1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/bitfield.h> 25 #include <linux/bitmap.h> 26 #include <linux/bitops.h> 27 #include <linux/can/dev.h> 28 #include <linux/clk.h> 29 #include <linux/errno.h> 30 #include <linux/ethtool.h> 31 #include <linux/interrupt.h> 32 #include <linux/iopoll.h> 33 #include <linux/kernel.h> 34 #include <linux/module.h> 35 #include <linux/moduleparam.h> 36 #include <linux/netdevice.h> 37 #include <linux/of.h> 38 #include <linux/phy/phy.h> 39 #include <linux/platform_device.h> 40 #include <linux/reset.h> 41 #include <linux/types.h> 42 43 #define RCANFD_DRV_NAME "rcar_canfd" 44 45 /* Global register bits */ 46 47 /* RSCFDnCFDGRMCFG */ 48 #define RCANFD_GRMCFG_RCMC BIT(0) 49 50 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 51 #define RCANFD_GCFG_EEFE BIT(6) 52 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 53 #define RCANFD_GCFG_DCS BIT(4) 54 #define RCANFD_GCFG_DCE BIT(1) 55 #define RCANFD_GCFG_TPRI BIT(0) 56 57 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 58 #define RCANFD_GCTR_TSRST BIT(16) 59 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 60 #define RCANFD_GCTR_THLEIE BIT(10) 61 #define RCANFD_GCTR_MEIE BIT(9) 62 #define RCANFD_GCTR_DEIE BIT(8) 63 #define RCANFD_GCTR_GSLPR BIT(2) 64 #define RCANFD_GCTR_GMDC_MASK (0x3) 65 #define RCANFD_GCTR_GMDC_GOPM (0x0) 66 #define RCANFD_GCTR_GMDC_GRESET (0x1) 67 #define RCANFD_GCTR_GMDC_GTEST (0x2) 68 69 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 70 #define RCANFD_GSTS_GRAMINIT BIT(3) 71 #define RCANFD_GSTS_GSLPSTS BIT(2) 72 #define RCANFD_GSTS_GHLTSTS BIT(1) 73 #define RCANFD_GSTS_GRSTSTS BIT(0) 74 /* Non-operational status */ 75 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 76 77 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 78 #define RCANFD_GERFL_EEF GENMASK(23, 16) 79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 80 #define RCANFD_GERFL_THLES BIT(2) 81 #define RCANFD_GERFL_MES BIT(1) 82 #define RCANFD_GERFL_DEF BIT(0) 83 84 #define RCANFD_GERFL_ERR(gpriv, x) \ 85 ({\ 86 typeof(gpriv) (_gpriv) = (gpriv); \ 87 ((x) & ((FIELD_PREP(RCANFD_GERFL_EEF, (_gpriv)->channels_mask)) | \ 88 RCANFD_GERFL_MES | ((_gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))); \ 89 }) 90 91 /* AFL Rx rules registers */ 92 93 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 94 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 95 #define RCANFD_GAFLECTR_AFLPN(gpriv, page_num) ((page_num) & (gpriv)->info->max_aflpn) 96 97 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 98 #define RCANFD_GAFLID_GAFLLB BIT(29) 99 100 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 101 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 102 103 /* Channel register bits */ 104 105 /* RSCFDnCmCFG - Classical CAN only */ 106 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 107 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 108 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 109 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 110 111 /* RSCFDnCFDCmNCFG - CAN FD only */ 112 #define RCANFD_NCFG_NTSEG2(gpriv, x) \ 113 (((x) & ((gpriv)->info->nom_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->ntseg2) 114 115 #define RCANFD_NCFG_NTSEG1(gpriv, x) \ 116 (((x) & ((gpriv)->info->nom_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->ntseg1) 117 118 #define RCANFD_NCFG_NSJW(gpriv, x) \ 119 (((x) & ((gpriv)->info->nom_bittiming->sjw_max - 1)) << (gpriv)->info->sh->nsjw) 120 121 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 122 123 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 124 #define RCANFD_CCTR_CTME BIT(24) 125 #define RCANFD_CCTR_ERRD BIT(23) 126 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 127 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 128 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 129 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 130 #define RCANFD_CCTR_TDCVFIE BIT(19) 131 #define RCANFD_CCTR_SOCOIE BIT(18) 132 #define RCANFD_CCTR_EOCOIE BIT(17) 133 #define RCANFD_CCTR_TAIE BIT(16) 134 #define RCANFD_CCTR_ALIE BIT(15) 135 #define RCANFD_CCTR_BLIE BIT(14) 136 #define RCANFD_CCTR_OLIE BIT(13) 137 #define RCANFD_CCTR_BORIE BIT(12) 138 #define RCANFD_CCTR_BOEIE BIT(11) 139 #define RCANFD_CCTR_EPIE BIT(10) 140 #define RCANFD_CCTR_EWIE BIT(9) 141 #define RCANFD_CCTR_BEIE BIT(8) 142 #define RCANFD_CCTR_CSLPR BIT(2) 143 #define RCANFD_CCTR_CHMDC_MASK (0x3) 144 #define RCANFD_CCTR_CHDMC_COPM (0x0) 145 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 146 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 147 148 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 149 #define RCANFD_CSTS_COMSTS BIT(7) 150 #define RCANFD_CSTS_RECSTS BIT(6) 151 #define RCANFD_CSTS_TRMSTS BIT(5) 152 #define RCANFD_CSTS_BOSTS BIT(4) 153 #define RCANFD_CSTS_EPSTS BIT(3) 154 #define RCANFD_CSTS_SLPSTS BIT(2) 155 #define RCANFD_CSTS_HLTSTS BIT(1) 156 #define RCANFD_CSTS_CRSTSTS BIT(0) 157 158 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 159 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 160 161 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 162 #define RCANFD_CERFL_ADERR BIT(14) 163 #define RCANFD_CERFL_B0ERR BIT(13) 164 #define RCANFD_CERFL_B1ERR BIT(12) 165 #define RCANFD_CERFL_CERR BIT(11) 166 #define RCANFD_CERFL_AERR BIT(10) 167 #define RCANFD_CERFL_FERR BIT(9) 168 #define RCANFD_CERFL_SERR BIT(8) 169 #define RCANFD_CERFL_ALF BIT(7) 170 #define RCANFD_CERFL_BLF BIT(6) 171 #define RCANFD_CERFL_OVLF BIT(5) 172 #define RCANFD_CERFL_BORF BIT(4) 173 #define RCANFD_CERFL_BOEF BIT(3) 174 #define RCANFD_CERFL_EPF BIT(2) 175 #define RCANFD_CERFL_EWF BIT(1) 176 #define RCANFD_CERFL_BEF BIT(0) 177 178 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 179 180 /* RSCFDnCFDCmDCFG */ 181 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & ((gpriv)->info->data_bittiming->sjw_max - 1)) << 24) 182 183 #define RCANFD_DCFG_DTSEG2(gpriv, x) \ 184 (((x) & ((gpriv)->info->data_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->dtseg2) 185 186 #define RCANFD_DCFG_DTSEG1(gpriv, x) \ 187 (((x) & ((gpriv)->info->data_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->dtseg1) 188 189 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 190 191 /* RSCFDnCFDCmFDCFG */ 192 #define RCANFD_GEN4_FDCFG_CLOE BIT(30) 193 #define RCANFD_GEN4_FDCFG_FDOE BIT(28) 194 #define RCANFD_FDCFG_TDCO GENMASK(23, 16) 195 #define RCANFD_FDCFG_TDCE BIT(9) 196 #define RCANFD_FDCFG_TDCOC BIT(8) 197 198 /* RSCFDnCFDCmFDSTS */ 199 #define RCANFD_FDSTS_SOC GENMASK(31, 24) 200 #define RCANFD_FDSTS_EOC GENMASK(23, 16) 201 #define RCANFD_GEN4_FDSTS_TDCVF BIT(15) 202 #define RCANFD_GEN4_FDSTS_PNSTS GENMASK(13, 12) 203 #define RCANFD_FDSTS_SOCO BIT(9) 204 #define RCANFD_FDSTS_EOCO BIT(8) 205 #define RCANFD_FDSTS_TDCVF BIT(7) 206 #define RCANFD_FDSTS_TDCR GENMASK(7, 0) 207 208 /* RSCFDnCFDRFCCx */ 209 #define RCANFD_RFCC_RFIM BIT(12) 210 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 211 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 212 #define RCANFD_RFCC_RFIE BIT(1) 213 #define RCANFD_RFCC_RFE BIT(0) 214 215 /* RSCFDnCFDRFSTSx */ 216 #define RCANFD_RFSTS_RFIF BIT(3) 217 #define RCANFD_RFSTS_RFMLT BIT(2) 218 #define RCANFD_RFSTS_RFFLL BIT(1) 219 #define RCANFD_RFSTS_RFEMP BIT(0) 220 221 /* RSCFDnCFDRFIDx */ 222 #define RCANFD_RFID_RFIDE BIT(31) 223 #define RCANFD_RFID_RFRTR BIT(30) 224 225 /* RSCFDnCFDRFPTRx */ 226 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 227 228 /* RSCFDnCFDRFFDSTSx */ 229 #define RCANFD_RFFDSTS_RFFDF BIT(2) 230 #define RCANFD_RFFDSTS_RFBRS BIT(1) 231 #define RCANFD_RFFDSTS_RFESI BIT(0) 232 233 /* Common FIFO bits */ 234 235 /* RSCFDnCFDCFCCk */ 236 #define RCANFD_CFCC_CFTML(gpriv, cftml) \ 237 ({\ 238 typeof(gpriv) (_gpriv) = (gpriv); \ 239 (((cftml) & (_gpriv)->info->max_cftml) << (_gpriv)->info->sh->cftml); \ 240 }) 241 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << (gpriv)->info->sh->cfm) 242 #define RCANFD_CFCC_CFIM BIT(12) 243 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << (gpriv)->info->sh->cfdc) 244 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 245 #define RCANFD_CFCC_CFTXIE BIT(2) 246 #define RCANFD_CFCC_CFE BIT(0) 247 248 /* RSCFDnCFDCFSTSk */ 249 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 250 #define RCANFD_CFSTS_CFTXIF BIT(4) 251 #define RCANFD_CFSTS_CFMLT BIT(2) 252 #define RCANFD_CFSTS_CFFLL BIT(1) 253 #define RCANFD_CFSTS_CFEMP BIT(0) 254 255 /* RSCFDnCFDCFIDk */ 256 #define RCANFD_CFID_CFIDE BIT(31) 257 #define RCANFD_CFID_CFRTR BIT(30) 258 259 /* RSCFDnCFDCFPTRk */ 260 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 261 262 /* RSCFDnCFDCFFDCSTSk */ 263 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 264 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 265 #define RCANFD_CFFDCSTS_CFESI BIT(0) 266 267 /* This controller supports either Classical CAN only mode or CAN FD only mode. 268 * These modes are supported in two separate set of register maps & names. 