xref: /linux/drivers/net/can/rcar/rcar_canfd.c (revision 0fdebc5ec2ca492d69df2d93a6a7abade4941aae)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6 
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/interrupt.h>
29 #include <linux/errno.h>
30 #include <linux/netdevice.h>
31 #include <linux/platform_device.h>
32 #include <linux/can/dev.h>
33 #include <linux/clk.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/bitmap.h>
37 #include <linux/bitops.h>
38 #include <linux/iopoll.h>
39 #include <linux/reset.h>
40 
41 #define RCANFD_DRV_NAME			"rcar_canfd"
42 
43 enum rcanfd_chip_id {
44 	RENESAS_RCAR_GEN3 = 0,
45 	RENESAS_RZG2L,
46 	RENESAS_R8A779A0,
47 };
48 
49 /* Global register bits */
50 
51 /* RSCFDnCFDGRMCFG */
52 #define RCANFD_GRMCFG_RCMC		BIT(0)
53 
54 /* RSCFDnCFDGCFG / RSCFDnGCFG */
55 #define RCANFD_GCFG_EEFE		BIT(6)
56 #define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
57 #define RCANFD_GCFG_DCS			BIT(4)
58 #define RCANFD_GCFG_DCE			BIT(1)
59 #define RCANFD_GCFG_TPRI		BIT(0)
60 
61 /* RSCFDnCFDGCTR / RSCFDnGCTR */
62 #define RCANFD_GCTR_TSRST		BIT(16)
63 #define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
64 #define RCANFD_GCTR_THLEIE		BIT(10)
65 #define RCANFD_GCTR_MEIE		BIT(9)
66 #define RCANFD_GCTR_DEIE		BIT(8)
67 #define RCANFD_GCTR_GSLPR		BIT(2)
68 #define RCANFD_GCTR_GMDC_MASK		(0x3)
69 #define RCANFD_GCTR_GMDC_GOPM		(0x0)
70 #define RCANFD_GCTR_GMDC_GRESET		(0x1)
71 #define RCANFD_GCTR_GMDC_GTEST		(0x2)
72 
73 /* RSCFDnCFDGSTS / RSCFDnGSTS */
74 #define RCANFD_GSTS_GRAMINIT		BIT(3)
75 #define RCANFD_GSTS_GSLPSTS		BIT(2)
76 #define RCANFD_GSTS_GHLTSTS		BIT(1)
77 #define RCANFD_GSTS_GRSTSTS		BIT(0)
78 /* Non-operational status */
79 #define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
80 
81 /* RSCFDnCFDGERFL / RSCFDnGERFL */
82 #define RCANFD_GERFL_EEF0_7		GENMASK(23, 16)
83 #define RCANFD_GERFL_EEF1		BIT(17)
84 #define RCANFD_GERFL_EEF0		BIT(16)
85 #define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
86 #define RCANFD_GERFL_THLES		BIT(2)
87 #define RCANFD_GERFL_MES		BIT(1)
88 #define RCANFD_GERFL_DEF		BIT(0)
89 
90 #define RCANFD_GERFL_ERR(gpriv, x) \
91 	((x) & (reg_v3u(gpriv, RCANFD_GERFL_EEF0_7, \
92 			RCANFD_GERFL_EEF0 | RCANFD_GERFL_EEF1) | \
93 		RCANFD_GERFL_MES | \
94 		((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
95 
96 /* AFL Rx rules registers */
97 
98 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
99 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
100 	(((x) & reg_v3u(gpriv, 0x1ff, 0xff)) << \
101 	 (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8)))
102 
103 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
104 	(((x) >> (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8))) & \
105 	 reg_v3u(gpriv, 0x1ff, 0xff))
106 
107 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
108 #define RCANFD_GAFLECTR_AFLDAE		BIT(8)
109 #define RCANFD_GAFLECTR_AFLPN(gpriv, x)	((x) & reg_v3u(gpriv, 0x7f, 0x1f))
110 
111 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
112 #define RCANFD_GAFLID_GAFLLB		BIT(29)
113 
114 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
115 #define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
116 
117 /* Channel register bits */
118 
119 /* RSCFDnCmCFG - Classical CAN only */
120 #define RCANFD_CFG_SJW(x)		(((x) & 0x3) << 24)
121 #define RCANFD_CFG_TSEG2(x)		(((x) & 0x7) << 20)
122 #define RCANFD_CFG_TSEG1(x)		(((x) & 0xf) << 16)
123 #define RCANFD_CFG_BRP(x)		(((x) & 0x3ff) << 0)
124 
125 /* RSCFDnCFDCmNCFG - CAN FD only */
126 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
127 	(((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 25, 24))
128 
129 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
130 	(((x) & reg_v3u(gpriv, 0xff, 0x7f)) << reg_v3u(gpriv, 17, 16))
131 
132 #define RCANFD_NCFG_NSJW(gpriv, x) \
133 	(((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 10, 11))
134 
135 #define RCANFD_NCFG_NBRP(x)		(((x) & 0x3ff) << 0)
136 
137 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
138 #define RCANFD_CCTR_CTME		BIT(24)
139 #define RCANFD_CCTR_ERRD		BIT(23)
140 #define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
141 #define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
142 #define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
143 #define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
144 #define RCANFD_CCTR_TDCVFIE		BIT(19)
145 #define RCANFD_CCTR_SOCOIE		BIT(18)
146 #define RCANFD_CCTR_EOCOIE		BIT(17)
147 #define RCANFD_CCTR_TAIE		BIT(16)
148 #define RCANFD_CCTR_ALIE		BIT(15)
149 #define RCANFD_CCTR_BLIE		BIT(14)
150 #define RCANFD_CCTR_OLIE		BIT(13)
151 #define RCANFD_CCTR_BORIE		BIT(12)
152 #define RCANFD_CCTR_BOEIE		BIT(11)
153 #define RCANFD_CCTR_EPIE		BIT(10)
154 #define RCANFD_CCTR_EWIE		BIT(9)
155 #define RCANFD_CCTR_BEIE		BIT(8)
156 #define RCANFD_CCTR_CSLPR		BIT(2)
157 #define RCANFD_CCTR_CHMDC_MASK		(0x3)
158 #define RCANFD_CCTR_CHDMC_COPM		(0x0)
159 #define RCANFD_CCTR_CHDMC_CRESET	(0x1)
160 #define RCANFD_CCTR_CHDMC_CHLT		(0x2)
161 
162 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
163 #define RCANFD_CSTS_COMSTS		BIT(7)
164 #define RCANFD_CSTS_RECSTS		BIT(6)
165 #define RCANFD_CSTS_TRMSTS		BIT(5)
166 #define RCANFD_CSTS_BOSTS		BIT(4)
167 #define RCANFD_CSTS_EPSTS		BIT(3)
168 #define RCANFD_CSTS_SLPSTS		BIT(2)
169 #define RCANFD_CSTS_HLTSTS		BIT(1)
170 #define RCANFD_CSTS_CRSTSTS		BIT(0)
171 
172 #define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
173 #define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
174 
175 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
176 #define RCANFD_CERFL_ADERR		BIT(14)
177 #define RCANFD_CERFL_B0ERR		BIT(13)
178 #define RCANFD_CERFL_B1ERR		BIT(12)
179 #define RCANFD_CERFL_CERR		BIT(11)
180 #define RCANFD_CERFL_AERR		BIT(10)
181 #define RCANFD_CERFL_FERR		BIT(9)
182 #define RCANFD_CERFL_SERR		BIT(8)
183 #define RCANFD_CERFL_ALF		BIT(7)
184 #define RCANFD_CERFL_BLF		BIT(6)
185 #define RCANFD_CERFL_OVLF		BIT(5)
186 #define RCANFD_CERFL_BORF		BIT(4)
187 #define RCANFD_CERFL_BOEF		BIT(3)
188 #define RCANFD_CERFL_EPF		BIT(2)
189 #define RCANFD_CERFL_EWF		BIT(1)
190 #define RCANFD_CERFL_BEF		BIT(0)
191 
192 #define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
193 
194 /* RSCFDnCFDCmDCFG */
195 #define RCANFD_DCFG_DSJW(x)		(((x) & 0x7) << 24)
196 
197 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
198 	(((x) & reg_v3u(gpriv, 0x0f, 0x7)) << reg_v3u(gpriv, 16, 20))
199 
200 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
201 	(((x) & reg_v3u(gpriv, 0x1f, 0xf)) << reg_v3u(gpriv, 8, 16))
202 
203 #define RCANFD_DCFG_DBRP(x)		(((x) & 0xff) << 0)
204 
205 /* RSCFDnCFDCmFDCFG */
206 #define RCANFD_FDCFG_CLOE		BIT(30)
207 #define RCANFD_FDCFG_FDOE		BIT(28)
208 #define RCANFD_FDCFG_TDCE		BIT(9)
209 #define RCANFD_FDCFG_TDCOC		BIT(8)
210 #define RCANFD_FDCFG_TDCO(x)		(((x) & 0x7f) >> 16)
211 
212 /* RSCFDnCFDRFCCx */
213 #define RCANFD_RFCC_RFIM		BIT(12)
214 #define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
215 #define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
216 #define RCANFD_RFCC_RFIE		BIT(1)
217 #define RCANFD_RFCC_RFE			BIT(0)
218 
219 /* RSCFDnCFDRFSTSx */
220 #define RCANFD_RFSTS_RFIF		BIT(3)
221 #define RCANFD_RFSTS_RFMLT		BIT(2)
222 #define RCANFD_RFSTS_RFFLL		BIT(1)
223 #define RCANFD_RFSTS_RFEMP		BIT(0)
224 
225 /* RSCFDnCFDRFIDx */
226 #define RCANFD_RFID_RFIDE		BIT(31)
227 #define RCANFD_RFID_RFRTR		BIT(30)
228 
229 /* RSCFDnCFDRFPTRx */
230 #define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
231 #define RCANFD_RFPTR_RFPTR(x)		(((x) >> 16) & 0xfff)
232 #define RCANFD_RFPTR_RFTS(x)		(((x) >> 0) & 0xffff)
233 
234 /* RSCFDnCFDRFFDSTSx */
235 #define RCANFD_RFFDSTS_RFFDF		BIT(2)
236 #define RCANFD_RFFDSTS_RFBRS		BIT(1)
237 #define RCANFD_RFFDSTS_RFESI		BIT(0)
238 
239 /* Common FIFO bits */
240 
241 /* RSCFDnCFDCFCCk */
242 #define RCANFD_CFCC_CFTML(gpriv, x)	(((x) & 0xf) << reg_v3u(gpriv, 16, 20))
243 #define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << reg_v3u(gpriv,  8, 16))
244 #define RCANFD_CFCC_CFIM		BIT(12)
245 #define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << reg_v3u(gpriv, 21,  8))
246 #define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
247 #define RCANFD_CFCC_CFTXIE		BIT(2)
248 #define RCANFD_CFCC_CFE			BIT(0)
249 
250 /* RSCFDnCFDCFSTSk */
251 #define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
252 #define RCANFD_CFSTS_CFTXIF		BIT(4)
253 #define RCANFD_CFSTS_CFMLT		BIT(2)
254 #define RCANFD_CFSTS_CFFLL		BIT(1)
