xref: /linux/drivers/net/can/m_can/m_can.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/can/dev.h>
13 #include <linux/ethtool.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/phy/phy.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 
27 #include "m_can.h"
28 
29 /* registers definition */
30 enum m_can_reg {
31 	M_CAN_CREL	= 0x0,
32 	M_CAN_ENDN	= 0x4,
33 	M_CAN_CUST	= 0x8,
34 	M_CAN_DBTP	= 0xc,
35 	M_CAN_TEST	= 0x10,
36 	M_CAN_RWD	= 0x14,
37 	M_CAN_CCCR	= 0x18,
38 	M_CAN_NBTP	= 0x1c,
39 	M_CAN_TSCC	= 0x20,
40 	M_CAN_TSCV	= 0x24,
41 	M_CAN_TOCC	= 0x28,
42 	M_CAN_TOCV	= 0x2c,
43 	M_CAN_ECR	= 0x40,
44 	M_CAN_PSR	= 0x44,
45 	/* TDCR Register only available for version >=3.1.x */
46 	M_CAN_TDCR	= 0x48,
47 	M_CAN_IR	= 0x50,
48 	M_CAN_IE	= 0x54,
49 	M_CAN_ILS	= 0x58,
50 	M_CAN_ILE	= 0x5c,
51 	M_CAN_GFC	= 0x80,
52 	M_CAN_SIDFC	= 0x84,
53 	M_CAN_XIDFC	= 0x88,
54 	M_CAN_XIDAM	= 0x90,
55 	M_CAN_HPMS	= 0x94,
56 	M_CAN_NDAT1	= 0x98,
57 	M_CAN_NDAT2	= 0x9c,
58 	M_CAN_RXF0C	= 0xa0,
59 	M_CAN_RXF0S	= 0xa4,
60 	M_CAN_RXF0A	= 0xa8,
61 	M_CAN_RXBC	= 0xac,
62 	M_CAN_RXF1C	= 0xb0,
63 	M_CAN_RXF1S	= 0xb4,
64 	M_CAN_RXF1A	= 0xb8,
65 	M_CAN_RXESC	= 0xbc,
66 	M_CAN_TXBC	= 0xc0,
67 	M_CAN_TXFQS	= 0xc4,
68 	M_CAN_TXESC	= 0xc8,
69 	M_CAN_TXBRP	= 0xcc,
70 	M_CAN_TXBAR	= 0xd0,
71 	M_CAN_TXBCR	= 0xd4,
72 	M_CAN_TXBTO	= 0xd8,
73 	M_CAN_TXBCF	= 0xdc,
74 	M_CAN_TXBTIE	= 0xe0,
75 	M_CAN_TXBCIE	= 0xe4,
76 	M_CAN_TXEFC	= 0xf0,
77 	M_CAN_TXEFS	= 0xf4,
78 	M_CAN_TXEFA	= 0xf8,
79 };
80 
81 /* message ram configuration data length */
82 #define MRAM_CFG_LEN	8
83 
84 /* Core Release Register (CREL) */
85 #define CREL_REL_MASK		GENMASK(31, 28)
86 #define CREL_STEP_MASK		GENMASK(27, 24)
87 #define CREL_SUBSTEP_MASK	GENMASK(23, 20)
88 
89 /* Data Bit Timing & Prescaler Register (DBTP) */
90 #define DBTP_TDC		BIT(23)
91 #define DBTP_DBRP_MASK		GENMASK(20, 16)
92 #define DBTP_DTSEG1_MASK	GENMASK(12, 8)
93 #define DBTP_DTSEG2_MASK	GENMASK(7, 4)
94 #define DBTP_DSJW_MASK		GENMASK(3, 0)
95 
96 /* Transmitter Delay Compensation Register (TDCR) */
97 #define TDCR_TDCO_MASK		GENMASK(14, 8)
98 #define TDCR_TDCF_MASK		GENMASK(6, 0)
99 
100 /* Test Register (TEST) */
101 #define TEST_LBCK		BIT(4)
102 
103 /* CC Control Register (CCCR) */
104 #define CCCR_TXP		BIT(14)
105 #define CCCR_TEST		BIT(7)
106 #define CCCR_DAR		BIT(6)
107 #define CCCR_MON		BIT(5)
108 #define CCCR_CSR		BIT(4)
109 #define CCCR_CSA		BIT(3)
110 #define CCCR_ASM		BIT(2)
111 #define CCCR_CCE		BIT(1)
112 #define CCCR_INIT		BIT(0)
113 /* for version 3.0.x */
114 #define CCCR_CMR_MASK		GENMASK(11, 10)
115 #define CCCR_CMR_CANFD		0x1
116 #define CCCR_CMR_CANFD_BRS	0x2
117 #define CCCR_CMR_CAN		0x3
118 #define CCCR_CME_MASK		GENMASK(9, 8)
119 #define CCCR_CME_CAN		0
120 #define CCCR_CME_CANFD		0x1
121 #define CCCR_CME_CANFD_BRS	0x2
122 /* for version >=3.1.x */
123 #define CCCR_EFBI		BIT(13)
124 #define CCCR_PXHD		BIT(12)
125 #define CCCR_BRSE		BIT(9)
126 #define CCCR_FDOE		BIT(8)
127 /* for version >=3.2.x */
128 #define CCCR_NISO		BIT(15)
129 /* for version >=3.3.x */
130 #define CCCR_WMM		BIT(11)
131 #define CCCR_UTSU		BIT(10)
132 
133 /* Nominal Bit Timing & Prescaler Register (NBTP) */
134 #define NBTP_NSJW_MASK		GENMASK(31, 25)
135 #define NBTP_NBRP_MASK		GENMASK(24, 16)
136 #define NBTP_NTSEG1_MASK	GENMASK(15, 8)
137 #define NBTP_NTSEG2_MASK	GENMASK(6, 0)
138 
139 /* Timestamp Counter Configuration Register (TSCC) */
140 #define TSCC_TCP_MASK		GENMASK(19, 16)
141 #define TSCC_TSS_MASK		GENMASK(1, 0)
142 #define TSCC_TSS_DISABLE	0x0
143 #define TSCC_TSS_INTERNAL	0x1
144 #define TSCC_TSS_EXTERNAL	0x2
145 
146 /* Timestamp Counter Value Register (TSCV) */
147 #define TSCV_TSC_MASK		GENMASK(15, 0)
148 
149 /* Error Counter Register (ECR) */
150 #define ECR_RP			BIT(15)
151 #define ECR_REC_MASK		GENMASK(14, 8)
152 #define ECR_TEC_MASK		GENMASK(7, 0)
153 
154 /* Protocol Status Register (PSR) */
155 #define PSR_BO		BIT(7)
156 #define PSR_EW		BIT(6)
157 #define PSR_EP		BIT(5)
158 #define PSR_LEC_MASK	GENMASK(2, 0)
159 #define PSR_DLEC_MASK	GENMASK(10, 8)
160 
161 /* Interrupt Register (IR) */
162 #define IR_ALL_INT	0xffffffff
163 
164 /* Renamed bits for versions > 3.1.x */
165 #define IR_ARA		BIT(29)
166 #define IR_PED		BIT(28)
167 #define IR_PEA		BIT(27)
168 
169 /* Bits for version 3.0.x */
170 #define IR_STE		BIT(31)
171 #define IR_FOE		BIT(30)
172 #define IR_ACKE		BIT(29)
173 #define IR_BE		BIT(28)
174 #define IR_CRCE		BIT(27)
175 #define IR_WDI		BIT(26)
176 #define IR_BO		BIT(25)
177 #define IR_EW		BIT(24)
178 #define IR_EP		BIT(23)
179 #define IR_ELO		BIT(22)
180 #define IR_BEU		BIT(21)
181 #define IR_BEC		BIT(20)
182 #define IR_DRX		BIT(19)
183 #define IR_TOO		BIT(18)
184 #define IR_MRAF		BIT(17)
185 #define IR_TSW		BIT(16)
186 #define IR_TEFL		BIT(15)
187 #define IR_TEFF		BIT(14)
188 #define IR_TEFW		BIT(13)
189 #define IR_TEFN		BIT(12)
190 #define IR_TFE		BIT(11)
191 #define IR_TCF		BIT(10)
192 #define IR_TC		BIT(9)
193 #define IR_HPM		BIT(8)
194 #define IR_RF1L		BIT(7)
195 #define IR_RF1F		BIT(6)
196 #define IR_RF1W		BIT(5)
197 #define IR_RF1N		BIT(4)
198 #define IR_RF0L		BIT(3)
199 #define IR_RF0F		BIT(2)
200 #define IR_RF0W		BIT(1)
201 #define IR_RF0N		BIT(0)
202 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
203 
204 /* Interrupts for version 3.0.x */
205 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
208 			 IR_RF0L)
209 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
210 
211 /* Interrupts for version >= 3.1.x */
212 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
213 #define IR_ERR_BUS_31X	(IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
215 			 IR_RF0L)
216 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
217 
218 /* Interrupt Line Select (ILS) */
219 #define ILS_ALL_INT0	0x0
220 #define ILS_ALL_INT1	0xFFFFFFFF
221 
222 /* Interrupt Line Enable (ILE) */
223 #define ILE_EINT1	BIT(1)
224 #define ILE_EINT0	BIT(0)
225 
226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227 #define RXFC_FWM_MASK	GENMASK(30, 24)
228 #define RXFC_FS_MASK	GENMASK(22, 16)
229 
230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231 #define RXFS_RFL	BIT(25)
232 #define RXFS_FF		BIT(24)
233 #define RXFS_FPI_MASK	GENMASK(21, 16)
234 #define RXFS_FGI_MASK	GENMASK(13, 8)
235 #define RXFS_FFL_MASK	GENMASK(6, 0)
236 
237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238 #define RXESC_RBDS_MASK		GENMASK(10, 8)
239 #define RXESC_F1DS_MASK		GENMASK(6, 4)
240 #define RXESC_F0DS_MASK		GENMASK(2, 0)
241 #define RXESC_64B		0x7
242 
243 /* Tx Buffer Configuration (TXBC) */
244 #define TXBC_TFQS_MASK		GENMASK(29, 24)
245 #define TXBC_NDTB_MASK		GENMASK(21, 16)
246 
247 /* Tx FIFO/Queue Status (TXFQS) */
248 #define TXFQS_TFQF		BIT(21)
249 #define TXFQS_TFQPI_MASK	GENMASK(20, 16)
250 #define TXFQS_TFGI_MASK		GENMASK(12, 8)
251 #define TXFQS_TFFL_MASK		GENMASK(5, 0)
252 
253 /* Tx Buffer Element Size Configuration (TXESC) */