269 * However, some of the register offsets are common for both modes. Those 270 * offsets are listed below as Common registers. 271 * 272 * The CAN FD only mode specific registers & Classical CAN only mode specific 273 * registers are listed separately. Their register names starts with 274 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 275 */ 276 277 /* Common registers */ 278 279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 280 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 282 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 284 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 286 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 287 288 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 289 #define RCANFD_GCFG (0x0084) 290 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 291 #define RCANFD_GCTR (0x0088) 292 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 293 #define RCANFD_GSTS (0x008c) 294 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 295 #define RCANFD_GERFL (0x0090) 296 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 297 #define RCANFD_GTSC (0x0094) 298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 299 #define RCANFD_GAFLECTR (0x0098) 300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */ 301 #define RCANFD_GAFLCFG(w) (0x009c + (0x04 * (w))) 302 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 303 #define RCANFD_RMNB (0x00a4) 304 /* RSCFDnCFDRMND / RSCFDnRMND */ 305 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 306 307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 308 #define RCANFD_RFCC(gpriv, x) ((gpriv)->info->regs->rfcc + (0x04 * (x))) 309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 310 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20) 311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 312 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40) 313 314 /* Common FIFO Control registers */ 315 316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 317 #define RCANFD_CFCC(gpriv, ch, idx) \ 318 ((gpriv)->info->regs->cfcc + (0x0c * (ch)) + (0x04 * (idx))) 319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 320 #define RCANFD_CFSTS(gpriv, ch, idx) \ 321 ((gpriv)->info->regs->cfsts + (0x0c * (ch)) + (0x04 * (idx))) 322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 323 #define RCANFD_CFPCTR(gpriv, ch, idx) \ 324 ((gpriv)->info->regs->cfpctr + (0x0c * (ch)) + (0x04 * (idx))) 325 326 /* RSCFDnCFDGRMCFG */ 327 #define RCANFD_GRMCFG (0x04fc) 328 329 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 330 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 331 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 332 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 333 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 334 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 335 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 336 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 337 338 /* Classical CAN only mode register map */ 339 340 /* RSCFDnGAFLXXXj offset */ 341 #define RCANFD_C_GAFL_OFFSET (0x0500) 342 343 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 344 #define RCANFD_C_RFOFFSET (0x0e00) 345 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 346 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x))) 347 #define RCANFD_C_RFDF(x, df) \ 348 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df))) 349 350 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 351 #define RCANFD_C_CFOFFSET (0x0e80) 352 353 #define RCANFD_C_CFID(ch, idx) \ 354 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx))) 355 356 #define RCANFD_C_CFPTR(ch, idx) \ 357 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx))) 358 359 #define RCANFD_C_CFDF(ch, idx, df) \ 360 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df))) 361 362 /* R-Car Gen4 Classical and CAN FD mode specific register map */ 363 #define RCANFD_GEN4_GAFL_OFFSET (0x1800) 364 365 /* CAN FD mode specific register map */ 366 367 /* RSCFDnCFDCmXXX -> gpriv->fcbase[m].xxx */ 368 struct rcar_canfd_f_c { 369 u32 dcfg; 370 u32 cfdcfg; 371 u32 cfdctr; 372 u32 cfdsts; 373 u32 cfdcrc; 374 u32 pad[3]; 375 }; 376 377 /* RSCFDnCFDGAFLXXXj offset */ 378 #define RCANFD_F_GAFL_OFFSET (0x1000) 379 380 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 381 #define RCANFD_F_RFOFFSET(gpriv) ((gpriv)->info->regs->rfoffset) 382 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x))) 383 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x))) 384 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x))) 385 #define RCANFD_F_RFDF(gpriv, x, df) \ 386 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df))) 387 388 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 389 #define RCANFD_F_CFOFFSET(gpriv) ((gpriv)->info->regs->cfoffset) 390 391 #define RCANFD_F_CFID(gpriv, ch, idx) \ 392 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx))) 393 394 #define RCANFD_F_CFPTR(gpriv, ch, idx) \ 395 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx))) 396 397 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \ 398 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx))) 399 400 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \ 401 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \ 402 (0x04 * (df))) 403 404 /* Constants */ 405 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 406 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 407 408 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */ 409 410 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 411 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 412 413 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 414 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 415 * number is added to RFFIFO index. 416 */ 417 #define RCANFD_RFFIFO_IDX 0 418 419 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 420 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 421 */ 422 #define RCANFD_CFFIFO_IDX 0 423 424 struct rcar_canfd_global; 425 426 struct rcar_canfd_regs { 427 u16 rfcc; /* RX FIFO Configuration/Control Register */ 428 u16 cfcc; /* Common FIFO Configuration/Control Register */ 429 u16 cfsts; /* Common FIFO Status Register */ 430 u16 cfpctr; /* Common FIFO Pointer Control Register */ 431 u16 coffset; /* Channel Data Bitrate Configuration Register */ 432 u16 rfoffset; /* Receive FIFO buffer access ID register */ 433 u16 cfoffset; /* Transmit/receive FIFO buffer access ID register */ 434 }; 435 436 struct rcar_canfd_shift_data { 437 u8 ntseg2; /* Nominal Bit Rate Time Segment 2 Control */ 438 u8 ntseg1; /* Nominal Bit Rate Time Segment 1 Control */ 439 u8 nsjw; /* Nominal Bit Rate Resynchronization Jump Width Control */ 440 u8 dtseg2; /* Data Bit Rate Time Segment 2 Control */ 441 u8 dtseg1; /* Data Bit Rate Time Segment 1 Control */ 442 u8 cftml; /* Common FIFO TX Message Buffer Link */ 443 u8 cfm; /* Common FIFO Mode */ 444 u8 cfdc; /* Common FIFO Depth Configuration */ 445 }; 446 447 struct rcar_canfd_hw_info { 448 const struct can_bittiming_const *nom_bittiming; 449 const struct can_bittiming_const *data_bittiming; 450 const struct can_tdc_const *tdc_const; 451 const struct rcar_canfd_regs *regs; 452 const struct rcar_canfd_shift_data *sh; 453 u8 rnc_field_width; 454 u8 max_aflpn; 455 u8 max_cftml; 456 u8 max_channels; 457 u8 postdiv; 458 /* hardware features */ 459 unsigned shared_global_irqs:1; /* Has shared global irqs */ 460 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */ 461 unsigned ch_interface_mode:1; /* Has channel interface mode */ 462 unsigned shared_can_regs:1; /* Has shared classical can registers */ 463 unsigned external_clk:1; /* Has external clock */ 464 }; 465 466 /* Channel priv data */ 467 struct rcar_canfd_channel { 468 struct can_priv can; /* Must be the first member */ 469 struct net_device *ndev; 470 struct rcar_canfd_global *gpriv; /* Controller reference */ 471 void __iomem *base; /* Register base address */ 472 struct phy *transceiver; /* Optional transceiver */ 473 struct napi_struct napi; 474 u32 tx_head; /* Incremented on xmit */ 475 u32 tx_tail; /* Incremented on xmit done */ 476 u32 channel; /* Channel number */ 477 spinlock_t tx_lock; /* To protect tx path */ 478 }; 479 480 /* Global priv data */ 481 struct rcar_canfd_global { 482 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 483 void __iomem *base; /* Register base address */ 484 struct rcar_canfd_f_c __iomem *fcbase; 485 struct platform_device *pdev; /* Respective platform device */ 486 struct clk *clkp; /* Peripheral clock */ 487 struct clk *can_clk; /* fCAN clock */ 488 unsigned long channels_mask; /* Enabled channels mask */ 489 bool extclk; /* CANFD or Ext clock */ 490 bool fdmode; /* CAN FD or Classical CAN only mode */ 491 struct reset_control *rstc1; 492 struct