1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/bitfield.h> 25 #include <linux/bitmap.h> 26 #include <linux/bitops.h> 27 #include <linux/can/dev.h> 28 #include <linux/clk.h> 29 #include <linux/errno.h> 30 #include <linux/ethtool.h> 31 #include <linux/interrupt.h> 32 #include <linux/iopoll.h> 33 #include <linux/kernel.h> 34 #include <linux/module.h> 35 #include <linux/moduleparam.h> 36 #include <linux/netdevice.h> 37 #include <linux/of.h> 38 #include <linux/phy/phy.h> 39 #include <linux/platform_device.h> 40 #include <linux/reset.h> 41 #include <linux/types.h> 42 43 #define RCANFD_DRV_NAME "rcar_canfd" 44 45 /* Global register bits */ 46 47 /* RSCFDnCFDGRMCFG */ 48 #define RCANFD_GRMCFG_RCMC BIT(0) 49 50 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 51 #define RCANFD_GCFG_EEFE BIT(6) 52 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 53 #define RCANFD_GCFG_DCS BIT(4) 54 #define RCANFD_GCFG_DCE BIT(1) 55 #define RCANFD_GCFG_TPRI BIT(0) 56 57 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 58 #define RCANFD_GCTR_TSRST BIT(16) 59 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 60 #define RCANFD_GCTR_THLEIE BIT(10) 61 #define RCANFD_GCTR_MEIE BIT(9) 62 #define RCANFD_GCTR_DEIE BIT(8) 63 #define RCANFD_GCTR_GSLPR BIT(2) 64 #define RCANFD_GCTR_GMDC_MASK (0x3) 65 #define RCANFD_GCTR_GMDC_GOPM (0x0) 66 #define RCANFD_GCTR_GMDC_GRESET (0x1) 67 #define RCANFD_GCTR_GMDC_GTEST (0x2) 68 69 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 70 #define RCANFD_GSTS_GRAMINIT BIT(3) 71 #define RCANFD_GSTS_GSLPSTS BIT(2) 72 #define RCANFD_GSTS_GHLTSTS BIT(1) 73 #define RCANFD_GSTS_GRSTSTS BIT(0) 74 /* Non-operational status */ 75 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 76 77 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 78 #define RCANFD_GERFL_EEF GENMASK(23, 16) 79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 80 #define RCANFD_GERFL_THLES BIT(2) 81 #define RCANFD_GERFL_MES BIT(1) 82 #define RCANFD_GERFL_DEF BIT(0) 83 84 #define RCANFD_GERFL_ERR(gpriv, x) \ 85 ({\ 86 typeof(gpriv) (_gpriv) = (gpriv); \ 87 ((x) & ((FIELD_PREP(RCANFD_GERFL_EEF, (_gpriv)->channels_mask)) | \ 88 RCANFD_GERFL_MES | ((_gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))); \ 89 }) 90 91 /* AFL Rx rules registers */ 92 93 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 94 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 95 #define RCANFD_GAFLECTR_AFLPN(gpriv, page_num) ((page_num) & (gpriv)->info->max_aflpn) 96 97 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 98 #define RCANFD_GAFLID_GAFLLB BIT(29) 99 100 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 101 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 102 103 /* Channel register bits */ 104 105 /* RSCFDnCmCFG - Classical CAN only */ 106 #define RCANFD_CFG_SJW GENMASK(25, 24) 107 #define RCANFD_CFG_TSEG2 GENMASK(22, 20) 108 #define RCANFD_CFG_TSEG1 GENMASK(19, 16) 109 #define RCANFD_CFG_BRP GENMASK(9, 0) 110 111 /* RSCFDnCFDCmNCFG - CAN FD only */ 112 #define RCANFD_NCFG_NBRP GENMASK(9, 0) 113 114 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 115 #define RCANFD_CCTR_CTME BIT(24) 116 #define RCANFD_CCTR_ERRD BIT(23) 117 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 118 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 119 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 120 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 121 #define RCANFD_CCTR_TDCVFIE BIT(19) 122 #define RCANFD_CCTR_SOCOIE BIT(18) 123 #define RCANFD_CCTR_EOCOIE BIT(17) 124 #define RCANFD_CCTR_TAIE BIT(16) 125 #define RCANFD_CCTR_ALIE BIT(15) 126 #define RCANFD_CCTR_BLIE BIT(14) 127 #define RCANFD_CCTR_OLIE BIT(13) 128 #define RCANFD_CCTR_BORIE BIT(12) 129 #define RCANFD_CCTR_BOEIE BIT(11) 130 #define RCANFD_CCTR_EPIE BIT(10) 131 #define RCANFD_CCTR_EWIE BIT(9) 132 #define RCANFD_CCTR_BEIE BIT(8) 133 #define RCANFD_CCTR_CSLPR BIT(2) 134 #define RCANFD_CCTR_CHMDC_MASK (0x3) 135 #define RCANFD_CCTR_CHDMC_COPM (0x0) 136 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 137 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 138 139 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 140 #define RCANFD_CSTS_COMSTS BIT(7) 141 #define RCANFD_CSTS_RECSTS BIT(6) 142 #define RCANFD_CSTS_TRMSTS BIT(5) 143 #define RCANFD_CSTS_BOSTS BIT(4) 144 #define RCANFD_CSTS_EPSTS BIT(3) 145 #define RCANFD_CSTS_SLPSTS BIT(2) 146 #define RCANFD_CSTS_HLTSTS BIT(1) 147 #define RCANFD_CSTS_CRSTSTS BIT(0) 148 149 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 150 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 151 152 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 153 #define RCANFD_CERFL_ADERR BIT(14) 154 #define RCANFD_CERFL_B0ERR BIT(13) 155 #define RCANFD_CERFL_B1ERR BIT(12) 156 #define RCANFD_CERFL_CERR BIT(11) 157 #define RCANFD_CERFL_AERR BIT(10) 158 #define RCANFD_CERFL_FERR BIT(9) 159 #define RCANFD_CERFL_SERR BIT(8) 160 #define RCANFD_CERFL_ALF BIT(7) 161 #define RCANFD_CERFL_BLF BIT(6) 162 #define RCANFD_CERFL_OVLF BIT(5) 163 #define RCANFD_CERFL_BORF BIT(4) 164 #define RCANFD_CERFL_BOEF BIT(3) 165 #define RCANFD_CERFL_EPF BIT(2) 166 #define RCANFD_CERFL_EWF BIT(1) 167 #define RCANFD_CERFL_BEF BIT(0) 168 169 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 170 171 /* RSCFDnCFDCmDCFG */ 172 #define RCANFD_DCFG_DBRP GENMASK(7, 0) 173 174 /* RSCFDnCFDCmFDCFG */ 175 #define RCANFD_GEN4_FDCFG_CLOE BIT(30) 176 #define RCANFD_GEN4_FDCFG_FDOE BIT(28) 177 #define RCANFD_FDCFG_TDCO GENMASK(23, 16) 178 #define RCANFD_FDCFG_TDCE BIT(9) 179 #define RCANFD_FDCFG_TDCOC BIT(8) 180 181 /* RSCFDnCFDCmFDSTS */ 182 #define RCANFD_FDSTS_SOC GENMASK(31, 24) 183 #define RCANFD_FDSTS_EOC GENMASK(23, 16) 184 #define RCANFD_GEN4_FDSTS_TDCVF BIT(15) 185 #define RCANFD_GEN4_FDSTS_PNSTS GENMASK(13, 12) 186 #define RCANFD_FDSTS_SOCO BIT(9) 187 #define RCANFD_FDSTS_EOCO BIT(8) 188 #define RCANFD_FDSTS_TDCVF BIT(7) 189 #define RCANFD_FDSTS_TDCR GENMASK(7, 0) 190 191 /* RSCFDnCFDRFCCx */ 192 #define RCANFD_RFCC_RFIM BIT(12) 193 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 194 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 195 #define RCANFD_RFCC_RFIE BIT(1) 196 #define RCANFD_RFCC_RFE BIT(0) 197 198 /* RSCFDnCFDRFSTSx */ 199 #define RCANFD_RFSTS_RFIF BIT(3) 200 #define RCANFD_RFSTS_RFMLT BIT(2) 201 #define RCANFD_RFSTS_RFFLL BIT(1) 202 #define RCANFD_RFSTS_RFEMP BIT(0) 203 204 /* RSCFDnCFDRFIDx */ 205 #define RCANFD_RFID_RFIDE BIT(31) 206 #define RCANFD_RFID_RFRTR BIT(30) 207 208 /* RSCFDnCFDRFPTRx */ 209 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 210 211 /* RSCFDnCFDRFFDSTSx */ 212 #define RCANFD_RFFDSTS_RFFDF BIT(2) 213 #define RCANFD_RFFDSTS_RFBRS BIT(1) 214 #define RCANFD_RFFDSTS_RFESI BIT(0) 215 216 /* Common FIFO bits */ 217 218 /* RSCFDnCFDCFCCk */ 219 #define RCANFD_CFCC_CFTML(gpriv, cftml) \ 220 ({\ 221 typeof(gpriv) (_gpriv) = (gpriv); \ 222 (((cftml) & (_gpriv)->info->max_cftml) << (_gpriv)->info->sh->cftml); \ 223 }) 224 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << (gpriv)->info->sh->cfm) 225 #define RCANFD_CFCC_CFIM BIT(12) 226 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << (gpriv)->info->sh->cfdc) 227 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 228 #define RCANFD_CFCC_CFTXIE BIT(2) 229 #define RCANFD_CFCC_CFE BIT(0) 230 231 /* RSCFDnCFDCFSTSk */ 232 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 233 #define RCANFD_CFSTS_CFTXIF BIT(4) 234 #define RCANFD_CFSTS_CFMLT BIT(2) 235 #define RCANFD_CFSTS_CFFLL BIT(1) 236 #define RCANFD_CFSTS_CFEMP BIT(0) 237 238 /* RSCFDnCFDCFIDk */ 239 #define RCANFD_CFID_CFIDE BIT(31) 240 #define RCANFD_CFID_CFRTR BIT(30) 241 242 /* RSCFDnCFDCFPTRk */ 243 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 244 245 /* RSCFDnCFDCFFDCSTSk */ 246 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 247 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 248 #define RCANFD_CFFDCSTS_CFESI BIT(0) 249 250 /* This controller supports either Classical CAN only mode or CAN FD only mode. 251 * These modes are supported in two separate set of register maps & names. 252 * However, some of the register offsets are common for both modes. Those 253 * offsets are listed below as Common registers. 