254 #define TXESC_TBDS_MASK		GENMASK(2, 0)
255 #define TXESC_TBDS_64B		0x7
256 
257 /* Tx Event FIFO Configuration (TXEFC) */
258 #define TXEFC_EFWM_MASK		GENMASK(29, 24)
259 #define TXEFC_EFS_MASK		GENMASK(21, 16)
260 
261 /* Tx Event FIFO Status (TXEFS) */
262 #define TXEFS_TEFL		BIT(25)
263 #define TXEFS_EFF		BIT(24)
264 #define TXEFS_EFGI_MASK		GENMASK(12, 8)
265 #define TXEFS_EFFL_MASK		GENMASK(5, 0)
266 
267 /* Tx Event FIFO Acknowledge (TXEFA) */
268 #define TXEFA_EFAI_MASK		GENMASK(4, 0)
269 
270 /* Message RAM Configuration (in bytes) */
271 #define SIDF_ELEMENT_SIZE	4
272 #define XIDF_ELEMENT_SIZE	8
273 #define RXF0_ELEMENT_SIZE	72
274 #define RXF1_ELEMENT_SIZE	72
275 #define RXB_ELEMENT_SIZE	72
276 #define TXE_ELEMENT_SIZE	8
277 #define TXB_ELEMENT_SIZE	72
278 
279 /* Message RAM Elements */
280 #define M_CAN_FIFO_ID		0x0
281 #define M_CAN_FIFO_DLC		0x4
282 #define M_CAN_FIFO_DATA		0x8
283 
284 /* Rx Buffer Element */
285 /* R0 */
286 #define RX_BUF_ESI		BIT(31)
287 #define RX_BUF_XTD		BIT(30)
288 #define RX_BUF_RTR		BIT(29)
289 /* R1 */
290 #define RX_BUF_ANMF		BIT(31)
291 #define RX_BUF_FDF		BIT(21)
292 #define RX_BUF_BRS		BIT(20)
293 #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
294 
295 /* Tx Buffer Element */
296 /* T0 */
297 #define TX_BUF_ESI		BIT(31)
298 #define TX_BUF_XTD		BIT(30)
299 #define TX_BUF_RTR		BIT(29)
300 /* T1 */
301 #define TX_BUF_EFC		BIT(23)
302 #define TX_BUF_FDF		BIT(21)
303 #define TX_BUF_BRS		BIT(20)
304 #define TX_BUF_MM_MASK		GENMASK(31, 24)
305 #define TX_BUF_DLC_MASK		GENMASK(19, 16)
306 
307 /* Tx event FIFO Element */
308 /* E1 */
309 #define TX_EVENT_MM_MASK	GENMASK(31, 24)
310 #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
311 
312 /* Hrtimer polling interval */
313 #define HRTIMER_POLL_INTERVAL_MS		1
314 
315 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
316  * and we can save a (potentially slow) bus round trip by combining
317  * reads and writes to them.
318  */
319 struct id_and_dlc {
320 	u32 id;
321 	u32 dlc;
322 };
323 
324 struct m_can_fifo_element {
325 	u32 id;
326 	u32 dlc;
327 	u8 data[CANFD_MAX_DLEN];
328 };
329 
330 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
331 {
332 	return cdev->ops->read_reg(cdev, reg);
333 }
334 
335 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
336 			       u32 val)
337 {
338 	cdev->ops->write_reg(cdev, reg, val);
339 }
340 
341 static int
342 m_can_fifo_read(struct m_can_classdev *cdev,
343 		u32 fgi, unsigned int offset, void *val, size_t val_count)
344 {
345 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
346 		offset;
347 
348 	if (val_count == 0)
349 		return 0;
350 
351 	return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
352 }
353 
354 static int
355 m_can_fifo_write(struct m_can_classdev *cdev,
356 		 u32 fpi, unsigned int offset, const void *val, size_t val_count)
357 {
358 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
359 		offset;
360 
361 	if (val_count == 0)
362 		return 0;
363 
364 	return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
365 }
366 
367 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
368 					  u32 fpi, u32 val)
369 {
370 	return cdev->ops->write_fifo(cdev, fpi, &val, 1);
371 }
372 
373 static int
374 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
375 {
376 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
377 		offset;
378 
379 	return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
380 }
381 
382 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
383 {
384 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
385 	u32 timeout = 10;
386 	u32 val = 0;
387 
388 	/* Clear the Clock stop request if it was set */
389 	if (cccr & CCCR_CSR)
390 		cccr &= ~CCCR_CSR;
391 
392 	if (enable) {
393 		/* enable m_can configuration */
394 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
395 		udelay(5);
396 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
397 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
398 	} else {
399 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
400 	}
401 
402 	/* there's a delay for module initialization */
403 	if (enable)
404 		val = CCCR_INIT | CCCR_CCE;
405 
406 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
407 		if (timeout == 0) {
408 			netdev_warn(cdev->net, "Failed to init module\n");
409 			return;
410 		}
411 		timeout--;
412 		udelay(1);
413 	}
414 }
415 
416 static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts)
417 {
418 	if (cdev->active_interrupts == interrupts)
419 		return;
420 	cdev->ops->write_reg(cdev, M_CAN_IE, interrupts);
421 	cdev->active_interrupts = interrupts;
422 }
423 
424 static void m_can_coalescing_disable(struct m_can_classdev *cdev)
425 {
426 	u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN;
427 
428 	if (!cdev->net->irq)
429 		return;
430 
431 	hrtimer_cancel(&cdev->hrtimer);
432 	m_can_interrupt_enable(cdev, new_interrupts);
433 }
434 
435 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
436 {
437 	if (!cdev->net->irq) {
438 		dev_dbg(cdev->dev, "Start hrtimer\n");
439 		hrtimer_start(&cdev->hrtimer,
440 			      ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
441 			      HRTIMER_MODE_REL_PINNED);
442 	}
443 
444 	/* Only interrupt line 0 is used in this driver */
445 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
446 }
447 
448 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
449 {
450 	m_can_coalescing_disable(cdev);
451 	m_can_write(cdev, M_CAN_ILE, 0x0);
452 	cdev->active_interrupts = 0x0;
453 
454 	if (!cdev->net->irq) {
455 		dev_dbg(cdev->dev, "Stop hrtimer\n");
456 		hrtimer_cancel(&cdev->hrtimer);
457 	}
458 }
459 
460 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
461  * width.
462  */
463 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
464 {
465 	u32 tscv;
466 	u32 tsc;
467 
468 	tscv = m_can_read(cdev, M_CAN_TSCV);
469 	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
470 
471 	return (tsc << 16);
472 }
473 
474 static void m_can_clean(struct net_device *net)
475 {
476 	struct m_can_classdev *cdev = netdev_priv(net);
477 	unsigned long irqflags;
478 
479 	if (cdev->tx_ops) {
480 		for (int i = 0; i != cdev->tx_fifo_size; ++i) {
481 			if (!cdev->tx_ops[i].skb)
482 				continue;
483 
484 			net->stats.tx_errors++;
485 			cdev->tx_ops[i].skb = NULL;
486 		}
487 	}
488 
489 	for (int i = 0; i != cdev->can.echo_skb_max; ++i)
490 		can_free_echo_skb(cdev->net, i, NULL);
491 
492 	netdev_reset_queue(cdev->net);
493 
494 	spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
495 	cdev->tx_fifo_in_flight = 0;
496 	spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
497 }
498 
499 /* For peripherals, pass skb to rx-offload, which will push skb from
500  * napi. For non-peripherals, RX is done in napi already, so push
501  * directly. timestamp is used to ensure good skb ordering in
502  * rx-offload and is ignored for non-peripherals.
