1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/bitmap.h> 25 #include <linux/bitops.h> 26 #include <linux/can/dev.h> 27 #include <linux/clk.h> 28 #include <linux/errno.h> 29 #include <linux/ethtool.h> 30 #include <linux/interrupt.h> 31 #include <linux/iopoll.h> 32 #include <linux/kernel.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/netdevice.h> 36 #include <linux/of.h> 37 #include <linux/phy/phy.h> 38 #include <linux/platform_device.h> 39 #include <linux/reset.h> 40 #include <linux/types.h> 41 42 #define RCANFD_DRV_NAME "rcar_canfd" 43 44 /* Global register bits */ 45 46 /* RSCFDnCFDGRMCFG */ 47 #define RCANFD_GRMCFG_RCMC BIT(0) 48 49 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 50 #define RCANFD_GCFG_EEFE BIT(6) 51 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 52 #define RCANFD_GCFG_DCS BIT(4) 53 #define RCANFD_GCFG_DCE BIT(1) 54 #define RCANFD_GCFG_TPRI BIT(0) 55 56 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 57 #define RCANFD_GCTR_TSRST BIT(16) 58 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 59 #define RCANFD_GCTR_THLEIE BIT(10) 60 #define RCANFD_GCTR_MEIE BIT(9) 61 #define RCANFD_GCTR_DEIE BIT(8) 62 #define RCANFD_GCTR_GSLPR BIT(2) 63 #define RCANFD_GCTR_GMDC_MASK (0x3) 64 #define RCANFD_GCTR_GMDC_GOPM (0x0) 65 #define RCANFD_GCTR_GMDC_GRESET (0x1) 66 #define RCANFD_GCTR_GMDC_GTEST (0x2) 67 68 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 69 #define RCANFD_GSTS_GRAMINIT BIT(3) 70 #define RCANFD_GSTS_GSLPSTS BIT(2) 71 #define RCANFD_GSTS_GHLTSTS BIT(1) 72 #define RCANFD_GSTS_GRSTSTS BIT(0) 73 /* Non-operational status */ 74 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 75 76 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 77 #define RCANFD_GERFL_EEF0_7 GENMASK(23, 16) 78 #define RCANFD_GERFL_EEF(ch) BIT(16 + (ch)) 79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 80 #define RCANFD_GERFL_THLES BIT(2) 81 #define RCANFD_GERFL_MES BIT(1) 82 #define RCANFD_GERFL_DEF BIT(0) 83 84 #define RCANFD_GERFL_ERR(gpriv, x) \ 85 ((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \ 86 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \ 87 RCANFD_GERFL_MES | \ 88 ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))) 89 90 /* AFL Rx rules registers */ 91 92 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 93 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \ 94 (((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \ 95 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) 96 97 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \ 98 (((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \ 99 reg_gen4(gpriv, 0x1ff, 0xff)) 100 101 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 102 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 103 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_gen4(gpriv, 0x7f, 0x1f)) 104 105 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 106 #define RCANFD_GAFLID_GAFLLB BIT(29) 107 108 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 109 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 110 111 /* Channel register bits */ 112 113 /* RSCFDnCmCFG - Classical CAN only */ 114 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 115 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 116 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 117 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 118 119 /* RSCFDnCFDCmNCFG - CAN FD only */ 120 #define RCANFD_NCFG_NTSEG2(gpriv, x) \ 121 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24)) 122 123 #define RCANFD_NCFG_NTSEG1(gpriv, x) \ 124 (((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16)) 125 126 #define RCANFD_NCFG_NSJW(gpriv, x) \ 127 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11)) 128 129 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 130 131 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 132 #define RCANFD_CCTR_CTME BIT(24) 133 #define RCANFD_CCTR_ERRD BIT(23) 134 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 135 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 136 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 137 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 138 #define RCANFD_CCTR_TDCVFIE BIT(19) 139 #define RCANFD_CCTR_SOCOIE BIT(18) 140 #define RCANFD_CCTR_EOCOIE BIT(17) 141 #define RCANFD_CCTR_TAIE BIT(16) 142 #define RCANFD_CCTR_ALIE BIT(15) 143 #define RCANFD_CCTR_BLIE BIT(14) 144 #define RCANFD_CCTR_OLIE BIT(13) 145 #define RCANFD_CCTR_BORIE BIT(12) 146 #define RCANFD_CCTR_BOEIE BIT(11) 147 #define RCANFD_CCTR_EPIE BIT(10) 148 #define RCANFD_CCTR_EWIE BIT(9) 149 #define RCANFD_CCTR_BEIE BIT(8) 150 #define RCANFD_CCTR_CSLPR BIT(2) 151 #define RCANFD_CCTR_CHMDC_MASK (0x3) 152 #define RCANFD_CCTR_CHDMC_COPM (0x0) 153 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 154 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 155 156 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 157 #define RCANFD_CSTS_COMSTS BIT(7) 158 #define RCANFD_CSTS_RECSTS BIT(6) 159 #define RCANFD_CSTS_TRMSTS BIT(5) 160 #define RCANFD_CSTS_BOSTS BIT(4) 161 #define RCANFD_CSTS_EPSTS BIT(3) 162 #define RCANFD_CSTS_SLPSTS BIT(2) 163 #define RCANFD_CSTS_HLTSTS BIT(1) 164 #define RCANFD_CSTS_CRSTSTS BIT(0) 165 166 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 167 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 168 169 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 170 #define RCANFD_CERFL_ADERR BIT(14) 171 #define RCANFD_CERFL_B0ERR BIT(13) 172 #define RCANFD_CERFL_B1ERR BIT(12) 173 #define RCANFD_CERFL_CERR BIT(11) 174 #define RCANFD_CERFL_AERR BIT(10) 175 #define RCANFD_CERFL_FERR BIT(9) 176 #define RCANFD_CERFL_SERR BIT(8) 177 #define RCANFD_CERFL_ALF BIT(7) 178 #define RCANFD_CERFL_BLF BIT(6) 179 #define RCANFD_CERFL_OVLF BIT(5) 180 #define RCANFD_CERFL_BORF BIT(4) 181 #define RCANFD_CERFL_BOEF BIT(3) 182 #define RCANFD_CERFL_EPF BIT(2) 183 #define RCANFD_CERFL_EWF BIT(1) 184 #define RCANFD_CERFL_BEF BIT(0) 185 186 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 187 188 /* RSCFDnCFDCmDCFG */ 189 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24) 190 191 #define RCANFD_DCFG_DTSEG2(gpriv, x) \ 192 (((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20)) 193 194 #define RCANFD_DCFG_DTSEG1(gpriv, x) \ 195 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16)) 196 197 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 198 199 /* RSCFDnCFDCmFDCFG */ 200 #define RCANFD_GEN4_FDCFG_CLOE BIT(30) 201 #define RCANFD_GEN4_FDCFG_FDOE BIT(28) 202 #define RCANFD_FDCFG_TDCE BIT(9) 203 #define RCANFD_FDCFG_TDCOC BIT(8) 204 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16) 205 206 /* RSCFDnCFDRFCCx */ 207 #define RCANFD_RFCC_RFIM BIT(12) 208 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 209 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 210 #define RCANFD_RFCC_RFIE BIT(1) 211 #define RCANFD_RFCC_RFE BIT(0) 212 213 /* RSCFDnCFDRFSTSx */ 214 #define RCANFD_RFSTS_RFIF BIT(3) 215 #define RCANFD_RFSTS_RFMLT BIT(2) 216 #define RCANFD_RFSTS_RFFLL BIT(1) 217 #define RCANFD_RFSTS_RFEMP BIT(0) 218 219 /* RSCFDnCFDRFIDx */ 220 #define RCANFD_RFID_RFIDE BIT(31) 221 #define RCANFD_RFID_RFRTR BIT(30) 222 223 /* RSCFDnCFDRFPTRx */ 224 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 225 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff) 226 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff) 227 228 /* RSCFDnCFDRFFDSTSx */ 229 #define RCANFD_RFFDSTS_RFFDF BIT(2) 230 #define RCANFD_RFFDSTS_RFBRS BIT(1) 231 #define RCANFD_RFFDSTS_RFESI BIT(0) 232 233 /* Common FIFO bits */ 234 235 /* RSCFDnCFDCFCCk */ 236 #define RCANFD_CFCC_CFTML(gpriv, x) \ 237 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20)) 238 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << reg_gen4(gpriv, 8, 16)) 239 #define RCANFD_CFCC_CFIM BIT(12) 240 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << reg_gen4(gpriv, 21, 8)) 241 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 242 #define RCANFD_CFCC_CFTXIE BIT(2) 243 #define RCANFD_CFCC_CFE BIT(0) 244 245 /* RSCFDnCFDCFSTSk */ 246 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 247 #define RCANFD_CFSTS_CFTXIF BIT(4) 248 #define RCANFD_CFSTS_CFMLT BIT(2) 249 #define RCANFD_CFSTS_CFFLL BIT(1) 250 #define RCANFD_CFSTS_CFEMP BIT(0) 251 252 /* RSCFDnCFDCFIDk */ 253 #define RCANFD_CFID_CFIDE BIT(31) 254 #define RCANFD_CFID_CFRTR BIT(30) 255 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff) 256 257 /* RSCFDnCFDCFPTRk */ 258 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 259 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16) 260 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0) 261 262 /* RSCFDnCFDCFFDCSTSk */ 263 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 264 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 265 #define RCANFD_CFFDCSTS_CFESI BIT(0) 266 267 /* This controller supports either Classical CAN only mode or CAN FD only mode. 268 * These modes are supported in two separate set of register maps & names. 