xref: /linux/drivers/net/can/rcar/rcar_canfd.c (revision 51a8f9d7f587290944d6fc733d1f897091c63159)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6 
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/interrupt.h>
29 #include <linux/errno.h>
30 #include <linux/ethtool.h>
31 #include <linux/netdevice.h>
32 #include <linux/platform_device.h>
33 #include <linux/can/dev.h>
34 #include <linux/clk.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/bitmap.h>
38 #include <linux/bitops.h>
39 #include <linux/iopoll.h>
40 #include <linux/reset.h>
41 
42 #define RCANFD_DRV_NAME			"rcar_canfd"
43 
44 /* Global register bits */
45 
46 /* RSCFDnCFDGRMCFG */
47 #define RCANFD_GRMCFG_RCMC		BIT(0)
48 
49 /* RSCFDnCFDGCFG / RSCFDnGCFG */
50 #define RCANFD_GCFG_EEFE		BIT(6)
51 #define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
52 #define RCANFD_GCFG_DCS			BIT(4)
53 #define RCANFD_GCFG_DCE			BIT(1)
54 #define RCANFD_GCFG_TPRI		BIT(0)
55 
56 /* RSCFDnCFDGCTR / RSCFDnGCTR */
57 #define RCANFD_GCTR_TSRST		BIT(16)
58 #define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
59 #define RCANFD_GCTR_THLEIE		BIT(10)
60 #define RCANFD_GCTR_MEIE		BIT(9)
61 #define RCANFD_GCTR_DEIE		BIT(8)
62 #define RCANFD_GCTR_GSLPR		BIT(2)
63 #define RCANFD_GCTR_GMDC_MASK		(0x3)
64 #define RCANFD_GCTR_GMDC_GOPM		(0x0)
65 #define RCANFD_GCTR_GMDC_GRESET		(0x1)
66 #define RCANFD_GCTR_GMDC_GTEST		(0x2)
67 
68 /* RSCFDnCFDGSTS / RSCFDnGSTS */
69 #define RCANFD_GSTS_GRAMINIT		BIT(3)
70 #define RCANFD_GSTS_GSLPSTS		BIT(2)
71 #define RCANFD_GSTS_GHLTSTS		BIT(1)
72 #define RCANFD_GSTS_GRSTSTS		BIT(0)
73 /* Non-operational status */
74 #define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
75 
76 /* RSCFDnCFDGERFL / RSCFDnGERFL */
77 #define RCANFD_GERFL_EEF0_7		GENMASK(23, 16)
78 #define RCANFD_GERFL_EEF(ch)		BIT(16 + (ch))
79 #define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
80 #define RCANFD_GERFL_THLES		BIT(2)
81 #define RCANFD_GERFL_MES		BIT(1)
82 #define RCANFD_GERFL_DEF		BIT(0)
83 
84 #define RCANFD_GERFL_ERR(gpriv, x) \
85 	((x) & (reg_v3u(gpriv, RCANFD_GERFL_EEF0_7, \
86 			RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
87 		RCANFD_GERFL_MES | \
88 		((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
89 
90 /* AFL Rx rules registers */
91 
92 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
93 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
94 	(((x) & reg_v3u(gpriv, 0x1ff, 0xff)) << \
95 	 (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8)))
96 
97 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
98 	(((x) >> (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8))) & \
99 	 reg_v3u(gpriv, 0x1ff, 0xff))
100 
101 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
102 #define RCANFD_GAFLECTR_AFLDAE		BIT(8)
103 #define RCANFD_GAFLECTR_AFLPN(gpriv, x)	((x) & reg_v3u(gpriv, 0x7f, 0x1f))
104 
105 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
106 #define RCANFD_GAFLID_GAFLLB		BIT(29)
107 
108 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
109 #define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
110 
111 /* Channel register bits */
112 
113 /* RSCFDnCmCFG - Classical CAN only */
114 #define RCANFD_CFG_SJW(x)		(((x) & 0x3) << 24)
115 #define RCANFD_CFG_TSEG2(x)		(((x) & 0x7) << 20)
116 #define RCANFD_CFG_TSEG1(x)		(((x) & 0xf) << 16)
117 #define RCANFD_CFG_BRP(x)		(((x) & 0x3ff) << 0)
118 
119 /* RSCFDnCFDCmNCFG - CAN FD only */
120 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
121 	(((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 25, 24))
122 
123 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
124 	(((x) & reg_v3u(gpriv, 0xff, 0x7f)) << reg_v3u(gpriv, 17, 16))
125 
126 #define RCANFD_NCFG_NSJW(gpriv, x) \
127 	(((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 10, 11))
128 
129 #define RCANFD_NCFG_NBRP(x)		(((x) & 0x3ff) << 0)
130 
131 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
132 #define RCANFD_CCTR_CTME		BIT(24)
133 #define RCANFD_CCTR_ERRD		BIT(23)
134 #define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
135 #define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
136 #define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
137 #define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
138 #define RCANFD_CCTR_TDCVFIE		BIT(19)
139 #define RCANFD_CCTR_SOCOIE		BIT(18)
140 #define RCANFD_CCTR_EOCOIE		BIT(17)
141 #define RCANFD_CCTR_TAIE		BIT(16)
142 #define RCANFD_CCTR_ALIE		BIT(15)
143 #define RCANFD_CCTR_BLIE		BIT(14)
144 #define RCANFD_CCTR_OLIE		BIT(13)
145 #define RCANFD_CCTR_BORIE		BIT(12)
146 #define RCANFD_CCTR_BOEIE		BIT(11)
147 #define RCANFD_CCTR_EPIE		BIT(10)
148 #define RCANFD_CCTR_EWIE		BIT(9)
149 #define RCANFD_CCTR_BEIE		BIT(8)
150 #define RCANFD_CCTR_CSLPR		BIT(2)
151 #define RCANFD_CCTR_CHMDC_MASK		(0x3)
152 #define RCANFD_CCTR_CHDMC_COPM		(0x0)
153 #define RCANFD_CCTR_CHDMC_CRESET	(0x1)
154 #define RCANFD_CCTR_CHDMC_CHLT		(0x2)
155 
156 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
157 #define RCANFD_CSTS_COMSTS		BIT(7)
158 #define RCANFD_CSTS_RECSTS		BIT(6)
159 #define RCANFD_CSTS_TRMSTS		BIT(5)
160 #define RCANFD_CSTS_BOSTS		BIT(4)
161 #define RCANFD_CSTS_EPSTS		BIT(3)
162 #define RCANFD_CSTS_SLPSTS		BIT(2)
163 #define RCANFD_CSTS_HLTSTS		BIT(1)
164 #define RCANFD_CSTS_CRSTSTS		BIT(0)
165 
166 #define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
167 #define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
168 
169 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
170 #define RCANFD_CERFL_ADERR		BIT(14)
171 #define RCANFD_CERFL_B0ERR		BIT(13)
172 #define RCANFD_CERFL_B1ERR		BIT(12)
173 #define RCANFD_CERFL_CERR		BIT(11)
174 #define RCANFD_CERFL_AERR		BIT(10)
175 #define RCANFD_CERFL_FERR		BIT(9)
176 #define RCANFD_CERFL_SERR		BIT(8)
177 #define RCANFD_CERFL_ALF		BIT(7)
178 #define RCANFD_CERFL_BLF		BIT(6)
179 #define RCANFD_CERFL_OVLF		BIT(5)
180 #define RCANFD_CERFL_BORF		BIT(4)
181 #define RCANFD_CERFL_BOEF		BIT(3)
182 #define RCANFD_CERFL_EPF		BIT(2)
183 #define RCANFD_CERFL_EWF		BIT(1)
184 #define RCANFD_CERFL_BEF		BIT(0)
185 
186 #define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
187 
188 /* RSCFDnCFDCmDCFG */
189 #define RCANFD_DCFG_DSJW(x)		(((x) & 0x7) << 24)
190 
191 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
192 	(((x) & reg_v3u(gpriv, 0x0f, 0x7)) << reg_v3u(gpriv, 16, 20))
193 
194 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
195 	(((x) & reg_v3u(gpriv, 0x1f, 0xf)) << reg_v3u(gpriv, 8, 16))
196 
197 #define RCANFD_DCFG_DBRP(x)		(((x) & 0xff) << 0)
198 
199 /* RSCFDnCFDCmFDCFG */
200 #define RCANFD_FDCFG_CLOE		BIT(30)
201 #define RCANFD_FDCFG_FDOE		BIT(28)
202 #define RCANFD_FDCFG_TDCE		BIT(9)
203 #define RCANFD_FDCFG_TDCOC		BIT(8)
204 #define RCANFD_FDCFG_TDCO(x)		(((x) & 0x7f) >> 16)
205 
206 /* RSCFDnCFDRFCCx */
207 #define RCANFD_RFCC_RFIM		BIT(12)
208 #define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
209 #define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
210 #define RCANFD_RFCC_RFIE		BIT(1)
211 #define RCANFD_RFCC_RFE			BIT(0)
212 
213 /* RSCFDnCFDRFSTSx */
214 #define RCANFD_RFSTS_RFIF		BIT(3)
215 #define RCANFD_RFSTS_RFMLT		BIT(2)
216 #define RCANFD_RFSTS_RFFLL		BIT(1)
217 #define RCANFD_RFSTS_RFEMP		BIT(0)
218 
219 /* RSCFDnCFDRFIDx */
220 #define RCANFD_RFID_RFIDE		BIT(31)
221 #define RCANFD_RFID_RFRTR		BIT(30)
222 
223 /* RSCFDnCFDRFPTRx */
224 #define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
225 #define RCANFD_RFPTR_RFPTR(x)		(((x) >> 16) & 0xfff)
226 #define RCANFD_RFPTR_RFTS(x)		(((x) >> 0) & 0xffff)
227 
228 /* RSCFDnCFDRFFDSTSx */
229 #define RCANFD_RFFDSTS_RFFDF		BIT(2)
230 #define RCANFD_RFFDSTS_RFBRS		BIT(1)
231 #define RCANFD_RFFDSTS_RFESI		BIT(0)
232 
233 /* Common FIFO bits */
234 
235 /* RSCFDnCFDCFCCk */
236 #define RCANFD_CFCC_CFTML(gpriv, x)	(((x) & 0xf) << reg_v3u(gpriv, 16, 20))
237 #define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << reg_v3u(gpriv,  8, 16))
238 #define RCANFD_CFCC_CFIM		BIT(12)
239 #define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << reg_v3u(gpriv, 21,  8))
240 #define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
241 #define RCANFD_CFCC_CFTXIE		BIT(2)
242 #define RCANFD_CFCC_CFE			BIT(0)
243 
244 /* RSCFDnCFDCFSTSk */
245 #define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
246 #define RCANFD_CFSTS_CFTXIF		BIT(4)
247 #define RCANFD_CFSTS_CFMLT		BIT(2)
248 #define RCANFD_CFSTS_CFFLL		BIT(1)
249 #define RCANFD_CFSTS_CFEMP		BIT(0)
250 
251 /* RSCFDnCFDCFIDk */
252 #define RCANFD_CFID_CFIDE		BIT(31)
253 #define RCANFD_CFID_CFRTR		BIT(30)
254 #define RCANFD_CFID_CFID_MASK(x)	((x) & 0x1fffffff)