503  */
504 static void m_can_receive_skb(struct m_can_classdev *cdev,
505 			      struct sk_buff *skb,
506 			      u32 timestamp)
507 {
508 	if (cdev->is_peripheral) {
509 		struct net_device_stats *stats = &cdev->net->stats;
510 		int err;
511 
512 		err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
513 						     timestamp);
514 		if (err)
515 			stats->rx_fifo_errors++;
516 	} else {
517 		netif_receive_skb(skb);
518 	}
519 }
520 
521 static int m_can_read_fifo(struct net_device *dev, u32 fgi)
522 {
523 	struct net_device_stats *stats = &dev->stats;
524 	struct m_can_classdev *cdev = netdev_priv(dev);
525 	struct canfd_frame *cf;
526 	struct sk_buff *skb;
527 	struct id_and_dlc fifo_header;
528 	u32 timestamp = 0;
529 	int err;
530 
531 	err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
532 	if (err)
533 		goto out_fail;
534 
535 	if (fifo_header.dlc & RX_BUF_FDF)
536 		skb = alloc_canfd_skb(dev, &cf);
537 	else
538 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
539 	if (!skb) {
540 		stats->rx_dropped++;
541 		return 0;
542 	}
543 
544 	if (fifo_header.dlc & RX_BUF_FDF)
545 		cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
546 	else
547 		cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
548 
549 	if (fifo_header.id & RX_BUF_XTD)
550 		cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
551 	else
552 		cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
553 
554 	if (fifo_header.id & RX_BUF_ESI) {
555 		cf->flags |= CANFD_ESI;
556 		netdev_dbg(dev, "ESI Error\n");
557 	}
558 
559 	if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
560 		cf->can_id |= CAN_RTR_FLAG;
561 	} else {
562 		if (fifo_header.dlc & RX_BUF_BRS)
563 			cf->flags |= CANFD_BRS;
564 
565 		err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
566 				      cf->data, DIV_ROUND_UP(cf->len, 4));
567 		if (err)
568 			goto out_free_skb;
569 
570 		stats->rx_bytes += cf->len;
571 	}
572 	stats->rx_packets++;
573 
574 	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
575 
576 	m_can_receive_skb(cdev, skb, timestamp);
577 
578 	return 0;
579 
580 out_free_skb:
581 	kfree_skb(skb);
582 out_fail:
583 	netdev_err(dev, "FIFO read returned %d\n", err);
584 	return err;
585 }
586 
587 static int m_can_do_rx_poll(struct net_device *dev, int quota)
588 {
589 	struct m_can_classdev *cdev = netdev_priv(dev);
590 	u32 pkts = 0;
591 	u32 rxfs;
592 	u32 rx_count;
593 	u32 fgi;
594 	int ack_fgi = -1;
595 	int i;
596 	int err = 0;
597 
598 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
599 	if (!(rxfs & RXFS_FFL_MASK)) {
600 		netdev_dbg(dev, "no messages in fifo0\n");
601 		return 0;
602 	}
603 
604 	rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
605 	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
606 
607 	for (i = 0; i < rx_count && quota > 0; ++i) {
608 		err = m_can_read_fifo(dev, fgi);
609 		if (err)
610 			break;
611 
612 		quota--;
613 		pkts++;
614 		ack_fgi = fgi;
615 		fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
616 	}
617 
618 	if (ack_fgi != -1)
619 		m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
620 
621 	if (err)
622 		return err;
623 
624 	return pkts;
625 }
626 
627 static int m_can_handle_lost_msg(struct net_device *dev)
628 {
629 	struct m_can_classdev *cdev = netdev_priv(dev);
630 	struct net_device_stats *stats = &dev->stats;
631 	struct sk_buff *skb;
632 	struct can_frame *frame;
633 	u32 timestamp = 0;
634 
635 	netdev_err(dev, "msg lost in rxf0\n");
636 
637 	stats->rx_errors++;
638 	stats->rx_over_errors++;
639 
640 	skb = alloc_can_err_skb(dev, &frame);
641 	if (unlikely(!skb))
642 		return 0;
643 
644 	frame->can_id |= CAN_ERR_CRTL;
645 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
646 
647 	if (cdev->is_peripheral)
648 		timestamp = m_can_get_timestamp(cdev);
649 
650 	m_can_receive_skb(cdev, skb, timestamp);
651 
652 	return 1;
653 }
654 
655 static int m_can_handle_lec_err(struct net_device *dev,
656 				enum m_can_lec_type lec_type)
657 {
658 	struct m_can_classdev *cdev = netdev_priv(dev);
659 	struct net_device_stats *stats = &dev->stats;
660 	struct can_frame *cf;
661 	struct sk_buff *skb;
662 	u32 timestamp = 0;
663 
664 	cdev->can.can_stats.bus_error++;
665 	stats->rx_errors++;
666 
667 	/* propagate the error condition to the CAN stack */
668 	skb = alloc_can_err_skb(dev, &cf);
669 	if (unlikely(!skb))
670 		return 0;
671 
672 	/* check for 'last error code' which tells us the
673 	 * type of the last error to occur on the CAN bus
674 	 */
675 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
676 
677 	switch (lec_type) {
678 	case LEC_STUFF_ERROR:
679 		netdev_dbg(dev, "stuff error\n");
680 		cf->data[2] |= CAN_ERR_PROT_STUFF;
681 		break;
682 	case LEC_FORM_ERROR:
683 		netdev_dbg(dev, "form error\n");
684 		cf->data[2] |= CAN_ERR_PROT_FORM;
685 		break;
686 	case LEC_ACK_ERROR:
687 		netdev_dbg(dev, "ack error\n");
688 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
689 		break;
690 	case LEC_BIT1_ERROR:
691 		netdev_dbg(dev, "bit1 error\n");
692 		cf->data[2] |= CAN_ERR_PROT_BIT1;
693 		break;
694 	case LEC_BIT0_ERROR:
695 		netdev_dbg(dev, "bit0 error\n");
696 		cf->data[2] |= CAN_ERR_PROT_BIT0;
697 		break;
698 	case LEC_CRC_ERROR:
699 		netdev_dbg(dev, "CRC error\n");
700 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
701 		break;
702 	default:
703 		break;
704 	}
705 
706 	if (cdev->is_peripheral)
707 		timestamp = m_can_get_timestamp(cdev);
708 
709 	m_can_receive_skb(cdev, skb, timestamp);
710 
711 	return 1;
712 }
713 
714 static int __m_can_get_berr_counter(const struct net_device *dev,
715 				    struct can_berr_counter *bec)
716 {
717 	struct m_can_classdev *cdev = netdev_priv(dev);
718 	unsigned int ecr;
719 
720 	ecr = m_can_read(cdev, M_CAN_ECR);
721 	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
722 	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
723 
724 	return 0;
725 }
726 
727 static int m_can_clk_start(struct m_can_classdev *cdev)
728 {
729 	if (cdev->pm_clock_support == 0)
730 		return 0;
731 
732 	return pm_runtime_resume_and_get(cdev->dev);
733 }
734 
735 static void m_can_clk_stop(struct m_can_classdev *cdev)
736 {
737 	if (cdev->pm_clock_support)
738 		pm_runtime_put_sync(cdev->dev);
739 }
740 
741 static int m_can_get_berr_counter(const struct net_device *dev,
742 				  struct can_berr_counter *bec)
743 {
744 	struct m_can_classdev *cdev = netdev_priv(dev);
745 	int err;
746 
747 	err = m_can_clk_start(cdev);
748 	if (err)
749 		return err;
750 
751 	__m_can_get_berr_counter(dev, bec);
752 
753 	m_can_clk_stop(cdev);
754 
755 	return 0;
756 }
757 
758 static int m_can_handle_state_change(struct net_device *dev,
759 				     enum can_state new_state)
760 {
761 	struct m_can_classdev *cdev = netdev_priv(dev);
762 	struct can_frame *cf;
763 	struct sk_buff *skb;
764 	struct can_berr_counter bec;
765 	unsigned int ecr;
766 	u32 timestamp = 0;
767 
768 	switch (new_state) {
769 	case CAN_STATE_ERROR_WARNING:
770 		/* error warning state */
771 		cdev->can.can_stats.error_warning++;
772 		cdev->can.state = CAN_STATE_ERROR_WARNING;
773 		break;
774 	case CAN_STATE_ERROR_PASSIVE:
775 		/* error passive state */
776 		cdev->can.can_stats.error_passive++;
777 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
778 		break;
779 	case CAN_STATE_BUS_OFF:
780 		/* bus-off state */
781 		cdev->can.state = CAN_STATE_BUS_OFF;
782 		m_can_disable_all_interrupts(cdev);
783 		cdev->can.can_stats.bus_off++;
784 		can_bus_off(dev);
785 		break;
786 	default:
787 		break;
788 	}
789 
790 	/* propagate the error condition to the CAN stack */
791 	skb = alloc_can_err_skb(dev, &cf);
792 	if (unlikely(!skb))
793 		return 0;
794 
795 	__m_can_get_berr_counter(dev, &bec);
796 
797 	switch (new_state) {
798 	case CAN_STATE_ERROR_WARNING:
799 		/* error warning state */
800 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
801 		cf->data[1] = (bec.txerr > bec.rxerr) ?
