xref: /linux/drivers/net/can/rcar/rcar_canfd.c (revision 8a5f956a9fb7d74fff681145082acfad5afa6bb8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6 
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23 
24 #include <linux/bitfield.h>
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/can/dev.h>
28 #include <linux/clk.h>
29 #include <linux/errno.h>
30 #include <linux/ethtool.h>
31 #include <linux/interrupt.h>
32 #include <linux/iopoll.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/netdevice.h>
37 #include <linux/of.h>
38 #include <linux/phy/phy.h>
39 #include <linux/platform_device.h>
40 #include <linux/reset.h>
41 #include <linux/types.h>
42 
43 #define RCANFD_DRV_NAME			"rcar_canfd"
44 
45 /* Global register bits */
46 
47 /* RSCFDnCFDGRMCFG */
48 #define RCANFD_GRMCFG_RCMC		BIT(0)
49 
50 /* RSCFDnCFDGCFG / RSCFDnGCFG */
51 #define RCANFD_GCFG_EEFE		BIT(6)
52 #define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
53 #define RCANFD_GCFG_DCS			BIT(4)
54 #define RCANFD_GCFG_DCE			BIT(1)
55 #define RCANFD_GCFG_TPRI		BIT(0)
56 
57 /* RSCFDnCFDGCTR / RSCFDnGCTR */
58 #define RCANFD_GCTR_TSRST		BIT(16)
59 #define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
60 #define RCANFD_GCTR_THLEIE		BIT(10)
61 #define RCANFD_GCTR_MEIE		BIT(9)
62 #define RCANFD_GCTR_DEIE		BIT(8)
63 #define RCANFD_GCTR_GSLPR		BIT(2)
64 #define RCANFD_GCTR_GMDC_MASK		(0x3)
65 #define RCANFD_GCTR_GMDC_GOPM		(0x0)
66 #define RCANFD_GCTR_GMDC_GRESET		(0x1)
67 #define RCANFD_GCTR_GMDC_GTEST		(0x2)
68 
69 /* RSCFDnCFDGSTS / RSCFDnGSTS */
70 #define RCANFD_GSTS_GRAMINIT		BIT(3)
71 #define RCANFD_GSTS_GSLPSTS		BIT(2)
72 #define RCANFD_GSTS_GHLTSTS		BIT(1)
73 #define RCANFD_GSTS_GRSTSTS		BIT(0)
74 /* Non-operational status */
75 #define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
76 
77 /* RSCFDnCFDGERFL / RSCFDnGERFL */
78 #define RCANFD_GERFL_EEF		GENMASK(23, 16)
79 #define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
80 #define RCANFD_GERFL_THLES		BIT(2)
81 #define RCANFD_GERFL_MES		BIT(1)
82 #define RCANFD_GERFL_DEF		BIT(0)
83 
84 #define RCANFD_GERFL_ERR(gpriv, x) \
85 ({\
86 	typeof(gpriv) (_gpriv) = (gpriv); \
87 	((x) & ((FIELD_PREP(RCANFD_GERFL_EEF, (_gpriv)->channels_mask)) | \
88 		RCANFD_GERFL_MES | ((_gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))); \
89 })
90 
91 /* AFL Rx rules registers */
92 
93 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
94 #define RCANFD_GAFLECTR_AFLDAE		BIT(8)
95 #define RCANFD_GAFLECTR_AFLPN(gpriv, page_num)	((page_num) & (gpriv)->info->max_aflpn)
96 
97 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
98 #define RCANFD_GAFLID_GAFLLB		BIT(29)
99 
100 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
101 #define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
102 
103 /* Channel register bits */
104 
105 /* RSCFDnCmCFG - Classical CAN only */
106 #define RCANFD_CFG_SJW		GENMASK(25, 24)
107 #define RCANFD_CFG_TSEG2	GENMASK(22, 20)
108 #define RCANFD_CFG_TSEG1	GENMASK(19, 16)
109 #define RCANFD_CFG_BRP		GENMASK(9, 0)
110 
111 /* RSCFDnCFDCmNCFG - CAN FD only */
112 #define RCANFD_NCFG_NBRP	GENMASK(9, 0)
113 
114 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
115 #define RCANFD_CCTR_CTME		BIT(24)
116 #define RCANFD_CCTR_ERRD		BIT(23)
117 #define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
118 #define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
119 #define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
120 #define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
121 #define RCANFD_CCTR_TDCVFIE		BIT(19)
122 #define RCANFD_CCTR_SOCOIE		BIT(18)
123 #define RCANFD_CCTR_EOCOIE		BIT(17)
124 #define RCANFD_CCTR_TAIE		BIT(16)
125 #define RCANFD_CCTR_ALIE		BIT(15)
126 #define RCANFD_CCTR_BLIE		BIT(14)
127 #define RCANFD_CCTR_OLIE		BIT(13)
128 #define RCANFD_CCTR_BORIE		BIT(12)
129 #define RCANFD_CCTR_BOEIE		BIT(11)
130 #define RCANFD_CCTR_EPIE		BIT(10)
131 #define RCANFD_CCTR_EWIE		BIT(9)
132 #define RCANFD_CCTR_BEIE		BIT(8)
133 #define RCANFD_CCTR_CSLPR		BIT(2)
134 #define RCANFD_CCTR_CHMDC_MASK		(0x3)
135 #define RCANFD_CCTR_CHDMC_COPM		(0x0)
136 #define RCANFD_CCTR_CHDMC_CRESET	(0x1)
137 #define RCANFD_CCTR_CHDMC_CHLT		(0x2)
138 
139 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
140 #define RCANFD_CSTS_COMSTS		BIT(7)
141 #define RCANFD_CSTS_RECSTS		BIT(6)
142 #define RCANFD_CSTS_TRMSTS		BIT(5)
143 #define RCANFD_CSTS_BOSTS		BIT(4)
144 #define RCANFD_CSTS_EPSTS		BIT(3)
145 #define RCANFD_CSTS_SLPSTS		BIT(2)
146 #define RCANFD_CSTS_HLTSTS		BIT(1)
147 #define RCANFD_CSTS_CRSTSTS		BIT(0)
148 
149 #define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
150 #define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
151 
152 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
153 #define RCANFD_CERFL_ADERR		BIT(14)
154 #define RCANFD_CERFL_B0ERR		BIT(13)
155 #define RCANFD_CERFL_B1ERR		BIT(12)
156 #define RCANFD_CERFL_CERR		BIT(11)
157 #define RCANFD_CERFL_AERR		BIT(10)
158 #define RCANFD_CERFL_FERR		BIT(9)
159 #define RCANFD_CERFL_SERR		BIT(8)
160 #define RCANFD_CERFL_ALF		BIT(7)
161 #define RCANFD_CERFL_BLF		BIT(6)
162 #define RCANFD_CERFL_OVLF		BIT(5)
163 #define RCANFD_CERFL_BORF		BIT(4)
164 #define RCANFD_CERFL_BOEF		BIT(3)
165 #define RCANFD_CERFL_EPF		BIT(2)
166 #define RCANFD_CERFL_EWF		BIT(1)
167 #define RCANFD_CERFL_BEF		BIT(0)
168 
169 #define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
170 
171 /* RSCFDnCFDCmDCFG */
172 #define RCANFD_DCFG_DBRP		GENMASK(7, 0)
173 
174 /* RSCFDnCFDCmFDCFG */
175 #define RCANFD_GEN4_FDCFG_CLOE		BIT(30)
176 #define RCANFD_GEN4_FDCFG_FDOE		BIT(28)
177 #define RCANFD_FDCFG_TDCO		GENMASK(23, 16)
178 #define RCANFD_FDCFG_TDCE		BIT(9)
179 #define RCANFD_FDCFG_TDCOC		BIT(8)
180 
181 /* RSCFDnCFDCmFDSTS */
182 #define RCANFD_FDSTS_SOC		GENMASK(31, 24)
183 #define RCANFD_FDSTS_EOC		GENMASK(23, 16)
184 #define RCANFD_GEN4_FDSTS_TDCVF		BIT(15)
185 #define RCANFD_GEN4_FDSTS_PNSTS		GENMASK(13, 12)
186 #define RCANFD_FDSTS_SOCO		BIT(9)
187 #define RCANFD_FDSTS_EOCO		BIT(8)
188 #define RCANFD_FDSTS_TDCVF		BIT(7)
189 #define RCANFD_FDSTS_TDCR		GENMASK(7, 0)
190 
191 /* RSCFDnCFDRFCCx */
192 #define RCANFD_RFCC_RFIM		BIT(12)
193 #define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
194 #define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
195 #define RCANFD_RFCC_RFIE		BIT(1)
196 #define RCANFD_RFCC_RFE			BIT(0)
197 
198 /* RSCFDnCFDRFSTSx */
199 #define RCANFD_RFSTS_RFIF		BIT(3)
200 #define RCANFD_RFSTS_RFMLT		BIT(2)
201 #define RCANFD_RFSTS_RFFLL		BIT(1)
202 #define RCANFD_RFSTS_RFEMP		BIT(0)
203 
204 /* RSCFDnCFDRFIDx */
205 #define RCANFD_RFID_RFIDE		BIT(31)
206 #define RCANFD_RFID_RFRTR		BIT(30)
207 
208 /* RSCFDnCFDRFPTRx */
209 #define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
210 
211 /* RSCFDnCFDRFFDSTSx */
212 #define RCANFD_RFFDSTS_RFFDF		BIT(2)
213 #define RCANFD_RFFDSTS_RFBRS		BIT(1)
214 #define RCANFD_RFFDSTS_RFESI		BIT(0)
215 
216 /* Common FIFO bits */
217 
218 /* RSCFDnCFDCFCCk */
219 #define RCANFD_CFCC_CFTML(gpriv, cftml) \
220 ({\
221 	typeof(gpriv) (_gpriv) = (gpriv); \
222 	(((cftml) & (_gpriv)->info->max_cftml) << (_gpriv)->info->sh->cftml); \
223 })
224 #define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << (gpriv)->info->sh->cfm)
225 #define RCANFD_CFCC_CFIM		BIT(12)
226 #define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << (gpriv)->info->sh->cfdc)
227 #define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
228 #define RCANFD_CFCC_CFTXIE		BIT(2)
229 #define RCANFD_CFCC_CFE			BIT(0)
230 
231 /* RSCFDnCFDCFSTSk */
232 #define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
233 #define RCANFD_CFSTS_CFTXIF		BIT(4)
234 #define RCANFD_CFSTS_CFMLT		BIT(2)
235 #define RCANFD_CFSTS_CFFLL		BIT(1)
236 #define RCANFD_CFSTS_CFEMP		BIT(0)
237 
238 /* RSCFDnCFDCFIDk */
239 #define RCANFD_CFID_CFIDE		BIT(31)
240 #define RCANFD_CFID_CFRTR		BIT(30)
241 
242 /* RSCFDnCFDCFPTRk */
243 #define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
244 
245 /* RSCFDnCFDCFFDCSTSk */
246 #define RCANFD_CFFDCSTS_CFFDF		BIT(2)
247 #define RCANFD_CFFDCSTS_CFBRS		BIT(1)
248 #define RCANFD_CFFDCSTS_CFESI		BIT(0)
249 
250 /* This controller supports either Classical CAN only mode or CAN FD only mode.
