1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <aisheng.dong@nxp.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * https://github.com/linux-can/can-doc/tree/master/m_can 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/can/dev.h> 13 #include <linux/ethtool.h> 14 #include <linux/hrtimer.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/iopoll.h> 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/netdevice.h> 21 #include <linux/of.h> 22 #include <linux/phy/phy.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 27 #include "m_can.h" 28 29 /* registers definition */ 30 enum m_can_reg { 31 M_CAN_CREL = 0x0, 32 M_CAN_ENDN = 0x4, 33 M_CAN_CUST = 0x8, 34 M_CAN_DBTP = 0xc, 35 M_CAN_TEST = 0x10, 36 M_CAN_RWD = 0x14, 37 M_CAN_CCCR = 0x18, 38 M_CAN_NBTP = 0x1c, 39 M_CAN_TSCC = 0x20, 40 M_CAN_TSCV = 0x24, 41 M_CAN_TOCC = 0x28, 42 M_CAN_TOCV = 0x2c, 43 M_CAN_ECR = 0x40, 44 M_CAN_PSR = 0x44, 45 /* TDCR Register only available for version >=3.1.x */ 46 M_CAN_TDCR = 0x48, 47 M_CAN_IR = 0x50, 48 M_CAN_IE = 0x54, 49 M_CAN_ILS = 0x58, 50 M_CAN_ILE = 0x5c, 51 M_CAN_GFC = 0x80, 52 M_CAN_SIDFC = 0x84, 53 M_CAN_XIDFC = 0x88, 54 M_CAN_XIDAM = 0x90, 55 M_CAN_HPMS = 0x94, 56 M_CAN_NDAT1 = 0x98, 57 M_CAN_NDAT2 = 0x9c, 58 M_CAN_RXF0C = 0xa0, 59 M_CAN_RXF0S = 0xa4, 60 M_CAN_RXF0A = 0xa8, 61 M_CAN_RXBC = 0xac, 62 M_CAN_RXF1C = 0xb0, 63 M_CAN_RXF1S = 0xb4, 64 M_CAN_RXF1A = 0xb8, 65 M_CAN_RXESC = 0xbc, 66 M_CAN_TXBC = 0xc0, 67 M_CAN_TXFQS = 0xc4, 68 M_CAN_TXESC = 0xc8, 69 M_CAN_TXBRP = 0xcc, 70 M_CAN_TXBAR = 0xd0, 71 M_CAN_TXBCR = 0xd4, 72 M_CAN_TXBTO = 0xd8, 73 M_CAN_TXBCF = 0xdc, 74 M_CAN_TXBTIE = 0xe0, 75 M_CAN_TXBCIE = 0xe4, 76 M_CAN_TXEFC = 0xf0, 77 M_CAN_TXEFS = 0xf4, 78 M_CAN_TXEFA = 0xf8, 79 }; 80 81 /* message ram configuration data length */ 82 #define MRAM_CFG_LEN 8 83 84 /* Core Release Register (CREL) */ 85 #define CREL_REL_MASK GENMASK(31, 28) 86 #define CREL_STEP_MASK GENMASK(27, 24) 87 #define CREL_SUBSTEP_MASK GENMASK(23, 20) 88 89 /* Data Bit Timing & Prescaler Register (DBTP) */ 90 #define DBTP_TDC BIT(23) 91 #define DBTP_DBRP_MASK GENMASK(20, 16) 92 #define DBTP_DTSEG1_MASK GENMASK(12, 8) 93 #define DBTP_DTSEG2_MASK GENMASK(7, 4) 94 #define DBTP_DSJW_MASK GENMASK(3, 0) 95 96 /* Transmitter Delay Compensation Register (TDCR) */ 97 #define TDCR_TDCO_MASK GENMASK(14, 8) 98 #define TDCR_TDCF_MASK GENMASK(6, 0) 99 100 /* Test Register (TEST) */ 101 #define TEST_LBCK BIT(4) 102 103 /* CC Control Register (CCCR) */ 104 #define CCCR_TXP BIT(14) 105 #define CCCR_TEST BIT(7) 106 #define CCCR_DAR BIT(6) 107 #define CCCR_MON BIT(5) 108 #define CCCR_CSR BIT(4) 109 #define CCCR_CSA BIT(3) 110 #define CCCR_ASM BIT(2) 111 #define CCCR_CCE BIT(1) 112 #define CCCR_INIT BIT(0) 113 /* for version 3.0.x */ 114 #define CCCR_CMR_MASK GENMASK(11, 10) 115 #define CCCR_CMR_CANFD 0x1 116 #define CCCR_CMR_CANFD_BRS 0x2 117 #define CCCR_CMR_CAN 0x3 118 #define CCCR_CME_MASK GENMASK(9, 8) 119 #define CCCR_CME_CAN 0 120 #define CCCR_CME_CANFD 0x1 121 #define CCCR_CME_CANFD_BRS 0x2 122 /* for version >=3.1.x */ 123 #define CCCR_EFBI BIT(13) 124 #define CCCR_PXHD BIT(12) 125 #define CCCR_BRSE BIT(9) 126 #define CCCR_FDOE BIT(8) 127 /* for version >=3.2.x */ 128 #define CCCR_NISO BIT(15) 129 /* for version >=3.3.x */ 130 #define CCCR_WMM BIT(11) 131 #define CCCR_UTSU BIT(10) 132 133 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 134 #define NBTP_NSJW_MASK GENMASK(31, 25) 135 #define NBTP_NBRP_MASK GENMASK(24, 16) 136 #define NBTP_NTSEG1_MASK GENMASK(15, 8) 137 #define NBTP_NTSEG2_MASK GENMASK(6, 0) 138 139 /* Timestamp Counter Configuration Register (TSCC) */ 140 #define TSCC_TCP_MASK GENMASK(19, 16) 141 #define TSCC_TSS_MASK GENMASK(1, 0) 142 #define TSCC_TSS_DISABLE 0x0 143 #define TSCC_TSS_INTERNAL 0x1 144 #define TSCC_TSS_EXTERNAL 0x2 145 146 /* Timestamp Counter Value Register (TSCV) */ 147 #define TSCV_TSC_MASK GENMASK(15, 0) 148 149 /* Error Counter Register (ECR) */ 150 #define ECR_RP BIT(15) 