1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <b29396@freescale.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * https://github.com/linux-can/can-doc/tree/master/m_can 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/can/dev.h> 13 #include <linux/ethtool.h> 14 #include <linux/hrtimer.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/iopoll.h> 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/netdevice.h> 21 #include <linux/of.h> 22 #include <linux/phy/phy.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 27 #include "m_can.h" 28 29 /* registers definition */ 30 enum m_can_reg { 31 M_CAN_CREL = 0x0, 32 M_CAN_ENDN = 0x4, 33 M_CAN_CUST = 0x8, 34 M_CAN_DBTP = 0xc, 35 M_CAN_TEST = 0x10, 36 M_CAN_RWD = 0x14, 37 M_CAN_CCCR = 0x18, 38 M_CAN_NBTP = 0x1c, 39 M_CAN_TSCC = 0x20, 40 M_CAN_TSCV = 0x24, 41 M_CAN_TOCC = 0x28, 42 M_CAN_TOCV = 0x2c, 43 M_CAN_ECR = 0x40, 44 M_CAN_PSR = 0x44, 45 /* TDCR Register only available for version >=3.1.x */ 46 M_CAN_TDCR = 0x48, 47 M_CAN_IR = 0x50, 48 M_CAN_IE = 0x54, 49 M_CAN_ILS = 0x58, 50 M_CAN_ILE = 0x5c, 51 M_CAN_GFC = 0x80, 52 M_CAN_SIDFC = 0x84, 53 M_CAN_XIDFC = 0x88, 54 M_CAN_XIDAM = 0x90, 55 M_CAN_HPMS = 0x94, 56 M_CAN_NDAT1 = 0x98, 57 M_CAN_NDAT2 = 0x9c, 58 M_CAN_RXF0C = 0xa0, 59 M_CAN_RXF0S = 0xa4, 60 M_CAN_RXF0A = 0xa8, 61 M_CAN_RXBC = 0xac, 62 M_CAN_RXF1C = 0xb0, 63 M_CAN_RXF1S = 0xb4, 64 M_CAN_RXF1A = 0xb8, 65 M_CAN_RXESC = 0xbc, 66 M_CAN_TXBC = 0xc0, 67 M_CAN_TXFQS = 0xc4, 68 M_CAN_TXESC = 0xc8, 69 M_CAN_TXBRP = 0xcc, 70 M_CAN_TXBAR = 0xd0, 71 M_CAN_TXBCR = 0xd4, 72 M_CAN_TXBTO = 0xd8, 73 M_CAN_TXBCF = 0xdc, 74 M_CAN_TXBTIE = 0xe0, 75 M_CAN_TXBCIE = 0xe4, 76 M_CAN_TXEFC = 0xf0, 77 M_CAN_TXEFS = 0xf4, 78 M_CAN_TXEFA = 0xf8, 79 }; 80 81 /* message ram configuration data length */ 82 #define MRAM_CFG_LEN 8 83 84 /* Core Release Register (CREL) */ 85 #define CREL_REL_MASK GENMASK(31, 28) 86 #define CREL_STEP_MASK GENMASK(27, 24) 87 #define CREL_SUBSTEP_MASK GENMASK(23, 20) 88 89 /* Data Bit Timing & Prescaler Register (DBTP) */ 90 #define DBTP_TDC BIT(23) 91 #define DBTP_DBRP_MASK GENMASK(20, 16) 92 #define DBTP_DTSEG1_MASK GENMASK(12, 8) 93 #define DBTP_DTSEG2_MASK GENMASK(7, 4) 94 #define DBTP_DSJW_MASK GENMASK(3, 0) 95 96 /* Transmitter Delay Compensation Register (TDCR) */ 97 #define TDCR_TDCO_MASK GENMASK(14, 8) 98 #define TDCR_TDCF_MASK GENMASK(6, 0) 99 100 /* Test Register (TEST) */ 101 #define TEST_LBCK BIT(4) 102 103 /* CC Control Register (CCCR) */ 104 #define CCCR_TXP BIT(14) 105 #define CCCR_TEST BIT(7) 106 #define CCCR_DAR BIT(6) 107 #define CCCR_MON BIT(5) 108 #define CCCR_CSR BIT(4) 109 #define CCCR_CSA BIT(3) 110 #define CCCR_ASM BIT(2) 111 #define CCCR_CCE BIT(1) 112 #define CCCR_INIT BIT(0) 113 /* for version 3.0.x */ 114 #define CCCR_CMR_MASK GENMASK(11, 10) 115 #define CCCR_CMR_CANFD 0x1 116 #define CCCR_CMR_CANFD_BRS 0x2 117 #define CCCR_CMR_CAN 0x3 118 #define CCCR_CME_MASK GENMASK(9, 8) 119 #define CCCR_CME_CAN 0 120 #define CCCR_CME_CANFD 0x1 121 #define CCCR_CME_CANFD_BRS 0x2 122 /* for version >=3.1.x */ 123 #define CCCR_EFBI BIT(13) 124 #define CCCR_PXHD BIT(12) 125 #define CCCR_BRSE BIT(9) 126 #define CCCR_FDOE BIT(8) 127 /* for version >=3.2.x */ 128 #define CCCR_NISO BIT(15) 129 /* for version >=3.3.x */ 130 #define CCCR_WMM BIT(11) 131 #define CCCR_UTSU BIT(10) 132 133 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 134 #define NBTP_NSJW_MASK GENMASK(31, 25) 135 #define NBTP_NBRP_MASK GENMASK(24, 16) 136 #define NBTP_NTSEG1_MASK GENMASK(15, 8) 137 #define NBTP_NTSEG2_MASK GENMASK(6, 0) 138 139 /* Timestamp Counter Configuration Register (TSCC) */ 140 #define TSCC_TCP_MASK GENMASK(19, 16) 141 #define TSCC_TSS_MASK GENMASK(1, 0) 142 #define TSCC_TSS_DISABLE 0x0 143 #define TSCC_TSS_INTERNAL 0x1 144 #define TSCC_TSS_EXTERNAL 0x2 145 146 /* Timestamp Counter Value Register (TSCV) */ 147 #define TSCV_TSC_MASK GENMASK(15, 0) 148 149 /* Error Counter Register (ECR) */ 150 #define ECR_RP BIT(15) 151 #define ECR_REC_MASK GENMASK(14, 8) 152 #define ECR_TEC_MASK GENMASK(7, 0) 153 154 /* Protocol Status Register (PSR) */ 155 #define PSR_BO BIT(7) 156 #define PSR_EW BIT(6) 157 #define PSR_EP BIT(5) 158 #define PSR_LEC_MASK GENMASK(2, 0) 159 #define PSR_DLEC_MASK GENMASK(10, 8) 160 161 /* Interrupt Register (IR) */ 162 #define IR_ALL_INT 0xffffffff 163 164 /* Renamed bits for versions > 3.1.x */ 165 #define IR_ARA BIT(29) 166 #define IR_PED BIT(28) 167 #define IR_PEA BIT(27) 168 169 /* Bits for version 3.0.x */ 170 #define IR_STE BIT(31) 171 #define IR_FOE BIT(30) 172 #define IR_ACKE BIT(29) 173 #define IR_BE BIT(28) 174 #define IR_CRCE BIT(27) 175 #define IR_WDI BIT(26) 176 #define IR_BO BIT(25) 177 #define IR_EW BIT(24) 178 #define IR_EP BIT(23) 179 #define IR_ELO BIT(22) 180 #define IR_BEU BIT(21) 181 #define IR_BEC BIT(20) 182 #define IR_DRX BIT(19) 183 #define IR_TOO BIT(18) 184 #define IR_MRAF BIT(17) 185 #define IR_TSW BIT(16) 186 #define IR_TEFL BIT(15) 187 #define IR_TEFF BIT(14) 188 #define IR_TEFW BIT(13) 189 #define IR_TEFN BIT(12) 190 #define IR_TFE BIT(11) 191 #define IR_TCF BIT(10) 192 #define IR_TC BIT(9) 193 #define IR_HPM BIT(8) 194 #define IR_RF1L BIT(7) 195 #define IR_RF1F BIT(6) 196 #define IR_RF1W BIT(5) 197 #define IR_RF1N BIT(4) 198 #define IR_RF0L BIT(3) 199 #define IR_RF0F BIT(2) 200 #define IR_RF0W BIT(1) 201 #define IR_RF0N BIT(0) 202 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 203 204 /* Interrupts for version 3.0.x */ 205 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 206 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \ 207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 208 IR_RF0L) 209 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 210 211 /* Interrupts for version >= 3.1.x */ 212 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 213 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \ 214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 215 IR_RF0L) 216 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 217 218 /* Interrupt Line Select (ILS) */ 219 #define ILS_ALL_INT0 0x0 220 #define ILS_ALL_INT1 0xFFFFFFFF 221 222 /* Interrupt Line Enable (ILE) */ 223 #define ILE_EINT1 BIT(1) 224 #define ILE_EINT0 BIT(0) 225 226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 227 #define RXFC_FWM_MASK GENMASK(30, 24) 228 #define RXFC_FS_MASK GENMASK(22, 16) 229 230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 231 #define RXFS_RFL BIT(25) 232 #define RXFS_FF BIT(24) 233 #define RXFS_FPI_MASK GENMASK(21, 16) 234 #define RXFS_FGI_MASK GENMASK(13, 8) 235 #define RXFS_FFL_MASK GENMASK(6, 0) 236 237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 238 #define RXESC_RBDS_MASK GENMASK(10, 8) 239 #define RXESC_F1DS_MASK GENMASK(6, 4) 240 #define RXESC_F0DS_MASK GENMASK(2, 0) 241 #define RXESC_64B 0x7 242 243 /* Tx Buffer Configuration (TXBC) */ 244 #define TXBC_TFQS_MASK GENMASK(29, 24) 245 #define TXBC_NDTB_MASK GENMASK(21, 16) 246 247 /* Tx FIFO/Queue Status (TXFQS) */ 248 #define TXFQS_TFQF BIT(21) 249 #define TXFQS_TFQPI_MASK GENMASK(20, 16) 250 #define TXFQS_TFGI_MASK GENMASK(12, 8) 251 #define TXFQS_TFFL_MASK GENMASK(5, 0) 252 253 /* Tx Buffer Element Size Configuration (TXESC) */ 254 #define TXESC_TBDS_MASK GENMASK(2, 0) 255 #define TXESC_TBDS_64B 0x7 256 257 /* Tx Event FIFO Configuration (TXEFC) */ 258 #define TXEFC_EFWM_MASK GENMASK(29, 24) 259 #define TXEFC_EFS_MASK GENMASK(21, 16) 260 261 /* Tx Event FIFO Status (TXEFS) */ 262 #define TXEFS_TEFL BIT(25) 263 #define TXEFS_EFF BIT(24) 264 #define TXEFS_EFGI_MASK GENMASK(12, 8) 265 #define TXEFS_EFFL_MASK GENMASK(5, 0) 266 267 /* Tx Event FIFO Acknowledge (TXEFA) */ 268 #define TXEFA_EFAI_MASK GENMASK(4, 0) 269 270 /* Message RAM Configuration (in bytes) */ 271 #define SIDF_ELEMENT_SIZE 4 272 #define XIDF_ELEMENT_SIZE 8 273 #define RXF0_ELEMENT_SIZE 72 274 #define RXF1_ELEMENT_SIZE 72 275 #define RXB_ELEMENT_SIZE 72 276 #define TXE_ELEMENT_SIZE 8 277 #define TXB_ELEMENT_SIZE 72 278 279 /* Message RAM Elements */ 280 #define M_CAN_FIFO_ID 0x0 281 #define M_CAN_FIFO_DLC 0x4 282 #define M_CAN_FIFO_DATA 0x8 283 284 /* Rx Buffer Element */ 285 /* R0 */ 286 #define RX_BUF_ESI BIT(31) 287 #define RX_BUF_XTD BIT(30) 288 #define RX_BUF_RTR BIT(29) 289 /* R1 */ 290 #define RX_BUF_ANMF BIT(31) 291 #define RX_BUF_FDF BIT(21) 292 #define RX_BUF_BRS BIT(20) 293 #define RX_BUF_RXTS_MASK GENMASK(15, 0) 294 295 /* Tx Buffer Element */ 296 /* T0 */ 297 #define TX_BUF_ESI BIT(31) 298 #define TX_BUF_XTD BIT(30) 299 #define TX_BUF_RTR BIT(29) 300 /* T1 */ 301 #define TX_BUF_EFC BIT(23) 302 #define TX_BUF_FDF BIT(21) 303 #define TX_BUF_BRS BIT(20) 304 #define TX_BUF_MM_MASK GENMASK(31, 24) 305 #define TX_BUF_DLC_MASK GENMASK(19, 16) 306 307 /* Tx event FIFO Element */ 308 /* E1 */ 309 #define TX_EVENT_MM_MASK GENMASK(31, 24) 310 #define TX_EVENT_TXTS_MASK GENMASK(15, 0) 311 312 /* Hrtimer polling interval */ 313 #define HRTIMER_POLL_INTERVAL_MS 