254 * 255 * The CAN FD only mode specific registers & Classical CAN only mode specific 256 * registers are listed separately. Their register names starts with 257 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 258 */ 259 260 /* Common registers */ 261 262 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 263 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 264 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 265 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 266 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 267 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 268 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 269 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 270 271 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 272 #define RCANFD_GCFG (0x0084) 273 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 274 #define RCANFD_GCTR (0x0088) 275 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 276 #define RCANFD_GSTS (0x008c) 277 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 278 #define RCANFD_GERFL (0x0090) 279 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 280 #define RCANFD_GTSC (0x0094) 281 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 282 #define RCANFD_GAFLECTR (0x0098) 283 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */ 284 #define RCANFD_GAFLCFG(w) (0x009c + (0x04 * (w))) 285 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 286 #define RCANFD_RMNB (0x00a4) 287 /* RSCFDnCFDRMND / RSCFDnRMND */ 288 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 289 290 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 291 #define RCANFD_RFCC(gpriv, x) ((gpriv)->info->regs->rfcc + (0x04 * (x))) 292 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 293 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20) 294 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 295 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40) 296 297 /* Common FIFO Control registers */ 298 299 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 300 #define RCANFD_CFCC(gpriv, ch, idx) \ 301 ((gpriv)->info->regs->cfcc + (0x0c * (ch)) + (0x04 * (idx))) 302 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 303 #define RCANFD_CFSTS(gpriv, ch, idx) \ 304 ((gpriv)->info->regs->cfsts + (0x0c * (ch)) + (0x04 * (idx))) 305 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 306 #define RCANFD_CFPCTR(gpriv, ch, idx) \ 307 ((gpriv)->info->regs->cfpctr + (0x0c * (ch)) + (0x04 * (idx))) 308 309 /* RSCFDnCFDGRMCFG */ 310 #define RCANFD_GRMCFG (0x04fc) 311 312 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 313 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 314 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 315 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 316 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 317 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 318 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 319 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 320 321 /* Classical CAN only mode register map */ 322 323 /* RSCFDnGAFLXXXj offset */ 324 #define RCANFD_C_GAFL_OFFSET (0x0500) 325 326 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 327 #define RCANFD_C_RFOFFSET (0x0e00) 328 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 329 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x))) 330 #define RCANFD_C_RFDF(x, df) \ 331 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df))) 332 333 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 334 #define RCANFD_C_CFOFFSET (0x0e80) 335 336 #define RCANFD_C_CFID(ch, idx) \ 337 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx))) 338 339 #define RCANFD_C_CFPTR(ch, idx) \ 340 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx))) 341 342 #define RCANFD_C_CFDF(ch, idx, df) \ 343 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df))) 344 345 /* R-Car Gen4 Classical and CAN FD mode specific register map */ 346 #define RCANFD_GEN4_GAFL_OFFSET (0x1800) 347 348 /* CAN FD mode specific register map */ 349 350 /* RSCFDnCFDCmXXX -> gpriv->fcbase[m].xxx */ 351 struct rcar_canfd_f_c { 352 u32 dcfg; 353 u32 cfdcfg; 354 u32 cfdctr; 355 u32 cfdsts; 356 u32 cfdcrc; 357 u32 pad[3]; 358 }; 359 360 /* RSCFDnCFDGAFLXXXj offset */ 361 #define RCANFD_F_GAFL_OFFSET (0x1000) 362 363 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 364 #define RCANFD_F_RFOFFSET(gpriv) ((gpriv)->info->regs->rfoffset) 365 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x))) 366 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x))) 367 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x))) 368 #define RCANFD_F_RFDF(gpriv, x, df) \ 369 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df))) 370 371 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 372 #define RCANFD_F_CFOFFSET(gpriv) ((gpriv)->info->regs->cfoffset) 373 374 #define RCANFD_F_CFID(gpriv, ch, idx) \ 375 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx))) 376 377 #define RCANFD_F_CFPTR(gpriv, ch, idx) \ 378 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx))) 379 380 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \ 381 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx))) 382 383 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \ 384 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \ 385 (0x04 * (df))) 386 387 /* Constants */ 388 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 389 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 390 391 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */ 392 393 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 394 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 395 396 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 397 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 398 * number is added to RFFIFO index. 399 */ 400 #define RCANFD_RFFIFO_IDX 0 401 402 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 403 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 404 */ 405 #define RCANFD_CFFIFO_IDX 0 406 407 struct rcar_canfd_global; 408 409 struct rcar_canfd_regs { 410 u16 rfcc; /* RX FIFO Configuration/Control Register */ 411 u16 cfcc; /* Common FIFO Configuration/Control Register */ 412 u16 cfsts; /* Common FIFO Status Register */ 413 u16 cfpctr; /* Common FIFO Pointer Control Register */ 414 u16 coffset; /* Channel Data Bitrate Configuration Register */ 415 u16 rfoffset; /* Receive FIFO buffer access ID register */ 416 u16 cfoffset; /* Transmit/receive FIFO buffer access ID register */ 417 }; 418 419 struct rcar_canfd_shift_data { 420 u8 ntseg2; /* Nominal Bit Rate Time Segment 2 Control */ 421 u8 ntseg1; /* Nominal Bit Rate Time Segment 1 Control */ 422 u8 nsjw; /* Nominal Bit Rate Resynchronization Jump Width Control */ 423 u8 dtseg2; /* Data Bit Rate Time Segment 2 Control */ 424 u8 dtseg1; /* Data Bit Rate Time Segment 1 Control */ 425 u8 cftml; /* Common FIFO TX Message Buffer Link */ 426 u8 cfm; /* Common FIFO Mode */ 427 u8 cfdc; /* Common FIFO Depth Configuration */ 428 }; 429 430 struct rcar_canfd_hw_info { 431 const struct can_bittiming_const *nom_bittiming; 432 const struct can_bittiming_const *data_bittiming; 433 const struct can_tdc_const *tdc_const; 434 const struct rcar_canfd_regs *regs; 435 const struct rcar_canfd_shift_data *sh; 436 u8 rnc_field_width; 437 u8 max_aflpn; 438 u8 max_cftml; 439 u8 max_channels; 440 u8 postdiv; 441 /* hardware features */ 442 unsigned shared_global_irqs:1; /* Has shared global irqs */ 443 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */ 444 unsigned ch_interface_mode:1; /* Has channel interface mode */ 445 unsigned shared_can_regs:1; /* Has shared classical can registers */ 446 unsigned external_clk:1; /* Has external clock */ 447 }; 448 449 /* Channel priv data */ 450 struct rcar_canfd_channel { 451 struct can_priv can; /* Must be the first member */ 452 struct net_device *ndev; 453 struct rcar_canfd_global *gpriv; /* Controller reference */ 454 void __iomem *base; /* Register base address */ 455 struct phy *transceiver; /* Optional transceiver */ 456 struct napi_struct napi; 457 u32 tx_head; /* Incremented on xmit */ 458 u32 tx_tail; /* Incremented on xmit done */ 459 u32 channel; /* Channel number */ 460 spinlock_t tx_lock; /* To protect tx path */ 461 }; 462 463 /* Global priv data */ 464 struct rcar_canfd_global { 465 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 466 void __iomem *base; /* Register base address */ 467 struct rcar_canfd_f_c __iomem *fcbase; 468 struct platform_device *pdev; /* Respective platform device */ 469 struct clk *clkp; /* Peripheral clock */ 470 struct clk *can_clk; /* fCAN clock */ 471 unsigned long channels_mask; /* Enabled channels mask */ 472 bool extclk; /* CANFD or Ext clock */ 473 bool fdmode; /* CAN FD or Classical CAN only mode */ 474 struct reset_control *rstc1; 475 struct reset_control *rstc2; 476 const struct rcar_canfd_hw_info *info; 477 }; 478 479 /* CAN FD mode nominal rate constants */ 480 static const struct can_bittiming_const rcar_canfd_gen3_nom_bittiming_const = { 481 .name = RCANFD_DRV_NAME, 482 .tseg1_min = 2, 483 .tseg1_max = 128, 484 .tseg2_min = 2, 485 .tseg2_max = 32, 486 .sjw_max = 32, 487 .brp_min = 1, 488 .brp_max = 1024, 489 .brp_inc = 1, 490 }; 491 492 static const struct can_bittiming_const rcar_canfd_gen4_nom_bittiming_const = { 493 .name = RCANFD_DRV_NAME, 494 .tseg1_min = 2, 495 .tseg1_max = 256, 496 .tseg2_min = 2, 497 .tseg2_max = 128, 498 .sjw_max = 128, 499 .brp_min = 1, 500 .brp_max = 1024, 501 .brp_inc = 1, 502 }; 503 504 /* CAN FD mode data rate constants */ 505 static const struct can_bittiming_const rcar_canfd_gen3_data_bittiming_const = { 506 .name = RCANFD_DRV_NAME, 507 .tseg1_min = 2, 508 .tseg1_max = 16, 509 .tseg2_min = 2, 510 .tseg2_max = 8, 511 .sjw_max = 8, 512 .brp_min = 1, 513 .brp_max = 256, 514 .brp_inc = 1, 515 }; 516 517 static const struct can_bittiming_const rcar_canfd_gen4_data_bittiming_const = { 518 .name = RCANFD_DRV_NAME, 519 .tseg1_min = 2, 520 .tseg1_max = 32, 521 .tseg2_min = 2, 522 .tseg2_max = 16, 523 .sjw_max = 16, 524 .brp_min = 1, 525 .brp_max = 256, 526 .brp_inc = 1, 527 }; 528 529 /* Classical CAN mode bitrate constants */ 530 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 531 .name = RCANFD_DRV_NAME, 532 .tseg1_min = 4, 533 .tseg1_max = 16, 534 .tseg2_min = 2, 535 .tseg2_max = 8, 536 .sjw_max = 4, 537 .brp_min = 1, 538 .brp_max = 1024, 539 .brp_inc = 1, 540 }; 541 542 /* CAN FD Transmission Delay Compensation constants */ 543 static const struct can_tdc_const rcar_canfd_gen3_tdc_const = { 544 .tdcv_min = 1, 545 .tdcv_max = 128, 546 .tdco_min = 1, 547 .tdco_max = 128, 548 .tdcf_min = 0, /* Filter window not supported */ 549 .tdcf_max = 0, 550 }; 551 552 static const struct can_tdc_const rcar_canfd_gen4_tdc_const = { 553 .tdcv_min = 1, 554 .tdcv_max = 256, 555 .tdco_min = 1, 556 .tdco_max = 256, 557 .tdcf_min = 0, /* Filter window not supported */ 558 .tdcf_max = 0, 559 }; 560 561 static const struct rcar_canfd_regs rcar_gen3_regs = { 562 .rfcc = 0x00b8, 563 .cfcc = 0x0118, 564 .cfsts = 0x0178, 565 .cfpctr = 0x01d8, 566 .coffset = 0x0500, 567 .rfoffset = 0x3000, 568 .cfoffset = 0x3400, 569 }; 570 571 static const struct rcar_canfd_regs rcar_gen4_regs = { 572 .rfcc = 0x00c0, 573 .cfcc = 0x0120, 574 .cfsts = 0x01e0, 575 .cfpctr = 0x0240, 576 .coffset = 0x1400, 577 .rfoffset = 0x6000, 578 .cfoffset = 0x6400, 579 }; 580 581 static const struct rcar_canfd_shift_data rcar_gen3_shift_data = { 582 .ntseg2 = 24, 583 .ntseg1 = 16, 584 .nsjw = 11, 585 .dtseg2 = 20, 586 .dtseg1 = 16, 587 .cftml = 20, 588 .cfm = 16, 589 .cfdc = 8, 590 }; 591 592 static const struct rcar_canfd_shift_data rcar_gen4_shift_data = { 593 .ntseg2 = 25, 594 .ntseg1 = 17, 595 .nsjw = 10, 596 .dtseg2 = 16, 597 .dtseg1 = 8, 598 .cftml = 16, 599 .cfm = 8, 600 .cfdc = 21, 601 }; 602 603 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = { 604 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const, 605 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const, 606 .tdc_const = &rcar_canfd_gen3_tdc_const, 607 .regs = &rcar_gen3_regs, 608 .sh = &rcar_gen3_shift_data, 609 .rnc_field_width = 8, 610 .max_aflpn = 31, 611 .max_cftml = 15, 612 .max_channels = 2, 613 .postdiv = 2, 614 .shared_global_irqs = 1, 615 .ch_interface_mode = 0, 616 .shared_can_regs = 0, 617 .external_clk = 1, 618 }; 619 620 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = { 621 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const, 622 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const, 623 .tdc_const = &rcar_canfd_gen4_tdc_const, 624 .regs = &rcar_gen4_regs, 625 .sh = &rcar_gen4_shift_data, 626 .rnc_field_width = 16, 627 .max_aflpn = 127, 628 .max_cftml = 31, 629 .max_channels = 8, 630 .postdiv = 2, 631 .shared_global_irqs = 1, 632 .ch_interface_mode = 1, 633 .shared_can_regs = 1, 634 .external_clk = 1, 635 }; 636 637 static const struct rcar_canfd_hw_info rzg2l_hw_info = { 638 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const, 639 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const, 640 .tdc_const = &rcar_canfd_gen3_tdc_const, 641 .regs = &rcar_gen3_regs, 642 .sh = &rcar_gen3_shift_data, 643 .rnc_field_width = 8, 644 .max_aflpn = 31, 645 .max_cftml = 15, 646 .max_channels = 2, 647 .postdiv = 1, 648 .multi_channel_irqs = 1, 649 .ch_interface_mode = 0, 650 .shared_can_regs = 0, 651 .external_clk = 1, 652 }; 653 654 static const struct rcar_canfd_hw_info r9a09g047_hw_info = { 655 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const, 656 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const, 657 .tdc_const = &rcar_canfd_gen4_tdc_const, 658 .regs = &rcar_gen4_regs, 659 .sh = &rcar_gen4_shift_data, 660 .rnc_field_width = 16, 661 .max_aflpn = 63, 662 .max_cftml = 31, 663 .max_channels = 6, 664 .postdiv = 1, 665 .multi_channel_irqs = 1, 666 .ch_interface_mode = 1, 667 .shared_can_regs = 1, 668 .external_clk = 0, 669 }; 670 671 /* Helper functions */ 672 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 673 { 674 u32 data = readl(reg); 675 676 data &= ~mask; 677 data |= (val & mask); 678 writel(data, reg); 679 } 680 681 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 682 { 683 return readl(base + offset); 684 } 685 686 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 687 { 688 writel(val, base + offset); 689 } 690 691 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 692 { 693 rcar_canfd_update(val, val, base + reg); 694 } 695 696 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 697 { 698 rcar_canfd_update(val, 0, base + reg); 699 } 700 701 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 702 u32 mask, u32 val) 703 { 704 rcar_canfd_update(mask, val, base + reg); 705 } 706 707 static void rcar_canfd_set_bit_reg(void __iomem *addr, u32 val) 708 { 709 rcar_canfd_update(val, val, addr); 710 } 711 712 static void rcar_canfd_update_bit_reg(void __iomem *addr, u32 mask, u32 val) 713 { 714 rcar_canfd_update(mask, val, addr); 715 } 716 717 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 718 struct canfd_frame *cf, u32 off) 719 { 720 u32 *data = (u32 *)cf->data; 721 u32 i, lwords; 722 723 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 724 for (i = 0; i < lwords; i++) 725 data[i] = rcar_canfd_read(priv->base, off + i * sizeof(u32)); 726 } 727 728 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 729 struct canfd_frame *cf, u32 off) 730 { 731 const u32 *data = (u32 *)cf->data; 732 u32 i, lwords; 733 734 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 735 for (i = 0; i < lwords; i++) 736 rcar_canfd_write(priv->base, off + i * sizeof(u32), data[i]); 737 } 738 739 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 740 { 741 u32 i; 742 743 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 744 can_free_echo_skb(ndev, i, NULL); 745 } 746 747 static void rcar_canfd_set_rnc(struct rcar_canfd_global *gpriv, unsigned int ch, 748 unsigned int num_rules) 749 { 750 unsigned int rnc_stride = 32 / gpriv->info->rnc_field_width; 751 unsigned int shift = 32 - (ch % rnc_stride + 1) * gpriv->info->rnc_field_width; 752 unsigned int w = ch / rnc_stride; 753 u32 rnc = num_rules << shift; 754 755 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(w), rnc); 756 } 757 758 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv) 759 { 760 if (gpriv->info->ch_interface_mode) { 761 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE 762 : RCANFD_GEN4_FDCFG_CLOE; 763 764 for_each_set_bit(ch, &gpriv->channels_mask, 765 gpriv->info->max_channels) 766 rcar_canfd_set_bit_reg(&gpriv->fcbase[ch].cfdcfg, val); 767 } else { 768 if (gpriv->fdmode) 769 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 770 RCANFD_GRMCFG_RCMC); 771 else 772 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 773 RCANFD_GRMCFG_RCMC); 774 } 775 } 776 777 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 778 { 779 struct device *dev = &gpriv->pdev->dev; 780 u32 sts, ch; 781 int err; 782 783 /* Check RAMINIT flag as CAN RAM initialization takes place 784 * after the MCU reset 785 */ 786 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 787 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 788 if (err) { 789 dev_dbg(dev, "global raminit failed\n"); 790 return err; 791 } 792 793 /* Transition to Global Reset mode */ 794 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 795 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 796 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 797 798 /* Ensure Global reset mode */ 799 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 800 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 801 if (err) { 802 dev_dbg(dev, "global reset failed\n"); 803 return err; 804 } 805 806 /* Reset Global error flags */ 807 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 808 809 /* Transition all Channels to reset mode */ 810 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 811 rcar_canfd_clear_bit(gpriv->base, 812 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 813 814 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 815 RCANFD_CCTR_CHMDC_MASK, 816 RCANFD_CCTR_CHDMC_CRESET); 817 818 /* Ensure Channel reset mode */ 819 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 820 (sts & RCANFD_CSTS_CRSTSTS), 821 2, 500000); 822 if (err) { 823 dev_dbg(dev, "channel %u reset failed\n", ch); 824 return err; 825 } 826 } 827 828 /* Set the controller into appropriate mode */ 829 rcar_canfd_set_mode(gpriv); 830 831 return 0; 832 } 833 834 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 835 { 836 u32 cfg, ch; 837 838 /* Global configuration settings */ 839 840 /* ECC Error flag Enable */ 841 cfg = RCANFD_GCFG_EEFE; 