 1531 int err; 1532 u32 sts, ch = priv->channel; 1533 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1534 1535 /* Transition to channel reset mode */ 1536 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1537 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1538 1539 /* Check Channel reset mode */ 1540 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1541 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1542 if (err) 1543 netdev_err(ndev, "channel %u reset failed\n", ch); 1544 1545 rcar_canfd_disable_channel_interrupts(priv); 1546 1547 /* Disable Common & Rx FIFO */ 1548 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1549 RCANFD_CFCC_CFE); 1550 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1551 1552 /* Set the state as STOPPED */ 1553 priv->can.state = CAN_STATE_STOPPED; 1554 } 1555 1556 static int rcar_canfd_close(struct net_device *ndev) 1557 { 1558 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1559 struct rcar_canfd_global *gpriv = priv->gpriv; 1560 1561 netif_stop_queue(ndev); 1562 rcar_canfd_stop(ndev); 1563 napi_disable(&priv->napi); 1564 clk_disable_unprepare(gpriv->can_clk); 1565 close_candev(ndev); 1566 phy_power_off(priv->transceiver); 1567 return 0; 1568 } 1569 1570 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1571 struct net_device *ndev) 1572 { 1573 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1574 struct rcar_canfd_global *gpriv = priv->gpriv; 1575 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1576 u32 sts = 0, id, dlc; 1577 unsigned long flags; 1578 u32 ch = priv->channel; 1579 1580 if (can_dev_dropped_skb(ndev, skb)) 1581 return NETDEV_TX_OK; 1582 1583 if (cf->can_id & CAN_EFF_FLAG) { 1584 id = cf->can_id & CAN_EFF_MASK; 1585 id |= RCANFD_CFID_CFIDE; 1586 } else { 1587 id = cf->can_id & CAN_SFF_MASK; 1588 } 1589 1590 if (cf->can_id & CAN_RTR_FLAG) 1591 id |= RCANFD_CFID_CFRTR; 1592 1593 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1594 1595 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1596 rcar_canfd_write(priv->base, 1597 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id); 1598 rcar_canfd_write(priv->base, 1599 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc); 1600 1601 if (can_is_canfd_skb(skb)) { 1602 /* CAN FD frame format */ 1603 sts |= RCANFD_CFFDCSTS_CFFDF; 1604 if (cf->flags & CANFD_BRS) 1605 sts |= RCANFD_CFFDCSTS_CFBRS; 1606 1607 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1608 sts |= RCANFD_CFFDCSTS_CFESI; 1609 } 1610 1611 rcar_canfd_write(priv->base, 1612 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts); 1613 1614 rcar_canfd_put_data(priv, cf, 1615 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0)); 1616 } else { 1617 rcar_canfd_write(priv->base, 1618 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1619 rcar_canfd_write(priv->base, 1620 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1621 rcar_canfd_put_data(priv, cf, 1622 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1623 } 1624 1625 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1626 1627 spin_lock_irqsave(&priv->tx_lock, flags); 1628 priv->tx_head++; 1629 1630 /* Stop the queue if we've filled all FIFO entries */ 1631 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1632 netif_stop_queue(ndev); 1633 1634 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1635 * pointer for the Common FIFO 1636 */ 1637 rcar_canfd_write(priv->base, 1638 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff); 1639 1640 spin_unlock_irqrestore(&priv->tx_lock, flags); 1641 return NETDEV_TX_OK; 1642 } 1643 1644 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1645 { 1646 struct net_device *ndev = priv->ndev; 1647 struct net_device_stats *stats = &ndev->stats; 1648 struct rcar_canfd_global *gpriv = priv->gpriv; 1649 struct canfd_frame *cf; 1650 struct sk_buff *skb; 1651 u32 sts = 0, id, dlc; 1652 u32 ch = priv->channel; 1653 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1654 1655 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1656 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx)); 1657 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx)); 1658 1659 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx)); 1660 1661 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && 1662 sts & RCANFD_RFFDSTS_RFFDF) 1663 skb = alloc_canfd_skb(ndev, &cf); 1664 else 1665 