1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/bitfield.h> 25 #include <linux/bitmap.h> 26 #include <linux/bitops.h> 27 #include <linux/can/dev.h> 28 #include <linux/clk.h> 29 #include <linux/errno.h> 30 #include <linux/ethtool.h> 31 #include <linux/interrupt.h> 32 #include <linux/iopoll.h> 33 #include <linux/kernel.h> 34 #include <linux/module.h> 35 #include <linux/moduleparam.h> 36 #include <linux/netdevice.h> 37 #include <linux/of.h> 38 #include <linux/phy/phy.h> 39 #include <linux/platform_device.h> 40 #include <linux/reset.h> 41 #include <linux/types.h> 42 43 #define RCANFD_DRV_NAME "rcar_canfd" 44 45 /* Global register bits */ 46 47 /* RSCFDnCFDGRMCFG */ 48 #define RCANFD_GRMCFG_RCMC BIT(0) 49 50 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 51 #define RCANFD_GCFG_EEFE BIT(6) 52 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 53 #define RCANFD_GCFG_DCS BIT(4) 54 #define RCANFD_GCFG_DCE BIT(1) 55 #define RCANFD_GCFG_TPRI BIT(0) 56 57 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 58 #define RCANFD_GCTR_TSRST BIT(16) 59 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 60 #define RCANFD_GCTR_THLEIE BIT(10) 61 #define RCANFD_GCTR_MEIE BIT(9) 62 #define RCANFD_GCTR_DEIE BIT(8) 63 #define RCANFD_GCTR_GSLPR BIT(2) 64 #define RCANFD_GCTR_GMDC_MASK (0x3) 65 #define RCANFD_GCTR_GMDC_GOPM (0x0) 66 #define RCANFD_GCTR_GMDC_GRESET (0x1) 67 #define RCANFD_GCTR_GMDC_GTEST (0x2) 68 69 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 70 #define RCANFD_GSTS_GRAMINIT BIT(3) 71 #define RCANFD_GSTS_GSLPSTS BIT(2) 72 #define RCANFD_GSTS_GHLTSTS BIT(1) 73 #define RCANFD_GSTS_GRSTSTS BIT(0) 74 /* Non-operational status */ 75 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 76 77 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 78 #define RCANFD_GERFL_EEF GENMASK(23, 16) 79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 80 #define RCANFD_GERFL_THLES BIT(2) 81 #define RCANFD_GERFL_MES BIT(1) 82 #define RCANFD_GERFL_DEF BIT(0) 83 84 #define RCANFD_GERFL_ERR(gpriv, x) \ 85 ({\ 86 typeof(gpriv) (_gpriv) = (gpriv); \ 87 ((x) & ((FIELD_PREP(RCANFD_GERFL_EEF, (_gpriv)->channels_mask)) | \ 88 RCANFD_GERFL_MES | ((_gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))); \ 89 }) 90 91 /* AFL Rx rules registers */ 92 93 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 94 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 95 #define RCANFD_GAFLECTR_AFLPN(gpriv, page_num) ((page_num) & (gpriv)->info->max_aflpn) 96 97 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 98 #define RCANFD_GAFLID_GAFLLB BIT(29) 99 100 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 101 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 102 103 /* Channel register bits */ 104 105 /* RSCFDnCmCFG - Classical CAN only */ 106 #define RCANFD_CFG_SJW GENMASK(25, 24) 107 #define RCANFD_CFG_TSEG2 GENMASK(22, 20) 108 #define RCANFD_CFG_TSEG1 GENMASK(19, 16) 109 #define RCANFD_CFG_BRP GENMASK(9, 0) 110 111 /* RSCFDnCFDCmNCFG - CAN FD only */ 112 #define RCANFD_NCFG_NBRP GENMASK(9, 0) 113 114 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 115 #define RCANFD_CCTR_CTME BIT(24) 116 #define RCANFD_CCTR_ERRD BIT(23) 117 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 118 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 119 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 120 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 121 #define RCANFD_CCTR_TDCVFIE BIT(19) 122 #define RCANFD_CCTR_SOCOIE BIT(18) 123 #define RCANFD_CCTR_EOCOIE BIT(17) 124 #define RCANFD_CCTR_TAIE BIT(16) 125 #define RCANFD_CCTR_ALIE BIT(15) 126 #define RCANFD_CCTR_BLIE BIT(14) 127 #define RCANFD_CCTR_OLIE BIT(13) 128 #define RCANFD_CCTR_BORIE BIT(12) 129 #define RCANFD_CCTR_BOEIE BIT(11) 130 #define RCANFD_CCTR_EPIE BIT(10) 131 #define RCANFD_CCTR_EWIE BIT(9) 132 #define RCANFD_CCTR_BEIE BIT(8) 133 #define RCANFD_CCTR_CSLPR BIT(2) 134 #define RCANFD_CCTR_CHMDC_MASK (0x3) 135 #define RCANFD_CCTR_CHDMC_COPM (0x0) 136 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 137 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 138 139 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 140 #define RCANFD_CSTS_COMSTS BIT(7) 141 #define RCANFD_CSTS_RECSTS BIT(6) 142 #define RCANFD_CSTS_TRMSTS BIT(5) 143 #define RCANFD_CSTS_BOSTS BIT(4) 144 #define RCANFD_CSTS_EPSTS BIT(3) 145 #define RCANFD_CSTS_SLPSTS BIT(2) 146 #define RCANFD_CSTS_HLTSTS BIT(1) 147 #define RCANFD_CSTS_CRSTSTS BIT(0) 148 149 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 150 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 151 152 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 153 #define RCANFD_CERFL_ADERR BIT(14) 154 #define RCANFD_CERFL_B0ERR BIT(13) 155 #define RCANFD_CERFL_B1ERR BIT(12) 156 #define RCANFD_CERFL_CERR BIT(11) 157 #define RCANFD_CERFL_AERR BIT(10) 158 #define RCANFD_CERFL_FERR BIT(9) 159 #define RCANFD_CERFL_SERR BIT(8) 160 #define RCANFD_CERFL_ALF BIT(7) 161 #define RCANFD_CERFL_BLF BIT(6) 162 #define RCANFD_CERFL_OVLF BIT(5) 163 #define RCANFD_CERFL_BORF BIT(4) 164 #define RCANFD_CERFL_BOEF BIT(3) 165 #define RCANFD_CERFL_EPF BIT(2) 166 #define RCANFD_CERFL_EWF BIT(1) 167 #define RCANFD_CERFL_BEF BIT(0) 168 169 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 170 171 /* RSCFDnCFDCmDCFG */ 172 #define RCANFD_DCFG_DBRP GENMASK(7, 0) 173 174 /* RSCFDnCFDCmFDCFG */ 175 #define RCANFD_GEN4_FDCFG_CLOE BIT(30) 176 #define RCANFD_GEN4_FDCFG_FDOE BIT(28) 177 #define RCANFD_FDCFG_TDCO GENMASK(23, 16) 178 #define RCANFD_FDCFG_TDCE BIT(9) 179 #define RCANFD_FDCFG_TDCOC BIT(8) 180 181 /* RSCFDnCFDCmFDSTS */ 182 #define RCANFD_FDSTS_SOC GENMASK(31, 24) 183 #define RCANFD_FDSTS_EOC GENMASK(23, 16) 184 #define RCANFD_GEN4_FDSTS_TDCVF BIT(15) 185 #define RCANFD_GEN4_FDSTS_PNSTS GENMASK(13, 12) 186 #define RCANFD_FDSTS_SOCO BIT(9) 187 #define RCANFD_FDSTS_EOCO BIT(8) 188 #define RCANFD_FDSTS_TDCVF BIT(7) 189 #define RCANFD_FDSTS_TDCR GENMASK(7, 0) 190 191 /* RSCFDnCFDRFCCx */ 192 #define RCANFD_RFCC_RFIM BIT(12) 193 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 194 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 195 #define RCANFD_RFCC_RFIE BIT(1) 196 #define RCANFD_RFCC_RFE BIT(0) 197 198 /* RSCFDnCFDRFSTSx */ 199 #define RCANFD_RFSTS_RFIF BIT(3) 200 #define RCANFD_RFSTS_RFMLT BIT(2) 201 #define RCANFD_RFSTS_RFFLL BIT(1) 202 #define RCANFD_RFSTS_RFEMP BIT(0) 203 204 /* RSCFDnCFDRFIDx */ 205 #define RCANFD_RFID_RFIDE BIT(31) 206 #define RCANFD_RFID_RFRTR BIT(30) 207 208 /* RSCFDnCFDRFPTRx */ 209 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 210 211 /* RSCFDnCFDRFFDSTSx */ 212 #define RCANFD_RFFDSTS_RFFDF BIT(2) 213 #define RCANFD_RFFDSTS_RFBRS BIT(1) 214 #define RCANFD_RFFDSTS_RFESI BIT(0) 215 216 /* Common FIFO bits */ 217 218 /* RSCFDnCFDCFCCk */ 219 #define RCANFD_CFCC_CFTML(gpriv, cftml) \ 220 ({\ 221 typeof(gpriv) (_gpriv) = (gpriv); \ 222 (((cftml) & (_gpriv)->info->max_cftml) << (_gpriv)->info->sh->cftml); \ 223 }) 224 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << (gpriv)->info->sh->cfm) 225 #define RCANFD_CFCC_CFIM BIT(12) 226 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << (gpriv)->info->sh->cfdc) 227 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 228 #define RCANFD_CFCC_CFTXIE BIT(2) 229 #define RCANFD_CFCC_CFE BIT(0) 230 231 /* RSCFDnCFDCFSTSk */ 232 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 233 #define RCANFD_CFSTS_CFTXIF BIT(4) 234 #define RCANFD_CFSTS_CFMLT BIT(2) 235 #define RCANFD_CFSTS_CFFLL BIT(1) 236 #define RCANFD_CFSTS_CFEMP BIT(0) 237 238 /* RSCFDnCFDCFIDk */ 239 #define RCANFD_CFID_CFIDE BIT(31) 240 #define RCANFD_CFID_CFRTR BIT(30) 241 242 /* RSCFDnCFDCFPTRk */ 243 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 244 245 /* RSCFDnCFDCFFDCSTSk */ 246 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 247 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 248 #define RCANFD_CFFDCSTS_CFESI BIT(0) 249 250 /* This controller supports either Classical CAN only mode or CAN FD only mode. 251 * These modes are supported in two separate set of register maps & names. 252 * However, some of the register offsets are common for both modes. Those 253 * offsets are listed below as Common registers. 