1 314 315 /* The ID and DLC registers are adjacent in M_CAN FIFO memory, 316 * and we can save a (potentially slow) bus round trip by combining 317 * reads and writes to them. 318 */ 319 struct id_and_dlc { 320 u32 id; 321 u32 dlc; 322 }; 323 324 struct m_can_fifo_element { 325 u32 id; 326 u32 dlc; 327 u8 data[CANFD_MAX_DLEN]; 328 }; 329 330 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 331 { 332 return cdev->ops->read_reg(cdev, reg); 333 } 334 335 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 336 u32 val) 337 { 338 cdev->ops->write_reg(cdev, reg, val); 339 } 340 341 static int 342 m_can_fifo_read(struct m_can_classdev *cdev, 343 u32 fgi, unsigned int offset, void *val, size_t val_count) 344 { 345 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 346 offset; 347 348 if (val_count == 0) 349 return 0; 350 351 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count); 352 } 353 354 static int 355 m_can_fifo_write(struct m_can_classdev *cdev, 356 u32 fpi, unsigned int offset, const void *val, size_t val_count) 357 { 358 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 359 offset; 360 361 if (val_count == 0) 362 return 0; 363 364 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count); 365 } 366 367 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev, 368 u32 fpi, u32 val) 369 { 370 return cdev->ops->write_fifo(cdev, fpi, &val, 1); 371 } 372 373 static int 374 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val) 375 { 376 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 377 offset; 378 379 return cdev->ops->read_fifo(cdev, addr_offset, val, 1); 380 } 381 382 static int m_can_cccr_update_bits(struct m_can_classdev *cdev, u32 mask, u32 val) 383 { 384 u32 val_before = m_can_read(cdev, M_CAN_CCCR); 385 u32 val_after = (val_before & ~mask) | val; 386 size_t tries = 10; 387 388 if (!(mask & CCCR_INIT) && !(val_before & CCCR_INIT)) { 389 dev_err(cdev->dev, 390 "refusing to configure device when in normal mode\n"); 391 return -EBUSY; 392 } 393 394 /* The chip should be in standby mode when changing the CCCR register, 395 * and some chips set the CSR and CSA bits when in standby. Furthermore, 396 * the CSR and CSA bits should be written as zeros, even when they read 397 * ones. 398 */ 399 val_after &= ~(CCCR_CSR | CCCR_CSA); 400 401 while (tries--) { 402 u32 val_read; 403 404 /* Write the desired value in each try, as setting some bits in 405 * the CCCR register require other bits to be set first. E.g. 406 * setting the NISO bit requires setting the CCE bit first. 407 */ 408 m_can_write(cdev, M_CAN_CCCR, val_after); 409 410 val_read = m_can_read(cdev, M_CAN_CCCR) & ~(CCCR_CSR | CCCR_CSA); 411 412 if (val_read == val_after) 413 return 0; 414 415 usleep_range(1, 5); 416 } 417 418 return -ETIMEDOUT; 419 } 420 421 static int m_can_config_enable(struct m_can_classdev *cdev) 422 { 423 int err; 424 425 /* CCCR_INIT must be set in order to set CCCR_CCE, but access to 426 * configuration registers should only be enabled when in standby mode, 427 * where CCCR_INIT is always set. 428 */ 429 err = m_can_cccr_update_bits(cdev, CCCR_CCE, CCCR_CCE); 430 if (err) 431 netdev_err(cdev->net, "failed to enable configuration mode\n"); 432 433 return err; 434 } 435 436 static int m_can_config_disable(struct m_can_classdev *cdev) 437 { 438 int err; 439 440 /* Only clear CCCR_CCE, since CCCR_INIT cannot be cleared while in 441 * standby mode 442 */ 443 err = m_can_cccr_update_bits(cdev, CCCR_CCE, 0); 444 if (err) 445 netdev_err(cdev->net, "failed to disable configuration registers\n"); 446 447 return err; 448 } 449 450 static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts) 451 { 452 if (cdev->active_interrupts == interrupts) 453 return; 454 cdev->ops->write_reg(cdev, M_CAN_IE, interrupts); 455 cdev->active_interrupts = interrupts; 456 } 457 458 static void m_can_coalescing_disable(struct m_can_classdev *cdev) 459 { 460 u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN; 461 462 if (!cdev->net->irq) 463 return; 464 465 hrtimer_cancel(&cdev->hrtimer); 466 m_can_interrupt_enable(cdev, new_interrupts); 467 } 468 469 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 470 { 471 if (!cdev->net->irq) { 472 dev_dbg(cdev->dev, "Start hrtimer\n"); 473 hrtimer_start(&cdev->hrtimer, 474 ms_to_ktime(HRTIMER_POLL_INTERVAL_MS), 475 HRTIMER_MODE_REL_PINNED); 476 } 477 478 /* Only interrupt line 0 is used in this driver */ 479 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 480 } 481 482 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 483 { 484 m_can_coalescing_disable(cdev); 485 m_can_write(cdev, M_CAN_ILE, 0x0); 486 cdev->active_interrupts = 0x0; 487 488 if (!cdev->net->irq) { 489 dev_dbg(cdev->dev, "Stop hrtimer\n"); 490 hrtimer_cancel(&cdev->hrtimer); 491 } 492 } 493 494 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit 495 * width. 496 */ 497 static u32 m_can_get_timestamp(struct m_can_classdev *cdev) 498 { 499 u32 tscv; 500 u32 tsc; 501 502 tscv = m_can_read(cdev, M_CAN_TSCV); 503 tsc = FIELD_GET(TSCV_TSC_MASK, tscv); 504 505 return (tsc << 16); 506 } 507 508 static void m_can_clean(struct net_device *net) 509 { 510 struct m_can_classdev *cdev = netdev_priv(net); 511 unsigned long irqflags; 512 513 if (cdev->tx_ops) { 514 for (int i = 0; i != cdev->tx_fifo_size; ++i) { 515 if (!cdev->tx_ops[i].skb) 516 continue; 517 518 net->stats.tx_errors++; 519 cdev->tx_ops[i].skb = NULL; 520 } 521 } 522 523 for (int i = 0; i != cdev->can.echo_skb_max; ++i) 524 can_free_echo_skb(cdev->net, i, NULL); 525 526 netdev_reset_queue(cdev->net); 527 528 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags); 529 cdev->tx_fifo_in_flight = 0; 530 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 531 } 532 533 /* For peripherals, pass skb to rx-offload, which will push skb from 534 * napi. For non-peripherals, RX is done in napi already, so push 535 * directly. timestamp is used to ensure good skb ordering in 536 * rx-offload and is ignored for non-peripherals. 537 */ 538 static void m_can_receive_skb(struct m_can_classdev *cdev, 539 struct sk_buff *skb, 540 u32 timestamp) 541 { 542 if (cdev->is_peripheral) { 543 struct net_device_stats *stats = &cdev->net->stats; 544 int err; 545 546 err = can_rx_offload_queue_timestamp(&cdev->offload, skb, 547 timestamp); 548 if (err) 549 stats->rx_fifo_errors++; 550 } else { 551 netif_receive_skb(skb); 552 } 553 } 554 555 static int m_can_read_fifo(struct net_device *dev, u32 fgi) 556 { 557 struct net_device_stats *stats = &dev->stats; 558 struct m_can_classdev *cdev = netdev_priv(dev); 559 struct canfd_frame *cf; 560 struct sk_buff *skb; 561 struct id_and_dlc fifo_header; 562 u32 timestamp = 0; 563 int err; 564 565 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2); 566 if (err) 567 goto out_fail; 568 569 if (fifo_header.dlc & RX_BUF_FDF) 570 skb = alloc_canfd_skb(dev, &cf); 571 else 572 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 573 if (!skb) { 574 stats->rx_dropped++; 575 return 0; 576 } 577 578 if (fifo_header.dlc & RX_BUF_FDF) 579 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F); 580 else 581 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F); 582 583 if (fifo_header.id & RX_BUF_XTD) 584 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG; 585 else 586 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK; 587 588 if (fifo_header.id & RX_BUF_ESI) { 589 cf->flags |= CANFD_ESI; 590 netdev_dbg(dev, "ESI Error\n"); 591 } 592 593 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) { 594 cf->can_id |= CAN_RTR_FLAG; 595 } else { 596 if (fifo_header.dlc & RX_BUF_BRS) 597 cf->flags |= CANFD_BRS; 598 599 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA, 600 cf->data, DIV_ROUND_UP(cf->len, 4)); 601 if (err) 602 goto out_free_skb; 603 604 stats->rx_bytes += cf->len; 605 } 606 stats->rx_packets++; 607 608 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16; 609 610 m_can_receive_skb(cdev, skb, timestamp); 611 612 return 0; 613 614 out_free_skb: 615 kfree_skb(skb); 616 out_fail: 617 netdev_err(dev, "FIFO read returned %d\n", err); 618 return err; 619 } 620 621 static int m_can_do_rx_poll(struct net_device *dev, int quota) 622 { 623 struct m_can_classdev *cdev = netdev_priv(dev); 624 u32 pkts = 0; 625 u32 rxfs; 626 u32 rx_count; 627 u32 fgi; 628 int ack_fgi = -1; 629 int i; 630 int err = 0; 631 632 rxfs = m_can_read(cdev, M_CAN_RXF0S); 633 if (!