269 * However, some of the register offsets are common for both modes. Those 270 * offsets are listed below as Common registers. 271 * 272 * The CAN FD only mode specific registers & Classical CAN only mode specific 273 * registers are listed separately. Their register names starts with 274 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 275 */ 276 277 /* Common registers */ 278 279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 280 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 282 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 284 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 286 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 287 288 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 289 #define RCANFD_GCFG (0x0084) 290 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 291 #define RCANFD_GCTR (0x0088) 292 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 293 #define RCANFD_GSTS (0x008c) 294 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 295 #define RCANFD_GERFL (0x0090) 296 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 297 #define RCANFD_GTSC (0x0094) 298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 299 #define RCANFD_GAFLECTR (0x0098) 300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */ 301 #define RCANFD_GAFLCFG(ch) (0x009c + (0x04 * ((ch) / 2))) 302 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 303 #define RCANFD_RMNB (0x00a4) 304 /* RSCFDnCFDRMND / RSCFDnRMND */ 305 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 306 307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 308 #define RCANFD_RFCC(gpriv, x) (reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x))) 309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 310 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20) 311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 312 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40) 313 314 /* Common FIFO Control registers */ 315 316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 317 #define RCANFD_CFCC(gpriv, ch, idx) \ 318 (reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx))) 319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 320 #define RCANFD_CFSTS(gpriv, ch, idx) \ 321 (reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx))) 322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 323 #define RCANFD_CFPCTR(gpriv, ch, idx) \ 324 (reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx))) 325 326 /* RSCFDnCFDFESTS / RSCFDnFESTS */ 327 #define RCANFD_FESTS (0x0238) 328 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */ 329 #define RCANFD_FFSTS (0x023c) 330 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */ 331 #define RCANFD_FMSTS (0x0240) 332 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */ 333 #define RCANFD_RFISTS (0x0244) 334 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */ 335 #define RCANFD_CFRISTS (0x0248) 336 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */ 337 #define RCANFD_CFTISTS (0x024c) 338 339 /* RSCFDnCFDTMCp / RSCFDnTMCp */ 340 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p))) 341 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */ 342 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p))) 343 344 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */ 345 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y))) 346 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */ 347 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y))) 348 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */ 349 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y))) 350 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */ 351 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y))) 352 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */ 353 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y))) 354 355 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */ 356 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m))) 357 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */ 358 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m))) 359 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */ 360 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m))) 361 362 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */ 363 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m))) 364 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */ 365 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m))) 366 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */ 367 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m))) 368 369 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */ 370 #define RCANFD_GTINTSTS0 (0x0460) 371 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */ 372 #define RCANFD_GTINTSTS1 (0x0464) 373 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */ 374 #define RCANFD_GTSTCFG (0x0468) 375 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */ 376 #define RCANFD_GTSTCTR (0x046c) 377 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */ 378 #define RCANFD_GLOCKK (0x047c) 379 /* RSCFDnCFDGRMCFG */ 380 #define RCANFD_GRMCFG (0x04fc) 381 382 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 383 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 384 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 385 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 386 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 387 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 388 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 389 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 390 391 /* Classical CAN only mode register map */ 392 393 /* RSCFDnGAFLXXXj offset */ 394 #define RCANFD_C_GAFL_OFFSET (0x0500) 395 396 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */ 397 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q))) 398 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q))) 399 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q))) 400 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q))) 401 402 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 403 #define RCANFD_C_RFOFFSET (0x0e00) 404 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 405 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x))) 406 #define RCANFD_C_RFDF(x, df) \ 407 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df))) 408 409 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 410 #define RCANFD_C_CFOFFSET (0x0e80) 411 412 #define RCANFD_C_CFID(ch, idx) \ 413 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx))) 414 415 #define RCANFD_C_CFPTR(ch, idx) \ 416 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx))) 417 418 #define RCANFD_C_CFDF(ch, idx, df) \ 419 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df))) 420 421 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */ 422 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p))) 423 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p))) 424 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p))) 425 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p))) 426 427 /* RSCFDnTHLACCm */ 428 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m))) 429 /* RSCFDnRPGACCr */ 430 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r))) 431 432 /* R-Car Gen4 Classical and CAN FD mode specific register map */ 433 #define RCANFD_GEN4_FDCFG(m) (0x1404 + (0x20 * (m))) 434 435 #define RCANFD_GEN4_GAFL_OFFSET (0x1800) 436 437 /* CAN FD mode specific register map */ 438 439 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */ 440 #define RCANFD_F_DCFG(gpriv, m) (reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m))) 441 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m))) 442 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m))) 443 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m))) 444 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m))) 445 446 /* RSCFDnCFDGAFLXXXj offset */ 447 #define RCANFD_F_GAFL_OFFSET (0x1000) 448 449 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */ 450 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q))) 451 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q))) 