255 
256 /* RSCFDnCFDCFPTRk */
257 #define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
258 #define RCANFD_CFPTR_CFPTR(x)		(((x) & 0xfff) << 16)
259 #define RCANFD_CFPTR_CFTS(x)		(((x) & 0xff) << 0)
260 
261 /* RSCFDnCFDCFFDCSTSk */
262 #define RCANFD_CFFDCSTS_CFFDF		BIT(2)
263 #define RCANFD_CFFDCSTS_CFBRS		BIT(1)
264 #define RCANFD_CFFDCSTS_CFESI		BIT(0)
265 
266 /* This controller supports either Classical CAN only mode or CAN FD only mode.
267  * These modes are supported in two separate set of register maps & names.
268  * However, some of the register offsets are common for both modes. Those
269  * offsets are listed below as Common registers.
270  *
271  * The CAN FD only mode specific registers & Classical CAN only mode specific
272  * registers are listed separately. Their register names starts with
273  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
274  */
275 
276 /* Common registers */
277 
278 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
279 #define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
280 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
281 #define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
282 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
283 #define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
284 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
285 #define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
286 
287 /* RSCFDnCFDGCFG / RSCFDnGCFG */
288 #define RCANFD_GCFG			(0x0084)
289 /* RSCFDnCFDGCTR / RSCFDnGCTR */
290 #define RCANFD_GCTR			(0x0088)
291 /* RSCFDnCFDGCTS / RSCFDnGCTS */
292 #define RCANFD_GSTS			(0x008c)
293 /* RSCFDnCFDGERFL / RSCFDnGERFL */
294 #define RCANFD_GERFL			(0x0090)
295 /* RSCFDnCFDGTSC / RSCFDnGTSC */
296 #define RCANFD_GTSC			(0x0094)
297 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
298 #define RCANFD_GAFLECTR			(0x0098)
299 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
300 #define RCANFD_GAFLCFG(ch)		(0x009c + (0x04 * ((ch) / 2)))
301 /* RSCFDnCFDRMNB / RSCFDnRMNB */
302 #define RCANFD_RMNB			(0x00a4)
303 /* RSCFDnCFDRMND / RSCFDnRMND */
304 #define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
305 
306 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
307 #define RCANFD_RFCC(gpriv, x)		(reg_v3u(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
308 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
309 #define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
310 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
311 #define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
312 
313 /* Common FIFO Control registers */
314 
315 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
316 #define RCANFD_CFCC(gpriv, ch, idx) \
317 	(reg_v3u(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
318 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
319 #define RCANFD_CFSTS(gpriv, ch, idx) \
320 	(reg_v3u(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
321 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
322 #define RCANFD_CFPCTR(gpriv, ch, idx) \
323 	(reg_v3u(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
324 
325 /* RSCFDnCFDFESTS / RSCFDnFESTS */
326 #define RCANFD_FESTS			(0x0238)
327 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
328 #define RCANFD_FFSTS			(0x023c)
329 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
330 #define RCANFD_FMSTS			(0x0240)
331 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
332 #define RCANFD_RFISTS			(0x0244)
333 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
334 #define RCANFD_CFRISTS			(0x0248)
335 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
336 #define RCANFD_CFTISTS			(0x024c)
337 
338 /* RSCFDnCFDTMCp / RSCFDnTMCp */
339 #define RCANFD_TMC(p)			(0x0250 + (0x01 * (p)))
340 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
341 #define RCANFD_TMSTS(p)			(0x02d0 + (0x01 * (p)))
342 
343 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
344 #define RCANFD_TMTRSTS(y)		(0x0350 + (0x04 * (y)))
345 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
346 #define RCANFD_TMTARSTS(y)		(0x0360 + (0x04 * (y)))
347 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
348 #define RCANFD_TMTCSTS(y)		(0x0370 + (0x04 * (y)))
349 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
350 #define RCANFD_TMTASTS(y)		(0x0380 + (0x04 * (y)))
351 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
352 #define RCANFD_TMIEC(y)			(0x0390 + (0x04 * (y)))
353 
354 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
355 #define RCANFD_TXQCC(m)			(0x03a0 + (0x04 * (m)))
356 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
357 #define RCANFD_TXQSTS(m)		(0x03c0 + (0x04 * (m)))
358 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
359 #define RCANFD_TXQPCTR(m)		(0x03e0 + (0x04 * (m)))
360 
361 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
362 #define RCANFD_THLCC(m)			(0x0400 + (0x04 * (m)))
363 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
364 #define RCANFD_THLSTS(m)		(0x0420 + (0x04 * (m)))
365 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
366 #define RCANFD_THLPCTR(m)		(0x0440 + (0x04 * (m)))
367 
368 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
369 #define RCANFD_GTINTSTS0		(0x0460)
370 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
371 #define RCANFD_GTINTSTS1		(0x0464)
372 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
373 #define RCANFD_GTSTCFG			(0x0468)
374 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
375 #define RCANFD_GTSTCTR			(0x046c)
376 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
377 #define RCANFD_GLOCKK			(0x047c)
378 /* RSCFDnCFDGRMCFG */
379 #define RCANFD_GRMCFG			(0x04fc)
380 
381 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
382 #define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
383 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
384 #define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
385 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
386 #define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
387 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
388 #define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
389 
390 /* Classical CAN only mode register map */
391 
392 /* RSCFDnGAFLXXXj offset */
393 #define RCANFD_C_GAFL_OFFSET		(0x0500)
394 
395 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
396 #define RCANFD_C_RMID(q)		(0x0600 + (0x10 * (q)))
397 #define RCANFD_C_RMPTR(q)		(0x0604 + (0x10 * (q)))
398 #define RCANFD_C_RMDF0(q)		(0x0608 + (0x10 * (q)))
399 #define RCANFD_C_RMDF1(q)		(0x060c + (0x10 * (q)))
400 
401 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
402 #define RCANFD_C_RFOFFSET	(0x0e00)
403 #define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
404 #define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
405 #define RCANFD_C_RFDF(x, df) \
406 		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
407 
408 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
409 #define RCANFD_C_CFOFFSET		(0x0e80)
410 
411 #define RCANFD_C_CFID(ch, idx) \
412 	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
413 
414 #define RCANFD_C_CFPTR(ch, idx)	\
415 	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
416 
417 #define RCANFD_C_CFDF(ch, idx, df) \
418 	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
419 
420 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
421 #define RCANFD_C_TMID(p)		(0x1000 + (0x10 * (p)))
422 #define RCANFD_C_TMPTR(p)		(0x1004 + (0x10 * (p)))
423 #define RCANFD_C_TMDF0(p)		(0x1008 + (0x10 * (p)))
424 #define RCANFD_C_TMDF1(p)		(0x100c + (0x10 * (p)))
425 
426 /* RSCFDnTHLACCm */
427 #define RCANFD_C_THLACC(m)		(0x1800 + (0x04 * (m)))
428 /* RSCFDnRPGACCr */
429 #define RCANFD_C_RPGACC(r)		(0x1900 + (0x04 * (r)))
430 
431 /* R-Car V3U Classical and CAN FD mode specific register map */
432 #define RCANFD_V3U_CFDCFG		(0x1314)
433 #define RCANFD_V3U_DCFG(m)		(0x1400 + (0x20 * (m)))
434 
435 #define RCANFD_V3U_GAFL_OFFSET		(0x1800)
436 
437 /* CAN FD mode specific register map */
438 
439 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
440 #define RCANFD_F_DCFG(m)		(0x0500 + (0x20 * (m)))
441 #define RCANFD_F_CFDCFG(m)		(0x0504 + (0x20 * (m)))
442 #define RCANFD_F_CFDCTR(m)		(0x0508 + (0x20 * (m)))
443 #define RCANFD_F_CFDSTS(m)		(0x050c + (0x20 * (m)))
444 #define RCANFD_F_CFDCRC(m)		(0x0510 + (0x20 * (m)))
445 
446 /* RSCFDnCFDGAFLXXXj offset */
447 #define RCANFD_F_GAFL_OFFSET		(0x1000)
448 
449 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
450 #define RCANFD_F_RMID(q)		(0x2000 + (0x20 * (q)))