251  * These modes are supported in two separate set of register maps & names.
252  * However, some of the register offsets are common for both modes. Those
253  * offsets are listed below as Common registers.
254  *
255  * The CAN FD only mode specific registers & Classical CAN only mode specific
256  * registers are listed separately. Their register names starts with
257  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
258  */
259 
260 /* Common registers */
261 
262 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
263 #define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
264 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
265 #define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
266 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
267 #define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
268 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
269 #define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
270 
271 /* RSCFDnCFDGCFG / RSCFDnGCFG */
272 #define RCANFD_GCFG			(0x0084)
273 /* RSCFDnCFDGCTR / RSCFDnGCTR */
274 #define RCANFD_GCTR			(0x0088)
275 /* RSCFDnCFDGCTS / RSCFDnGCTS */
276 #define RCANFD_GSTS			(0x008c)
277 /* RSCFDnCFDGERFL / RSCFDnGERFL */
278 #define RCANFD_GERFL			(0x0090)
279 /* RSCFDnCFDGTSC / RSCFDnGTSC */
280 #define RCANFD_GTSC			(0x0094)
281 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
282 #define RCANFD_GAFLECTR			(0x0098)
283 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
284 #define RCANFD_GAFLCFG(w)		(0x009c + (0x04 * (w)))
285 /* RSCFDnCFDRMNB / RSCFDnRMNB */
286 #define RCANFD_RMNB			(0x00a4)
287 /* RSCFDnCFDRMND / RSCFDnRMND */
288 #define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
289 
290 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
291 #define RCANFD_RFCC(gpriv, x)		((gpriv)->info->regs->rfcc + (0x04 * (x)))
292 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
293 #define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
294 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
295 #define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
296 
297 /* Common FIFO Control registers */
298 
299 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
300 #define RCANFD_CFCC(gpriv, ch, idx) \
301 	((gpriv)->info->regs->cfcc + (0x0c * (ch)) + (0x04 * (idx)))
302 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
303 #define RCANFD_CFSTS(gpriv, ch, idx) \
304 	((gpriv)->info->regs->cfsts + (0x0c * (ch)) + (0x04 * (idx)))
305 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
306 #define RCANFD_CFPCTR(gpriv, ch, idx) \
307 	((gpriv)->info->regs->cfpctr + (0x0c * (ch)) + (0x04 * (idx)))
308 
309 /* RSCFDnCFDGRMCFG */
310 #define RCANFD_GRMCFG			(0x04fc)
311 
312 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
313 #define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
314 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
315 #define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
316 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
317 #define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
318 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
319 #define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
320 
321 /* Classical CAN only mode register map */
322 
323 /* RSCFDnGAFLXXXj offset */
324 #define RCANFD_C_GAFL_OFFSET		(0x0500)
325 
326 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
327 #define RCANFD_C_RFOFFSET	(0x0e00)
328 #define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
329 #define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
330 #define RCANFD_C_RFDF(x, df) \
331 		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
332 
333 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
334 #define RCANFD_C_CFOFFSET		(0x0e80)
335 
336 #define RCANFD_C_CFID(ch, idx) \
337 	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
338 
339 #define RCANFD_C_CFPTR(ch, idx)	\
340 	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
341 
342 #define RCANFD_C_CFDF(ch, idx, df) \
343 	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
344 
345 /* R-Car Gen4 Classical and CAN FD mode specific register map */
346 #define RCANFD_GEN4_GAFL_OFFSET		(0x1800)
347 
348 /* CAN FD mode specific register map */
349 
350 /* RSCFDnCFDCmXXX -> gpriv->fcbase[m].xxx */
351 struct rcar_canfd_f_c {
352 	u32 dcfg;
353 	u32 cfdcfg;
354 	u32 cfdctr;
355 	u32 cfdsts;
356 	u32 cfdcrc;
357 	u32 pad[3];
358 };
359 
360 /* RSCFDnCFDGAFLXXXj offset */
361 #define RCANFD_F_GAFL_OFFSET		(0x1000)
362 
363 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
364 #define RCANFD_F_RFOFFSET(gpriv)	((gpriv)->info->regs->rfoffset)
365 #define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
366 #define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
367 #define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
368 #define RCANFD_F_RFDF(gpriv, x, df) \
369 	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
370 
371 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
372 #define RCANFD_F_CFOFFSET(gpriv)	((gpriv)->info->regs->cfoffset)
373 
374 #define RCANFD_F_CFID(gpriv, ch, idx) \
375 	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
376 
377 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
378 	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
379 
380 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
381 	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
382 
383 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
384 	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
385 	 (0x04 * (df)))
386 
387 /* Constants */
388 #define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
389 #define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
390 
391 #define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
392 
393 #define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
394 #define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
395 
396 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
397  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
398  * number is added to RFFIFO index.
399  */
400 #define RCANFD_RFFIFO_IDX		0
401 
402 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
403  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
404  */
405 #define RCANFD_CFFIFO_IDX		0
406 
407 struct rcar_canfd_global;
408 
409 struct rcar_canfd_regs {
410 	u16 rfcc;	/* RX FIFO Configuration/Control Register */
411 	u16 cfcc;	/* Common FIFO Configuration/Control Register */
412 	u16 cfsts;	/* Common FIFO Status Register */
413 	u16 cfpctr;	/* Common FIFO Pointer Control Register */
414 	u16 coffset;	/* Channel Data Bitrate Configuration Register */
415 	u16 rfoffset;	/* Receive FIFO buffer access ID register */
416 	u16 cfoffset;	/* Transmit/receive FIFO buffer access ID register */
417 };
418 
419 struct rcar_canfd_shift_data {
420 	u8 ntseg2;	/* Nominal Bit Rate Time Segment 2 Control */
421 	u8 ntseg1;	/* Nominal Bit Rate Time Segment 1 Control */
422 	u8 nsjw;	/* Nominal Bit Rate Resynchronization Jump Width Control */
423 	u8 dtseg2;	/* Data Bit Rate Time Segment 2 Control */
424 	u8 dtseg1;	/* Data Bit Rate Time Segment 1 Control */
425 	u8 cftml;	/* Common FIFO TX Message Buffer Link */
426 	u8 cfm;		/* Common FIFO Mode */
427 	u8 cfdc;	/* Common FIFO Depth Configuration */
428 };
429 
430 struct rcar_canfd_hw_info {
431 	const struct can_bittiming_const *nom_bittiming;
432 	const struct can_bittiming_const *data_bittiming;
433 	const struct can_tdc_const *tdc_const;
434 	const struct rcar_canfd_regs *regs;
435 	const struct rcar_canfd_shift_data *sh;
436 	u8 rnc_field_width;
437 	u8 max_aflpn;
438 	u8 max_cftml;
439 	u8 max_channels;
440 	u8 postdiv;
441 	/* hardware features */
442 	unsigned shared_global_irqs:1;	/* Has shared global irqs */
443 	unsigned multi_channel_irqs:1;	/* Has multiple channel irqs */
444 	unsigned ch_interface_mode:1;	/* Has channel interface mode */
445 	unsigned shared_can_regs:1;	/* Has shared classical can registers */
446 	unsigned external_clk:1;	/* Has external clock */
447 };
448 
449 /* Channel priv data */
450 struct rcar_canfd_channel {
451 	struct can_priv can;			/* Must be the first member */
452 	struct net_device *ndev;
453 	struct rcar_canfd_global *gpriv;	/* Controller reference */
454 	void __iomem *base;			/* Register base address */
455 	struct phy *transceiver;		/* Optional transceiver */
456 	struct napi_struct napi;
457 	u32 tx_head;				/* Incremented on xmit */
458 	u32 tx_tail;				/* Incremented on xmit done */
459 	u32 channel;				/* Channel number */
460 	spinlock_t tx_lock;			/* To protect tx path */
461 };
462 
463 /* Global priv data */
464 struct rcar_canfd_global {
465 	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
466 	void __iomem *base;		/* Register base address */