452 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q))) 453 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q))) 454 455 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 456 #define RCANFD_F_RFOFFSET(gpriv) reg_gen4(gpriv, 0x6000, 0x3000) 457 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x))) 458 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x))) 459 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x))) 460 #define RCANFD_F_RFDF(gpriv, x, df) \ 461 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df))) 462 463 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 464 #define RCANFD_F_CFOFFSET(gpriv) reg_gen4(gpriv, 0x6400, 0x3400) 465 466 #define RCANFD_F_CFID(gpriv, ch, idx) \ 467 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx))) 468 469 #define RCANFD_F_CFPTR(gpriv, ch, idx) \ 470 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx))) 471 472 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \ 473 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx))) 474 475 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \ 476 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \ 477 (0x04 * (df))) 478 479 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */ 480 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p))) 481 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p))) 482 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p))) 483 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b))) 484 485 /* RSCFDnCFDTHLACCm */ 486 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m))) 487 /* RSCFDnCFDRPGACCr */ 488 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r))) 489 490 /* Constants */ 491 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 492 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 493 494 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */ 495 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1) 496 497 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 498 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 499 500 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 501 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 502 * number is added to RFFIFO index. 503 */ 504 #define RCANFD_RFFIFO_IDX 0 505 506 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 507 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 508 */ 509 #define RCANFD_CFFIFO_IDX 0 510 511 struct rcar_canfd_global; 512 513 struct rcar_canfd_hw_info { 514 u8 max_channels; 515 u8 postdiv; 516 /* hardware features */ 517 unsigned shared_global_irqs:1; /* Has shared global irqs */ 518 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */ 519 }; 520 521 /* Channel priv data */ 522 struct rcar_canfd_channel { 523 struct can_priv can; /* Must be the first member */ 524 struct net_device *ndev; 525 struct rcar_canfd_global *gpriv; /* Controller reference */ 526 void __iomem *base; /* Register base address */ 527 struct phy *transceiver; /* Optional transceiver */ 528 struct napi_struct napi; 529 u32 tx_head; /* Incremented on xmit */ 530 u32 tx_tail; /* Incremented on xmit done */ 531 u32 channel; /* Channel number */ 532 spinlock_t tx_lock; /* To protect tx path */ 533 }; 534 535 /* Global priv data */ 536 struct rcar_canfd_global { 537 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 538 void __iomem *base; /* Register base address */ 539 struct platform_device *pdev; /* Respective platform device */ 540 struct clk *clkp; /* Peripheral clock */ 541 struct clk *can_clk; /* fCAN clock */ 542 unsigned long channels_mask; /* Enabled channels mask */ 543 bool extclk; /* CANFD or Ext clock */ 544 bool fdmode; /* CAN FD or Classical CAN only mode */ 545 struct reset_control *rstc1; 546 struct reset_control *rstc2; 547 const struct rcar_canfd_hw_info *info; 548 }; 549 550 /* CAN FD mode nominal rate constants */ 551 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = { 552 .name = RCANFD_DRV_NAME, 553 .tseg1_min = 2, 554 .tseg1_max = 128, 555 .tseg2_min = 2, 556 .tseg2_max = 32, 557 .sjw_max = 32, 558 .brp_min = 1, 559 .brp_max = 1024, 560 .brp_inc = 1, 561 }; 562 563 /* CAN FD mode data rate constants */ 564 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = { 565 .name = RCANFD_DRV_NAME, 566 .tseg1_min = 2, 567 .tseg1_max = 16, 568 .tseg2_min = 2, 569 .tseg2_max = 8, 570 .sjw_max = 8, 571 .brp_min = 1, 572 .brp_max = 256, 573 .brp_inc = 1, 574 }; 575 576 /* Classical CAN mode bitrate constants */ 577 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 578 .name = RCANFD_DRV_NAME, 579 .tseg1_min = 4, 580 .tseg1_max = 16, 581 .tseg2_min = 2, 582 .tseg2_max = 8, 583 .sjw_max = 4, 584 .brp_min = 1, 585 .brp_max = 1024, 586 .brp_inc = 1, 587 }; 588 589 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = { 590 .max_channels = 2, 591 .postdiv = 2, 592 .shared_global_irqs = 1, 593 }; 594 595 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = { 596 .max_channels = 8, 597 .postdiv = 2, 598 .shared_global_irqs = 1, 599 }; 600 601 static const struct rcar_canfd_hw_info rzg2l_hw_info = { 602 .max_channels = 2, 603 .postdiv = 1, 604 .multi_channel_irqs = 1, 605 }; 606 607 /* Helper functions */ 608 static inline bool is_gen4(struct rcar_canfd_global *gpriv) 609 { 610 return gpriv->info == &rcar_gen4_hw_info; 611 } 612 613 static inline u32 reg_gen4(struct rcar_canfd_global *gpriv, 614 u32 gen4, u32 not_gen4) 615 { 616 return is_gen4(gpriv) ? gen4 : not_gen4; 617 } 618 619 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 620 { 621 u32 data = readl(reg); 622 623 data &= ~mask; 624 data |= (val & mask); 625 writel(data, reg); 626 } 627 628 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 629 { 630 return readl(base + offset); 631 } 632 633 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 634 { 635 writel(val, base + offset); 636 } 637 638 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 639 { 640 rcar_canfd_update(val, val, base + reg); 641 } 642 643 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 644 { 645 rcar_canfd_update(val, 0, base + reg); 646 } 647 648 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 649 u32 mask, u32 val) 650 { 651 rcar_canfd_update(mask, val, base + reg); 652 } 653 654 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 655 struct canfd_frame *cf, u32 off) 656 { 657 u32 i, lwords; 658 659 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 660 for (i = 0; i < lwords; i++) 661 *((u32 *)cf->data + i) = 662 rcar_canfd_read(priv->base, off + i * sizeof(u32)); 663 } 664 665 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 666 struct canfd_frame *cf, u32 off) 667 { 668 u32 i, lwords; 669 670 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 671 for (i = 0; i < lwords; i++) 672 rcar_canfd_write(priv->base, off + i * sizeof(u32), 673 *((u32 *)cf->data + i)); 674 } 675 676 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 677 { 678 u32 i; 679 680 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 681 can_free_echo_skb(ndev, i, NULL); 682 } 683 684 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv) 685 { 686 if (is_gen4(gpriv)) { 687 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE 688 : RCANFD_GEN4_FDCFG_CLOE; 689 690 for_each_set_bit(ch, &gpriv->channels_mask, 691 gpriv->info->max_channels) 692 rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch), 693 val); 694 } else { 695 if (gpriv->fdmode) 696 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 697 RCANFD_GRMCFG_RCMC); 698 else 699 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 700 RCANFD_GRMCFG_RCMC); 701 } 702 } 703 704 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 705 { 706 u32 sts, ch; 707 int err; 708 709 /* Check RAMINIT flag as CAN RAM initialization takes place 710 * after the MCU reset 711 */ 712 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 713 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 714 if (err) { 715 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n"); 716 return err; 717 } 718 719 /* Transition to Global Reset mode */ 720 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 721 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 722 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 723 724 /* Ensure Global reset mode */ 725 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 726 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 727 if (err) { 728 dev_dbg(&gpriv->pdev->dev, "global reset failed\n"); 729 return err; 730 } 731 732 /* Reset Global error flags */ 733 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 734 735 /* Set the controller into appropriate