451 #define RCANFD_F_RMPTR(q)		(0x2004 + (0x20 * (q)))
452 #define RCANFD_F_RMFDSTS(q)		(0x2008 + (0x20 * (q)))
453 #define RCANFD_F_RMDF(q, b)		(0x200c + (0x04 * (b)) + (0x20 * (q)))
454 
455 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
456 #define RCANFD_F_RFOFFSET(gpriv)	reg_v3u(gpriv, 0x6000, 0x3000)
457 #define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
458 #define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
459 #define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
460 #define RCANFD_F_RFDF(gpriv, x, df) \
461 	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
462 
463 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
464 #define RCANFD_F_CFOFFSET(gpriv)	reg_v3u(gpriv, 0x6400, 0x3400)
465 
466 #define RCANFD_F_CFID(gpriv, ch, idx) \
467 	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
468 
469 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
470 	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
471 
472 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
473 	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
474 
475 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
476 	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
477 	 (0x04 * (df)))
478 
479 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
480 #define RCANFD_F_TMID(p)		(0x4000 + (0x20 * (p)))
481 #define RCANFD_F_TMPTR(p)		(0x4004 + (0x20 * (p)))
482 #define RCANFD_F_TMFDCTR(p)		(0x4008 + (0x20 * (p)))
483 #define RCANFD_F_TMDF(p, b)		(0x400c + (0x20 * (p)) + (0x04 * (b)))
484 
485 /* RSCFDnCFDTHLACCm */
486 #define RCANFD_F_THLACC(m)		(0x6000 + (0x04 * (m)))
487 /* RSCFDnCFDRPGACCr */
488 #define RCANFD_F_RPGACC(r)		(0x6400 + (0x04 * (r)))
489 
490 /* Constants */
491 #define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
492 #define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
493 
494 #define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
495 #define RCANFD_CHANNELS_MASK		BIT((RCANFD_NUM_CHANNELS) - 1)
496 
497 #define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
498 #define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
499 
500 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
501  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
502  * number is added to RFFIFO index.
503  */
504 #define RCANFD_RFFIFO_IDX		0
505 
506 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
507  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
508  */
509 #define RCANFD_CFFIFO_IDX		0
510 
511 /* fCAN clock select register settings */
512 enum rcar_canfd_fcanclk {
513 	RCANFD_CANFDCLK = 0,		/* CANFD clock */
514 	RCANFD_EXTCLK,			/* Externally input clock */
515 };
516 
517 struct rcar_canfd_global;
518 
519 struct rcar_canfd_hw_info {
520 	u8 max_channels;
521 	u8 postdiv;
522 	/* hardware features */
523 	unsigned shared_global_irqs:1;	/* Has shared global irqs */
524 	unsigned multi_channel_irqs:1;	/* Has multiple channel irqs */
525 };
526 
527 /* Channel priv data */
528 struct rcar_canfd_channel {
529 	struct can_priv can;			/* Must be the first member */
530 	struct net_device *ndev;
531 	struct rcar_canfd_global *gpriv;	/* Controller reference */
532 	void __iomem *base;			/* Register base address */
533 	struct napi_struct napi;
534 	u32 tx_head;				/* Incremented on xmit */
535 	u32 tx_tail;				/* Incremented on xmit done */
536 	u32 channel;				/* Channel number */
537 	spinlock_t tx_lock;			/* To protect tx path */
538 };
539 
540 /* Global priv data */
541 struct rcar_canfd_global {
542 	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
543 	void __iomem *base;		/* Register base address */
544 	struct platform_device *pdev;	/* Respective platform device */
545 	struct clk *clkp;		/* Peripheral clock */
546 	struct clk *can_clk;		/* fCAN clock */
547 	enum rcar_canfd_fcanclk fcan;	/* CANFD or Ext clock */
548 	unsigned long channels_mask;	/* Enabled channels mask */
549 	bool fdmode;			/* CAN FD or Classical CAN only mode */
550 	struct reset_control *rstc1;
551 	struct reset_control *rstc2;
552 	const struct rcar_canfd_hw_info *info;
553 };
554 
555 /* CAN FD mode nominal rate constants */
556 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
557 	.name = RCANFD_DRV_NAME,
558 	.tseg1_min = 2,
559 	.tseg1_max = 128,
560 	.tseg2_min = 2,
561 	.tseg2_max = 32,
562 	.sjw_max = 32,
563 	.brp_min = 1,
564 	.brp_max = 1024,
565 	.brp_inc = 1,
566 };
567 
568 /* CAN FD mode data rate constants */
569 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
570 	.name = RCANFD_DRV_NAME,
571 	.tseg1_min = 2,
572 	.tseg1_max = 16,
573 	.tseg2_min = 2,
574 	.tseg2_max = 8,
575 	.sjw_max = 8,
576 	.brp_min = 1,
577 	.brp_max = 256,
578 	.brp_inc = 1,
579 };
580 
581 /* Classical CAN mode bitrate constants */
582 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
583 	.name = RCANFD_DRV_NAME,
584 	.tseg1_min = 4,
585 	.tseg1_max = 16,
586 	.tseg2_min = 2,
587 	.tseg2_max = 8,
588 	.sjw_max = 4,
589 	.brp_min = 1,
590 	.brp_max = 1024,
591 	.brp_inc = 1,
592 };
593 
594 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
595 	.max_channels = 2,
596 	.postdiv = 2,
597 	.shared_global_irqs = 1,
598 };
599 
600 static const struct rcar_canfd_hw_info rzg2l_hw_info = {
601 	.max_channels = 2,
602 	.postdiv = 1,
603 	.multi_channel_irqs = 1,
604 };
605 
606 static const struct rcar_canfd_hw_info r8a779a0_hw_info = {
607 	.max_channels = 8,
608 	.postdiv = 2,
609 	.shared_global_irqs = 1,
610 };
611 
612 /* Helper functions */
613 static inline bool is_v3u(struct rcar_canfd_global *gpriv)
614 {
615 	return gpriv->info == &r8a779a0_hw_info;
616 }
617 
618 static inline u32 reg_v3u(struct rcar_canfd_global *gpriv,
619 			  u32 v3u, u32 not_v3u)
620 {
621 	return is_v3u(gpriv) ? v3u : not_v3u;
622 }
623 
624 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
625 {
626 	u32 data = readl(reg);
627 
628 	data &= ~mask;
629 	data |= (val & mask);
630 	writel(data, reg);
631 }
632 
633 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
634 {
635 	return readl(base + (offset));
636 }
637 
638 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
639 {
640 	writel(val, base + (offset));
641 }
642 
643 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
644 {
645 	rcar_canfd_update(val, val, base + (reg));
646 }
647 
648 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
649 {
650 	rcar_canfd_update(val, 0, base + (reg));
651 }
652 
653 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
654 				  u32 mask, u32 val)
655 {
656 	rcar_canfd_update(mask, val, base + (reg));
657 }
658 
659 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
660 				struct canfd_frame *cf, u32 off)
661 {
662 	u32 i, lwords;
663 
664 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
665 	for (i = 0; i < lwords; i++)
666 		*((u32 *)cf->data + i) =
667 			rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
668 }
669 
670 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
671 				struct canfd_frame *cf, u32 off)
672 {
673 	u32 i, lwords;
674 
675 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
676 	for (i = 0; i < lwords; i++)
677 		rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
678 				 *((u32 *)cf->data + i));
679 }
680 
681 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
682 {
683 	u32 i;
684 
685 	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
686 		can_free_echo_skb(ndev, i, NULL);
687 }
688 
689 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
690 {
691 	if (is_v3u(gpriv)) {
692 		if (gpriv->fdmode)
693 			rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
694 					   RCANFD_FDCFG_FDOE);
695 		else
696 			rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
697 					   RCANFD_FDCFG_CLOE);
698 	} else {
699 		if (gpriv->fdmode)
700 			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
701 					   RCANFD_GRMCFG_RCMC);
702 		else
703 			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
704 					     RCANFD_GRMCFG_RCMC);
705 	}
706 }
707 
708 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
709 {
710 	u32 sts, ch;
711 	int err;
712 
713 	/* Check RAMINIT flag as CAN RAM initialization takes place
714 	 * after the MCU reset
715 	 */
716 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
717 				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
718 	if (err) {
719 		dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
720 		return err;
721 	}
722 
723 	/* Transition to Global Reset mode */
724 	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
725 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
726 			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