151 #define ECR_REC_MASK GENMASK(14, 8) 152 #define ECR_TEC_MASK GENMASK(7, 0) 153 154 /* Protocol Status Register (PSR) */ 155 #define PSR_BO BIT(7) 156 #define PSR_EW BIT(6) 157 #define PSR_EP BIT(5) 158 #define PSR_LEC_MASK GENMASK(2, 0) 159 #define PSR_DLEC_MASK GENMASK(10, 8) 160 161 /* Interrupt Register (IR) */ 162 #define IR_ALL_INT 0xffffffff 163 164 /* Renamed bits for versions > 3.1.x */ 165 #define IR_ARA BIT(29) 166 #define IR_PED BIT(28) 167 #define IR_PEA BIT(27) 168 169 /* Bits for version 3.0.x */ 170 #define IR_STE BIT(31) 171 #define IR_FOE BIT(30) 172 #define IR_ACKE BIT(29) 173 #define IR_BE BIT(28) 174 #define IR_CRCE BIT(27) 175 #define IR_WDI BIT(26) 176 #define IR_BO BIT(25) 177 #define IR_EW BIT(24) 178 #define IR_EP BIT(23) 179 #define IR_ELO BIT(22) 180 #define IR_BEU BIT(21) 181 #define IR_BEC BIT(20) 182 #define IR_DRX BIT(19) 183 #define IR_TOO BIT(18) 184 #define IR_MRAF BIT(17) 185 #define IR_TSW BIT(16) 186 #define IR_TEFL BIT(15) 187 #define IR_TEFF BIT(14) 188 #define IR_TEFW BIT(13) 189 #define IR_TEFN BIT(12) 190 #define IR_TFE BIT(11) 191 #define IR_TCF BIT(10) 192 #define IR_TC BIT(9) 193 #define IR_HPM BIT(8) 194 #define IR_RF1L BIT(7) 195 #define IR_RF1F BIT(6) 196 #define IR_RF1W BIT(5) 197 #define IR_RF1N BIT(4) 198 #define IR_RF0L BIT(3) 199 #define IR_RF0F BIT(2) 200 #define IR_RF0W BIT(1) 201 #define IR_RF0N BIT(0) 202 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 203 204 /* Interrupts for version 3.0.x */ 205 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 206 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \ 207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 208 IR_RF0L) 209 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 210 211 /* Interrupts for version >= 3.1.x */ 212 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 213 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \ 214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 215 IR_RF0L) 216 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 217 218 /* Interrupt Line Select (ILS) */ 219 #define ILS_ALL_INT0 0x0 220 #define ILS_ALL_INT1 0xFFFFFFFF 221 222 /* Interrupt Line Enable (ILE) */ 223 #define ILE_EINT1 BIT(1) 224 #define ILE_EINT0 BIT(0) 225 226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 227 #define RXFC_FWM_MASK GENMASK(30, 24) 228 #define RXFC_FS_MASK GENMASK(22, 16) 229 230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 231 #define RXFS_RFL BIT(25) 232 #define RXFS_FF BIT(24) 233 #define RXFS_FPI_MASK GENMASK(21, 16) 234 #define RXFS_FGI_MASK GENMASK(13, 8) 235 #define RXFS_FFL_MASK GENMASK(6, 0) 236 237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 238 #define RXESC_RBDS_MASK GENMASK(10, 8) 239 #define RXESC_F1DS_MASK GENMASK(6, 4) 240 #define RXESC_F0DS_MASK GENMASK(2, 0) 241 #define RXESC_64B 0x7 242 243 /* Tx Buffer Configuration (TXBC) */ 244 #define TXBC_TFQS_MASK GENMASK(29, 24) 245 #define TXBC_NDTB_MASK GENMASK(21, 16) 246 247 /* Tx FIFO/Queue Status (TXFQS) */ 248 #define TXFQS_TFQF BIT(21) 249 #define TXFQS_TFQPI_MASK GENMASK(20, 16) 250 #define TXFQS_TFGI_MASK GENMASK(12, 8) 251 #define TXFQS_TFFL_MASK GENMASK(5, 0) 252 253 /* Tx Buffer Element Size Configuration (TXESC) */ 254 #define TXESC_TBDS_MASK GENMASK(2, 0) 255 #define TXESC_TBDS_64B 0x7 256 257 /* Tx Event FIFO Configuration (TXEFC) */ 258 #define TXEFC_EFWM_MASK GENMASK(29, 24) 259 #define TXEFC_EFS_MASK GENMASK(21, 16) 260 261 /* Tx Event FIFO Status (TXEFS) */ 262 #define TXEFS_TEFL BIT(25) 263 #define TXEFS_EFF BIT(24) 264 #define TXEFS_EFGI_MASK GENMASK(12, 8) 265 #define TXEFS_EFFL_MASK GENMASK(5, 0) 266 267 /* Tx Event FIFO Acknowledge (TXEFA) */ 268 #define TXEFA_EFAI_MASK GENMASK(4, 0) 269 270 /* Message RAM Configuration (in bytes) */ 271 #define SIDF_ELEMENT_SIZE 4 272 #define XIDF_ELEMENT_SIZE 8 273 #define RXF0_ELEMENT_SIZE 72 274 #define RXF1_ELEMENT_SIZE 72 275 #define RXB_ELEMENT_SIZE 72 276 #define TXE_ELEMENT_SIZE 8 277 #define TXB_ELEMENT_SIZE 72 278 279 /* Message RAM Elements */ 280 #define M_CAN_FIFO_ID 0x0 281 #define M_CAN_FIFO_DLC 0x4 282 #define M_CAN_FIFO_DATA 0x8 283 284 /* Rx Buffer Element */ 285 /* R0 */ 286 #define RX_BUF_ESI BIT(31) 287 #define RX_BUF_XTD BIT(30) 288 #define RX_BUF_RTR BIT(29) 289 /* R1 */ 290 #define RX_BUF_ANMF BIT(31) 291 #define RX_BUF_FDF BIT(21) 292 #define RX_BUF_BRS BIT(20) 293 #define RX_BUF_RXTS_MASK GENMASK(15, 0) 294 295 /* Tx Buffer Element */ 296 /* T0 */ 297 #define TX_BUF_ESI BIT(31) 298 #define TX_BUF_XTD BIT(30) 299 #define TX_BUF_RTR BIT(29) 300 /* T1 */ 301 #define TX_BUF_EFC BIT(23) 302 #define TX_BUF_FDF BIT(21) 303 #define TX_BUF_BRS BIT(20) 304 #define TX_BUF_MM_MASK GENMASK(31, 24) 305 #define TX_BUF_DLC_MASK GENMASK(19, 16) 306 307 /* Tx event FIFO Element */ 308 /* E1 */ 309 #define TX_EVENT_MM_MASK GENMASK(31, 24) 310 #define TX_EVENT_TXTS_MASK GENMASK(15, 0) 311 312 /* Hrtimer polling interval */ 313 #define HRTIMER_POLL_INTERVAL_MS 1 314 315 /* The ID and DLC registers are adjacent in M_CAN FIFO memory, 316 * and we can save a (potentially slow) bus round trip by combining 317 * reads and writes to them. 318 */ 319 struct id_and_dlc { 320 u32 id; 321 u32 dlc; 322 }; 323 324 struct m_can_fifo_element { 325 u32 id; 326 u32 dlc; 327 u8 data[CANFD_MAX_DLEN]; 328 }; 329 330 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 331 { 332 return cdev->ops->read_reg(cdev, reg); 333 } 334 335 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 336 u32 val) 337 { 338 cdev->ops->write_reg(cdev, reg, val); 339 } 340 341 static int 342 m_can_fifo_read(struct m_can_classdev *cdev, 343 u32 fgi, unsigned int offset, void *val, size_t val_count) 344 { 345 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 346 offset; 347 348 if (val_count == 0) 349 return 0; 350 351 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count); 352 } 353 354 static int 355 m_can_fifo_write(struct m_can_classdev *cdev, 356 u32 fpi, unsigned int offset, const void *val, size_t val_count) 357 { 358 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 359 offset; 360 361 if (val_count == 0) 362 return 0; 363 364 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count); 365 } 366 367 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev, 368 u32 fpi, u32 val) 369 { 370 return cdev->ops->write_fifo(cdev, fpi, &val, 1); 371 } 372 373 static int 374 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val) 375 { 376 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 377 offset; 378 379 return cdev->ops->read_fifo(cdev, addr_offset, val, 1); 380 } 381 382 static int m_can_cccr_update_bits(struct m_can_classdev *cdev, u32 mask, u32 val) 383 { 384 u32 val_before = m_can_read(cdev, M_CAN_CCCR); 385 u32 val_after = (val_before & ~mask) | val; 386 size_t tries = 10; 387 388 if (!(mask & CCCR_INIT) && !(val_before & CCCR_INIT)) { 389 dev_err(cdev->dev, 390 "refusing to configure device when in normal mode\n"); 391 return -EBUSY; 392 } 393 394 /* The chip should be in standby mode when changing the CCCR register, 395 * and some chips set the CSR and CSA bits when in standby. Furthermore, 396 * the CSR and CSA bits should be written as zeros, even when they read 397 * ones. 398 */ 399 val_after &= ~(CCCR_CSR | CCCR_CSA); 400 401 while (tries--) { 402 u32 val_read; 403 404 /* Write the desired value in each try, as setting some bits in 405 * the CCCR register require other bits to be set first. E.g. 406 * setting the NISO bit requires setting the CCE bit first. 