467 	struct rcar_canfd_f_c __iomem *fcbase;
468 	struct platform_device *pdev;	/* Respective platform device */
469 	struct clk *clkp;		/* Peripheral clock */
470 	struct clk *can_clk;		/* fCAN clock */
471 	unsigned long channels_mask;	/* Enabled channels mask */
472 	bool extclk;			/* CANFD or Ext clock */
473 	bool fdmode;			/* CAN FD or Classical CAN only mode */
474 	struct reset_control *rstc1;
475 	struct reset_control *rstc2;
476 	const struct rcar_canfd_hw_info *info;
477 };
478 
479 /* CAN FD mode nominal rate constants */
480 static const struct can_bittiming_const rcar_canfd_gen3_nom_bittiming_const = {
481 	.name = RCANFD_DRV_NAME,
482 	.tseg1_min = 2,
483 	.tseg1_max = 128,
484 	.tseg2_min = 2,
485 	.tseg2_max = 32,
486 	.sjw_max = 32,
487 	.brp_min = 1,
488 	.brp_max = 1024,
489 	.brp_inc = 1,
490 };
491 
492 static const struct can_bittiming_const rcar_canfd_gen4_nom_bittiming_const = {
493 	.name = RCANFD_DRV_NAME,
494 	.tseg1_min = 2,
495 	.tseg1_max = 256,
496 	.tseg2_min = 2,
497 	.tseg2_max = 128,
498 	.sjw_max = 128,
499 	.brp_min = 1,
500 	.brp_max = 1024,
501 	.brp_inc = 1,
502 };
503 
504 /* CAN FD mode data rate constants */
505 static const struct can_bittiming_const rcar_canfd_gen3_data_bittiming_const = {
506 	.name = RCANFD_DRV_NAME,
507 	.tseg1_min = 2,
508 	.tseg1_max = 16,
509 	.tseg2_min = 2,
510 	.tseg2_max = 8,
511 	.sjw_max = 8,
512 	.brp_min = 1,
513 	.brp_max = 256,
514 	.brp_inc = 1,
515 };
516 
517 static const struct can_bittiming_const rcar_canfd_gen4_data_bittiming_const = {
518 	.name = RCANFD_DRV_NAME,
519 	.tseg1_min = 2,
520 	.tseg1_max = 32,
521 	.tseg2_min = 2,
522 	.tseg2_max = 16,
523 	.sjw_max = 16,
524 	.brp_min = 1,
525 	.brp_max = 256,
526 	.brp_inc = 1,
527 };
528 
529 /* Classical CAN mode bitrate constants */
530 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
531 	.name = RCANFD_DRV_NAME,
532 	.tseg1_min = 4,
533 	.tseg1_max = 16,
534 	.tseg2_min = 2,
535 	.tseg2_max = 8,
536 	.sjw_max = 4,
537 	.brp_min = 1,
538 	.brp_max = 1024,
539 	.brp_inc = 1,
540 };
541 
542 /* CAN FD Transmission Delay Compensation constants */
543 static const struct can_tdc_const rcar_canfd_gen3_tdc_const = {
544 	.tdcv_min = 1,
545 	.tdcv_max = 128,
546 	.tdco_min = 1,
547 	.tdco_max = 128,
548 	.tdcf_min = 0,	/* Filter window not supported */
549 	.tdcf_max = 0,
550 };
551 
552 static const struct can_tdc_const rcar_canfd_gen4_tdc_const = {
553 	.tdcv_min = 1,
554 	.tdcv_max = 256,
555 	.tdco_min = 1,
556 	.tdco_max = 256,
557 	.tdcf_min = 0,	/* Filter window not supported */
558 	.tdcf_max = 0,
559 };
560 
561 static const struct rcar_canfd_regs rcar_gen3_regs = {
562 	.rfcc = 0x00b8,
563 	.cfcc = 0x0118,
564 	.cfsts = 0x0178,
565 	.cfpctr = 0x01d8,
566 	.coffset = 0x0500,
567 	.rfoffset = 0x3000,
568 	.cfoffset = 0x3400,
569 };
570 
571 static const struct rcar_canfd_regs rcar_gen4_regs = {
572 	.rfcc = 0x00c0,
573 	.cfcc = 0x0120,
574 	.cfsts = 0x01e0,
575 	.cfpctr = 0x0240,
576 	.coffset = 0x1400,
577 	.rfoffset = 0x6000,
578 	.cfoffset = 0x6400,
579 };
580 
581 static const struct rcar_canfd_shift_data rcar_gen3_shift_data = {
582 	.ntseg2 = 24,
583 	.ntseg1 = 16,
584 	.nsjw = 11,
585 	.dtseg2 = 20,
586 	.dtseg1 = 16,
587 	.cftml = 20,
588 	.cfm = 16,
589 	.cfdc = 8,
590 };
591 
592 static const struct rcar_canfd_shift_data rcar_gen4_shift_data = {
593 	.ntseg2 = 25,
594 	.ntseg1 = 17,
595 	.nsjw = 10,
596 	.dtseg2 = 16,
597 	.dtseg1 = 8,
598 	.cftml = 16,
599 	.cfm = 8,
600 	.cfdc = 21,
601 };
602 
603 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
604 	.nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const,
605 	.data_bittiming = &rcar_canfd_gen3_data_bittiming_const,
606 	.tdc_const = &rcar_canfd_gen3_tdc_const,
607 	.regs = &rcar_gen3_regs,
608 	.sh = &rcar_gen3_shift_data,
609 	.rnc_field_width = 8,
610 	.max_aflpn = 31,
611 	.max_cftml = 15,
612 	.max_channels = 2,
613 	.postdiv = 2,
614 	.shared_global_irqs = 1,
615 	.ch_interface_mode = 0,
616 	.shared_can_regs = 0,
617 	.external_clk = 1,
618 };
619 
620 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
621 	.nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const,
622 	.data_bittiming = &rcar_canfd_gen4_data_bittiming_const,
623 	.tdc_const = &rcar_canfd_gen4_tdc_const,
624 	.regs = &rcar_gen4_regs,
625 	.sh = &rcar_gen4_shift_data,
626 	.rnc_field_width = 16,
627 	.max_aflpn = 127,
628 	.max_cftml = 31,
629 	.max_channels = 8,
630 	.postdiv = 2,
631 	.shared_global_irqs = 1,
632 	.ch_interface_mode = 1,
633 	.shared_can_regs = 1,
634 	.external_clk = 1,
635 };
636 
637 static const struct rcar_canfd_hw_info rzg2l_hw_info = {
638 	.nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const,
639 	.data_bittiming = &rcar_canfd_gen3_data_bittiming_const,
640 	.tdc_const = &rcar_canfd_gen3_tdc_const,
641 	.regs = &rcar_gen3_regs,
642 	.sh = &rcar_gen3_shift_data,
643 	.rnc_field_width = 8,
644 	.max_aflpn = 31,
645 	.max_cftml = 15,
646 	.max_channels = 2,
647 	.postdiv = 1,
648 	.multi_channel_irqs = 1,
649 	.ch_interface_mode = 0,
650 	.shared_can_regs = 0,
651 	.external_clk = 1,
652 };
653 
654 static const struct rcar_canfd_hw_info r9a09g047_hw_info = {
655 	.nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const,
656 	.data_bittiming = &rcar_canfd_gen4_data_bittiming_const,
657 	.tdc_const = &rcar_canfd_gen4_tdc_const,
658 	.regs = &rcar_gen4_regs,
659 	.sh = &rcar_gen4_shift_data,
660 	.rnc_field_width = 16,
661 	.max_aflpn = 63,
662 	.max_cftml = 31,
663 	.max_channels = 6,
664 	.postdiv = 1,
665 	.multi_channel_irqs = 1,
666 	.ch_interface_mode = 1,
667 	.shared_can_regs = 1,
668 	.external_clk = 0,
669 };
670 
671 /* Helper functions */
672 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
673 {
674 	u32 data = readl(reg);
675 
676 	data &= ~mask;
677 	data |= (val & mask);
678 	writel(data, reg);
679 }
680 
681 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
682 {
683 	return readl(base + offset);
684 }
685 
686 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
687 {
688 	writel(val, base + offset);
689 }
690 
691 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
692 {
693 	rcar_canfd_update(val, val, base + reg);
694 }
695 
696 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
697 {
698 	rcar_canfd_update(val, 0, base + reg);
699 }
700 
701 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
702 				  u32 mask, u32 val)
703 {
704 	rcar_canfd_update(mask, val, base + reg);
705 }
706 
707 static void rcar_canfd_set_bit_reg(void __iomem *addr, u32 val)
708 {
709 	rcar_canfd_update(val, val, addr);
710 }
711 
712 static void rcar_canfd_update_bit_reg(void __iomem *addr, u32 mask, u32 val)
713 {
714 	rcar_canfd_update(mask, val, addr);
715 }
716 
717 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
718 				struct canfd_frame *cf, u32 off)
719 {
720 	u32 *data = (u32 *)cf->data;
721 	u32 i, lwords;
722 
723 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
724 	for (i = 0; i < lwords; i++)
725 		data[i] = rcar_canfd_read(priv->base, off + i * sizeof(u32));
726 }
727 
728 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
729 				struct canfd_frame *cf, u32 off)
730 {
731 	const u32 *data = (u32 *)cf->data;
732 	u32 i, lwords;
733 
734 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
735 	for (i = 0; i < lwords; i++)
736 		rcar_canfd_write(priv->base, off + i * sizeof(u32), data[i]);
737 }
738 
739 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
740 {
741 	u32 i;
742 
743 	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
744 		can_free_echo_skb(ndev, i, NULL);
745 }
746 
747 static void rcar_canfd_set_rnc(struct rcar_canfd_global *gpriv, unsigned int ch,
748 			       unsigned int num_rules)
749 {
750 	unsigned int rnc_stride = 32 / gpriv->info->rnc_field_width;
751 	unsigned int shift = 32 - (ch % rnc_stride + 1) * gpriv->info->rnc_field_width;
752 	unsigned int w = ch / rnc_stride;
753 	u32 rnc = num_rules << shift;
754 
755 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(w), rnc);
756 }
757 
758 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
759 {
760 	if (gpriv->info->ch_interface_mode) {
761 		u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
762 					    : RCANFD_GEN4_FDCFG_CLOE;
763 
764 		for_each_set_bit(ch, &gpriv->channels_mask,
765 				 gpriv->info->max_channels)
766 			rcar_canfd_set_bit_reg(&gpriv->fcbase[ch].cfdcfg, val);
767 	} else {
768 		if (gpriv->fdmode)
769 			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
770 					   RCANFD_GRMCFG_RCMC);
771 		else
772 			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
773 					     RCANFD_GRMCFG_RCMC);
774 	}
775 }
776 
777 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
778 {
779 	struct device *dev = &gpriv->pdev->dev;
780 	u32 sts, ch;
781 	int err;
782 
783 	/* Check RAMINIT flag as CAN RAM initialization takes place