mode */ 736 rcar_canfd_set_mode(gpriv); 737 738 /* Transition all Channels to reset mode */ 739 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 740 rcar_canfd_clear_bit(gpriv->base, 741 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 742 743 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 744 RCANFD_CCTR_CHMDC_MASK, 745 RCANFD_CCTR_CHDMC_CRESET); 746 747 /* Ensure Channel reset mode */ 748 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 749 (sts & RCANFD_CSTS_CRSTSTS), 750 2, 500000); 751 if (err) { 752 dev_dbg(&gpriv->pdev->dev, 753 "channel %u reset failed\n", ch); 754 return err; 755 } 756 } 757 return 0; 758 } 759 760 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 761 { 762 u32 cfg, ch; 763 764 /* Global configuration settings */ 765 766 /* ECC Error flag Enable */ 767 cfg = RCANFD_GCFG_EEFE; 768 769 if (gpriv->fdmode) 770 /* Truncate payload to configured message size RFPLS */ 771 cfg |= RCANFD_GCFG_CMPOC; 772 773 /* Set External Clock if selected */ 774 if (gpriv->extclk) 775 cfg |= RCANFD_GCFG_DCS; 776 777 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 778 779 /* Channel configuration settings */ 780 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 781 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 782 RCANFD_CCTR_ERRD); 783 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 784 RCANFD_CCTR_BOM_MASK, 785 RCANFD_CCTR_BOM_BENTRY); 786 } 787 } 788 789 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 790 u32 ch) 791 { 792 u32 cfg; 793 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES; 794 u32 ridx = ch + RCANFD_RFFIFO_IDX; 795 796 if (ch == 0) { 797 start = 0; /* Channel 0 always starts from 0th rule */ 798 } else { 799 /* Get number of Channel 0 rules and adjust */ 800 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch)); 801 start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg); 802 } 803 804 /* Enable write access to entry */ 805 page = RCANFD_GAFL_PAGENUM(start); 806 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 807 (RCANFD_GAFLECTR_AFLPN(gpriv, page) | 808 RCANFD_GAFLECTR_AFLDAE)); 809 810 /* Write number of rules for channel */ 811 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch), 812 RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules)); 813 if (is_gen4(gpriv)) 814 offset = RCANFD_GEN4_GAFL_OFFSET; 815 else if (gpriv->fdmode) 816 offset = RCANFD_F_GAFL_OFFSET; 817 else 818 offset = RCANFD_C_GAFL_OFFSET; 819 820 /* Accept all IDs */ 821 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0); 822 /* IDE or RTR is not considered for matching */ 823 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0); 824 /* Any data length accepted */ 825 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0); 826 /* Place the msg in corresponding Rx FIFO entry */ 827 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start), 828 RCANFD_GAFLP1_GAFLFDP(ridx)); 829 830 /* Disable write access to page */ 831 rcar_canfd_clear_bit(gpriv->base, 832 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 833 } 834 835 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 836 { 837 /* Rx FIFO is used for reception */ 838 u32 cfg; 839 u16 rfdc, rfpls; 840 841 /* Select Rx FIFO based on channel */ 842 u32 ridx = ch + RCANFD_RFFIFO_IDX; 843 844 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 845 if (gpriv->fdmode) 846 rfpls = 7; /* b111 - Max 64 bytes payload */ 847 else 848 rfpls = 0; /* b000 - Max 8 bytes payload */ 849 850 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 851 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 852 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg); 853 } 854 855 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 856 { 857 /* Tx/Rx(Common) FIFO configured in Tx mode is 858 * used for transmission 859 * 860 * Each channel has 3 Common FIFO dedicated to them. 861 * Use the 1st (index 0) out of 3 862 */ 863 u32 cfg; 864 u16 cftml, cfm, cfdc, cfpls; 865 866 cftml = 0; /* 0th buffer */ 867 cfm = 1; /* b01 - Transmit mode */ 868 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 869 if (gpriv->fdmode) 870 cfpls = 7; /* b111 - Max 64 bytes payload */ 871 else 872 cfpls = 0; /* b000 - Max 8 bytes payload */ 873 874 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) | 875 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) | 876 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 877 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg); 878 879 if (gpriv->fdmode) 880 /* Clear FD mode specific control/status register */ 881 rcar_canfd_write(gpriv->base, 882 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0); 883 } 884 885 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 886 { 887 u32 ctr; 888 889 /* Clear any stray error interrupt flags */ 890 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 891 892 /* Global interrupts setup */ 893 ctr = RCANFD_GCTR_MEIE; 894 if (gpriv->fdmode) 895 ctr |= RCANFD_GCTR_CFMPOFIE; 896 897 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 898 } 899 900 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 901 *gpriv) 902 { 903 /* Disable all interrupts */ 904 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 905 906 /* Clear any stray error interrupt flags */ 907 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 908 } 909 910 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 911 *priv) 912 { 913 u32 ctr, ch = priv->channel; 914 915 /* Clear any stray error flags */ 916 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 917 918 /* Channel interrupts setup */ 919 ctr = (RCANFD_CCTR_TAIE | 920 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 921 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 922 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 923 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 924 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 925 } 926 927 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 928 *priv) 929 { 930 u32 ctr, ch = priv->channel; 931 932 ctr = (RCANFD_CCTR_TAIE | 933 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 934 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 935 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 936 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 937 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 938 939 /* Clear any stray error flags */ 940 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 941 } 942 943 static void rcar_canfd_global_error(struct net_device *ndev) 944 { 945 struct rcar_canfd_channel *priv = netdev_priv(ndev); 946 struct rcar_canfd_global *gpriv = priv->gpriv; 947 struct net_device_stats *stats = &ndev->stats; 948 u32 ch = priv->channel; 949 u32 gerfl, sts; 950 u32 ridx = ch + RCANFD_RFFIFO_IDX; 951 952 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 953 if (gerfl & RCANFD_GERFL_EEF(ch)) { 954 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch); 955 stats->tx_dropped++; 956 } 957 if (gerfl & RCANFD_GERFL_MES) { 958 sts = rcar_canfd_read(priv->base, 959 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 960 if (sts & RCANFD_CFSTS_CFMLT) { 961 netdev_dbg(ndev, "Tx Message Lost flag\n"); 962 stats->tx_dropped++; 963 rcar_canfd_write(priv->base, 964 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 965 sts & ~RCANFD_CFSTS_CFMLT); 966 } 967 968 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 969 if (sts & RCANFD_RFSTS_RFMLT) { 970 netdev_dbg(ndev, "Rx Message Lost flag\n"); 971 stats->rx_dropped++; 972 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 973 sts & ~RCANFD_RFSTS_RFMLT); 974 } 975 } 976 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 977 /* Message Lost flag will be set for respective channel 978 * when this condition happens with counters and flags 979 * already updated. 