255 #define RCANFD_CFSTS_CFEMP		BIT(0)
256 
257 /* RSCFDnCFDCFIDk */
258 #define RCANFD_CFID_CFIDE		BIT(31)
259 #define RCANFD_CFID_CFRTR		BIT(30)
260 #define RCANFD_CFID_CFID_MASK(x)	((x) & 0x1fffffff)
261 
262 /* RSCFDnCFDCFPTRk */
263 #define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
264 #define RCANFD_CFPTR_CFPTR(x)		(((x) & 0xfff) << 16)
265 #define RCANFD_CFPTR_CFTS(x)		(((x) & 0xff) << 0)
266 
267 /* RSCFDnCFDCFFDCSTSk */
268 #define RCANFD_CFFDCSTS_CFFDF		BIT(2)
269 #define RCANFD_CFFDCSTS_CFBRS		BIT(1)
270 #define RCANFD_CFFDCSTS_CFESI		BIT(0)
271 
272 /* This controller supports either Classical CAN only mode or CAN FD only mode.
273  * These modes are supported in two separate set of register maps & names.
274  * However, some of the register offsets are common for both modes. Those
275  * offsets are listed below as Common registers.
276  *
277  * The CAN FD only mode specific registers & Classical CAN only mode specific
278  * registers are listed separately. Their register names starts with
279  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
280  */
281 
282 /* Common registers */
283 
284 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
285 #define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
286 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
287 #define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
288 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
289 #define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
290 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
291 #define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
292 
293 /* RSCFDnCFDGCFG / RSCFDnGCFG */
294 #define RCANFD_GCFG			(0x0084)
295 /* RSCFDnCFDGCTR / RSCFDnGCTR */
296 #define RCANFD_GCTR			(0x0088)
297 /* RSCFDnCFDGCTS / RSCFDnGCTS */
298 #define RCANFD_GSTS			(0x008c)
299 /* RSCFDnCFDGERFL / RSCFDnGERFL */
300 #define RCANFD_GERFL			(0x0090)
301 /* RSCFDnCFDGTSC / RSCFDnGTSC */
302 #define RCANFD_GTSC			(0x0094)
303 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
304 #define RCANFD_GAFLECTR			(0x0098)
305 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
306 #define RCANFD_GAFLCFG(ch)		(0x009c + (0x04 * ((ch) / 2)))
307 /* RSCFDnCFDRMNB / RSCFDnRMNB */
308 #define RCANFD_RMNB			(0x00a4)
309 /* RSCFDnCFDRMND / RSCFDnRMND */
310 #define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
311 
312 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
313 #define RCANFD_RFCC(gpriv, x)		(reg_v3u(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
314 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
315 #define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
316 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
317 #define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
318 
319 /* Common FIFO Control registers */
320 
321 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
322 #define RCANFD_CFCC(gpriv, ch, idx) \
323 	(reg_v3u(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
324 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
325 #define RCANFD_CFSTS(gpriv, ch, idx) \
326 	(reg_v3u(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
327 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
328 #define RCANFD_CFPCTR(gpriv, ch, idx) \
329 	(reg_v3u(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
330 
331 /* RSCFDnCFDFESTS / RSCFDnFESTS */
332 #define RCANFD_FESTS			(0x0238)
333 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
334 #define RCANFD_FFSTS			(0x023c)
335 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
336 #define RCANFD_FMSTS			(0x0240)
337 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
338 #define RCANFD_RFISTS			(0x0244)
339 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
340 #define RCANFD_CFRISTS			(0x0248)
341 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
342 #define RCANFD_CFTISTS			(0x024c)
343 
344 /* RSCFDnCFDTMCp / RSCFDnTMCp */
345 #define RCANFD_TMC(p)			(0x0250 + (0x01 * (p)))
346 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
347 #define RCANFD_TMSTS(p)			(0x02d0 + (0x01 * (p)))
348 
349 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
350 #define RCANFD_TMTRSTS(y)		(0x0350 + (0x04 * (y)))
351 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
352 #define RCANFD_TMTARSTS(y)		(0x0360 + (0x04 * (y)))
353 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
354 #define RCANFD_TMTCSTS(y)		(0x0370 + (0x04 * (y)))
355 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
356 #define RCANFD_TMTASTS(y)		(0x0380 + (0x04 * (y)))
357 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
358 #define RCANFD_TMIEC(y)			(0x0390 + (0x04 * (y)))
359 
360 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
361 #define RCANFD_TXQCC(m)			(0x03a0 + (0x04 * (m)))
362 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
363 #define RCANFD_TXQSTS(m)		(0x03c0 + (0x04 * (m)))
364 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
365 #define RCANFD_TXQPCTR(m)		(0x03e0 + (0x04 * (m)))
366 
367 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
368 #define RCANFD_THLCC(m)			(0x0400 + (0x04 * (m)))
369 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
370 #define RCANFD_THLSTS(m)		(0x0420 + (0x04 * (m)))
371 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
372 #define RCANFD_THLPCTR(m)		(0x0440 + (0x04 * (m)))
373 
374 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
375 #define RCANFD_GTINTSTS0		(0x0460)
376 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
377 #define RCANFD_GTINTSTS1		(0x0464)
378 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
379 #define RCANFD_GTSTCFG			(0x0468)
380 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
381 #define RCANFD_GTSTCTR			(0x046c)
382 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
383 #define RCANFD_GLOCKK			(0x047c)
384 /* RSCFDnCFDGRMCFG */
385 #define RCANFD_GRMCFG			(0x04fc)
386 
387 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
388 #define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
389 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
390 #define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
391 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
392 #define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
393 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
394 #define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
395 
396 /* Classical CAN only mode register map */
397 
398 /* RSCFDnGAFLXXXj offset */
399 #define RCANFD_C_GAFL_OFFSET		(0x0500)
400 
401 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
402 #define RCANFD_C_RMID(q)		(0x0600 + (0x10 * (q)))
403 #define RCANFD_C_RMPTR(q)		(0x0604 + (0x10 * (q)))
404 #define RCANFD_C_RMDF0(q)		(0x0608 + (0x10 * (q)))
405 #define RCANFD_C_RMDF1(q)		(0x060c + (0x10 * (q)))
406 
407 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
408 #define RCANFD_C_RFOFFSET	(0x0e00)
409 #define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
410 #define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
411 #define RCANFD_C_RFDF(x, df) \
412 		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
413 
414 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
415 #define RCANFD_C_CFOFFSET		(0x0e80)
416 
417 #define RCANFD_C_CFID(ch, idx) \
418 	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
419 
420 #define RCANFD_C_CFPTR(ch, idx)	\
421 	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
422 
423 #define RCANFD_C_CFDF(ch, idx, df) \
424 	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
425 
426 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
427 #define RCANFD_C_TMID(p)		(0x1000 + (0x10 * (p)))
428 #define RCANFD_C_TMPTR(p)		(0x1004 + (0x10 * (p)))
429 #define RCANFD_C_TMDF0(p)		(0x1008 + (0x10 * (p)))
430 #define RCANFD_C_TMDF1(p)		(0x100c + (0x10 * (p)))
431 
432 /* RSCFDnTHLACCm */
433 #define RCANFD_C_THLACC(m)		(0x1800 + (0x04 * (m)))
434 /* RSCFDnRPGACCr */
435 #define RCANFD_C_RPGACC(r)		(0x1900 + (0x04 * (r)))
436 
437 /* R-Car V3U Classical and CAN FD mode specific register map */
438 #define RCANFD_V3U_CFDCFG		(0x1314)
439 #define RCANFD_V3U_DCFG(m)		(0x1400 + (0x20 * (m)))
440 
441 #define RCANFD_V3U_GAFL_OFFSET		(0x1800)
442 
443 /* CAN FD mode specific register map */
444 
445 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
446 #define RCANFD_F_DCFG(m)		(0x0500 + (0x20 * (m)))
447 #define RCANFD_F_CFDCFG(m)		(0x0504 + (0x20 * (m)))
448 #define RCANFD_F_CFDCTR(m)		(0x0508 + (0x20 * (m)))