407 */ 408 m_can_write(cdev, M_CAN_CCCR, val_after); 409 410 val_read = m_can_read(cdev, M_CAN_CCCR) & ~(CCCR_CSR | CCCR_CSA); 411 412 if (val_read == val_after) 413 return 0; 414 415 usleep_range(1, 5); 416 } 417 418 return -ETIMEDOUT; 419 } 420 421 static int m_can_config_enable(struct m_can_classdev *cdev) 422 { 423 int err; 424 425 /* CCCR_INIT must be set in order to set CCCR_CCE, but access to 426 * configuration registers should only be enabled when in standby mode, 427 * where CCCR_INIT is always set. 428 */ 429 err = m_can_cccr_update_bits(cdev, CCCR_CCE, CCCR_CCE); 430 if (err) 431 netdev_err(cdev->net, "failed to enable configuration mode\n"); 432 433 return err; 434 } 435 436 static int m_can_config_disable(struct m_can_classdev *cdev) 437 { 438 int err; 439 440 /* Only clear CCCR_CCE, since CCCR_INIT cannot be cleared while in 441 * standby mode 442 */ 443 err = m_can_cccr_update_bits(cdev, CCCR_CCE, 0); 444 if (err) 445 netdev_err(cdev->net, "failed to disable configuration registers\n"); 446 447 return err; 448 } 449 450 static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts) 451 { 452 if (cdev->active_interrupts == interrupts) 453 return; 454 cdev->ops->write_reg(cdev, M_CAN_IE, interrupts); 455 cdev->active_interrupts = interrupts; 456 } 457 458 static void m_can_coalescing_disable(struct m_can_classdev *cdev) 459 { 460 u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN; 461 462 if (!cdev->net->irq) 463 return; 464 465 hrtimer_cancel(&cdev->hrtimer); 466 m_can_interrupt_enable(cdev, new_interrupts); 467 } 468 469 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 470 { 471 if (!cdev->net->irq) { 472 dev_dbg(cdev->dev, "Start hrtimer\n"); 473 hrtimer_start(&cdev->hrtimer, 474 ms_to_ktime(HRTIMER_POLL_INTERVAL_MS), 475 HRTIMER_MODE_REL_PINNED); 476 } 477 478 /* Only interrupt line 0 is used in this driver */ 479 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 480 } 481 482 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 483 { 484 m_can_coalescing_disable(cdev); 485 m_can_write(cdev, M_CAN_ILE, 0x0); 486 487 if (!cdev->net->irq) { 488 dev_dbg(cdev->dev, "Stop hrtimer\n"); 489 hrtimer_try_to_cancel(&cdev->hrtimer); 490 } 491 } 492 493 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit 494 * width. 495 */ 496 static u32 m_can_get_timestamp(struct m_can_classdev *cdev) 497 { 498 u32 tscv; 499 u32 tsc; 500 501 tscv = m_can_read(cdev, M_CAN_TSCV); 502 tsc = FIELD_GET(TSCV_TSC_MASK, tscv); 503 504 return (tsc << 16); 505 } 506 507 static void m_can_clean(struct net_device *net) 508 { 509 struct m_can_classdev *cdev = netdev_priv(net); 510 unsigned long irqflags; 511 512 if (cdev->tx_ops) { 513 for (int i = 0; i != cdev->tx_fifo_size; ++i) { 514 if (!cdev->tx_ops[i].skb) 515 continue; 516 517 net->stats.tx_errors++; 518 cdev->tx_ops[i].skb = NULL; 519 } 520 } 521 522 for (int i = 0; i != cdev->can.echo_skb_max; ++i) 523 can_free_echo_skb(cdev->net, i, NULL); 524 525 netdev_reset_queue(cdev->net); 526 527 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags); 528 cdev->tx_fifo_in_flight = 0; 529 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 530 } 531 532 /* For peripherals, pass skb to rx-offload, which will push skb from 533 * napi. For non-peripherals, RX is done in napi already, so push 534 * directly. timestamp is used to ensure good skb ordering in 535 * rx-offload and is ignored for non-peripherals. 536 */ 537 static void m_can_receive_skb(struct m_can_classdev *cdev, 538 struct sk_buff *skb, 539 u32 timestamp) 540 { 541 if (cdev->is_peripheral) { 542 struct net_device_stats *stats = &cdev->net->stats; 543 int err; 544 545 err = can_rx_offload_queue_timestamp(&cdev->offload, skb, 546 timestamp); 547 if (err) 548 stats->rx_fifo_errors++; 549 } else { 550 netif_receive_skb(skb); 551 } 552 } 553 554 static int m_can_read_fifo(struct net_device *dev, u32 fgi) 555 { 556 struct net_device_stats *stats = &dev->stats; 557 struct m_can_classdev *cdev = netdev_priv(dev); 558 struct canfd_frame *cf; 559 struct sk_buff *skb; 560 struct id_and_dlc fifo_header; 561 u32 timestamp = 0; 562 int err; 563 564 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2); 565 if (err) 566 goto out_fail; 567 568 if (fifo_header.dlc & RX_BUF_FDF) 569 skb = alloc_canfd_skb(dev, &cf); 570 else 571 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 572 if (!skb) { 573 stats->rx_dropped++; 