784 	 * after the MCU reset
785 	 */
786 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
787 				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
788 	if (err) {
789 		dev_dbg(dev, "global raminit failed\n");
790 		return err;
791 	}
792 
793 	/* Transition to Global Reset mode */
794 	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
795 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
796 			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
797 
798 	/* Ensure Global reset mode */
799 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
800 				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
801 	if (err) {
802 		dev_dbg(dev, "global reset failed\n");
803 		return err;
804 	}
805 
806 	/* Reset Global error flags */
807 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
808 
809 	/* Transition all Channels to reset mode */
810 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
811 		rcar_canfd_clear_bit(gpriv->base,
812 				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
813 
814 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
815 				      RCANFD_CCTR_CHMDC_MASK,
816 				      RCANFD_CCTR_CHDMC_CRESET);
817 
818 		/* Ensure Channel reset mode */
819 		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
820 					 (sts & RCANFD_CSTS_CRSTSTS),
821 					 2, 500000);
822 		if (err) {
823 			dev_dbg(dev, "channel %u reset failed\n", ch);
824 			return err;
825 		}
826 	}
827 
828 	/* Set the controller into appropriate mode */
829 	rcar_canfd_set_mode(gpriv);
830 
831 	return 0;
832 }
833 
834 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
835 {
836 	u32 cfg, ch;
837 
838 	/* Global configuration settings */
839 
840 	/* ECC Error flag Enable */
841 	cfg = RCANFD_GCFG_EEFE;
842 
843 	if (gpriv->fdmode)
844 		/* Truncate payload to configured message size RFPLS */
845 		cfg |= RCANFD_GCFG_CMPOC;
846 
847 	/* Set External Clock if selected */
848 	if (gpriv->extclk)
849 		cfg |= RCANFD_GCFG_DCS;
850 
851 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
852 
853 	/* Channel configuration settings */
854 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
855 		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
856 				   RCANFD_CCTR_ERRD);
857 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
858 				      RCANFD_CCTR_BOM_MASK,
859 				      RCANFD_CCTR_BOM_BENTRY);
860 	}
861 }
862 
863 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
864 					   u32 ch, u32 rule_entry)
865 {
866 	unsigned int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES;
867 	u32 rule_entry_index = rule_entry % 16;
868 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
869 
870 	/* Enable write access to entry */
871 	page = RCANFD_GAFL_PAGENUM(rule_entry);
872 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
873 			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
874 			    RCANFD_GAFLECTR_AFLDAE));
875 
876 	/* Write number of rules for channel */
877 	rcar_canfd_set_rnc(gpriv, ch, num_rules);
878 	if (gpriv->info->shared_can_regs)
879 		offset = RCANFD_GEN4_GAFL_OFFSET;
880 	else if (gpriv->fdmode)
881 		offset = RCANFD_F_GAFL_OFFSET;
882 	else
883 		offset = RCANFD_C_GAFL_OFFSET;
884 
885 	/* Accept all IDs */
886 	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0);
887 	/* IDE or RTR is not considered for matching */
888 	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0);
889 	/* Any data length accepted */
890 	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0);
891 	/* Place the msg in corresponding Rx FIFO entry */
892 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index),
893 			   RCANFD_GAFLP1_GAFLFDP(ridx));
894 
895 	/* Disable write access to page */
896 	rcar_canfd_clear_bit(gpriv->base,
897 			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
898 }
899 
900 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
901 {
902 	/* Rx FIFO is used for reception */
903 	u32 cfg;
904 	u16 rfdc, rfpls;
905 
906 	/* Select Rx FIFO based on channel */
907 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
908 
909 	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
910 	if (gpriv->fdmode)
911 		rfpls = 7;	/* b111 - Max 64 bytes payload */
912 	else
913 		rfpls = 0;	/* b000 - Max 8 bytes payload */
914 
915 	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
916 		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
917 	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
918 }
919 
920 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
921 {
922 	/* Tx/Rx(Common) FIFO configured in Tx mode is
923 	 * used for transmission
924 	 *
925 	 * Each channel has 3 Common FIFO dedicated to them.
926 	 * Use the 1st (index 0) out of 3
927 	 */
928 	u32 cfg;
929 	u16 cftml, cfm, cfdc, cfpls;
930 
931 	cftml = 0;		/* 0th buffer */
932 	cfm = 1;		/* b01 - Transmit mode */
933 	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
934 	if (gpriv->fdmode)
935 		cfpls = 7;	/* b111 - Max 64 bytes payload */
936 	else
937 		cfpls = 0;	/* b000 - Max 8 bytes payload */
938 
939 	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
940 		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
941 		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
942 	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
943 
944 	if (gpriv->fdmode)
945 		/* Clear FD mode specific control/status register */
946 		rcar_canfd_write(gpriv->base,
947 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
948 }
949 
950 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
951 {
952 	u32 ctr;
953 
954 	/* Clear any stray error interrupt flags */
955 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
956 
957 	/* Global interrupts setup */
958 	ctr = RCANFD_GCTR_MEIE;
959 	if (gpriv->fdmode)
960 		ctr |= RCANFD_GCTR_CFMPOFIE;
961 
962 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
963 }
964 
965 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
966 						 *gpriv)
967 {
968 	/* Disable all interrupts */
969 	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
970 
971 	/* Clear any stray error interrupt flags */
972 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
973 }
974 
975 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
976 						 *priv)
977 {
978 	u32 ctr, ch = priv->channel;
979 
980 	/* Clear any stray error flags */
981 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
982 
983 	/* Channel interrupts setup */
984 	ctr = (RCANFD_CCTR_TAIE |
985 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
986 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
987 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
988 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
989 	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
990 }
991 
992 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
993 						  *priv)
994 {
995 	u32 ctr, ch = priv->channel;
996 
997 	ctr = (RCANFD_CCTR_TAIE |
998 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
999 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
1000 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
1001 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
1002 	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
1003 
1004 	/* Clear any stray error flags */
1005 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
1006 }
1007 
1008 static void rcar_canfd_global_error(struct net_device *ndev)
1009 {
1010 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1011 	struct rcar_canfd_global *gpriv = priv->gpriv;
1012 	struct net_device_stats *stats = &ndev->stats;
1013 	u32 ch = priv->channel;
1014 	u32 gerfl, sts;
1015 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1016 
1017 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1018 	if (gerfl & FIELD_PREP(RCANFD_GERFL_EEF, BIT(ch))) {
1019 		netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
1020 		stats->tx_dropped++;
1021 	}
1022 	if (gerfl & RCANFD_GERFL_MES) {
1023 		sts = rcar_canfd_read(priv->base,
1024 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1025 		if (sts & RCANFD_CFSTS_CFMLT) {
1026 			netdev_dbg(ndev, "Tx Message Lost flag\n");
1027 			stats->tx_dropped++;
1028 			rcar_canfd_write(priv->base,
1029 					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1030 					 sts & ~RCANFD_CFSTS_CFMLT);
1031 		}
1032 
1033 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1034 		if (sts & RCANFD_RFSTS_RFMLT) {
1035 			netdev_dbg(ndev, "Rx Message Lost flag\n");
1036 			stats->rx_dropped++;
1037 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1038 					 sts & ~RCANFD_RFSTS_RFMLT);
1039 		}
1040 	}
1041 	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
1042 		/* Message Lost flag will be set for respective channel
1043 		 * when this condition happens with counters and flags
1044 		 * already updated.