980 */ 981 netdev_dbg(ndev, "global payload overflow interrupt\n"); 982 } 983 984 /* Clear all global error interrupts. Only affected channels bits 985 * get cleared 986 */ 987 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 988 } 989 990 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 991 u16 txerr, u16 rxerr) 992 { 993 struct rcar_canfd_channel *priv = netdev_priv(ndev); 994 struct net_device_stats *stats = &ndev->stats; 995 struct can_frame *cf; 996 struct sk_buff *skb; 997 u32 ch = priv->channel; 998 999 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 1000 1001 /* Propagate the error condition to the CAN stack */ 1002 skb = alloc_can_err_skb(ndev, &cf); 1003 if (!skb) { 1004 stats->rx_dropped++; 1005 return; 1006 } 1007 1008 /* Channel error interrupts */ 1009 if (cerfl & RCANFD_CERFL_BEF) { 1010 netdev_dbg(ndev, "Bus error\n"); 1011 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 1012 cf->data[2] = CAN_ERR_PROT_UNSPEC; 1013 priv->can.can_stats.bus_error++; 1014 } 1015 if (cerfl & RCANFD_CERFL_ADERR) { 1016 netdev_dbg(ndev, "ACK Delimiter Error\n"); 1017 stats->tx_errors++; 1018 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 1019 } 1020 if (cerfl & RCANFD_CERFL_B0ERR) { 1021 netdev_dbg(ndev, "Bit Error (dominant)\n"); 1022 stats->tx_errors++; 1023 cf->data[2] |= CAN_ERR_PROT_BIT0; 1024 } 1025 if (cerfl & RCANFD_CERFL_B1ERR) { 1026 netdev_dbg(ndev, "Bit Error (recessive)\n"); 1027 stats->tx_errors++; 1028 cf->data[2] |= CAN_ERR_PROT_BIT1; 1029 } 1030 if (cerfl & RCANFD_CERFL_CERR) { 1031 netdev_dbg(ndev, "CRC Error\n"); 1032 stats->rx_errors++; 1033 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 1034 } 1035 if (cerfl & RCANFD_CERFL_AERR) { 1036 netdev_dbg(ndev, "ACK Error\n"); 1037 stats->tx_errors++; 1038 cf->can_id |= CAN_ERR_ACK; 1039 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 1040 } 1041 if (cerfl & RCANFD_CERFL_FERR) { 1042 netdev_dbg(ndev, "Form Error\n"); 1043 stats->rx_errors++; 1044 cf->data[2] |= CAN_ERR_PROT_FORM; 1045 } 1046 if (cerfl & RCANFD_CERFL_SERR) { 1047 netdev_dbg(ndev, "Stuff Error\n"); 1048 stats->rx_errors++; 1049 cf->data[2] |= CAN_ERR_PROT_STUFF; 1050 } 1051 if (cerfl & RCANFD_CERFL_ALF) { 1052 netdev_dbg(ndev, "Arbitration lost Error\n"); 1053 priv->can.can_stats.arbitration_lost++; 1054 cf->can_id |= CAN_ERR_LOSTARB; 1055 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 1056 } 1057 if (cerfl & RCANFD_CERFL_BLF) { 1058 netdev_dbg(ndev, "Bus Lock Error\n"); 1059 stats->rx_errors++; 1060 cf->can_id |= CAN_ERR_BUSERROR; 1061 } 1062 if (cerfl & RCANFD_CERFL_EWF) { 1063 netdev_dbg(ndev, "Error warning interrupt\n"); 1064 priv->can.state = CAN_STATE_ERROR_WARNING; 1065 priv->can.can_stats.error_warning++; 1066 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1067 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1068 CAN_ERR_CRTL_RX_WARNING; 1069 cf->data[6] = txerr; 1070 cf->data[7] = rxerr; 1071 } 1072 if (cerfl & RCANFD_CERFL_EPF) { 1073 netdev_dbg(ndev, "Error passive interrupt\n"); 1074 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1075 priv->can.can_stats.error_passive++; 1076 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1077 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1078 CAN_ERR_CRTL_RX_PASSIVE; 1079 cf->data[6] = txerr; 1080 cf->data[7] = rxerr; 1081 } 1082 if (cerfl & RCANFD_CERFL_BOEF) { 1083 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1084 rcar_canfd_tx_failure_cleanup(ndev); 1085 priv->can.state = CAN_STATE_BUS_OFF; 1086 priv->can.can_stats.bus_off++; 1087 can_bus_off(ndev); 1088 cf->can_id |= CAN_ERR_BUSOFF; 1089 } 1090 if (cerfl & RCANFD_CERFL_OVLF) { 1091 netdev_dbg(ndev, 1092 "Overload Frame Transmission error interrupt\n"); 1093 stats->tx_errors++; 1094 cf->can_id |= CAN_ERR_PROT; 1095 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1096 } 1097 1098 /* Clear channel error interrupts that are handled */ 1099 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1100 RCANFD_CERFL_ERR(~cerfl)); 1101 netif_rx(skb); 1102 } 1103 1104 static void rcar_canfd_tx_done(struct net_device *ndev) 1105 { 1106 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1107 struct rcar_canfd_global *gpriv = priv->gpriv; 1108 struct net_device_stats *stats = &ndev->stats; 1109 u32 sts; 1110 unsigned long flags; 1111 u32 ch = priv->channel; 1112 1113 do { 1114 u8 unsent, sent; 1115 1116 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1117 stats->tx_packets++; 1118 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1119 1120 spin_lock_irqsave(&priv->tx_lock, flags); 1121 priv->tx_tail++; 1122 sts = rcar_canfd_read(priv->base, 1123 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1124 unsent = RCANFD_CFSTS_CFMC(sts); 1125 1126 /* Wake producer only when there is room */ 1127 if (unsent != RCANFD_FIFO_DEPTH) 1128 netif_wake_queue(ndev); 1129 1130 if (priv->tx_head - priv->tx_tail <= unsent) { 1131 spin_unlock_irqrestore(&priv->tx_lock, flags); 1132 break; 1133 } 1134 spin_unlock_irqrestore(&priv->tx_lock, flags); 1135 1136 } while (1); 1137 1138 /* Clear interrupt */ 1139 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1140 sts & ~RCANFD_CFSTS_CFTXIF); 1141 } 1142 1143 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1144 { 1145 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1146 struct net_device *ndev = priv->ndev; 1147 u32 gerfl; 1148 1149 /* Handle global error interrupts */ 1150 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1151 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1152 rcar_canfd_global_error(ndev); 1153 } 1154 1155 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1156 { 1157 struct rcar_canfd_global *gpriv = dev_id; 1158 u32 ch; 1159 1160 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1161 rcar_canfd_handle_global_err(gpriv, ch); 1162 1163 return IRQ_HANDLED; 1164 } 1165 1166 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1167 { 1168 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1169 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1170 u32 sts, cc; 1171 1172 /* Handle Rx interrupts */ 1173 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1174 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx)); 1175 if (likely(sts & RCANFD_RFSTS_RFIF && 1176 cc & RCANFD_RFCC_RFIE)) { 1177 if (napi_schedule_prep(&priv->napi)) { 1178 /* Disable Rx FIFO interrupts */ 1179 rcar_canfd_clear_bit(priv->base, 1180 RCANFD_RFCC(gpriv, ridx), 1181 RCANFD_RFCC_RFIE); 1182 __napi_schedule(&priv->napi); 1183 } 1184 } 1185 } 1186 1187 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1188 { 1189 struct rcar_canfd_global *gpriv = dev_id; 1190 u32 ch; 1191 1192 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1193 rcar_canfd_handle_global_receive(gpriv, ch); 1194 1195 return IRQ_HANDLED; 1196 } 1197 1198 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1199 { 1200 struct rcar_canfd_global *gpriv = dev_id; 1201 u32 ch; 1202 1203 /* Global error interrupts still indicate a condition specific 1204 * to a channel. RxFIFO interrupt is a global interrupt. 1205 */ 1206 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1207 rcar_canfd_handle_global_err(gpriv, ch); 1208 rcar_canfd_handle_global_receive(gpriv, ch); 1209 } 1210 return IRQ_HANDLED; 1211 } 1212 1213 static void rcar_canfd_state_change(struct net_device *ndev, 1214 u16 txerr, u16 rxerr) 1215 { 1216 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1217 struct net_device_stats *stats = &ndev->stats; 1218 enum can_state rx_state, tx_state, state = priv->can.state; 1219 struct can_frame *cf; 1220 struct sk_buff *skb; 1221 1222 /* Handle transition from error to normal states */ 1223 if (txerr < 96 && rxerr < 96) 1224 state = CAN_STATE_ERROR_ACTIVE; 1225 else if (txerr < 128 && rxerr < 128) 1226 state = CAN_STATE_ERROR_WARNING; 1227 1228 if (state != priv->can.state) { 1229 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1230 state, priv->can.state, txerr, rxerr); 1231 skb = alloc_can_err_skb(ndev, &cf); 1232 if (!skb) { 1233 stats->rx_dropped++; 1234 return; 1235 } 1236 tx_state = txerr >= rxerr ? state : 0; 1237 rx_state = txerr <= rxerr ? state : 0; 1238 1239 can_change_state(ndev, cf, tx_state, rx_state); 1240 netif_rx(skb); 1241 } 1242 } 1243 1244 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1245 { 1246 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1247 struct net_device *ndev = priv->ndev; 1248 u32 sts; 1249 1250 /* Handle Tx interrupts */ 1251 sts = rcar_canfd_read(priv->base, 1252 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1253 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1254 rcar_canfd_tx_done(ndev); 1255 } 1256 1257 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1258 { 1259 struct rcar_canfd_channel *priv = dev_id; 1260 1261 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel); 1262 1263 return IRQ_HANDLED; 1264 } 1265 1266 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1267 { 1268 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1269 struct net_device *ndev = priv->ndev; 1270 u16 txerr, rxerr; 1271 u32 sts, cerfl; 1272 1273 /* Handle channel error interrupts */ 1274 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1275 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1276 txerr = RCANFD_CSTS_TECCNT(sts); 1277 rxerr = RCANFD_CSTS_RECCNT(sts); 1278 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1279 