449 #define RCANFD_F_CFDSTS(m)		(0x050c + (0x20 * (m)))
450 #define RCANFD_F_CFDCRC(m)		(0x0510 + (0x20 * (m)))
451 
452 /* RSCFDnCFDGAFLXXXj offset */
453 #define RCANFD_F_GAFL_OFFSET		(0x1000)
454 
455 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
456 #define RCANFD_F_RMID(q)		(0x2000 + (0x20 * (q)))
457 #define RCANFD_F_RMPTR(q)		(0x2004 + (0x20 * (q)))
458 #define RCANFD_F_RMFDSTS(q)		(0x2008 + (0x20 * (q)))
459 #define RCANFD_F_RMDF(q, b)		(0x200c + (0x04 * (b)) + (0x20 * (q)))
460 
461 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
462 #define RCANFD_F_RFOFFSET(gpriv)	reg_v3u(gpriv, 0x6000, 0x3000)
463 #define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
464 #define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
465 #define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
466 #define RCANFD_F_RFDF(gpriv, x, df) \
467 	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
468 
469 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
470 #define RCANFD_F_CFOFFSET(gpriv)	reg_v3u(gpriv, 0x6400, 0x3400)
471 
472 #define RCANFD_F_CFID(gpriv, ch, idx) \
473 	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
474 
475 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
476 	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
477 
478 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
479 	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
480 
481 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
482 	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
483 	 (0x04 * (df)))
484 
485 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
486 #define RCANFD_F_TMID(p)		(0x4000 + (0x20 * (p)))
487 #define RCANFD_F_TMPTR(p)		(0x4004 + (0x20 * (p)))
488 #define RCANFD_F_TMFDCTR(p)		(0x4008 + (0x20 * (p)))
489 #define RCANFD_F_TMDF(p, b)		(0x400c + (0x20 * (p)) + (0x04 * (b)))
490 
491 /* RSCFDnCFDTHLACCm */
492 #define RCANFD_F_THLACC(m)		(0x6000 + (0x04 * (m)))
493 /* RSCFDnCFDRPGACCr */
494 #define RCANFD_F_RPGACC(r)		(0x6400 + (0x04 * (r)))
495 
496 /* Constants */
497 #define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
498 #define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
499 
500 #define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
501 #define RCANFD_CHANNELS_MASK		BIT((RCANFD_NUM_CHANNELS) - 1)
502 
503 #define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
504 #define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
505 
506 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
507  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
508  * number is added to RFFIFO index.
509  */
510 #define RCANFD_RFFIFO_IDX		0
511 
512 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
513  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
514  */
515 #define RCANFD_CFFIFO_IDX		0
516 
517 /* fCAN clock select register settings */
518 enum rcar_canfd_fcanclk {
519 	RCANFD_CANFDCLK = 0,		/* CANFD clock */
520 	RCANFD_EXTCLK,			/* Externally input clock */
521 };
522 
523 struct rcar_canfd_global;
524 
525 /* Channel priv data */
526 struct rcar_canfd_channel {
527 	struct can_priv can;			/* Must be the first member */
528 	struct net_device *ndev;
529 	struct rcar_canfd_global *gpriv;	/* Controller reference */
530 	void __iomem *base;			/* Register base address */
531 	struct napi_struct napi;
532 	u32 tx_head;				/* Incremented on xmit */
533 	u32 tx_tail;				/* Incremented on xmit done */
534 	u32 channel;				/* Channel number */
535 	spinlock_t tx_lock;			/* To protect tx path */
536 };
537 
538 /* Global priv data */
539 struct rcar_canfd_global {
540 	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
541 	void __iomem *base;		/* Register base address */
542 	struct platform_device *pdev;	/* Respective platform device */
543 	struct clk *clkp;		/* Peripheral clock */
544 	struct clk *can_clk;		/* fCAN clock */
545 	enum rcar_canfd_fcanclk fcan;	/* CANFD or Ext clock */
546 	unsigned long channels_mask;	/* Enabled channels mask */
547 	bool fdmode;			/* CAN FD or Classical CAN only mode */
548 	struct reset_control *rstc1;
549 	struct reset_control *rstc2;
550 	enum rcanfd_chip_id chip_id;
551 	u32 max_channels;
552 };
553 
554 /* CAN FD mode nominal rate constants */
555 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
556 	.name = RCANFD_DRV_NAME,
557 	.tseg1_min = 2,
558 	.tseg1_max = 128,
559 	.tseg2_min = 2,
560 	.tseg2_max = 32,
561 	.sjw_max = 32,
562 	.brp_min = 1,
563 	.brp_max = 1024,
564 	.brp_inc = 1,
565 };
566 
567 /* CAN FD mode data rate constants */
568 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
569 	.name = RCANFD_DRV_NAME,
570 	.tseg1_min = 2,
571 	.tseg1_max = 16,
572 	.tseg2_min = 2,
573 	.tseg2_max = 8,
574 	.sjw_max = 8,
575 	.brp_min = 1,
576 	.brp_max = 256,
577 	.brp_inc = 1,
578 };
579 
580 /* Classical CAN mode bitrate constants */
581 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
582 	.name = RCANFD_DRV_NAME,
583 	.tseg1_min = 4,
584 	.tseg1_max = 16,
585 	.tseg2_min = 2,
586 	.tseg2_max = 8,
587 	.sjw_max = 4,
588 	.brp_min = 1,
589 	.brp_max = 1024,
590 	.brp_inc = 1,
591 };
592 
593 /* Helper functions */
594 static inline bool is_v3u(struct rcar_canfd_global *gpriv)
595 {
596 	return gpriv->chip_id == RENESAS_R8A779A0;
597 }
598 
599 static inline u32 reg_v3u(struct rcar_canfd_global *gpriv,
600 			  u32 v3u, u32 not_v3u)
601 {
602 	return is_v3u(gpriv) ? v3u : not_v3u;
603 }
604 
605 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
606 {
607 	u32 data = readl(reg);
608 
609 	data &= ~mask;
610 	data |= (val & mask);
611 	writel(data, reg);
612 }
613 
614 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
615 {
616 	return readl(base + (offset));
617 }
618 
619 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
620 {
621 	writel(val, base + (offset));
622 }
623 
624 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
625 {
626 	rcar_canfd_update(val, val, base + (reg));
627 }
628 
629 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
630 {
631 	rcar_canfd_update(val, 0, base + (reg));
632 }
633 
634 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
635 				  u32 mask, u32 val)
636 {
637 	rcar_canfd_update(mask, val, base + (reg));
638 }
639 
640 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
641 				struct canfd_frame *cf, u32 off)
642 {
643 	u32 i, lwords;
644 
645 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
646 	for (i = 0; i < lwords; i++)
647 		*((u32 *)cf->data + i) =
648 			rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
649 }
650 
651 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
652 				struct canfd_frame *cf, u32 off)
653 {
654 	u32 i, lwords;
655 
656 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
657 	for (i = 0; i < lwords; i++)
658 		rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
659 				 *((u32 *)cf->data + i));
660 }
661 
662 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
663 {
664 	u32 i;
665 
666 	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
667 		can_free_echo_skb(ndev, i, NULL);
668 }
669 
670 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
671 {
672 	if (is_v3u(gpriv)) {
673 		if (gpriv->fdmode)
674 			rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
675 					   RCANFD_FDCFG_FDOE);
676 		else
677 			rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
678 					   RCANFD_FDCFG_CLOE);
679 	} else {
680 		if (gpriv->fdmode)
681 			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
682 					   RCANFD_GRMCFG_RCMC);
683 		else
684 			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
685 					     RCANFD_GRMCFG_RCMC);
686 	}
687 }
688 
689 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
690 {
691 	u32 sts, ch;
692 	int err;
693 
694 	/* Check RAMINIT flag as CAN RAM initialization takes place
695 	 * after the MCU reset
696 	 */
697 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
698 				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
699 	if (err) {
700 		dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
701 		return err;
702 	}
703 
704 	/* Transition to Global Reset mode */
705 	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
706 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
707 			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
708 
709 	/* Ensure Global reset mode */
710 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
711 				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
712 	if (err) {
713 		dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
714 		return err;