1045 		 */
1046 		netdev_dbg(ndev, "global payload overflow interrupt\n");
1047 	}
1048 
1049 	/* Clear all global error interrupts. Only affected channels bits
1050 	 * get cleared
1051 	 */
1052 	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
1053 }
1054 
1055 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
1056 			     u16 txerr, u16 rxerr)
1057 {
1058 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1059 	struct net_device_stats *stats = &ndev->stats;
1060 	struct can_frame *cf;
1061 	struct sk_buff *skb;
1062 	u32 ch = priv->channel;
1063 
1064 	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
1065 
1066 	/* Propagate the error condition to the CAN stack */
1067 	skb = alloc_can_err_skb(ndev, &cf);
1068 	if (!skb) {
1069 		stats->rx_dropped++;
1070 		return;
1071 	}
1072 
1073 	/* Channel error interrupts */
1074 	if (cerfl & RCANFD_CERFL_BEF) {
1075 		netdev_dbg(ndev, "Bus error\n");
1076 		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1077 		cf->data[2] = CAN_ERR_PROT_UNSPEC;
1078 		priv->can.can_stats.bus_error++;
1079 	}
1080 	if (cerfl & RCANFD_CERFL_ADERR) {
1081 		netdev_dbg(ndev, "ACK Delimiter Error\n");
1082 		stats->tx_errors++;
1083 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1084 	}
1085 	if (cerfl & RCANFD_CERFL_B0ERR) {
1086 		netdev_dbg(ndev, "Bit Error (dominant)\n");
1087 		stats->tx_errors++;
1088 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1089 	}
1090 	if (cerfl & RCANFD_CERFL_B1ERR) {
1091 		netdev_dbg(ndev, "Bit Error (recessive)\n");
1092 		stats->tx_errors++;
1093 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1094 	}
1095 	if (cerfl & RCANFD_CERFL_CERR) {
1096 		netdev_dbg(ndev, "CRC Error\n");
1097 		stats->rx_errors++;
1098 		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1099 	}
1100 	if (cerfl & RCANFD_CERFL_AERR) {
1101 		netdev_dbg(ndev, "ACK Error\n");
1102 		stats->tx_errors++;
1103 		cf->can_id |= CAN_ERR_ACK;
1104 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1105 	}
1106 	if (cerfl & RCANFD_CERFL_FERR) {
1107 		netdev_dbg(ndev, "Form Error\n");
1108 		stats->rx_errors++;
1109 		cf->data[2] |= CAN_ERR_PROT_FORM;
1110 	}
1111 	if (cerfl & RCANFD_CERFL_SERR) {
1112 		netdev_dbg(ndev, "Stuff Error\n");
1113 		stats->rx_errors++;
1114 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1115 	}
1116 	if (cerfl & RCANFD_CERFL_ALF) {
1117 		netdev_dbg(ndev, "Arbitration lost Error\n");
1118 		priv->can.can_stats.arbitration_lost++;
1119 		cf->can_id |= CAN_ERR_LOSTARB;
1120 		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1121 	}
1122 	if (cerfl & RCANFD_CERFL_BLF) {
1123 		netdev_dbg(ndev, "Bus Lock Error\n");
1124 		stats->rx_errors++;
1125 		cf->can_id |= CAN_ERR_BUSERROR;
1126 	}
1127 	if (cerfl & RCANFD_CERFL_EWF) {
1128 		netdev_dbg(ndev, "Error warning interrupt\n");
1129 		priv->can.state = CAN_STATE_ERROR_WARNING;
1130 		priv->can.can_stats.error_warning++;
1131 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1132 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1133 			CAN_ERR_CRTL_RX_WARNING;
1134 		cf->data[6] = txerr;
1135 		cf->data[7] = rxerr;
1136 	}
1137 	if (cerfl & RCANFD_CERFL_EPF) {
1138 		netdev_dbg(ndev, "Error passive interrupt\n");
1139 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1140 		priv->can.can_stats.error_passive++;
1141 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1142 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1143 			CAN_ERR_CRTL_RX_PASSIVE;
1144 		cf->data[6] = txerr;
1145 		cf->data[7] = rxerr;
1146 	}
1147 	if (cerfl & RCANFD_CERFL_BOEF) {
1148 		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1149 		rcar_canfd_tx_failure_cleanup(ndev);
1150 		priv->can.state = CAN_STATE_BUS_OFF;
1151 		priv->can.can_stats.bus_off++;
1152 		can_bus_off(ndev);
1153 		cf->can_id |= CAN_ERR_BUSOFF;
1154 	}
1155 	if (cerfl & RCANFD_CERFL_OVLF) {
1156 		netdev_dbg(ndev,
1157 			   "Overload Frame Transmission error interrupt\n");
1158 		stats->tx_errors++;
1159 		cf->can_id |= CAN_ERR_PROT;
1160 		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1161 	}
1162 
1163 	/* Clear channel error interrupts that are handled */
1164 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1165 			 RCANFD_CERFL_ERR(~cerfl));
1166 	netif_rx(skb);
1167 }
1168 
1169 static void rcar_canfd_tx_done(struct net_device *ndev)
1170 {
1171 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1172 	struct rcar_canfd_global *gpriv = priv->gpriv;
1173 	struct net_device_stats *stats = &ndev->stats;
1174 	u32 sts;
1175 	unsigned long flags;
1176 	u32 ch = priv->channel;
1177 
1178 	do {
1179 		u8 unsent, sent;
1180 
1181 		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1182 		stats->tx_packets++;
1183 		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1184 
1185 		spin_lock_irqsave(&priv->tx_lock, flags);
1186 		priv->tx_tail++;
1187 		sts = rcar_canfd_read(priv->base,
1188 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1189 		unsent = RCANFD_CFSTS_CFMC(sts);
1190 
1191 		/* Wake producer only when there is room */
1192 		if (unsent != RCANFD_FIFO_DEPTH)
1193 			netif_wake_queue(ndev);
1194 
1195 		if (priv->tx_head - priv->tx_tail <= unsent) {
1196 			spin_unlock_irqrestore(&priv->tx_lock, flags);
1197 			break;
1198 		}
1199 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1200 
1201 	} while (1);
1202 
1203 	/* Clear interrupt */
1204 	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1205 			 sts & ~RCANFD_CFSTS_CFTXIF);
1206 }
1207 
1208 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1209 {
1210 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1211 	struct net_device *ndev = priv->ndev;
1212 	u32 gerfl;
1213 
1214 	/* Handle global error interrupts */
1215 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1216 	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1217 		rcar_canfd_global_error(ndev);
1218 }
1219 
1220 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1221 {
1222 	struct rcar_canfd_global *gpriv = dev_id;
1223 	u32 ch;
1224 
1225 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1226 		rcar_canfd_handle_global_err(gpriv, ch);
1227 
1228 	return IRQ_HANDLED;
1229 }
1230 
1231 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1232 {
1233 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1234 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1235 	u32 sts, cc;
1236 
1237 	/* Handle Rx interrupts */
1238 	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1239 	cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1240 	if (likely(sts & RCANFD_RFSTS_RFIF &&
1241 		   cc & RCANFD_RFCC_RFIE)) {
1242 		if (napi_schedule_prep(&priv->napi)) {
1243 			/* Disable Rx FIFO interrupts */
1244 			rcar_canfd_clear_bit(priv->base,
1245 					     RCANFD_RFCC(gpriv, ridx),
1246 					     RCANFD_RFCC_RFIE);
1247 			__napi_schedule(&priv->napi);
1248 		}
1249 	}
1250 }
1251 
1252 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1253 {
1254 	struct rcar_canfd_global *gpriv = dev_id;
1255 	u32 ch;
1256 
1257 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1258 		rcar_canfd_handle_global_receive(gpriv, ch);
1259 
1260 	return IRQ_HANDLED;
1261 }
1262 
1263 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1264 {
1265 	struct rcar_canfd_global *gpriv = dev_id;
1266 	u32 ch;
1267 
1268 	/* Global error interrupts still indicate a condition specific
1269 	 * to a channel. RxFIFO interrupt is a global interrupt.
1270 	 */
1271 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1272 		rcar_canfd_handle_global_err(gpriv, ch);
1273 		rcar_canfd_handle_global_receive(gpriv, ch);
1274 	}
1275 	return IRQ_HANDLED;
1276 }
1277 
1278 static void rcar_canfd_state_change(struct net_device *ndev,
1279 				    u16 txerr, u16 rxerr)
1280 {
1281 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1282 	struct net_device_stats *stats = &ndev->stats;
1283 	enum can_state rx_state, tx_state, state = priv->can.state;
1284 	struct can_frame *cf;
1285 	struct sk_buff *skb;
1286 
1287 	/* Handle transition from error to normal states */
1288 	if (txerr < 96 && rxerr < 96)
1289 		state = CAN_STATE_ERROR_ACTIVE;
1290 	else if (txerr < 128 && rxerr < 128)
1291 		state = CAN_STATE_ERROR_WARNING;
1292 
1293 	if (state != priv->can.state) {
1294 		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1295 			   state, priv->can.state, txerr, rxerr);
1296 		skb = alloc_can_err_skb(ndev, &cf);
1297 		if (!skb) {
1298 			stats->rx_dropped++;
1299 			return;
1300 		}
1301 		tx_state = txerr >= rxerr ? state : 0;
1302 		rx_state = txerr <= rxerr ? state : 0;
1303 
1304 		can_change_state(ndev, cf, tx_state, rx_state);
1305 		netif_rx(skb);
1306 	}
1307 }
1308 
1309 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1310 {
1311 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1312 	struct net_device *ndev = priv->ndev;
1313 	u32 sts;
1314 
1315 	/* Handle Tx interrupts */
1316 	sts = rcar_canfd_read(priv->base,
1317 			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1318 	if (likely(sts & RCANFD_CFSTS_CFTXIF))
1319 		rcar_canfd_tx_done(ndev);
1320 }
1321 
1322 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1323 {
1324 	struct rcar_canfd_channel *priv = dev_id;
1325 
1326 	rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1327 
1328 	return IRQ_HANDLED;
1329 }
1330 
1331 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1332 {
1333 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1334 	struct net_device *ndev = priv->ndev;
1335 	u16 txerr, rxerr;
1336 	u32 sts, cerfl;
1337 
1338 	/* Handle channel error interrupts */
1339 	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1340 	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1341 	txerr = RCANFD_CSTS_TECCNT(sts);
1342 	rxerr = RCANFD_CSTS_RECCNT(sts);
1343 	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1344 		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1345 
1346 	/* Handle state change to lower states */