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1280 1281 /* Handle state change to lower states */ 1282 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1283 priv->can.state != CAN_STATE_BUS_OFF)) 1284 rcar_canfd_state_change(ndev, txerr, rxerr); 1285 } 1286 1287 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1288 { 1289 struct rcar_canfd_channel *priv = dev_id; 1290 1291 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel); 1292 1293 return IRQ_HANDLED; 1294 } 1295 1296 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1297 { 1298 struct rcar_canfd_global *gpriv = dev_id; 1299 u32 ch; 1300 1301 /* Common FIFO is a per channel resource */ 1302 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1303 rcar_canfd_handle_channel_err(gpriv, ch); 1304 rcar_canfd_handle_channel_tx(gpriv, ch); 1305 } 1306 1307 return IRQ_HANDLED; 1308 } 1309 1310 static void rcar_canfd_set_bittiming(struct net_device *dev) 1311 { 1312 struct rcar_canfd_channel *priv = netdev_priv(dev); 1313 struct rcar_canfd_global *gpriv = priv->gpriv; 1314 const struct can_bittiming *bt = &priv->can.bittiming; 1315 const struct can_bittiming *dbt = &priv->can.data_bittiming; 1316 u16 brp, sjw, tseg1, tseg2; 1317 u32 cfg; 1318 u32 ch = priv->channel; 1319 1320 /* Nominal bit timing settings */ 1321 brp = bt->brp - 1; 1322 sjw = bt->sjw - 1; 1323 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1324 tseg2 = bt->phase_seg2 - 1; 1325 1326 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1327 /* CAN FD only mode */ 1328 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) | 1329 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1330 1331 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1332 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1333 brp, sjw, tseg1, tseg2); 1334 1335 /* Data bit timing settings */ 1336 brp = dbt->brp - 1; 1337 sjw = dbt->sjw - 1; 1338 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1339 tseg2 = dbt->phase_seg2 - 1; 1340 1341 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) | 1342 RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2)); 1343 1344 rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg); 1345 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1346 brp, sjw, tseg1, tseg2); 1347 } else { 1348 /* Classical CAN only mode */ 1349 if (is_gen4(gpriv)) { 1350 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | 1351 RCANFD_NCFG_NBRP(brp) | 1352 RCANFD_NCFG_NSJW(gpriv, sjw) | 1353 RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1354 } else { 1355 cfg = (RCANFD_CFG_TSEG1(tseg1) | 1356 RCANFD_CFG_BRP(brp) | 1357 RCANFD_CFG_SJW(sjw) | 1358 RCANFD_CFG_TSEG2(tseg2)); 1359 } 1360 1361 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1362 netdev_dbg(priv->ndev, 1363 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1364 brp, sjw, tseg1, tseg2); 1365 } 1366 } 1367 1368 static int rcar_canfd_start(struct net_device *ndev) 1369 { 1370 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1371 struct rcar_canfd_global *gpriv = priv->gpriv; 1372 int err = -EOPNOTSUPP; 1373 u32 sts, ch = priv->channel; 1374 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1375 1376 rcar_canfd_set_bittiming(ndev); 1377 1378 rcar_canfd_enable_channel_interrupts(priv); 1379 1380 /* Set channel to Operational mode */ 1381 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1382 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1383 1384 /* Verify channel mode change */ 1385 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1386 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1387 if (err) { 1388 netdev_err(ndev, "channel %u communication state failed\n", ch); 1389 goto fail_mode_change; 1390 } 1391 1392 /* Enable Common & Rx FIFO */ 1393 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1394 RCANFD_CFCC_CFE); 1395 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1396 1397 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1398 return 0; 1399 1400 fail_mode_change: 1401 rcar_canfd_disable_channel_interrupts(priv); 1402 return err; 1403 } 1404 1405 static int rcar_canfd_open(struct net_device *ndev) 1406 { 1407 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1408 struct rcar_canfd_global *gpriv = priv->gpriv; 1409 int err; 1410 1411 err = phy_power_on(priv->transceiver); 1412 if (err) { 1413 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err)); 1414 return err; 1415 } 1416 1417 /* Peripheral clock is already enabled in probe */ 1418 err = clk_prepare_enable(gpriv->can_clk); 1419 if (err) { 1420 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err)); 1421 goto out_phy; 1422 } 1423 1424 err = open_candev(ndev); 1425 if (err) { 1426 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err)); 1427 goto out_can_clock; 1428 } 1429 1430 napi_enable(&priv->napi); 1431 err = rcar_canfd_start(ndev); 1432 if (err) 1433 goto out_close; 1434 netif_start_queue(ndev); 1435 return 0; 1436 out_close: 1437 napi_disable(&priv->napi); 1438 close_candev(ndev); 1439 out_can_clock: 1440 clk_disable_unprepare(gpriv->can_clk); 1441 out_phy: 1442 phy_power_off(priv->transceiver); 1443 return err; 1444 } 1445 1446 static void rcar_canfd_stop(struct net_device *ndev) 1447 { 1448 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1449 struct rcar_canfd_global *gpriv = priv->gpriv; 1450 int err; 1451 u32 sts, ch = priv->channel; 1452 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1453 1454 /* Transition to channel reset mode */ 1455 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1456 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1457 1458 /* Check Channel reset mode */ 1459 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1460 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1461 if (err) 1462 netdev_err(ndev, "channel %u reset failed\n", ch); 1463 1464 rcar_canfd_disable_channel_interrupts(priv); 1465 1466 /* Disable Common & Rx FIFO */ 1467 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1468 RCANFD_CFCC_CFE); 1469 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1470 1471 /* Set the state as STOPPED */ 1472 priv->can.state = CAN_STATE_STOPPED; 1473 } 1474 1475 static int rcar_canfd_close(struct net_device *ndev) 1476 { 1477 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1478 struct rcar_canfd_global *gpriv = priv->gpriv; 1479 1480 netif_stop_queue(ndev); 1481 rcar_canfd_stop(ndev); 1482 napi_disable(&priv->napi); 1483 clk_disable_unprepare(gpriv->can_clk); 1484 close_candev(ndev); 1485 phy_power_off(priv->transceiver); 1486 return 0; 1487 } 1488 1489 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1490 struct net_device *ndev) 1491 { 1492 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1493 struct rcar_canfd_global *gpriv = priv->gpriv; 1494 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1495 u32 sts = 0, id, dlc; 1496 unsigned long flags; 1497 u32 ch = priv->channel; 1498 1499 if (can_dev_dropped_skb(ndev, skb)) 1500 return NETDEV_TX_OK; 1501 1502 if (cf->can_id & CAN_EFF_FLAG) { 1503 id = cf->can_id & CAN_EFF_MASK; 1504 id |= RCANFD_CFID_CFIDE; 1505 } else { 1506 id = cf->can_id & CAN_SFF_MASK; 1507 } 1508 1509 if (cf->can_id & CAN_RTR_FLAG) 1510 id |= RCANFD_CFID_CFRTR; 1511 1512 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1513 1514 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) { 1515 rcar_canfd_write(priv->base, 1516 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id); 1517 rcar_canfd_write(priv->base, 1518 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc); 1519 1520 if (can_is_canfd_skb(skb)) { 1521 /* CAN FD frame format */ 1522 sts |= RCANFD_CFFDCSTS_CFFDF; 1523 if (cf->flags & CANFD_BRS) 1524 sts |= RCANFD_CFFDCSTS_CFBRS; 1525 1526 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1527 sts |= RCANFD_CFFDCSTS_CFESI; 1528 } 1529 1530 rcar_canfd_write(priv->base, 1531 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts); 1532 1533 rcar_canfd_put_data(priv, cf, 1534 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0)); 1535 } else { 1536 rcar_canfd_write(priv->base, 1537 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1538 rcar_canfd_write(priv->base, 1539 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1540 rcar_canfd_put_data(priv, cf, 1541 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1542 } 1543 1544 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1545 1546 spin_lock_irqsave(&priv->tx_lock, flags); 1547 priv->tx_head++; 1548 1549 /* Stop the queue if we've filled all FIFO entries */ 1550 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1551 netif_stop_queue(ndev); 1552 1553 