842 843 if (gpriv->fdmode) 844 /* Truncate payload to configured message size RFPLS */ 845 cfg |= RCANFD_GCFG_CMPOC; 846 847 /* Set External Clock if selected */ 848 if (gpriv->extclk) 849 cfg |= RCANFD_GCFG_DCS; 850 851 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 852 853 /* Channel configuration settings */ 854 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 855 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 856 RCANFD_CCTR_ERRD); 857 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 858 RCANFD_CCTR_BOM_MASK, 859 RCANFD_CCTR_BOM_BENTRY); 860 } 861 } 862 863 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 864 u32 ch, u32 rule_entry) 865 { 866 unsigned int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES; 867 u32 rule_entry_index = rule_entry % 16; 868 u32 ridx = ch + RCANFD_RFFIFO_IDX; 869 870 /* Enable write access to entry */ 871 page = RCANFD_GAFL_PAGENUM(rule_entry); 872 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 873 (RCANFD_GAFLECTR_AFLPN(gpriv, page) | 874 RCANFD_GAFLECTR_AFLDAE)); 875 876 /* Write number of rules for channel */ 877 rcar_canfd_set_rnc(gpriv, ch, num_rules); 878 if (gpriv->info->shared_can_regs) 879 offset = RCANFD_GEN4_GAFL_OFFSET; 880 else if (gpriv->fdmode) 881 offset = RCANFD_F_GAFL_OFFSET; 882 else 883 offset = RCANFD_C_GAFL_OFFSET; 884 885 /* Accept all IDs */ 886 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0); 887 /* IDE or RTR is not considered for matching */ 888 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0); 889 /* Any data length accepted */ 890 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0); 891 /* Place the msg in corresponding Rx FIFO entry */ 892 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index), 893 RCANFD_GAFLP1_GAFLFDP(ridx)); 894 895 /* Disable write access to page */ 896 rcar_canfd_clear_bit(gpriv->base, 897 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 898 } 899 900 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 901 { 902 /* Rx FIFO is used for reception */ 903 u32 cfg; 904 u16 rfdc, rfpls; 905 906 /* Select Rx FIFO based on channel */ 907 u32 ridx = ch + RCANFD_RFFIFO_IDX; 908 909 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 910 if (gpriv->fdmode) 911 rfpls = 7; /* b111 - Max 64 bytes payload */ 912 else 913 rfpls = 0; /* b000 - Max 8 bytes payload */ 914 915 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 916 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 917 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg); 918 } 919 920 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 921 { 922 /* Tx/Rx(Common) FIFO configured in Tx mode is 923 * used for transmission 924 * 925 * Each channel has 3 Common FIFO dedicated to them. 926 * Use the 1st (index 0) out of 3 927 */ 928 u32 cfg; 929 u16 cftml, cfm, cfdc, cfpls; 930 931 cftml = 0; /* 0th buffer */ 932 cfm = 1; /* b01 - Transmit mode */ 933 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 934 if (gpriv->fdmode) 935 cfpls = 7; /* b111 - Max 64 bytes payload */ 936 else 937 cfpls = 0; /* b000 - Max 8 bytes payload */ 938 939 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) | 940 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) | 941 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 942 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg); 943 944 if (gpriv->fdmode) 945 /* Clear FD mode specific control/status register */ 946 rcar_canfd_write(gpriv->base, 947 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0); 948 } 949 950 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 951 { 952 u32 ctr; 953 954 /* Clear any stray error interrupt flags */ 955 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 956 957 /* Global interrupts setup */ 958 ctr = RCANFD_GCTR_MEIE; 959 if (gpriv->fdmode) 960 ctr |= RCANFD_GCTR_CFMPOFIE; 961 962 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 963 } 964 965 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 966 *gpriv) 967 { 968 /* Disable all interrupts */ 969 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 970 971 /* Clear any stray error interrupt flags */ 972 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 973 } 974 975 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 976 *priv) 977 { 978 u32 ctr, ch = priv->channel; 979 980 /* Clear any stray error flags */ 981 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 982 983 /* Channel interrupts setup */ 984 ctr = (RCANFD_CCTR_TAIE | 985 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 986 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 987 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 988 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 989 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 990 } 991 992 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 993 *priv) 994 { 995 u32 ctr, ch = priv->channel; 996 997 ctr = (RCANFD_CCTR_TAIE | 998 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 999 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 1000 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 1001 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 1002 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 1003 1004 /* Clear any stray error flags */ 1005 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 1006 } 1007 1008 static void rcar_canfd_global_error(struct net_device *ndev) 1009 { 1010 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1011 struct rcar_canfd_global *gpriv = priv->gpriv; 1012 struct net_device_stats *stats = &ndev->stats; 1013 u32 ch = priv->channel; 1014 u32 gerfl, sts; 1015 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1016 1017 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1018 if (gerfl & FIELD_PREP(RCANFD_GERFL_EEF, BIT(ch))) { 1019 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch); 1020 stats->tx_dropped++; 1021 } 1022 if (gerfl & RCANFD_GERFL_MES) { 1023 sts = rcar_canfd_read(priv->base, 1024 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1025 if (sts & RCANFD_CFSTS_CFMLT) { 1026 netdev_dbg(ndev, "Tx Message Lost flag\n"); 1027 stats->tx_dropped++; 1028 rcar_canfd_write(priv->base, 1029 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1030 sts & ~RCANFD_CFSTS_CFMLT); 1031 } 1032 1033 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1034 if (sts & RCANFD_RFSTS_RFMLT) { 1035 netdev_dbg(ndev, "Rx Message Lost flag\n"); 1036 stats->rx_dropped++; 1037 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1038 sts & ~RCANFD_RFSTS_RFMLT); 1039 } 1040 } 1041 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 1042 /* Message Lost flag will be set for respective channel 1043 * when this condition happens with counters and flags 1044 * already updated. 1045 */ 1046 netdev_dbg(ndev, "global payload overflow interrupt\n"); 1047 } 1048 1049 /* Clear all global error interrupts. Only affected channels bits 1050 * get cleared 1051 */ 1052 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 1053 } 1054 1055 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 1056 u16 txerr, u16 rxerr) 1057 { 1058 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1059 struct net_device_stats *stats = &ndev->stats; 1060 struct can_frame *cf; 1061 struct sk_buff *skb; 1062 u32 ch = priv->channel; 1063 1064 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 1065 1066 /* Propagate the error condition to the CAN stack */ 1067 skb = alloc_can_err_skb(ndev, &cf); 1068 if (!skb) { 1069 stats->rx_dropped++; 1070 return; 1071 } 1072 1073 /* Channel error interrupts */ 1074 if (cerfl & RCANFD_CERFL_BEF) { 1075 netdev_dbg(ndev, "Bus error\n"); 1076 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 1077 cf->data[2] = CAN_ERR_PROT_UNSPEC; 1078 priv->can.can_stats.bus_error++; 1079 } 1080 if (cerfl & RCANFD_CERFL_ADERR) { 1081 netdev_dbg(ndev, "ACK Delimiter Error\n"); 1082 stats->tx_errors++; 1083 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 1084 } 1085 if (cerfl & RCANFD_CERFL_B0ERR) { 1086 netdev_dbg(ndev, "Bit Error (dominant)\n"); 1087 stats->tx_errors++; 1088 cf->data[2] |= CAN_ERR_PROT_BIT0; 1089 } 1090 if (cerfl & RCANFD_CERFL_B1ERR) { 1091 netdev_dbg(ndev, "Bit Error (recessive)\n"); 1092 stats->tx_errors++; 1093 cf->data[2] |= CAN_ERR_PROT_BIT1; 1094 } 1095 if (cerfl & RCANFD_CERFL_CERR) { 1096 netdev_dbg(ndev, "CRC Error\n"); 1097 stats->rx_errors++; 1098 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 1099 } 1100 if (cerfl & RCANFD_CERFL_AERR) { 1101 netdev_dbg(ndev, "ACK Error\n"); 1102 stats->tx_errors++; 1103 cf->can_id |= CAN_ERR_ACK; 1104 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 1105 } 1106 if (cerfl & RCANFD_CERFL_FERR) { 1107 netdev_dbg(ndev, "Form Error\n"); 1108 stats->rx_errors++; 1109 cf->data[2] |= CAN_ERR_PROT_FORM; 1110 } 1111 if (cerfl & RCANFD_CERFL_SERR) { 1112 netdev_dbg(ndev, "Stuff Error\n"); 1113 stats->rx_errors++; 1114 cf->data[2] |= CAN_ERR_PROT_STUFF; 1115 } 1116 if (cerfl & RCANFD_CERFL_ALF) { 1117 