(rxfs & RXFS_FFL_MASK)) { 634 netdev_dbg(dev, "no messages in fifo0\n"); 635 return 0; 636 } 637 638 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs); 639 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs); 640 641 for (i = 0; i < rx_count && quota > 0; ++i) { 642 err = m_can_read_fifo(dev, fgi); 643 if (err) 644 break; 645 646 quota--; 647 pkts++; 648 ack_fgi = fgi; 649 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi); 650 } 651 652 if (ack_fgi != -1) 653 m_can_write(cdev, M_CAN_RXF0A, ack_fgi); 654 655 if (err) 656 return err; 657 658 return pkts; 659 } 660 661 static int m_can_handle_lost_msg(struct net_device *dev) 662 { 663 struct m_can_classdev *cdev = netdev_priv(dev); 664 struct net_device_stats *stats = &dev->stats; 665 struct sk_buff *skb; 666 struct can_frame *frame; 667 u32 timestamp = 0; 668 669 netdev_err(dev, "msg lost in rxf0\n"); 670 671 stats->rx_errors++; 672 stats->rx_over_errors++; 673 674 skb = alloc_can_err_skb(dev, &frame); 675 if (unlikely(!skb)) 676 return 0; 677 678 frame->can_id |= CAN_ERR_CRTL; 679 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 680 681 if (cdev->is_peripheral) 682 timestamp = m_can_get_timestamp(cdev); 683 684 m_can_receive_skb(cdev, skb, timestamp); 685 686 return 1; 687 } 688 689 static int m_can_handle_lec_err(struct net_device *dev, 690 enum m_can_lec_type lec_type) 691 { 692 struct m_can_classdev *cdev = netdev_priv(dev); 693 struct net_device_stats *stats = &dev->stats; 694 struct can_frame *cf; 695 struct sk_buff *skb; 696 u32 timestamp = 0; 697 698 cdev->can.can_stats.bus_error++; 699 stats->rx_errors++; 700 701 /* propagate the error condition to the CAN stack */ 702 skb = alloc_can_err_skb(dev, &cf); 703 if (unlikely(!skb)) 704 return 0; 705 706 /* check for 'last error code' which tells us the 707 * type of the last error to occur on the CAN bus 708 */ 709 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 710 711 switch (lec_type) { 712 case LEC_STUFF_ERROR: 713 netdev_dbg(dev, "stuff error\n"); 714 cf->data[2] |= CAN_ERR_PROT_STUFF; 715 break; 716 case LEC_FORM_ERROR: 717 netdev_dbg(dev, "form error\n"); 718 cf->data[2] |= CAN_ERR_PROT_FORM; 719 break; 720 case LEC_ACK_ERROR: 721 netdev_dbg(dev, "ack error\n"); 722 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 723 break; 724 case LEC_BIT1_ERROR: 725 netdev_dbg(dev, "bit1 error\n"); 726 cf->data[2] |= CAN_ERR_PROT_BIT1; 727 break; 728 case LEC_BIT0_ERROR: 729 netdev_dbg(dev, "bit0 error\n"); 730 cf->data[2] |= CAN_ERR_PROT_BIT0; 731 break; 732 case LEC_CRC_ERROR: 733 netdev_dbg(dev, "CRC error\n"); 734 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 735 break; 736 default: 737 break; 738 } 739 740 if (cdev->is_peripheral) 741 timestamp = m_can_get_timestamp(cdev); 742 743 m_can_receive_skb(cdev, skb, timestamp); 744 745 return 1; 746 } 747 748 static int __m_can_get_berr_counter(const struct net_device *dev, 749 struct can_berr_counter *bec) 750 { 751 struct m_can_classdev *cdev = netdev_priv(dev); 752 unsigned int ecr; 753 754 ecr = m_can_read(cdev, M_CAN_ECR); 755 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr); 756 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr); 757 758 return 0; 759 } 760 761 static int m_can_clk_start(struct m_can_classdev *cdev) 762 { 763 if (cdev->pm_clock_support == 0) 764 return 0; 765 766 return pm_runtime_resume_and_get(cdev->dev); 767 } 768 769 static void m_can_clk_stop(struct m_can_classdev *cdev) 770 { 771 if (cdev->pm_clock_support) 772 pm_runtime_put_sync(cdev->dev); 773 } 774 775 static int m_can_get_berr_counter(const struct net_device *dev, 776 struct can_berr_counter *bec) 777 { 778 struct m_can_classdev *cdev = netdev_priv(dev); 779 int err; 780 781 err = m_can_clk_start(cdev); 782 if (err) 783 return err; 784 785 __m_can_get_berr_counter(dev, bec); 786 787 m_can_clk_stop(cdev); 788 789 return 0; 790 } 791 792 static int m_can_handle_state_change(struct net_device *dev, 793 enum can_state new_state) 794 { 795 struct m_can_classdev *cdev = netdev_priv(dev); 796 struct can_frame *cf; 797 struct sk_buff *skb; 798 struct can_berr_counter bec; 799 unsigned int ecr; 800 u32 timestamp = 0; 801 802 switch (new_state) { 803 case CAN_STATE_ERROR_WARNING: 804 /* error warning state */ 805 cdev->can.can_stats.error_warning++; 806 cdev->can.state = CAN_STATE_ERROR_WARNING; 807 break; 808 case CAN_STATE_ERROR_PASSIVE: 809 /* error passive state */ 810 cdev->can.can_stats.error_passive++; 811 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 812 break; 813 case CAN_STATE_BUS_OFF: 814 /* bus-off state */ 815 cdev->can.state = CAN_STATE_BUS_OFF; 816 m_can_disable_all_interrupts(cdev); 817 cdev->can.can_stats.bus_off++; 818 can_bus_off(dev); 819 break; 820 default: 821 break; 822 } 823 824 /* propagate the error condition to the CAN stack */ 825 skb = alloc_can_err_skb(dev, &cf); 826 if (unlikely(!skb)) 827 return 0; 828 829 __m_can_get_berr_counter(dev, &bec); 830 831 switch (new_state) { 832 case CAN_STATE_ERROR_WARNING: 833 /* error warning state */ 834 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 835 cf->data[1] = (bec.txerr > bec.rxerr) ? 836 CAN_ERR_CRTL_TX_WARNING : 837 CAN_ERR_CRTL_RX_WARNING; 838 cf->data[6] = bec.txerr; 839 cf->data[7] = bec.rxerr; 840 break; 841 case CAN_STATE_ERROR_PASSIVE: 842 /* error passive state */ 843 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 844 ecr = m_can_read(cdev, M_CAN_ECR); 845 if (ecr & ECR_RP) 846 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 847 if (bec.txerr > 127) 848 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 849 cf->data[6] = bec.txerr; 850 cf->data[7] = bec.rxerr; 851 break; 852 case CAN_STATE_BUS_OFF: 853 /* bus-off state */ 854 cf->can_id |= CAN_ERR_BUSOFF; 855 break; 856 default: 857 break; 858 } 859 860 if (cdev->is_peripheral) 861 timestamp = m_can_get_timestamp(cdev); 862 863 m_can_receive_skb(cdev, skb, timestamp); 864 865 return 1; 866 } 867 868 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 869 { 870 struct m_can_classdev *cdev = netdev_priv(dev); 871 int work_done = 0; 872 873 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 874 netdev_dbg(dev, "entered error warning state\n"); 875 work_done += m_can_handle_state_change(dev, 876 CAN_STATE_ERROR_WARNING); 877 } 878 879 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 880 netdev_dbg(dev, "entered error passive state\n"); 881 work_done += m_can_handle_state_change(dev, 882 CAN_STATE_ERROR_PASSIVE); 883 } 884 885 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 886 netdev_dbg(dev, "entered error bus off state\n"); 887 work_done += m_can_handle_state_change(dev, 888 CAN_STATE_BUS_OFF); 889 } 890 891 return work_done; 892 } 893 894 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 895 { 896 if (irqstatus & IR_WDI) 897 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 898 if (irqstatus & IR_BEU) 899 netdev_err(dev, "Bit Error Uncorrected\n"); 900 if (irqstatus & IR_BEC) 901 netdev_err(dev, "Bit Error Corrected\n"); 902 if (irqstatus & IR_TOO) 903 netdev_err(dev, "Timeout reached\n"); 904 if (irqstatus & IR_MRAF) 905 netdev_err(dev, "Message RAM access failure occurred\n"); 906 } 907 908 static inline bool is_lec_err(u8 lec) 909 { 910 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE; 911 } 912 913 static inline bool m_can_is_protocol_err(u32 irqstatus) 914 { 915 return irqstatus & IR_ERR_LEC_31X; 916 } 917 918 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 919 { 920 struct net_device_stats *stats = &dev->stats; 921 struct m_can_classdev *cdev = netdev_priv(dev); 922 struct can_frame *cf; 923 struct sk_buff *skb; 924 u32 timestamp = 0; 925 926 /* propagate the error condition to the CAN stack */ 927 skb = alloc_can_err_skb(dev, &cf); 928 929 /* update tx error stats since there is protocol error */ 930 stats->tx_errors++; 931 932 /* update arbitration lost status */ 933 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 934 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 935 cdev->can.can_stats.arbitration_lost++; 936 if (skb) { 937 cf->can_id |= CAN_ERR_LOSTARB; 938 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 939 } 940 } 941 942 if (unlikely(!skb)) { 943 netdev_dbg(dev, "allocation of skb failed\n"); 944 return 0; 945 } 946 947 if (cdev->is_peripheral) 948 timestamp = m_can_get_timestamp(cdev); 949 950 m_can_receive_skb(cdev, skb, timestamp); 951 952 return 1; 953 } 954 955 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 956 u32 psr) 957 { 958 struct m_can_classdev *cdev = netdev_priv(dev); 959 int work_done = 0; 960 961 if (irqstatus & IR_RF0L) 962 work_done += m_can_handle_lost_msg(dev); 963 964 /* handle lec errors on the bus */ 965 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) { 966 u8 lec = FIELD_GET(PSR_LEC_MASK, psr); 967 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr); 968 969 if (is_lec_err(lec)) { 970 netdev_dbg(dev, "Arbitration phase error detected\n"); 971 work_done += m_can_handle_lec_err(dev, lec); 972 } 973 974 if (is_lec_err(dlec)) { 975 netdev_dbg(dev, "Data phase error detected\n"); 976 work_done += m_can_handle_lec_err(dev, dlec); 977 } 978 } 979 980 /* handle protocol errors in arbitration phase */ 981 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 982 m_can_is_protocol_err(irqstatus)) 983 work_done += m_can_handle_protocol_error(dev, irqstatus); 984 985 /* other unproccessed error interrupts */ 986 m_can_handle_other_err(dev, irqstatus); 987 988 return work_done; 989 } 990 991 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus) 992 { 993 struct m_can_classdev *cdev = netdev_priv(dev); 994 int rx_work_or_err; 995 int work_done = 0; 996 997 if (!irqstatus) 998 goto end; 999 1000 /* Errata workaround for issue "Needless activation of MRAF irq" 1001 * During frame reception while the MCAN is in Error Passive state 1002 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 1003 * it may happen that MCAN_IR.MRAF is set although there was no 1004 * Message RAM access failure. 