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 1666 } else { 1667 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1668 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1669 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 1670 } 1671 1672 if (!skb) { 1673 stats->rx_dropped++; 1674 return; 1675 } 1676 1677 if (id & RCANFD_RFID_RFIDE) 1678 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1679 else 1680 cf->can_id = id & CAN_SFF_MASK; 1681 1682 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1683 if (sts & RCANFD_RFFDSTS_RFFDF) 1684 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1685 else 1686 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1687 1688 if (sts & RCANFD_RFFDSTS_RFESI) { 1689 cf->flags |= CANFD_ESI; 1690 netdev_dbg(ndev, "ESI Error\n"); 1691 } 1692 1693 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1694 cf->can_id |= CAN_RTR_FLAG; 1695 } else { 1696 if (sts & RCANFD_RFFDSTS_RFBRS) 1697 cf->flags |= CANFD_BRS; 1698 1699 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1700 } 1701 } else { 1702 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1703 if (id & RCANFD_RFID_RFRTR) 1704 cf->can_id |= CAN_RTR_FLAG; 1705 else if (gpriv->info->shared_can_regs) 1706 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1707 else 1708 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1709 } 1710 1711 /* Write 0xff to RFPC to increment the CPU-side 1712 * pointer of the Rx FIFO 1713 */ 1714 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff); 1715 1716 if (!(cf->can_id & CAN_RTR_FLAG)) 1717 stats->rx_bytes += cf->len; 1718 stats->rx_packets++; 1719 netif_receive_skb(skb); 1720 } 1721 1722 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1723 { 1724 struct rcar_canfd_channel *priv = 1725 container_of(napi, struct rcar_canfd_channel, napi); 1726 struct rcar_canfd_global *gpriv = priv->gpriv; 1727 int num_pkts; 1728 u32 sts; 1729 u32 ch = priv->channel; 1730 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1731 1732 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1733 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1734 /* Check FIFO empty condition */ 1735 if (sts & RCANFD_RFSTS_RFEMP) 1736 break; 1737 1738 rcar_canfd_rx_pkt(priv); 1739 1740 /* Clear interrupt bit */ 1741 if (sts & RCANFD_RFSTS_RFIF) 1742 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1743 sts & ~RCANFD_RFSTS_RFIF); 1744 } 1745 1746 /* All packets processed */ 1747 if (num_pkts < quota) { 1748 if (napi_complete_done(napi, num_pkts)) { 1749 /* Enable Rx FIFO interrupts */ 1750 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), 1751 RCANFD_RFCC_RFIE); 1752 } 1753 } 1754 return num_pkts; 1755 } 1756 1757 static unsigned int rcar_canfd_get_tdcr(struct rcar_canfd_global *gpriv, 1758 unsigned int ch) 1759 { 1760 u32 sts = readl(&gpriv->fcbase[ch].cfdsts); 1761 u32 tdcr = FIELD_GET(RCANFD_FDSTS_TDCR, sts); 1762 1763 return tdcr & (gpriv->info->tdc_const->tdcv_max - 1); 1764 } 1765 1766 static int rcar_canfd_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv) 1767 { 1768 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1769 u32 tdco = priv->can.fd.tdc.tdco; 1770 u32 tdcr; 1771 1772 /* Transceiver Delay Compensation Result */ 1773 tdcr = rcar_canfd_get_tdcr(priv->gpriv, priv->channel) + 1; 1774 1775 *tdcv = tdcr < tdco ? 0 : tdcr - tdco; 1776 1777 return 0; 1778 } 1779 1780 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1781 { 1782 int err; 1783 1784 switch (mode) { 1785 case CAN_MODE_START: 1786 err = rcar_canfd_start(ndev); 1787 if (err) 1788 return err; 1789 netif_wake_queue(ndev); 1790 return 0; 1791 default: 1792 return -EOPNOTSUPP; 1793 } 1794 } 1795 1796 static int rcar_canfd_get_berr_counter(const struct net_device *ndev, 1797 struct can_berr_counter *bec) 1798 { 1799 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1800 u32 val, ch = priv->channel; 1801 1802 /* Peripheral clock is already enabled in probe */ 1803 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1804 bec->txerr = RCANFD_CSTS_TECCNT(val); 1805 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1806 return 0; 1807 } 1808 1809 static const struct net_device_ops rcar_canfd_netdev_ops = { 1810 .ndo_open = rcar_canfd_open, 1811 .ndo_stop = rcar_canfd_close, 1812 .ndo_start_xmit = rcar_canfd_start_xmit, 1813 .ndo_change_mtu = can_change_mtu, 1814 }; 1815 1816 static const struct ethtool_ops