715 	}
716 
717 	/* Reset Global error flags */
718 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
719 
720 	/* Set the controller into appropriate mode */
721 	rcar_canfd_set_mode(gpriv);
722 
723 	/* Transition all Channels to reset mode */
724 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
725 		rcar_canfd_clear_bit(gpriv->base,
726 				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
727 
728 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
729 				      RCANFD_CCTR_CHMDC_MASK,
730 				      RCANFD_CCTR_CHDMC_CRESET);
731 
732 		/* Ensure Channel reset mode */
733 		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
734 					 (sts & RCANFD_CSTS_CRSTSTS),
735 					 2, 500000);
736 		if (err) {
737 			dev_dbg(&gpriv->pdev->dev,
738 				"channel %u reset failed\n", ch);
739 			return err;
740 		}
741 	}
742 	return 0;
743 }
744 
745 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
746 {
747 	u32 cfg, ch;
748 
749 	/* Global configuration settings */
750 
751 	/* ECC Error flag Enable */
752 	cfg = RCANFD_GCFG_EEFE;
753 
754 	if (gpriv->fdmode)
755 		/* Truncate payload to configured message size RFPLS */
756 		cfg |= RCANFD_GCFG_CMPOC;
757 
758 	/* Set External Clock if selected */
759 	if (gpriv->fcan != RCANFD_CANFDCLK)
760 		cfg |= RCANFD_GCFG_DCS;
761 
762 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
763 
764 	/* Channel configuration settings */
765 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
766 		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
767 				   RCANFD_CCTR_ERRD);
768 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
769 				      RCANFD_CCTR_BOM_MASK,
770 				      RCANFD_CCTR_BOM_BENTRY);
771 	}
772 }
773 
774 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
775 					   u32 ch)
776 {
777 	u32 cfg;
778 	int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
779 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
780 
781 	if (ch == 0) {
782 		start = 0; /* Channel 0 always starts from 0th rule */
783 	} else {
784 		/* Get number of Channel 0 rules and adjust */
785 		cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch));
786 		start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg);
787 	}
788 
789 	/* Enable write access to entry */
790 	page = RCANFD_GAFL_PAGENUM(start);
791 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
792 			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
793 			    RCANFD_GAFLECTR_AFLDAE));
794 
795 	/* Write number of rules for channel */
796 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
797 			   RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
798 	if (is_v3u(gpriv))
799 		offset = RCANFD_V3U_GAFL_OFFSET;
800 	else if (gpriv->fdmode)
801 		offset = RCANFD_F_GAFL_OFFSET;
802 	else
803 		offset = RCANFD_C_GAFL_OFFSET;
804 
805 	/* Accept all IDs */
806 	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
807 	/* IDE or RTR is not considered for matching */
808 	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
809 	/* Any data length accepted */
810 	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
811 	/* Place the msg in corresponding Rx FIFO entry */
812 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start),
813 			   RCANFD_GAFLP1_GAFLFDP(ridx));
814 
815 	/* Disable write access to page */
816 	rcar_canfd_clear_bit(gpriv->base,
817 			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
818 }
819 
820 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
821 {
822 	/* Rx FIFO is used for reception */
823 	u32 cfg;
824 	u16 rfdc, rfpls;
825 
826 	/* Select Rx FIFO based on channel */
827 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
828 
829 	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
830 	if (gpriv->fdmode)
831 		rfpls = 7;	/* b111 - Max 64 bytes payload */
832 	else
833 		rfpls = 0;	/* b000 - Max 8 bytes payload */
834 
835 	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
836 		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
837 	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
838 }
839 
840 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
841 {
842 	/* Tx/Rx(Common) FIFO configured in Tx mode is
843 	 * used for transmission
844 	 *
845 	 * Each channel has 3 Common FIFO dedicated to them.
846 	 * Use the 1st (index 0) out of 3
847 	 */
848 	u32 cfg;
849 	u16 cftml, cfm, cfdc, cfpls;
850 
851 	cftml = 0;		/* 0th buffer */
852 	cfm = 1;		/* b01 - Transmit mode */
853 	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
854 	if (gpriv->fdmode)
855 		cfpls = 7;	/* b111 - Max 64 bytes payload */
856 	else
857 		cfpls = 0;	/* b000 - Max 8 bytes payload */
858 
859 	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
860 		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
861 		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
862 	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
863 
864 	if (gpriv->fdmode)
865 		/* Clear FD mode specific control/status register */
866 		rcar_canfd_write(gpriv->base,
867 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
868 }
869 
870 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
871 {
872 	u32 ctr;
873 
874 	/* Clear any stray error interrupt flags */
875 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
876 
877 	/* Global interrupts setup */
878 	ctr = RCANFD_GCTR_MEIE;
879 	if (gpriv->fdmode)
880 		ctr |= RCANFD_GCTR_CFMPOFIE;
881 
882 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
883 }
884 
885 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
886 						 *gpriv)
887 {
888 	/* Disable all interrupts */
889 	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
890 
891 	/* Clear any stray error interrupt flags */
892 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
893 }
894 
895 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
896 						 *priv)
897 {
898 	u32 ctr, ch = priv->channel;
899 
900 	/* Clear any stray error flags */
901 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
902 
903 	/* Channel interrupts setup */
904 	ctr = (RCANFD_CCTR_TAIE |
905 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
906 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
907 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
908 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
909 	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
910 }
911 
912 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
913 						  *priv)
914 {
915 	u32 ctr, ch = priv->channel;
916 
917 	ctr = (RCANFD_CCTR_TAIE |
918 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
919 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
920 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
921 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
922 	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
923 
924 	/* Clear any stray error flags */
925 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
926 }
927 
928 static void rcar_canfd_global_error(struct net_device *ndev)
929 {
930 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
931 	struct rcar_canfd_global *gpriv = priv->gpriv;
932 	struct net_device_stats *stats = &ndev->stats;
933 	u32 ch = priv->channel;
934 	u32 gerfl, sts;
935 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
936 
937 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
938 	if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) {
939 		netdev_dbg(ndev, "Ch0: ECC Error flag\n");
940 		stats->tx_dropped++;
941 	}
942 	if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) {
943 		netdev_dbg(ndev, "Ch1: ECC Error flag\n");
944 		stats->tx_dropped++;
945 	}
946 	if (gerfl & RCANFD_GERFL_MES) {
947 		sts = rcar_canfd_read(priv->base,
948 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
949 		if (sts & RCANFD_CFSTS_CFMLT) {
950 			netdev_dbg(ndev, "Tx Message Lost flag\n");
951 			stats->tx_dropped++;
952 			rcar_canfd_write(priv->base,
953 					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
954 					 sts & ~RCANFD_CFSTS_CFMLT);
955 		}
956 
957 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
958 		if (sts & RCANFD_RFSTS_RFMLT) {
959 			netdev_dbg(ndev, "Rx Message Lost flag\n");
960 			stats->rx_dropped++;
961 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
962 					 sts & ~RCANFD_RFSTS_RFMLT);
963 		}
964 	}
965 	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
966 		/* Message Lost flag will be set for respective channel
967 		 * when this condition happens with counters and flags
968 		 * already updated.