1347 	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1348 		     priv->can.state != CAN_STATE_BUS_OFF))
1349 		rcar_canfd_state_change(ndev, txerr, rxerr);
1350 }
1351 
1352 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1353 {
1354 	struct rcar_canfd_channel *priv = dev_id;
1355 
1356 	rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1357 
1358 	return IRQ_HANDLED;
1359 }
1360 
1361 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1362 {
1363 	struct rcar_canfd_global *gpriv = dev_id;
1364 	u32 ch;
1365 
1366 	/* Common FIFO is a per channel resource */
1367 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1368 		rcar_canfd_handle_channel_err(gpriv, ch);
1369 		rcar_canfd_handle_channel_tx(gpriv, ch);
1370 	}
1371 
1372 	return IRQ_HANDLED;
1373 }
1374 
1375 static inline u32 rcar_canfd_compute_nominal_bit_rate_cfg(struct rcar_canfd_channel *priv,
1376 							  u16 tseg1, u16 tseg2, u16 sjw, u16 brp)
1377 {
1378 	struct rcar_canfd_global *gpriv = priv->gpriv;
1379 	const struct rcar_canfd_hw_info *info = gpriv->info;
1380 	u32 ntseg1, ntseg2, nsjw, nbrp;
1381 
1382 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1383 		ntseg1 = (tseg1 & (info->nom_bittiming->tseg1_max - 1)) << info->sh->ntseg1;
1384 		ntseg2 = (tseg2 & (info->nom_bittiming->tseg2_max - 1)) << info->sh->ntseg2;
1385 		nsjw = (sjw & (info->nom_bittiming->sjw_max - 1)) << info->sh->nsjw;
1386 		nbrp = FIELD_PREP(RCANFD_NCFG_NBRP, brp);
1387 	} else {
1388 		ntseg1 = FIELD_PREP(RCANFD_CFG_TSEG1, tseg1);
1389 		ntseg2 = FIELD_PREP(RCANFD_CFG_TSEG2, tseg2);
1390 		nsjw = FIELD_PREP(RCANFD_CFG_SJW, sjw);
1391 		nbrp = FIELD_PREP(RCANFD_CFG_BRP, brp);
1392 	}
1393 
1394 	return (ntseg1 | ntseg2 | nsjw | nbrp);
1395 }
1396 
1397 static inline u32 rcar_canfd_compute_data_bit_rate_cfg(const struct rcar_canfd_hw_info *info,
1398 						       u16 tseg1, u16 tseg2, u16 sjw, u16 brp)
1399 {
1400 	u32 dtseg1, dtseg2, dsjw, dbrp;
1401 
1402 	dtseg1 = (tseg1 & (info->data_bittiming->tseg1_max - 1)) << info->sh->dtseg1;
1403 	dtseg2 = (tseg2 & (info->data_bittiming->tseg2_max - 1)) << info->sh->dtseg2;
1404 	dsjw = (sjw & (info->data_bittiming->sjw_max - 1)) << 24;
1405 	dbrp = FIELD_PREP(RCANFD_DCFG_DBRP, brp);
1406 
1407 	return (dtseg1 | dtseg2 | dsjw | dbrp);
1408 }
1409 
1410 static void rcar_canfd_set_bittiming(struct net_device *ndev)
1411 {
1412 	u32 mask = RCANFD_FDCFG_TDCO | RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC;
1413 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1414 	struct rcar_canfd_global *gpriv = priv->gpriv;
1415 	const struct can_bittiming *bt = &priv->can.bittiming;
1416 	const struct can_bittiming *dbt = &priv->can.fd.data_bittiming;
1417 	const struct can_tdc_const *tdc_const = priv->can.fd.tdc_const;
1418 	const struct can_tdc *tdc = &priv->can.fd.tdc;
1419 	u32 cfg, tdcmode = 0, tdco = 0;
1420 	u16 brp, sjw, tseg1, tseg2;
1421 	u32 ch = priv->channel;
1422 
1423 	/* Nominal bit timing settings */
1424 	brp = bt->brp - 1;
1425 	sjw = bt->sjw - 1;
1426 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1427 	tseg2 = bt->phase_seg2 - 1;
1428 	cfg = rcar_canfd_compute_nominal_bit_rate_cfg(priv, tseg1, tseg2, sjw, brp);
1429 	rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1430 
1431 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD))
1432 		return;
1433 
1434 	/* Data bit timing settings */
1435 	brp = dbt->brp - 1;
1436 	sjw = dbt->sjw - 1;
1437 	tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1438 	tseg2 = dbt->phase_seg2 - 1;
1439 	cfg = rcar_canfd_compute_data_bit_rate_cfg(gpriv->info, tseg1, tseg2, sjw, brp);
1440 	writel(cfg, &gpriv->fcbase[ch].dcfg);
1441 
1442 	/* Transceiver Delay Compensation */
1443 	if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO) {
1444 		/* TDC enabled, measured + offset */
1445 		tdcmode = RCANFD_FDCFG_TDCE;
1446 		tdco = tdc->tdco - 1;
1447 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL) {
1448 		/* TDC enabled, offset only */
1449 		tdcmode = RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC;
1450 		tdco = min(tdc->tdcv + tdc->tdco, tdc_const->tdco_max) - 1;
1451 	}
1452 
1453 	rcar_canfd_update_bit_reg(&gpriv->fcbase[ch].cfdcfg, mask,
1454 				  tdcmode | FIELD_PREP(RCANFD_FDCFG_TDCO, tdco));
1455 }
1456 
1457 static int rcar_canfd_start(struct net_device *ndev)
1458 {
1459 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1460 	struct rcar_canfd_global *gpriv = priv->gpriv;
1461 	int err = -EOPNOTSUPP;
1462 	u32 sts, ch = priv->channel;
1463 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1464 
1465 	rcar_canfd_set_bittiming(ndev);
1466 
1467 	rcar_canfd_enable_channel_interrupts(priv);
1468 
1469 	/* Set channel to Operational mode */
1470 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1471 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1472 
1473 	/* Verify channel mode change */
1474 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1475 				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1476 	if (err) {
1477 		netdev_err(ndev, "channel %u communication state failed\n", ch);
1478 		goto fail_mode_change;
1479 	}
1480 
1481 	/* Enable Common & Rx FIFO */
1482 	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1483 			   RCANFD_CFCC_CFE);
1484 	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1485 
1486 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1487 	return 0;
1488 
1489 fail_mode_change:
1490 	rcar_canfd_disable_channel_interrupts(priv);
1491 	return err;
1492 }
1493 
1494 static int rcar_canfd_open(struct net_device *ndev)
1495 {
1496 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1497 	struct rcar_canfd_global *gpriv = priv->gpriv;
1498 	int err;
1499 
1500 	err = phy_power_on(priv->transceiver);
1501 	if (err) {
1502 		netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1503 		return err;
1504 	}
1505 
1506 	/* Peripheral clock is already enabled in probe */
1507 	err = clk_prepare_enable(gpriv->can_clk);
1508 	if (err) {
1509 		netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1510 		goto out_phy;
1511 	}
1512 
1513 	err = open_candev(ndev);
1514 	if (err) {
1515 		netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1516 		goto out_can_clock;
1517 	}
1518 
1519 	napi_enable(&priv->napi);
1520 	err = rcar_canfd_start(ndev);
1521 	if (err)
1522 		goto out_close;
1523 	netif_start_queue(ndev);
1524 	return 0;
1525 out_close:
1526 	napi_disable(&priv->napi);
1527 	close_candev(ndev);
1528 out_can_clock:
1529 	clk_disable_unprepare(gpriv->can_clk);
1530 out_phy:
1531 	phy_power_off(priv->transceiver);
1532 	return err;
1533 }
1534 
1535 static void rcar_canfd_stop(struct net_device *ndev)
1536 {
1537 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1538 	struct rcar_canfd_global *gpriv = priv->gpriv;
1539 	int err;
1540 	u32 sts, ch = priv->channel;
1541 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1542 
1543 	/* Transition to channel reset mode  */
1544 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1545 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1546 
1547 	/* Check Channel reset mode */
1548 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1549 				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1550 	if (err)
1551 		netdev_err(ndev, "channel %u reset failed\n", ch);
1552 
1553 	rcar_canfd_disable_channel_interrupts(priv);
1554 
1555 	/* Disable Common & Rx FIFO */
1556 	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1557 			     RCANFD_CFCC_CFE);
1558 	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1559 
1560 	/* Set the state as STOPPED */
1561 	priv->can.state = CAN_STATE_STOPPED;
1562 }
1563 
1564 static int rcar_canfd_close(struct net_device *ndev)
1565 {
1566 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1567 	struct rcar_canfd_global *gpriv = priv->gpriv;
1568 
1569 	netif_stop_queue(ndev);
1570 	rcar_canfd_stop(ndev);
1571 	napi_disable(&priv->napi);
1572 	clk_disable_unprepare(gpriv->can_clk);
1573 	close_candev(ndev);
1574 	phy_power_off(priv->transceiver);
1575 	return 0;
1576 }
1577 
1578 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1579 					 struct net_device *ndev)
1580 {
1581 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1582 	struct rcar_canfd_global *gpriv = priv->gpriv;
1583 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1584 	u32 sts = 0, id, dlc;
1585 	unsigned long flags;
1586 	u32 ch = priv->channel;
1587 
1588 	if (can_dev_dropped_skb(ndev, skb))
1589 		return NETDEV_TX_OK;
1590 
1591 	if (cf->can_id & CAN_EFF_FLAG) {
1592 		id = cf->can_id & CAN_EFF_MASK;
1593 		id |= RCANFD_CFID_CFIDE;
1594 	} else {
1595 		id = cf->can_id & CAN_SFF_MASK;
1596 	}
1597 
1598 	if (cf->can_id & CAN_RTR_FLAG)
1599 		id |= RCANFD_CFID_CFRTR;
1600 
1601 	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1602 
1603 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1604 		rcar_canfd_write(priv->base,
1605 				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1606 		rcar_canfd_write(priv->base,
1607 				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1608 
1609 		if (can_is_canfd_skb(skb)) {
1610 			/* CAN FD frame format */
1611 			sts |= RCANFD_CFFDCSTS_CFFDF;
1612 			if (cf->flags & CANFD_BRS)
1613 				sts |= RCANFD_CFFDCSTS_CFBRS;
1614 
1615 			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1616 				sts |= RCANFD_CFFDCSTS_CFESI;
1617 		}
1618 
1619 		rcar_canfd_write(priv->base,
1620 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1621 
1622 		rcar_canfd_put_data(priv, cf,
1623 				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1624 	} else {
1625 		rcar_canfd_write(priv->base,
1626 				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1627 		rcar_canfd_write(priv->base,
1628 				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1629 		rcar_canfd_put_data(priv, cf,
1630 				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1631 	}
1632 
1633 	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1634 