727 
728 	/* Ensure Global reset mode */
729 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
730 				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
731 	if (err) {
732 		dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
733 		return err;
734 	}
735 
736 	/* Reset Global error flags */
737 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
738 
739 	/* Set the controller into appropriate mode */
740 	rcar_canfd_set_mode(gpriv);
741 
742 	/* Transition all Channels to reset mode */
743 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
744 		rcar_canfd_clear_bit(gpriv->base,
745 				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
746 
747 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
748 				      RCANFD_CCTR_CHMDC_MASK,
749 				      RCANFD_CCTR_CHDMC_CRESET);
750 
751 		/* Ensure Channel reset mode */
752 		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
753 					 (sts & RCANFD_CSTS_CRSTSTS),
754 					 2, 500000);
755 		if (err) {
756 			dev_dbg(&gpriv->pdev->dev,
757 				"channel %u reset failed\n", ch);
758 			return err;
759 		}
760 	}
761 	return 0;
762 }
763 
764 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
765 {
766 	u32 cfg, ch;
767 
768 	/* Global configuration settings */
769 
770 	/* ECC Error flag Enable */
771 	cfg = RCANFD_GCFG_EEFE;
772 
773 	if (gpriv->fdmode)
774 		/* Truncate payload to configured message size RFPLS */
775 		cfg |= RCANFD_GCFG_CMPOC;
776 
777 	/* Set External Clock if selected */
778 	if (gpriv->fcan != RCANFD_CANFDCLK)
779 		cfg |= RCANFD_GCFG_DCS;
780 
781 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
782 
783 	/* Channel configuration settings */
784 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
785 		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
786 				   RCANFD_CCTR_ERRD);
787 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
788 				      RCANFD_CCTR_BOM_MASK,
789 				      RCANFD_CCTR_BOM_BENTRY);
790 	}
791 }
792 
793 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
794 					   u32 ch)
795 {
796 	u32 cfg;
797 	int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
798 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
799 
800 	if (ch == 0) {
801 		start = 0; /* Channel 0 always starts from 0th rule */
802 	} else {
803 		/* Get number of Channel 0 rules and adjust */
804 		cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch));
805 		start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg);
806 	}
807 
808 	/* Enable write access to entry */
809 	page = RCANFD_GAFL_PAGENUM(start);
810 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
811 			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
812 			    RCANFD_GAFLECTR_AFLDAE));
813 
814 	/* Write number of rules for channel */
815 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
816 			   RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
817 	if (is_v3u(gpriv))
818 		offset = RCANFD_V3U_GAFL_OFFSET;
819 	else if (gpriv->fdmode)
820 		offset = RCANFD_F_GAFL_OFFSET;
821 	else
822 		offset = RCANFD_C_GAFL_OFFSET;
823 
824 	/* Accept all IDs */
825 	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
826 	/* IDE or RTR is not considered for matching */
827 	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
828 	/* Any data length accepted */
829 	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
830 	/* Place the msg in corresponding Rx FIFO entry */
831 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start),
832 			   RCANFD_GAFLP1_GAFLFDP(ridx));
833 
834 	/* Disable write access to page */
835 	rcar_canfd_clear_bit(gpriv->base,
836 			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
837 }
838 
839 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
840 {
841 	/* Rx FIFO is used for reception */
842 	u32 cfg;
843 	u16 rfdc, rfpls;
844 
845 	/* Select Rx FIFO based on channel */
846 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
847 
848 	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
849 	if (gpriv->fdmode)
850 		rfpls = 7;	/* b111 - Max 64 bytes payload */
851 	else
852 		rfpls = 0;	/* b000 - Max 8 bytes payload */
853 
854 	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
855 		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
856 	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
857 }
858 
859 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
860 {
861 	/* Tx/Rx(Common) FIFO configured in Tx mode is
862 	 * used for transmission
863 	 *
864 	 * Each channel has 3 Common FIFO dedicated to them.
865 	 * Use the 1st (index 0) out of 3
866 	 */
867 	u32 cfg;
868 	u16 cftml, cfm, cfdc, cfpls;
869 
870 	cftml = 0;		/* 0th buffer */
871 	cfm = 1;		/* b01 - Transmit mode */
872 	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
873 	if (gpriv->fdmode)
874 		cfpls = 7;	/* b111 - Max 64 bytes payload */
875 	else
876 		cfpls = 0;	/* b000 - Max 8 bytes payload */
877 
878 	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
879 		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
880 		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
881 	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
882 
883 	if (gpriv->fdmode)
884 		/* Clear FD mode specific control/status register */
885 		rcar_canfd_write(gpriv->base,
886 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
887 }
888 
889 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
890 {
891 	u32 ctr;
892 
893 	/* Clear any stray error interrupt flags */
894 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
895 
896 	/* Global interrupts setup */
897 	ctr = RCANFD_GCTR_MEIE;
898 	if (gpriv->fdmode)
899 		ctr |= RCANFD_GCTR_CFMPOFIE;
900 
901 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
902 }
903 
904 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
905 						 *gpriv)
906 {
907 	/* Disable all interrupts */
908 	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
909 
910 	/* Clear any stray error interrupt flags */
911 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
912 }
913 
914 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
915 						 *priv)
916 {
917 	u32 ctr, ch = priv->channel;
918 
919 	/* Clear any stray error flags */
920 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
921 
922 	/* Channel interrupts setup */
923 	ctr = (RCANFD_CCTR_TAIE |
924 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
925 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
926 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
927 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
928 	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
929 }
930 
931 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
932 						  *priv)
933 {
934 	u32 ctr, ch = priv->channel;
935 
936 	ctr = (RCANFD_CCTR_TAIE |
937 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
938 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
939 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
940 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
941 	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
942 
943 	/* Clear any stray error flags */
944 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
945 }
946 
947 static void rcar_canfd_global_error(struct net_device *ndev)
948 {
949 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
950 	struct rcar_canfd_global *gpriv = priv->gpriv;
951 	struct net_device_stats *stats = &ndev->stats;
952 	u32 ch = priv->channel;
953 	u32 gerfl, sts;
954 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
955 
956 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
957 	if (gerfl & RCANFD_GERFL_EEF(ch)) {
958 		netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
959 		stats->tx_dropped++;
960 	}
961 	if (gerfl & RCANFD_GERFL_MES) {
962 		sts = rcar_canfd_read(priv->base,
963 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
964 		if (sts & RCANFD_CFSTS_CFMLT) {
965 			netdev_dbg(ndev, "Tx Message Lost flag\n");
966 			stats->tx_dropped++;
967 			rcar_canfd_write(priv->base,
968 					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
969 					 sts & ~RCANFD_CFSTS_CFMLT);
970 		}
971 
972 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
973 		if (sts & RCANFD_RFSTS_RFMLT) {
974 			netdev_dbg(ndev, "Rx Message Lost flag\n");
975 			stats->rx_dropped++;
976 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
977 					 sts & ~RCANFD_RFSTS_RFMLT);
978 		}
979 	}
980 	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
981 		/* Message Lost flag will be set for respective channel
982 		 * when this condition happens with counters and flags
983 		 * already updated.