969 		 */
970 		netdev_dbg(ndev, "global payload overflow interrupt\n");
971 	}
972 
973 	/* Clear all global error interrupts. Only affected channels bits
974 	 * get cleared
975 	 */
976 	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
977 }
978 
979 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
980 			     u16 txerr, u16 rxerr)
981 {
982 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
983 	struct net_device_stats *stats = &ndev->stats;
984 	struct can_frame *cf;
985 	struct sk_buff *skb;
986 	u32 ch = priv->channel;
987 
988 	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
989 
990 	/* Propagate the error condition to the CAN stack */
991 	skb = alloc_can_err_skb(ndev, &cf);
992 	if (!skb) {
993 		stats->rx_dropped++;
994 		return;
995 	}
996 
997 	/* Channel error interrupts */
998 	if (cerfl & RCANFD_CERFL_BEF) {
999 		netdev_dbg(ndev, "Bus error\n");
1000 		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1001 		cf->data[2] = CAN_ERR_PROT_UNSPEC;
1002 		priv->can.can_stats.bus_error++;
1003 	}
1004 	if (cerfl & RCANFD_CERFL_ADERR) {
1005 		netdev_dbg(ndev, "ACK Delimiter Error\n");
1006 		stats->tx_errors++;
1007 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1008 	}
1009 	if (cerfl & RCANFD_CERFL_B0ERR) {
1010 		netdev_dbg(ndev, "Bit Error (dominant)\n");
1011 		stats->tx_errors++;
1012 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1013 	}
1014 	if (cerfl & RCANFD_CERFL_B1ERR) {
1015 		netdev_dbg(ndev, "Bit Error (recessive)\n");
1016 		stats->tx_errors++;
1017 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1018 	}
1019 	if (cerfl & RCANFD_CERFL_CERR) {
1020 		netdev_dbg(ndev, "CRC Error\n");
1021 		stats->rx_errors++;
1022 		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1023 	}
1024 	if (cerfl & RCANFD_CERFL_AERR) {
1025 		netdev_dbg(ndev, "ACK Error\n");
1026 		stats->tx_errors++;
1027 		cf->can_id |= CAN_ERR_ACK;
1028 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1029 	}
1030 	if (cerfl & RCANFD_CERFL_FERR) {
1031 		netdev_dbg(ndev, "Form Error\n");
1032 		stats->rx_errors++;
1033 		cf->data[2] |= CAN_ERR_PROT_FORM;
1034 	}
1035 	if (cerfl & RCANFD_CERFL_SERR) {
1036 		netdev_dbg(ndev, "Stuff Error\n");
1037 		stats->rx_errors++;
1038 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1039 	}
1040 	if (cerfl & RCANFD_CERFL_ALF) {
1041 		netdev_dbg(ndev, "Arbitration lost Error\n");
1042 		priv->can.can_stats.arbitration_lost++;
1043 		cf->can_id |= CAN_ERR_LOSTARB;
1044 		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1045 	}
1046 	if (cerfl & RCANFD_CERFL_BLF) {
1047 		netdev_dbg(ndev, "Bus Lock Error\n");
1048 		stats->rx_errors++;
1049 		cf->can_id |= CAN_ERR_BUSERROR;
1050 	}
1051 	if (cerfl & RCANFD_CERFL_EWF) {
1052 		netdev_dbg(ndev, "Error warning interrupt\n");
1053 		priv->can.state = CAN_STATE_ERROR_WARNING;
1054 		priv->can.can_stats.error_warning++;
1055 		cf->can_id |= CAN_ERR_CRTL;
1056 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1057 			CAN_ERR_CRTL_RX_WARNING;
1058 		cf->data[6] = txerr;
1059 		cf->data[7] = rxerr;
1060 	}
1061 	if (cerfl & RCANFD_CERFL_EPF) {
1062 		netdev_dbg(ndev, "Error passive interrupt\n");
1063 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1064 		priv->can.can_stats.error_passive++;
1065 		cf->can_id |= CAN_ERR_CRTL;
1066 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1067 			CAN_ERR_CRTL_RX_PASSIVE;
1068 		cf->data[6] = txerr;
1069 		cf->data[7] = rxerr;
1070 	}
1071 	if (cerfl & RCANFD_CERFL_BOEF) {
1072 		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1073 		rcar_canfd_tx_failure_cleanup(ndev);
1074 		priv->can.state = CAN_STATE_BUS_OFF;
1075 		priv->can.can_stats.bus_off++;
1076 		can_bus_off(ndev);
1077 		cf->can_id |= CAN_ERR_BUSOFF;
1078 	}
1079 	if (cerfl & RCANFD_CERFL_OVLF) {
1080 		netdev_dbg(ndev,
1081 			   "Overload Frame Transmission error interrupt\n");
1082 		stats->tx_errors++;
1083 		cf->can_id |= CAN_ERR_PROT;
1084 		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1085 	}
1086 
1087 	/* Clear channel error interrupts that are handled */
1088 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1089 			 RCANFD_CERFL_ERR(~cerfl));
1090 	netif_rx(skb);
1091 }
1092 
1093 static void rcar_canfd_tx_done(struct net_device *ndev)
1094 {
1095 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1096 	struct rcar_canfd_global *gpriv = priv->gpriv;
1097 	struct net_device_stats *stats = &ndev->stats;
1098 	u32 sts;
1099 	unsigned long flags;
1100 	u32 ch = priv->channel;
1101 
1102 	do {
1103 		u8 unsent, sent;
1104 
1105 		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1106 		stats->tx_packets++;
1107 		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1108 
1109 		spin_lock_irqsave(&priv->tx_lock, flags);
1110 		priv->tx_tail++;
1111 		sts = rcar_canfd_read(priv->base,
1112 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1113 		unsent = RCANFD_CFSTS_CFMC(sts);
1114 
1115 		/* Wake producer only when there is room */
1116 		if (unsent != RCANFD_FIFO_DEPTH)
1117 			netif_wake_queue(ndev);
1118 
1119 		if (priv->tx_head - priv->tx_tail <= unsent) {
1120 			spin_unlock_irqrestore(&priv->tx_lock, flags);
1121 			break;
1122 		}
1123 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1124 
1125 	} while (1);
1126 
1127 	/* Clear interrupt */
1128 	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1129 			 sts & ~RCANFD_CFSTS_CFTXIF);
1130 }
1131 
1132 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1133 {
1134 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1135 	struct net_device *ndev = priv->ndev;
1136 	u32 gerfl;
1137 
1138 	/* Handle global error interrupts */
1139 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1140 	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1141 		rcar_canfd_global_error(ndev);
1142 }
1143 
1144 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1145 {
1146 	struct rcar_canfd_global *gpriv = dev_id;
1147 	u32 ch;
1148 
1149 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1150 		rcar_canfd_handle_global_err(gpriv, ch);
1151 
1152 	return IRQ_HANDLED;
1153 }
1154 
1155 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1156 {
1157 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1158 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1159 	u32 sts;
1160 
1161 	/* Handle Rx interrupts */
1162 	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1163 	if (likely(sts & RCANFD_RFSTS_RFIF)) {
1164 		if (napi_schedule_prep(&priv->napi)) {
1165 			/* Disable Rx FIFO interrupts */
1166 			rcar_canfd_clear_bit(priv->base,
1167 					     RCANFD_RFCC(gpriv, ridx),
1168 					     RCANFD_RFCC_RFIE);
1169 			__napi_schedule(&priv->napi);
1170 		}
1171 	}
1172 }
1173 
1174 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1175 {
1176 	struct rcar_canfd_global *gpriv = dev_id;
1177 	u32 ch;
1178 
1179 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1180 		rcar_canfd_handle_global_receive(gpriv, ch);
1181 
1182 	return IRQ_HANDLED;
1183 }
1184 
1185 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1186 {
1187 	struct rcar_canfd_global *gpriv = dev_id;
1188 	u32 ch;
1189 
1190 	/* Global error interrupts still indicate a condition specific
1191 	 * to a channel. RxFIFO interrupt is a global interrupt.
1192 	 */
1193 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
1194 		rcar_canfd_handle_global_err(gpriv, ch);
1195 		rcar_canfd_handle_global_receive(gpriv, ch);
1196 	}
1197 	return IRQ_HANDLED;
1198 }
1199 
1200 static void rcar_canfd_state_change(struct net_device *ndev,
1201 				    u16 txerr, u16 rxerr)
1202 {
1203 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1204 	struct net_device_stats *stats = &ndev->stats;
1205 	enum can_state rx_state, tx_state, state = priv->can.state;
1206 	struct can_frame *cf;
1207 	struct sk_buff *skb;
1208 
1209 	/* Handle transition from error to normal states */
1210 	if (txerr < 96 && rxerr < 96)
1211 		state = CAN_STATE_ERROR_ACTIVE;
1212 	else if (txerr < 128 && rxerr < 128)
1213 		state = CAN_STATE_ERROR_WARNING;
1214 
1215 	if (state != priv->can.state) {
1216 		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1217 			   state, priv->can.state, txerr, rxerr);
1218 		skb = alloc_can_err_skb(ndev, &cf);
1219 		if (!skb) {
1220 			stats->rx_dropped++;
1221 			return;
1222 		}
1223 		tx_state = txerr >= rxerr ? state : 0;
1224 		rx_state = txerr <= rxerr ? state : 0;
1225 
1226 		can_change_state(ndev, cf, tx_state, rx_state);
1227 		netif_rx(skb);
1228 	}
1229 }
1230 
1231 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1232 {
1233 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1234 	struct net_device *ndev = priv->ndev;
1235 	u32 sts;
1236 
1237 	/* Handle Tx interrupts */
1238 	sts = rcar_canfd_read(priv->base,
1239 			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1240 	if (likely(sts & RCANFD_CFSTS_CFTXIF))
1241 		rcar_canfd_tx_done(ndev);
1242 }
1243 
1244 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1245 {
1246 	struct rcar_canfd_global *gpriv = dev_id;
1247 	u32 ch;
1248 
1249 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1250 		rcar_canfd_handle_channel_tx(gpriv, ch);