1005 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 1006 * The Message RAM Access Failure interrupt routine needs to check 1007 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 1008 * In this case, reset MCAN_IR.MRAF. No further action is required. 1009 */ 1010 if (cdev->version <= 31 && irqstatus & IR_MRAF && 1011 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 1012 struct can_berr_counter bec; 1013 1014 __m_can_get_berr_counter(dev, &bec); 1015 if (bec.rxerr == 127) { 1016 m_can_write(cdev, M_CAN_IR, IR_MRAF); 1017 irqstatus &= ~IR_MRAF; 1018 } 1019 } 1020 1021 if (irqstatus & IR_ERR_STATE) 1022 work_done += m_can_handle_state_errors(dev, 1023 m_can_read(cdev, M_CAN_PSR)); 1024 1025 if (irqstatus & IR_ERR_BUS_30X) 1026 work_done += m_can_handle_bus_errors(dev, irqstatus, 1027 m_can_read(cdev, M_CAN_PSR)); 1028 1029 if (irqstatus & IR_RF0N) { 1030 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done)); 1031 if (rx_work_or_err < 0) 1032 return rx_work_or_err; 1033 1034 work_done += rx_work_or_err; 1035 } 1036 end: 1037 return work_done; 1038 } 1039 1040 static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus) 1041 { 1042 struct m_can_classdev *cdev = netdev_priv(dev); 1043 int work_done; 1044 1045 work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus); 1046 1047 /* Don't re-enable interrupts if the driver had a fatal error 1048 * (e.g., FIFO read failure). 1049 */ 1050 if (work_done < 0) 1051 m_can_disable_all_interrupts(cdev); 1052 1053 return work_done; 1054 } 1055 1056 static int m_can_poll(struct napi_struct *napi, int quota) 1057 { 1058 struct net_device *dev = napi->dev; 1059 struct m_can_classdev *cdev = netdev_priv(dev); 1060 int work_done; 1061 u32 irqstatus; 1062 1063 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 1064 1065 work_done = m_can_rx_handler(dev, quota, irqstatus); 1066 1067 /* Don't re-enable interrupts if the driver had a fatal error 1068 * (e.g., FIFO read failure). 1069 */ 1070 if (work_done >= 0 && work_done < quota) { 1071 napi_complete_done(napi, work_done); 1072 m_can_enable_all_interrupts(cdev); 1073 } 1074 1075 return work_done; 1076 } 1077 1078 /* Echo tx skb and update net stats. Peripherals use rx-offload for 1079 * echo. timestamp is used for peripherals to ensure correct ordering 1080 * by rx-offload, and is ignored for non-peripherals. 1081 */ 1082 static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev, 1083 unsigned int msg_mark, u32 timestamp) 1084 { 1085 struct net_device *dev = cdev->net; 1086 struct net_device_stats *stats = &dev->stats; 1087 unsigned int frame_len; 1088 1089 if (cdev->is_peripheral) 1090 stats->tx_bytes += 1091 can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload, 1092 msg_mark, 1093 timestamp, 1094 &frame_len); 1095 else 1096 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, &frame_len); 1097 1098 stats->tx_packets++; 1099 1100 return frame_len; 1101 } 1102 1103 static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted, 1104 unsigned int transmitted_frame_len) 1105 { 1106 unsigned long irqflags; 1107 1108 netdev_completed_queue(cdev->net, transmitted, transmitted_frame_len); 1109 1110 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags); 1111 if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0) 1112 netif_wake_queue(cdev->net); 1113 cdev->tx_fifo_in_flight -= transmitted; 1114 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 1115 } 1116 1117 static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev) 1118 { 1119 unsigned long irqflags; 1120 int tx_fifo_in_flight; 1121 1122 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags); 1123 tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1; 1124 if (tx_fifo_in_flight >= cdev->tx_fifo_size) { 1125 netif_stop_queue(cdev->net); 1126 if (tx_fifo_in_flight > cdev->tx_fifo_size) { 1127 netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n"); 1128 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 1129 return NETDEV_TX_BUSY; 1130 } 1131 } 1132 cdev->tx_fifo_in_flight = tx_fifo_in_flight; 1133 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 1134 1135 return NETDEV_TX_OK; 1136 } 1137 1138 static int m_can_echo_tx_event(struct net_device *dev) 1139 { 1140 u32 txe_count = 0; 1141 u32 m_can_txefs; 1142 u32 fgi = 0; 1143 int ack_fgi = -1; 1144 int i = 0; 1145 int err = 0; 1146 unsigned int msg_mark; 1147 int processed = 0; 1148 unsigned int processed_frame_len = 0; 1149 1150 struct m_can_classdev *cdev = netdev_priv(dev); 1151 1152 /* read tx event fifo status */ 1153 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 1154 1155 /* Get Tx Event fifo element count */ 1156 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs); 1157 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs); 1158 1159 /* Get and process all sent elements */ 1160 for (i = 0; i < txe_count; i++) { 1161 u32 txe, timestamp = 0; 1162 1163 /* get message marker, timestamp */ 1164 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe); 1165 if (err) { 1166 netdev_err(dev, "TXE FIFO read returned %d\n", err); 1167 break; 1168 } 1169 1170 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe); 1171 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16; 1172 1173 ack_fgi = fgi; 1174 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi); 1175 1176 /* update stats */ 1177 processed_frame_len += m_can_tx_update_stats(cdev, msg_mark, 1178 timestamp); 1179 1180 ++processed; 1181 } 1182 1183 if (ack_fgi != -1) 1184 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK, 1185 ack_fgi)); 1186 1187 m_can_finish_tx(cdev, processed, processed_frame_len); 1188 1189 return err; 1190 } 1191 1192 static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir) 1193 { 1194 u32 new_interrupts = cdev->active_interrupts; 1195 bool enable_rx_timer = false; 1196 bool enable_tx_timer = false; 1197 1198 if (!cdev->net->irq) 1199 return; 1200 1201 if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) { 1202 enable_rx_timer = true; 1203 new_interrupts &= ~IR_RF0N; 1204 } 1205 if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) { 1206 enable_tx_timer = true; 1207 new_interrupts &= ~IR_TEFN; 1208 } 1209 if (!enable_rx_timer && !hrtimer_active(&cdev->hrtimer)) 1210 new_interrupts |= IR_RF0N; 1211 if (!enable_tx_timer && !hrtimer_active(&cdev->hrtimer)) 1212 new_interrupts |= IR_TEFN; 1213 1214 m_can_interrupt_enable(cdev, new_interrupts); 1215 if (enable_rx_timer | enable_tx_timer) 1216 hrtimer_start(&cdev->hrtimer, cdev->irq_timer_wait, 1217 HRTIMER_MODE_REL); 1218 } 1219 1220 static irqreturn_t m_can_isr(int irq, void *dev_id) 1221 { 1222 struct net_device *dev = (struct net_device *)dev_id; 1223 struct m_can_classdev *cdev = netdev_priv(dev); 1224 u32 ir; 1225 1226 if (pm_runtime_suspended(cdev->dev)) { 1227 m_can_coalescing_disable(cdev); 1228 return IRQ_NONE; 1229 } 1230 1231 ir = m_can_read(cdev, M_CAN_IR); 1232 m_can_coalescing_update(cdev, ir); 1233 if (!ir) 1234 return IRQ_NONE; 1235 1236 /* ACK all irqs */ 1237 m_can_write(cdev, M_CAN_IR, ir); 1238 1239 if (cdev->ops->clear_interrupts) 1240 cdev->ops->clear_interrupts(cdev); 1241 1242 /* schedule NAPI in case of 1243 * - rx IRQ 1244 * - state change IRQ 1245 * - bus error IRQ and bus error reporting 1246 */ 1247 if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) { 1248 cdev->irqstatus = ir; 1249 if (!cdev->is_peripheral) { 1250 m_can_disable_all_interrupts(cdev); 1251 napi_schedule(&cdev->napi); 1252 } else { 1253 int pkts; 1254 1255 pkts = m_can_rx_peripheral(dev, ir); 1256 if (pkts < 0) 1257 goto out_fail; 1258 } 1259 } 1260 1261 if (cdev->version == 30) { 1262 if (ir & IR_TC) { 1263 /* Transmission Complete Interrupt*/ 1264 u32 timestamp = 0; 1265 unsigned int frame_len; 1266 1267 if (cdev->is_peripheral) 1268 timestamp = m_can_get_timestamp(cdev); 1269 frame_len = m_can_tx_update_stats(cdev, 0, timestamp); 1270 m_can_finish_tx(cdev, 1, frame_len); 1271 } 1272 } else { 1273 if (ir & (IR_TEFN | IR_TEFW)) { 1274 /* New TX FIFO Element arrived */ 1275 if (m_can_echo_tx_event(dev) != 0) 1276 goto out_fail; 1277 } 1278 } 1279 1280 if (cdev->is_peripheral) 1281 can_rx_offload_threaded_irq_finish(&cdev->offload); 1282 1283 return IRQ_HANDLED; 1284 1285 out_fail: 1286 m_can_disable_all_interrupts(cdev); 1287 return IRQ_HANDLED; 