984 		 */
985 		netdev_dbg(ndev, "global payload overflow interrupt\n");
986 	}
987 
988 	/* Clear all global error interrupts. Only affected channels bits
989 	 * get cleared
990 	 */
991 	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
992 }
993 
994 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
995 			     u16 txerr, u16 rxerr)
996 {
997 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
998 	struct net_device_stats *stats = &ndev->stats;
999 	struct can_frame *cf;
1000 	struct sk_buff *skb;
1001 	u32 ch = priv->channel;
1002 
1003 	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
1004 
1005 	/* Propagate the error condition to the CAN stack */
1006 	skb = alloc_can_err_skb(ndev, &cf);
1007 	if (!skb) {
1008 		stats->rx_dropped++;
1009 		return;
1010 	}
1011 
1012 	/* Channel error interrupts */
1013 	if (cerfl & RCANFD_CERFL_BEF) {
1014 		netdev_dbg(ndev, "Bus error\n");
1015 		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1016 		cf->data[2] = CAN_ERR_PROT_UNSPEC;
1017 		priv->can.can_stats.bus_error++;
1018 	}
1019 	if (cerfl & RCANFD_CERFL_ADERR) {
1020 		netdev_dbg(ndev, "ACK Delimiter Error\n");
1021 		stats->tx_errors++;
1022 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1023 	}
1024 	if (cerfl & RCANFD_CERFL_B0ERR) {
1025 		netdev_dbg(ndev, "Bit Error (dominant)\n");
1026 		stats->tx_errors++;
1027 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1028 	}
1029 	if (cerfl & RCANFD_CERFL_B1ERR) {
1030 		netdev_dbg(ndev, "Bit Error (recessive)\n");
1031 		stats->tx_errors++;
1032 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1033 	}
1034 	if (cerfl & RCANFD_CERFL_CERR) {
1035 		netdev_dbg(ndev, "CRC Error\n");
1036 		stats->rx_errors++;
1037 		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1038 	}
1039 	if (cerfl & RCANFD_CERFL_AERR) {
1040 		netdev_dbg(ndev, "ACK Error\n");
1041 		stats->tx_errors++;
1042 		cf->can_id |= CAN_ERR_ACK;
1043 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1044 	}
1045 	if (cerfl & RCANFD_CERFL_FERR) {
1046 		netdev_dbg(ndev, "Form Error\n");
1047 		stats->rx_errors++;
1048 		cf->data[2] |= CAN_ERR_PROT_FORM;
1049 	}
1050 	if (cerfl & RCANFD_CERFL_SERR) {
1051 		netdev_dbg(ndev, "Stuff Error\n");
1052 		stats->rx_errors++;
1053 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1054 	}
1055 	if (cerfl & RCANFD_CERFL_ALF) {
1056 		netdev_dbg(ndev, "Arbitration lost Error\n");
1057 		priv->can.can_stats.arbitration_lost++;
1058 		cf->can_id |= CAN_ERR_LOSTARB;
1059 		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1060 	}
1061 	if (cerfl & RCANFD_CERFL_BLF) {
1062 		netdev_dbg(ndev, "Bus Lock Error\n");
1063 		stats->rx_errors++;
1064 		cf->can_id |= CAN_ERR_BUSERROR;
1065 	}
1066 	if (cerfl & RCANFD_CERFL_EWF) {
1067 		netdev_dbg(ndev, "Error warning interrupt\n");
1068 		priv->can.state = CAN_STATE_ERROR_WARNING;
1069 		priv->can.can_stats.error_warning++;
1070 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1071 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1072 			CAN_ERR_CRTL_RX_WARNING;
1073 		cf->data[6] = txerr;
1074 		cf->data[7] = rxerr;
1075 	}
1076 	if (cerfl & RCANFD_CERFL_EPF) {
1077 		netdev_dbg(ndev, "Error passive interrupt\n");
1078 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1079 		priv->can.can_stats.error_passive++;
1080 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1081 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1082 			CAN_ERR_CRTL_RX_PASSIVE;
1083 		cf->data[6] = txerr;
1084 		cf->data[7] = rxerr;
1085 	}
1086 	if (cerfl & RCANFD_CERFL_BOEF) {
1087 		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1088 		rcar_canfd_tx_failure_cleanup(ndev);
1089 		priv->can.state = CAN_STATE_BUS_OFF;
1090 		priv->can.can_stats.bus_off++;
1091 		can_bus_off(ndev);
1092 		cf->can_id |= CAN_ERR_BUSOFF;
1093 	}
1094 	if (cerfl & RCANFD_CERFL_OVLF) {
1095 		netdev_dbg(ndev,
1096 			   "Overload Frame Transmission error interrupt\n");
1097 		stats->tx_errors++;
1098 		cf->can_id |= CAN_ERR_PROT;
1099 		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1100 	}
1101 
1102 	/* Clear channel error interrupts that are handled */
1103 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1104 			 RCANFD_CERFL_ERR(~cerfl));
1105 	netif_rx(skb);
1106 }
1107 
1108 static void rcar_canfd_tx_done(struct net_device *ndev)
1109 {
1110 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1111 	struct rcar_canfd_global *gpriv = priv->gpriv;
1112 	struct net_device_stats *stats = &ndev->stats;
1113 	u32 sts;
1114 	unsigned long flags;
1115 	u32 ch = priv->channel;
1116 
1117 	do {
1118 		u8 unsent, sent;
1119 
1120 		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1121 		stats->tx_packets++;
1122 		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1123 
1124 		spin_lock_irqsave(&priv->tx_lock, flags);
1125 		priv->tx_tail++;
1126 		sts = rcar_canfd_read(priv->base,
1127 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1128 		unsent = RCANFD_CFSTS_CFMC(sts);
1129 
1130 		/* Wake producer only when there is room */
1131 		if (unsent != RCANFD_FIFO_DEPTH)
1132 			netif_wake_queue(ndev);
1133 
1134 		if (priv->tx_head - priv->tx_tail <= unsent) {
1135 			spin_unlock_irqrestore(&priv->tx_lock, flags);
1136 			break;
1137 		}
1138 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1139 
1140 	} while (1);
1141 
1142 	/* Clear interrupt */
1143 	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1144 			 sts & ~RCANFD_CFSTS_CFTXIF);
1145 }
1146 
1147 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1148 {
1149 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1150 	struct net_device *ndev = priv->ndev;
1151 	u32 gerfl;
1152 
1153 	/* Handle global error interrupts */
1154 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1155 	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1156 		rcar_canfd_global_error(ndev);
1157 }
1158 
1159 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1160 {
1161 	struct rcar_canfd_global *gpriv = dev_id;
1162 	u32 ch;
1163 
1164 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1165 		rcar_canfd_handle_global_err(gpriv, ch);
1166 
1167 	return IRQ_HANDLED;
1168 }
1169 
1170 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1171 {
1172 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1173 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1174 	u32 sts, cc;
1175 
1176 	/* Handle Rx interrupts */
1177 	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1178 	cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1179 	if (likely(sts & RCANFD_RFSTS_RFIF &&
1180 		   cc & RCANFD_RFCC_RFIE)) {
1181 		if (napi_schedule_prep(&priv->napi)) {
1182 			/* Disable Rx FIFO interrupts */
1183 			rcar_canfd_clear_bit(priv->base,
1184 					     RCANFD_RFCC(gpriv, ridx),
1185 					     RCANFD_RFCC_RFIE);
1186 			__napi_schedule(&priv->napi);
1187 		}
1188 	}
1189 }
1190 
1191 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1192 {
1193 	struct rcar_canfd_global *gpriv = dev_id;
1194 	u32 ch;
1195 
1196 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1197 		rcar_canfd_handle_global_receive(gpriv, ch);
1198 
1199 	return IRQ_HANDLED;
1200 }
1201 
1202 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1203 {
1204 	struct rcar_canfd_global *gpriv = dev_id;
1205 	u32 ch;
1206 
1207 	/* Global error interrupts still indicate a condition specific
1208 	 * to a channel. RxFIFO interrupt is a global interrupt.