netdev_dbg(ndev, "Arbitration lost Error\n"); 1118 priv->can.can_stats.arbitration_lost++; 1119 cf->can_id |= CAN_ERR_LOSTARB; 1120 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 1121 } 1122 if (cerfl & RCANFD_CERFL_BLF) { 1123 netdev_dbg(ndev, "Bus Lock Error\n"); 1124 stats->rx_errors++; 1125 cf->can_id |= CAN_ERR_BUSERROR; 1126 } 1127 if (cerfl & RCANFD_CERFL_EWF) { 1128 netdev_dbg(ndev, "Error warning interrupt\n"); 1129 priv->can.state = CAN_STATE_ERROR_WARNING; 1130 priv->can.can_stats.error_warning++; 1131 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1132 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1133 CAN_ERR_CRTL_RX_WARNING; 1134 cf->data[6] = txerr; 1135 cf->data[7] = rxerr; 1136 } 1137 if (cerfl & RCANFD_CERFL_EPF) { 1138 netdev_dbg(ndev, "Error passive interrupt\n"); 1139 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1140 priv->can.can_stats.error_passive++; 1141 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1142 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1143 CAN_ERR_CRTL_RX_PASSIVE; 1144 cf->data[6] = txerr; 1145 cf->data[7] = rxerr; 1146 } 1147 if (cerfl & RCANFD_CERFL_BOEF) { 1148 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1149 rcar_canfd_tx_failure_cleanup(ndev); 1150 priv->can.state = CAN_STATE_BUS_OFF; 1151 priv->can.can_stats.bus_off++; 1152 can_bus_off(ndev); 1153 cf->can_id |= CAN_ERR_BUSOFF; 1154 } 1155 if (cerfl & RCANFD_CERFL_OVLF) { 1156 netdev_dbg(ndev, 1157 "Overload Frame Transmission error interrupt\n"); 1158 stats->tx_errors++; 1159 cf->can_id |= CAN_ERR_PROT; 1160 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1161 } 1162 1163 /* Clear channel error interrupts that are handled */ 1164 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1165 RCANFD_CERFL_ERR(~cerfl)); 1166 netif_rx(skb); 1167 } 1168 1169 static void rcar_canfd_tx_done(struct net_device *ndev) 1170 { 1171 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1172 struct rcar_canfd_global *gpriv = priv->gpriv; 1173 struct net_device_stats *stats = &ndev->stats; 1174 u32 sts; 1175 unsigned long flags; 1176 u32 ch = priv->channel; 1177 1178 do { 1179 u8 unsent, sent; 1180 1181 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1182 stats->tx_packets++; 1183 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1184 1185 spin_lock_irqsave(&priv->tx_lock, flags); 1186 priv->tx_tail++; 1187 sts = rcar_canfd_read(priv->base, 1188 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1189 unsent = RCANFD_CFSTS_CFMC(sts); 1190 1191 /* Wake producer only when there is room */ 1192 if (unsent != RCANFD_FIFO_DEPTH) 1193 netif_wake_queue(ndev); 1194 1195 if (priv->tx_head - priv->tx_tail <= unsent) { 1196 spin_unlock_irqrestore(&priv->tx_lock, flags); 1197 break; 1198 } 1199 spin_unlock_irqrestore(&priv->tx_lock, flags); 1200 1201 } while (1); 1202 1203 /* Clear interrupt */ 1204 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1205 sts & ~RCANFD_CFSTS_CFTXIF); 1206 } 1207 1208 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1209 { 1210 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1211 struct net_device *ndev = priv->ndev; 1212 u32 gerfl; 1213 1214 /* Handle global error interrupts */ 1215 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1216 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1217 rcar_canfd_global_error(ndev); 1218 } 1219 1220 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1221 { 1222 struct rcar_canfd_global *gpriv = dev_id; 1223 u32 ch; 1224 1225 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1226 rcar_canfd_handle_global_err(gpriv, ch); 1227 1228 return IRQ_HANDLED; 1229 } 1230 1231 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1232 { 1233 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1234 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1235 u32 sts, cc; 1236 1237 /* Handle Rx interrupts */ 1238 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1239 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx)); 1240 if (likely(sts & RCANFD_RFSTS_RFIF && 1241 cc & RCANFD_RFCC_RFIE)) { 1242 if (napi_schedule_prep(&priv->napi)) { 1243 /* Disable Rx FIFO interrupts */ 1244 rcar_canfd_clear_bit(priv->base, 1245 RCANFD_RFCC(gpriv, ridx), 1246 RCANFD_RFCC_RFIE); 1247 __napi_schedule(&priv->napi); 1248 } 1249 } 1250 } 1251 1252 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1253 { 1254 struct rcar_canfd_global *gpriv = dev_id; 1255 u32 ch; 1256 1257 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1258 rcar_canfd_handle_global_receive(gpriv, ch); 1259 1260 return IRQ_HANDLED; 1261 } 1262 1263 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1264 { 1265 struct rcar_canfd_global *gpriv = dev_id; 1266 u32 ch; 1267 1268 /* Global error interrupts still indicate a condition specific 1269 * to a channel. RxFIFO interrupt is a global interrupt. 1270 */ 1271 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1272 rcar_canfd_handle_global_err(gpriv, ch); 1273 rcar_canfd_handle_global_receive(gpriv, ch); 1274 } 1275 return IRQ_HANDLED; 1276 } 1277 1278 static void rcar_canfd_state_change(struct net_device *ndev, 1279 u16 txerr, u16 rxerr) 1280 { 1281 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1282 struct net_device_stats *stats = &ndev->stats; 1283 enum can_state rx_state, tx_state, state = priv->can.state; 1284 struct can_frame *cf; 1285 struct sk_buff *skb; 1286 1287 /* Handle transition from error to normal states */ 1288 if (txerr < 96 && rxerr < 96) 1289 state = CAN_STATE_ERROR_ACTIVE; 1290 else if (txerr < 128 && rxerr < 128) 1291 state = CAN_STATE_ERROR_WARNING; 1292 1293 if (state != priv->can.state) { 1294 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1295 state, priv->can.state, txerr, rxerr); 1296 skb = alloc_can_err_skb(ndev, &cf); 1297 if (!skb) { 1298 stats->rx_dropped++; 1299 return; 1300 } 1301 tx_state = txerr >= rxerr ? state : 0; 1302 rx_state = txerr <= rxerr ? state : 0; 1303 1304 can_change_state(ndev, cf, tx_state, rx_state); 1305 netif_rx(skb); 1306 } 1307 } 1308 1309 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1310 { 1311 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1312 struct net_device *ndev = priv->ndev; 1313 u32 sts; 1314 1315 /* Handle Tx interrupts */ 1316 sts = rcar_canfd_read(priv->base, 1317 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1318 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1319 rcar_canfd_tx_done(ndev); 1320 } 1321 1322 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1323 { 1324 struct rcar_canfd_channel *priv = dev_id; 1325 1326 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel); 1327 1328 return IRQ_HANDLED; 1329 } 1330 1331 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1332 { 1333 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1334 struct net_device *ndev = priv->ndev; 1335 u16 txerr, rxerr; 1336 u32 sts, cerfl; 1337 1338 /* Handle channel error interrupts */ 1339 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1340 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1341 txerr = RCANFD_CSTS_TECCNT(sts); 1342 rxerr = RCANFD_CSTS_RECCNT(sts); 1343 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1344 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1345 1346 /* Handle state change to lower states */ 1347 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1348 priv->can.state != CAN_STATE_BUS_OFF)) 1349 rcar_canfd_state_change(ndev, txerr, rxerr); 1350 } 1351 1352 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1353 { 1354 struct rcar_canfd_channel *priv = dev_id; 1355 1356 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel); 1357 1358 return IRQ_HANDLED; 1359 } 1360 1361 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1362 { 1363 struct rcar_canfd_global *gpriv = dev_id; 1364 u32 ch; 1365 1366 /* Common FIFO is a per channel resource */ 1367 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1368 rcar_canfd_handle_channel_err(gpriv, ch); 1369 rcar_canfd_handle_channel_tx(gpriv, ch); 1370 } 1371 1372 return IRQ_HANDLED; 1373 } 1374 1375 static inline u32 rcar_canfd_compute_nominal_bit_rate_cfg(struct rcar_canfd_channel *priv, 1376 u16 tseg1, u16 tseg2, u16 sjw, u16 brp) 1377 { 1378 struct rcar_canfd_global *gpriv = priv->gpriv; 1379 const struct rcar_canfd_hw_info *info = gpriv->info; 1380 u32 ntseg1, ntseg2, nsjw, nbrp; 1381 1382 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1383 ntseg1 = (tseg1 & (info->nom_bittiming->tseg1_max - 1)) << info->sh->ntseg1; 1384 ntseg2 = (tseg2 & (info->nom_bittiming->tseg2_max - 1)) << info->sh->ntseg2; 1385 nsjw = (sjw & (info->nom_bittiming->sjw_max - 1)) << info->sh->nsjw; 1386 nbrp = FIELD_PREP(RCANFD_NCFG_NBRP, brp); 1387 } else { 1388 ntseg1 = FIELD_PREP(RCANFD_CFG_TSEG1, tseg1); 1389 ntseg2 = FIELD_PREP(RCANFD_CFG_TSEG2, tseg2); 1390 nsjw = FIELD_PREP(RCANFD_CFG_SJW, sjw); 1391 nbrp = FIELD_PREP(RCANFD_CFG_BRP, brp); 1392 } 1393 1394 return (ntseg1 | ntseg2 | nsjw | nbrp); 1395 } 1396 1397 static inline