802 			CAN_ERR_CRTL_TX_WARNING :
803 			CAN_ERR_CRTL_RX_WARNING;
804 		cf->data[6] = bec.txerr;
805 		cf->data[7] = bec.rxerr;
806 		break;
807 	case CAN_STATE_ERROR_PASSIVE:
808 		/* error passive state */
809 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
810 		ecr = m_can_read(cdev, M_CAN_ECR);
811 		if (ecr & ECR_RP)
812 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
813 		if (bec.txerr > 127)
814 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
815 		cf->data[6] = bec.txerr;
816 		cf->data[7] = bec.rxerr;
817 		break;
818 	case CAN_STATE_BUS_OFF:
819 		/* bus-off state */
820 		cf->can_id |= CAN_ERR_BUSOFF;
821 		break;
822 	default:
823 		break;
824 	}
825 
826 	if (cdev->is_peripheral)
827 		timestamp = m_can_get_timestamp(cdev);
828 
829 	m_can_receive_skb(cdev, skb, timestamp);
830 
831 	return 1;
832 }
833 
834 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
835 {
836 	struct m_can_classdev *cdev = netdev_priv(dev);
837 	int work_done = 0;
838 
839 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
840 		netdev_dbg(dev, "entered error warning state\n");
841 		work_done += m_can_handle_state_change(dev,
842 						       CAN_STATE_ERROR_WARNING);
843 	}
844 
845 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
846 		netdev_dbg(dev, "entered error passive state\n");
847 		work_done += m_can_handle_state_change(dev,
848 						       CAN_STATE_ERROR_PASSIVE);
849 	}
850 
851 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
852 		netdev_dbg(dev, "entered error bus off state\n");
853 		work_done += m_can_handle_state_change(dev,
854 						       CAN_STATE_BUS_OFF);
855 	}
856 
857 	return work_done;
858 }
859 
860 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
861 {
862 	if (irqstatus & IR_WDI)
863 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
864 	if (irqstatus & IR_BEU)
865 		netdev_err(dev, "Bit Error Uncorrected\n");
866 	if (irqstatus & IR_BEC)
867 		netdev_err(dev, "Bit Error Corrected\n");
868 	if (irqstatus & IR_TOO)
869 		netdev_err(dev, "Timeout reached\n");
870 	if (irqstatus & IR_MRAF)
871 		netdev_err(dev, "Message RAM access failure occurred\n");
872 }
873 
874 static inline bool is_lec_err(u8 lec)
875 {
876 	return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
877 }
878 
879 static inline bool m_can_is_protocol_err(u32 irqstatus)
880 {
881 	return irqstatus & IR_ERR_LEC_31X;
882 }
883 
884 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
885 {
886 	struct net_device_stats *stats = &dev->stats;
887 	struct m_can_classdev *cdev = netdev_priv(dev);
888 	struct can_frame *cf;
889 	struct sk_buff *skb;
890 	u32 timestamp = 0;
891 
892 	/* propagate the error condition to the CAN stack */
893 	skb = alloc_can_err_skb(dev, &cf);
894 
895 	/* update tx error stats since there is protocol error */
896 	stats->tx_errors++;
897 
898 	/* update arbitration lost status */
899 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
900 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
901 		cdev->can.can_stats.arbitration_lost++;
902 		if (skb) {
903 			cf->can_id |= CAN_ERR_LOSTARB;
904 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
905 		}
906 	}
907 
908 	if (unlikely(!skb)) {
909 		netdev_dbg(dev, "allocation of skb failed\n");
910 		return 0;
911 	}
912 
913 	if (cdev->is_peripheral)
914 		timestamp = m_can_get_timestamp(cdev);
915 
916 	m_can_receive_skb(cdev, skb, timestamp);
917 
918 	return 1;
919 }
920 
921 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
922 				   u32 psr)
923 {
924 	struct m_can_classdev *cdev = netdev_priv(dev);
925 	int work_done = 0;
926 
927 	if (irqstatus & IR_RF0L)
928 		work_done += m_can_handle_lost_msg(dev);
929 
930 	/* handle lec errors on the bus */
931 	if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
932 		u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
933 		u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
934 
935 		if (is_lec_err(lec)) {
936 			netdev_dbg(dev, "Arbitration phase error detected\n");
937 			work_done += m_can_handle_lec_err(dev, lec);
938 		}
939 
940 		if (is_lec_err(dlec)) {
941 			netdev_dbg(dev, "Data phase error detected\n");
942 			work_done += m_can_handle_lec_err(dev, dlec);
943 		}
944 	}
945 
946 	/* handle protocol errors in arbitration phase */
947 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
948 	    m_can_is_protocol_err(irqstatus))
949 		work_done += m_can_handle_protocol_error(dev, irqstatus);
950 
951 	/* other unproccessed error interrupts */
952 	m_can_handle_other_err(dev, irqstatus);
953 
954 	return work_done;
955 }
956 
957 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
958 {
959 	struct m_can_classdev *cdev = netdev_priv(dev);
960 	int rx_work_or_err;
961 	int work_done = 0;
962 
963 	if (!irqstatus)
964 		goto end;
965 
966 	/* Errata workaround for issue "Needless activation of MRAF irq"
967 	 * During frame reception while the MCAN is in Error Passive state
968 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
969 	 * it may happen that MCAN_IR.MRAF is set although there was no
970 	 * Message RAM access failure.
971 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
972 	 * The Message RAM Access Failure interrupt routine needs to check
973 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
974 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
975 	 */
976 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
977 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
978 		struct can_berr_counter bec;
979 
980 		__m_can_get_berr_counter(dev, &bec);
981 		if (bec.rxerr == 127) {
982 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
983 			irqstatus &= ~IR_MRAF;
984 		}
985 	}
986 
987 	if (irqstatus & IR_ERR_STATE)
988 		work_done += m_can_handle_state_errors(dev,
989 						       m_can_read(cdev, M_CAN_PSR));
990 
991 	if (irqstatus & IR_ERR_BUS_30X)
992 		work_done += m_can_handle_bus_errors(dev, irqstatus,
993 						     m_can_read(cdev, M_CAN_PSR));
994 
995 	if (irqstatus & IR_RF0N) {
996 		rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
997 		if (rx_work_or_err < 0)
998 			return rx_work_or_err;
999 
1000 		work_done += rx_work_or_err;
1001 	}
1002 end:
1003 	return work_done;
1004 }
1005 
1006 static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus)
1007 {
1008 	struct m_can_classdev *cdev = netdev_priv(dev);
1009 	int work_done;
1010 
1011 	work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus);
1012 
1013 	/* Don't re-enable interrupts if the driver had a fatal error
1014 	 * (e.g., FIFO read failure).
1015 	 */
1016 	if (work_done < 0)
1017 		m_can_disable_all_interrupts(cdev);
1018 
1019 	return work_done;
1020 }
1021 
1022 static int m_can_poll(struct napi_struct *napi, int quota)
1023 {
1024 	struct net_device *dev = napi->dev;
1025 	struct m_can_classdev *cdev = netdev_priv(dev);
1026 	int work_done;
1027 	u32 irqstatus;
1028 
1029 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
1030 
1031 	work_done = m_can_rx_handler(dev, quota, irqstatus);
1032 
1033 	/* Don't re-enable interrupts if the driver had a fatal error
1034 	 * (e.g., FIFO read failure).
1035 	 */
1036 	if (work_done >= 0 && work_done < quota) {
1037 		napi_complete_done(napi, work_done);
1038 		m_can_enable_all_interrupts(cdev);
1039 	}
1040 
1041 	return work_done;
1042 }
1043 
1044 /* Echo tx skb and update net stats. Peripherals use rx-offload for
1045  * echo. timestamp is used for peripherals to ensure correct ordering
1046  * by rx-offload, and is ignored for non-peripherals.
1047  */
1048 static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev,
1049 					  unsigned int msg_mark, u32 timestamp)
1050 {
1051 	struct net_device *dev = cdev->net;
1052 	struct net_device_stats *stats = &dev->stats;
1053 	unsigned int frame_len;
1054 
1055 	if (cdev->is_peripheral)
1056 		stats->tx_bytes +=
1057 			can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
1058 								    msg_mark,
1059 								    timestamp,
1060 								    &frame_len);
1061 	else
1062 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, &frame_len);
1063 
1064 	stats->tx_packets++;
1065 
1066 	return frame_len;
1067 }
1068 
1069 static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted,
1070 			    unsigned int transmitted_frame_len)
1071 {
1072 	unsigned long irqflags;
1073 
1074 	netdev_completed_queue(cdev->net, transmitted, transmitted_frame_len);
1075 
1076 	spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1077 	if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0)
1078 		netif_wake_queue(cdev->net);
1079 	cdev->tx_fifo_in_flight -= transmitted;
1080 	spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1081 }
1082 
1083 static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev)
1084 {
1085 	unsigned long irqflags;
1086 	int tx_fifo_in_flight;
1087 
1088 	spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1089 	tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1;
1090 	if (tx_fifo_in_flight >= cdev->tx_fifo_size) {
1091 		netif_stop_queue(cdev->net);
1092 		if (tx_fifo_in_flight > cdev->tx_fifo_size) {
1093 			netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n");
1094 			spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1095 			return NETDEV_TX_BUSY;
1096 		}
1097 	}
1098 	cdev->tx_fifo_in_flight = tx_fifo_in_flight;
1099 	spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1100 
1101 	return NETDEV_TX_OK;
1102 }
1103 
1104 static int m_can_echo_tx_event(struct net_device *dev)
1105 {
1106 	u32 txe_count = 0;
1107 	u32 m_can_txefs;
1108 	u32 fgi = 0;
1109 	int ack_fgi = -1;
1110 	int i = 0;
1111 	int err = 0;
1112 	unsigned int msg_mark;
1113 	int processed = 0;
1114 	unsigned int processed_frame_len = 0;
1115 
1116 	struct m_can_classdev *cdev = netdev_priv(dev);
1117 
1118 	/* read tx event fifo status */
1119 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1120 
1121 	/* Get Tx Event fifo element count */
1122 	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1123 	fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1124 
1125 	/* Get and process all sent elements */
1126 	for (i = 0; i < txe_count; i++) {
1127 		u32 txe, timestamp = 0;
1128 
1129 		/* get message marker, timestamp */
1130 		err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1131 		if (err) {
1132 			netdev_err(dev, "TXE FIFO read returned %d\n", err);
1133 			break;
1134 		}
1135 
1136 		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1137 		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1138 
1139 		ack_fgi = fgi;
1140 		fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1141 
1142 		/* update stats */
1143 		processed_frame_len += m_can_tx_update_stats(cdev, msg_mark,
1144 							     timestamp);
1145 
1146 		++processed;
1147 	}
1148 
1149 	if (ack_fgi != -1)
1150 		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1151 							  ack_fgi));
1152 
1153 	m_can_finish_tx(cdev, processed, processed_frame_len);
1154 
1155 	return err;
1156 }
1157 
1158 static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir)
1159 {
1160 	u32 new_interrupts = cdev->active_interrupts;
1161 	bool enable_rx_timer = false;
1162 	bool enable_tx_timer = false;
1163 
1164 	if (!cdev->net->irq)
1165 		return;
1166 
1167 	if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) {
1168 		enable_rx_timer = true;
1169 		new_interrupts &= ~IR_RF0N;
1170 	}
1171 	if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) {
1172 		enable_tx_timer = true;
1173 		new_interrupts &= ~IR_TEFN;
1174 	}
1175 	if (!enable_rx_timer && !hrtimer_active(&cdev->hrtimer))
1176 		new_interrupts |= IR_RF0N;
1177 	if (!enable_tx_timer && !hrtimer_active(&cdev->hrtimer))
1178 		new_interrupts |= IR_TEFN;
1179 
1180 	m_can_interrupt_enable(cdev, new_interrupts);
1181 	if (enable_rx_timer | enable_tx_timer)
1182 		hrtimer_start(&cdev->hrtimer, cdev->irq_timer_wait,
1183 			      HRTIMER_MODE_REL);
1184 }
1185 
1186 static irqreturn_t m_can_isr(int irq, void *dev_id)
1187 {
1188 	struct net_device *dev = (struct net_device *)dev_id;
1189 	struct m_can_classdev *cdev = netdev_priv(dev);
1190 	u32 ir;
1191 
1192 	if (pm_runtime_suspended(cdev->dev)) {
1193 		m_can_coalescing_disable(cdev);
1194 		return IRQ_NONE;
1195 	}
1196 
1197 	ir = m_can_read(cdev, M_CAN_IR);
1198 	m_can_coalescing_update(cdev, ir);
1199 	if (!ir)
1200 		return IRQ_NONE;
1201 
1202 	/* ACK all irqs */