1209 	 */
1210 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1211 		rcar_canfd_handle_global_err(gpriv, ch);
1212 		rcar_canfd_handle_global_receive(gpriv, ch);
1213 	}
1214 	return IRQ_HANDLED;
1215 }
1216 
1217 static void rcar_canfd_state_change(struct net_device *ndev,
1218 				    u16 txerr, u16 rxerr)
1219 {
1220 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1221 	struct net_device_stats *stats = &ndev->stats;
1222 	enum can_state rx_state, tx_state, state = priv->can.state;
1223 	struct can_frame *cf;
1224 	struct sk_buff *skb;
1225 
1226 	/* Handle transition from error to normal states */
1227 	if (txerr < 96 && rxerr < 96)
1228 		state = CAN_STATE_ERROR_ACTIVE;
1229 	else if (txerr < 128 && rxerr < 128)
1230 		state = CAN_STATE_ERROR_WARNING;
1231 
1232 	if (state != priv->can.state) {
1233 		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1234 			   state, priv->can.state, txerr, rxerr);
1235 		skb = alloc_can_err_skb(ndev, &cf);
1236 		if (!skb) {
1237 			stats->rx_dropped++;
1238 			return;
1239 		}
1240 		tx_state = txerr >= rxerr ? state : 0;
1241 		rx_state = txerr <= rxerr ? state : 0;
1242 
1243 		can_change_state(ndev, cf, tx_state, rx_state);
1244 		netif_rx(skb);
1245 	}
1246 }
1247 
1248 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1249 {
1250 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1251 	struct net_device *ndev = priv->ndev;
1252 	u32 sts;
1253 
1254 	/* Handle Tx interrupts */
1255 	sts = rcar_canfd_read(priv->base,
1256 			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1257 	if (likely(sts & RCANFD_CFSTS_CFTXIF))
1258 		rcar_canfd_tx_done(ndev);
1259 }
1260 
1261 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1262 {
1263 	struct rcar_canfd_channel *priv = dev_id;
1264 
1265 	rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1266 
1267 	return IRQ_HANDLED;
1268 }
1269 
1270 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1271 {
1272 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1273 	struct net_device *ndev = priv->ndev;
1274 	u16 txerr, rxerr;
1275 	u32 sts, cerfl;
1276 
1277 	/* Handle channel error interrupts */
1278 	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1279 	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1280 	txerr = RCANFD_CSTS_TECCNT(sts);
1281 	rxerr = RCANFD_CSTS_RECCNT(sts);
1282 	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1283 		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1284 
1285 	/* Handle state change to lower states */
1286 	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1287 		     priv->can.state != CAN_STATE_BUS_OFF))
1288 		rcar_canfd_state_change(ndev, txerr, rxerr);
1289 }
1290 
1291 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1292 {
1293 	struct rcar_canfd_channel *priv = dev_id;
1294 
1295 	rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1296 
1297 	return IRQ_HANDLED;
1298 }
1299 
1300 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1301 {
1302 	struct rcar_canfd_global *gpriv = dev_id;
1303 	u32 ch;
1304 
1305 	/* Common FIFO is a per channel resource */
1306 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1307 		rcar_canfd_handle_channel_err(gpriv, ch);
1308 		rcar_canfd_handle_channel_tx(gpriv, ch);
1309 	}
1310 
1311 	return IRQ_HANDLED;
1312 }
1313 
1314 static void rcar_canfd_set_bittiming(struct net_device *dev)
1315 {
1316 	struct rcar_canfd_channel *priv = netdev_priv(dev);
1317 	struct rcar_canfd_global *gpriv = priv->gpriv;
1318 	const struct can_bittiming *bt = &priv->can.bittiming;
1319 	const struct can_bittiming *dbt = &priv->can.data_bittiming;
1320 	u16 brp, sjw, tseg1, tseg2;
1321 	u32 cfg;
1322 	u32 ch = priv->channel;
1323 
1324 	/* Nominal bit timing settings */
1325 	brp = bt->brp - 1;
1326 	sjw = bt->sjw - 1;
1327 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1328 	tseg2 = bt->phase_seg2 - 1;
1329 
1330 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1331 		/* CAN FD only mode */
1332 		cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1333 		       RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1334 
1335 		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1336 		netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1337 			   brp, sjw, tseg1, tseg2);
1338 
1339 		/* Data bit timing settings */
1340 		brp = dbt->brp - 1;
1341 		sjw = dbt->sjw - 1;
1342 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1343 		tseg2 = dbt->phase_seg2 - 1;
1344 
1345 		cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1346 		       RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1347 
1348 		if (is_v3u(gpriv))
1349 			rcar_canfd_write(priv->base, RCANFD_V3U_DCFG(ch), cfg);
1350 		else
1351 			rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
1352 		netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1353 			   brp, sjw, tseg1, tseg2);
1354 	} else {
1355 		/* Classical CAN only mode */
1356 		if (is_v3u(gpriv)) {
1357 			cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1358 			       RCANFD_NCFG_NBRP(brp) |
1359 			       RCANFD_NCFG_NSJW(gpriv, sjw) |
1360 			       RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1361 		} else {
1362 			cfg = (RCANFD_CFG_TSEG1(tseg1) |
1363 			       RCANFD_CFG_BRP(brp) |
1364 			       RCANFD_CFG_SJW(sjw) |
1365 			       RCANFD_CFG_TSEG2(tseg2));
1366 		}
1367 
1368 		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1369 		netdev_dbg(priv->ndev,
1370 			   "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1371 			   brp, sjw, tseg1, tseg2);
1372 	}
1373 }
1374 
1375 static int rcar_canfd_start(struct net_device *ndev)
1376 {
1377 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1378 	struct rcar_canfd_global *gpriv = priv->gpriv;
1379 	int err = -EOPNOTSUPP;
1380 	u32 sts, ch = priv->channel;
1381 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1382 
1383 	rcar_canfd_set_bittiming(ndev);
1384 
1385 	rcar_canfd_enable_channel_interrupts(priv);
1386 
1387 	/* Set channel to Operational mode */
1388 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1389 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1390 
1391 	/* Verify channel mode change */
1392 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1393 				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1394 	if (err) {
1395 		netdev_err(ndev, "channel %u communication state failed\n", ch);
1396 		goto fail_mode_change;
1397 	}
1398 
1399 	/* Enable Common & Rx FIFO */
1400 	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1401 			   RCANFD_CFCC_CFE);
1402 	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1403 
1404 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1405 	return 0;
1406 
1407 fail_mode_change:
1408 	rcar_canfd_disable_channel_interrupts(priv);
1409 	return err;
1410 }
1411 
1412 static int rcar_canfd_open(struct net_device *ndev)
1413 {
1414 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1415 	struct rcar_canfd_global *gpriv = priv->gpriv;
1416 	int err;
1417 
1418 	/* Peripheral clock is already enabled in probe */
1419 	err = clk_prepare_enable(gpriv->can_clk);
1420 	if (err) {
1421 		netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
1422 		goto out_clock;
1423 	}
1424 
1425 	err = open_candev(ndev);
1426 	if (err) {
1427 		netdev_err(ndev, "open_candev() failed, error %d\n", err);
1428 		goto out_can_clock;
1429 	}
1430 
1431 	napi_enable(&priv->napi);
1432 	err = rcar_canfd_start(ndev);
1433 	if (err)
1434 		goto out_close;
1435 	netif_start_queue(ndev);
1436 	return 0;
1437 out_close:
1438 	napi_disable(&priv->napi);
1439 	close_candev(ndev);
1440 out_can_clock:
1441 	clk_disable_unprepare(gpriv->can_clk);
1442 out_clock:
1443 	return err;
1444 }
1445 
1446 static void rcar_canfd_stop(struct net_device *ndev)
1447 {
1448 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1449 	struct rcar_canfd_global *gpriv = priv->gpriv;
1450 	int err;
1451 	u32 sts, ch = priv->channel;
1452 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1453 
1454 	/* Transition to channel reset mode  */
1455 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1456 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1457 
1458 	/* Check Channel reset mode */
1459 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1460 				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1461 	if (err)
1462 		netdev_err(ndev, "channel %u reset failed\n", ch);
1463 
1464 	rcar_canfd_disable_channel_interrupts(priv);
1465 
1466 	/* Disable Common & Rx FIFO */
1467 	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1468 			     RCANFD_CFCC_CFE);
1469 	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1470 
1471 	/* Set the state as STOPPED */
1472 	priv->can.state = CAN_STATE_STOPPED;
1473 }
1474 
1475 static int rcar_canfd_close(struct net_device *ndev)
1476 {
1477 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1478 	struct rcar_canfd_global *gpriv = priv->gpriv;
1479 
1480 	netif_stop_queue(ndev);
1481 	rcar_canfd_stop(ndev);
1482 	napi_disable(&priv->napi);
1483 	clk_disable_unprepare(gpriv->can_clk);
1484 	close_candev(ndev);
1485 	return 0;
1486 }
1487 
1488 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1489 					 struct net_device *ndev)
1490 {
1491 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1492 	struct rcar_canfd_global *gpriv = priv->gpriv;
1493 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1494 	u32 sts = 0, id, dlc;
1495 	unsigned long flags;
1496 	u32 ch = priv->channel;
1497 
1498 	if (can_dev_dropped_skb(ndev, skb))
1499 		return NETDEV_TX_OK;
1500 
1501 	if (cf->can_id & CAN_EFF_FLAG) {
1502 		id = cf->can_id & CAN_EFF_MASK;
1503 		id |= RCANFD_CFID_CFIDE;
1504 	} else {
1505 		id = cf->can_id & CAN_SFF_MASK;
1506 	}