reset_control *rstc2; 493 const struct rcar_canfd_hw_info *info; 494 }; 495 496 /* CAN FD mode nominal rate constants */ 497 static const struct can_bittiming_const rcar_canfd_gen3_nom_bittiming_const = { 498 .name = RCANFD_DRV_NAME, 499 .tseg1_min = 2, 500 .tseg1_max = 128, 501 .tseg2_min = 2, 502 .tseg2_max = 32, 503 .sjw_max = 32, 504 .brp_min = 1, 505 .brp_max = 1024, 506 .brp_inc = 1, 507 }; 508 509 static const struct can_bittiming_const rcar_canfd_gen4_nom_bittiming_const = { 510 .name = RCANFD_DRV_NAME, 511 .tseg1_min = 2, 512 .tseg1_max = 256, 513 .tseg2_min = 2, 514 .tseg2_max = 128, 515 .sjw_max = 128, 516 .brp_min = 1, 517 .brp_max = 1024, 518 .brp_inc = 1, 519 }; 520 521 /* CAN FD mode data rate constants */ 522 static const struct can_bittiming_const rcar_canfd_gen3_data_bittiming_const = { 523 .name = RCANFD_DRV_NAME, 524 .tseg1_min = 2, 525 .tseg1_max = 16, 526 .tseg2_min = 2, 527 .tseg2_max = 8, 528 .sjw_max = 8, 529 .brp_min = 1, 530 .brp_max = 256, 531 .brp_inc = 1, 532 }; 533 534 static const struct can_bittiming_const rcar_canfd_gen4_data_bittiming_const = { 535 .name = RCANFD_DRV_NAME, 536 .tseg1_min = 2, 537 .tseg1_max = 32, 538 .tseg2_min = 2, 539 .tseg2_max = 16, 540 .sjw_max = 16, 541 .brp_min = 1, 542 .brp_max = 256, 543 .brp_inc = 1, 544 }; 545 546 /* Classical CAN mode bitrate constants */ 547 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 548 .name = RCANFD_DRV_NAME, 549 .tseg1_min = 4, 550 .tseg1_max = 16, 551 .tseg2_min = 2, 552 .tseg2_max = 8, 553 .sjw_max = 4, 554 .brp_min = 1, 555 .brp_max = 1024, 556 .brp_inc = 1, 557 }; 558 559 /* CAN FD Transmission Delay Compensation constants */ 560 static const struct can_tdc_const rcar_canfd_gen3_tdc_const = { 561 .tdcv_min = 1, 562 .tdcv_max = 128, 563 .tdco_min = 1, 564 .tdco_max = 128, 565 .tdcf_min = 0, /* Filter window not supported */ 566 .tdcf_max = 0, 567 }; 568 569 static const struct can_tdc_const rcar_canfd_gen4_tdc_const = { 570 .tdcv_min = 1, 571 .tdcv_max = 256, 572 .tdco_min = 1, 573 .tdco_max = 256, 574 .tdcf_min = 0, /* Filter window not supported */ 575 .tdcf_max = 0, 576 }; 577 578 static const struct rcar_canfd_regs rcar_gen3_regs = { 579 .rfcc = 0x00b8, 580 .cfcc = 0x0118, 581 .cfsts = 0x0178, 582 .cfpctr = 0x01d8, 583 .coffset = 0x0500, 584 .rfoffset = 0x3000, 585 .cfoffset = 0x3400, 586 }; 587 588 static const struct rcar_canfd_regs rcar_gen4_regs = { 589 .rfcc = 0x00c0, 590 .cfcc = 0x0120, 591 .cfsts = 0x01e0, 592 .cfpctr = 0x0240, 593 .coffset = 0x1400, 594 .rfoffset = 0x6000, 595 .cfoffset = 0x6400, 596 }; 597 598 static const struct rcar_canfd_shift_data rcar_gen3_shift_data = { 599 .ntseg2 = 24, 600 .ntseg1 = 16, 601 .nsjw = 11, 602 .dtseg2 = 20, 603 .dtseg1 = 16, 604 .cftml = 20, 605 .cfm = 16, 606 .cfdc = 8, 607 }; 608 609 static const struct rcar_canfd_shift_data rcar_gen4_shift_data = { 610 .ntseg2 = 25, 611 .ntseg1 = 17, 612 .nsjw = 10, 613 .dtseg2 = 16, 614 .dtseg1 = 8, 615 .cftml = 16, 616 .cfm = 8, 617 .cfdc = 21, 618 }; 619 620 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = { 621 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const, 622 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const, 623 .tdc_const = &rcar_canfd_gen3_tdc_const, 624 .regs = &rcar_gen3_regs, 625 .sh = &rcar_gen3_shift_data, 626 .rnc_field_width = 8, 627 .max_aflpn = 31, 628 .max_cftml = 15, 629 .max_channels = 2, 630 .postdiv = 2, 631 .shared_global_irqs = 1, 632 .ch_interface_mode = 0, 633 .shared_can_regs = 0, 634 .external_clk = 1, 635 }; 636 637 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = { 638 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const, 639 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const, 640 .tdc_const = &rcar_canfd_gen4_tdc_const, 641 .regs = &rcar_gen4_regs, 642 .sh = &rcar_gen4_shift_data, 643 .rnc_field_width = 16, 644 .max_aflpn = 127, 645 .max_cftml = 31, 646 .max_channels = 8, 647 .postdiv = 2, 648 .shared_global_irqs = 1, 649 .ch_interface_mode = 1, 650 .shared_can_regs = 1, 651 .external_clk = 1, 652 }; 653 654 static const struct rcar_canfd_hw_info rzg2l_hw_info = { 655 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const, 656 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const, 657 .tdc_const = &rcar_canfd_gen3_tdc_const, 658 .regs = &rcar_gen3_regs, 659 .sh = &rcar_gen3_shift_data, 660 .rnc_field_width = 8, 661 .max_aflpn = 31, 662 .max_cftml = 15, 663 .max_channels = 2, 664 .postdiv = 1, 665 .multi_channel_irqs = 1, 666 .ch_interface_mode = 0, 667 .shared_can_regs = 0, 668 .external_clk = 1, 669 }; 670 671 static const struct rcar_canfd_hw_info r9a09g047_hw_info = { 672 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const, 673 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const, 674 .tdc_const = &rcar_canfd_gen4_tdc_const, 675 .regs = &rcar_gen4_regs, 676 .sh = &rcar_gen4_shift_data, 677 .rnc_field_width = 16, 678 .max_aflpn = 63, 679 .max_cftml = 31, 680 .max_channels = 6, 681 .postdiv = 1, 682 .multi_channel_irqs = 1, 683 .ch_interface_mode = 1, 684 .shared_can_regs = 1, 685 .external_clk = 0, 686 }; 687 688 /* Helper functions */ 689 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 690 { 691 u32 data = readl(reg); 692 693 data &= ~mask; 694 data |= (val & mask); 695 writel(data, reg); 696 } 697 698 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 699 { 700 return readl(base + offset); 701 } 702 703 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 704 { 705 writel(val, base + offset); 706 } 707 708 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 709 { 710 rcar_canfd_update(val, val, base + reg); 711 } 712 713 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 714 { 715 rcar_canfd_update(val, 0, base + reg); 716 } 717 718 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 719 u32 mask, u32 val) 720 { 721 rcar_canfd_update(mask, val, base + reg); 722 } 723 724 static void rcar_canfd_set_bit_reg(void __iomem *addr, u32 val) 725 { 726 rcar_canfd_update(val, val, addr); 727 } 728 729 static void rcar_canfd_update_bit_reg(void __iomem *addr, u32 mask, u32 val) 730 { 731 rcar_canfd_update(mask, val, addr); 732 } 733 734 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 735 struct canfd_frame *cf, u32 off) 736 { 737 u32 *data = (u32 *)cf->data; 738 u32 i, lwords; 739 740 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 741 for (i = 0; i < lwords; i++) 742 data[i] = rcar_canfd_read(priv->base, off + i * sizeof(u32)); 743 } 744 745 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 746 struct canfd_frame *cf, u32 off) 747 { 748 const u32 *data = (u32 *)cf->data; 749 u32 i, lwords; 750 751 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 752 for (i = 0; i < lwords; i++) 753 rcar_canfd_write(priv->base, off + i * sizeof(u32), data[i]); 754 } 755 756 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 757 { 758 u32 i; 759 760 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 761 can_free_echo_skb(ndev, i, NULL); 762 } 763 764 static void rcar_canfd_set_rnc(struct rcar_canfd_global *gpriv, unsigned int ch, 765 unsigned int num_rules) 766 { 767 unsigned int rnc_stride = 32 / gpriv->info->rnc_field_width; 768 unsigned int shift = 32 - (ch % rnc_stride + 1) * gpriv->info->rnc_field_width; 769 unsigned int w = ch / rnc_stride; 770 u32 rnc = num_rules << shift; 771 772 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(w), rnc); 773 } 774 775 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv) 776 { 777 if (gpriv->info->ch_interface_mode) { 778 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE 779 : RCANFD_GEN4_FDCFG_CLOE; 780 781 for_each_set_bit(ch, &gpriv->channels_mask, 782 gpriv->info->max_channels) 783 rcar_canfd_set_bit_reg(&gpriv->fcbase[ch].cfdcfg, val); 784 } else { 785 if (gpriv->fdmode) 786 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 787 RCANFD_GRMCFG_RCMC); 788 else 789 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 790 RCANFD_GRMCFG_RCMC); 791 } 792 } 793 794 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 795 { 796 struct device *dev = &gpriv->pdev->dev; 797 u32 sts, ch; 798 int err; 799 800 /* Check RAMINIT flag as CAN RAM initialization takes place 801 * after the MCU reset 802 */ 803 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 804 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 805 if (err) { 806 dev_dbg(dev, "global raminit failed\n"); 807 return err; 808 } 809 810 /* Transition to Global Reset mode */ 811 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 812 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 813 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 814 815 /* Ensure Global reset mode */ 816 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 817 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 818 if (err) { 819 dev_dbg(dev, "global reset failed\n"); 820 return err; 821 } 822 823 /* Reset Global error flags */ 824 