1203 	m_can_write(cdev, M_CAN_IR, ir);
1204 
1205 	if (cdev->ops->clear_interrupts)
1206 		cdev->ops->clear_interrupts(cdev);
1207 
1208 	/* schedule NAPI in case of
1209 	 * - rx IRQ
1210 	 * - state change IRQ
1211 	 * - bus error IRQ and bus error reporting
1212 	 */
1213 	if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) {
1214 		cdev->irqstatus = ir;
1215 		if (!cdev->is_peripheral) {
1216 			m_can_disable_all_interrupts(cdev);
1217 			napi_schedule(&cdev->napi);
1218 		} else {
1219 			int pkts;
1220 
1221 			pkts = m_can_rx_peripheral(dev, ir);
1222 			if (pkts < 0)
1223 				goto out_fail;
1224 		}
1225 	}
1226 
1227 	if (cdev->version == 30) {
1228 		if (ir & IR_TC) {
1229 			/* Transmission Complete Interrupt*/
1230 			u32 timestamp = 0;
1231 			unsigned int frame_len;
1232 
1233 			if (cdev->is_peripheral)
1234 				timestamp = m_can_get_timestamp(cdev);
1235 			frame_len = m_can_tx_update_stats(cdev, 0, timestamp);
1236 			m_can_finish_tx(cdev, 1, frame_len);
1237 		}
1238 	} else  {
1239 		if (ir & (IR_TEFN | IR_TEFW)) {
1240 			/* New TX FIFO Element arrived */
1241 			if (m_can_echo_tx_event(dev) != 0)
1242 				goto out_fail;
1243 		}
1244 	}
1245 
1246 	if (cdev->is_peripheral)
1247 		can_rx_offload_threaded_irq_finish(&cdev->offload);
1248 
1249 	return IRQ_HANDLED;
1250 
1251 out_fail:
1252 	m_can_disable_all_interrupts(cdev);
1253 	return IRQ_HANDLED;
1254 }
1255 
1256 static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer)
1257 {
1258 	struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer);
1259 
1260 	irq_wake_thread(cdev->net->irq, cdev->net);
1261 
1262 	return HRTIMER_NORESTART;
1263 }
1264 
1265 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1266 	.name = KBUILD_MODNAME,
1267 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1268 	.tseg1_max = 64,
1269 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1270 	.tseg2_max = 16,
1271 	.sjw_max = 16,
1272 	.brp_min = 1,
1273 	.brp_max = 1024,
1274 	.brp_inc = 1,
1275 };
1276 
1277 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1278 	.name = KBUILD_MODNAME,
1279 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1280 	.tseg1_max = 16,
1281 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1282 	.tseg2_max = 8,
1283 	.sjw_max = 4,
1284 	.brp_min = 1,
1285 	.brp_max = 32,
1286 	.brp_inc = 1,
1287 };
1288 
1289 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1290 	.name = KBUILD_MODNAME,
1291 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1292 	.tseg1_max = 256,
1293 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1294 	.tseg2_max = 128,
1295 	.sjw_max = 128,
1296 	.brp_min = 1,
1297 	.brp_max = 512,
1298 	.brp_inc = 1,
1299 };
1300 
1301 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1302 	.name = KBUILD_MODNAME,
1303 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1304 	.tseg1_max = 32,
1305 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1306 	.tseg2_max = 16,
1307 	.sjw_max = 16,
1308 	.brp_min = 1,
1309 	.brp_max = 32,
1310 	.brp_inc = 1,
1311 };
1312 
1313 static int m_can_set_bittiming(struct net_device *dev)
1314 {
1315 	struct m_can_classdev *cdev = netdev_priv(dev);
1316 	const struct can_bittiming *bt = &cdev->can.bittiming;
1317 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1318 	u16 brp, sjw, tseg1, tseg2;
1319 	u32 reg_btp;
1320 
1321 	brp = bt->brp - 1;
1322 	sjw = bt->sjw - 1;
1323 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1324 	tseg2 = bt->phase_seg2 - 1;
1325 	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1326 		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1327 		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1328 		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1329 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1330 
1331 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1332 		reg_btp = 0;
1333 		brp = dbt->brp - 1;
1334 		sjw = dbt->sjw - 1;
1335 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1336 		tseg2 = dbt->phase_seg2 - 1;
1337 
1338 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1339 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1340 		 * paper presented at the International CAN Conference 2013
1341 		 */
1342 		if (dbt->bitrate > 2500000) {
1343 			u32 tdco, ssp;
1344 
1345 			/* Use the same value of secondary sampling point
1346 			 * as the data sampling point
1347 			 */
1348 			ssp = dbt->sample_point;
1349 
1350 			/* Equation based on Bosch's M_CAN User Manual's
1351 			 * Transmitter Delay Compensation Section
1352 			 */
1353 			tdco = (cdev->can.clock.freq / 1000) *
1354 				ssp / dbt->bitrate;
1355 
1356 			/* Max valid TDCO value is 127 */
1357 			if (tdco > 127) {
1358 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1359 					    tdco);
1360 				tdco = 127;
1361 			}
1362 
1363 			reg_btp |= DBTP_TDC;
1364 			m_can_write(cdev, M_CAN_TDCR,
1365 				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1366 		}
1367 
1368 		reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1369 			FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1370 			FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1371 			FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1372 
1373 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1374 	}
1375 
1376 	return 0;
1377 }
1378 
1379 /* Configure M_CAN chip:
1380  * - set rx buffer/fifo element size
1381  * - configure rx fifo
1382  * - accept non-matching frame into fifo 0
1383  * - configure tx buffer
1384  *		- >= v3.1.x: TX FIFO is used
1385  * - configure mode
1386  * - setup bittiming
1387  * - configure timestamp generation
1388  */
1389 static int m_can_chip_config(struct net_device *dev)
1390 {
1391 	struct m_can_classdev *cdev = netdev_priv(dev);
1392 	u32 interrupts = IR_ALL_INT;
1393 	u32 cccr, test;
1394 	int err;
1395 
1396 	err = m_can_init_ram(cdev);
1397 	if (err) {
1398 		dev_err(cdev->dev, "Message RAM configuration failed\n");
1399 		return err;
1400 	}
1401 
1402 	/* Disable unused interrupts */
1403 	interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF |
1404 			IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F);
1405 
1406 	m_can_config_endisable(cdev, true);
1407 
1408 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1409 	m_can_write(cdev, M_CAN_RXESC,
1410 		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1411 		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1412 		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1413 
1414 	/* Accept Non-matching Frames Into FIFO 0 */
1415 	m_can_write(cdev, M_CAN_GFC, 0x0);
1416 
1417 	if (cdev->version == 30) {
1418 		/* only support one Tx Buffer currently */
1419 		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1420 			    cdev->mcfg[MRAM_TXB].off);
1421 	} else {
1422 		/* TX FIFO is used for newer IP Core versions */
1423 		m_can_write(cdev, M_CAN_TXBC,
1424 			    FIELD_PREP(TXBC_TFQS_MASK,
1425 				       cdev->mcfg[MRAM_TXB].num) |
1426 			    cdev->mcfg[MRAM_TXB].off);
1427 	}
1428 
1429 	/* support 64 bytes payload */
1430 	m_can_write(cdev, M_CAN_TXESC,
1431 		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1432 
1433 	/* TX Event FIFO */
1434 	if (cdev->version == 30) {
1435 		m_can_write(cdev, M_CAN_TXEFC,
1436 			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
1437 			    cdev->mcfg[MRAM_TXE].off);
1438 	} else {
1439 		/* Full TX Event FIFO is used */
1440 		m_can_write(cdev, M_CAN_TXEFC,
1441 			    FIELD_PREP(TXEFC_EFWM_MASK,
1442 				       cdev->tx_max_coalesced_frames_irq) |
1443 			    FIELD_PREP(TXEFC_EFS_MASK,
1444 				       cdev->mcfg[MRAM_TXE].num) |
1445 			    cdev->mcfg[MRAM_TXE].off);
1446 	}
1447 
1448 	/* rx fifo configuration, blocking mode, fifo size 1 */
1449 	m_can_write(cdev, M_CAN_RXF0C,
1450 		    FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) |
1451 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1452 		    cdev->mcfg[MRAM_RXF0].off);
1453 
1454 	m_can_write(cdev, M_CAN_RXF1C,
1455 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1456 		    cdev->mcfg[MRAM_RXF1].off);
1457 
1458 	cccr = m_can_read(cdev, M_CAN_CCCR);
1459 	test = m_can_read(cdev, M_CAN_TEST);
1460 	test &= ~TEST_LBCK;
1461 	if (cdev->version == 30) {
1462 		/* Version 3.0.x */
1463 
1464 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1465 			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1466 			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1467 
1468 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1469 			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1470 
1471 	} else {
1472 		/* Version 3.1.x or 3.2.x */
1473 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1474 			  CCCR_NISO | CCCR_DAR);
1475 
1476 		/* Only 3.2.x has NISO Bit implemented */
1477 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1478 			cccr |= CCCR_NISO;
1479 
1480 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1481 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1482 	}
1483 
1484 	/* Loopback Mode */
1485 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1486 		cccr |= CCCR_TEST | CCCR_MON;
1487 		test |= TEST_LBCK;
1488 	}
1489 
1490 	/* Enable Monitoring (all versions) */
1491 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1492 		cccr |= CCCR_MON;
1493 
1494 	/* Disable Auto Retransmission (all versions) */
1495 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1496 		cccr |= CCCR_DAR;
1497 
1498 	/* Write config */
1499 	m_can_write(cdev, M_CAN_CCCR, cccr);
1500 	m_can_write(cdev, M_CAN_TEST, test);
1501 
1502 	/* Enable interrupts */
1503 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1504 		if (cdev->version == 30)
1505 			interrupts &= ~(IR_ERR_LEC_30X);
1506 		else
1507 			interrupts &= ~(IR_ERR_LEC_31X);
1508 	}
1509 	m_can_interrupt_enable(cdev, interrupts);
1510 
1511 	/* route all interrupts to INT0 */
1512 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1513 
1514 	/* set bittiming params */
1515 	m_can_set_bittiming(dev);
1516 
1517 	/* enable internal timestamp generation, with a prescaler of 16. The
1518 	 * prescaler is applied to the nominal bit timing
1519 	 */
1520 	m_can_write(cdev, M_CAN_TSCC,
1521 		    FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1522 		    FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1523 
1524 	m_can_config_endisable(cdev, false);
1525 
1526 	if (cdev->ops->init)
1527 		cdev->ops->init(cdev);
1528 
1529 	return 0;
1530 }
1531 
1532 static int m_can_start(struct net_device *dev)
1533 {
1534 	struct m_can_classdev *cdev = netdev_priv(dev);
1535 	int ret;
1536 
1537 	/* basic m_can configuration */
1538 	ret = m_can_chip_config(dev);
1539 	if (ret)
1540 		return ret;
1541 
1542 	netdev_queue_set_dql_min_limit(netdev_get_tx_queue(cdev->net, 0),
1543 				       cdev->tx_max_coalesced_frames);
1544 
1545 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1546 
1547 	m_can_enable_all_interrupts(cdev);
1548 
1549 	if (cdev->version > 30)
1550 		cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1551 						 m_can_read(cdev, M_CAN_TXFQS));
1552 
1553 	return 0;
1554 }
1555 
1556 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1557 {
1558 	switch (mode) {
1559 	case CAN_MODE_START:
1560 		m_can_clean(dev);
1561 		m_can_start(dev);
1562 		netif_wake_queue(dev);
1563 		break;
1564 	default:
1565 		return -EOPNOTSUPP;
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 /* Checks core release number of M_CAN
1572  * returns 0 if an unsupported device is detected
1573  * else it returns the release and step coded as:
1574  * return value = 10 * <release> + 1 * <step>
1575  */
1576 static int m_can_check_core_release(struct m_can_classdev *cdev)
1577 {
1578 	u32 crel_reg;
1579 	u8 rel;
1580 	u8 step;
1581 	int res;
1582 
1583 	/* Read Core Release Version and split into version number
1584 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1585 	 */
1586 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1587 	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1588 	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1589 
1590 	if (rel == 3) {
1591 		/* M_CAN v3.x.y: create return value */
1592 		res = 30 + step;
1593 	} else {
1594 		/* Unsupported M_CAN version */
1595 		res = 0;
1596 	}
1597 
1598 	return res;
1599 }
1600 
1601 /* Selectable Non ISO support only in version 3.2.x
1602  * This function checks if the bit is writable.