254 * 255 * The CAN FD only mode specific registers & Classical CAN only mode specific 256 * registers are listed separately. Their register names starts with 257 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 258 */ 259 260 /* Common registers */ 261 262 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 263 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 264 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 265 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 266 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 267 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 268 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 269 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 270 271 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 272 #define RCANFD_GCFG (0x0084) 273 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 274 #define RCANFD_GCTR (0x0088) 275 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 276 #define RCANFD_GSTS (0x008c) 277 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 278 #define RCANFD_GERFL (0x0090) 279 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 280 #define RCANFD_GTSC (0x0094) 281 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 282 #define RCANFD_GAFLECTR (0x0098) 283 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */ 284 #define RCANFD_GAFLCFG(w) (0x009c + (0x04 * (w))) 285 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 286 #define RCANFD_RMNB (0x00a4) 287 /* RSCFDnCFDRMND / RSCFDnRMND */ 288 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 289 290 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 291 #define RCANFD_RFCC(gpriv, x) ((gpriv)->info->regs->rfcc + (0x04 * (x))) 292 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 293 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20) 294 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 295 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40) 296 297 /* Common FIFO Control registers */ 298 299 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 300 #define RCANFD_CFCC(gpriv, ch, idx) \ 301 ((gpriv)->info->regs->cfcc + (0x0c * (ch)) + (0x04 * (idx))) 302 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 303 #define RCANFD_CFSTS(gpriv, ch, idx) \ 304 ((gpriv)->info->regs->cfsts + (0x0c * (ch)) + (0x04 * (idx))) 305 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 306 #define RCANFD_CFPCTR(gpriv, ch, idx) \ 307 ((gpriv)->info->regs->cfpctr + (0x0c * (ch)) + (0x04 * (idx))) 308 309 /* RSCFDnCFDGRMCFG */ 310 #define RCANFD_GRMCFG (0x04fc) 311 312 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 313 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 314 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 315 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 316 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 317 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 318 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 319 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 320 321 /* Classical CAN only mode register map */ 322 323 /* RSCFDnGAFLXXXj offset */ 324 #define RCANFD_C_GAFL_OFFSET (0x0500) 325 326 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 327 #define RCANFD_C_RFOFFSET (0x0e00) 328 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 329 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x))) 330 #define RCANFD_C_RFDF(x, df) \ 331 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df))) 332 333 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 334 #define RCANFD_C_CFOFFSET (0x0e80) 335 336 #define RCANFD_C_CFID(ch, idx) \ 337 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx))) 338 339 #define RCANFD_C_CFPTR(ch, idx) \ 340 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx))) 341 342 #define RCANFD_C_CFDF(ch, idx, df) \ 343 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df))) 344 345 /* R-Car Gen4 Classical and CAN FD mode specific register map */ 346 #define RCANFD_GEN4_GAFL_OFFSET (0x1800) 347 348 /* CAN FD mode specific register map */ 349 350 /* RSCFDnCFDCmXXX -> gpriv->fcbase[m].xxx */ 351 struct rcar_canfd_f_c { 352 u32 dcfg; 353 u32 cfdcfg; 354 u32 cfdctr; 355 u32 cfdsts; 356 u32 cfdcrc; 357 u32 pad[3]; 358 }; 359 360 /* RSCFDnCFDGAFLXXXj offset */ 361 #define RCANFD_F_GAFL_OFFSET (0x1000) 362 363 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 364 #define RCANFD_F_RFOFFSET(gpriv) ((gpriv)->info->regs->rfoffset) 365 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x))) 366 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x))) 367 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x))) 368 #define RCANFD_F_RFDF(gpriv, x, df) \ 369 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df))) 370 371 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 372 #define RCANFD_F_CFOFFSET(gpriv) ((gpriv)->info->regs->cfoffset) 373 374 #define RCANFD_F_CFID(gpriv, ch, idx) \ 375 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx))) 376 377 #define RCANFD_F_CFPTR(gpriv, ch, idx) \ 378 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx))) 379 380 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \ 381 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx))) 382 383 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \ 384 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \ 385 (0x04 * (df))) 386 387 /* Constants */ 388 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 389 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 390 391 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */ 392 393 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 394 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 395 396 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 397 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 398 * number is added to RFFIFO index. 399 */ 400 #define RCANFD_RFFIFO_IDX 0 401 402 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 403 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 404 */ 405 #define RCANFD_CFFIFO_IDX 0 406 407 struct rcar_canfd_global; 408 409 struct rcar_canfd_regs { 410 u16 rfcc; /* RX FIFO Configuration/Control Register */ 411 u16 cfcc; /* Common FIFO Configuration/Control Register */ 412 u16 cfsts; /* Common FIFO Status Register */ 413 u16 cfpctr; /* Common FIFO Pointer Control Register */ 414 u16 coffset; /* Channel Data Bitrate Configuration Register */ 415 u16 rfoffset; /* Receive FIFO buffer access ID register */ 416 u16 cfoffset; /* Transmit/receive FIFO buffer access ID register */ 417 }; 418 419 struct rcar_canfd_shift_data { 420 u8 ntseg2; /* Nominal Bit Rate Time Segment 2 Control */ 421 u8 ntseg1; /* Nominal Bit Rate Time Segment 1 Control */ 422 u8 nsjw; /* Nominal Bit Rate Resynchronization Jump Width Control */ 423 u8 dtseg2; /* Data Bit Rate Time Segment 2 Control */ 424 u8 dtseg1; /* Data Bit Rate Time Segment 1 Control */ 425 u8 cftml; /* Common FIFO TX Message Buffer Link */ 426 u8 cfm; /* Common FIFO Mode */ 427 u8 cfdc; /* Common FIFO Depth Configuration */ 428 }; 429 430 struct rcar_canfd_hw_info { 431 const struct can_bittiming_const *nom_bittiming; 432 const struct can_bittiming_const *data_bittiming; 433 const struct can_tdc_const *tdc_const; 434 const struct rcar_canfd_regs *regs; 435 const struct rcar_canfd_shift_data *sh; 436 u8 rnc_field_width; 437 u8 max_aflpn; 438 u8 max_cftml; 439 u8 max_channels; 440 u8 postdiv; 441 /* hardware features */ 442 unsigned shared_global_irqs:1; /* Has shared global irqs */ 443 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */ 444 unsigned ch_interface_mode:1; /* Has channel interface mode */ 445 unsigned shared_can_regs:1; /* Has shared classical can registers */ 446 unsigned external_clk:1; /* Has external clock */ 447 }; 448 449 /* Channel priv data */ 450 struct rcar_canfd_channel { 451 struct can_priv can; /* Must be the first member */ 452 struct net_device *ndev; 453 struct rcar_canfd_global *gpriv; /* Controller reference */ 454 void __iomem *base; /* Register base address */ 455 struct phy *transceiver; /* Optional transceiver */ 456 struct napi_struct napi; 457 u32 tx_head; /* Incremented on xmit */ 458 u32 tx_tail; /* Incremented on xmit done */ 459 u32 channel; /* Channel number */ 460 spinlock_t tx_lock; /* To protect tx path */ 461 }; 462 463 /* Global priv data */ 464 struct rcar_canfd_global { 465 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 466 void __iomem *base; /* Register base address */ 467 struct rcar_canfd_f_c __iomem *fcbase; 468 struct platform_device *pdev; /* Respective platform device */ 469 struct clk *clkp; /* Peripheral clock */ 470 struct clk *can_clk; /* fCAN clock */ 471 unsigned long channels_mask; /* Enabled channels mask */ 472 bool extclk; /* CANFD or Ext clock */ 473 bool fdmode; /* CAN FD or Classical CAN only mode */ 474 struct reset_control *rstc1; 475 struct reset_control *rstc2; 476 const struct rcar_canfd_hw_info *info; 477 }; 478 479 /* CAN FD mode nominal rate constants */ 480 static const struct can_bittiming_const rcar_canfd_gen3_nom_bittiming_const = { 481 .name = RCANFD_DRV_NAME, 482 .tseg1_min = 2, 483 .tseg1_max = 128, 484 .tseg2_min = 2, 485 .tseg2_max = 32, 486 .sjw_max = 32, 487 .brp_min = 1, 488 .brp_max = 1024, 489 .brp_inc = 1, 490 }; 491 492 static const struct can_bittiming_const rcar_canfd_gen4_nom_bittiming_const = { 493 .name = RCANFD_DRV_NAME, 494 .tseg1_min = 2, 495 .tseg1_max = 256, 496 .tseg2_min = 2, 497 .tseg2_max = 128, 498 .sjw_max = 128, 499 .brp_min = 1, 500 .brp_max = 1024, 501 .brp_inc = 1, 502 }; 503 504 /* CAN FD mode data rate constants */ 505 static const struct can_bittiming_const rcar_canfd_gen3_data_bittiming_const = { 506 .name = RCANFD_DRV_NAME, 507 .tseg1_min = 2, 508 .tseg1_max = 16, 509 .tseg2_min = 2, 510 .tseg2_max = 8, 511 .sjw_max = 8, 512 .brp_min = 1, 513 .brp_max = 256, 514 .brp_inc = 1, 515 }; 516 517 static const struct can_bittiming_const rcar_canfd_gen4_data_bittiming_const = { 518 .name = RCANFD_DRV_NAME, 519 .tseg1_min = 2, 520 .tseg1_max = 32, 521 .tseg2_min = 2, 522 .tseg2_max = 16, 523 .sjw_max = 16, 524 .brp_min = 1, 525 .brp_max = 256, 526 .brp_inc = 1, 527 }; 528 529 /* Classical CAN mode bitrate constants */ 530 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 531 .name = RCANFD_DRV_NAME, 532 .tseg1_min = 4, 533 .tseg1_max = 16, 534 .tseg2_min = 2, 535 .tseg2_max = 8, 536 .sjw_max = 4, 537 .brp_min = 1, 538 .brp_max = 1024, 539 .brp_inc = 1, 540 }; 541 542 /* CAN FD Transmission Delay Compensation constants */ 543 static const struct can_tdc_const rcar_canfd_gen3_tdc_const = { 544 .tdcv_min = 1, 545 .tdcv_max = 128, 546 .tdco_min = 1, 547 .tdco_max = 128, 548 .tdcf_min = 0, /* Filter window not supported */ 549 .tdcf_max = 0, 550 }; 551 552 static const struct can_tdc_const rcar_canfd_gen4_tdc_const = { 553 .tdcv_min = 1, 554 .tdcv_max = 256, 555 .tdco_min = 1, 556 .tdco_max = 256, 557 .tdcf_min = 0, /* Filter window not supported */ 558 .tdcf_max = 0, 559 }; 560 561 static const struct rcar_canfd_regs rcar_gen3_regs = { 562 .rfcc = 0x00b8, 563 .cfcc = 0x0118, 564 .cfsts = 0x0178, 565 .cfpctr = 0x01d8, 566 .coffset = 0x0500, 567 .rfoffset = 0x3000, 568 .cfoffset = 0x3400, 569 }; 570 571 static const struct rcar_canfd_regs rcar_gen4_regs = { 572 .rfcc = 0x00c0, 573 .cfcc = 0x0120, 574 .cfsts = 0x01e0, 575 .cfpctr = 0x0240, 576 .coffset = 0x1400, 577 .rfoffset = 0x6000, 578 .cfoffset = 0x6400, 579 }; 580 581 static const struct rcar_canfd_shift_data rcar_gen3_shift_data = { 582 .ntseg2 = 24, 583 .ntseg1 = 16, 584 .nsjw = 11, 585 .dtseg2 = 20, 586 .dtseg1 = 16, 587 .cftml = 20, 588 .cfm = 16, 589 .cfdc = 8, 590 }; 591 592 static const struct rcar_canfd_shift_data rcar_gen4_shift_data = { 593 .ntseg2 = 25, 594 .ntseg1 = 17, 595 .nsjw = 10, 596 .dtseg2 = 16, 597 .dtseg1 = 8, 598 .cftml = 16, 599 .cfm = 8, 600 .cfdc = 21, 601 }; 602 603 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = { 604 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const, 605 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const, 606 .tdc_const = &rcar_canfd_gen3_tdc_const, 607 .regs = &rcar_gen3_regs, 608 .sh = &rcar_gen3_shift_data, 609 .rnc_field_width = 8, 610 .max_aflpn = 31, 611 .max_cftml = 15, 612 .max_channels = 2, 613 .postdiv = 2, 614 .shared_global_irqs = 1, 615 .ch_interface_mode = 0, 616 .shared_can_regs = 0, 617 .external_clk = 1, 618 }; 619 620 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = { 621 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const, 622 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const, 623 .tdc_const = &rcar_canfd_gen4_tdc_const, 624 .regs = &rcar_gen4_regs, 625 .sh = &rcar_gen4_shift_data, 626 .rnc_field_width = 16, 627 .max_aflpn = 127, 628 .max_cftml = 31, 629 .max_channels = 8, 630 .postdiv = 2, 631 .shared_global_irqs = 1, 632 .ch_interface_mode = 1, 633 .shared_can_regs = 1, 634 .external_clk = 1, 635 }; 636 637 static const struct rcar_canfd_hw_info rzg2l_hw_info = { 638 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const, 639 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const, 640 .tdc_const = &rcar_canfd_gen3_tdc_const, 641 .regs = &rcar_gen3_regs, 642 .sh = &rcar_gen3_shift_data, 643 .rnc_field_width = 8, 644 .max_aflpn = 31, 645 .max_cftml = 15, 646 .max_channels = 2, 647 .postdiv = 1, 648 .multi_channel_irqs = 1, 649 .ch_interface_mode = 0, 650 .shared_can_regs = 0, 651 .external_clk = 1, 652 }; 653 654 static const struct rcar_canfd_hw_info r9a09g047_hw_info = { 655 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const, 656 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const, 657 .tdc_const = &rcar_canfd_gen4_tdc_const, 658 .regs = &rcar_gen4_regs, 659 .sh = &rcar_gen4_shift_data, 660 .rnc_field_width = 16, 661 .max_aflpn = 63, 662 .max_cftml = 31, 663 .max_channels = 6, 664 .postdiv = 1, 665 .multi_channel_irqs = 1, 666 .ch_interface_mode = 1, 667 .shared_can_regs = 1, 668 .external_clk = 0, 669 }; 670 671 /* Helper functions */ 672 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 673 { 674 u32 data = readl(reg); 675 676 data &= ~mask; 677 data |= (val & mask); 678 writel(data, reg); 679 } 680 681 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 682 { 683 return readl(base + offset); 684 } 685 686 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 687 { 688 writel(val, base + offset); 689 } 690 691 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 692 { 693 rcar_canfd_update(val, val, base + reg); 694 } 695 696 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 697 { 698 rcar_canfd_update(val, 0, base + reg); 699 } 700 701 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 702 u32 mask, u32 val) 703 { 704 rcar_canfd_update(mask, val, base + reg); 705 } 706 707 static void rcar_canfd_set_bit_reg(void __iomem *addr, u32 val) 708 { 709 rcar_canfd_update(val, val, addr); 710 } 711 712 static void rcar_canfd_clear_bit_reg(void __iomem *addr, u32 val) 713 { 714 rcar_canfd_update(val, 0, addr); 715 } 716 717 static void rcar_canfd_update_bit_reg(void __iomem *addr, u32 mask, u32 val) 718 { 719 rcar_canfd_update(mask, val, addr); 720 } 721 722 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 723 struct canfd_frame *cf, u32 off) 724 { 725 u32 *data = (u32 *)cf->data; 726 u32 i, lwords; 727 728 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 729 for (i = 0; i < lwords; i++) 730 data[i] = rcar_canfd_read(priv->base, off + i * sizeof(u32)); 731 } 732 733 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 734 struct canfd_frame *cf, u32 off) 735 { 736 const u32 *data = (u32 *)cf->data; 737 u32 i, lwords; 738 739 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 740 for (i = 0; i < lwords; i++) 741 rcar_canfd_write(priv->base, off + i * sizeof(u32), data[i]); 742 } 743 744 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 745 { 746 u32 i; 747 748 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 749 can_free_echo_skb(ndev, i, NULL); 750 } 751 752 static void rcar_canfd_set_rnc(struct rcar_canfd_global *gpriv, unsigned int ch, 753 unsigned int num_rules) 754 { 755 unsigned int rnc_stride = 32 / gpriv->info->rnc_field_width; 756 unsigned int shift = 32 - (ch % rnc_stride + 1) * gpriv->info->rnc_field_width; 757 unsigned int w = ch / rnc_stride; 758 u32 rnc = num_rules << shift; 759 760 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(w), rnc); 761 } 762 763 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 764 { 765 struct device *dev = &gpriv->pdev->dev; 766 u32 sts, ch; 767 int err; 768 769 /* Check RAMINIT flag as CAN RAM initialization takes place 770 * after the MCU reset 771 */ 772 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 773 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 774 if (err) { 775 dev_dbg(dev, "global raminit failed\n"); 776 return err; 777 } 778 779 /* Transition to Global Reset mode */ 780 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 781 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 782 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 783 784 /* Ensure Global reset mode */ 785 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 786 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 787 if (err) { 788 dev_dbg(dev, "global reset failed\n"); 789 return err; 790 } 791 792 /* Reset Global error flags */ 793 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 794 795 /* Set the controller into appropriate mode */ 796 if (!gpriv->info->ch_interface_mode) { 797 if (gpriv->fdmode) 798 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 799 RCANFD_GRMCFG_RCMC); 800 else 801 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 802 RCANFD_GRMCFG_RCMC); 803 } 804 805 /* Transition all Channels to reset mode */ 806 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 807 rcar_canfd_clear_bit(gpriv->base, 808 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 809 810 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 811 RCANFD_CCTR_CHMDC_MASK, 812 RCANFD_CCTR_CHDMC_CRESET); 813 814 /* Ensure Channel reset mode */ 815 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 816 (sts & RCANFD_CSTS_CRSTSTS), 817 2, 500000); 818 if (err) { 819 dev_dbg(dev, "channel %u reset failed\n", ch); 820 return err; 821 } 822 823 /* Set the controller into appropriate mode */ 824 if (gpriv->info->ch_interface_mode) { 825 /* Do not set CLOE and FDOE simultaneously */ 826 if (!gpriv->fdmode) { 827 rcar_canfd_clear_bit_reg(&gpriv->fcbase[ch].cfdcfg, 828 RCANFD_GEN4_FDCFG_FDOE); 829 rcar_canfd_set_bit_reg(&gpriv->fcbase[ch].cfdcfg, 830 RCANFD_GEN4_FDCFG_CLOE); 831 } else { 832 rcar_canfd_clear_bit_reg(&gpriv->fcbase[ch].cfdcfg, 833 RCANFD_GEN4_FDCFG_FDOE); 834 rcar_canfd_clear_bit_reg(&gpriv->fcbase[ch].cfdcfg, 835 RCANFD_GEN4_FDCFG_CLOE); 836 } 837 } 838 } 839 840 return 0; 841 } 842 843 