rcar_canfd_ethtool_ops = { 1817 .get_ts_info = ethtool_op_get_ts_info, 1818 }; 1819 1820 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1821 u32 fcan_freq, struct phy *transceiver) 1822 { 1823 const struct rcar_canfd_hw_info *info = gpriv->info; 1824 struct platform_device *pdev = gpriv->pdev; 1825 struct device *dev = &pdev->dev; 1826 struct rcar_canfd_channel *priv; 1827 struct net_device *ndev; 1828 int err = -ENODEV; 1829 1830 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1831 if (!ndev) 1832 return -ENOMEM; 1833 1834 priv = netdev_priv(ndev); 1835 1836 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1837 ndev->ethtool_ops = &rcar_canfd_ethtool_ops; 1838 ndev->flags |= IFF_ECHO; 1839 priv->ndev = ndev; 1840 priv->base = gpriv->base; 1841 priv->transceiver = transceiver; 1842 priv->channel = ch; 1843 priv->gpriv = gpriv; 1844 if (transceiver) 1845 priv->can.bitrate_max = transceiver->attrs.max_link_rate; 1846 priv->can.clock.freq = fcan_freq; 1847 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq); 1848 1849 if (info->multi_channel_irqs) { 1850 char *irq_name; 1851 char name[10]; 1852 int err_irq; 1853 int tx_irq; 1854 1855 scnprintf(name, sizeof(name), "ch%u_err", ch); 1856 err_irq = platform_get_irq_byname(pdev, name); 1857 if (err_irq < 0) { 1858 err = err_irq; 1859 goto fail; 1860 } 1861 1862 scnprintf(name, sizeof(name), "ch%u_trx", ch); 1863 tx_irq = platform_get_irq_byname(pdev, name); 1864 if (tx_irq < 0) { 1865 err = tx_irq; 1866 goto fail; 1867 } 1868 1869 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err", 1870 ch); 1871 if (!irq_name) { 1872 err = -ENOMEM; 1873 goto fail; 1874 } 1875 err = devm_request_irq(dev, err_irq, 1876 rcar_canfd_channel_err_interrupt, 0, 1877 irq_name, priv); 1878 if (err) { 1879 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n", 1880 err_irq, ERR_PTR(err)); 1881 goto fail; 1882 } 1883 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx", 1884 ch); 1885 if (!irq_name) { 1886 err = -ENOMEM; 1887 goto fail; 1888 } 1889 err = devm_request_irq(dev, tx_irq, 1890 rcar_canfd_channel_tx_interrupt, 0, 1891 irq_name, priv); 1892 if (err) { 1893 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n", 1894 tx_irq, ERR_PTR(err)); 1895 goto fail; 1896 } 1897 } 1898 1899 if (gpriv->fdmode) { 1900 priv->can.bittiming_const = gpriv->info->nom_bittiming; 1901 priv->can.fd.data_bittiming_const = gpriv->info->data_bittiming; 1902 priv->can.fd.tdc_const = gpriv->info->tdc_const; 1903 1904 /* Controller starts in CAN FD only mode */ 1905 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1906 if (err) 1907 goto fail; 1908 1909 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING | 1910 CAN_CTRLMODE_TDC_AUTO | 1911 CAN_CTRLMODE_TDC_MANUAL; 1912 priv->can.fd.do_get_auto_tdcv = rcar_canfd_get_auto_tdcv; 1913 } else { 1914 /* Controller starts in Classical CAN only mode */ 1915 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1916 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1917 } 1918 1919 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1920 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1921 SET_NETDEV_DEV(ndev, dev); 1922 1923 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll, 1924 RCANFD_NAPI_WEIGHT); 1925 spin_lock_init(&priv->tx_lock); 1926 gpriv->ch[priv->channel] = priv; 1927 err = register_candev(ndev); 1928 if (err) { 1929 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err)); 1930 goto fail_candev; 1931 } 1932 dev_info(dev, "device registered (channel %u)\n", priv->channel); 1933 return 0; 1934 1935 fail_candev: 1936 netif_napi_del(&priv->napi); 1937 fail: 1938 free_candev(ndev); 1939 return err; 1940 } 1941 1942 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1943 { 1944 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1945 1946 if (priv) { 1947 unregister_candev(priv->ndev); 1948 netif_napi_del(&priv->napi); 1949 free_candev(priv->ndev); 1950 } 1951 } 1952 1953 static int rcar_canfd_probe(struct platform_device *pdev) 1954 { 1955 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, }; 1956 const struct rcar_canfd_hw_info *info; 1957 struct device *dev = &pdev->dev; 1958 void __iomem *addr; 1959 u32 sts, ch, fcan_freq; 1960 struct rcar_canfd_global *gpriv; 1961 struct device_node *of_child; 1962 unsigned long channels_mask = 0; 1963 int err, ch_irq, g_irq; 1964 int g_err_irq, g_recc_irq; 1965 u32 