u32 rcar_canfd_compute_data_bit_rate_cfg(const struct rcar_canfd_hw_info *info, 1398 u16 tseg1, u16 tseg2, u16 sjw, u16 brp) 1399 { 1400 u32 dtseg1, dtseg2, dsjw, dbrp; 1401 1402 dtseg1 = (tseg1 & (info->data_bittiming->tseg1_max - 1)) << info->sh->dtseg1; 1403 dtseg2 = (tseg2 & (info->data_bittiming->tseg2_max - 1)) << info->sh->dtseg2; 1404 dsjw = (sjw & (info->data_bittiming->sjw_max - 1)) << 24; 1405 dbrp = FIELD_PREP(RCANFD_DCFG_DBRP, brp); 1406 1407 return (dtseg1 | dtseg2 | dsjw | dbrp); 1408 } 1409 1410 static void rcar_canfd_set_bittiming(struct net_device *ndev) 1411 { 1412 u32 mask = RCANFD_FDCFG_TDCO | RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC; 1413 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1414 struct rcar_canfd_global *gpriv = priv->gpriv; 1415 const struct can_bittiming *bt = &priv->can.bittiming; 1416 const struct can_bittiming *dbt = &priv->can.fd.data_bittiming; 1417 const struct can_tdc_const *tdc_const = priv->can.fd.tdc_const; 1418 const struct can_tdc *tdc = &priv->can.fd.tdc; 1419 u32 cfg, tdcmode = 0, tdco = 0; 1420 u16 brp, sjw, tseg1, tseg2; 1421 u32 ch = priv->channel; 1422 1423 /* Nominal bit timing settings */ 1424 brp = bt->brp - 1; 1425 sjw = bt->sjw - 1; 1426 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1427 tseg2 = bt->phase_seg2 - 1; 1428 cfg = rcar_canfd_compute_nominal_bit_rate_cfg(priv, tseg1, tseg2, sjw, brp); 1429 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1430 1431 if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD)) 1432 return; 1433 1434 /* Data bit timing settings */ 1435 brp = dbt->brp - 1; 1436 sjw = dbt->sjw - 1; 1437 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1438 tseg2 = dbt->phase_seg2 - 1; 1439 cfg = rcar_canfd_compute_data_bit_rate_cfg(gpriv->info, tseg1, tseg2, sjw, brp); 1440 writel(cfg, &gpriv->fcbase[ch].dcfg); 1441 1442 /* Transceiver Delay Compensation */ 1443 if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO) { 1444 /* TDC enabled, measured + offset */ 1445 tdcmode = RCANFD_FDCFG_TDCE; 1446 tdco = tdc->tdco - 1; 1447 } else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL) { 1448 /* TDC enabled, offset only */ 1449 tdcmode = RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC; 1450 tdco = min(tdc->tdcv + tdc->tdco, tdc_const->tdco_max) - 1; 1451 } 1452 1453 rcar_canfd_update_bit_reg(&gpriv->fcbase[ch].cfdcfg, mask, 1454 tdcmode | FIELD_PREP(RCANFD_FDCFG_TDCO, tdco)); 1455 } 1456 1457 static int rcar_canfd_start(struct net_device *ndev) 1458 { 1459 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1460 struct rcar_canfd_global *gpriv = priv->gpriv; 1461 int err = -EOPNOTSUPP; 1462 u32 sts, ch = priv->channel; 1463 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1464 1465 rcar_canfd_set_bittiming(ndev); 1466 1467 rcar_canfd_enable_channel_interrupts(priv); 1468 1469 /* Set channel to Operational mode */ 1470 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1471 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1472 1473 /* Verify channel mode change */ 1474 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1475 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1476 if (err) { 1477 netdev_err(ndev, "channel %u communication state failed\n", ch); 1478 goto fail_mode_change; 1479 } 1480 1481 /* Enable Common & Rx FIFO */ 1482 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1483 RCANFD_CFCC_CFE); 1484 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1485 1486 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1487 return 0; 1488 1489 fail_mode_change: 1490 rcar_canfd_disable_channel_interrupts(priv); 1491 return err; 1492 } 1493 1494 static int rcar_canfd_open(struct net_device *ndev) 1495 { 1496 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1497 struct rcar_canfd_global *gpriv = priv->gpriv; 1498 int err; 1499 1500 err = phy_power_on(priv->transceiver); 1501 if (err) { 1502 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err)); 1503 return err; 1504 } 1505 1506 /* Peripheral clock is already enabled in probe */ 1507 err = clk_prepare_enable(gpriv->can_clk); 1508 if (err) { 1509 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err)); 1510 goto out_phy; 1511 } 1512 1513 err = open_candev(ndev); 1514 if (err) { 1515 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err)); 1516 goto out_can_clock; 1517 } 1518 1519 napi_enable(&priv->napi); 1520 err = rcar_canfd_start(ndev); 1521 if (err) 1522 goto out_close; 1523 netif_start_queue(ndev); 1524 return 0; 1525 out_close: 1526 napi_disable(&priv->napi); 1527 close_candev(ndev); 1528 out_can_clock: 1529 clk_disable_unprepare(gpriv->can_clk); 1530 out_phy: 1531 phy_power_off(priv->transceiver); 1532 return err; 1533 } 1534 1535 static void rcar_canfd_stop(struct net_device *ndev) 1536 { 1537 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1538 struct rcar_canfd_global *gpriv = priv->gpriv; 1539 int err; 1540 u32 sts, ch = priv->channel; 1541 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1542 1543 /* Transition to channel reset mode */ 1544 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1545 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1546 1547 /* Check Channel reset mode */ 1548 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1549 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1550 if (err) 1551 netdev_err(ndev, "channel %u reset failed\n", ch); 1552 1553 rcar_canfd_disable_channel_interrupts(priv); 1554 1555 /* Disable Common & Rx FIFO */ 1556 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1557 RCANFD_CFCC_CFE); 1558 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1559 1560 /* Set the state as STOPPED */ 1561 priv->can.state = CAN_STATE_STOPPED; 1562 } 1563 1564 static int rcar_canfd_close(struct net_device *ndev) 1565 { 1566 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1567 struct rcar_canfd_global *gpriv = priv->gpriv; 1568 1569 netif_stop_queue(ndev); 1570 rcar_canfd_stop(ndev); 1571 napi_disable(&priv->napi); 1572 clk_disable_unprepare(gpriv->can_clk); 1573 close_candev(ndev); 1574 phy_power_off(priv->transceiver); 1575 return 0; 1576 } 1577 1578 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1579 struct net_device *ndev) 1580 { 1581 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1582 struct rcar_canfd_global *gpriv = priv->gpriv; 1583 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1584 u32 sts = 0, id, dlc; 1585 unsigned long flags; 1586 u32 ch = priv->channel; 1587 1588 if (can_dev_dropped_skb(ndev, skb)) 1589 return NETDEV_TX_OK; 1590 1591 if (cf->can_id & CAN_EFF_FLAG) { 1592 id = cf->can_id & CAN_EFF_MASK; 1593 id |= RCANFD_CFID_CFIDE; 1594 } else { 1595 id = cf->can_id & CAN_SFF_MASK; 1596 } 1597 1598 if (cf->can_id & CAN_RTR_FLAG) 1599 id |= RCANFD_CFID_CFRTR; 1600 1601 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1602 1603 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1604 rcar_canfd_write(priv->base, 1605 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id); 1606 rcar_canfd_write(priv->base, 1607 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc); 1608 1609 if (can_is_canfd_skb(skb)) { 1610 /* CAN FD frame format */ 1611 sts |= RCANFD_CFFDCSTS_CFFDF; 1612 if (cf->flags & CANFD_BRS) 1613 sts |= RCANFD_CFFDCSTS_CFBRS; 1614 1615 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1616 sts |= RCANFD_CFFDCSTS_CFESI; 1617 } 1618 1619 rcar_canfd_write(priv->base, 1620 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts); 1621 1622 rcar_canfd_put_data(priv, cf, 1623 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0)); 1624 } else { 1625 rcar_canfd_write(priv->base, 1626 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1627 rcar_canfd_write(priv->base, 1628 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1629 rcar_canfd_put_data(priv, cf, 1630 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1631 } 1632 1633 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1634 1635 spin_lock_irqsave(&priv->tx_lock, flags); 1636 priv->tx_head++; 1637 1638 /* Stop the queue if we've filled all FIFO entries */ 1639 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1640 netif_stop_queue(ndev); 1641 1642 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1643 * pointer for the Common FIFO 1644 */ 1645 rcar_canfd_write(priv->base, 1646 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff); 1647 1648 spin_unlock_irqrestore(&priv->tx_lock, flags); 1649 return NETDEV_TX_OK; 1650 } 1651 1652 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1653 { 1654 struct net_device *ndev = priv->ndev; 1655 struct net_device_stats *stats = &ndev->stats; 1656 struct rcar_canfd_global *gpriv = priv->gpriv; 1657 struct canfd_frame *cf; 1658 struct sk_buff *skb; 1659 u32 sts = 0, id, dlc; 1660 u32 ch = priv->channel; 1661 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1662 1663 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1664 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx)); 