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 844 { 845 u32 cfg, ch; 846 847 /* Global configuration settings */ 848 849 /* ECC Error flag Enable */ 850 cfg = RCANFD_GCFG_EEFE; 851 852 if (gpriv->fdmode) 853 /* Truncate payload to configured message size RFPLS */ 854 cfg |= RCANFD_GCFG_CMPOC; 855 856 /* Set External Clock if selected */ 857 if (gpriv->extclk) 858 cfg |= RCANFD_GCFG_DCS; 859 860 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 861 862 /* Channel configuration settings */ 863 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 864 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 865 RCANFD_CCTR_ERRD); 866 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 867 RCANFD_CCTR_BOM_MASK, 868 RCANFD_CCTR_BOM_BENTRY); 869 } 870 } 871 872 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 873 u32 ch, u32 rule_entry) 874 { 875 unsigned int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES; 876 u32 rule_entry_index = rule_entry % 16; 877 u32 ridx = ch + RCANFD_RFFIFO_IDX; 878 879 /* Enable write access to entry */ 880 page = RCANFD_GAFL_PAGENUM(rule_entry); 881 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 882 (RCANFD_GAFLECTR_AFLPN(gpriv, page) | 883 RCANFD_GAFLECTR_AFLDAE)); 884 885 /* Write number of rules for channel */ 886 rcar_canfd_set_rnc(gpriv, ch, num_rules); 887 if (gpriv->info->shared_can_regs) 888 offset = RCANFD_GEN4_GAFL_OFFSET; 889 else if (gpriv->fdmode) 890 offset = RCANFD_F_GAFL_OFFSET; 891 else 892 offset = RCANFD_C_GAFL_OFFSET; 893 894 /* Accept all IDs */ 895 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0); 896 /* IDE or RTR is not considered for matching */ 897 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0); 898 /* Any data length accepted */ 899 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0); 900 /* Place the msg in corresponding Rx FIFO entry */ 901 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index), 902 RCANFD_GAFLP1_GAFLFDP(ridx)); 903 904 /* Disable write access to page */ 905 rcar_canfd_clear_bit(gpriv->base, 906 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 907 } 908 909 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 910 { 911 /* Rx FIFO is used for reception */ 912 u32 cfg; 913 u16 rfdc, rfpls; 914 915 /* Select Rx FIFO based on channel */ 916 u32 ridx = ch + RCANFD_RFFIFO_IDX; 917 918 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 919 if (gpriv->fdmode) 920 rfpls = 7; /* b111 - Max 64 bytes payload */ 921 else 922 rfpls = 0; /* b000 - Max 8 bytes payload */ 923 924 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 925 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 926 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg); 927 } 928 929 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 930 { 931 /* Tx/Rx(Common) FIFO configured in Tx mode is 932 * used for transmission 933 * 934 * Each channel has 3 Common FIFO dedicated to them. 935 * Use the 1st (index 0) out of 3 936 */ 937 u32 cfg; 938 u16 cftml, cfm, cfdc, cfpls; 939 940 cftml = 0; /* 0th buffer */ 941 cfm = 1; /* b01 - Transmit mode */ 942 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 943 if (gpriv->fdmode) 944 cfpls = 7; /* b111 - Max 64 bytes payload */ 945 else 946 cfpls = 0; /* b000 - Max 8 bytes payload */ 947 948 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) | 949 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) | 950 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 951 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg); 952 953 if (gpriv->fdmode) 954 /* Clear FD mode specific control/status register */ 955 rcar_canfd_write(gpriv->base, 956 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0); 957 } 958 959 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 960 { 961 u32 ctr; 962 963 /* Clear any stray error interrupt flags */ 964 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 965 966 /* Global interrupts setup */ 967 ctr = RCANFD_GCTR_MEIE; 968 if (gpriv->fdmode) 969 ctr |= RCANFD_GCTR_CFMPOFIE; 970 971 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 972 } 973 974 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 975 *gpriv) 976 { 977 /* Disable all interrupts */ 978 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 979 980 /* Clear any stray error interrupt flags */ 981 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 982 } 983 984 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 985 *priv) 986 { 987 u32 ctr, ch = priv->channel; 988 989 /* Clear any stray error flags */ 990 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 991 992 /* Channel interrupts setup */ 993 ctr = (RCANFD_CCTR_TAIE | 994 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 995 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 996 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 997 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 998 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 999 } 1000 1001 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 1002 *priv) 1003 { 1004 u32 ctr, ch = priv->channel; 1005 1006 ctr = (RCANFD_CCTR_TAIE | 1007 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 1008 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 1009 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 1010 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 1011 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 1012 1013 /* Clear any stray error flags */ 1014 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 1015 } 1016 1017 static void rcar_canfd_global_error(struct net_device *ndev) 1018 { 1019 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1020 struct rcar_canfd_global *gpriv = priv->gpriv; 1021 struct net_device_stats *stats = &ndev->stats; 1022 u32 ch = priv->channel; 1023 u32 gerfl, sts; 1024 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1025 1026 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1027 if (gerfl & FIELD_PREP(RCANFD_GERFL_EEF, BIT(ch))) { 1028 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch); 1029 stats->tx_dropped++; 1030 } 1031 if (gerfl & RCANFD_GERFL_MES) { 1032 sts = rcar_canfd_read(priv->base, 1033 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1034 if (sts & RCANFD_CFSTS_CFMLT) { 1035 netdev_dbg(ndev, "Tx Message Lost flag\n"); 1036 stats->tx_dropped++; 1037 rcar_canfd_write(priv->base, 1038 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1039 sts & ~RCANFD_CFSTS_CFMLT); 1040 } 1041 1042 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1043 if (sts & RCANFD_RFSTS_RFMLT) { 1044 netdev_dbg(ndev, "Rx Message Lost flag\n"); 1045 stats->rx_dropped++; 1046 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1047 sts & ~RCANFD_RFSTS_RFMLT); 1048 } 1049 } 1050 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 1051 /* Message Lost flag will be set for respective channel 1052 * when this condition happens with counters and flags 1053 * already updated. 1054 */ 1055 netdev_dbg(ndev, "global payload overflow interrupt\n"); 1056 } 1057 1058 /* Clear all global error interrupts. Only affected channels bits 1059 * get cleared 1060 */ 1061 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 1062 } 1063 1064 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 1065 u16 txerr, u16 rxerr) 1066 { 1067 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1068 struct net_device_stats *stats = &ndev->stats; 1069 struct can_frame *cf; 1070 struct sk_buff *skb; 1071 u32 ch = priv->channel; 1072 1073 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 1074 1075 /* Propagate the error condition to the CAN stack */ 1076 skb = alloc_can_err_skb(ndev, &cf); 1077 if (!skb) { 1078 stats->rx_dropped++; 1079 return; 1080 } 1081 1082 /* Channel error interrupts */ 1083 if (cerfl & RCANFD_CERFL_BEF) { 1084 netdev_dbg(ndev, "Bus error\n"); 1085 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 1086 cf->data[2] = CAN_ERR_PROT_UNSPEC; 1087 priv->can.can_stats.bus_error++; 1088 } 1089 if (cerfl & RCANFD_CERFL_ADERR) { 1090 netdev_dbg(ndev, "ACK Delimiter Error\n"); 1091 stats->tx_errors++; 1092 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 1093 } 1094 if (cerfl & RCANFD_CERFL_B0ERR) { 1095 netdev_dbg(ndev, "Bit Error (dominant)\n"); 1096 stats->tx_errors++; 1097 cf->data[2] |= CAN_ERR_PROT_BIT0; 1098 } 1099 if (cerfl & RCANFD_CERFL_B1ERR) { 1100 netdev_dbg(ndev, "Bit Error (recessive)\n"); 1101 stats->tx_errors++; 1102 cf->data[2] |= CAN_ERR_PROT_BIT1; 1103 } 1104 if (cerfl & RCANFD_CERFL_CERR) { 1105 netdev_dbg(ndev, "CRC Error\n"); 1106 stats->rx_errors++; 1107 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 1108 } 1109 if (cerfl & RCANFD_CERFL_AERR) { 1110 netdev_dbg(ndev, "ACK Error\n"); 1111 stats->tx_errors++; 1112 cf->can_id |= CAN_ERR_ACK; 1113 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 1114 } 1115 if (cerfl & RCANFD_CERFL_FERR) { 1116 netdev_dbg(ndev, "Form Error\n"); 1117 stats->rx_errors++; 1118 cf->data[2] |= CAN_ERR_PROT_FORM; 1119 } 1120 if (cerfl & RCANFD_CERFL_SERR) { 1121 