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 825 826 /* Transition all Channels to reset mode */ 827 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 828 rcar_canfd_clear_bit(gpriv->base, 829 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 830 831 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 832 RCANFD_CCTR_CHMDC_MASK, 833 RCANFD_CCTR_CHDMC_CRESET); 834 835 /* Ensure Channel reset mode */ 836 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 837 (sts & RCANFD_CSTS_CRSTSTS), 838 2, 500000); 839 if (err) { 840 dev_dbg(dev, "channel %u reset failed\n", ch); 841 return err; 842 } 843 } 844 845 /* Set the controller into appropriate mode */ 846 rcar_canfd_set_mode(gpriv); 847 848 return 0; 849 } 850 851 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 852 { 853 u32 cfg, ch; 854 855 /* Global configuration settings */ 856 857 /* ECC Error flag Enable */ 858 cfg = RCANFD_GCFG_EEFE; 859 860 if (gpriv->fdmode) 861 /* Truncate payload to configured message size RFPLS */ 862 cfg |= RCANFD_GCFG_CMPOC; 863 864 /* Set External Clock if selected */ 865 if (gpriv->extclk) 866 cfg |= RCANFD_GCFG_DCS; 867 868 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 869 870 /* Channel configuration settings */ 871 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 872 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 873 RCANFD_CCTR_ERRD); 874 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 875 RCANFD_CCTR_BOM_MASK, 876 RCANFD_CCTR_BOM_BENTRY); 877 } 878 } 879 880 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 881 u32 ch, u32 rule_entry) 882 { 883 unsigned int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES; 884 u32 rule_entry_index = rule_entry % 16; 885 u32 ridx = ch + RCANFD_RFFIFO_IDX; 886 887 /* Enable write access to entry */ 888 page = RCANFD_GAFL_PAGENUM(rule_entry); 889 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 890 (RCANFD_GAFLECTR_AFLPN(gpriv, page) | 891 RCANFD_GAFLECTR_AFLDAE)); 892 893 /* Write number of rules for channel */ 894 rcar_canfd_set_rnc(gpriv, ch, num_rules); 895 if (gpriv->info->shared_can_regs) 896 offset = RCANFD_GEN4_GAFL_OFFSET; 897 else if (gpriv->fdmode) 898 offset = RCANFD_F_GAFL_OFFSET; 899 else 900 offset = RCANFD_C_GAFL_OFFSET; 901 902 /* Accept all IDs */ 903 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0); 904 /* IDE or RTR is not considered for matching */ 905 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0); 906 /* Any data length accepted */ 907 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0); 908 /* Place the msg in corresponding Rx FIFO entry */ 909 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index), 910 RCANFD_GAFLP1_GAFLFDP(ridx)); 911 912 /* Disable write access to page */ 913 rcar_canfd_clear_bit(gpriv->base, 914 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 915 } 916 917 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 918 { 919 /* Rx FIFO is used for reception */ 920 u32 cfg; 921 u16 rfdc, rfpls; 922 923 /* Select Rx FIFO based on channel */ 924 u32 ridx = ch + RCANFD_RFFIFO_IDX; 925 926 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 927 if (gpriv->fdmode) 928 rfpls = 7; /* b111 - Max 64 bytes payload */ 929 else 930 rfpls = 0; /* b000 - Max 8 bytes payload */ 931 932 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 933 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 934 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg); 935 } 936 937 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 938 { 939 /* Tx/Rx(Common) FIFO configured in Tx mode is 940 * used for transmission 941 * 942 * Each channel has 3 Common FIFO dedicated to them. 943 * Use the 1st (index 0) out of 3 944 */ 945 u32 cfg; 946 u16 cftml, cfm, cfdc, cfpls; 947 948 cftml = 0; /* 0th buffer */ 949 cfm = 1; /* b01 - Transmit mode */ 950 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 951 if (gpriv->fdmode) 952 cfpls = 7; /* b111 - Max 64 bytes payload */ 953 else 954 cfpls = 0; /* b000 - Max 8 bytes payload */ 955 956 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) | 957 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) | 958 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 959 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg); 960 961 if (gpriv->fdmode) 962 /* Clear FD mode specific control/status register */ 963 rcar_canfd_write(gpriv->base, 964 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0); 965 } 966 967 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 968 { 969 u32 ctr; 970 971 /* Clear any stray error interrupt flags */ 972 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 973 974 /* Global interrupts setup */ 975 ctr = RCANFD_GCTR_MEIE; 976 if (gpriv->fdmode) 977 ctr |= RCANFD_GCTR_CFMPOFIE; 978 979 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 980 } 981 982 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 983 *gpriv) 984 { 985 /* Disable all interrupts */ 986 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 987 988 /* Clear any stray error interrupt flags */ 989 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 990 } 991 992 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 993 *priv) 994 { 995 u32 ctr, ch = priv->channel; 996 997 /* Clear any stray error flags */ 998 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 999 1000 /* Channel interrupts setup */ 1001 ctr = (RCANFD_CCTR_TAIE | 1002 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 1003 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 1004 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 1005 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 1006 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 1007 } 1008 1009 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 1010 *priv) 1011 { 1012 u32 ctr, ch = priv->channel; 1013 1014 ctr = (RCANFD_CCTR_TAIE | 1015 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 1016 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 1017 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 1018 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 1019 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 1020 1021 /* Clear any stray error flags */ 1022 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 1023 } 1024 1025 static void rcar_canfd_global_error(struct net_device *ndev) 1026 { 1027 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1028 struct rcar_canfd_global *gpriv = priv->gpriv; 1029 struct net_device_stats *stats = &ndev->stats; 1030 u32 ch = priv->channel; 1031 u32 gerfl, sts; 1032 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1033 1034 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1035 if (gerfl & FIELD_PREP(RCANFD_GERFL_EEF, BIT(ch))) { 1036 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch); 1037 stats->tx_dropped++; 1038 } 1039 if (gerfl & RCANFD_GERFL_MES) { 1040 sts = rcar_canfd_read(priv->base, 1041 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1042 if (sts & RCANFD_CFSTS_CFMLT) { 1043 netdev_dbg(ndev, "Tx Message Lost flag\n"); 1044 stats->tx_dropped++; 1045 rcar_canfd_write(priv->base, 1046 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1047 sts & ~RCANFD_CFSTS_CFMLT); 1048 } 1049 1050 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1051 if (sts & RCANFD_RFSTS_RFMLT) { 1052 netdev_dbg(ndev, "Rx Message Lost flag\n"); 1053 stats->rx_dropped++; 1054 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1055 sts & ~RCANFD_RFSTS_RFMLT); 1056 } 1057 } 1058 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 1059 /* Message Lost flag will be set for respective channel 1060 * when this condition happens with counters and flags 1061 * already updated. 