1665 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx)); 1666 1667 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx)); 1668 1669 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && 1670 sts & RCANFD_RFFDSTS_RFFDF) 1671 skb = alloc_canfd_skb(ndev, &cf); 1672 else 1673 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 1674 } else { 1675 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1676 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1677 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 1678 } 1679 1680 if (!skb) { 1681 stats->rx_dropped++; 1682 return; 1683 } 1684 1685 if (id & RCANFD_RFID_RFIDE) 1686 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1687 else 1688 cf->can_id = id & CAN_SFF_MASK; 1689 1690 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1691 if (sts & RCANFD_RFFDSTS_RFFDF) 1692 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1693 else 1694 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1695 1696 if (sts & RCANFD_RFFDSTS_RFESI) { 1697 cf->flags |= CANFD_ESI; 1698 netdev_dbg(ndev, "ESI Error\n"); 1699 } 1700 1701 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1702 cf->can_id |= CAN_RTR_FLAG; 1703 } else { 1704 if (sts & RCANFD_RFFDSTS_RFBRS) 1705 cf->flags |= CANFD_BRS; 1706 1707 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1708 } 1709 } else { 1710 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1711 if (id & RCANFD_RFID_RFRTR) 1712 cf->can_id |= CAN_RTR_FLAG; 1713 else if (gpriv->info->shared_can_regs) 1714 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1715 else 1716 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1717 } 1718 1719 /* Write 0xff to RFPC to increment the CPU-side 1720 * pointer of the Rx FIFO 1721 */ 1722 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff); 1723 1724 if (!(cf->can_id & CAN_RTR_FLAG)) 1725 stats->rx_bytes += cf->len; 1726 stats->rx_packets++; 1727 netif_receive_skb(skb); 1728 } 1729 1730 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1731 { 1732 struct rcar_canfd_channel *priv = 1733 container_of(napi, struct rcar_canfd_channel, napi); 1734 struct rcar_canfd_global *gpriv = priv->gpriv; 1735 int num_pkts; 1736 u32 sts; 1737 u32 ch = priv->channel; 1738 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1739 1740 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1741 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1742 /* Check FIFO empty condition */ 1743 if (sts & RCANFD_RFSTS_RFEMP) 1744 break; 1745 1746 rcar_canfd_rx_pkt(priv); 1747 1748 /* Clear interrupt bit */ 1749 if (sts & RCANFD_RFSTS_RFIF) 1750 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1751 sts & ~RCANFD_RFSTS_RFIF); 1752 } 1753 1754 /* All packets processed */ 1755 if (num_pkts < quota) { 1756 if (napi_complete_done(napi, num_pkts)) { 1757 /* Enable Rx FIFO interrupts */ 1758 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), 1759 RCANFD_RFCC_RFIE); 1760 } 1761 } 1762 return num_pkts; 1763 } 1764 1765 static unsigned int rcar_canfd_get_tdcr(struct rcar_canfd_global *gpriv, 1766 unsigned int ch) 1767 { 1768 u32 sts = readl(&gpriv->fcbase[ch].cfdsts); 1769 u32 tdcr = FIELD_GET(RCANFD_FDSTS_TDCR, sts); 1770 1771 return tdcr & (gpriv->info->tdc_const->tdcv_max - 1); 1772 } 1773 1774 static int rcar_canfd_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv) 1775 { 1776 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1777 u32 tdco = priv->can.fd.tdc.tdco; 1778 u32 tdcr; 1779 1780 /* Transceiver Delay Compensation Result */ 1781 tdcr = rcar_canfd_get_tdcr(priv->gpriv, priv->channel) + 1; 1782 1783 *tdcv = tdcr < tdco ? 0 : tdcr - tdco; 1784 1785 return 0; 1786 } 1787 1788 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1789 { 1790 int err; 1791 1792 switch (mode) { 1793 case CAN_MODE_START: 1794 err = rcar_canfd_start(ndev); 1795 if (err) 1796 return err; 1797 netif_wake_queue(ndev); 1798 return 0; 1799 default: 1800 return -EOPNOTSUPP; 1801 } 1802 } 1803 1804 static int rcar_canfd_get_berr_counter(const struct net_device *ndev, 1805 struct can_berr_counter *bec) 1806 { 1807 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1808 u32 val, ch = priv->channel; 1809 1810 /* Peripheral clock is already enabled in probe */ 1811 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1812 bec->txerr = RCANFD_CSTS_TECCNT(val); 1813 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1814 return 0; 1815 } 1816 1817 static const struct net_device_ops rcar_canfd_netdev_ops = { 1818 .ndo_open = rcar_canfd_open, 1819 .ndo_stop = rcar_canfd_close, 1820 .ndo_start_xmit = rcar_canfd_start_xmit, 1821 .ndo_change_mtu = can_change_mtu, 1822 }; 1823 1824 static const struct ethtool_ops rcar_canfd_ethtool_ops = { 1825 .get_ts_info = ethtool_op_get_ts_info, 1826 }; 1827 1828 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1829 u32 fcan_freq, struct phy *transceiver) 1830 { 1831 const struct rcar_canfd_hw_info *info = gpriv->info; 1832 struct platform_device *pdev = gpriv->pdev; 1833 struct device *dev = &pdev->dev; 1834 struct rcar_canfd_channel *priv; 1835 struct net_device *ndev; 1836 int err = -ENODEV; 1837 1838 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1839 if (!ndev) 1840 return -ENOMEM; 1841 1842 priv = netdev_priv(ndev); 1843 1844 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1845 ndev->ethtool_ops = &rcar_canfd_ethtool_ops; 1846 ndev->flags |= IFF_ECHO; 1847 priv->ndev = ndev; 1848 priv->base = gpriv->base; 1849 priv->transceiver = transceiver; 1850 priv->channel = ch; 1851 priv->gpriv = gpriv; 1852 if (transceiver) 1853 priv->can.bitrate_max = transceiver->attrs.max_link_rate; 1854 priv->can.clock.freq = fcan_freq; 1855 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq); 1856 1857 if (info->multi_channel_irqs) { 1858 char *irq_name; 1859 char name[10]; 1860 int err_irq; 1861 int tx_irq; 1862 1863 scnprintf(name, sizeof(name), "ch%u_err", ch); 1864 err_irq = platform_get_irq_byname(pdev, name); 1865 if (err_irq < 0) { 1866 err = err_irq; 1867 goto fail; 1868 } 1869 1870 scnprintf(name, sizeof(name), "ch%u_trx", ch); 1871 tx_irq = platform_get_irq_byname(pdev, name); 1872 if (tx_irq < 0) { 1873 err = tx_irq; 1874 goto fail; 1875 } 1876 1877 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err", 1878 ch); 1879 if (!irq_name) { 1880 err = -ENOMEM; 1881 goto fail; 1882 } 1883 err = devm_request_irq(dev, err_irq, 1884 rcar_canfd_channel_err_interrupt, 0, 1885 irq_name, priv); 1886 if (err) { 1887 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n", 1888 err_irq, ERR_PTR(err)); 1889 goto fail; 1890 } 1891 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx", 1892 ch); 1893 if (!irq_name) { 1894 err = -ENOMEM; 1895 goto fail; 1896 } 1897 err = devm_request_irq(dev, tx_irq, 1898 rcar_canfd_channel_tx_interrupt, 0, 1899 irq_name, priv); 1900 if (err) { 1901 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n", 1902 tx_irq, ERR_PTR(err)); 1903 goto fail; 1904 } 1905 } 1906 1907 if (gpriv->fdmode) { 1908 priv->can.bittiming_const = gpriv->info->nom_bittiming; 1909 priv->can.fd.data_bittiming_const = gpriv->info->data_bittiming; 1910 priv->can.fd.tdc_const = gpriv->info->tdc_const; 1911 1912 /* Controller starts in CAN FD only mode */ 1913 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1914 if (err) 1915 goto fail; 1916 1917 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING | 1918 CAN_CTRLMODE_TDC_AUTO | 1919 CAN_CTRLMODE_TDC_MANUAL; 1920 priv->can.fd.do_get_auto_tdcv = rcar_canfd_get_auto_tdcv; 1921 } else { 1922 /* Controller starts in Classical CAN only mode */ 1923 if (gpriv->info->shared_can_regs) 1924 priv->can.bittiming_const = gpriv->info->nom_bittiming; 1925 else 1926 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1927 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1928 } 1929 1930 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1931 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1932 SET_NETDEV_DEV(ndev, dev); 1933 1934 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll, 1935 RCANFD_NAPI_WEIGHT); 1936 spin_lock_init(&priv->tx_lock); 1937 gpriv->ch[priv->channel] = priv; 1938 err = register_candev(ndev); 1939 if (err) { 1940 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err)); 1941 goto fail_candev; 1942 } 1943 dev_info(dev, "device registered (channel %u)\n", priv->channel); 1944 return 0; 1945 1946 fail_candev: 1947 netif_napi_del(&priv->napi); 1948 fail: 1949 free_candev(ndev); 1950 return err; 1951 } 1952 1953 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1954 { 1955 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1956 1957 if (priv) { 1958 unregister_candev(priv->ndev); 1959 netif_napi_del(&priv->napi); 1960 free_candev(priv->ndev); 1961 } 1962 } 1963 1964 static int rcar_canfd_probe(struct platform_device *pdev) 1965 { 1966 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, }; 1967 const struct rcar_canfd_hw_info *info; 1968 struct device *dev = &pdev->dev; 1969 void __iomem *addr; 