netdev_dbg(ndev, "Stuff Error\n"); 1122 stats->rx_errors++; 1123 cf->data[2] |= CAN_ERR_PROT_STUFF; 1124 } 1125 if (cerfl & RCANFD_CERFL_ALF) { 1126 netdev_dbg(ndev, "Arbitration lost Error\n"); 1127 priv->can.can_stats.arbitration_lost++; 1128 cf->can_id |= CAN_ERR_LOSTARB; 1129 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 1130 } 1131 if (cerfl & RCANFD_CERFL_BLF) { 1132 netdev_dbg(ndev, "Bus Lock Error\n"); 1133 stats->rx_errors++; 1134 cf->can_id |= CAN_ERR_BUSERROR; 1135 } 1136 if (cerfl & RCANFD_CERFL_EWF) { 1137 netdev_dbg(ndev, "Error warning interrupt\n"); 1138 priv->can.state = CAN_STATE_ERROR_WARNING; 1139 priv->can.can_stats.error_warning++; 1140 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1141 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1142 CAN_ERR_CRTL_RX_WARNING; 1143 cf->data[6] = txerr; 1144 cf->data[7] = rxerr; 1145 } 1146 if (cerfl & RCANFD_CERFL_EPF) { 1147 netdev_dbg(ndev, "Error passive interrupt\n"); 1148 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1149 priv->can.can_stats.error_passive++; 1150 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1151 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1152 CAN_ERR_CRTL_RX_PASSIVE; 1153 cf->data[6] = txerr; 1154 cf->data[7] = rxerr; 1155 } 1156 if (cerfl & RCANFD_CERFL_BOEF) { 1157 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1158 rcar_canfd_tx_failure_cleanup(ndev); 1159 priv->can.state = CAN_STATE_BUS_OFF; 1160 priv->can.can_stats.bus_off++; 1161 can_bus_off(ndev); 1162 cf->can_id |= CAN_ERR_BUSOFF; 1163 } 1164 if (cerfl & RCANFD_CERFL_OVLF) { 1165 netdev_dbg(ndev, 1166 "Overload Frame Transmission error interrupt\n"); 1167 stats->tx_errors++; 1168 cf->can_id |= CAN_ERR_PROT; 1169 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1170 } 1171 1172 /* Clear channel error interrupts that are handled */ 1173 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1174 RCANFD_CERFL_ERR(~cerfl)); 1175 netif_rx(skb); 1176 } 1177 1178 static void rcar_canfd_tx_done(struct net_device *ndev) 1179 { 1180 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1181 struct rcar_canfd_global *gpriv = priv->gpriv; 1182 struct net_device_stats *stats = &ndev->stats; 1183 u32 sts; 1184 unsigned long flags; 1185 u32 ch = priv->channel; 1186 1187 do { 1188 u8 unsent, sent; 1189 1190 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1191 stats->tx_packets++; 1192 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1193 1194 spin_lock_irqsave(&priv->tx_lock, flags); 1195 priv->tx_tail++; 1196 sts = rcar_canfd_read(priv->base, 1197 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1198 unsent = RCANFD_CFSTS_CFMC(sts); 1199 1200 /* Wake producer only when there is room */ 1201 if (unsent != RCANFD_FIFO_DEPTH) 1202 netif_wake_queue(ndev); 1203 1204 if (priv->tx_head - priv->tx_tail <= unsent) { 1205 spin_unlock_irqrestore(&priv->tx_lock, flags); 1206 break; 1207 } 1208 spin_unlock_irqrestore(&priv->tx_lock, flags); 1209 1210 } while (1); 1211 1212 /* Clear interrupt */ 1213 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1214 sts & ~RCANFD_CFSTS_CFTXIF); 1215 } 1216 1217 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1218 { 1219 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1220 struct net_device *ndev = priv->ndev; 1221 u32 gerfl; 1222 1223 /* Handle global error interrupts */ 1224 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1225 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1226 rcar_canfd_global_error(ndev); 1227 } 1228 1229 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1230 { 1231 struct rcar_canfd_global *gpriv = dev_id; 1232 u32 ch; 1233 1234 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1235 rcar_canfd_handle_global_err(gpriv, ch); 1236 1237 return IRQ_HANDLED; 1238 } 1239 1240 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1241 { 1242 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1243 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1244 u32 sts, cc; 1245 1246 /* Handle Rx interrupts */ 1247 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1248 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx)); 1249 if (likely(sts & RCANFD_RFSTS_RFIF && 1250 cc & RCANFD_RFCC_RFIE)) { 1251 if (napi_schedule_prep(&priv->napi)) { 1252 /* Disable Rx FIFO interrupts */ 1253 rcar_canfd_clear_bit(priv->base, 1254 RCANFD_RFCC(gpriv, ridx), 1255 RCANFD_RFCC_RFIE); 1256 __napi_schedule(&priv->napi); 1257 } 1258 } 1259 } 1260 1261 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1262 { 1263 struct rcar_canfd_global *gpriv = dev_id; 1264 u32 ch; 1265 1266 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1267 rcar_canfd_handle_global_receive(gpriv, ch); 1268 1269 return IRQ_HANDLED; 1270 } 1271 1272 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1273 { 1274 struct rcar_canfd_global *gpriv = dev_id; 1275 u32 ch; 1276 1277 /* Global error interrupts still indicate a condition specific 1278 * to a channel. RxFIFO interrupt is a global interrupt. 1279 */ 1280 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1281 rcar_canfd_handle_global_err(gpriv, ch); 1282 rcar_canfd_handle_global_receive(gpriv, ch); 1283 } 1284 return IRQ_HANDLED; 1285 } 1286 1287 static void rcar_canfd_state_change(struct net_device *ndev, 1288 u16 txerr, u16 rxerr) 1289 { 1290 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1291 struct net_device_stats *stats = &ndev->stats; 1292 enum can_state rx_state, tx_state, state = priv->can.state; 1293 struct can_frame *cf; 1294 struct sk_buff *skb; 1295 1296 /* Handle transition from error to normal states */ 1297 if (txerr < 96 && rxerr < 96) 1298 state = CAN_STATE_ERROR_ACTIVE; 1299 else if (txerr < 128 && rxerr < 128) 1300 state = CAN_STATE_ERROR_WARNING; 1301 1302 if (state != priv->can.state) { 1303 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1304 state, priv->can.state, txerr, rxerr); 1305 skb = alloc_can_err_skb(ndev, &cf); 1306 if (!skb) { 1307 stats->rx_dropped++; 1308 return; 1309 } 1310 tx_state = txerr >= rxerr ? state : 0; 1311 rx_state = txerr <= rxerr ? state : 0; 1312 1313 can_change_state(ndev, cf, tx_state, rx_state); 1314 netif_rx(skb); 1315 } 1316 } 1317 1318 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1319 { 1320 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1321 struct net_device *ndev = priv->ndev; 1322 u32 sts; 1323 1324 /* Handle Tx interrupts */ 1325 sts = rcar_canfd_read(priv->base, 1326 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1327 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1328 rcar_canfd_tx_done(ndev); 1329 } 1330 1331 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1332 { 1333 struct rcar_canfd_channel *priv = dev_id; 1334 1335 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel); 1336 1337 return IRQ_HANDLED; 1338 } 1339 1340 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1341 { 1342 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1343 struct net_device *ndev = priv->ndev; 1344 u16 txerr, rxerr; 1345 u32 sts, cerfl; 1346 1347 /* Handle channel error interrupts */ 1348 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1349 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1350 txerr = RCANFD_CSTS_TECCNT(sts); 1351 rxerr = RCANFD_CSTS_RECCNT(sts); 1352 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1353 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1354 1355 /* Handle state change to lower states */ 1356 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1357 priv->can.state != CAN_STATE_BUS_OFF)) 1358 rcar_canfd_state_change(ndev, txerr, rxerr); 1359 } 1360 1361 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1362 { 1363 struct rcar_canfd_channel *priv = dev_id; 1364 1365 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel); 1366 1367 return IRQ_HANDLED; 1368 } 1369 1370 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1371 { 1372 struct rcar_canfd_global *gpriv = dev_id; 1373 u32 ch; 1374 1375 /* Common FIFO is a per channel resource */ 1376 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1377 rcar_canfd_handle_channel_err(gpriv, ch); 1378 rcar_canfd_handle_channel_tx(gpriv, ch); 1379 } 1380 1381 return IRQ_HANDLED; 1382 } 1383 1384 static inline u32 rcar_canfd_compute_nominal_bit_rate_cfg(struct rcar_canfd_channel *priv, 1385 u16 tseg1, u16 tseg2, u16 sjw, u16 brp) 1386 { 1387 struct rcar_canfd_global *gpriv = priv->gpriv; 1388 const struct rcar_canfd_hw_info *info = gpriv->info; 1389 u32 ntseg1, ntseg2, nsjw, nbrp; 1390 1391 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1392 ntseg1 = (tseg1 & (info->nom_bittiming->tseg1_max - 1)) << info->sh->ntseg1; 1393 ntseg2 = (tseg2 & (info->nom_bittiming->tseg2_max - 1)) << info->sh->ntseg2; 1394 nsjw = (sjw & (info->nom_bittiming->sjw_max - 1)) << info->sh->nsjw; 1395 nbrp = FIELD_PREP(RCANFD_NCFG_NBRP, brp); 1396 } else { 1397 ntseg1 = FIELD_PREP(RCANFD_CFG_TSEG1, tseg1); 1398 ntseg2 = FIELD_PREP(RCANFD_CFG_TSEG2, tseg2); 1399 nsjw = FIELD_PREP(RCANFD_CFG_SJW, sjw); 1400 nbrp = FIELD_PREP(RCANFD_CFG_BRP, brp); 1401 } 1402 1403 return (ntseg1 | ntseg2 | nsjw | nbrp); 1404 } 1405 1406 static inline u32 rcar_canfd_compute_data_bit_rate_cfg(const struct rcar_canfd_hw_info *info, 1407 u16 tseg1, u16 tseg2, u16 sjw, u16 brp) 1408 { 1409 u32 dtseg1, dtseg2, dsjw, dbrp; 1410 1411 dtseg1 = (tseg1 & (info->data_bittiming->tseg1_max - 1)) << info->sh->dtseg1; 1412 dtseg2 = (tseg2 & (info->data_bittiming->tseg2_max - 1)) << info->sh->dtseg2; 1413 dsjw = (sjw & (info->data_bittiming->sjw_max - 1)) << 24; 1414 dbrp = FIELD_PREP(RCANFD_DCFG_DBRP, brp); 1415 1416 return (dtseg1 | dtseg2 | dsjw | dbrp); 1417 } 1418 1419 static void rcar_canfd_set_bittiming(struct net_device *ndev) 1420 { 1421 u32 mask = RCANFD_FDCFG_TDCO | RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC; 1422 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1423 struct rcar_canfd_global *gpriv = priv->gpriv; 1424 const struct can_bittiming *bt = &priv->can.bittiming; 1425 const struct can_bittiming *dbt = &priv->can.fd.data_bittiming; 1426 const struct can_tdc_const *tdc_const = priv->can.fd.tdc_const; 1427 const struct can_tdc *tdc = &priv->can.fd.tdc; 1428 u32 cfg, tdcmode = 0, tdco = 0; 1429 u16 brp, sjw, tseg1, tseg2; 1430 u32 ch = priv->channel; 1431 1432 /* Nominal bit timing settings */ 1433 brp = bt->brp - 1; 1434 sjw = bt->sjw - 1; 1435 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1436 tseg2 = bt->phase_seg2 - 1; 1437 cfg = rcar_canfd_compute_nominal_bit_rate_cfg(priv, tseg1, tseg2, sjw, brp); 1438 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1439 1440 if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD)) 1441 return; 1442 1443 /* Data bit timing settings */ 1444 brp = dbt->brp - 1; 1445 sjw = dbt->sjw - 1; 1446 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1447 tseg2 = dbt->phase_seg2 - 1; 1448 cfg = rcar_canfd_compute_data_bit_rate_cfg(gpriv->info, tseg1, tseg2, sjw, brp); 1449 writel(cfg, &gpriv->fcbase[ch].dcfg); 1450 1451 /* Transceiver Delay Compensation */ 1452 if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO) { 1453 /* TDC enabled, measured + offset */ 1454 tdcmode = RCANFD_FDCFG_TDCE; 1455 tdco = tdc->tdco - 1; 1456 } else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL) { 1457 /* TDC enabled, offset only */ 1458 tdcmode = RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC; 1459 tdco = min(tdc->tdcv + tdc->tdco, tdc_const->tdco_max) - 1; 1460 } 1461 1462 rcar_canfd_update_bit_reg(&gpriv->fcbase[ch].cfdcfg, mask, 1463 tdcmode | FIELD_PREP(RCANFD_FDCFG_TDCO, tdco)); 1464 } 1465 1466 static int rcar_canfd_start(struct net_device *ndev) 1467 { 1468 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1469 struct rcar_canfd_global *gpriv = priv->gpriv; 1470 int err = -EOPNOTSUPP; 1471 u32 sts, ch = priv->channel; 1472 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1473 1474 rcar_canfd_set_bittiming(ndev); 1475 1476 rcar_canfd_enable_channel_interrupts(priv); 1477 1478 /* Set channel to Operational mode */ 1479 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1480 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1481 1482 /* Verify channel mode change */ 1483 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1484 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1485 if (err) { 1486 netdev_err(ndev, "channel %u communication state failed\n", ch); 1487 goto fail_mode_change; 1488 } 1489 1490 /* Enable Common & Rx FIFO */ 1491 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1492 RCANFD_CFCC_CFE); 1493 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1494 1495 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1496 return 0; 1497 1498 fail_mode_change: 1499 rcar_canfd_disable_channel_interrupts(priv); 1500 return err; 1501 } 1502 1503 static int rcar_canfd_open(struct net_device *ndev) 1504 { 1505 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1506 struct rcar_canfd_global *gpriv = priv->gpriv; 1507 int err; 1508 1509 err = phy_power_on(priv->transceiver); 1510 if (err) { 1511 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err)); 1512 return err; 1513 } 1514 1515 /* Peripheral clock is already enabled in probe */ 1516 err = clk_prepare_enable(gpriv->can_clk); 1517 if (err) { 1518 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err)); 1519 goto out_phy; 1520 } 1521 1522 err = open_candev(ndev); 1523 if (err) { 1524 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err)); 1525 goto out_can_clock; 1526 } 1527 1528 napi_enable(&priv->napi); 1529 err = rcar_canfd_start(ndev); 1530 if (err) 1531 goto out_close; 1532 netif_start_queue(ndev); 1533 return 0; 1534 out_close: 1535 napi_disable(&priv->napi); 1536 close_candev(ndev); 1537 out_can_clock: 1538 clk_disable_unprepare(gpriv->can_clk); 1539 out_phy: 1540 phy_power_off(priv->transceiver); 1541 return err; 1542 } 1543 1544 static void rcar_canfd_stop(struct net_device *ndev) 1545 { 1546 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1547 struct rcar_canfd_global *gpriv = priv->gpriv; 1548 int err; 1549 u32 sts, ch = priv->channel; 1550 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1551 1552 /* Transition to channel reset mode */ 1553 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1554 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1555 1556 /* Check Channel reset mode */ 1557 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1558 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1559 if (err) 1560 netdev_err(ndev, "channel %u reset failed\n", ch); 1561 1562 rcar_canfd_disable_channel_interrupts(priv); 1563 1564 /* Disable Common & Rx FIFO */ 1565 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1566 RCANFD_CFCC_CFE); 1567 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1568 1569 /* Set the state as STOPPED */ 1570 priv->can.state = CAN_STATE_STOPPED; 1571 } 1572 1573 static int rcar_canfd_close(struct net_device *ndev) 1574 { 1575 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1576 struct rcar_canfd_global *gpriv = priv->gpriv; 1577 1578 netif_stop_queue(ndev); 1579 rcar_canfd_stop(ndev); 1580 napi_disable(&priv->napi); 1581 clk_disable_unprepare(gpriv->can_clk); 1582 close_candev(ndev); 1583 phy_power_off(priv->transceiver); 1584 return 0; 1585 } 1586 1587 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1588 struct net_device *ndev) 1589 { 1590 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1591 struct rcar_canfd_global *gpriv = priv->gpriv; 1592 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1593 u32 sts = 0, id, dlc; 1594 unsigned long flags; 1595 u32 ch = priv->channel; 1596 1597 if (can_dev_dropped_skb(ndev, skb)) 1598 return NETDEV_TX_OK; 1599 1600 if (cf->can_id & CAN_EFF_FLAG) { 1601 id = cf->can_id & CAN_EFF_MASK; 1602 id |= RCANFD_CFID_CFIDE; 1603 } else { 1604 id = cf->can_id & CAN_SFF_MASK; 1605 } 1606 1607 if (cf->can_id & CAN_RTR_FLAG) 1608 id |= RCANFD_CFID_CFRTR; 1609 1610 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1611 1612 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1613 rcar_canfd_write(priv->base, 1614 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id); 1615 rcar_canfd_write(priv->base, 1616 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc); 1617 1618 if (can_is_canfd_skb(skb)) { 1619 /* CAN FD frame format */ 1620 sts |= RCANFD_CFFDCSTS_CFFDF; 1621 if (cf->flags & CANFD_BRS) 1622 sts |= RCANFD_CFFDCSTS_CFBRS; 1623 1624 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1625 sts |= RCANFD_CFFDCSTS_CFESI; 1626 } 1627 1628 rcar_canfd_write(priv->base, 1629 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts); 1630 1631 rcar_canfd_put_data(priv, cf, 1632 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0)); 1633 } else { 1634 rcar_canfd_write(priv->base, 1635 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1636 rcar_canfd_write(priv->base, 1637 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1638 rcar_canfd_put_data(priv, cf, 1639 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1640 } 1641 1642 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1643 1644 spin_lock_irqsave(&priv->tx_lock, flags); 1645 priv->tx_head++; 1646 1647 /* Stop the queue if we've filled all FIFO entries */ 1648 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1649 netif_stop_queue(ndev); 1650 1651 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1652 * pointer for the Common FIFO 1653 */ 1654 rcar_canfd_write(priv->base, 1655 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff); 1656 1657 spin_unlock_irqrestore(&priv->tx_lock, flags); 1658 return NETDEV_TX_OK; 1659 } 1660 1661 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1662 { 1663 struct net_device *ndev = priv->ndev; 1664 struct net_device_stats *stats = &ndev->stats; 1665 struct rcar_canfd_global *gpriv = priv->gpriv; 1666 struct canfd_frame *cf; 1667 struct sk_buff *skb; 1668 u32 sts = 0, id, dlc; 1669 u32 ch = priv->channel; 1670 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1671 1672 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1673 