1288 } 1289 1290 static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer) 1291 { 1292 struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer); 1293 1294 irq_wake_thread(cdev->net->irq, cdev->net); 1295 1296 return HRTIMER_NORESTART; 1297 } 1298 1299 static const struct can_bittiming_const m_can_bittiming_const_30X = { 1300 .name = KBUILD_MODNAME, 1301 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1302 .tseg1_max = 64, 1303 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1304 .tseg2_max = 16, 1305 .sjw_max = 16, 1306 .brp_min = 1, 1307 .brp_max = 1024, 1308 .brp_inc = 1, 1309 }; 1310 1311 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1312 .name = KBUILD_MODNAME, 1313 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1314 .tseg1_max = 16, 1315 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1316 .tseg2_max = 8, 1317 .sjw_max = 4, 1318 .brp_min = 1, 1319 .brp_max = 32, 1320 .brp_inc = 1, 1321 }; 1322 1323 static const struct can_bittiming_const m_can_bittiming_const_31X = { 1324 .name = KBUILD_MODNAME, 1325 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1326 .tseg1_max = 256, 1327 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1328 .tseg2_max = 128, 1329 .sjw_max = 128, 1330 .brp_min = 1, 1331 .brp_max = 512, 1332 .brp_inc = 1, 1333 }; 1334 1335 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1336 .name = KBUILD_MODNAME, 1337 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1338 .tseg1_max = 32, 1339 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1340 .tseg2_max = 16, 1341 .sjw_max = 16, 1342 .brp_min = 1, 1343 .brp_max = 32, 1344 .brp_inc = 1, 1345 }; 1346 1347 static int m_can_set_bittiming(struct net_device *dev) 1348 { 1349 struct m_can_classdev *cdev = netdev_priv(dev); 1350 const struct can_bittiming *bt = &cdev->can.bittiming; 1351 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1352 u16 brp, sjw, tseg1, tseg2; 1353 u32 reg_btp; 1354 1355 brp = bt->brp - 1; 1356 sjw = bt->sjw - 1; 1357 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1358 tseg2 = bt->phase_seg2 - 1; 1359 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) | 1360 FIELD_PREP(NBTP_NSJW_MASK, sjw) | 1361 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) | 1362 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2); 1363 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1364 1365 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1366 reg_btp = 0; 1367 brp = dbt->brp - 1; 1368 sjw = dbt->sjw - 1; 1369 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1370 tseg2 = dbt->phase_seg2 - 1; 1371 1372 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1373 * This is mentioned in the "Bit Time Requirements for CAN FD" 1374 * paper presented at the International CAN Conference 2013 1375 */ 1376 if (dbt->bitrate > 2500000) { 1377 u32 tdco, ssp; 1378 1379 /* Use the same value of secondary sampling point 1380 * as the data sampling point 1381 */ 1382 ssp = dbt->sample_point; 1383 1384 /* Equation based on Bosch's M_CAN User Manual's 1385 * Transmitter Delay Compensation Section 1386 */ 1387 tdco = (cdev->can.clock.freq / 1000) * 1388 ssp / dbt->bitrate; 1389 1390 /* Max valid TDCO value is 127 */ 1391 if (tdco > 127) { 1392 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1393 tdco); 1394 tdco = 127; 1395 } 1396 1397 reg_btp |= DBTP_TDC; 1398 m_can_write(cdev, M_CAN_TDCR, 1399 FIELD_PREP(TDCR_TDCO_MASK, tdco)); 1400 } 1401 1402 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) | 1403 FIELD_PREP(DBTP_DSJW_MASK, sjw) | 1404 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) | 1405 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2); 1406 1407 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1408 } 1409 1410 return 0; 1411 } 1412 1413 /* Configure M_CAN chip: 1414 * - set rx buffer/fifo element size 1415 * - configure rx fifo 1416 * - accept non-matching frame into fifo 0 1417 * - configure tx buffer 1418 * - >= v3.1.x: TX FIFO is used 1419 * - configure mode 1420 * - setup bittiming 1421 * - configure timestamp generation 1422 */ 1423 static int m_can_chip_config(struct net_device *dev) 1424 { 1425 struct m_can_classdev *cdev = netdev_priv(dev); 1426 u32 interrupts = IR_ALL_INT; 1427 u32 cccr, test; 1428 int err; 1429 1430 err = m_can_init_ram(cdev); 1431 if (err) { 1432 dev_err(cdev->dev, "Message RAM configuration failed\n"); 1433 return err; 1434 } 1435 1436 /* Disable unused interrupts */ 1437 interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF | 1438 IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F); 1439 1440 err = m_can_config_enable(cdev); 1441 if (err) 1442 return err; 1443 1444 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1445 m_can_write(cdev, M_CAN_RXESC, 1446 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) | 1447 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) | 1448 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B)); 1449 1450 /* Accept Non-matching Frames Into FIFO 0 */ 1451 m_can_write(cdev, M_CAN_GFC, 0x0); 1452 1453 if (cdev->version == 30) { 1454 /* only support one Tx Buffer currently */ 1455 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) | 1456 cdev->mcfg[MRAM_TXB].off); 1457 } else { 1458 /* TX FIFO is used for newer IP Core versions */ 1459 m_can_write(cdev, M_CAN_TXBC, 1460 FIELD_PREP(TXBC_TFQS_MASK, 1461 cdev->mcfg[MRAM_TXB].num) | 1462 cdev->mcfg[MRAM_TXB].off); 1463 } 1464 1465 /* support 64 bytes payload */ 1466 m_can_write(cdev, M_CAN_TXESC, 1467 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B)); 1468 1469 /* TX Event FIFO */ 1470 if (cdev->version == 30) { 1471 m_can_write(cdev, M_CAN_TXEFC, 1472 FIELD_PREP(TXEFC_EFS_MASK, 1) | 1473 cdev->mcfg[MRAM_TXE].off); 1474 } else { 1475 /* Full TX Event FIFO is used */ 1476 m_can_write(cdev, M_CAN_TXEFC, 1477 FIELD_PREP(TXEFC_EFWM_MASK, 1478 cdev->tx_max_coalesced_frames_irq) | 1479 FIELD_PREP(TXEFC_EFS_MASK, 1480 cdev->mcfg[MRAM_TXE].num) | 1481 cdev->mcfg[MRAM_TXE].off); 1482 } 1483 1484 /* rx fifo configuration, blocking mode, fifo size 1 */ 1485 m_can_write(cdev, M_CAN_RXF0C, 1486 FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) | 1487 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) | 1488 cdev->mcfg[MRAM_RXF0].off); 1489 1490 m_can_write(cdev, M_CAN_RXF1C, 1491 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) | 1492 cdev->mcfg[MRAM_RXF1].off); 1493 1494 cccr = m_can_read(cdev, M_CAN_CCCR); 1495 test = m_can_read(cdev, M_CAN_TEST); 1496 test &= ~TEST_LBCK; 1497 if (cdev->version == 30) { 1498 /* Version 3.0.x */ 1499 1500 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1501 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) | 1502 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK))); 1503 1504 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1505 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS); 1506 1507 } else { 1508 /* Version 3.1.x or 3.2.x */ 1509 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1510 CCCR_NISO | CCCR_DAR); 1511 1512 /* Only 3.2.x has NISO Bit implemented */ 1513 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1514 cccr |= CCCR_NISO; 1515 1516 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1517 cccr |= (CCCR_BRSE | CCCR_FDOE); 1518 } 1519 1520 /* Loopback Mode */ 1521 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1522 cccr |= CCCR_TEST | CCCR_MON; 1523 test |= TEST_LBCK; 1524 } 1525 1526 /* Enable Monitoring (all versions) */ 1527 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1528 cccr |= CCCR_MON; 1529 1530 /* Disable Auto Retransmission (all versions) */ 1531 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1532 cccr |= CCCR_DAR; 1533 1534 /* Write config */ 1535 m_can_write(cdev, M_CAN_CCCR, cccr); 1536 m_can_write(cdev, M_CAN_TEST, test); 1537 1538 /* Enable interrupts */ 1539 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) { 1540 if (cdev->version == 30) 1541 interrupts &= ~(IR_ERR_LEC_30X); 1542 else 1543 interrupts &= ~(IR_ERR_LEC_31X); 1544 } 1545 m_can_interrupt_enable(cdev, interrupts); 1546 1547 /* route all interrupts to INT0 */ 1548 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1549 1550 /* set bittiming params */ 1551 m_can_set_bittiming(dev); 1552 1553 /* enable internal timestamp generation, with a prescaler of 16. The 1554 * prescaler is applied to the nominal bit timing 1555 */ 1556 m_can_write(cdev, M_CAN_TSCC, 1557 FIELD_PREP(TSCC_TCP_MASK, 0xf) | 1558 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL)); 1559 1560 err = m_can_config_disable(cdev); 1561 if (err) 1562 return err; 1563 1564 if (cdev->ops->init) 1565 cdev->ops->init(cdev); 1566 1567 return 0; 1568 } 1569 1570 static int m_can_start(struct net_device *dev) 1571 { 1572 struct m_can_classdev *cdev = netdev_priv(dev); 1573 int ret; 1574 1575 /* basic m_can configuration */ 1576 ret = m_can_chip_config(dev); 1577 if (ret) 1578 return ret; 