rule_entry = 0; 1966 bool fdmode = true; /* CAN FD only mode - default */ 1967 char name[9] = "channelX"; 1968 struct clk *clk_ram; 1969 int i; 1970 1971 info = of_device_get_match_data(dev); 1972 1973 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd")) 1974 fdmode = false; /* Classical CAN only mode */ 1975 1976 for (i = 0; i < info->max_channels; ++i) { 1977 name[7] = '0' + i; 1978 of_child = of_get_available_child_by_name(dev->of_node, name); 1979 if (of_child) { 1980 channels_mask |= BIT(i); 1981 transceivers[i] = devm_of_phy_optional_get(dev, 1982 of_child, NULL); 1983 of_node_put(of_child); 1984 } 1985 if (IS_ERR(transceivers[i])) 1986 return PTR_ERR(transceivers[i]); 1987 } 1988 1989 if (info->shared_global_irqs) { 1990 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 1991 if (ch_irq < 0) { 1992 /* For backward compatibility get irq by index */ 1993 ch_irq = platform_get_irq(pdev, 0); 1994 if (ch_irq < 0) 1995 return ch_irq; 1996 } 1997 1998 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 1999 if (g_irq < 0) { 2000 /* For backward compatibility get irq by index */ 2001 g_irq = platform_get_irq(pdev, 1); 2002 if (g_irq < 0) 2003 return g_irq; 2004 } 2005 } else { 2006 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 2007 if (g_err_irq < 0) 2008 return g_err_irq; 2009 2010 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 2011 if (g_recc_irq < 0) 2012 return g_recc_irq; 2013 } 2014 2015 /* Global controller context */ 2016 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL); 2017 if (!gpriv) 2018 return -ENOMEM; 2019 2020 gpriv->pdev = pdev; 2021 gpriv->channels_mask = channels_mask; 2022 gpriv->fdmode = fdmode; 2023 gpriv->info = info; 2024 2025 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n"); 2026 if (IS_ERR(gpriv->rstc1)) 2027 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1), 2028 "failed to get rstp_n\n"); 2029 2030 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n"); 2031 if (IS_ERR(gpriv->rstc2)) 2032 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2), 2033 "failed to get rstc_n\n"); 2034 2035 /* Peripheral clock */ 2036 gpriv->clkp = devm_clk_get(dev, "fck"); 2037 if (IS_ERR(gpriv->clkp)) 2038 return dev_err_probe(dev, PTR_ERR(gpriv->clkp), 2039 "cannot get peripheral clock\n"); 2040 2041 /* fCAN clock: Pick External clock. If not available fallback to 2042 * CANFD clock 2043 */ 2044 gpriv->can_clk = devm_clk_get(dev, "can_clk"); 2045 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 2046 gpriv->can_clk = devm_clk_get(dev, "canfd"); 2047 if (IS_ERR(gpriv->can_clk)) 2048 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk), 2049 "cannot get canfd clock\n"); 2050 2051 /* CANFD clock may be further divided within the IP */ 2052 fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv; 2053 } else { 2054 fcan_freq = clk_get_rate(gpriv->can_clk); 2055 gpriv->extclk = gpriv->info->external_clk; 2056 } 2057 2058 clk_ram = devm_clk_get_optional_enabled(dev, "ram_clk"); 2059 if (IS_ERR(clk_ram)) 2060 return dev_err_probe(dev, PTR_ERR(clk_ram), 2061 "cannot get enabled ram clock\n"); 2062 2063 addr = devm_platform_ioremap_resource(pdev, 0); 2064 if (IS_ERR(addr)) { 2065 err = PTR_ERR(addr); 2066 goto fail_dev; 2067 } 2068 gpriv->base = addr; 2069 gpriv->fcbase = addr + gpriv->info->regs->coffset; 2070 2071 /* Request IRQ that's common for both channels */ 2072 if (info->shared_global_irqs) { 2073 err = devm_request_irq(dev, ch_irq, 2074 rcar_canfd_channel_interrupt, 0, 2075 "canfd.ch_int", gpriv); 2076 if (err) { 2077 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2078 ch_irq, ERR_PTR(err)); 2079 goto fail_dev; 2080 } 2081 2082 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt, 2083 0, "canfd.g_int", gpriv); 2084 if (err) { 2085 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2086 g_irq, ERR_PTR(err)); 2087 goto fail_dev; 2088 } 2089 } else { 2090 err = devm_request_irq(dev, g_recc_irq, 2091 rcar_canfd_global_receive_fifo_interrupt, 0, 2092 "canfd.g_recc", gpriv); 2093 2094 if (err) { 2095 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2096 g_recc_irq, ERR_PTR(err)); 2097 goto fail_dev; 2098 } 2099 2100 err = devm_request_irq(dev, g_err_irq, 2101 rcar_canfd_global_err_interrupt, 0, 2102 "canfd.g_err", gpriv); 2103 if (err) { 2104 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2105 g_err_irq, ERR_PTR(err)); 2106 goto