1507 
1508 	if (cf->can_id & CAN_RTR_FLAG)
1509 		id |= RCANFD_CFID_CFRTR;
1510 
1511 	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1512 
1513 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
1514 		rcar_canfd_write(priv->base,
1515 				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1516 		rcar_canfd_write(priv->base,
1517 				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1518 
1519 		if (can_is_canfd_skb(skb)) {
1520 			/* CAN FD frame format */
1521 			sts |= RCANFD_CFFDCSTS_CFFDF;
1522 			if (cf->flags & CANFD_BRS)
1523 				sts |= RCANFD_CFFDCSTS_CFBRS;
1524 
1525 			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1526 				sts |= RCANFD_CFFDCSTS_CFESI;
1527 		}
1528 
1529 		rcar_canfd_write(priv->base,
1530 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1531 
1532 		rcar_canfd_put_data(priv, cf,
1533 				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1534 	} else {
1535 		rcar_canfd_write(priv->base,
1536 				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1537 		rcar_canfd_write(priv->base,
1538 				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1539 		rcar_canfd_put_data(priv, cf,
1540 				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1541 	}
1542 
1543 	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1544 
1545 	spin_lock_irqsave(&priv->tx_lock, flags);
1546 	priv->tx_head++;
1547 
1548 	/* Stop the queue if we've filled all FIFO entries */
1549 	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1550 		netif_stop_queue(ndev);
1551 
1552 	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1553 	 * pointer for the Common FIFO
1554 	 */
1555 	rcar_canfd_write(priv->base,
1556 			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1557 
1558 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1559 	return NETDEV_TX_OK;
1560 }
1561 
1562 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1563 {
1564 	struct net_device_stats *stats = &priv->ndev->stats;
1565 	struct rcar_canfd_global *gpriv = priv->gpriv;
1566 	struct canfd_frame *cf;
1567 	struct sk_buff *skb;
1568 	u32 sts = 0, id, dlc;
1569 	u32 ch = priv->channel;
1570 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1571 
1572 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
1573 		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1574 		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1575 
1576 		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1577 
1578 		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1579 		    sts & RCANFD_RFFDSTS_RFFDF)
1580 			skb = alloc_canfd_skb(priv->ndev, &cf);
1581 		else
1582 			skb = alloc_can_skb(priv->ndev,
1583 					    (struct can_frame **)&cf);
1584 	} else {
1585 		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1586 		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1587 		skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1588 	}
1589 
1590 	if (!skb) {
1591 		stats->rx_dropped++;
1592 		return;
1593 	}
1594 
1595 	if (id & RCANFD_RFID_RFIDE)
1596 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1597 	else
1598 		cf->can_id = id & CAN_SFF_MASK;
1599 
1600 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1601 		if (sts & RCANFD_RFFDSTS_RFFDF)
1602 			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1603 		else
1604 			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1605 
1606 		if (sts & RCANFD_RFFDSTS_RFESI) {
1607 			cf->flags |= CANFD_ESI;
1608 			netdev_dbg(priv->ndev, "ESI Error\n");
1609 		}
1610 
1611 		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1612 			cf->can_id |= CAN_RTR_FLAG;
1613 		} else {
1614 			if (sts & RCANFD_RFFDSTS_RFBRS)
1615 				cf->flags |= CANFD_BRS;
1616 
1617 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1618 		}
1619 	} else {
1620 		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1621 		if (id & RCANFD_RFID_RFRTR)
1622 			cf->can_id |= CAN_RTR_FLAG;
1623 		else if (is_v3u(gpriv))
1624 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1625 		else
1626 			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1627 	}
1628 
1629 	/* Write 0xff to RFPC to increment the CPU-side
1630 	 * pointer of the Rx FIFO
1631 	 */
1632 	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1633 
1634 	if (!(cf->can_id & CAN_RTR_FLAG))
1635 		stats->rx_bytes += cf->len;
1636 	stats->rx_packets++;
1637 	netif_receive_skb(skb);
1638 }
1639 
1640 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1641 {
1642 	struct rcar_canfd_channel *priv =
1643 		container_of(napi, struct rcar_canfd_channel, napi);
1644 	struct rcar_canfd_global *gpriv = priv->gpriv;
1645 	int num_pkts;
1646 	u32 sts;
1647 	u32 ch = priv->channel;
1648 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1649 
1650 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1651 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1652 		/* Check FIFO empty condition */
1653 		if (sts & RCANFD_RFSTS_RFEMP)
1654 			break;
1655 
1656 		rcar_canfd_rx_pkt(priv);
1657 
1658 		/* Clear interrupt bit */
1659 		if (sts & RCANFD_RFSTS_RFIF)
1660 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1661 					 sts & ~RCANFD_RFSTS_RFIF);
1662 	}
1663 
1664 	/* All packets processed */
1665 	if (num_pkts < quota) {
1666 		if (napi_complete_done(napi, num_pkts)) {
1667 			/* Enable Rx FIFO interrupts */
1668 			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1669 					   RCANFD_RFCC_RFIE);
1670 		}
1671 	}
1672 	return num_pkts;
1673 }
1674 
1675 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1676 {
1677 	int err;
1678 
1679 	switch (mode) {
1680 	case CAN_MODE_START:
1681 		err = rcar_canfd_start(ndev);
1682 		if (err)
1683 			return err;
1684 		netif_wake_queue(ndev);
1685 		return 0;
1686 	default:
1687 		return -EOPNOTSUPP;
1688 	}
1689 }
1690 
1691 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1692 				       struct can_berr_counter *bec)
1693 {
1694 	struct rcar_canfd_channel *priv = netdev_priv(dev);
1695 	u32 val, ch = priv->channel;
1696 
1697 	/* Peripheral clock is already enabled in probe */
1698 	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1699 	bec->txerr = RCANFD_CSTS_TECCNT(val);
1700 	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1701 	return 0;
1702 }
1703 
1704 static const struct net_device_ops rcar_canfd_netdev_ops = {
1705 	.ndo_open = rcar_canfd_open,
1706 	.ndo_stop = rcar_canfd_close,
1707 	.ndo_start_xmit = rcar_canfd_start_xmit,
1708 	.ndo_change_mtu = can_change_mtu,
1709 };
1710 
1711 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1712 	.get_ts_info = ethtool_op_get_ts_info,
1713 };
1714 
1715 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1716 				    u32 fcan_freq)
1717 {
1718 	const struct rcar_canfd_hw_info *info = gpriv->info;
1719 	struct platform_device *pdev = gpriv->pdev;
1720 	struct rcar_canfd_channel *priv;
1721 	struct net_device *ndev;
1722 	int err = -ENODEV;
1723 
1724 	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1725 	if (!ndev) {
1726 		dev_err(&pdev->dev, "alloc_candev() failed\n");
1727 		return -ENOMEM;
1728 	}
1729 	priv = netdev_priv(ndev);
1730 
1731 	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1732 	ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1733 	ndev->flags |= IFF_ECHO;
1734 	priv->ndev = ndev;
1735 	priv->base = gpriv->base;
1736 	priv->channel = ch;
1737 	priv->gpriv = gpriv;
1738 	priv->can.clock.freq = fcan_freq;
1739 	dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
1740 
1741 	if (info->multi_channel_irqs) {
1742 		char *irq_name;
1743 		int err_irq;
1744 		int tx_irq;
1745 
1746 		err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1747 		if (err_irq < 0) {
1748 			err = err_irq;
1749 			goto fail;
1750 		}
1751 
1752 		tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1753 		if (tx_irq < 0) {
1754 			err = tx_irq;
1755 			goto fail;
1756 		}
1757 
1758 		irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1759 					  "canfd.ch%d_err", ch);
1760 		if (!irq_name) {
1761 			err = -ENOMEM;
1762 			goto fail;
1763 		}
1764 		err = devm_request_irq(&pdev->dev, err_irq,
1765 				       rcar_canfd_channel_err_interrupt, 0,
1766 				       irq_name, priv);
1767 		if (err) {
1768 			dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n",
1769 				err_irq, err);
1770 			goto fail;
1771 		}
1772 		irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1773 					  "canfd.ch%d_trx", ch);
1774 		if (!irq_name) {
1775 			err = -ENOMEM;
1776 			goto fail;
1777 		}
1778 		err = devm_request_irq(&pdev->dev, tx_irq,
1779 				       rcar_canfd_channel_tx_interrupt, 0,
1780 				       irq_name, priv);
1781 		if (err) {
1782 			dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n",
1783 				tx_irq, err);
1784 			goto fail;
1785 		}
1786 	}
1787 
1788 	if (gpriv->fdmode) {
1789 		priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1790 		priv->can.data_bittiming_const =
1791 			&rcar_canfd_data_bittiming_const;
1792 
1793 		/* Controller starts in CAN FD only mode */
1794 		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1795 		if (err)
1796 			goto fail;
1797 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1798 	} else {
1799 		/* Controller starts in Classical CAN only mode */
1800 		priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1801 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1802 	}
1803 
1804 	priv->can.do_set_mode = rcar_canfd_do_set_mode;
1805 	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1806 	SET_NETDEV_DEV(ndev, &pdev->dev);
1807 
1808 	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1809 			      RCANFD_NAPI_WEIGHT);
1810 	spin_lock_init(&priv->tx_lock);
1811 	gpriv->ch[priv->channel] = priv;
1812 	err = register_candev(ndev);
1813 	if (err) {