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx)); 1674 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx)); 1675 1676 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx)); 1677 1678 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && 1679 sts & RCANFD_RFFDSTS_RFFDF) 1680 skb = alloc_canfd_skb(ndev, &cf); 1681 else 1682 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 1683 } else { 1684 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1685 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1686 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 1687 } 1688 1689 if (!skb) { 1690 stats->rx_dropped++; 1691 return; 1692 } 1693 1694 if (id & RCANFD_RFID_RFIDE) 1695 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1696 else 1697 cf->can_id = id & CAN_SFF_MASK; 1698 1699 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1700 if (sts & RCANFD_RFFDSTS_RFFDF) 1701 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1702 else 1703 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1704 1705 if (sts & RCANFD_RFFDSTS_RFESI) { 1706 cf->flags |= CANFD_ESI; 1707 netdev_dbg(ndev, "ESI Error\n"); 1708 } 1709 1710 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1711 cf->can_id |= CAN_RTR_FLAG; 1712 } else { 1713 if (sts & RCANFD_RFFDSTS_RFBRS) 1714 cf->flags |= CANFD_BRS; 1715 1716 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1717 } 1718 } else { 1719 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1720 if (id & RCANFD_RFID_RFRTR) 1721 cf->can_id |= CAN_RTR_FLAG; 1722 else if (gpriv->info->shared_can_regs) 1723 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1724 else 1725 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1726 } 1727 1728 /* Write 0xff to RFPC to increment the CPU-side 1729 * pointer of the Rx FIFO 1730 */ 1731 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff); 1732 1733 if (!(cf->can_id & CAN_RTR_FLAG)) 1734 stats->rx_bytes += cf->len; 1735 stats->rx_packets++; 1736 netif_receive_skb(skb); 1737 } 1738 1739 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1740 { 1741 struct rcar_canfd_channel *priv = 1742 container_of(napi, struct rcar_canfd_channel, napi); 1743 struct rcar_canfd_global *gpriv = priv->gpriv; 1744 int num_pkts; 1745 u32 sts; 1746 u32 ch = priv->channel; 1747 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1748 1749 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1750 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1751 /* Check FIFO empty condition */ 1752 if (sts & RCANFD_RFSTS_RFEMP) 1753 break; 1754 1755 rcar_canfd_rx_pkt(priv); 1756 1757 /* Clear interrupt bit */ 1758 if (sts & RCANFD_RFSTS_RFIF) 1759 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1760 sts & ~RCANFD_RFSTS_RFIF); 1761 } 1762 1763 /* All packets processed */ 1764 if (num_pkts < quota) { 1765 if (napi_complete_done(napi, num_pkts)) { 1766 /* Enable Rx FIFO interrupts */ 1767 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), 1768 RCANFD_RFCC_RFIE); 1769 } 1770 } 1771 return num_pkts; 1772 } 1773 1774 static unsigned int rcar_canfd_get_tdcr(struct rcar_canfd_global *gpriv, 1775 unsigned int ch) 1776 { 1777 u32 sts = readl(&gpriv->fcbase[ch].cfdsts); 1778 u32 tdcr = FIELD_GET(RCANFD_FDSTS_TDCR, sts); 1779 1780 return tdcr & (gpriv->info->tdc_const->tdcv_max - 1); 1781 } 1782 1783 static int rcar_canfd_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv) 1784 { 1785 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1786 u32 tdco = priv->can.fd.tdc.tdco; 1787 u32 tdcr; 1788 1789 /* Transceiver Delay Compensation Result */ 1790 tdcr = rcar_canfd_get_tdcr(priv->gpriv, priv->channel) + 1; 1791 1792 *tdcv = tdcr < tdco ? 0 : tdcr - tdco; 1793 1794 return 0; 1795 } 1796 1797 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1798 { 1799 int err; 1800 1801 switch (mode) { 1802 case CAN_MODE_START: 1803 err = rcar_canfd_start(ndev); 1804 if (err) 1805 return err; 1806 netif_wake_queue(ndev); 1807 return 0; 1808 default: 1809 return -EOPNOTSUPP; 1810 } 1811 } 1812 1813 static int rcar_canfd_get_berr_counter(const struct net_device *ndev, 1814 struct can_berr_counter *bec) 1815 { 1816 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1817 u32 val, ch = priv->channel; 1818 1819 /* Peripheral clock is already enabled in probe */ 1820 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1821 bec->txerr = RCANFD_CSTS_TECCNT(val); 1822 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1823 return 0; 1824 } 1825 1826 static const struct net_device_ops rcar_canfd_netdev_ops = { 1827 .ndo_open = rcar_canfd_open, 1828 .ndo_stop = rcar_canfd_close, 1829 .ndo_start_xmit = rcar_canfd_start_xmit, 1830 .ndo_change_mtu = can_change_mtu, 1831 }; 1832 1833 static const struct ethtool_ops rcar_canfd_ethtool_ops = { 1834 .get_ts_info = ethtool_op_get_ts_info, 1835 }; 1836 1837 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1838 u32 fcan_freq, struct phy *transceiver) 1839 { 1840 const struct rcar_canfd_hw_info *info = gpriv->info; 1841 struct platform_device *pdev = gpriv->pdev; 1842 struct device *dev = &pdev->dev; 1843 struct rcar_canfd_channel *priv; 1844 struct net_device *ndev; 1845 int err = -ENODEV; 1846 1847 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1848 if (!ndev) 1849 return -ENOMEM; 1850 1851 priv = netdev_priv(ndev); 1852 1853 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1854 ndev->ethtool_ops = &rcar_canfd_ethtool_ops; 1855 ndev->flags |= IFF_ECHO; 1856 priv->ndev = ndev; 1857 priv->base = gpriv->base; 1858 priv->transceiver = transceiver; 1859 priv->channel = ch; 1860 priv->gpriv = gpriv; 1861 if (transceiver) 1862 priv->can.bitrate_max = transceiver->attrs.max_link_rate; 1863 priv->can.clock.freq = fcan_freq; 1864 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq); 1865 1866 if (info->multi_channel_irqs) { 1867 char *irq_name; 1868 char name[10]; 1869 int err_irq; 1870 int tx_irq; 1871 1872 scnprintf(name, sizeof(name), "ch%u_err", ch); 1873 err_irq = platform_get_irq_byname(pdev, name); 1874 if (err_irq < 0) { 1875 err = err_irq; 1876 goto fail; 1877 } 1878 1879 scnprintf(name, sizeof(name), "ch%u_trx", ch); 1880 tx_irq = platform_get_irq_byname(pdev, name); 1881 if (tx_irq < 0) { 1882 err = tx_irq; 1883 goto fail; 1884 } 1885 1886 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err", 1887 ch); 1888 if (!irq_name) { 1889 err = -ENOMEM; 1890 goto fail; 1891 } 1892 err = devm_request_irq(dev, err_irq, 1893 rcar_canfd_channel_err_interrupt, 0, 1894 irq_name, priv); 1895 if (err) { 1896 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n", 1897 err_irq, ERR_PTR(err)); 1898 goto fail; 1899 } 1900 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx", 1901 ch); 1902 if (!irq_name) { 1903 err = -ENOMEM; 1904 goto fail; 1905 } 1906 err = devm_request_irq(dev, tx_irq, 1907 rcar_canfd_channel_tx_interrupt, 0, 1908 irq_name, priv); 1909 if (err) { 1910 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n", 1911 tx_irq, ERR_PTR(err)); 1912 goto fail; 1913 } 1914 } 1915 1916 if (gpriv->fdmode) { 1917 priv->can.bittiming_const = gpriv->info->nom_bittiming; 1918 priv->can.fd.data_bittiming_const = gpriv->info->data_bittiming; 1919 priv->can.fd.tdc_const = gpriv->info->tdc_const; 1920 1921 /* Controller starts in CAN FD only mode */ 1922 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1923 if (err) 1924 goto fail; 1925 1926 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING | 1927 CAN_CTRLMODE_TDC_AUTO | 1928 CAN_CTRLMODE_TDC_MANUAL; 1929 priv->can.fd.do_get_auto_tdcv = rcar_canfd_get_auto_tdcv; 1930 } else { 1931 /* Controller starts in Classical CAN only mode */ 1932 if (gpriv->info->shared_can_regs) 1933 priv->can.bittiming_const = gpriv->info->nom_bittiming; 1934 else 1935 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1936 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1937 } 1938 1939 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1940 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1941 SET_NETDEV_DEV(ndev, dev); 1942 1943 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll, 1944 RCANFD_NAPI_WEIGHT); 1945 spin_lock_init(&priv->tx_lock); 1946 gpriv->ch[priv->channel] = priv; 1947 err = register_candev(ndev); 1948 if (err) { 1949 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err)); 1950 goto fail_candev; 1951 } 1952 dev_info(dev, "device registered (channel %u)\n", priv->channel); 1953 return 0; 1954 1955 fail_candev: 1956 netif_napi_del(&priv->napi); 1957 fail: 1958 free_candev(ndev); 1959 return err; 1960 } 1961 1962 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1963 { 1964 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1965 1966 if (priv) { 1967 unregister_candev(priv->ndev); 1968 netif_napi_del(&priv->napi); 1969 free_candev(priv->ndev); 1970 } 1971 } 1972 1973 static int rcar_canfd_probe(struct platform_device *pdev) 1974 { 1975 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, }; 1976 const struct rcar_canfd_hw_info *info; 1977 struct device *dev = &pdev->dev; 1978 void __iomem *addr; 1979 u32 sts, ch, fcan_freq; 1980 struct rcar_canfd_global *gpriv; 1981 struct device_node *of_child; 1982 unsigned long channels_mask = 0; 1983 int err, ch_irq, g_irq; 1984 int g_err_irq, g_recc_irq; 1985 u32 rule_entry = 0; 1986 bool fdmode = true; /* CAN FD only mode - default */ 1987 char name[9] = "channelX"; 1988 struct clk *clk_ram; 1989 int i; 1990 1991 info = of_device_get_match_data(dev); 1992 1993 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd")) 1994 fdmode = false; /* Classical CAN only mode */ 1995 1996 for (i = 0; i < info->max_channels; ++i) { 1997 name[7] = '0' + i; 1998 of_child = of_get_available_child_by_name(dev->of_node, name); 1999 if (of_child) { 2000 channels_mask |= BIT(i); 2001 transceivers[i] = devm_of_phy_optional_get(dev, 2002 of_child, NULL); 2003 of_node_put(of_child); 2004 } 2005 if (IS_ERR(transceivers[i])) 2006 return PTR_ERR(transceivers[i]); 2007 } 2008 2009 if (info->shared_global_irqs) { 2010 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 2011 if (ch_irq < 0) { 2012 /* For backward compatibility get irq by index */ 2013 ch_irq = platform_get_irq(pdev, 0); 2014 if (ch_irq < 0) 2015 return ch_irq; 2016 } 2017 2018 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 2019 if (g_irq < 0) { 2020 /* For backward compatibility get irq by index */ 2021 g_irq = platform_get_irq(pdev, 1); 2022 if (g_irq < 0) 2023 return g_irq; 2024 } 2025 } else { 2026 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 2027 if (g_err_irq < 0) 2028 return g_err_irq; 2029 2030 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 2031 if (g_recc_irq < 0) 2032 return g_recc_irq; 2033 } 2034 2035 /* Global controller context */ 2036 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL); 2037 if (!gpriv) 2038 return -ENOMEM; 2039 2040 gpriv->pdev = pdev; 2041 gpriv->channels_mask = channels_mask; 2042 gpriv->fdmode = fdmode; 2043 gpriv->info = info; 2044 2045 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n"); 2046 if (IS_ERR(gpriv->rstc1)) 2047 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1), 2048 "failed to get rstp_n\n"); 2049 2050 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n"); 2051 if (IS_ERR(gpriv->rstc2)) 2052 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2), 2053 "failed to get rstc_n\n"); 2054 2055 /* Peripheral clock */ 2056 gpriv->clkp = devm_clk_get(dev, "fck"); 2057 if (IS_ERR(gpriv->clkp)) 2058 return dev_err_probe(dev, PTR_ERR(gpriv->clkp), 2059 "cannot get peripheral clock\n"); 2060 2061 /* fCAN clock: Pick External clock. If not available fallback to 2062 * CANFD clock 2063 */ 2064 gpriv->can_clk = devm_clk_get(dev, "can_clk"); 2065 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 2066 gpriv->can_clk = devm_clk_get(dev, "canfd"); 2067 if (IS_ERR(gpriv->can_clk)) 2068 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk), 2069 "cannot get canfd clock\n"); 2070 2071 /* CANFD clock may be further divided within the IP */ 2072 fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv; 2073 } else { 2074 fcan_freq = clk_get_rate(gpriv->can_clk); 2075 gpriv->extclk = gpriv->info->external_clk; 2076 } 2077 2078 clk_ram = devm_clk_get_optional_enabled(dev, "ram_clk"); 2079 if (IS_ERR(clk_ram)) 2080 return dev_err_probe(dev, PTR_ERR(clk_ram), 2081 "cannot get enabled ram clock\n"); 2082 2083 addr = devm_platform_ioremap_resource(pdev, 0); 2084 if (IS_ERR(addr)) { 2085 err = PTR_ERR(addr); 2086 goto fail_dev; 2087 } 2088 gpriv->base = addr; 2089 gpriv->fcbase = addr + gpriv->info->regs->coffset; 2090 2091 /* Request IRQ that's common for both channels */ 2092 if (info->shared_global_irqs) { 2093 err = devm_request_irq(dev, ch_irq, 2094 rcar_canfd_channel_interrupt, 0, 2095 "canfd.ch_int", gpriv); 2096 if (err) { 2097 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2098 ch_irq, ERR_PTR(err)); 2099 goto fail_dev; 2100 } 2101 2102 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt, 2103 0, "canfd.g_int", gpriv); 2104 if (err) { 2105 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2106 g_irq, ERR_PTR(err)); 2107 goto fail_dev; 2108 } 2109 } else { 2110 err = devm_request_irq(dev, g_recc_irq, 2111 rcar_canfd_global_receive_fifo_interrupt, 0, 2112 "canfd.g_recc", gpriv); 2113 2114 if (err) { 2115 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2116 g_recc_irq, ERR_PTR(err)); 2117 goto fail_dev; 2118 } 2119 2120 err = devm_request_irq(dev, g_err_irq, 2121 rcar_canfd_global_err_interrupt, 0, 2122 "canfd.g_err", gpriv); 2123 if (err) { 2124 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2125 g_err_irq, ERR_PTR(err)); 2126 goto fail_dev; 2127 } 2128 } 2129 2130 err = reset_control_reset(gpriv->rstc1); 2131 if (err) 2132 goto fail_dev; 2133 err = reset_control_reset(gpriv->rstc2); 2134 if (err) { 2135 reset_control_assert(gpriv->rstc1); 2136 goto fail_dev; 2137 } 2138 2139 /* Enable peripheral clock for register access */ 2140 err = clk_prepare_enable(gpriv->clkp); 2141 if (err) { 2142 dev_err(dev, "failed to enable peripheral clock: %pe\n", 2143 ERR_PTR(err)); 2144 goto fail_reset; 2145 } 2146 2147 err = rcar_canfd_reset_controller(gpriv); 2148 if (err) { 2149 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err)); 2150 goto fail_clk; 2151 } 2152 2153 /* Controller in Global reset & Channel reset mode */ 2154 rcar_canfd_configure_controller(gpriv); 2155 2156 /* Configure per channel attributes */ 2157 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2158 /* Configure Channel's Rx fifo */ 2159 rcar_canfd_configure_rx(gpriv, ch); 2160 2161 /* Configure Channel's Tx (Common) fifo */ 2162 rcar_canfd_configure_tx(gpriv, ch); 2163 2164 /* Configure receive rules */ 2165 rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry); 2166 rule_entry += RCANFD_CHANNEL_NUMRULES; 2167 } 2168 2169 /* Configure common interrupts */ 2170 rcar_canfd_enable_global_interrupts(gpriv); 2171 2172 /* Start Global operation mode */ 2173 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 2174 RCANFD_GCTR_GMDC_GOPM); 2175 2176 /* Verify mode change */ 2177 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 2178 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 2179 if (err) { 2180 dev_err(dev, "global operational mode failed\n"); 2181 goto fail_mode; 2182 } 2183 2184 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2185 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq, 2186 transceivers[ch]); 2187 if (err) 2188 goto fail_channel; 2189 } 2190 2191 platform_set_drvdata(pdev, gpriv); 2192 dev_info(dev, "global operational state (%s clk, %s mode)\n", 2193 gpriv->extclk ? "ext" : "canfd", 2194 gpriv->fdmode ? "fd" : "classical"); 2195 return 0; 2196 2197 fail_channel: 2198 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) 2199 rcar_canfd_channel_remove(gpriv, ch); 2200 fail_mode: 2201 rcar_canfd_disable_global_interrupts(gpriv); 2202 fail_clk: 2203 clk_disable_unprepare(gpriv->clkp); 2204 fail_reset: 2205 reset_control_assert(gpriv->rstc1); 2206 reset_control_assert(gpriv->rstc2); 2207 fail_dev: 2208 return err; 2209 } 2210 2211 static void rcar_canfd_remove(struct platform_device *pdev) 2212 { 2213 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 2214 u32 ch; 2215 2216 rcar_canfd_reset_controller(gpriv); 2217 rcar_canfd_disable_global_interrupts(gpriv); 2218 2219 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2220 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 2221 rcar_canfd_channel_remove(gpriv, ch); 2222 } 2223 2224 /* Enter global sleep mode */ 2225 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2226 clk_disable_unprepare(gpriv->clkp); 2227 reset_control_assert(gpriv->rstc1); 2228 reset_control_assert(gpriv->rstc2); 2229 } 2230 2231 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2232 { 2233 return 0; 2234 } 2235 2236 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2237 { 2238 return 0; 2239 } 2240 2241 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2242 rcar_canfd_resume); 2243 2244 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2245 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info }, 2246 { .compatible = "renesas,r9a09g047-canfd", .data = &r9a09g047_hw_info }, 2247 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info }, 2248 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info }, 2249 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info }, 2250 { } 2251 }; 2252 2253 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2254 2255 static struct platform_driver rcar_canfd_driver = { 2256 .driver = { 2257 .name = RCANFD_DRV_NAME, 2258 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2259 .pm = &rcar_canfd_pm_ops, 2260 }, 2261 .probe = rcar_canfd_probe, 2262 .remove = rcar_canfd_remove, 2263 }; 2264 2265 module_platform_driver(rcar_canfd_driver); 2266 2267 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2268 MODULE_LICENSE("GPL"); 2269 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2270 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2271