1635 	spin_lock_irqsave(&priv->tx_lock, flags);
1636 	priv->tx_head++;
1637 
1638 	/* Stop the queue if we've filled all FIFO entries */
1639 	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1640 		netif_stop_queue(ndev);
1641 
1642 	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1643 	 * pointer for the Common FIFO
1644 	 */
1645 	rcar_canfd_write(priv->base,
1646 			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1647 
1648 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1649 	return NETDEV_TX_OK;
1650 }
1651 
1652 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1653 {
1654 	struct net_device *ndev = priv->ndev;
1655 	struct net_device_stats *stats = &ndev->stats;
1656 	struct rcar_canfd_global *gpriv = priv->gpriv;
1657 	struct canfd_frame *cf;
1658 	struct sk_buff *skb;
1659 	u32 sts = 0, id, dlc;
1660 	u32 ch = priv->channel;
1661 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1662 
1663 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1664 		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1665 		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1666 
1667 		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1668 
1669 		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1670 		    sts & RCANFD_RFFDSTS_RFFDF)
1671 			skb = alloc_canfd_skb(ndev, &cf);
1672 		else
1673 			skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
1674 	} else {
1675 		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1676 		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1677 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
1678 	}
1679 
1680 	if (!skb) {
1681 		stats->rx_dropped++;
1682 		return;
1683 	}
1684 
1685 	if (id & RCANFD_RFID_RFIDE)
1686 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1687 	else
1688 		cf->can_id = id & CAN_SFF_MASK;
1689 
1690 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1691 		if (sts & RCANFD_RFFDSTS_RFFDF)
1692 			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1693 		else
1694 			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1695 
1696 		if (sts & RCANFD_RFFDSTS_RFESI) {
1697 			cf->flags |= CANFD_ESI;
1698 			netdev_dbg(ndev, "ESI Error\n");
1699 		}
1700 
1701 		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1702 			cf->can_id |= CAN_RTR_FLAG;
1703 		} else {
1704 			if (sts & RCANFD_RFFDSTS_RFBRS)
1705 				cf->flags |= CANFD_BRS;
1706 
1707 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1708 		}
1709 	} else {
1710 		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1711 		if (id & RCANFD_RFID_RFRTR)
1712 			cf->can_id |= CAN_RTR_FLAG;
1713 		else if (gpriv->info->shared_can_regs)
1714 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1715 		else
1716 			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1717 	}
1718 
1719 	/* Write 0xff to RFPC to increment the CPU-side
1720 	 * pointer of the Rx FIFO
1721 	 */
1722 	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1723 
1724 	if (!(cf->can_id & CAN_RTR_FLAG))
1725 		stats->rx_bytes += cf->len;
1726 	stats->rx_packets++;
1727 	netif_receive_skb(skb);
1728 }
1729 
1730 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1731 {
1732 	struct rcar_canfd_channel *priv =
1733 		container_of(napi, struct rcar_canfd_channel, napi);
1734 	struct rcar_canfd_global *gpriv = priv->gpriv;
1735 	int num_pkts;
1736 	u32 sts;
1737 	u32 ch = priv->channel;
1738 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1739 
1740 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1741 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1742 		/* Check FIFO empty condition */
1743 		if (sts & RCANFD_RFSTS_RFEMP)
1744 			break;
1745 
1746 		rcar_canfd_rx_pkt(priv);
1747 
1748 		/* Clear interrupt bit */
1749 		if (sts & RCANFD_RFSTS_RFIF)
1750 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1751 					 sts & ~RCANFD_RFSTS_RFIF);
1752 	}
1753 
1754 	/* All packets processed */
1755 	if (num_pkts < quota) {
1756 		if (napi_complete_done(napi, num_pkts)) {
1757 			/* Enable Rx FIFO interrupts */
1758 			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1759 					   RCANFD_RFCC_RFIE);
1760 		}
1761 	}
1762 	return num_pkts;
1763 }
1764 
1765 static unsigned int rcar_canfd_get_tdcr(struct rcar_canfd_global *gpriv,
1766 					unsigned int ch)
1767 {
1768 	u32 sts = readl(&gpriv->fcbase[ch].cfdsts);
1769 	u32 tdcr = FIELD_GET(RCANFD_FDSTS_TDCR, sts);
1770 
1771 	return tdcr & (gpriv->info->tdc_const->tdcv_max - 1);
1772 }
1773 
1774 static int rcar_canfd_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1775 {
1776 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1777 	u32 tdco = priv->can.fd.tdc.tdco;
1778 	u32 tdcr;
1779 
1780 	/* Transceiver Delay Compensation Result */
1781 	tdcr = rcar_canfd_get_tdcr(priv->gpriv, priv->channel) + 1;
1782 
1783 	*tdcv = tdcr < tdco ? 0 : tdcr - tdco;
1784 
1785 	return 0;
1786 }
1787 
1788 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1789 {
1790 	int err;
1791 
1792 	switch (mode) {
1793 	case CAN_MODE_START:
1794 		err = rcar_canfd_start(ndev);
1795 		if (err)
1796 			return err;
1797 		netif_wake_queue(ndev);
1798 		return 0;
1799 	default:
1800 		return -EOPNOTSUPP;
1801 	}
1802 }
1803 
1804 static int rcar_canfd_get_berr_counter(const struct net_device *ndev,
1805 				       struct can_berr_counter *bec)
1806 {
1807 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1808 	u32 val, ch = priv->channel;
1809 
1810 	/* Peripheral clock is already enabled in probe */
1811 	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1812 	bec->txerr = RCANFD_CSTS_TECCNT(val);
1813 	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1814 	return 0;
1815 }
1816 
1817 static const struct net_device_ops rcar_canfd_netdev_ops = {
1818 	.ndo_open = rcar_canfd_open,
1819 	.ndo_stop = rcar_canfd_close,
1820 	.ndo_start_xmit = rcar_canfd_start_xmit,
1821 	.ndo_change_mtu = can_change_mtu,
1822 };
1823 
1824 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1825 	.get_ts_info = ethtool_op_get_ts_info,
1826 };
1827 
1828 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1829 				    u32 fcan_freq, struct phy *transceiver)
1830 {
1831 	const struct rcar_canfd_hw_info *info = gpriv->info;
1832 	struct platform_device *pdev = gpriv->pdev;
1833 	struct device *dev = &pdev->dev;
1834 	struct rcar_canfd_channel *priv;
1835 	struct net_device *ndev;
1836 	int err = -ENODEV;
1837 
1838 	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1839 	if (!ndev)
1840 		return -ENOMEM;
1841 
1842 	priv = netdev_priv(ndev);
1843 
1844 	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1845 	ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1846 	ndev->flags |= IFF_ECHO;
1847 	priv->ndev = ndev;
1848 	priv->base = gpriv->base;
1849 	priv->transceiver = transceiver;
1850 	priv->channel = ch;
1851 	priv->gpriv = gpriv;
1852 	if (transceiver)
1853 		priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1854 	priv->can.clock.freq = fcan_freq;
1855 	dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1856 
1857 	if (info->multi_channel_irqs) {
1858 		char *irq_name;
1859 		char name[10];
1860 		int err_irq;
1861 		int tx_irq;
1862 
1863 		scnprintf(name, sizeof(name), "ch%u_err", ch);
1864 		err_irq = platform_get_irq_byname(pdev, name);
1865 		if (err_irq < 0) {
1866 			err = err_irq;
1867 			goto fail;
1868 		}
1869 
1870 		scnprintf(name, sizeof(name), "ch%u_trx", ch);
1871 		tx_irq = platform_get_irq_byname(pdev, name);
1872 		if (tx_irq < 0) {
1873 			err = tx_irq;
1874 			goto fail;
1875 		}
1876 
1877 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1878 					  ch);
1879 		if (!irq_name) {
1880 			err = -ENOMEM;
1881 			goto fail;
1882 		}
1883 		err = devm_request_irq(dev, err_irq,
1884 				       rcar_canfd_channel_err_interrupt, 0,
1885 				       irq_name, priv);
1886 		if (err) {
1887 			dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1888 				err_irq, ERR_PTR(err));
1889 			goto fail;
1890 		}
1891 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1892 					  ch);
1893 		if (!irq_name) {
1894 			err = -ENOMEM;
1895 			goto fail;
1896 		}
1897 		err = devm_request_irq(dev, tx_irq,
1898 				       rcar_canfd_channel_tx_interrupt, 0,
1899 				       irq_name, priv);
1900 		if (err) {
1901 			dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1902 				tx_irq, ERR_PTR(err));
1903 			goto fail;
1904 		}
1905 	}
1906 
1907 	if (gpriv->fdmode) {
1908 		priv->can.bittiming_const = gpriv->info->nom_bittiming;
1909 		priv->can.fd.data_bittiming_const = gpriv->info->data_bittiming;
1910 		priv->can.fd.tdc_const = gpriv->info->tdc_const;
1911 
1912 		/* Controller starts in CAN FD only mode */
1913 		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1914 		if (err)
1915 			goto fail;
1916 
1917 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING |
1918 					       CAN_CTRLMODE_TDC_AUTO |
1919 					       CAN_CTRLMODE_TDC_MANUAL;
1920 		priv->can.fd.do_get_auto_tdcv = rcar_canfd_get_auto_tdcv;
1921 	} else {
1922 		/* Controller starts in Classical CAN only mode */
1923 		if (gpriv->info->shared_can_regs)
1924 			priv->can.bittiming_const = gpriv->info->nom_bittiming;
1925 		else
1926 			priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1927 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1928 	}
1929 
1930 	priv->can.do_set_mode = rcar_canfd_do_set_mode;
1931 	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1932 	SET_NETDEV_DEV(ndev, dev);
1933 
1934 	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1935 			      RCANFD_NAPI_WEIGHT);
1936 	spin_lock_init(&priv->tx_lock);
1937 	gpriv->ch[priv->channel] = priv;
1938 	err = register_candev(ndev);
1939 	if (err) {
1940 		dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
1941 		goto fail_candev;
1942 	}
1943 	dev_info(dev, "device registered (channel %u)\n", priv->channel);
1944 	return 0;
1945 
1946 fail_candev:
1947 	netif_napi_del(&priv->napi);
1948 fail:
1949 	free_candev(ndev);
1950 	return err;
1951 }
1952 