1251 
1252 	return IRQ_HANDLED;
1253 }
1254 
1255 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1256 {
1257 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1258 	struct net_device *ndev = priv->ndev;
1259 	u16 txerr, rxerr;
1260 	u32 sts, cerfl;
1261 
1262 	/* Handle channel error interrupts */
1263 	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1264 	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1265 	txerr = RCANFD_CSTS_TECCNT(sts);
1266 	rxerr = RCANFD_CSTS_RECCNT(sts);
1267 	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1268 		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1269 
1270 	/* Handle state change to lower states */
1271 	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1272 		     priv->can.state != CAN_STATE_BUS_OFF))
1273 		rcar_canfd_state_change(ndev, txerr, rxerr);
1274 }
1275 
1276 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1277 {
1278 	struct rcar_canfd_global *gpriv = dev_id;
1279 	u32 ch;
1280 
1281 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1282 		rcar_canfd_handle_channel_err(gpriv, ch);
1283 
1284 	return IRQ_HANDLED;
1285 }
1286 
1287 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1288 {
1289 	struct rcar_canfd_global *gpriv = dev_id;
1290 	u32 ch;
1291 
1292 	/* Common FIFO is a per channel resource */
1293 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
1294 		rcar_canfd_handle_channel_err(gpriv, ch);
1295 		rcar_canfd_handle_channel_tx(gpriv, ch);
1296 	}
1297 
1298 	return IRQ_HANDLED;
1299 }
1300 
1301 static void rcar_canfd_set_bittiming(struct net_device *dev)
1302 {
1303 	struct rcar_canfd_channel *priv = netdev_priv(dev);
1304 	struct rcar_canfd_global *gpriv = priv->gpriv;
1305 	const struct can_bittiming *bt = &priv->can.bittiming;
1306 	const struct can_bittiming *dbt = &priv->can.data_bittiming;
1307 	u16 brp, sjw, tseg1, tseg2;
1308 	u32 cfg;
1309 	u32 ch = priv->channel;
1310 
1311 	/* Nominal bit timing settings */
1312 	brp = bt->brp - 1;
1313 	sjw = bt->sjw - 1;
1314 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1315 	tseg2 = bt->phase_seg2 - 1;
1316 
1317 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1318 		/* CAN FD only mode */
1319 		cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1320 		       RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1321 
1322 		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1323 		netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1324 			   brp, sjw, tseg1, tseg2);
1325 
1326 		/* Data bit timing settings */
1327 		brp = dbt->brp - 1;
1328 		sjw = dbt->sjw - 1;
1329 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1330 		tseg2 = dbt->phase_seg2 - 1;
1331 
1332 		cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1333 		       RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1334 
1335 		rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
1336 		netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1337 			   brp, sjw, tseg1, tseg2);
1338 	} else {
1339 		/* Classical CAN only mode */
1340 		if (is_v3u(gpriv)) {
1341 			cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1342 			       RCANFD_NCFG_NBRP(brp) |
1343 			       RCANFD_NCFG_NSJW(gpriv, sjw) |
1344 			       RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1345 		} else {
1346 			cfg = (RCANFD_CFG_TSEG1(tseg1) |
1347 			       RCANFD_CFG_BRP(brp) |
1348 			       RCANFD_CFG_SJW(sjw) |
1349 			       RCANFD_CFG_TSEG2(tseg2));
1350 		}
1351 
1352 		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1353 		netdev_dbg(priv->ndev,
1354 			   "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1355 			   brp, sjw, tseg1, tseg2);
1356 	}
1357 }
1358 
1359 static int rcar_canfd_start(struct net_device *ndev)
1360 {
1361 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1362 	struct rcar_canfd_global *gpriv = priv->gpriv;
1363 	int err = -EOPNOTSUPP;
1364 	u32 sts, ch = priv->channel;
1365 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1366 
1367 	rcar_canfd_set_bittiming(ndev);
1368 
1369 	rcar_canfd_enable_channel_interrupts(priv);
1370 
1371 	/* Set channel to Operational mode */
1372 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1373 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1374 
1375 	/* Verify channel mode change */
1376 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1377 				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1378 	if (err) {
1379 		netdev_err(ndev, "channel %u communication state failed\n", ch);
1380 		goto fail_mode_change;
1381 	}
1382 
1383 	/* Enable Common & Rx FIFO */
1384 	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1385 			   RCANFD_CFCC_CFE);
1386 	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1387 
1388 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1389 	return 0;
1390 
1391 fail_mode_change:
1392 	rcar_canfd_disable_channel_interrupts(priv);
1393 	return err;
1394 }
1395 
1396 static int rcar_canfd_open(struct net_device *ndev)
1397 {
1398 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1399 	struct rcar_canfd_global *gpriv = priv->gpriv;
1400 	int err;
1401 
1402 	/* Peripheral clock is already enabled in probe */
1403 	err = clk_prepare_enable(gpriv->can_clk);
1404 	if (err) {
1405 		netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
1406 		goto out_clock;
1407 	}
1408 
1409 	err = open_candev(ndev);
1410 	if (err) {
1411 		netdev_err(ndev, "open_candev() failed, error %d\n", err);
1412 		goto out_can_clock;
1413 	}
1414 
1415 	napi_enable(&priv->napi);
1416 	err = rcar_canfd_start(ndev);
1417 	if (err)
1418 		goto out_close;
1419 	netif_start_queue(ndev);
1420 	return 0;
1421 out_close:
1422 	napi_disable(&priv->napi);
1423 	close_candev(ndev);
1424 out_can_clock:
1425 	clk_disable_unprepare(gpriv->can_clk);
1426 out_clock:
1427 	return err;
1428 }
1429 
1430 static void rcar_canfd_stop(struct net_device *ndev)
1431 {
1432 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1433 	struct rcar_canfd_global *gpriv = priv->gpriv;
1434 	int err;
1435 	u32 sts, ch = priv->channel;
1436 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1437 
1438 	/* Transition to channel reset mode  */
1439 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1440 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1441 
1442 	/* Check Channel reset mode */
1443 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1444 				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1445 	if (err)
1446 		netdev_err(ndev, "channel %u reset failed\n", ch);
1447 
1448 	rcar_canfd_disable_channel_interrupts(priv);
1449 
1450 	/* Disable Common & Rx FIFO */
1451 	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1452 			     RCANFD_CFCC_CFE);
1453 	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1454 
1455 	/* Set the state as STOPPED */
1456 	priv->can.state = CAN_STATE_STOPPED;
1457 }
1458 
1459 static int rcar_canfd_close(struct net_device *ndev)
1460 {
1461 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1462 	struct rcar_canfd_global *gpriv = priv->gpriv;
1463 
1464 	netif_stop_queue(ndev);
1465 	rcar_canfd_stop(ndev);
1466 	napi_disable(&priv->napi);
1467 	clk_disable_unprepare(gpriv->can_clk);
1468 	close_candev(ndev);
1469 	return 0;
1470 }
1471 
1472 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1473 					 struct net_device *ndev)
1474 {
1475 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1476 	struct rcar_canfd_global *gpriv = priv->gpriv;
1477 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1478 	u32 sts = 0, id, dlc;
1479 	unsigned long flags;
1480 	u32 ch = priv->channel;
1481 
1482 	if (can_dropped_invalid_skb(ndev, skb))
1483 		return NETDEV_TX_OK;
1484 
1485 	if (cf->can_id & CAN_EFF_FLAG) {
1486 		id = cf->can_id & CAN_EFF_MASK;
1487 		id |= RCANFD_CFID_CFIDE;
1488 	} else {
1489 		id = cf->can_id & CAN_SFF_MASK;
1490 	}
1491 
1492 	if (cf->can_id & CAN_RTR_FLAG)
1493 		id |= RCANFD_CFID_CFRTR;
1494 
1495 	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1496 
1497 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
1498 		rcar_canfd_write(priv->base,
1499 				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1500 		rcar_canfd_write(priv->base,
1501 				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1502 
1503 		if (can_is_canfd_skb(skb)) {
1504 			/* CAN FD frame format */
1505 			sts |= RCANFD_CFFDCSTS_CFFDF;
1506 			if (cf->flags & CANFD_BRS)
1507 				sts |= RCANFD_CFFDCSTS_CFBRS;
1508 
1509 			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1510 				sts |= RCANFD_CFFDCSTS_CFESI;
1511 		}
1512 
1513 		rcar_canfd_write(priv->base,
1514 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1515 
1516 		rcar_canfd_put_data(priv, cf,
1517 				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1518 	} else {
1519 		rcar_canfd_write(priv->base,
1520 				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1521 		rcar_canfd_write(priv->base,
1522 				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1523 		rcar_canfd_put_data(priv, cf,
1524 				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1525 	}
1526 