1603  */
1604 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1605 {
1606 	u32 cccr_reg, cccr_poll = 0;
1607 	int niso_timeout = -ETIMEDOUT;
1608 	int i;
1609 
1610 	m_can_config_endisable(cdev, true);
1611 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1612 	cccr_reg |= CCCR_NISO;
1613 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1614 
1615 	for (i = 0; i <= 10; i++) {
1616 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1617 		if (cccr_poll == cccr_reg) {
1618 			niso_timeout = 0;
1619 			break;
1620 		}
1621 
1622 		usleep_range(1, 5);
1623 	}
1624 
1625 	/* Clear NISO */
1626 	cccr_reg &= ~(CCCR_NISO);
1627 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1628 
1629 	m_can_config_endisable(cdev, false);
1630 
1631 	/* return false if time out (-ETIMEDOUT), else return true */
1632 	return !niso_timeout;
1633 }
1634 
1635 static int m_can_dev_setup(struct m_can_classdev *cdev)
1636 {
1637 	struct net_device *dev = cdev->net;
1638 	int m_can_version, err;
1639 
1640 	m_can_version = m_can_check_core_release(cdev);
1641 	/* return if unsupported version */
1642 	if (!m_can_version) {
1643 		dev_err(cdev->dev, "Unsupported version number: %2d",
1644 			m_can_version);
1645 		return -EINVAL;
1646 	}
1647 
1648 	if (!cdev->is_peripheral)
1649 		netif_napi_add(dev, &cdev->napi, m_can_poll);
1650 
1651 	/* Shared properties of all M_CAN versions */
1652 	cdev->version = m_can_version;
1653 	cdev->can.do_set_mode = m_can_set_mode;
1654 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1655 
1656 	/* Set M_CAN supported operations */
1657 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1658 		CAN_CTRLMODE_LISTENONLY |
1659 		CAN_CTRLMODE_BERR_REPORTING |
1660 		CAN_CTRLMODE_FD |
1661 		CAN_CTRLMODE_ONE_SHOT;
1662 
1663 	/* Set properties depending on M_CAN version */
1664 	switch (cdev->version) {
1665 	case 30:
1666 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1667 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1668 		if (err)
1669 			return err;
1670 		cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1671 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1672 		break;
1673 	case 31:
1674 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1675 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1676 		if (err)
1677 			return err;
1678 		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1679 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1680 		break;
1681 	case 32:
1682 	case 33:
1683 		/* Support both MCAN version v3.2.x and v3.3.0 */
1684 		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1685 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1686 
1687 		cdev->can.ctrlmode_supported |=
1688 			(m_can_niso_supported(cdev) ?
1689 			 CAN_CTRLMODE_FD_NON_ISO : 0);
1690 		break;
1691 	default:
1692 		dev_err(cdev->dev, "Unsupported version number: %2d",
1693 			cdev->version);
1694 		return -EINVAL;
1695 	}
1696 
1697 	if (cdev->ops->init)
1698 		cdev->ops->init(cdev);
1699 
1700 	return 0;
1701 }
1702 
1703 static void m_can_stop(struct net_device *dev)
1704 {
1705 	struct m_can_classdev *cdev = netdev_priv(dev);
1706 
1707 	/* disable all interrupts */
1708 	m_can_disable_all_interrupts(cdev);
1709 
1710 	/* Set init mode to disengage from the network */
1711 	m_can_config_endisable(cdev, true);
1712 
1713 	/* set the state as STOPPED */
1714 	cdev->can.state = CAN_STATE_STOPPED;
1715 }
1716 
1717 static int m_can_close(struct net_device *dev)
1718 {
1719 	struct m_can_classdev *cdev = netdev_priv(dev);
1720 
1721 	netif_stop_queue(dev);
1722 
1723 	if (!cdev->is_peripheral)
1724 		napi_disable(&cdev->napi);
1725 
1726 	m_can_stop(dev);
1727 	m_can_clk_stop(cdev);
1728 	free_irq(dev->irq, dev);
1729 
1730 	m_can_clean(dev);
1731 
1732 	if (cdev->is_peripheral) {
1733 		destroy_workqueue(cdev->tx_wq);
1734 		cdev->tx_wq = NULL;
1735 		can_rx_offload_disable(&cdev->offload);
1736 	}
1737 
1738 	close_candev(dev);
1739 
1740 	phy_power_off(cdev->transceiver);
1741 
1742 	return 0;
1743 }
1744 
1745 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev,
1746 				    struct sk_buff *skb)
1747 {
1748 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1749 	u8 len_padded = DIV_ROUND_UP(cf->len, 4);
1750 	struct m_can_fifo_element fifo_element;
1751 	struct net_device *dev = cdev->net;
1752 	u32 cccr, fdflags;
1753 	int err;
1754 	u32 putidx;
1755 	unsigned int frame_len = can_skb_get_frame_len(skb);
1756 
1757 	/* Generate ID field for TX buffer Element */
1758 	/* Common to all supported M_CAN versions */
1759 	if (cf->can_id & CAN_EFF_FLAG) {
1760 		fifo_element.id = cf->can_id & CAN_EFF_MASK;
1761 		fifo_element.id |= TX_BUF_XTD;
1762 	} else {
1763 		fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1764 	}
1765 
1766 	if (cf->can_id & CAN_RTR_FLAG)
1767 		fifo_element.id |= TX_BUF_RTR;
1768 
1769 	if (cdev->version == 30) {
1770 		netif_stop_queue(dev);
1771 
1772 		fifo_element.dlc = can_fd_len2dlc(cf->len) << 16;
1773 
1774 		/* Write the frame ID, DLC, and payload to the FIFO element. */
1775 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_element, 2);
1776 		if (err)
1777 			goto out_fail;
1778 
1779 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1780 				       cf->data, len_padded);
1781 		if (err)
1782 			goto out_fail;
1783 
1784 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1785 			cccr = m_can_read(cdev, M_CAN_CCCR);
1786 			cccr &= ~CCCR_CMR_MASK;
1787 			if (can_is_canfd_skb(skb)) {
1788 				if (cf->flags & CANFD_BRS)
1789 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1790 							   CCCR_CMR_CANFD_BRS);
1791 				else
1792 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1793 							   CCCR_CMR_CANFD);
1794 			} else {
1795 				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1796 			}
1797 			m_can_write(cdev, M_CAN_CCCR, cccr);
1798 		}
1799 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1800 
1801 		can_put_echo_skb(skb, dev, 0, frame_len);
1802 
1803 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1804 		/* End of xmit function for version 3.0.x */
1805 	} else {
1806 		/* Transmit routine for version >= v3.1.x */
1807 
1808 		/* get put index for frame */
1809 		putidx = cdev->tx_fifo_putidx;
1810 
1811 		/* Construct DLC Field, with CAN-FD configuration.
1812 		 * Use the put index of the fifo as the message marker,
1813 		 * used in the TX interrupt for sending the correct echo frame.
1814 		 */
1815 
1816 		/* get CAN FD configuration of frame */
1817 		fdflags = 0;
1818 		if (can_is_canfd_skb(skb)) {
1819 			fdflags |= TX_BUF_FDF;
1820 			if (cf->flags & CANFD_BRS)
1821 				fdflags |= TX_BUF_BRS;
1822 		}
1823 
1824 		fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1825 			FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1826 			fdflags | TX_BUF_EFC;
1827 
1828 		memcpy_and_pad(fifo_element.data, CANFD_MAX_DLEN, &cf->data,
1829 			       cf->len, 0);
1830 
1831 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID,
1832 				       &fifo_element, 2 + len_padded);
1833 		if (err)
1834 			goto out_fail;
1835 
1836 		/* Push loopback echo.