574 return 0; 575 } 576 577 if (fifo_header.dlc & RX_BUF_FDF) 578 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F); 579 else 580 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F); 581 582 if (fifo_header.id & RX_BUF_XTD) 583 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG; 584 else 585 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK; 586 587 if (fifo_header.id & RX_BUF_ESI) { 588 cf->flags |= CANFD_ESI; 589 netdev_dbg(dev, "ESI Error\n"); 590 } 591 592 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) { 593 cf->can_id |= CAN_RTR_FLAG; 594 } else { 595 if (fifo_header.dlc & RX_BUF_BRS) 596 cf->flags |= CANFD_BRS; 597 598 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA, 599 cf->data, DIV_ROUND_UP(cf->len, 4)); 600 if (err) 601 goto out_free_skb; 602 603 stats->rx_bytes += cf->len; 604 } 605 stats->rx_packets++; 606 607 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16; 608 609 m_can_receive_skb(cdev, skb, timestamp); 610 611 return 0; 612 613 out_free_skb: 614 kfree_skb(skb); 615 out_fail: 616 netdev_err(dev, "FIFO read returned %d\n", err); 617 return err; 618 } 619 620 static int m_can_do_rx_poll(struct net_device *dev, int quota) 621 { 622 struct m_can_classdev *cdev = netdev_priv(dev); 623 u32 pkts = 0; 624 u32 rxfs; 625 u32 rx_count; 626 u32 fgi; 627 int ack_fgi = -1; 628 int i; 629 int err = 0; 630 631 rxfs = m_can_read(cdev, M_CAN_RXF0S); 632 if (!(rxfs & RXFS_FFL_MASK)) { 633 netdev_dbg(dev, "no messages in fifo0\n"); 634 return 0; 635 } 636 637 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs); 638 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs); 639 640 for (i = 0; i < rx_count && quota > 0; ++i) { 641 err = m_can_read_fifo(dev, fgi); 642 if (err) 643 break; 644 645 quota--; 646 pkts++; 647 ack_fgi = fgi; 648 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi); 649 } 650 651 if (ack_fgi != -1) 652 m_can_write(cdev, M_CAN_RXF0A, ack_fgi); 653 654 if (err) 655 return err; 656 657 return pkts; 658 } 659 660 static int m_can_handle_lost_msg(struct net_device *dev) 661 { 662 struct m_can_classdev *cdev = netdev_priv(dev); 663 struct net_device_stats *stats = &dev->stats; 664 struct sk_buff *skb; 665 struct can_frame *frame; 666 u32 timestamp = 0; 667 668 netdev_dbg(dev, "msg lost in rxf0\n"); 669 670 stats->rx_errors++; 671 stats->rx_over_errors++; 672 673 skb = alloc_can_err_skb(dev, &frame); 674 if (unlikely(!skb)) 675 return 0; 676 677 frame->can_id |= CAN_ERR_CRTL; 678 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 679 680 if (cdev->is_peripheral) 681 timestamp = m_can_get_timestamp(cdev); 682 683 m_can_receive_skb(cdev, skb, timestamp); 684 685 return 1; 686 } 687 688 static int m_can_handle_lec_err(struct net_device *dev, 689 enum m_can_lec_type lec_type) 690 { 691 struct m_can_classdev *cdev = netdev_priv(dev); 692 struct net_device_stats *stats = &dev->stats; 693 struct can_frame *cf; 694 struct sk_buff *skb; 695 u32 timestamp = 0; 696 697 cdev->can.can_stats.bus_error++; 698 699 /* propagate the error condition to the CAN stack */ 700 skb = alloc_can_err_skb(dev, &cf); 701 702 /* check for 'last error code' which tells us the 703 * type of the last error to occur on the CAN bus 704 */ 705 if (likely(skb)) 706 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 707 708 switch (lec_type) { 709 case LEC_STUFF_ERROR: 710 netdev_dbg(dev, "stuff error\n"); 711 stats->rx_errors++; 712 if (likely(skb)) 713 cf->data[2] |= CAN_ERR_PROT_STUFF; 714 break; 715 case LEC_FORM_ERROR: 716 netdev_dbg(dev, "form error\n"); 717 stats->rx_errors++; 718 if (likely(skb)) 719 cf->data[2] |= CAN_ERR_PROT_FORM; 720 break; 721 case LEC_ACK_ERROR: 722 netdev_dbg(dev, "ack error\n"); 723 stats->tx_errors++; 724 if (likely(skb)) 725 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 726 break; 727 case LEC_BIT1_ERROR: 728 netdev_dbg(dev, "bit1 error\n"); 729 stats->tx_errors++; 730 if (likely(skb)) 731 cf->data[2] |= CAN_ERR_PROT_BIT1; 