1527 	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1528 
1529 	spin_lock_irqsave(&priv->tx_lock, flags);
1530 	priv->tx_head++;
1531 
1532 	/* Stop the queue if we've filled all FIFO entries */
1533 	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1534 		netif_stop_queue(ndev);
1535 
1536 	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1537 	 * pointer for the Common FIFO
1538 	 */
1539 	rcar_canfd_write(priv->base,
1540 			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1541 
1542 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1543 	return NETDEV_TX_OK;
1544 }
1545 
1546 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1547 {
1548 	struct net_device_stats *stats = &priv->ndev->stats;
1549 	struct rcar_canfd_global *gpriv = priv->gpriv;
1550 	struct canfd_frame *cf;
1551 	struct sk_buff *skb;
1552 	u32 sts = 0, id, dlc;
1553 	u32 ch = priv->channel;
1554 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1555 
1556 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
1557 		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1558 		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1559 
1560 		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1561 
1562 		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1563 		    sts & RCANFD_RFFDSTS_RFFDF)
1564 			skb = alloc_canfd_skb(priv->ndev, &cf);
1565 		else
1566 			skb = alloc_can_skb(priv->ndev,
1567 					    (struct can_frame **)&cf);
1568 	} else {
1569 		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1570 		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1571 		skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1572 	}
1573 
1574 	if (!skb) {
1575 		stats->rx_dropped++;
1576 		return;
1577 	}
1578 
1579 	if (id & RCANFD_RFID_RFIDE)
1580 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1581 	else
1582 		cf->can_id = id & CAN_SFF_MASK;
1583 
1584 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1585 		if (sts & RCANFD_RFFDSTS_RFFDF)
1586 			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1587 		else
1588 			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1589 
1590 		if (sts & RCANFD_RFFDSTS_RFESI) {
1591 			cf->flags |= CANFD_ESI;
1592 			netdev_dbg(priv->ndev, "ESI Error\n");
1593 		}
1594 
1595 		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1596 			cf->can_id |= CAN_RTR_FLAG;
1597 		} else {
1598 			if (sts & RCANFD_RFFDSTS_RFBRS)
1599 				cf->flags |= CANFD_BRS;
1600 
1601 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1602 		}
1603 	} else {
1604 		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1605 		if (id & RCANFD_RFID_RFRTR)
1606 			cf->can_id |= CAN_RTR_FLAG;
1607 		else if (is_v3u(gpriv))
1608 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1609 		else
1610 			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1611 	}
1612 
1613 	/* Write 0xff to RFPC to increment the CPU-side
1614 	 * pointer of the Rx FIFO
1615 	 */
1616 	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1617 
1618 	if (!(cf->can_id & CAN_RTR_FLAG))
1619 		stats->rx_bytes += cf->len;
1620 	stats->rx_packets++;
1621 	netif_receive_skb(skb);
1622 }
1623 
1624 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1625 {
1626 	struct rcar_canfd_channel *priv =
1627 		container_of(napi, struct rcar_canfd_channel, napi);
1628 	struct rcar_canfd_global *gpriv = priv->gpriv;
1629 	int num_pkts;
1630 	u32 sts;
1631 	u32 ch = priv->channel;
1632 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1633 
1634 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1635 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1636 		/* Check FIFO empty condition */
1637 		if (sts & RCANFD_RFSTS_RFEMP)
1638 			break;
1639 
1640 		rcar_canfd_rx_pkt(priv);
1641 
1642 		/* Clear interrupt bit */
1643 		if (sts & RCANFD_RFSTS_RFIF)
1644 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1645 					 sts & ~RCANFD_RFSTS_RFIF);
1646 	}
1647 
1648 	/* All packets processed */
1649 	if (num_pkts < quota) {
1650 		if (napi_complete_done(napi, num_pkts)) {
1651 			/* Enable Rx FIFO interrupts */
1652 			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1653 					   RCANFD_RFCC_RFIE);
1654 		}
1655 	}
1656 	return num_pkts;
1657 }
1658 
1659 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1660 {
1661 	int err;
1662 
1663 	switch (mode) {
1664 	case CAN_MODE_START:
1665 		err = rcar_canfd_start(ndev);
1666 		if (err)
1667 			return err;
1668 		netif_wake_queue(ndev);
1669 		return 0;
1670 	default:
1671 		return -EOPNOTSUPP;
1672 	}
1673 }
1674 
1675 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1676 				       struct can_berr_counter *bec)
1677 {
1678 	struct rcar_canfd_channel *priv = netdev_priv(dev);
1679 	u32 val, ch = priv->channel;
1680 
1681 	/* Peripheral clock is already enabled in probe */
1682 	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1683 	bec->txerr = RCANFD_CSTS_TECCNT(val);
1684 	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1685 	return 0;
1686 }
1687 
1688 static const struct net_device_ops rcar_canfd_netdev_ops = {
1689 	.ndo_open = rcar_canfd_open,
1690 	.ndo_stop = rcar_canfd_close,
1691 	.ndo_start_xmit = rcar_canfd_start_xmit,
1692 	.ndo_change_mtu = can_change_mtu,
1693 };
1694 
1695 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1696 				    u32 fcan_freq)
1697 {
1698 	struct platform_device *pdev = gpriv->pdev;
1699 	struct rcar_canfd_channel *priv;
1700 	struct net_device *ndev;
1701 	int err = -ENODEV;
1702 
1703 	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1704 	if (!ndev) {
1705 		dev_err(&pdev->dev, "alloc_candev() failed\n");
1706 		return -ENOMEM;
1707 	}
1708 	priv = netdev_priv(ndev);
1709 
1710 	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1711 	ndev->flags |= IFF_ECHO;
1712 	priv->ndev = ndev;
1713 	priv->base = gpriv->base;
1714 	priv->channel = ch;
1715 	priv->can.clock.freq = fcan_freq;
1716 	dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
1717 
1718 	if (gpriv->chip_id == RENESAS_RZG2L) {
1719 		char *irq_name;
1720 		int err_irq;
1721 		int tx_irq;
1722 
1723 		err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1724 		if (err_irq < 0) {
1725 			err = err_irq;
1726 			goto fail;
1727 		}
1728 
1729 		tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1730 		if (tx_irq < 0) {
1731 			err = tx_irq;
1732 			goto fail;
1733 		}
1734 
1735 		irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1736 					  "canfd.ch%d_err", ch);
1737 		if (!irq_name) {
1738 			err = -ENOMEM;
1739 			goto fail;
1740 		}
1741 		err = devm_request_irq(&pdev->dev, err_irq,
1742 				       rcar_canfd_channel_err_interrupt, 0,
1743 				       irq_name, gpriv);
1744 		if (err) {
1745 			dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n",
1746 				err_irq, err);
1747 			goto fail;
1748 		}
1749 		irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1750 					  "canfd.ch%d_trx", ch);
1751 		if (!irq_name) {
1752 			err = -ENOMEM;
1753 			goto fail;
1754 		}
1755 		err = devm_request_irq(&pdev->dev, tx_irq,
1756 				       rcar_canfd_channel_tx_interrupt, 0,
1757 				       irq_name, gpriv);
1758 		if (err) {
1759 			dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n",
1760 				tx_irq, err);
1761 			goto fail;
1762 		}
1763 	}
1764 
1765 	if (gpriv->fdmode) {
1766 		priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1767 		priv->can.data_bittiming_const =
1768 			&rcar_canfd_data_bittiming_const;
1769 
1770 		/* Controller starts in CAN FD only mode */
1771 		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1772 		if (err)
1773 			goto fail;
1774 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1775 	} else {
1776 		/* Controller starts in Classical CAN only mode */
1777 		priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1778 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1779 	}
1780 
1781 	priv->can.do_set_mode = rcar_canfd_do_set_mode;
1782 	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1783 	priv->gpriv = gpriv;
1784 	SET_NETDEV_DEV(ndev, &pdev->dev);
1785 
1786 	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1787 			      RCANFD_NAPI_WEIGHT);
1788 	spin_lock_init(&priv->tx_lock);
1789 	gpriv->ch[priv->channel] = priv;
1790 	err = register_candev(ndev);
1791 	if (err) {
1792 		dev_err(&pdev->dev,
1793 			"register_candev() failed, error %d\n", err);
1794 		goto fail_candev;
1795 	}
1796 	dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
1797 	return 0;
1798 
1799 fail_candev:
1800 	netif_napi_del(&priv->napi);
1801 fail:
1802 	free_candev(ndev);
1803 	return err;
1804 }
1805 
1806 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1807 {
1808 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1809 
1810 	if (priv) {
1811 		unregister_candev(priv->ndev);
1812 		netif_napi_del(&priv->napi);
1813 		free_candev(priv->ndev);
1814 	}
1815 }
1816 
1817 static int rcar_canfd_probe(struct platform_device *pdev)
1818 {
1819 	void __iomem *addr;
1820 	u32 sts, ch, fcan_freq;
1821 	struct rcar_canfd_global *gpriv;
1822 	struct device_node *of_child;
1823 	unsigned long channels_mask = 0;
1824 	int err, ch_irq, g_irq;
1825 	int g_err_irq, g_recc_irq;