1970 u32 sts, ch, fcan_freq; 1971 struct rcar_canfd_global *gpriv; 1972 struct device_node *of_child; 1973 unsigned long channels_mask = 0; 1974 int err, ch_irq, g_irq; 1975 int g_err_irq, g_recc_irq; 1976 u32 rule_entry = 0; 1977 bool fdmode = true; /* CAN FD only mode - default */ 1978 char name[9] = "channelX"; 1979 struct clk *clk_ram; 1980 int i; 1981 1982 info = of_device_get_match_data(dev); 1983 1984 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd")) 1985 fdmode = false; /* Classical CAN only mode */ 1986 1987 for (i = 0; i < info->max_channels; ++i) { 1988 name[7] = '0' + i; 1989 of_child = of_get_available_child_by_name(dev->of_node, name); 1990 if (of_child) { 1991 channels_mask |= BIT(i); 1992 transceivers[i] = devm_of_phy_optional_get(dev, 1993 of_child, NULL); 1994 of_node_put(of_child); 1995 } 1996 if (IS_ERR(transceivers[i])) 1997 return PTR_ERR(transceivers[i]); 1998 } 1999 2000 if (info->shared_global_irqs) { 2001 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 2002 if (ch_irq < 0) { 2003 /* For backward compatibility get irq by index */ 2004 ch_irq = platform_get_irq(pdev, 0); 2005 if (ch_irq < 0) 2006 return ch_irq; 2007 } 2008 2009 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 2010 if (g_irq < 0) { 2011 /* For backward compatibility get irq by index */ 2012 g_irq = platform_get_irq(pdev, 1); 2013 if (g_irq < 0) 2014 return g_irq; 2015 } 2016 } else { 2017 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 2018 if (g_err_irq < 0) 2019 return g_err_irq; 2020 2021 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 2022 if (g_recc_irq < 0) 2023 return g_recc_irq; 2024 } 2025 2026 /* Global controller context */ 2027 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL); 2028 if (!gpriv) 2029 return -ENOMEM; 2030 2031 gpriv->pdev = pdev; 2032 gpriv->channels_mask = channels_mask; 2033 gpriv->fdmode = fdmode; 2034 gpriv->info = info; 2035 2036 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n"); 2037 if (IS_ERR(gpriv->rstc1)) 2038 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1), 2039 "failed to get rstp_n\n"); 2040 2041 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n"); 2042 if (IS_ERR(gpriv->rstc2)) 2043 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2), 2044 "failed to get rstc_n\n"); 2045 2046 /* Peripheral clock */ 2047 gpriv->clkp = devm_clk_get(dev, "fck"); 2048 if (IS_ERR(gpriv->clkp)) 2049 return dev_err_probe(dev, PTR_ERR(gpriv->clkp), 2050 "cannot get peripheral clock\n"); 2051 2052 /* fCAN clock: Pick External clock. If not available fallback to 2053 * CANFD clock 2054 */ 2055 gpriv->can_clk = devm_clk_get(dev, "can_clk"); 2056 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 2057 gpriv->can_clk = devm_clk_get(dev, "canfd"); 2058 if (IS_ERR(gpriv->can_clk)) 2059 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk), 2060 "cannot get canfd clock\n"); 2061 2062 /* CANFD clock may be further divided within the IP */ 2063 fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv; 2064 } else { 2065 fcan_freq = clk_get_rate(gpriv->can_clk); 2066 gpriv->extclk = gpriv->info->external_clk; 2067 } 2068 2069 clk_ram = devm_clk_get_optional_enabled(dev, "ram_clk"); 2070 if (IS_ERR(clk_ram)) 2071 return dev_err_probe(dev, PTR_ERR(clk_ram), 2072 "cannot get enabled ram clock\n"); 2073 2074 addr = devm_platform_ioremap_resource(pdev, 0); 2075 if (IS_ERR(addr)) { 2076 err = PTR_ERR(addr); 2077 goto fail_dev; 2078 } 2079 gpriv->base = addr; 2080 gpriv->fcbase = addr + gpriv->info->regs->coffset; 2081 2082 /* Request IRQ that's common for both channels */ 2083 if (info->shared_global_irqs) { 2084 err = devm_request_irq(dev, ch_irq, 2085 rcar_canfd_channel_interrupt, 0, 2086 "canfd.ch_int", gpriv); 2087 if (err) { 2088 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2089 ch_irq, ERR_PTR(err)); 2090 goto fail_dev; 2091 } 2092 2093 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt, 2094 0, "canfd.g_int", gpriv); 2095 if (err) { 2096 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2097 g_irq, ERR_PTR(err)); 2098 goto fail_dev; 2099 } 2100 } else { 2101 err = devm_request_irq(dev, g_recc_irq, 2102 rcar_canfd_global_receive_fifo_interrupt, 0, 2103 "canfd.g_recc", gpriv); 2104 2105 if (err) { 2106 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2107 g_recc_irq, ERR_PTR(err)); 2108 goto fail_dev; 2109 } 2110 2111 err = devm_request_irq(dev, g_err_irq, 2112 rcar_canfd_global_err_interrupt, 0, 2113 "canfd.g_err", gpriv); 2114 if (err) { 2115 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2116 g_err_irq, ERR_PTR(err)); 2117 goto fail_dev; 2118 } 2119 } 2120 2121 err = reset_control_reset(gpriv->rstc1); 2122 if (err) 2123 goto fail_dev; 2124 err = reset_control_reset(gpriv->rstc2); 2125 if (err) { 2126 reset_control_assert(gpriv->rstc1); 2127 goto fail_dev; 2128 } 2129 2130 /* Enable peripheral clock for register access */ 2131 err = clk_prepare_enable(gpriv->clkp); 2132 if (err) { 2133 dev_err(dev, "failed to enable peripheral clock: %pe\n", 2134 ERR_PTR(err)); 2135 goto fail_reset; 2136 } 2137 2138 err = rcar_canfd_reset_controller(gpriv); 2139 if (err) { 2140 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err)); 2141 goto fail_clk; 2142 } 2143 2144 /* Controller in Global reset & Channel reset mode */ 2145 rcar_canfd_configure_controller(gpriv); 2146 2147 /* Configure per channel attributes */ 2148 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2149 /* Configure Channel's Rx fifo */ 2150 rcar_canfd_configure_rx(gpriv, ch); 2151 2152 /* Configure Channel's Tx (Common) fifo */ 2153 rcar_canfd_configure_tx(gpriv, ch); 2154 2155 /* Configure receive rules */ 2156 rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry); 2157 rule_entry += RCANFD_CHANNEL_NUMRULES; 2158 } 2159 2160 /* Configure common interrupts */ 2161 rcar_canfd_enable_global_interrupts(gpriv); 2162 2163 /* Start Global operation mode */ 2164 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 2165 RCANFD_GCTR_GMDC_GOPM); 2166 2167 /* Verify mode change */ 2168 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 2169 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 2170 if (err) { 2171 dev_err(dev, "global operational mode failed\n"); 2172 goto fail_mode; 2173 } 2174 2175 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2176 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq, 2177 transceivers[ch]); 2178 if (err) 2179 goto fail_channel; 2180 } 2181 2182 platform_set_drvdata(pdev, gpriv); 2183 dev_info(dev, "global operational state (%s clk, %s mode)\n", 2184 gpriv->extclk ? "ext" : "canfd", 2185 gpriv->fdmode ? "fd" : "classical"); 2186 return 0; 2187 2188 fail_channel: 2189 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) 2190 rcar_canfd_channel_remove(gpriv, ch); 2191 fail_mode: 2192 rcar_canfd_disable_global_interrupts(gpriv); 2193 fail_clk: 2194 clk_disable_unprepare(gpriv->clkp); 2195 fail_reset: 2196 reset_control_assert(gpriv->rstc1); 2197 reset_control_assert(gpriv->rstc2); 2198 fail_dev: 2199 return err; 2200 } 2201 2202 static void rcar_canfd_remove(struct platform_device *pdev) 2203 { 2204 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 2205 u32 ch; 2206 2207 rcar_canfd_reset_controller(gpriv); 2208 rcar_canfd_disable_global_interrupts(gpriv); 2209 2210 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2211 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 2212 rcar_canfd_channel_remove(gpriv, ch); 2213 } 2214 2215 /* Enter global sleep mode */ 2216 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2217 clk_disable_unprepare(gpriv->clkp); 2218 reset_control_assert(gpriv->rstc1); 2219 reset_control_assert(gpriv->rstc2); 2220 } 2221 2222 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2223 { 2224 return 0; 2225 } 2226 2227 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2228 { 2229 return 0; 2230 } 2231 2232 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2233 rcar_canfd_resume); 2234 2235 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2236 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info }, 2237 { .compatible = "renesas,r9a09g047-canfd", .data = &r9a09g047_hw_info }, 2238 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info }, 2239 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info }, 2240 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info }, 2241 { } 2242 }; 2243 2244 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2245 2246 static struct platform_driver rcar_canfd_driver = { 2247 .driver = { 2248 .name = RCANFD_DRV_NAME, 2249 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2250 .pm = &rcar_canfd_pm_ops, 2251 }, 2252 .probe = rcar_canfd_probe, 2253 .remove = rcar_canfd_remove, 2254 }; 2255 2256 module_platform_driver(rcar_canfd_driver); 2257 2258 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2259 MODULE_LICENSE("GPL"); 2260 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2261 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2262