1579 1580 netdev_queue_set_dql_min_limit(netdev_get_tx_queue(cdev->net, 0), 1581 cdev->tx_max_coalesced_frames); 1582 1583 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1584 1585 m_can_enable_all_interrupts(cdev); 1586 1587 if (cdev->version > 30) 1588 cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK, 1589 m_can_read(cdev, M_CAN_TXFQS)); 1590 1591 ret = m_can_cccr_update_bits(cdev, CCCR_INIT, 0); 1592 if (ret) 1593 netdev_err(dev, "failed to enter normal mode\n"); 1594 1595 return ret; 1596 } 1597 1598 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1599 { 1600 switch (mode) { 1601 case CAN_MODE_START: 1602 m_can_clean(dev); 1603 m_can_start(dev); 1604 netif_wake_queue(dev); 1605 break; 1606 default: 1607 return -EOPNOTSUPP; 1608 } 1609 1610 return 0; 1611 } 1612 1613 /* Checks core release number of M_CAN 1614 * returns 0 if an unsupported device is detected 1615 * else it returns the release and step coded as: 1616 * return value = 10 * <release> + 1 * <step> 1617 */ 1618 static int m_can_check_core_release(struct m_can_classdev *cdev) 1619 { 1620 u32 crel_reg; 1621 u8 rel; 1622 u8 step; 1623 int res; 1624 1625 /* Read Core Release Version and split into version number 1626 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1627 */ 1628 crel_reg = m_can_read(cdev, M_CAN_CREL); 1629 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg); 1630 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg); 1631 1632 if (rel == 3) { 1633 /* M_CAN v3.x.y: create return value */ 1634 res = 30 + step; 1635 } else { 1636 /* Unsupported M_CAN version */ 1637 res = 0; 1638 } 1639 1640 return res; 1641 } 1642 1643 /* Selectable Non ISO support only in version 3.2.x 1644 * Return 1 if the bit is writable, 0 if it is not, or negative on error. 1645 */ 1646 static int m_can_niso_supported(struct m_can_classdev *cdev) 1647 { 1648 int ret, niso; 1649 1650 ret = m_can_config_enable(cdev); 1651 if (ret) 1652 return ret; 1653 1654 /* First try to set the NISO bit. */ 1655 niso = m_can_cccr_update_bits(cdev, CCCR_NISO, CCCR_NISO); 1656 1657 /* Then clear the it again. */ 1658 ret = m_can_cccr_update_bits(cdev, CCCR_NISO, 0); 1659 if (ret) { 1660 dev_err(cdev->dev, "failed to revert the NON-ISO bit in CCCR\n"); 1661 return ret; 1662 } 1663 1664 ret = m_can_config_disable(cdev); 1665 if (ret) 1666 return ret; 1667 1668 return niso == 0; 1669 } 1670 1671 static int m_can_dev_setup(struct m_can_classdev *cdev) 1672 { 1673 struct net_device *dev = cdev->net; 1674 int m_can_version, err, niso; 1675 1676 m_can_version = m_can_check_core_release(cdev); 1677 /* return if unsupported version */ 1678 if (!m_can_version) { 1679 dev_err(cdev->dev, "Unsupported version number: %2d", 1680 m_can_version); 1681 return -EINVAL; 1682 } 1683 1684 if (!cdev->is_peripheral) 1685 netif_napi_add(dev, &cdev->napi, m_can_poll); 1686 1687 /* Shared properties of all M_CAN versions */ 1688 cdev->version = m_can_version; 1689 cdev->can.do_set_mode = m_can_set_mode; 1690 cdev->can.do_get_berr_counter = m_can_get_berr_counter; 1691 1692 /* Set M_CAN supported operations */ 1693 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1694 CAN_CTRLMODE_LISTENONLY | 1695 CAN_CTRLMODE_BERR_REPORTING | 1696 CAN_CTRLMODE_FD | 1697 CAN_CTRLMODE_ONE_SHOT; 1698 1699 /* Set properties depending on M_CAN version */ 1700 switch (cdev->version) { 1701 case 30: 1702 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1703 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1704 if (err) 1705 return err; 1706 cdev->can.bittiming_const = &m_can_bittiming_const_30X; 1707 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X; 1708 break; 1709 case 31: 1710 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1711 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1712 if (err) 1713 return err; 1714 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1715 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1716 break; 1717 case 32: 1718 case 33: 1719 /* Support both MCAN version v3.2.x and v3.3.0 */ 1720 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1721 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1722 1723 niso = m_can_niso_supported(cdev); 1724 if (niso < 0) 1725 return niso; 1726 if (niso) 1727 cdev->can.ctrlmode_supported |= CAN_CTRLMODE_FD_NON_ISO; 1728 break; 1729 default: 1730 dev_err(cdev->dev, "Unsupported version number: %2d", 1731 cdev->version); 1732 return -EINVAL; 1733 } 1734 1735 /* Forcing standby mode should be redundant, as the chip should be in 1736 * standby after a reset. Write the INIT bit anyways, should the chip 1737 * be configured by previous stage. 1738 */ 1739 return m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT); 1740 } 1741 1742 static void m_can_stop(struct net_device *dev) 1743 { 1744 struct m_can_classdev *cdev = netdev_priv(dev); 1745 int ret; 1746 1747 /* disable all interrupts */ 1748 m_can_disable_all_interrupts(cdev); 1749 1750 /* Set init mode to disengage from the network */ 1751 ret = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT); 1752 if (ret) 1753 netdev_err(dev, "failed to enter standby mode: %pe\n", 1754 ERR_PTR(ret)); 1755 1756 /* set the state as STOPPED */ 1757 cdev->can.state = CAN_STATE_STOPPED; 1758 } 1759 1760 static int m_can_close(struct net_device *dev) 1761 { 1762 struct m_can_classdev *cdev = netdev_priv(dev); 1763 1764 netif_stop_queue(dev); 1765 1766 if (!cdev->is_peripheral) 1767 napi_disable(&cdev->napi); 1768 1769 m_can_stop(dev); 1770 m_can_clk_stop(cdev); 1771 free_irq(dev->irq, dev); 1772 1773 m_can_clean(dev); 1774 1775 if (cdev->is_peripheral) { 1776 destroy_workqueue(cdev->tx_wq); 1777 cdev->tx_wq = NULL; 1778 can_rx_offload_disable(&cdev->offload); 1779 } 1780 1781 close_candev(dev); 1782 1783 phy_power_off(cdev->transceiver); 1784 1785 return 0; 1786 } 1787 1788 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev, 1789 struct sk_buff *skb) 1790 { 1791 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1792 u8 len_padded = DIV_ROUND_UP(cf->len, 4); 1793 struct m_can_fifo_element fifo_element; 1794 struct net_device *dev = cdev->net; 1795 u32 cccr, fdflags; 1796 int err; 1797 u32 putidx; 1798 unsigned int frame_len = can_skb_get_frame_len(skb); 1799 1800 /* Generate ID field for TX buffer Element */ 1801 /* Common to all supported M_CAN versions */ 1802 if (cf->can_id & CAN_EFF_FLAG) { 1803 fifo_element.id = cf->can_id & CAN_EFF_MASK; 1804 fifo_element.id |= TX_BUF_XTD; 1805 } else { 1806 fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18); 1807 } 1808 1809 if (cf->can_id & CAN_RTR_FLAG) 1810 fifo_element.id |= TX_BUF_RTR; 1811 1812 if (cdev->version == 30) { 1813 netif_stop_queue(dev); 1814 1815 fifo_element.dlc = can_fd_len2dlc(cf->len) << 16; 1816 1817 /* Write the frame ID, DLC, and payload to the FIFO element. */ 1818 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_element, 2); 1819 if (err) 1820 goto out_fail; 1821 1822 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA, 1823 cf->data, len_padded); 1824 if (err) 1825 goto out_fail; 1826 1827 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1828 cccr = m_can_read(cdev, M_CAN_CCCR); 1829 cccr &= ~CCCR_CMR_MASK; 1830 if (can_is_canfd_skb(skb)) { 1831 if (cf->flags & CANFD_BRS) 1832 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1833 CCCR_CMR_CANFD_BRS); 1834 else 1835 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1836 CCCR_CMR_CANFD); 1837 } else { 1838 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN); 1839 } 1840 m_can_write(cdev, M_CAN_CCCR, cccr); 1841 } 1842 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1843 1844 can_put_echo_skb(skb, dev, 0, frame_len); 1845 1846 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1847 /* End of xmit function for version 3.0.x */ 1848 } else { 1849 /* Transmit routine for version >= v3.1.x */ 1850 1851 /* get put index for frame */ 1852 putidx = cdev->tx_fifo_putidx; 1853 1854 /* Construct DLC Field, with CAN-FD configuration. 1855 * Use the put index of the fifo as the message marker, 1856 * used in the TX interrupt for sending the correct echo frame. 1857 */ 1858 1859 /* get CAN FD configuration of frame */ 1860 fdflags = 0; 1861 if (can_is_canfd_skb(skb)) { 1862 fdflags |= TX_BUF_FDF; 1863 if (cf->flags & CANFD_BRS) 1864 fdflags |= TX_BUF_BRS; 1865 } 1866 1867 fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) | 1868 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) | 1869 fdflags | TX_BUF_EFC; 1870 1871 memcpy_and_pad(fifo_element.data, CANFD_MAX_DLEN, &cf->data, 1872 cf->len, 0); 1873 1874 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, 1875 &fifo_element, 2 + len_padded); 1876 if (err) 1877 goto out_fail; 1878 1879 /* Push loopback echo. 1880 * Will be looped back on TX interrupt based on message marker 1881 */ 1882 can_put_echo_skb(skb, dev, putidx, frame_len); 1883 1884 if (cdev->is_peripheral) { 1885 /* Delay enabling TX FIFO element */ 1886 cdev->tx_peripheral_submit |= BIT(putidx); 1887 } else { 1888 /* Enable TX FIFO element to start transfer */ 1889 m_can_write(cdev, M_CAN_TXBAR, BIT(putidx)); 1890 } 1891 cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ? 