fail_dev; 2107 } 2108 } 2109 2110 err = reset_control_reset(gpriv->rstc1); 2111 if (err) 2112 goto fail_dev; 2113 err = reset_control_reset(gpriv->rstc2); 2114 if (err) { 2115 reset_control_assert(gpriv->rstc1); 2116 goto fail_dev; 2117 } 2118 2119 /* Enable peripheral clock for register access */ 2120 err = clk_prepare_enable(gpriv->clkp); 2121 if (err) { 2122 dev_err(dev, "failed to enable peripheral clock: %pe\n", 2123 ERR_PTR(err)); 2124 goto fail_reset; 2125 } 2126 2127 err = rcar_canfd_reset_controller(gpriv); 2128 if (err) { 2129 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err)); 2130 goto fail_clk; 2131 } 2132 2133 /* Controller in Global reset & Channel reset mode */ 2134 rcar_canfd_configure_controller(gpriv); 2135 2136 /* Configure per channel attributes */ 2137 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2138 /* Configure Channel's Rx fifo */ 2139 rcar_canfd_configure_rx(gpriv, ch); 2140 2141 /* Configure Channel's Tx (Common) fifo */ 2142 rcar_canfd_configure_tx(gpriv, ch); 2143 2144 /* Configure receive rules */ 2145 rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry); 2146 rule_entry += RCANFD_CHANNEL_NUMRULES; 2147 } 2148 2149 /* Configure common interrupts */ 2150 rcar_canfd_enable_global_interrupts(gpriv); 2151 2152 /* Start Global operation mode */ 2153 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 2154 RCANFD_GCTR_GMDC_GOPM); 2155 2156 /* Verify mode change */ 2157 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 2158 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 2159 if (err) { 2160 dev_err(dev, "global operational mode failed\n"); 2161 goto fail_mode; 2162 } 2163 2164 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2165 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq, 2166 transceivers[ch]); 2167 if (err) 2168 goto fail_channel; 2169 } 2170 2171 platform_set_drvdata(pdev, gpriv); 2172 dev_info(dev, "global operational state (%s clk, %s mode)\n", 2173 gpriv->extclk ? "ext" : "canfd", 2174 gpriv->fdmode ? "fd" : "classical"); 2175 return 0; 2176 2177 fail_channel: 2178 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) 2179 rcar_canfd_channel_remove(gpriv, ch); 2180 fail_mode: 2181 rcar_canfd_disable_global_interrupts(gpriv); 2182 fail_clk: 2183 clk_disable_unprepare(gpriv->clkp); 2184 fail_reset: 2185 reset_control_assert(gpriv->rstc1); 2186 reset_control_assert(gpriv->rstc2); 2187 fail_dev: 2188 return err; 2189 } 2190 2191 static void rcar_canfd_remove(struct platform_device *pdev) 2192 { 2193 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 2194 u32 ch; 2195 2196 rcar_canfd_reset_controller(gpriv); 2197 rcar_canfd_disable_global_interrupts(gpriv); 2198 2199 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2200 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 2201 rcar_canfd_channel_remove(gpriv, ch); 2202 } 2203 2204 /* Enter global sleep mode */ 2205 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2206 clk_disable_unprepare(gpriv->clkp); 2207 reset_control_assert(gpriv->rstc1); 2208 reset_control_assert(gpriv->rstc2); 2209 } 2210 2211 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2212 { 2213 return 0; 2214 } 2215 2216 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2217 { 2218 return 0; 2219 } 2220 2221 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2222 rcar_canfd_resume); 2223 2224 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2225 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info }, 2226 { .compatible = "renesas,r9a09g047-canfd", .data = &r9a09g047_hw_info }, 2227 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info }, 2228 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info }, 2229 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info }, 2230 { } 2231 }; 2232 2233 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2234 2235 static struct platform_driver rcar_canfd_driver = { 2236 .driver = { 2237 .name = RCANFD_DRV_NAME, 2238 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2239 .pm = &rcar_canfd_pm_ops, 2240 }, 2241 .probe = rcar_canfd_probe, 2242 .remove = rcar_canfd_remove, 2243 }; 2244 2245 module_platform_driver(rcar_canfd_driver); 2246 2247 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2248 MODULE_LICENSE("GPL"); 2249 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2250 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2251