1062 */ 1063 netdev_dbg(ndev, "global payload overflow interrupt\n"); 1064 } 1065 1066 /* Clear all global error interrupts. Only affected channels bits 1067 * get cleared 1068 */ 1069 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 1070 } 1071 1072 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 1073 u16 txerr, u16 rxerr) 1074 { 1075 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1076 struct net_device_stats *stats = &ndev->stats; 1077 struct can_frame *cf; 1078 struct sk_buff *skb; 1079 u32 ch = priv->channel; 1080 1081 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 1082 1083 /* Propagate the error condition to the CAN stack */ 1084 skb = alloc_can_err_skb(ndev, &cf); 1085 if (!skb) { 1086 stats->rx_dropped++; 1087 return; 1088 } 1089 1090 /* Channel error interrupts */ 1091 if (cerfl & RCANFD_CERFL_BEF) { 1092 netdev_dbg(ndev, "Bus error\n"); 1093 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 1094 cf->data[2] = CAN_ERR_PROT_UNSPEC; 1095 priv->can.can_stats.bus_error++; 1096 } 1097 if (cerfl & RCANFD_CERFL_ADERR) { 1098 netdev_dbg(ndev, "ACK Delimiter Error\n"); 1099 stats->tx_errors++; 1100 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 1101 } 1102 if (cerfl & RCANFD_CERFL_B0ERR) { 1103 netdev_dbg(ndev, "Bit Error (dominant)\n"); 1104 stats->tx_errors++; 1105 cf->data[2] |= CAN_ERR_PROT_BIT0; 1106 } 1107 if (cerfl & RCANFD_CERFL_B1ERR) { 1108 netdev_dbg(ndev, "Bit Error (recessive)\n"); 1109 stats->tx_errors++; 1110 cf->data[2] |= CAN_ERR_PROT_BIT1; 1111 } 1112 if (cerfl & RCANFD_CERFL_CERR) { 1113 netdev_dbg(ndev, "CRC Error\n"); 1114 stats->rx_errors++; 1115 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 1116 } 1117 if (cerfl & RCANFD_CERFL_AERR) { 1118 netdev_dbg(ndev, "ACK Error\n"); 1119 stats->tx_errors++; 1120 cf->can_id |= CAN_ERR_ACK; 1121 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 1122 } 1123 if (cerfl & RCANFD_CERFL_FERR) { 1124 netdev_dbg(ndev, "Form Error\n"); 1125 stats->rx_errors++; 1126 cf->data[2] |= CAN_ERR_PROT_FORM; 1127 } 1128 if (cerfl & RCANFD_CERFL_SERR) { 1129 netdev_dbg(ndev, "Stuff Error\n"); 1130 stats->rx_errors++; 1131 cf->data[2] |= CAN_ERR_PROT_STUFF; 1132 } 1133 if (cerfl & RCANFD_CERFL_ALF) { 1134 netdev_dbg(ndev, "Arbitration lost Error\n"); 1135 priv->can.can_stats.arbitration_lost++; 1136 cf->can_id |= CAN_ERR_LOSTARB; 1137 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 1138 } 1139 if (cerfl & RCANFD_CERFL_BLF) { 1140 netdev_dbg(ndev, "Bus Lock Error\n"); 1141 stats->rx_errors++; 1142 cf->can_id |= CAN_ERR_BUSERROR; 1143 } 1144 if (cerfl & RCANFD_CERFL_EWF) { 1145 netdev_dbg(ndev, "Error warning interrupt\n"); 1146 priv->can.state = CAN_STATE_ERROR_WARNING; 1147 priv->can.can_stats.error_warning++; 1148 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1149 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1150 CAN_ERR_CRTL_RX_WARNING; 1151 cf->data[6] = txerr; 1152 cf->data[7] = rxerr; 1153 } 1154 if (cerfl & RCANFD_CERFL_EPF) { 1155 netdev_dbg(ndev, "Error passive interrupt\n"); 1156 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1157 priv->can.can_stats.error_passive++; 1158 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1159 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1160 CAN_ERR_CRTL_RX_PASSIVE; 1161 cf->data[6] = txerr; 1162 cf->data[7] = rxerr; 1163 } 1164 if (cerfl & RCANFD_CERFL_BOEF) { 1165 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1166 rcar_canfd_tx_failure_cleanup(ndev); 1167 priv->can.state = CAN_STATE_BUS_OFF; 1168 priv->can.can_stats.bus_off++; 1169 can_bus_off(ndev); 1170 cf->can_id |= CAN_ERR_BUSOFF; 1171 } 1172 if (cerfl & RCANFD_CERFL_OVLF) { 1173 netdev_dbg(ndev, 1174 "Overload Frame Transmission error interrupt\n"); 1175 stats->tx_errors++; 1176 cf->can_id |= CAN_ERR_PROT; 1177 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1178 } 1179 1180 /* Clear channel error interrupts that are handled */ 1181 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1182 RCANFD_CERFL_ERR(~cerfl)); 1183 netif_rx(skb); 1184 } 1185 1186 static void rcar_canfd_tx_done(struct net_device *ndev) 1187 { 1188 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1189 struct rcar_canfd_global *gpriv = priv->gpriv; 1190 struct net_device_stats *stats = &ndev->stats; 1191 u32 sts; 1192 unsigned long flags; 1193 u32 ch = priv->channel; 1194 1195 do { 1196 u8 unsent, sent; 1197 1198 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1199 stats->tx_packets++; 1200 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1201 1202 spin_lock_irqsave(&priv->tx_lock, flags); 1203 priv->tx_tail++; 1204 sts = rcar_canfd_read(priv->base, 1205 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1206 unsent = RCANFD_CFSTS_CFMC(sts); 1207 1208 /* Wake producer only when there is room */ 1209 if (unsent != RCANFD_FIFO_DEPTH) 1210 netif_wake_queue(ndev); 1211 1212 if (priv->tx_head - priv->tx_tail <= unsent) { 1213 spin_unlock_irqrestore(&priv->tx_lock, flags); 1214 break; 1215 } 1216 spin_unlock_irqrestore(&priv->tx_lock, flags); 1217 1218 } while (1); 1219 1220 /* Clear interrupt */ 1221 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1222 sts & ~RCANFD_CFSTS_CFTXIF); 1223 } 1224 1225 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1226 { 1227 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1228 struct net_device *ndev = priv->ndev; 1229 u32 gerfl; 1230 1231 /* Handle global error interrupts */ 1232 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1233 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1234 rcar_canfd_global_error(ndev); 1235 } 1236 1237 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1238 { 1239 struct rcar_canfd_global *gpriv = dev_id; 1240 u32 ch; 1241 1242 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1243 rcar_canfd_handle_global_err(gpriv, ch); 1244 1245 return IRQ_HANDLED; 1246 } 1247 1248 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1249 { 1250 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1251 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1252 u32 sts, cc; 1253 1254 /* Handle Rx interrupts */ 1255 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1256 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx)); 1257 if (likely(sts & RCANFD_RFSTS_RFIF && 1258 cc & RCANFD_RFCC_RFIE)) { 1259 if (napi_schedule_prep(&priv->napi)) { 1260 /* Disable Rx FIFO interrupts */ 1261 rcar_canfd_clear_bit(priv->base, 1262 RCANFD_RFCC(gpriv, ridx), 1263 RCANFD_RFCC_RFIE); 1264 __napi_schedule(&priv->napi); 1265 } 1266 } 1267 } 1268 1269 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1270 { 1271 struct rcar_canfd_global *gpriv = dev_id; 1272 u32 ch; 1273 1274 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1275 rcar_canfd_handle_global_receive(gpriv, ch); 1276 1277 return IRQ_HANDLED; 1278 } 1279 1280 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1281 { 1282 struct rcar_canfd_global *gpriv = dev_id; 1283 u32 ch; 1284 1285 /* Global error interrupts still indicate a condition specific 1286 * to a channel. RxFIFO interrupt is a global interrupt. 1287 */ 1288 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1289 rcar_canfd_handle_global_err(gpriv, ch); 1290 rcar_canfd_handle_global_receive(gpriv, ch); 1291 } 1292 return IRQ_HANDLED; 1293 } 1294 1295 static void rcar_canfd_state_change(struct net_device *ndev, 1296 u16 txerr, u16 rxerr) 1297 { 1298 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1299 struct net_device_stats *stats = &ndev->stats; 1300 enum can_state rx_state, tx_state, state = priv->can.state; 1301 struct can_frame *cf; 1302 struct sk_buff *skb; 1303 1304 /* Handle transition from error to normal states */ 1305 if (txerr < 96 && rxerr < 96) 1306 state = CAN_STATE_ERROR_ACTIVE; 1307 else if (txerr < 128 && rxerr < 128) 1308 state = CAN_STATE_ERROR_WARNING; 1309 1310 if (state != priv->can.state) { 1311 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1312 state, priv->can.state, txerr, rxerr); 1313 skb = alloc_can_err_skb(ndev, &cf); 1314 if (!skb) { 1315 stats->rx_dropped++; 1316 return; 1317 } 1318 tx_state = txerr >= rxerr ? state : 0; 1319 rx_state = txerr <= rxerr ? state : 0; 1320 1321 can_change_state(ndev, cf, tx_state, rx_state); 1322 netif_rx(skb); 1323 } 1324 } 1325 1326 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1327 { 1328 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1329 struct net_device *ndev = priv->ndev; 1330 u32 sts; 1331 1332 /* Handle Tx interrupts */ 1333 sts = rcar_canfd_read(priv->base, 1334 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1335 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1336 rcar_canfd_tx_done(ndev); 1337 } 1338 1339 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1340 { 1341 struct rcar_canfd_channel *priv = dev_id; 1342 1343 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel); 1344 1345 return IRQ_HANDLED; 1346 } 1347 1348 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1349 { 1350 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1351 struct net_device *ndev = priv->ndev; 1352 u16 txerr, rxerr; 1353 u32 sts, cerfl; 1354 1355 /* Handle channel error interrupts */ 1356 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1357 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1358 txerr = RCANFD_CSTS_TECCNT(sts); 1359 rxerr = RCANFD_CSTS_RECCNT(sts); 1360 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1361 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1362 1363 /* Handle state change to lower states */ 1364 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1365 priv->can.state != CAN_STATE_BUS_OFF)) 1366 rcar_canfd_state_change(ndev, txerr, rxerr); 1367 } 1368 1369 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1370 { 1371 struct rcar_canfd_channel *priv = dev_id; 1372 1373 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel); 1374 1375 return IRQ_HANDLED; 1376 } 1377 1378 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1379 { 1380 struct rcar_canfd_global *gpriv = dev_id; 1381 u32 ch; 1382 1383 /* Common FIFO is a per channel resource */ 1384 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1385 