1892 0 : cdev->tx_fifo_putidx); 1893 } 1894 1895 return NETDEV_TX_OK; 1896 1897 out_fail: 1898 netdev_err(dev, "FIFO write returned %d\n", err); 1899 m_can_disable_all_interrupts(cdev); 1900 return NETDEV_TX_BUSY; 1901 } 1902 1903 static void m_can_tx_submit(struct m_can_classdev *cdev) 1904 { 1905 if (cdev->version == 30) 1906 return; 1907 if (!cdev->is_peripheral) 1908 return; 1909 1910 m_can_write(cdev, M_CAN_TXBAR, cdev->tx_peripheral_submit); 1911 cdev->tx_peripheral_submit = 0; 1912 } 1913 1914 static void m_can_tx_work_queue(struct work_struct *ws) 1915 { 1916 struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work); 1917 struct m_can_classdev *cdev = op->cdev; 1918 struct sk_buff *skb = op->skb; 1919 1920 op->skb = NULL; 1921 m_can_tx_handler(cdev, skb); 1922 if (op->submit) 1923 m_can_tx_submit(cdev); 1924 } 1925 1926 static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb, 1927 bool submit) 1928 { 1929 cdev->tx_ops[cdev->next_tx_op].skb = skb; 1930 cdev->tx_ops[cdev->next_tx_op].submit = submit; 1931 queue_work(cdev->tx_wq, &cdev->tx_ops[cdev->next_tx_op].work); 1932 1933 ++cdev->next_tx_op; 1934 if (cdev->next_tx_op >= cdev->tx_fifo_size) 1935 cdev->next_tx_op = 0; 1936 } 1937 1938 static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev, 1939 struct sk_buff *skb) 1940 { 1941 bool submit; 1942 1943 ++cdev->nr_txs_without_submit; 1944 if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames || 1945 !netdev_xmit_more()) { 1946 cdev->nr_txs_without_submit = 0; 1947 submit = true; 1948 } else { 1949 submit = false; 1950 } 1951 m_can_tx_queue_skb(cdev, skb, submit); 1952 1953 return NETDEV_TX_OK; 1954 } 1955 1956 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1957 struct net_device *dev) 1958 { 1959 struct m_can_classdev *cdev = netdev_priv(dev); 1960 unsigned int frame_len; 1961 netdev_tx_t ret; 1962 1963 if (can_dev_dropped_skb(dev, skb)) 1964 return NETDEV_TX_OK; 1965 1966 frame_len = can_skb_get_frame_len(skb); 1967 1968 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1969 m_can_clean(cdev->net); 1970 return NETDEV_TX_OK; 1971 } 1972 1973 ret = m_can_start_tx(cdev); 1974 if (ret != NETDEV_TX_OK) 1975 return ret; 1976 1977 netdev_sent_queue(dev, frame_len); 1978 1979 if (cdev->is_peripheral) 1980 ret = m_can_start_peripheral_xmit(cdev, skb); 1981 else 1982 ret = m_can_tx_handler(cdev, skb); 1983 1984 if (ret != NETDEV_TX_OK) 1985 netdev_completed_queue(dev, 1, frame_len); 1986 1987 return ret; 1988 } 1989 1990 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer) 1991 { 1992 struct m_can_classdev *cdev = container_of(timer, struct 1993 m_can_classdev, hrtimer); 1994 1995 m_can_isr(0, cdev->net); 1996 1997 hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS)); 1998 1999 return HRTIMER_RESTART; 2000 } 2001 2002 static int m_can_open(struct net_device *dev) 2003 { 2004 struct m_can_classdev *cdev = netdev_priv(dev); 2005 int err; 2006 2007 err = phy_power_on(cdev->transceiver); 2008 if (err) 2009 return err; 2010 2011 err = m_can_clk_start(cdev); 2012 if (err) 2013 goto out_phy_power_off; 2014 2015 /* open the can device */ 2016 err = open_candev(dev); 2017 if (err) { 2018 netdev_err(dev, "failed to open can device\n"); 2019 goto exit_disable_clks; 2020 } 2021 2022 if (cdev->is_peripheral) 2023 can_rx_offload_enable(&cdev->offload); 2024 2025 /* register interrupt handler */ 2026 if (cdev->is_peripheral) { 2027 cdev->tx_wq = alloc_ordered_workqueue("mcan_wq", 2028 WQ_FREEZABLE | WQ_MEM_RECLAIM); 2029 if (!cdev->tx_wq) { 2030 err = -ENOMEM; 2031 goto out_wq_fail; 2032 } 2033 2034 for (int i = 0; i != cdev->tx_fifo_size; ++i) { 2035 cdev->tx_ops[i].cdev = cdev; 2036 INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue); 2037 } 2038 2039 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 2040 IRQF_ONESHOT, 2041 dev->name, dev); 2042 } else if (dev->irq) { 2043 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 2044 dev); 2045 } 2046 2047 if (err < 0) { 2048 netdev_err(dev, "failed to request interrupt\n"); 2049 goto exit_irq_fail; 2050 } 2051 2052 /* start the m_can controller */ 2053 err = m_can_start(dev); 2054 if (err) 2055 goto exit_irq_fail; 2056 2057 if (!cdev->is_peripheral) 2058 napi_enable(&cdev->napi); 2059 2060 netif_start_queue(dev); 2061 2062 return 0; 2063 2064 exit_irq_fail: 2065 if (cdev->is_peripheral) 2066 destroy_workqueue(cdev->tx_wq); 2067 out_wq_fail: 2068 if (cdev->is_peripheral) 2069 can_rx_offload_disable(&cdev->offload); 2070 close_candev(dev); 2071 exit_disable_clks: 2072 m_can_clk_stop(cdev); 2073 out_phy_power_off: 2074 phy_power_off(cdev->transceiver); 2075 return err; 2076 } 2077 2078 static const struct net_device_ops m_can_netdev_ops = { 2079 .ndo_open = m_can_open, 2080 .ndo_stop = m_can_close, 2081 .ndo_start_xmit = m_can_start_xmit, 2082 .ndo_change_mtu = can_change_mtu, 2083 }; 2084 2085 static int m_can_get_coalesce(struct net_device *dev, 2086 struct ethtool_coalesce *ec, 2087 struct kernel_ethtool_coalesce *kec, 2088 struct netlink_ext_ack *ext_ack) 2089 { 2090 struct m_can_classdev *cdev = netdev_priv(dev); 2091 2092 ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq; 2093 ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq; 2094 ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames; 2095 ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq; 2096 ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq; 2097 2098 return 0; 2099 } 2100 2101 static int m_can_set_coalesce(struct net_device *dev, 2102 struct ethtool_coalesce *ec, 2103 struct kernel_ethtool_coalesce *kec, 2104 struct netlink_ext_ack *ext_ack) 2105 { 2106 struct m_can_classdev *cdev = netdev_priv(dev); 2107 2108 if (cdev->can.state != CAN_STATE_STOPPED) { 2109 netdev_err(dev, "Device is in use, please shut it down first\n"); 2110 return -EBUSY; 2111 } 2112 2113 if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) { 2114 netdev_err(dev, "rx-frames-irq %u greater than the RX FIFO %u\n", 2115 ec->rx_max_coalesced_frames_irq, 2116 cdev->mcfg[MRAM_RXF0].num); 2117 return -EINVAL; 2118 } 2119 if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) { 2120 netdev_err(dev, "rx-frames-irq and rx-usecs-irq can only be set together\n"); 2121 return -EINVAL; 2122 } 2123 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) { 2124 netdev_err(dev, "tx-frames-irq %u greater than the TX event FIFO %u\n", 2125 ec->tx_max_coalesced_frames_irq, 2126 cdev->mcfg[MRAM_TXE].num); 2127 return -EINVAL; 2128 } 2129 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) { 2130 netdev_err(dev, "tx-frames-irq %u greater than the TX FIFO %u\n", 2131 ec->tx_max_coalesced_frames_irq, 2132 cdev->mcfg[MRAM_TXB].num); 2133 return -EINVAL; 2134 } 2135 if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) { 2136 netdev_err(dev, "tx-frames-irq and tx-usecs-irq can only be set together\n"); 2137 return -EINVAL; 2138 } 2139 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) { 2140 netdev_err(dev, "tx-frames %u greater than the TX event FIFO %u\n", 2141 ec->tx_max_coalesced_frames, 2142 cdev->mcfg[MRAM_TXE].num); 2143 return -EINVAL; 2144 } 2145 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) { 2146 netdev_err(dev, "tx-frames %u greater than the TX FIFO %u\n", 2147 ec->tx_max_coalesced_frames, 2148 cdev->mcfg[MRAM_TXB].num); 2149 return -EINVAL; 2150 } 2151 if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 && 2152 ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) { 2153 netdev_err(dev, "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n", 2154 ec->rx_coalesce_usecs_irq, 2155 ec->tx_coalesce_usecs_irq); 2156 return -EINVAL; 2157 } 2158 2159 cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq; 2160 cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq; 2161 cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames; 2162 cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq; 2163 cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq; 2164 2165 if (cdev->rx_coalesce_usecs_irq) 2166 cdev->irq_timer_wait = 2167 ns_to_ktime(cdev->rx_coalesce_usecs_irq * NSEC_PER_USEC); 2168 else 2169 cdev->irq_timer_wait = 2170 ns_to_ktime(cdev->tx_coalesce_usecs_irq * NSEC_PER_USEC); 2171 2172 return 0; 2173 } 2174 2175 static const struct ethtool_ops m_can_ethtool_ops = { 2176 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ | 2177 ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ | 2178 ETHTOOL_COALESCE_TX_USECS_IRQ | 2179 ETHTOOL_COALESCE_TX_MAX_FRAMES | 2180 ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ, 2181 .get_ts_info = ethtool_op_get_ts_info, 2182 .get_coalesce = m_can_get_coalesce, 2183 .set_coalesce = m_can_set_coalesce, 2184 }; 2185 2186 static const struct ethtool_ops m_can_ethtool_ops_polling = { 2187 .get_ts_info = ethtool_op_get_ts_info, 2188 }; 2189 2190 static int register_m_can_dev(struct net_device *dev) 2191 { 2192 dev->flags |= IFF_ECHO; /* we support local echo */ 2193 dev->netdev_ops = &m_can_netdev_ops; 2194 if (dev->irq) 2195 dev->ethtool_ops = &m_can_ethtool_ops; 2196 else 2197 dev->ethtool_ops = &m_can_ethtool_ops_polling; 2198 2199 return register_candev(dev); 2200 } 2201 2202 int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size) 2203 { 2204 u32 total_size; 2205 2206 total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off + 2207 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 2208 if (total_size > mram_max_size) { 2209 dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n", 2210 total_size, mram_max_size); 2211 return -EINVAL; 2212 } 2213 2214 return 0; 2215 } 2216 EXPORT_SYMBOL_GPL(m_can_check_mram_cfg); 2217 2218 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 2219 const u32 *mram_config_vals) 2220 { 2221 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 2222 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 2223 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 2224 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 2225 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 2226 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 2227 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 2228 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 2229 FIELD_MAX(RXFC_FS_MASK); 2230 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 2231 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 2232 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 2233 FIELD_MAX(RXFC_FS_MASK); 2234 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 2235 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 2236 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 2237 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 2238 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 2239 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 2240 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 2241 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 2242 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 2243 FIELD_MAX(TXBC_NDTB_MASK); 2244 2245 dev_dbg(cdev->dev, 2246 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 2247 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 2248 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 2249 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 2250 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 2251 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 2252 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 2253 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 2254 } 2255 2256 int m_can_init_ram(struct m_can_classdev *cdev) 2257 { 2258 int end, i, start; 2259 int err = 0; 2260 2261 /* initialize the entire Message RAM in use to avoid possible 2262 * ECC/parity checksum errors when reading an uninitialized buffer 2263 */ 2264 start = cdev->mcfg[MRAM_SIDF].off; 2265 end = cdev->mcfg[MRAM_TXB].off + 2266 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 2267 2268 for (i = start; i < end; i += 4) { 2269 err = m_can_fifo_write_no_off(cdev, i, 0x0); 2270 if (err) 2271 break; 2272 } 2273 2274 return err; 2275 } 2276 EXPORT_SYMBOL_GPL(m_can_init_ram); 2277 2278 int m_can_class_get_clocks(struct m_can_classdev *cdev) 2279 { 2280 int ret = 0; 2281 2282 cdev->hclk = devm_clk_get(cdev->dev, "hclk"); 2283 cdev->cclk = devm_clk_get(cdev->dev, "cclk"); 2284 2285 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) { 2286 dev_err(cdev->dev, "no clock found\n"); 2287 ret = -ENODEV; 2288 } 2289 2290 return ret; 2291 } 2292 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 2293 2294 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev, 2295 int sizeof_priv) 2296 { 2297 struct m_can_classdev *class_dev = NULL; 2298 u32 mram_config_vals[MRAM_CFG_LEN]; 2299 struct net_device *net_dev; 2300 u32 tx_fifo_size; 2301 int ret; 2302 2303 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 2304 "bosch,mram-cfg", 2305 mram_config_vals, 2306 sizeof(mram_config_vals) / 4); 2307 if (ret) { 2308 dev_err(dev, "Could not get Message RAM configuration."); 2309 goto out; 2310 } 2311 2312 /* Get TX FIFO size 2313 * Defines the total amount of echo buffers for loopback 2314 */ 2315 tx_fifo_size = mram_config_vals[7]; 2316 2317 /* allocate the m_can device */ 2318 net_dev = alloc_candev(sizeof_priv, tx_fifo_size); 2319 if (!net_dev) { 2320 dev_err(dev, "Failed to allocate CAN device"); 2321 goto out; 2322 } 2323 2324 class_dev = netdev_priv(net_dev); 2325 class_dev->net = net_dev; 2326 class_dev->dev = dev; 2327 SET_NETDEV_DEV(net_dev, dev); 2328 2329 m_can_of_parse_mram(class_dev, mram_config_vals); 2330 out: 2331 return class_dev; 2332 } 2333 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 2334 2335 void m_can_class_free_dev(struct net_device *net) 2336 { 2337 free_candev(net); 2338 } 2339 EXPORT_SYMBOL_GPL(m_can_class_free_dev); 2340 2341 int m_can_class_register(struct m_can_classdev *cdev) 2342 { 2343 int ret; 2344 2345 cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num, 2346 cdev->mcfg[MRAM_TXE].num)); 2347 if (cdev->is_peripheral) { 2348 cdev->tx_ops = 2349 devm_kzalloc(cdev->dev, 2350 cdev->tx_fifo_size * sizeof(*cdev->tx_ops), 2351 GFP_KERNEL); 2352 if (!cdev->tx_ops) { 2353 dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n"); 2354 return -ENOMEM; 2355 } 2356 } 2357 2358 ret = m_can_clk_start(cdev); 2359 if (ret) 2360 return ret; 2361 2362 if (cdev->is_peripheral) { 2363 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload, 2364 NAPI_POLL_WEIGHT); 2365 if (ret) 2366 goto clk_disable; 2367 } 2368 2369 if (!cdev->net->irq) { 2370 dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer"); 2371 hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, 2372 HRTIMER_MODE_REL_PINNED); 2373 cdev->hrtimer.function = &hrtimer_callback; 2374 } else { 2375 hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2376 cdev->hrtimer.function = m_can_coalescing_timer; 2377 } 2378 2379 ret = m_can_dev_setup(cdev); 2380 if (ret) 2381 goto rx_offload_del; 2382 2383 ret = register_m_can_dev(cdev->net); 2384 if (ret) { 2385 dev_err(cdev->dev, "registering %s failed (err=%d)\n", 2386 cdev->net->name, ret); 2387 goto rx_offload_del; 2388 } 2389 2390 of_can_transceiver(cdev->net); 2391 2392 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n", 2393 KBUILD_MODNAME, cdev->net->irq, cdev->version); 2394 2395 /* Probe finished 2396 * Stop clocks. They will be reactivated once the M_CAN device is opened 2397 */ 2398 m_can_clk_stop(cdev); 2399 2400 return 0; 2401 2402 rx_offload_del: 2403 if (cdev->is_peripheral) 2404 can_rx_offload_del(&cdev->offload); 2405 clk_disable: 2406 m_can_clk_stop(cdev); 2407 2408 return ret; 2409 } 2410 EXPORT_SYMBOL_GPL(m_can_class_register); 2411 2412 void m_can_class_unregister(struct m_can_classdev *cdev) 2413 { 2414 if (cdev->is_peripheral) 2415 can_rx_offload_del(&cdev->offload); 2416 unregister_candev(cdev->net); 2417 } 2418 EXPORT_SYMBOL_GPL(m_can_class_unregister); 2419 2420 int m_can_class_suspend(struct device *dev) 2421 { 2422 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2423 struct net_device *ndev = cdev->net; 2424 2425 if (netif_running(ndev)) { 2426 netif_stop_queue(ndev); 2427 netif_device_detach(ndev); 2428 2429 /* leave the chip running with rx interrupt enabled if it is 2430 * used as a wake-up source. 2431 */ 2432 if (cdev->pm_wake_source) 2433 m_can_write(cdev, M_CAN_IE, IR_RF0N); 2434 else 2435 m_can_stop(ndev); 2436 2437 m_can_clk_stop(cdev); 2438 } 2439 2440 pinctrl_pm_select_sleep_state(dev); 2441 2442 cdev->can.state = CAN_STATE_SLEEPING; 2443 2444 return 0; 2445 } 2446 EXPORT_SYMBOL_GPL(m_can_class_suspend); 2447 2448 int m_can_class_resume(struct device *dev) 2449 { 2450 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2451 struct net_device *ndev = cdev->net; 2452 2453 pinctrl_pm_select_default_state(dev); 2454 2455 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 2456 2457 if (netif_running(ndev)) { 2458 int ret; 2459 2460 ret = m_can_clk_start(cdev); 2461 if (ret) 2462 return ret; 2463 2464 if (cdev->pm_wake_source) { 2465 m_can_write(cdev, M_CAN_IE, cdev->active_interrupts); 2466 } else { 2467 ret = m_can_start(ndev); 2468 if (ret) { 2469 m_can_clk_stop(cdev); 2470 return ret; 2471 } 2472 } 2473 2474 netif_device_attach(ndev); 2475 netif_start_queue(ndev); 2476 } 2477 2478 return 0; 2479 } 2480 EXPORT_SYMBOL_GPL(m_can_class_resume); 2481 2482 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 2483 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 2484 MODULE_LICENSE("GPL v2"); 2485 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 2486