1837 		 * Will be looped back on TX interrupt based on message marker
1838 		 */
1839 		can_put_echo_skb(skb, dev, putidx, frame_len);
1840 
1841 		if (cdev->is_peripheral) {
1842 			/* Delay enabling TX FIFO element */
1843 			cdev->tx_peripheral_submit |= BIT(putidx);
1844 		} else {
1845 			/* Enable TX FIFO element to start transfer  */
1846 			m_can_write(cdev, M_CAN_TXBAR, BIT(putidx));
1847 		}
1848 		cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ?
1849 					0 : cdev->tx_fifo_putidx);
1850 	}
1851 
1852 	return NETDEV_TX_OK;
1853 
1854 out_fail:
1855 	netdev_err(dev, "FIFO write returned %d\n", err);
1856 	m_can_disable_all_interrupts(cdev);
1857 	return NETDEV_TX_BUSY;
1858 }
1859 
1860 static void m_can_tx_submit(struct m_can_classdev *cdev)
1861 {
1862 	if (cdev->version == 30)
1863 		return;
1864 	if (!cdev->is_peripheral)
1865 		return;
1866 
1867 	m_can_write(cdev, M_CAN_TXBAR, cdev->tx_peripheral_submit);
1868 	cdev->tx_peripheral_submit = 0;
1869 }
1870 
1871 static void m_can_tx_work_queue(struct work_struct *ws)
1872 {
1873 	struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work);
1874 	struct m_can_classdev *cdev = op->cdev;
1875 	struct sk_buff *skb = op->skb;
1876 
1877 	op->skb = NULL;
1878 	m_can_tx_handler(cdev, skb);
1879 	if (op->submit)
1880 		m_can_tx_submit(cdev);
1881 }
1882 
1883 static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb,
1884 			       bool submit)
1885 {
1886 	cdev->tx_ops[cdev->next_tx_op].skb = skb;
1887 	cdev->tx_ops[cdev->next_tx_op].submit = submit;
1888 	queue_work(cdev->tx_wq, &cdev->tx_ops[cdev->next_tx_op].work);
1889 
1890 	++cdev->next_tx_op;
1891 	if (cdev->next_tx_op >= cdev->tx_fifo_size)
1892 		cdev->next_tx_op = 0;
1893 }
1894 
1895 static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev,
1896 					       struct sk_buff *skb)
1897 {
1898 	bool submit;
1899 
1900 	++cdev->nr_txs_without_submit;
1901 	if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames ||
1902 	    !netdev_xmit_more()) {
1903 		cdev->nr_txs_without_submit = 0;
1904 		submit = true;
1905 	} else {
1906 		submit = false;
1907 	}
1908 	m_can_tx_queue_skb(cdev, skb, submit);
1909 
1910 	return NETDEV_TX_OK;
1911 }
1912 
1913 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1914 				    struct net_device *dev)
1915 {
1916 	struct m_can_classdev *cdev = netdev_priv(dev);
1917 	unsigned int frame_len;
1918 	netdev_tx_t ret;
1919 
1920 	if (can_dev_dropped_skb(dev, skb))
1921 		return NETDEV_TX_OK;
1922 
1923 	frame_len = can_skb_get_frame_len(skb);
1924 
1925 	if (cdev->can.state == CAN_STATE_BUS_OFF) {
1926 		m_can_clean(cdev->net);
1927 		return NETDEV_TX_OK;
1928 	}
1929 
1930 	ret = m_can_start_tx(cdev);
1931 	if (ret != NETDEV_TX_OK)
1932 		return ret;
1933 
1934 	netdev_sent_queue(dev, frame_len);
1935 
1936 	if (cdev->is_peripheral)
1937 		ret = m_can_start_peripheral_xmit(cdev, skb);
1938 	else
1939 		ret = m_can_tx_handler(cdev, skb);
1940 
1941 	if (ret != NETDEV_TX_OK)
1942 		netdev_completed_queue(dev, 1, frame_len);
1943 
1944 	return ret;
1945 }
1946 
1947 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
1948 {
1949 	struct m_can_classdev *cdev = container_of(timer, struct
1950 						   m_can_classdev, hrtimer);
1951 
1952 	m_can_isr(0, cdev->net);
1953 
1954 	hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
1955 
1956 	return HRTIMER_RESTART;
1957 }
1958 
1959 static int m_can_open(struct net_device *dev)
1960 {
1961 	struct m_can_classdev *cdev = netdev_priv(dev);
1962 	int err;
1963 
1964 	err = phy_power_on(cdev->transceiver);
1965 	if (err)
1966 		return err;
1967 
1968 	err = m_can_clk_start(cdev);
1969 	if (err)
1970 		goto out_phy_power_off;
1971 
1972 	/* open the can device */
1973 	err = open_candev(dev);
1974 	if (err) {
1975 		netdev_err(dev, "failed to open can device\n");
1976 		goto exit_disable_clks;
1977 	}
1978 
1979 	if (cdev->is_peripheral)
1980 		can_rx_offload_enable(&cdev->offload);
1981 
1982 	/* register interrupt handler */
1983 	if (cdev->is_peripheral) {
1984 		cdev->tx_wq = alloc_ordered_workqueue("mcan_wq",
1985 						      WQ_FREEZABLE | WQ_MEM_RECLAIM);
1986 		if (!cdev->tx_wq) {
1987 			err = -ENOMEM;
1988 			goto out_wq_fail;
1989 		}
1990 
1991 		for (int i = 0; i != cdev->tx_fifo_size; ++i) {
1992 			cdev->tx_ops[i].cdev = cdev;
1993 			INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue);
1994 		}
1995 
1996 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1997 					   IRQF_ONESHOT,
1998 					   dev->name, dev);
1999 	} else if (dev->irq) {
2000 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
2001 				  dev);
2002 	}
2003 
2004 	if (err < 0) {
2005 		netdev_err(dev, "failed to request interrupt\n");
2006 		goto exit_irq_fail;
2007 	}
2008 
2009 	/* start the m_can controller */
2010 	err = m_can_start(dev);
2011 	if (err)
2012 		goto exit_irq_fail;
2013 
2014 	if (!cdev->is_peripheral)
2015 		napi_enable(&cdev->napi);
2016 
2017 	netif_start_queue(dev);
2018 
2019 	return 0;
2020 
2021 exit_irq_fail:
2022 	if (cdev->is_peripheral)
2023 		destroy_workqueue(cdev->tx_wq);
2024 out_wq_fail:
2025 	if (cdev->is_peripheral)
2026 		can_rx_offload_disable(&cdev->offload);
2027 	close_candev(dev);
2028 exit_disable_clks:
2029 	m_can_clk_stop(cdev);
2030 out_phy_power_off:
2031 	phy_power_off(cdev->transceiver);
2032 	return err;
2033 }
2034 
2035 static const struct net_device_ops m_can_netdev_ops = {
2036 	.ndo_open = m_can_open,
2037 	.ndo_stop = m_can_close,
2038 	.ndo_start_xmit = m_can_start_xmit,
2039 	.ndo_change_mtu = can_change_mtu,
2040 };
2041 
2042 static int m_can_get_coalesce(struct net_device *dev,
2043 			      struct ethtool_coalesce *ec,
2044 			      struct kernel_ethtool_coalesce *kec,
2045 			      struct netlink_ext_ack *ext_ack)
2046 {
2047 	struct m_can_classdev *cdev = netdev_priv(dev);
2048 
2049 	ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq;
2050 	ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq;
2051 	ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames;
2052 	ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq;
2053 	ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq;
2054 
2055 	return 0;
2056 }
2057 
2058 static int m_can_set_coalesce(struct net_device *dev,
2059 			      struct ethtool_coalesce *ec,
2060 			      struct kernel_ethtool_coalesce *kec,
2061 			      struct netlink_ext_ack *ext_ack)
2062 {
2063 	struct m_can_classdev *cdev = netdev_priv(dev);
2064 
2065 	if (cdev->can.state != CAN_STATE_STOPPED) {
2066 		netdev_err(dev, "Device is in use, please shut it down first\n");
2067 		return -EBUSY;
2068 	}
2069 
2070 	if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) {
2071 		netdev_err(dev, "rx-frames-irq %u greater than the RX FIFO %u\n",
2072 			   ec->rx_max_coalesced_frames_irq,
2073 			   cdev->mcfg[MRAM_RXF0].num);
2074 		return -EINVAL;
2075 	}
2076 	if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) {
2077 		netdev_err(dev, "rx-frames-irq and rx-usecs-irq can only be set together\n");
2078 		return -EINVAL;
2079 	}
2080 	if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) {
2081 		netdev_err(dev, "tx-frames-irq %u greater than the TX event FIFO %u\n",
2082 			   ec->tx_max_coalesced_frames_irq,
2083 			   cdev->mcfg[MRAM_TXE].num);
2084 		return -EINVAL;
2085 	}
2086 	if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) {
2087 		netdev_err(dev, "tx-frames-irq %u greater than the TX FIFO %u\n",
2088 			   ec->tx_max_coalesced_frames_irq,
2089 			   cdev->mcfg[MRAM_TXB].num);
2090 		return -EINVAL;
2091 	}
2092 	if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) {
2093 		netdev_err(dev, "tx-frames-irq and tx-usecs-irq can only be set together\n");
2094 		return -EINVAL;
2095 	}
2096 	if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) {
2097 		netdev_err(dev, "tx-frames %u greater than the TX event FIFO %u\n",
2098 			   ec->tx_max_coalesced_frames,
2099 			   cdev->mcfg[MRAM_TXE].num);
2100 		return -EINVAL;
2101 	}
2102 	if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) {
2103 		netdev_err(dev, "tx-frames %u greater than the TX FIFO %u\n",
2104 			   ec->tx_max_coalesced_frames,
2105 			   cdev->mcfg[MRAM_TXB].num);
2106 		return -EINVAL;
2107 	}
2108 	if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 &&
2109 	    ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) {
2110 		netdev_err(dev, "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n",
2111 			   ec->rx_coalesce_usecs_irq,
2112 			   ec->tx_coalesce_usecs_irq);
2113 		return -EINVAL;
2114 	}
2115 
2116 	cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq;
2117 	cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq;
2118 	cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames;
2119 	cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq;
2120 	cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq;
2121 
2122 	if (cdev->rx_coalesce_usecs_irq)
2123 		cdev->irq_timer_wait =
2124 			ns_to_ktime(cdev->rx_coalesce_usecs_irq * NSEC_PER_USEC);
2125 	else
2126 		cdev->irq_timer_wait =
2127 			ns_to_ktime(cdev->tx_coalesce_usecs_irq * NSEC_PER_USEC);
2128 
2129 	return 0;
2130 }
2131 
2132 static const struct ethtool_ops m_can_ethtool_ops = {
2133 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ |
2134 		ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ |
2135 		ETHTOOL_COALESCE_TX_USECS_IRQ |
2136 		ETHTOOL_COALESCE_TX_MAX_FRAMES |