732 break; 733 case LEC_BIT0_ERROR: 734 netdev_dbg(dev, "bit0 error\n"); 735 stats->tx_errors++; 736 if (likely(skb)) 737 cf->data[2] |= CAN_ERR_PROT_BIT0; 738 break; 739 case LEC_CRC_ERROR: 740 netdev_dbg(dev, "CRC error\n"); 741 stats->rx_errors++; 742 if (likely(skb)) 743 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 744 break; 745 default: 746 break; 747 } 748 749 if (unlikely(!skb)) 750 return 0; 751 752 if (cdev->is_peripheral) 753 timestamp = m_can_get_timestamp(cdev); 754 755 m_can_receive_skb(cdev, skb, timestamp); 756 757 return 1; 758 } 759 760 static int __m_can_get_berr_counter(const struct net_device *dev, 761 struct can_berr_counter *bec) 762 { 763 struct m_can_classdev *cdev = netdev_priv(dev); 764 unsigned int ecr; 765 766 ecr = m_can_read(cdev, M_CAN_ECR); 767 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr); 768 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr); 769 770 return 0; 771 } 772 773 static int m_can_clk_start(struct m_can_classdev *cdev) 774 { 775 if (cdev->pm_clock_support == 0) 776 return 0; 777 778 return pm_runtime_resume_and_get(cdev->dev); 779 } 780 781 static void m_can_clk_stop(struct m_can_classdev *cdev) 782 { 783 if (cdev->pm_clock_support) 784 pm_runtime_put_sync(cdev->dev); 785 } 786 787 static int m_can_get_berr_counter(const struct net_device *dev, 788 struct can_berr_counter *bec) 789 { 790 struct m_can_classdev *cdev = netdev_priv(dev); 791 int err; 792 793 err = m_can_clk_start(cdev); 794 if (err) 795 return err; 796 797 __m_can_get_berr_counter(dev, bec); 798 799 m_can_clk_stop(cdev); 800 801 return 0; 802 } 803 804 static int m_can_handle_state_change(struct net_device *dev, 805 enum can_state new_state) 806 { 807 struct m_can_classdev *cdev = netdev_priv(dev); 808 struct can_frame *cf; 809 struct sk_buff *skb; 810 struct can_berr_counter bec; 811 unsigned int ecr; 812 u32 timestamp = 0; 813 814 switch (new_state) { 815 case CAN_STATE_ERROR_ACTIVE: 816 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 817 break; 818 case CAN_STATE_ERROR_WARNING: 819 /* error warning state */ 820 cdev->can.can_stats.error_warning++; 821 cdev->can.state = CAN_STATE_ERROR_WARNING; 822 break; 823 case CAN_STATE_ERROR_PASSIVE: 824 /* error passive state */ 825 cdev->can.can_stats.error_passive++; 826 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 827 break; 828 case CAN_STATE_BUS_OFF: 829 /* bus-off state */ 830 cdev->can.state = CAN_STATE_BUS_OFF; 831 m_can_disable_all_interrupts(cdev); 832 cdev->can.can_stats.bus_off++; 833 can_bus_off(dev); 834 break; 835 default: 836 break; 837 } 838 839 /* propagate the error condition to the CAN stack */ 840 skb = alloc_can_err_skb(dev, &cf); 841 if (unlikely(!skb)) 842 return 0; 843 844 __m_can_get_berr_counter(dev, &bec); 845 846 switch (new_state) { 847 case CAN_STATE_ERROR_ACTIVE: 848 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 849 cf->data[1] = CAN_ERR_CRTL_ACTIVE; 850 cf->data[6] = bec.txerr; 851 cf->data[7] = bec.rxerr; 852 break; 853 case CAN_STATE_ERROR_WARNING: 854 /* error warning state */ 855 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 856 cf->data[1] = (bec.txerr > bec.rxerr) ? 857 CAN_ERR_CRTL_TX_WARNING : 858 CAN_ERR_CRTL_RX_WARNING; 859 cf->data[6] = bec.txerr; 860 cf->data[7] = bec.rxerr; 861 break; 862 case CAN_STATE_ERROR_PASSIVE: 863 /* error passive state */ 864 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 865 ecr = m_can_read(cdev, M_CAN_ECR); 866 if (ecr & ECR_RP) 867 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 868 if (bec.txerr > 127) 869 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 870 cf->data[6] = bec.txerr; 871 cf->data[7] = bec.rxerr; 872 break; 873 case CAN_STATE_BUS_OFF: 874 /* bus-off state */ 875 cf->can_id |= CAN_ERR_BUSOFF; 876 break; 877 default: 878 break; 879 } 880 881 if (cdev->is_peripheral) 882 timestamp = m_can_get_timestamp(cdev); 883 884 m_can_receive_skb(cdev, skb, timestamp); 885 886 return 