rcar_canfd_handle_channel_err(gpriv, ch); 1386 rcar_canfd_handle_channel_tx(gpriv, ch); 1387 } 1388 1389 return IRQ_HANDLED; 1390 } 1391 1392 static void rcar_canfd_set_bittiming(struct net_device *ndev) 1393 { 1394 u32 mask = RCANFD_FDCFG_TDCO | RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC; 1395 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1396 struct rcar_canfd_global *gpriv = priv->gpriv; 1397 const struct can_bittiming *bt = &priv->can.bittiming; 1398 const struct can_bittiming *dbt = &priv->can.fd.data_bittiming; 1399 const struct can_tdc_const *tdc_const = priv->can.fd.tdc_const; 1400 const struct can_tdc *tdc = &priv->can.fd.tdc; 1401 u32 cfg, tdcmode = 0, tdco = 0; 1402 u16 brp, sjw, tseg1, tseg2; 1403 u32 ch = priv->channel; 1404 1405 /* Nominal bit timing settings */ 1406 brp = bt->brp - 1; 1407 sjw = bt->sjw - 1; 1408 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1409 tseg2 = bt->phase_seg2 - 1; 1410 1411 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1412 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) | 1413 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1414 } else { 1415 cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) | 1416 RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2)); 1417 } 1418 1419 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1420 1421 if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD)) 1422 return; 1423 1424 /* Data bit timing settings */ 1425 brp = dbt->brp - 1; 1426 sjw = dbt->sjw - 1; 1427 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1428 tseg2 = dbt->phase_seg2 - 1; 1429 1430 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) | 1431 RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2)); 1432 1433 writel(cfg, &gpriv->fcbase[ch].dcfg); 1434 1435 /* Transceiver Delay Compensation */ 1436 if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO) { 1437 /* TDC enabled, measured + offset */ 1438 tdcmode = RCANFD_FDCFG_TDCE; 1439 tdco = tdc->tdco - 1; 1440 } else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL) { 1441 /* TDC enabled, offset only */ 1442 tdcmode = RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC; 1443 tdco = min(tdc->tdcv + tdc->tdco, tdc_const->tdco_max) - 1; 1444 } 1445 1446 rcar_canfd_update_bit_reg(&gpriv->fcbase[ch].cfdcfg, mask, 1447 tdcmode | FIELD_PREP(RCANFD_FDCFG_TDCO, tdco)); 1448 } 1449 1450 static int rcar_canfd_start(struct net_device *ndev) 1451 { 1452 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1453 struct rcar_canfd_global *gpriv = priv->gpriv; 1454 int err = -EOPNOTSUPP; 1455 u32 sts, ch = priv->channel; 1456 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1457 1458 rcar_canfd_set_bittiming(ndev); 1459 1460 rcar_canfd_enable_channel_interrupts(priv); 1461 1462 /* Set channel to Operational mode */ 1463 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1464 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1465 1466 /* Verify channel mode change */ 1467 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1468 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1469 if (err) { 1470 netdev_err(ndev, "channel %u communication state failed\n", ch); 1471 goto fail_mode_change; 1472 } 1473 1474 /* Enable Common & Rx FIFO */ 1475 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1476 RCANFD_CFCC_CFE); 1477 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1478 1479 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1480 return 0; 1481 1482 fail_mode_change: 1483 rcar_canfd_disable_channel_interrupts(priv); 1484 return err; 1485 } 1486 1487 static int rcar_canfd_open(struct net_device *ndev) 1488 { 1489 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1490 struct rcar_canfd_global *gpriv = priv->gpriv; 1491 int err; 1492 1493 err = phy_power_on(priv->transceiver); 1494 if (err) { 1495 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err)); 1496 return err; 1497 } 1498 1499 /* Peripheral clock is already enabled in probe */ 1500 err = clk_prepare_enable(gpriv->can_clk); 1501 if (err) { 1502 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err)); 1503 goto out_phy; 1504 } 1505 1506 err = open_candev(ndev); 1507 if (err) { 1508 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err)); 1509 goto out_can_clock; 1510 } 1511 1512 napi_enable(&priv->napi); 1513 err = rcar_canfd_start(ndev); 1514 if (err) 1515 goto out_close; 1516 netif_start_queue(ndev); 1517 return 0; 1518 out_close: 1519 napi_disable(&priv->napi); 1520 close_candev(ndev); 1521 out_can_clock: 1522 clk_disable_unprepare(gpriv->can_clk); 1523 out_phy: 1524 phy_power_off(priv->transceiver); 1525 return err; 1526 } 1527 1528 static void rcar_canfd_stop(struct net_device *ndev) 1529 { 1530 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1531 struct rcar_canfd_global *gpriv = priv->gpriv; 1532 int err; 1533 u32 sts, ch = priv->channel; 1534 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1535 1536 /* Transition to channel reset mode */ 1537 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1538 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1539 1540 /* Check Channel reset mode */ 1541 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1542 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1543 if (err) 1544 netdev_err(ndev, "channel %u reset failed\n", ch); 1545 1546 rcar_canfd_disable_channel_interrupts(priv); 1547 1548 /* Disable Common & Rx FIFO */ 1549 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1550 RCANFD_CFCC_CFE); 1551 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1552 1553 /* Set the state as STOPPED */ 1554 priv->can.state = CAN_STATE_STOPPED; 1555 } 1556 1557 static int rcar_canfd_close(struct net_device *ndev) 1558 { 1559 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1560 struct rcar_canfd_global *gpriv = priv->gpriv; 1561 1562 netif_stop_queue(ndev); 1563 rcar_canfd_stop(ndev); 1564 napi_disable(&priv->napi); 1565 clk_disable_unprepare(gpriv->can_clk); 1566 close_candev(ndev); 1567 phy_power_off(priv->transceiver); 1568 return 0; 1569 } 1570 1571 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1572 struct net_device *ndev) 1573 { 1574 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1575 struct rcar_canfd_global *gpriv = priv->gpriv; 1576 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1577 u32 sts = 0, id, dlc; 1578 unsigned long flags; 1579 u32 ch = priv->channel; 1580 1581 if (can_dev_dropped_skb(ndev, skb)) 1582 return NETDEV_TX_OK; 1583 1584 if (cf->can_id & CAN_EFF_FLAG) { 1585 id = cf->can_id & CAN_EFF_MASK; 1586 id |= RCANFD_CFID_CFIDE; 1587 } else { 1588 id = cf->can_id & CAN_SFF_MASK; 1589 } 1590 1591 if (cf->can_id & CAN_RTR_FLAG) 1592 id |= RCANFD_CFID_CFRTR; 1593 1594 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1595 1596 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1597 rcar_canfd_write(priv->base, 1598 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id); 1599 rcar_canfd_write(priv->base, 1600 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc); 1601 1602 if (can_is_canfd_skb(skb)) { 1603 /* CAN FD frame format */ 1604 sts |= RCANFD_CFFDCSTS_CFFDF; 1605 if (cf->flags & CANFD_BRS) 1606 sts |= RCANFD_CFFDCSTS_CFBRS; 1607 1608 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1609 sts |= RCANFD_CFFDCSTS_CFESI; 1610 } 1611 1612 rcar_canfd_write(priv->base, 1613 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts); 1614 1615 rcar_canfd_put_data(priv, cf, 1616 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0)); 1617 } else { 1618 rcar_canfd_write(priv->base, 1619 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1620 rcar_canfd_write(priv->base, 1621 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1622 rcar_canfd_put_data(priv, cf, 1623 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1624 } 1625 1626 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1627 1628 spin_lock_irqsave(&priv->tx_lock, flags); 1629 priv->tx_head++; 1630 1631 /* Stop the queue if we've filled all FIFO entries */ 1632 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1633 netif_stop_queue(ndev); 1634 1635 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1636 * pointer for the Common FIFO 1637 */ 1638 rcar_canfd_write(priv->base, 1639 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff); 1640 1641 spin_unlock_irqrestore(&priv->tx_lock, flags); 1642 return NETDEV_TX_OK; 1643 } 1644 1645 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1646 { 1647 struct net_device *ndev = priv->ndev; 1648 struct net_device_stats *stats = &ndev->stats; 1649 struct rcar_canfd_global *gpriv = priv->gpriv; 1650 struct canfd_frame *cf; 1651 struct sk_buff *skb; 1652 u32 sts = 0, id, dlc; 1653 u32 ch = priv->channel; 1654 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1655 1656 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) { 1657 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx)); 1658 