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1554 * pointer for the Common FIFO 1555 */ 1556 rcar_canfd_write(priv->base, 1557 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff); 1558 1559 spin_unlock_irqrestore(&priv->tx_lock, flags); 1560 return NETDEV_TX_OK; 1561 } 1562 1563 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1564 { 1565 struct net_device_stats *stats = &priv->ndev->stats; 1566 struct rcar_canfd_global *gpriv = priv->gpriv; 1567 struct canfd_frame *cf; 1568 struct sk_buff *skb; 1569 u32 sts = 0, id, dlc; 1570 u32 ch = priv->channel; 1571 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1572 1573 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) { 1574 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx)); 1575 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx)); 1576 1577 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx)); 1578 1579 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && 1580 sts & RCANFD_RFFDSTS_RFFDF) 1581 skb = alloc_canfd_skb(priv->ndev, &cf); 1582 else 1583 skb = alloc_can_skb(priv->ndev, 1584 (struct can_frame **)&cf); 1585 } else { 1586 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1587 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1588 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); 1589 } 1590 1591 if (!skb) { 1592 stats->rx_dropped++; 1593 return; 1594 } 1595 1596 if (id & RCANFD_RFID_RFIDE) 1597 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1598 else 1599 cf->can_id = id & CAN_SFF_MASK; 1600 1601 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1602 if (sts & RCANFD_RFFDSTS_RFFDF) 1603 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1604 else 1605 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1606 1607 if (sts & RCANFD_RFFDSTS_RFESI) { 1608 cf->flags |= CANFD_ESI; 1609 netdev_dbg(priv->ndev, "ESI Error\n"); 1610 } 1611 1612 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1613 cf->can_id |= CAN_RTR_FLAG; 1614 } else { 1615 if (sts & RCANFD_RFFDSTS_RFBRS) 1616 cf->flags |= CANFD_BRS; 1617 1618 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1619 } 1620 } else { 1621 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1622 if (id & RCANFD_RFID_RFRTR) 1623 cf->can_id |= CAN_RTR_FLAG; 1624 else if (is_gen4(gpriv)) 1625 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1626 else 1627 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1628 } 1629 1630 /* Write 0xff to RFPC to increment the CPU-side 1631 * pointer of the Rx FIFO 1632 */ 1633 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff); 1634 1635 if (!(cf->can_id & CAN_RTR_FLAG)) 1636 stats->rx_bytes += cf->len; 1637 stats->rx_packets++; 1638 netif_receive_skb(skb); 1639 } 1640 1641 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1642 { 1643 struct rcar_canfd_channel *priv = 1644 container_of(napi, struct rcar_canfd_channel, napi); 1645 struct rcar_canfd_global *gpriv = priv->gpriv; 1646 int num_pkts; 1647 u32 sts; 1648 u32 ch = priv->channel; 1649 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1650 1651 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1652 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1653 /* Check FIFO empty condition */ 1654 if (sts & RCANFD_RFSTS_RFEMP) 1655 break; 1656 1657 rcar_canfd_rx_pkt(priv); 1658 1659 /* Clear interrupt bit */ 1660 if (sts & RCANFD_RFSTS_RFIF) 1661 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1662 sts & ~RCANFD_RFSTS_RFIF); 1663 } 1664 1665 /* All packets processed */ 1666 if (num_pkts < quota) { 1667 if (napi_complete_done(napi, num_pkts)) { 1668 /* Enable Rx FIFO interrupts */ 1669 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), 1670 RCANFD_RFCC_RFIE); 1671 } 1672 } 1673 return num_pkts; 1674 } 1675 1676 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1677 { 1678 int err; 1679 1680 switch (mode) { 1681 case CAN_MODE_START: 1682 err = rcar_canfd_start(ndev); 1683 if (err) 1684 return err; 1685 netif_wake_queue(ndev); 1686 return 0; 1687 default: 1688 return -EOPNOTSUPP; 1689 } 1690 } 1691 1692 static int rcar_canfd_get_berr_counter(const struct net_device *dev, 1693 struct can_berr_counter *bec) 1694 { 1695 struct rcar_canfd_channel *priv = netdev_priv(dev); 1696 u32 val, ch = priv->channel; 1697 1698 /* Peripheral clock is already enabled in probe */ 1699 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1700 bec->txerr = RCANFD_CSTS_TECCNT(val); 1701 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1702 return 0; 1703 } 1704 1705 static const struct net_device_ops rcar_canfd_netdev_ops = { 1706 .ndo_open = rcar_canfd_open, 1707 .ndo_stop = rcar_canfd_close, 1708 .ndo_start_xmit = rcar_canfd_start_xmit, 1709 .ndo_change_mtu = can_change_mtu, 1710 }; 1711 1712 static const struct ethtool_ops rcar_canfd_ethtool_ops = { 1713 .get_ts_info = ethtool_op_get_ts_info, 1714 }; 1715 1716 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1717 u32 fcan_freq, struct phy *transceiver) 1718 { 1719 const struct rcar_canfd_hw_info *info = gpriv->info; 1720 struct platform_device *pdev = gpriv->pdev; 1721 struct device *dev = &pdev->dev; 1722 struct rcar_canfd_channel *priv; 1723 struct net_device *ndev; 1724 int err = -ENODEV; 1725 1726 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1727 if (!ndev) 1728 return -ENOMEM; 1729 1730 priv = netdev_priv(ndev); 1731 1732 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1733 ndev->ethtool_ops = &rcar_canfd_ethtool_ops; 1734 ndev->flags |= IFF_ECHO; 1735 priv->ndev = ndev; 1736 priv->base = gpriv->base; 1737 priv->transceiver = transceiver; 1738 priv->channel = ch; 1739 priv->gpriv = gpriv; 1740 if (transceiver) 1741 priv->can.bitrate_max = transceiver->attrs.max_link_rate; 1742 priv->can.clock.freq = fcan_freq; 1743 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq); 1744 1745 if (info->multi_channel_irqs) { 1746 char *irq_name; 1747 int err_irq; 1748 int tx_irq; 1749 1750 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err"); 1751 if (err_irq < 0) { 1752 err = err_irq; 1753 goto fail; 1754 } 1755 1756 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx"); 1757 if (tx_irq < 0) { 1758 err = tx_irq; 1759 goto fail; 1760 } 1761 1762 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err", 1763 ch); 1764 if (!irq_name) { 1765 err = -ENOMEM; 1766 goto fail; 1767 } 1768 err = devm_request_irq(dev, err_irq, 1769 rcar_canfd_channel_err_interrupt, 0, 1770 irq_name, priv); 1771 if (err) { 1772 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n", 1773 err_irq, ERR_PTR(err)); 1774 goto fail; 1775 } 1776 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx", 1777 ch); 1778 if (!irq_name) { 1779 err = -ENOMEM; 1780 goto fail; 1781 } 1782 err = devm_request_irq(dev, tx_irq, 1783 rcar_canfd_channel_tx_interrupt, 0, 1784 irq_name, priv); 1785 if (err) { 1786 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n", 1787 tx_irq, ERR_PTR(err)); 1788 goto fail; 1789 } 1790 } 1791 1792 if (gpriv->fdmode) { 1793 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const; 1794 priv->can.data_bittiming_const = 1795 &rcar_canfd_data_bittiming_const; 1796 1797 /* Controller starts in CAN FD only mode */ 1798 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1799 if (err) 1800 goto fail; 1801 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1802 } else { 1803 /* Controller starts in Classical CAN only mode */ 1804 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1805 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1806 } 1807 1808 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1809 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1810 SET_NETDEV_DEV(ndev, dev); 1811 1812 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll, 1813 RCANFD_NAPI_WEIGHT); 1814 spin_lock_init(&priv->tx_lock); 1815 gpriv->ch[priv->channel] = priv; 1816 err = register_candev(ndev); 1817 if (err) { 1818 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err)); 1819 goto fail_candev; 1820 } 1821 dev_info(dev, "device registered (channel %u)\n", priv->channel); 1822 return 0; 1823 1824 fail_candev: 1825 netif_napi_del(&priv->napi); 1826 fail: 1827 free_candev(ndev); 1828 return err; 1829 } 1830 1831 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1832 { 1833 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1834 1835 if (priv) { 1836 unregister_candev(priv->ndev); 1837 netif_napi_del(&priv->napi); 1838 free_candev(priv->ndev); 1839 } 1840 } 1841 1842 static int rcar_canfd_probe(struct platform_device *pdev) 1843 { 1844 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, }; 1845 const struct rcar_canfd_hw_info *info; 1846 struct device *dev = &pdev->dev; 1847 void __iomem *addr; 1848 u32 sts, ch, fcan_freq; 1849 struct rcar_canfd_global *gpriv; 1850 struct device_node *of_child; 1851 unsigned long channels_mask = 0; 1852 int err, ch_irq, g_irq; 1853 int g_err_irq, g_recc_irq; 1854 bool fdmode = true; /* CAN FD only mode - default */ 1855 char name[9] = "channelX"; 1856 int i; 1857 1858 info = of_device_get_match_data(dev); 1859 1860 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd")) 1861 fdmode = false; /* Classical CAN only mode */ 1862 1863 for (i = 0; i < info->max_channels; ++i) { 1864 name[7] = '0' + i; 1865 of_child = of_get_child_by_name(dev->of_node, name); 1866 if (of_child && of_device_is_available(of_child)) { 1867 channels_mask |= BIT(i); 1868 transceivers[i] = devm_of_phy_optional_get(dev, 1869 of_child, NULL); 1870 } 1871 of_node_put(of_child); 1872 if (IS_ERR(transceivers[i])) 1873 return PTR_ERR(transceivers[i]); 1874 } 1875 1876 if (info->shared_global_irqs) { 1877 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 1878 if (ch_irq < 0) { 1879 /* For backward compatibility get irq by index */ 1880 ch_irq = platform_get_irq(pdev, 0); 1881 if (ch_irq < 0) 1882 return ch_irq; 1883 } 1884 1885 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 1886 if (g_irq < 0) { 1887 /* For backward compatibility get irq by index */ 1888 g_irq = platform_get_irq(pdev, 1); 1889 if (g_irq < 0) 1890 return g_irq; 1891 } 1892 } else { 1893 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 1894 if (g_err_irq < 0) 1895 return g_err_irq; 1896 1897 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 1898 if (g_recc_irq < 0) 1899 return g_recc_irq; 1900 } 1901 1902 /* Global controller context */ 1903 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL); 1904 if (!gpriv) 1905 return -ENOMEM; 1906 1907 gpriv->pdev = pdev; 1908 gpriv->channels_mask = channels_mask; 1909 gpriv->fdmode = fdmode; 1910 gpriv->info = info; 1911 1912 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n"); 1913 if (IS_ERR(gpriv->rstc1)) 1914 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1), 1915 "failed to get rstp_n\n"); 1916 1917 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n"); 1918 if (IS_ERR(gpriv->rstc2)) 1919 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2), 1920 "failed to get rstc_n\n"); 1921 1922 /* Peripheral clock */ 1923 gpriv->clkp = devm_clk_get(dev, "fck"); 1924 if (IS_ERR(gpriv->clkp)) 1925 return dev_err_probe(dev, PTR_ERR(gpriv->clkp), 1926 "cannot get peripheral clock\n"); 1927 1928 /* fCAN clock: Pick External clock. If not available fallback to 1929 * CANFD clock 1930 */ 1931 gpriv->can_clk = devm_clk_get(dev, "can_clk"); 1932 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 1933 gpriv->can_clk = devm_clk_get(dev, "canfd"); 1934 if (IS_ERR(gpriv->can_clk)) 1935 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk), 1936 "cannot get canfd clock\n"); 1937 1938 /* CANFD clock may be further divided within the IP */ 1939 fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv; 1940 } else { 1941 fcan_freq = clk_get_rate(gpriv->can_clk); 1942 gpriv->extclk = true; 1943 } 1944 1945 addr = devm_platform_ioremap_resource(pdev, 0); 1946 if (IS_ERR(addr)) { 1947 err = PTR_ERR(addr); 1948 goto fail_dev; 1949 } 1950 gpriv->base = addr; 1951 1952 /* Request IRQ that's common for both channels */ 1953 if (info->shared_global_irqs) { 1954 err = devm_request_irq(dev, ch_irq, 1955 rcar_canfd_channel_interrupt, 0, 1956 "canfd.ch_int", gpriv); 1957 if (err) { 1958 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1959 ch_irq, ERR_PTR(err)); 1960 goto fail_dev; 1961 } 1962 1963 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt, 1964 0, "canfd.g_int", gpriv); 1965 if (err) { 1966 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1967 g_irq, ERR_PTR(err)); 1968 goto fail_dev; 1969 } 1970 } else { 1971 err = devm_request_irq(dev, g_recc_irq, 1972 rcar_canfd_global_receive_fifo_interrupt, 0, 1973 "canfd.g_recc", gpriv); 1974 1975 if (err) { 1976 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1977 g_recc_irq, ERR_PTR(err)); 1978 goto fail_dev; 1979 } 1980 1981 err = devm_request_irq(dev, g_err_irq, 1982 rcar_canfd_global_err_interrupt, 0, 1983 "canfd.g_err", gpriv); 1984 if (err) { 1985 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1986 g_err_irq, ERR_PTR(err)); 1987 goto fail_dev; 1988 } 1989 } 1990 1991 err = reset_control_reset(gpriv->rstc1); 1992 if (err) 1993 goto fail_dev; 1994 err = reset_control_reset(gpriv->rstc2); 1995 if (err) { 1996 reset_control_assert(gpriv->rstc1); 1997 goto fail_dev; 1998 } 1999 2000 /* Enable peripheral clock for register access */ 2001 err = clk_prepare_enable(gpriv->clkp); 2002 if (err) { 2003 dev_err(dev, "failed to enable peripheral clock: %pe\n", 2004 ERR_PTR(err)); 2005 goto fail_reset; 2006 } 2007 2008 err = rcar_canfd_reset_controller(gpriv); 2009 if (err) { 2010 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err)); 2011 goto fail_clk; 2012 } 2013 2014 /* Controller in Global reset & Channel reset mode */ 2015 rcar_canfd_configure_controller(gpriv); 2016 2017 /* Configure per channel attributes */ 2018 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2019 /* Configure Channel's Rx fifo */ 2020 rcar_canfd_configure_rx(gpriv, ch); 2021 2022 /* Configure Channel's Tx (Common) fifo */ 2023 rcar_canfd_configure_tx(gpriv, ch); 2024 2025 /* Configure receive rules */ 2026 rcar_canfd_configure_afl_rules(gpriv, ch); 2027 } 2028 2029 /* Configure common interrupts */ 2030 rcar_canfd_enable_global_interrupts(gpriv); 2031 2032 /* Start Global operation mode */ 2033 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 2034 RCANFD_GCTR_GMDC_GOPM); 2035 2036 /* Verify mode change */ 2037 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 2038 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 2039 if (err) { 2040 dev_err(dev, "global operational mode failed\n"); 2041 goto fail_mode; 2042 } 2043 2044 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2045 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq, 2046 transceivers[ch]); 2047 if (err) 2048 goto fail_channel; 2049 } 2050 2051 platform_set_drvdata(pdev, gpriv); 2052 dev_info(dev, "global operational state (%s clk, %s mode)\n", 2053 gpriv->extclk ? "ext" : "canfd", 2054 gpriv->fdmode ? "fd" : "classical"); 2055 return 0; 2056 2057 fail_channel: 2058 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) 2059 rcar_canfd_channel_remove(gpriv, ch); 2060 fail_mode: 2061 rcar_canfd_disable_global_interrupts(gpriv); 2062 fail_clk: 2063 clk_disable_unprepare(gpriv->clkp); 2064 fail_reset: 2065 reset_control_assert(gpriv->rstc1); 2066 reset_control_assert(gpriv->rstc2); 2067 fail_dev: 2068 return err; 2069 } 2070 2071 static void rcar_canfd_remove(struct platform_device *pdev) 2072 { 2073 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 2074 u32 ch; 2075 2076 rcar_canfd_reset_controller(gpriv); 2077 rcar_canfd_disable_global_interrupts(gpriv); 2078 2079 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2080 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 2081 rcar_canfd_channel_remove(gpriv, ch); 2082 } 2083 2084 /* Enter global sleep mode */ 2085 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2086 clk_disable_unprepare(gpriv->clkp); 2087 reset_control_assert(gpriv->rstc1); 2088 reset_control_assert(gpriv->rstc2); 2089 } 2090 2091 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2092 { 2093 return 0; 2094 } 2095 2096 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2097 { 2098 return 0; 2099 } 2100 2101 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2102 rcar_canfd_resume); 2103 2104 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2105 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info }, 2106 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info }, 2107 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info }, 2108 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info }, 2109 { } 2110 }; 2111 2112 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2113 2114 static struct platform_driver rcar_canfd_driver = { 2115 .driver = { 2116 .name = RCANFD_DRV_NAME, 2117 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2118 .pm = &rcar_canfd_pm_ops, 2119 }, 2120 .probe = rcar_canfd_probe, 2121 .remove_new = rcar_canfd_remove, 2122 }; 2123 2124 module_platform_driver(rcar_canfd_driver); 2125 2126 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2127 MODULE_LICENSE("GPL"); 2128 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2129 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2130