2137 		ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ,
2138 	.get_ts_info = ethtool_op_get_ts_info,
2139 	.get_coalesce = m_can_get_coalesce,
2140 	.set_coalesce = m_can_set_coalesce,
2141 };
2142 
2143 static const struct ethtool_ops m_can_ethtool_ops_polling = {
2144 	.get_ts_info = ethtool_op_get_ts_info,
2145 };
2146 
2147 static int register_m_can_dev(struct net_device *dev)
2148 {
2149 	dev->flags |= IFF_ECHO;	/* we support local echo */
2150 	dev->netdev_ops = &m_can_netdev_ops;
2151 	if (dev->irq)
2152 		dev->ethtool_ops = &m_can_ethtool_ops;
2153 	else
2154 		dev->ethtool_ops = &m_can_ethtool_ops_polling;
2155 
2156 	return register_candev(dev);
2157 }
2158 
2159 int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
2160 {
2161 	u32 total_size;
2162 
2163 	total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
2164 			cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2165 	if (total_size > mram_max_size) {
2166 		dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
2167 			total_size, mram_max_size);
2168 		return -EINVAL;
2169 	}
2170 
2171 	return 0;
2172 }
2173 EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);
2174 
2175 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
2176 				const u32 *mram_config_vals)
2177 {
2178 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
2179 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
2180 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
2181 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
2182 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
2183 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
2184 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
2185 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
2186 		FIELD_MAX(RXFC_FS_MASK);
2187 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
2188 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
2189 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
2190 		FIELD_MAX(RXFC_FS_MASK);
2191 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
2192 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
2193 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
2194 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
2195 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
2196 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
2197 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
2198 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
2199 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
2200 		FIELD_MAX(TXBC_NDTB_MASK);
2201 
2202 	dev_dbg(cdev->dev,
2203 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
2204 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
2205 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
2206 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
2207 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
2208 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
2209 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
2210 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
2211 }
2212 
2213 int m_can_init_ram(struct m_can_classdev *cdev)
2214 {
2215 	int end, i, start;
2216 	int err = 0;
2217 
2218 	/* initialize the entire Message RAM in use to avoid possible
2219 	 * ECC/parity checksum errors when reading an uninitialized buffer
2220 	 */
2221 	start = cdev->mcfg[MRAM_SIDF].off;
2222 	end = cdev->mcfg[MRAM_TXB].off +
2223 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2224 
2225 	for (i = start; i < end; i += 4) {
2226 		err = m_can_fifo_write_no_off(cdev, i, 0x0);
2227 		if (err)
2228 			break;
2229 	}
2230 
2231 	return err;
2232 }
2233 EXPORT_SYMBOL_GPL(m_can_init_ram);
2234 
2235 int m_can_class_get_clocks(struct m_can_classdev *cdev)
2236 {
2237 	int ret = 0;
2238 
2239 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
2240 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
2241 
2242 	if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
2243 		dev_err(cdev->dev, "no clock found\n");
2244 		ret = -ENODEV;
2245 	}
2246 
2247 	return ret;
2248 }
2249 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
2250 
2251 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
2252 						int sizeof_priv)
2253 {
2254 	struct m_can_classdev *class_dev = NULL;
2255 	u32 mram_config_vals[MRAM_CFG_LEN];
2256 	struct net_device *net_dev;
2257 	u32 tx_fifo_size;
2258 	int ret;
2259 
2260 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2261 					     "bosch,mram-cfg",
2262 					     mram_config_vals,
2263 					     sizeof(mram_config_vals) / 4);
2264 	if (ret) {
2265 		dev_err(dev, "Could not get Message RAM configuration.");
2266 		goto out;
2267 	}
2268 
2269 	/* Get TX FIFO size
2270 	 * Defines the total amount of echo buffers for loopback
2271 	 */
2272 	tx_fifo_size = mram_config_vals[7];
2273 
2274 	/* allocate the m_can device */
2275 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2276 	if (!net_dev) {
2277 		dev_err(dev, "Failed to allocate CAN device");
2278 		goto out;
2279 	}
2280 
2281 	class_dev = netdev_priv(net_dev);
2282 	class_dev->net = net_dev;
2283 	class_dev->dev = dev;
2284 	SET_NETDEV_DEV(net_dev, dev);
2285 
2286 	m_can_of_parse_mram(class_dev, mram_config_vals);
2287 out:
2288 	return class_dev;
2289 }
2290 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2291 
2292 void m_can_class_free_dev(struct net_device *net)
2293 {
2294 	free_candev(net);
2295 }
2296 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2297 
2298 int m_can_class_register(struct m_can_classdev *cdev)
2299 {
2300 	int ret;
2301 
2302 	cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num,
2303 					cdev->mcfg[MRAM_TXE].num));
2304 	if (cdev->is_peripheral) {
2305 		cdev->tx_ops =
2306 			devm_kzalloc(cdev->dev,
2307 				     cdev->tx_fifo_size * sizeof(*cdev->tx_ops),
2308 				     GFP_KERNEL);
2309 		if (!cdev->tx_ops) {
2310 			dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n");
2311 			return -ENOMEM;
2312 		}
2313 	}
2314 
2315 	ret = m_can_clk_start(cdev);
2316 	if (ret)
2317 		return ret;
2318 
2319 	if (cdev->is_peripheral) {
2320 		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2321 						NAPI_POLL_WEIGHT);
2322 		if (ret)
2323 			goto clk_disable;
2324 	}
2325 
2326 	if (!cdev->net->irq) {
2327 		dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer");
2328 		hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC,
2329 			     HRTIMER_MODE_REL_PINNED);
2330 		cdev->hrtimer.function = &hrtimer_callback;
2331 	} else {
2332 		hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2333 		cdev->hrtimer.function = m_can_coalescing_timer;
2334 	}
2335 
2336 	ret = m_can_dev_setup(cdev);
2337 	if (ret)
2338 		goto rx_offload_del;
2339 
2340 	ret = register_m_can_dev(cdev->net);
2341 	if (ret) {
2342 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2343 			cdev->net->name, ret);
2344 		goto rx_offload_del;
2345 	}
2346 
2347 	of_can_transceiver(cdev->net);
2348 
2349 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2350 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2351 
2352 	/* Probe finished
2353 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
2354 	 */
2355 	m_can_clk_stop(cdev);
2356 
2357 	return 0;
2358 
2359 rx_offload_del:
2360 	if (cdev->is_peripheral)
2361 		can_rx_offload_del(&cdev->offload);
2362 clk_disable:
2363 	m_can_clk_stop(cdev);
2364 
2365 	return ret;
2366 }
2367 EXPORT_SYMBOL_GPL(m_can_class_register);
2368 
2369 void m_can_class_unregister(struct m_can_classdev *cdev)
2370 {
2371 	if (cdev->is_peripheral)
2372 		can_rx_offload_del(&cdev->offload);
2373 	unregister_candev(cdev->net);
2374 }
2375 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2376 
2377 int m_can_class_suspend(struct device *dev)
2378 {
2379 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2380 	struct net_device *ndev = cdev->net;
2381 
2382 	if (netif_running(ndev)) {
2383 		netif_stop_queue(ndev);
2384 		netif_device_detach(ndev);
2385 
2386 		/* leave the chip running with rx interrupt enabled if it is
2387 		 * used as a wake-up source.
2388 		 */
2389 		if (cdev->pm_wake_source)
2390 			m_can_write(cdev, M_CAN_IE, IR_RF0N);
2391 		else
2392 			m_can_stop(ndev);
2393 
2394 		m_can_clk_stop(cdev);
2395 	}
2396 
2397 	pinctrl_pm_select_sleep_state(dev);
2398 
2399 	cdev->can.state = CAN_STATE_SLEEPING;
2400 
2401 	return 0;
2402 }
2403 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2404 
2405 int m_can_class_resume(struct device *dev)
2406 {
2407 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2408 	struct net_device *ndev = cdev->net;
2409 
2410 	pinctrl_pm_select_default_state(dev);
2411 
2412 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2413 
2414 	if (netif_running(ndev)) {
2415 		int ret;
2416 
2417 		ret = m_can_clk_start(cdev);
2418 		if (ret)
2419 			return ret;
2420 
2421 		if (cdev->pm_wake_source) {
2422 			m_can_write(cdev, M_CAN_IE, cdev->active_interrupts);
2423 		} else {
2424 			ret  = m_can_start(ndev);
2425 			if (ret) {
2426 				m_can_clk_stop(cdev);
2427 				return ret;
2428 			}
2429 		}
2430 
2431 		netif_device_attach(ndev);
2432 		netif_start_queue(ndev);
2433 	}
2434 
2435 	return 0;
2436 }
2437 EXPORT_SYMBOL_GPL(m_can_class_resume);
2438 
2439 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2440 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2441 MODULE_LICENSE("GPL v2");
2442 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2443