1; 887 } 888 889 static enum can_state 890 m_can_state_get_by_psr(struct m_can_classdev *cdev) 891 { 892 u32 reg_psr; 893 894 reg_psr = m_can_read(cdev, M_CAN_PSR); 895 896 if (reg_psr & PSR_BO) 897 return CAN_STATE_BUS_OFF; 898 if (reg_psr & PSR_EP) 899 return CAN_STATE_ERROR_PASSIVE; 900 if (reg_psr & PSR_EW) 901 return CAN_STATE_ERROR_WARNING; 902 903 return CAN_STATE_ERROR_ACTIVE; 904 } 905 906 static int m_can_handle_state_errors(struct net_device *dev) 907 { 908 struct m_can_classdev *cdev = netdev_priv(dev); 909 enum can_state new_state; 910 911 new_state = m_can_state_get_by_psr(cdev); 912 if (new_state == cdev->can.state) 913 return 0; 914 915 return m_can_handle_state_change(dev, new_state); 916 } 917 918 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 919 { 920 if (irqstatus & IR_WDI) 921 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 922 if (irqstatus & IR_BEU) 923 netdev_err(dev, "Bit Error Uncorrected\n"); 924 if (irqstatus & IR_BEC) 925 netdev_err(dev, "Bit Error Corrected\n"); 926 if (irqstatus & IR_TOO) 927 netdev_err(dev, "Timeout reached\n"); 928 if (irqstatus & IR_MRAF) 929 netdev_err(dev, "Message RAM access failure occurred\n"); 930 } 931 932 static inline bool is_lec_err(u8 lec) 933 { 934 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE; 935 } 936 937 static inline bool m_can_is_protocol_err(u32 irqstatus) 938 { 939 return irqstatus & IR_ERR_LEC_31X; 940 } 941 942 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 943 { 944 struct net_device_stats *stats = &dev->stats; 945 struct m_can_classdev *cdev = netdev_priv(dev); 946 struct can_frame *cf; 947 struct sk_buff *skb; 948 u32 timestamp = 0; 949 950 /* propagate the error condition to the CAN stack */ 951 skb = alloc_can_err_skb(dev, &cf); 952 953 /* update tx error stats since there is protocol error */ 954 stats->tx_errors++; 955 956 /* update arbitration lost status */ 957 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 958 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 959 cdev->can.can_stats.arbitration_lost++; 960 if (skb) { 961 cf->can_id |= CAN_ERR_LOSTARB; 962 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 963 } 964 } 965 966 if (unlikely(!skb)) { 967 netdev_dbg(dev, "allocation of skb failed\n"); 968 return 0; 969 } 970 971 if (cdev->is_peripheral) 972 timestamp = m_can_get_timestamp(cdev); 973 974 m_can_receive_skb(cdev, skb, timestamp); 975 976 return 1; 977 } 978 979 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 980 u32 psr) 981 { 982 struct m_can_classdev *cdev = netdev_priv(dev); 983 int work_done = 0; 984 985 if (irqstatus & IR_RF0L) 986 work_done += m_can_handle_lost_msg(dev); 987 988 /* handle lec errors on the bus */ 989 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) { 990 u8 lec = FIELD_GET(PSR_LEC_MASK, psr); 991 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr); 992 993 if (is_lec_err(lec)) { 994 netdev_dbg(dev, "Arbitration phase error detected\n"); 995 work_done += m_can_handle_lec_err(dev, lec); 996 } 997 998 if (is_lec_err(dlec)) { 999 netdev_dbg(dev, "Data phase error detected\n"); 1000 work_done += m_can_handle_lec_err(dev, dlec); 1001 } 1002 } 1003 1004 /* handle protocol errors in arbitration phase */ 1005 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 1006 m_can_is_protocol_err(irqstatus)) 1007 work_done += m_can_handle_protocol_error(dev, irqstatus); 1008 1009 /* other unproccessed error interrupts */ 1010 m_can_handle_other_err(dev, irqstatus); 1011 1012 return work_done; 1013 } 1014 1015 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus) 1016 { 1017 struct m_can_classdev *cdev = netdev_priv(dev); 1018 int rx_work_or_err; 1019 int work_done = 0; 1020 1021 if (!irqstatus) 1022 goto end; 1023 1024 /* Errata workaround for issue "Needless activation of MRAF irq" 1025 * During frame reception while the MCAN is in Error Passive state 1026 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 1027 * it may happen that MCAN_IR.MRAF is set although there was no 1028 * Message RAM access failure. 