1814 		dev_err(&pdev->dev,
1815 			"register_candev() failed, error %d\n", err);
1816 		goto fail_candev;
1817 	}
1818 	dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
1819 	return 0;
1820 
1821 fail_candev:
1822 	netif_napi_del(&priv->napi);
1823 fail:
1824 	free_candev(ndev);
1825 	return err;
1826 }
1827 
1828 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1829 {
1830 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1831 
1832 	if (priv) {
1833 		unregister_candev(priv->ndev);
1834 		netif_napi_del(&priv->napi);
1835 		free_candev(priv->ndev);
1836 	}
1837 }
1838 
1839 static int rcar_canfd_probe(struct platform_device *pdev)
1840 {
1841 	const struct rcar_canfd_hw_info *info;
1842 	void __iomem *addr;
1843 	u32 sts, ch, fcan_freq;
1844 	struct rcar_canfd_global *gpriv;
1845 	struct device_node *of_child;
1846 	unsigned long channels_mask = 0;
1847 	int err, ch_irq, g_irq;
1848 	int g_err_irq, g_recc_irq;
1849 	bool fdmode = true;			/* CAN FD only mode - default */
1850 	char name[9] = "channelX";
1851 	int i;
1852 
1853 	info = of_device_get_match_data(&pdev->dev);
1854 
1855 	if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
1856 		fdmode = false;			/* Classical CAN only mode */
1857 
1858 	for (i = 0; i < info->max_channels; ++i) {
1859 		name[7] = '0' + i;
1860 		of_child = of_get_child_by_name(pdev->dev.of_node, name);
1861 		if (of_child && of_device_is_available(of_child))
1862 			channels_mask |= BIT(i);
1863 		of_node_put(of_child);
1864 	}
1865 
1866 	if (info->shared_global_irqs) {
1867 		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1868 		if (ch_irq < 0) {
1869 			/* For backward compatibility get irq by index */
1870 			ch_irq = platform_get_irq(pdev, 0);
1871 			if (ch_irq < 0)
1872 				return ch_irq;
1873 		}
1874 
1875 		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1876 		if (g_irq < 0) {
1877 			/* For backward compatibility get irq by index */
1878 			g_irq = platform_get_irq(pdev, 1);
1879 			if (g_irq < 0)
1880 				return g_irq;
1881 		}
1882 	} else {
1883 		g_err_irq = platform_get_irq_byname(pdev, "g_err");
1884 		if (g_err_irq < 0)
1885 			return g_err_irq;
1886 
1887 		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1888 		if (g_recc_irq < 0)
1889 			return g_recc_irq;
1890 	}
1891 
1892 	/* Global controller context */
1893 	gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
1894 	if (!gpriv)
1895 		return -ENOMEM;
1896 
1897 	gpriv->pdev = pdev;
1898 	gpriv->channels_mask = channels_mask;
1899 	gpriv->fdmode = fdmode;
1900 	gpriv->info = info;
1901 
1902 	gpriv->rstc1 = devm_reset_control_get_optional_exclusive(&pdev->dev,
1903 								 "rstp_n");
1904 	if (IS_ERR(gpriv->rstc1))
1905 		return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1),
1906 				     "failed to get rstp_n\n");
1907 
1908 	gpriv->rstc2 = devm_reset_control_get_optional_exclusive(&pdev->dev,
1909 								 "rstc_n");
1910 	if (IS_ERR(gpriv->rstc2))
1911 		return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2),
1912 				     "failed to get rstc_n\n");
1913 
1914 	/* Peripheral clock */
1915 	gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
1916 	if (IS_ERR(gpriv->clkp))
1917 		return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->clkp),
1918 				     "cannot get peripheral clock\n");
1919 
1920 	/* fCAN clock: Pick External clock. If not available fallback to
1921 	 * CANFD clock
1922 	 */
1923 	gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1924 	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1925 		gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
1926 		if (IS_ERR(gpriv->can_clk))
1927 			return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->can_clk),
1928 					     "cannot get canfd clock\n");
1929 
1930 		gpriv->fcan = RCANFD_CANFDCLK;
1931 
1932 	} else {
1933 		gpriv->fcan = RCANFD_EXTCLK;
1934 	}
1935 	fcan_freq = clk_get_rate(gpriv->can_clk);
1936 
1937 	if (gpriv->fcan == RCANFD_CANFDCLK)
1938 		/* CANFD clock is further divided by (1/2) within the IP */
1939 		fcan_freq /= info->postdiv;
1940 
1941 	addr = devm_platform_ioremap_resource(pdev, 0);
1942 	if (IS_ERR(addr)) {
1943 		err = PTR_ERR(addr);
1944 		goto fail_dev;
1945 	}
1946 	gpriv->base = addr;
1947 
1948 	/* Request IRQ that's common for both channels */
1949 	if (info->shared_global_irqs) {
1950 		err = devm_request_irq(&pdev->dev, ch_irq,
1951 				       rcar_canfd_channel_interrupt, 0,
1952 				       "canfd.ch_int", gpriv);
1953 		if (err) {
1954 			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1955 				ch_irq, err);
1956 			goto fail_dev;
1957 		}
1958 
1959 		err = devm_request_irq(&pdev->dev, g_irq,
1960 				       rcar_canfd_global_interrupt, 0,
1961 				       "canfd.g_int", gpriv);
1962 		if (err) {
1963 			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1964 				g_irq, err);
1965 			goto fail_dev;
1966 		}
1967 	} else {
1968 		err = devm_request_irq(&pdev->dev, g_recc_irq,
1969 				       rcar_canfd_global_receive_fifo_interrupt, 0,
1970 				       "canfd.g_recc", gpriv);
1971 
1972 		if (err) {
1973 			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1974 				g_recc_irq, err);
1975 			goto fail_dev;
1976 		}
1977 
1978 		err = devm_request_irq(&pdev->dev, g_err_irq,
1979 				       rcar_canfd_global_err_interrupt, 0,
1980 				       "canfd.g_err", gpriv);
1981 		if (err) {
1982 			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1983 				g_err_irq, err);
1984 			goto fail_dev;
1985 		}
1986 	}
1987 
1988 	err = reset_control_reset(gpriv->rstc1);
1989 	if (err)
1990 		goto fail_dev;
1991 	err = reset_control_reset(gpriv->rstc2);
1992 	if (err) {
1993 		reset_control_assert(gpriv->rstc1);
1994 		goto fail_dev;
1995 	}
1996 
1997 	/* Enable peripheral clock for register access */
1998 	err = clk_prepare_enable(gpriv->clkp);
1999 	if (err) {
2000 		dev_err(&pdev->dev,
2001 			"failed to enable peripheral clock, error %d\n", err);
2002 		goto fail_reset;
2003 	}
2004 
2005 	err = rcar_canfd_reset_controller(gpriv);
2006 	if (err) {
2007 		dev_err(&pdev->dev, "reset controller failed\n");
2008 		goto fail_clk;
2009 	}
2010 
2011 	/* Controller in Global reset & Channel reset mode */
2012 	rcar_canfd_configure_controller(gpriv);
2013 
2014 	/* Configure per channel attributes */
2015 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2016 		/* Configure Channel's Rx fifo */
2017 		rcar_canfd_configure_rx(gpriv, ch);
2018 
2019 		/* Configure Channel's Tx (Common) fifo */
2020 		rcar_canfd_configure_tx(gpriv, ch);
2021 
2022 		/* Configure receive rules */
2023 		rcar_canfd_configure_afl_rules(gpriv, ch);
2024 	}
2025 
2026 	/* Configure common interrupts */
2027 	rcar_canfd_enable_global_interrupts(gpriv);
2028 
2029 	/* Start Global operation mode */
2030 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2031 			      RCANFD_GCTR_GMDC_GOPM);
2032 
2033 	/* Verify mode change */
2034 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2035 				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2036 	if (err) {
2037 		dev_err(&pdev->dev, "global operational mode failed\n");
2038 		goto fail_mode;
2039 	}
2040 
2041 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2042 		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
2043 		if (err)
2044 			goto fail_channel;
2045 	}
2046 
2047 	platform_set_drvdata(pdev, gpriv);
2048 	dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
2049 		 gpriv->fcan, gpriv->fdmode);
2050 	return 0;
2051 
2052 fail_channel:
2053 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2054 		rcar_canfd_channel_remove(gpriv, ch);
2055 fail_mode:
2056 	rcar_canfd_disable_global_interrupts(gpriv);
2057 fail_clk:
2058 	clk_disable_unprepare(gpriv->clkp);
2059 fail_reset:
2060 	reset_control_assert(gpriv->rstc1);
2061 	reset_control_assert(gpriv->rstc2);
2062 fail_dev:
2063 	return err;
2064 }
2065 
2066 static int rcar_canfd_remove(struct platform_device *pdev)
2067 {
2068 	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2069 	u32 ch;
2070 
2071 	rcar_canfd_reset_controller(gpriv);
2072 	rcar_canfd_disable_global_interrupts(gpriv);
2073 
2074 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2075 		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2076 		rcar_canfd_channel_remove(gpriv, ch);
2077 	}
2078 
2079 	/* Enter global sleep mode */
2080 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2081 	clk_disable_unprepare(gpriv->clkp);
2082 	reset_control_assert(gpriv->rstc1);
2083 	reset_control_assert(gpriv->rstc2);
2084 
2085 	return 0;
2086 }
2087 
2088 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2089 {
2090 	return 0;
2091 }
2092 
2093 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2094 {
2095 	return 0;
2096 }
2097 
2098 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2099 			 rcar_canfd_resume);
2100 
2101 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2102 	{ .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2103 	{ .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2104 	{ .compatible = "renesas,r8a779a0-canfd", .data = &r8a779a0_hw_info },
2105 	{ }
2106 };
2107 
2108 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2109 
2110 static struct platform_driver rcar_canfd_driver = {
2111 	.driver = {
2112 		.name = RCANFD_DRV_NAME,
2113 		.of_match_table = of_match_ptr(rcar_canfd_of_table),
2114 		.pm = &rcar_canfd_pm_ops,
2115 	},
2116 	.probe = rcar_canfd_probe,
2117 	.remove = rcar_canfd_remove,
2118 };
2119 
2120 module_platform_driver(rcar_canfd_driver);
2121 
2122 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2123 MODULE_LICENSE("GPL");
2124 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2125 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2126