1826 	bool fdmode = true;			/* CAN FD only mode - default */
1827 	enum rcanfd_chip_id chip_id;
1828 	int max_channels;
1829 	char name[9] = "channelX";
1830 	int i;
1831 
1832 	chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev);
1833 	max_channels = chip_id == RENESAS_R8A779A0 ? 8 : 2;
1834 
1835 	if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
1836 		fdmode = false;			/* Classical CAN only mode */
1837 
1838 	for (i = 0; i < max_channels; ++i) {
1839 		name[7] = '0' + i;
1840 		of_child = of_get_child_by_name(pdev->dev.of_node, name);
1841 		if (of_child && of_device_is_available(of_child))
1842 			channels_mask |= BIT(i);
1843 	}
1844 
1845 	if (chip_id != RENESAS_RZG2L) {
1846 		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1847 		if (ch_irq < 0) {
1848 			/* For backward compatibility get irq by index */
1849 			ch_irq = platform_get_irq(pdev, 0);
1850 			if (ch_irq < 0)
1851 				return ch_irq;
1852 		}
1853 
1854 		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1855 		if (g_irq < 0) {
1856 			/* For backward compatibility get irq by index */
1857 			g_irq = platform_get_irq(pdev, 1);
1858 			if (g_irq < 0)
1859 				return g_irq;
1860 		}
1861 	} else {
1862 		g_err_irq = platform_get_irq_byname(pdev, "g_err");
1863 		if (g_err_irq < 0)
1864 			return g_err_irq;
1865 
1866 		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1867 		if (g_recc_irq < 0)
1868 			return g_recc_irq;
1869 	}
1870 
1871 	/* Global controller context */
1872 	gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
1873 	if (!gpriv) {
1874 		err = -ENOMEM;
1875 		goto fail_dev;
1876 	}
1877 	gpriv->pdev = pdev;
1878 	gpriv->channels_mask = channels_mask;
1879 	gpriv->fdmode = fdmode;
1880 	gpriv->chip_id = chip_id;
1881 	gpriv->max_channels = max_channels;
1882 
1883 	if (gpriv->chip_id == RENESAS_RZG2L) {
1884 		gpriv->rstc1 = devm_reset_control_get_exclusive(&pdev->dev, "rstp_n");
1885 		if (IS_ERR(gpriv->rstc1))
1886 			return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1),
1887 					     "failed to get rstp_n\n");
1888 
1889 		gpriv->rstc2 = devm_reset_control_get_exclusive(&pdev->dev, "rstc_n");
1890 		if (IS_ERR(gpriv->rstc2))
1891 			return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2),
1892 					     "failed to get rstc_n\n");
1893 	}
1894 
1895 	/* Peripheral clock */
1896 	gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
1897 	if (IS_ERR(gpriv->clkp)) {
1898 		err = PTR_ERR(gpriv->clkp);
1899 		dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
1900 			err);
1901 		goto fail_dev;
1902 	}
1903 
1904 	/* fCAN clock: Pick External clock. If not available fallback to
1905 	 * CANFD clock
1906 	 */
1907 	gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1908 	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1909 		gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
1910 		if (IS_ERR(gpriv->can_clk)) {
1911 			err = PTR_ERR(gpriv->can_clk);
1912 			dev_err(&pdev->dev,
1913 				"cannot get canfd clock, error %d\n", err);
1914 			goto fail_dev;
1915 		}
1916 		gpriv->fcan = RCANFD_CANFDCLK;
1917 
1918 	} else {
1919 		gpriv->fcan = RCANFD_EXTCLK;
1920 	}
1921 	fcan_freq = clk_get_rate(gpriv->can_clk);
1922 
1923 	if (gpriv->fcan == RCANFD_CANFDCLK && gpriv->chip_id != RENESAS_RZG2L)
1924 		/* CANFD clock is further divided by (1/2) within the IP */
1925 		fcan_freq /= 2;
1926 
1927 	addr = devm_platform_ioremap_resource(pdev, 0);
1928 	if (IS_ERR(addr)) {
1929 		err = PTR_ERR(addr);
1930 		goto fail_dev;
1931 	}
1932 	gpriv->base = addr;
1933 
1934 	/* Request IRQ that's common for both channels */
1935 	if (gpriv->chip_id != RENESAS_RZG2L) {
1936 		err = devm_request_irq(&pdev->dev, ch_irq,
1937 				       rcar_canfd_channel_interrupt, 0,
1938 				       "canfd.ch_int", gpriv);
1939 		if (err) {
1940 			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1941 				ch_irq, err);
1942 			goto fail_dev;
1943 		}
1944 
1945 		err = devm_request_irq(&pdev->dev, g_irq,
1946 				       rcar_canfd_global_interrupt, 0,
1947 				       "canfd.g_int", gpriv);
1948 		if (err) {
1949 			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1950 				g_irq, err);
1951 			goto fail_dev;
1952 		}
1953 	} else {
1954 		err = devm_request_irq(&pdev->dev, g_recc_irq,
1955 				       rcar_canfd_global_receive_fifo_interrupt, 0,
1956 				       "canfd.g_recc", gpriv);
1957 
1958 		if (err) {
1959 			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1960 				g_recc_irq, err);
1961 			goto fail_dev;
1962 		}
1963 
1964 		err = devm_request_irq(&pdev->dev, g_err_irq,
1965 				       rcar_canfd_global_err_interrupt, 0,
1966 				       "canfd.g_err", gpriv);
1967 		if (err) {
1968 			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1969 				g_err_irq, err);
1970 			goto fail_dev;
1971 		}
1972 	}
1973 
1974 	err = reset_control_reset(gpriv->rstc1);
1975 	if (err)
1976 		goto fail_dev;
1977 	err = reset_control_reset(gpriv->rstc2);
1978 	if (err) {
1979 		reset_control_assert(gpriv->rstc1);
1980 		goto fail_dev;
1981 	}
1982 
1983 	/* Enable peripheral clock for register access */
1984 	err = clk_prepare_enable(gpriv->clkp);
1985 	if (err) {
1986 		dev_err(&pdev->dev,
1987 			"failed to enable peripheral clock, error %d\n", err);
1988 		goto fail_reset;
1989 	}
1990 
1991 	err = rcar_canfd_reset_controller(gpriv);
1992 	if (err) {
1993 		dev_err(&pdev->dev, "reset controller failed\n");
1994 		goto fail_clk;
1995 	}
1996 
1997 	/* Controller in Global reset & Channel reset mode */
1998 	rcar_canfd_configure_controller(gpriv);
1999 
2000 	/* Configure per channel attributes */
2001 	for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
2002 		/* Configure Channel's Rx fifo */
2003 		rcar_canfd_configure_rx(gpriv, ch);
2004 
2005 		/* Configure Channel's Tx (Common) fifo */
2006 		rcar_canfd_configure_tx(gpriv, ch);
2007 
2008 		/* Configure receive rules */
2009 		rcar_canfd_configure_afl_rules(gpriv, ch);
2010 	}
2011 
2012 	/* Configure common interrupts */
2013 	rcar_canfd_enable_global_interrupts(gpriv);
2014 
2015 	/* Start Global operation mode */
2016 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2017 			      RCANFD_GCTR_GMDC_GOPM);
2018 
2019 	/* Verify mode change */
2020 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2021 				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2022 	if (err) {
2023 		dev_err(&pdev->dev, "global operational mode failed\n");
2024 		goto fail_mode;
2025 	}
2026 
2027 	for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
2028 		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
2029 		if (err)
2030 			goto fail_channel;
2031 	}
2032 
2033 	platform_set_drvdata(pdev, gpriv);
2034 	dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
2035 		 gpriv->fcan, gpriv->fdmode);
2036 	return 0;
2037 
2038 fail_channel:
2039 	for_each_set_bit(ch, &gpriv->channels_mask, max_channels)
2040 		rcar_canfd_channel_remove(gpriv, ch);
2041 fail_mode:
2042 	rcar_canfd_disable_global_interrupts(gpriv);
2043 fail_clk:
2044 	clk_disable_unprepare(gpriv->clkp);
2045 fail_reset:
2046 	reset_control_assert(gpriv->rstc1);
2047 	reset_control_assert(gpriv->rstc2);
2048 fail_dev:
2049 	return err;
2050 }
2051 
2052 static int rcar_canfd_remove(struct platform_device *pdev)
2053 {
2054 	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2055 	u32 ch;
2056 
2057 	rcar_canfd_reset_controller(gpriv);
2058 	rcar_canfd_disable_global_interrupts(gpriv);
2059 
2060 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
2061 		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2062 		rcar_canfd_channel_remove(gpriv, ch);
2063 	}
2064 
2065 	/* Enter global sleep mode */
2066 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2067 	clk_disable_unprepare(gpriv->clkp);
2068 	reset_control_assert(gpriv->rstc1);
2069 	reset_control_assert(gpriv->rstc2);
2070 
2071 	return 0;
2072 }
2073 
2074 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2075 {
2076 	return 0;
2077 }
2078 
2079 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2080 {
2081 	return 0;
2082 }
2083 
2084 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2085 			 rcar_canfd_resume);
2086 
2087 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2088 	{ .compatible = "renesas,rcar-gen3-canfd", .data = (void *)RENESAS_RCAR_GEN3 },
2089 	{ .compatible = "renesas,rzg2l-canfd", .data = (void *)RENESAS_RZG2L },
2090 	{ .compatible = "renesas,r8a779a0-canfd", .data = (void *)RENESAS_R8A779A0 },
2091 	{ }
2092 };
2093 
2094 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2095 
2096 static struct platform_driver rcar_canfd_driver = {
2097 	.driver = {
2098 		.name = RCANFD_DRV_NAME,
2099 		.of_match_table = of_match_ptr(rcar_canfd_of_table),
2100 		.pm = &rcar_canfd_pm_ops,
2101 	},
2102 	.probe = rcar_canfd_probe,
2103 	.remove = rcar_canfd_remove,
2104 };
2105 
2106 module_platform_driver(rcar_canfd_driver);
2107 
2108 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2109 MODULE_LICENSE("GPL");
2110 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2111 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2112