1953 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1954 {
1955 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1956 
1957 	if (priv) {
1958 		unregister_candev(priv->ndev);
1959 		netif_napi_del(&priv->napi);
1960 		free_candev(priv->ndev);
1961 	}
1962 }
1963 
1964 static int rcar_canfd_probe(struct platform_device *pdev)
1965 {
1966 	struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
1967 	const struct rcar_canfd_hw_info *info;
1968 	struct device *dev = &pdev->dev;
1969 	void __iomem *addr;
1970 	u32 sts, ch, fcan_freq;
1971 	struct rcar_canfd_global *gpriv;
1972 	struct device_node *of_child;
1973 	unsigned long channels_mask = 0;
1974 	int err, ch_irq, g_irq;
1975 	int g_err_irq, g_recc_irq;
1976 	u32 rule_entry = 0;
1977 	bool fdmode = true;			/* CAN FD only mode - default */
1978 	char name[9] = "channelX";
1979 	struct clk *clk_ram;
1980 	int i;
1981 
1982 	info = of_device_get_match_data(dev);
1983 
1984 	if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
1985 		fdmode = false;			/* Classical CAN only mode */
1986 
1987 	for (i = 0; i < info->max_channels; ++i) {
1988 		name[7] = '0' + i;
1989 		of_child = of_get_available_child_by_name(dev->of_node, name);
1990 		if (of_child) {
1991 			channels_mask |= BIT(i);
1992 			transceivers[i] = devm_of_phy_optional_get(dev,
1993 							of_child, NULL);
1994 			of_node_put(of_child);
1995 		}
1996 		if (IS_ERR(transceivers[i]))
1997 			return PTR_ERR(transceivers[i]);
1998 	}
1999 
2000 	if (info->shared_global_irqs) {
2001 		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
2002 		if (ch_irq < 0) {
2003 			/* For backward compatibility get irq by index */
2004 			ch_irq = platform_get_irq(pdev, 0);
2005 			if (ch_irq < 0)
2006 				return ch_irq;
2007 		}
2008 
2009 		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
2010 		if (g_irq < 0) {
2011 			/* For backward compatibility get irq by index */
2012 			g_irq = platform_get_irq(pdev, 1);
2013 			if (g_irq < 0)
2014 				return g_irq;
2015 		}
2016 	} else {
2017 		g_err_irq = platform_get_irq_byname(pdev, "g_err");
2018 		if (g_err_irq < 0)
2019 			return g_err_irq;
2020 
2021 		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
2022 		if (g_recc_irq < 0)
2023 			return g_recc_irq;
2024 	}
2025 
2026 	/* Global controller context */
2027 	gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
2028 	if (!gpriv)
2029 		return -ENOMEM;
2030 
2031 	gpriv->pdev = pdev;
2032 	gpriv->channels_mask = channels_mask;
2033 	gpriv->fdmode = fdmode;
2034 	gpriv->info = info;
2035 
2036 	gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
2037 	if (IS_ERR(gpriv->rstc1))
2038 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
2039 				     "failed to get rstp_n\n");
2040 
2041 	gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
2042 	if (IS_ERR(gpriv->rstc2))
2043 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
2044 				     "failed to get rstc_n\n");
2045 
2046 	/* Peripheral clock */
2047 	gpriv->clkp = devm_clk_get(dev, "fck");
2048 	if (IS_ERR(gpriv->clkp))
2049 		return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
2050 				     "cannot get peripheral clock\n");
2051 
2052 	/* fCAN clock: Pick External clock. If not available fallback to
2053 	 * CANFD clock
2054 	 */
2055 	gpriv->can_clk = devm_clk_get(dev, "can_clk");
2056 	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
2057 		gpriv->can_clk = devm_clk_get(dev, "canfd");
2058 		if (IS_ERR(gpriv->can_clk))
2059 			return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
2060 					     "cannot get canfd clock\n");
2061 
2062 		/* CANFD clock may be further divided within the IP */
2063 		fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv;
2064 	} else {
2065 		fcan_freq = clk_get_rate(gpriv->can_clk);
2066 		gpriv->extclk = gpriv->info->external_clk;
2067 	}
2068 
2069 	clk_ram = devm_clk_get_optional_enabled(dev, "ram_clk");
2070 	if (IS_ERR(clk_ram))
2071 		return dev_err_probe(dev, PTR_ERR(clk_ram),
2072 				     "cannot get enabled ram clock\n");
2073 
2074 	addr = devm_platform_ioremap_resource(pdev, 0);
2075 	if (IS_ERR(addr)) {
2076 		err = PTR_ERR(addr);
2077 		goto fail_dev;
2078 	}
2079 	gpriv->base = addr;
2080 	gpriv->fcbase = addr + gpriv->info->regs->coffset;
2081 
2082 	/* Request IRQ that's common for both channels */
2083 	if (info->shared_global_irqs) {
2084 		err = devm_request_irq(dev, ch_irq,
2085 				       rcar_canfd_channel_interrupt, 0,
2086 				       "canfd.ch_int", gpriv);
2087 		if (err) {
2088 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2089 				ch_irq, ERR_PTR(err));
2090 			goto fail_dev;
2091 		}
2092 
2093 		err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
2094 				       0, "canfd.g_int", gpriv);
2095 		if (err) {
2096 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2097 				g_irq, ERR_PTR(err));
2098 			goto fail_dev;
2099 		}
2100 	} else {
2101 		err = devm_request_irq(dev, g_recc_irq,
2102 				       rcar_canfd_global_receive_fifo_interrupt, 0,
2103 				       "canfd.g_recc", gpriv);
2104 
2105 		if (err) {
2106 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2107 				g_recc_irq, ERR_PTR(err));
2108 			goto fail_dev;
2109 		}
2110 
2111 		err = devm_request_irq(dev, g_err_irq,
2112 				       rcar_canfd_global_err_interrupt, 0,
2113 				       "canfd.g_err", gpriv);
2114 		if (err) {
2115 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2116 				g_err_irq, ERR_PTR(err));
2117 			goto fail_dev;
2118 		}
2119 	}
2120 
2121 	err = reset_control_reset(gpriv->rstc1);
2122 	if (err)
2123 		goto fail_dev;
2124 	err = reset_control_reset(gpriv->rstc2);
2125 	if (err) {
2126 		reset_control_assert(gpriv->rstc1);
2127 		goto fail_dev;
2128 	}
2129 
2130 	/* Enable peripheral clock for register access */
2131 	err = clk_prepare_enable(gpriv->clkp);
2132 	if (err) {
2133 		dev_err(dev, "failed to enable peripheral clock: %pe\n",
2134 			ERR_PTR(err));
2135 		goto fail_reset;
2136 	}
2137 
2138 	err = rcar_canfd_reset_controller(gpriv);
2139 	if (err) {
2140 		dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2141 		goto fail_clk;
2142 	}
2143 
2144 	/* Controller in Global reset & Channel reset mode */
2145 	rcar_canfd_configure_controller(gpriv);
2146 
2147 	/* Configure per channel attributes */
2148 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2149 		/* Configure Channel's Rx fifo */
2150 		rcar_canfd_configure_rx(gpriv, ch);
2151 
2152 		/* Configure Channel's Tx (Common) fifo */
2153 		rcar_canfd_configure_tx(gpriv, ch);
2154 
2155 		/* Configure receive rules */
2156 		rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry);
2157 		rule_entry += RCANFD_CHANNEL_NUMRULES;
2158 	}
2159 
2160 	/* Configure common interrupts */
2161 	rcar_canfd_enable_global_interrupts(gpriv);
2162 
2163 	/* Start Global operation mode */
2164 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2165 			      RCANFD_GCTR_GMDC_GOPM);
2166 
2167 	/* Verify mode change */
2168 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2169 				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2170 	if (err) {
2171 		dev_err(dev, "global operational mode failed\n");
2172 		goto fail_mode;
2173 	}
2174 
2175 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2176 		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2177 					       transceivers[ch]);
2178 		if (err)
2179 			goto fail_channel;
2180 	}
2181 
2182 	platform_set_drvdata(pdev, gpriv);
2183 	dev_info(dev, "global operational state (%s clk, %s mode)\n",
2184 		 gpriv->extclk ? "ext" : "canfd",
2185 		 gpriv->fdmode ? "fd" : "classical");
2186 	return 0;
2187 
2188 fail_channel:
2189 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2190 		rcar_canfd_channel_remove(gpriv, ch);
2191 fail_mode:
2192 	rcar_canfd_disable_global_interrupts(gpriv);
2193 fail_clk:
2194 	clk_disable_unprepare(gpriv->clkp);
2195 fail_reset:
2196 	reset_control_assert(gpriv->rstc1);
2197 	reset_control_assert(gpriv->rstc2);
2198 fail_dev:
2199 	return err;
2200 }
2201 
2202 static void rcar_canfd_remove(struct platform_device *pdev)
2203 {
2204 	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2205 	u32 ch;
2206 
2207 	rcar_canfd_reset_controller(gpriv);
2208 	rcar_canfd_disable_global_interrupts(gpriv);
2209 
2210 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2211 		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2212 		rcar_canfd_channel_remove(gpriv, ch);
2213 	}
2214 
2215 	/* Enter global sleep mode */
2216 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2217 	clk_disable_unprepare(gpriv->clkp);
2218 	reset_control_assert(gpriv->rstc1);
2219 	reset_control_assert(gpriv->rstc2);
2220 }
2221 
2222 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2223 {
2224 	return 0;
2225 }
2226 
2227 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2228 {
2229 	return 0;
2230 }
2231 
2232 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2233 			 rcar_canfd_resume);
2234 
2235 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2236 	{ .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2237 	{ .compatible = "renesas,r9a09g047-canfd", .data = &r9a09g047_hw_info },
2238 	{ .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2239 	{ .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2240 	{ .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2241 	{ }
2242 };
2243 
2244 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2245 
2246 static struct platform_driver rcar_canfd_driver = {
2247 	.driver = {
2248 		.name = RCANFD_DRV_NAME,
2249 		.of_match_table = of_match_ptr(rcar_canfd_of_table),
2250 		.pm = &rcar_canfd_pm_ops,
2251 	},
2252 	.probe = rcar_canfd_probe,
2253 	.remove = rcar_canfd_remove,
2254 };
2255 
2256 module_platform_driver(rcar_canfd_driver);
2257 
2258 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2259 MODULE_LICENSE("GPL");
2260 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2261 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2262