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx)); 1659 1660 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx)); 1661 1662 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && 1663 sts & RCANFD_RFFDSTS_RFFDF) 1664 skb = alloc_canfd_skb(ndev, &cf); 1665 else 1666 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 1667 } else { 1668 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1669 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1670 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 1671 } 1672 1673 if (!skb) { 1674 stats->rx_dropped++; 1675 return; 1676 } 1677 1678 if (id & RCANFD_RFID_RFIDE) 1679 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1680 else 1681 cf->can_id = id & CAN_SFF_MASK; 1682 1683 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1684 if (sts & RCANFD_RFFDSTS_RFFDF) 1685 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1686 else 1687 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1688 1689 if (sts & RCANFD_RFFDSTS_RFESI) { 1690 cf->flags |= CANFD_ESI; 1691 netdev_dbg(ndev, "ESI Error\n"); 1692 } 1693 1694 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1695 cf->can_id |= CAN_RTR_FLAG; 1696 } else { 1697 if (sts & RCANFD_RFFDSTS_RFBRS) 1698 cf->flags |= CANFD_BRS; 1699 1700 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1701 } 1702 } else { 1703 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1704 if (id & RCANFD_RFID_RFRTR) 1705 cf->can_id |= CAN_RTR_FLAG; 1706 else if (gpriv->info->shared_can_regs) 1707 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1708 else 1709 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1710 } 1711 1712 /* Write 0xff to RFPC to increment the CPU-side 1713 * pointer of the Rx FIFO 1714 */ 1715 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff); 1716 1717 if (!(cf->can_id & CAN_RTR_FLAG)) 1718 stats->rx_bytes += cf->len; 1719 stats->rx_packets++; 1720 netif_receive_skb(skb); 1721 } 1722 1723 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1724 { 1725 struct rcar_canfd_channel *priv = 1726 container_of(napi, struct rcar_canfd_channel, napi); 1727 struct rcar_canfd_global *gpriv = priv->gpriv; 1728 int num_pkts; 1729 u32 sts; 1730 u32 ch = priv->channel; 1731 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1732 1733 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1734 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1735 /* Check FIFO empty condition */ 1736 if (sts & RCANFD_RFSTS_RFEMP) 1737 break; 1738 1739 rcar_canfd_rx_pkt(priv); 1740 1741 /* Clear interrupt bit */ 1742 if (sts & RCANFD_RFSTS_RFIF) 1743 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1744 sts & ~RCANFD_RFSTS_RFIF); 1745 } 1746 1747 /* All packets processed */ 1748 if (num_pkts < quota) { 1749 if (napi_complete_done(napi, num_pkts)) { 1750 /* Enable Rx FIFO interrupts */ 1751 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), 1752 RCANFD_RFCC_RFIE); 1753 } 1754 } 1755 return num_pkts; 1756 } 1757 1758 static unsigned int rcar_canfd_get_tdcr(struct rcar_canfd_global *gpriv, 1759 unsigned int ch) 1760 { 1761 u32 sts = readl(&gpriv->fcbase[ch].cfdsts); 1762 u32 tdcr = FIELD_GET(RCANFD_FDSTS_TDCR, sts); 1763 1764 return tdcr & (gpriv->info->tdc_const->tdcv_max - 1); 1765 } 1766 1767 static int rcar_canfd_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv) 1768 { 1769 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1770 u32 tdco = priv->can.fd.tdc.tdco; 1771 u32 tdcr; 1772 1773 /* Transceiver Delay Compensation Result */ 1774 tdcr = rcar_canfd_get_tdcr(priv->gpriv, priv->channel) + 1; 1775 1776 *tdcv = tdcr < tdco ? 0 : tdcr - tdco; 1777 1778 return 0; 1779 } 1780 1781 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1782 { 1783 int err; 1784 1785 switch (mode) { 1786 case CAN_MODE_START: 1787 err = rcar_canfd_start(ndev); 1788 if (err) 1789 return err; 1790 netif_wake_queue(ndev); 1791 return 0; 1792 default: 1793 return -EOPNOTSUPP; 1794 } 1795 } 1796 1797 static int rcar_canfd_get_berr_counter(const struct net_device *ndev, 1798 struct can_berr_counter *bec) 1799 { 1800 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1801 u32 val, ch = priv->channel; 1802 1803 /* Peripheral clock is already enabled in probe */ 1804 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1805 bec->txerr = RCANFD_CSTS_TECCNT(val); 1806 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1807 return 0; 1808 } 1809 1810 static const struct net_device_ops rcar_canfd_netdev_ops = { 1811 .ndo_open = rcar_canfd_open, 1812 .ndo_stop = rcar_canfd_close, 1813 .ndo_start_xmit = rcar_canfd_start_xmit, 1814 .ndo_change_mtu = can_change_mtu, 1815 }; 1816 1817 static const struct ethtool_ops rcar_canfd_ethtool_ops = { 1818 .get_ts_info = ethtool_op_get_ts_info, 1819 }; 1820 1821 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1822 u32 fcan_freq, struct phy *transceiver) 1823 { 1824 const struct rcar_canfd_hw_info *info = gpriv->info; 1825 struct platform_device *pdev = gpriv->pdev; 1826 struct device *dev = &pdev->dev; 1827 struct rcar_canfd_channel *priv; 1828 struct net_device *ndev; 1829 int err = -ENODEV; 1830 1831 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1832 if (!ndev) 1833 return -ENOMEM; 1834 1835 priv = netdev_priv(ndev); 1836 1837 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1838 ndev->ethtool_ops = &rcar_canfd_ethtool_ops; 1839 ndev->flags |= IFF_ECHO; 1840 priv->ndev = ndev; 1841 priv->base = gpriv->base; 1842 priv->transceiver = transceiver; 1843 priv->channel = ch; 1844 priv->gpriv = gpriv; 1845 if (transceiver) 1846 priv->can.bitrate_max = transceiver->attrs.max_link_rate; 1847 priv->can.clock.freq = fcan_freq; 1848 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq); 1849 1850 if (info->multi_channel_irqs) { 1851 char *irq_name; 1852 char name[10]; 1853 int err_irq; 1854 int tx_irq; 1855 1856 scnprintf(name, sizeof(name), "ch%u_err", ch); 1857 err_irq = platform_get_irq_byname(pdev, name); 1858 if (err_irq < 0) { 1859 err = err_irq; 1860 goto fail; 1861 } 1862 1863 scnprintf(name, sizeof(name), "ch%u_trx", ch); 1864 tx_irq = platform_get_irq_byname(pdev, name); 1865 if (tx_irq < 0) { 1866 err = tx_irq; 1867 goto fail; 1868 } 1869 1870 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err", 1871 ch); 1872 if (!irq_name) { 1873 err = -ENOMEM; 1874 goto fail; 1875 } 1876 err = devm_request_irq(dev, err_irq, 1877 rcar_canfd_channel_err_interrupt, 0, 1878 irq_name, priv); 1879 if (err) { 1880 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n", 1881 err_irq, ERR_PTR(err)); 1882 goto fail; 1883 } 1884 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx", 1885 ch); 1886 if (!irq_name) { 1887 err = -ENOMEM; 1888 goto fail; 1889 } 1890 err = devm_request_irq(dev, tx_irq, 1891 rcar_canfd_channel_tx_interrupt, 0, 1892 irq_name, priv); 1893 if (err) { 1894 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n", 1895 tx_irq, ERR_PTR(err)); 1896 goto fail; 1897 } 1898 } 1899 1900 if (gpriv->fdmode) { 1901 priv->can.bittiming_const = gpriv->info->nom_bittiming; 1902 priv->can.fd.data_bittiming_const = gpriv->info->data_bittiming; 1903 priv->can.fd.tdc_const = gpriv->info->tdc_const; 1904 1905 /* Controller starts in CAN FD only mode */ 1906 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1907 if (err) 1908 goto fail; 1909 1910 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING | 1911 CAN_CTRLMODE_TDC_AUTO | 1912 CAN_CTRLMODE_TDC_MANUAL; 1913 priv->can.fd.do_get_auto_tdcv = rcar_canfd_get_auto_tdcv; 1914 } else { 1915 /* Controller starts in Classical CAN only mode */ 1916 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1917 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1918 } 1919 1920 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1921 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1922 SET_NETDEV_DEV(ndev, dev); 1923 1924 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll, 1925 RCANFD_NAPI_WEIGHT); 1926 spin_lock_init(&priv->tx_lock); 1927 gpriv->ch[priv->channel] = priv; 1928 err = register_candev(ndev); 1929 if (err) { 1930 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err)); 1931 goto fail_candev; 1932 } 1933 dev_info(dev, "device registered (channel %u)\n", priv->channel); 1934 return 0; 1935 1936 fail_candev: 1937 netif_napi_del(&priv->napi); 1938 fail: 1939 free_candev(ndev); 1940 return err; 1941 } 1942 1943 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1944 { 1945 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1946 1947 if (priv) { 1948 unregister_candev(priv->ndev); 1949 netif_napi_del(&priv->napi); 1950 free_candev(priv->ndev); 1951 } 1952 } 1953 1954 static int rcar_canfd_probe(struct platform_device *pdev) 1955 { 1956 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, }; 1957 const struct rcar_canfd_hw_info *info; 1958 struct device *dev = &pdev->dev; 1959 void __iomem *addr; 1960 u32 sts, ch, fcan_freq; 1961 struct rcar_canfd_global *gpriv; 1962 struct device_node *of_child; 1963 unsigned long channels_mask = 0; 1964 int err, ch_irq, g_irq; 1965 int g_err_irq, g_recc_irq; 1966 u32 rule_entry = 0; 1967 bool fdmode = true; /* CAN FD only mode - default */ 1968 char name[9] = "channelX"; 1969 struct clk *clk_ram; 1970 int i; 1971 1972 info = of_device_get_match_data(dev); 1973 1974 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd")) 1975 fdmode = false; /* Classical CAN only mode */ 1976 1977 for (i = 0; i < info->max_channels; ++i) { 1978 name[7] = '0' + i; 1979 of_child = of_get_available_child_by_name(dev->of_node, name); 1980 if (of_child) { 1981 channels_mask |= BIT(i); 1982 transceivers[i] = devm_of_phy_optional_get(dev, 1983 of_child, NULL); 1984 of_node_put(of_child); 1985 } 1986 if (IS_ERR(transceivers[i])) 1987 return PTR_ERR(transceivers[i]); 1988 } 1989 1990 if (info->shared_global_irqs) { 1991 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 1992 if (ch_irq < 0) { 1993 /* For backward compatibility get irq by index */ 1994 ch_irq = platform_get_irq(pdev, 0); 1995 if (ch_irq < 0) 1996 return ch_irq; 1997 } 1998 1999 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 2000 if (g_irq < 0) { 2001 /* For backward compatibility get irq by index */ 2002 g_irq = platform_get_irq(pdev, 1); 2003 if (g_irq < 0) 2004 return g_irq; 2005 } 2006 } else { 2007 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 2008 if (g_err_irq < 0) 2009 return g_err_irq; 2010 2011 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 2012 if (g_recc_irq < 0) 2013 return g_recc_irq; 2014 } 2015 2016 /* Global controller context */ 2017 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL); 2018 if (!gpriv) 2019 return -ENOMEM; 2020 2021 gpriv->pdev = pdev; 2022 gpriv->channels_mask = channels_mask; 2023 gpriv->fdmode = fdmode; 2024 gpriv->info = info; 2025 2026 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n"); 2027 if (IS_ERR(gpriv->rstc1)) 2028 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1), 2029 "failed to get rstp_n\n"); 2030 2031 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n"); 2032 if (IS_ERR(gpriv->rstc2)) 2033 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2), 2034 "failed to get rstc_n\n"); 2035 2036 /* Peripheral clock */ 2037 gpriv->clkp = devm_clk_get(dev, "fck"); 2038 if (IS_ERR(gpriv->clkp)) 2039 return dev_err_probe(dev, PTR_ERR(gpriv->clkp), 2040 "cannot get peripheral clock\n"); 2041 2042 /* fCAN clock: Pick External clock. If not available fallback to 2043 * CANFD clock 2044 */ 2045 gpriv->can_clk = devm_clk_get(dev, "can_clk"); 2046 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 2047 gpriv->can_clk = devm_clk_get(dev, "canfd"); 2048 if (IS_ERR(gpriv->can_clk)) 2049 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk), 2050 "cannot get canfd clock\n"); 2051 2052 /* CANFD clock may be further divided within the IP */ 2053 fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv; 2054 } else { 2055 fcan_freq = clk_get_rate(gpriv->can_clk); 2056 gpriv->extclk = gpriv->info->external_clk; 2057 } 2058 2059 clk_ram = devm_clk_get_optional_enabled(dev, "ram_clk"); 2060 if (IS_ERR(clk_ram)) 2061 return dev_err_probe(dev, PTR_ERR(clk_ram), 2062 "cannot get enabled ram clock\n"); 2063 2064 addr = devm_platform_ioremap_resource(pdev, 0); 2065 if (IS_ERR(addr)) { 2066 err = PTR_ERR(addr); 2067 goto fail_dev; 2068 } 2069 gpriv->base = addr; 2070 gpriv->fcbase = addr + gpriv->info->regs->coffset; 2071 2072 /* Request IRQ that's common for both channels */ 2073 if (info->shared_global_irqs) { 2074 err = devm_request_irq(dev, ch_irq, 2075 rcar_canfd_channel_interrupt, 0, 2076 "canfd.ch_int", gpriv); 2077 if (err) { 2078 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2079 ch_irq, ERR_PTR(err)); 2080 goto fail_dev; 2081 } 2082 2083 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt, 2084 0, "canfd.g_int", gpriv); 2085 if (err) { 2086 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2087 g_irq, ERR_PTR(err)); 2088 goto fail_dev; 2089 } 2090 } else { 2091 err = devm_request_irq(dev, g_recc_irq, 2092 rcar_canfd_global_receive_fifo_interrupt, 0, 2093 "canfd.g_recc", gpriv); 2094 2095 if (err) { 2096 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2097 g_recc_irq, ERR_PTR(err)); 2098 goto fail_dev; 2099 } 2100 2101 err = devm_request_irq(dev, g_err_irq, 2102 rcar_canfd_global_err_interrupt, 0, 2103 "canfd.g_err", gpriv); 2104 if (err) { 2105 dev_err(dev, "devm_request_irq %d failed: %pe\n", 2106 g_err_irq, ERR_PTR(err)); 2107 goto fail_dev; 2108 } 2109 } 2110 2111 err = reset_control_reset(gpriv->rstc1); 2112 if (err) 2113 goto fail_dev; 2114 err = reset_control_reset(gpriv->rstc2); 2115 if (err) { 2116 reset_control_assert(gpriv->rstc1); 2117 goto fail_dev; 2118 } 2119 2120 /* Enable peripheral clock for register access */ 2121 err = clk_prepare_enable(gpriv->clkp); 2122 if (err) { 2123 dev_err(dev, "failed to enable peripheral clock: %pe\n", 2124 ERR_PTR(err)); 2125 goto fail_reset; 2126 } 2127 2128 err = rcar_canfd_reset_controller(gpriv); 2129 if (err) { 2130 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err)); 2131 goto fail_clk; 2132 } 2133 2134 /* Controller in Global reset & Channel reset mode */ 2135 rcar_canfd_configure_controller(gpriv); 2136 2137 /* Configure per channel attributes */ 2138 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2139 /* Configure Channel's Rx fifo */ 2140 rcar_canfd_configure_rx(gpriv, ch); 2141 2142 /* Configure Channel's Tx (Common) fifo */ 2143 rcar_canfd_configure_tx(gpriv, ch); 2144 2145 /* Configure receive rules */ 2146 rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry); 2147 rule_entry += RCANFD_CHANNEL_NUMRULES; 2148 } 2149 2150 /* Configure common interrupts */ 2151 rcar_canfd_enable_global_interrupts(gpriv); 2152 2153 /* Start Global operation mode */ 2154 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 2155 RCANFD_GCTR_GMDC_GOPM); 2156 2157 /* Verify mode change */ 2158 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 2159 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 2160 if (err) { 2161 dev_err(dev, "global operational mode failed\n"); 2162 goto fail_mode; 2163 } 2164 2165 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2166 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq, 2167 transceivers[ch]); 2168 if (err) 2169 goto fail_channel; 2170 } 2171 2172 platform_set_drvdata(pdev, gpriv); 2173 dev_info(dev, "global operational state (%s clk, %s mode)\n", 2174 gpriv->extclk ? "ext" : "canfd", 2175 gpriv->fdmode ? "fd" : "classical"); 2176 return 0; 2177 2178 fail_channel: 2179 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) 2180 rcar_canfd_channel_remove(gpriv, ch); 2181 fail_mode: 2182 rcar_canfd_disable_global_interrupts(gpriv); 2183 fail_clk: 2184 clk_disable_unprepare(gpriv->clkp); 2185 fail_reset: 2186 reset_control_assert(gpriv->rstc1); 2187 reset_control_assert(gpriv->rstc2); 2188 fail_dev: 2189 return err; 2190 } 2191 2192 static void rcar_canfd_remove(struct platform_device *pdev) 2193 { 2194 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 2195 u32 ch; 2196 2197 rcar_canfd_reset_controller(gpriv); 2198 rcar_canfd_disable_global_interrupts(gpriv); 2199 2200 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2201 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 2202 rcar_canfd_channel_remove(gpriv, ch); 2203 } 2204 2205 /* Enter global sleep mode */ 2206 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2207 clk_disable_unprepare(gpriv->clkp); 2208 reset_control_assert(gpriv->rstc1); 2209 reset_control_assert(gpriv->rstc2); 2210 } 2211 2212 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2213 { 2214 return 0; 2215 } 2216 2217 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2218 { 2219 return 0; 2220 } 2221 2222 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2223 rcar_canfd_resume); 2224 2225 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2226 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info }, 2227 { .compatible = "renesas,r9a09g047-canfd", .data = &r9a09g047_hw_info }, 2228 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info }, 2229 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info }, 2230 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info }, 2231 { } 2232 }; 2233 2234 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2235 2236 static struct platform_driver rcar_canfd_driver = { 2237 .driver = { 2238 .name = RCANFD_DRV_NAME, 2239 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2240 .pm = &rcar_canfd_pm_ops, 2241 }, 2242 .probe = rcar_canfd_probe, 2243 .remove = rcar_canfd_remove, 2244 }; 2245 2246 module_platform_driver(rcar_canfd_driver); 2247 2248 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2249 MODULE_LICENSE("GPL"); 2250 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2251 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2252