1029 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 1030 * The Message RAM Access Failure interrupt routine needs to check 1031 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 1032 * In this case, reset MCAN_IR.MRAF. No further action is required. 1033 */ 1034 if (cdev->version <= 31 && irqstatus & IR_MRAF && 1035 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 1036 struct can_berr_counter bec; 1037 1038 __m_can_get_berr_counter(dev, &bec); 1039 if (bec.rxerr == 127) { 1040 m_can_write(cdev, M_CAN_IR, IR_MRAF); 1041 irqstatus &= ~IR_MRAF; 1042 } 1043 } 1044 1045 if (irqstatus & IR_ERR_STATE) 1046 work_done += m_can_handle_state_errors(dev); 1047 1048 if (irqstatus & IR_ERR_BUS_30X) 1049 work_done += m_can_handle_bus_errors(dev, irqstatus, 1050 m_can_read(cdev, M_CAN_PSR)); 1051 1052 if (irqstatus & IR_RF0N) { 1053 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done)); 1054 if (rx_work_or_err < 0) 1055 return rx_work_or_err; 1056 1057 work_done += rx_work_or_err; 1058 } 1059 end: 1060 return work_done; 1061 } 1062 1063 static int m_can_poll(struct napi_struct *napi, int quota) 1064 { 1065 struct net_device *dev = napi->dev; 1066 struct m_can_classdev *cdev = netdev_priv(dev); 1067 int work_done; 1068 u32 irqstatus; 1069 1070 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 1071 1072 work_done = m_can_rx_handler(dev, quota, irqstatus); 1073 1074 /* Don't re-enable interrupts if the driver had a fatal error 1075 * (e.g., FIFO read failure). 1076 */ 1077 if (work_done >= 0 && work_done < quota) { 1078 napi_complete_done(napi, work_done); 1079 m_can_enable_all_interrupts(cdev); 1080 } 1081 1082 return work_done; 1083 } 1084 1085 /* Echo tx skb and update net stats. Peripherals use rx-offload for 1086 * echo. timestamp is used for peripherals to ensure correct ordering 1087 * by rx-offload, and is ignored for non-peripherals. 1088 */ 1089 static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev, 1090 unsigned int msg_mark, u32 timestamp) 1091 { 1092 struct net_device *dev = cdev->net; 1093 struct net_device_stats *stats = &dev->stats; 1094 unsigned int frame_len; 1095 1096 if (cdev->is_peripheral) 1097 stats->tx_bytes += 1098 can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload, 1099 msg_mark, 1100 timestamp, 1101 &frame_len); 1102 else 1103 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, &frame_len); 1104 1105 stats->tx_packets++; 1106 1107 return frame_len; 1108 } 1109 1110 static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted, 1111 unsigned int transmitted_frame_len) 1112 { 1113 unsigned long irqflags; 1114 1115 netdev_completed_queue(cdev->net, transmitted, transmitted_frame_len); 1116 1117 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags); 1118 if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0) 1119 netif_wake_queue(cdev->net); 1120 cdev->tx_fifo_in_flight -= transmitted; 1121 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 1122 } 1123 1124 static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev) 1125 { 1126 unsigned long irqflags; 1127 int tx_fifo_in_flight; 1128 1129 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags); 1130 tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1; 1131 if (tx_fifo_in_flight >= cdev->tx_fifo_size) { 1132 netif_stop_queue(cdev->net); 1133 if (tx_fifo_in_flight > cdev->tx_fifo_size) { 1134 netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n"); 1135 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 1136 return NETDEV_TX_BUSY; 1137 } 1138 } 1139 cdev->tx_fifo_in_flight = tx_fifo_in_flight; 1140 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 1141 1142 return NETDEV_TX_OK; 1143 } 1144 1145 static int m_can_echo_tx_event(struct net_device *dev) 1146 { 1147 u32 txe_count = 0; 1148 u32 m_can_txefs; 1149 u32 fgi = 0; 1150 int ack_fgi = -1; 1151 int i = 0; 1152 int err = 0; 1153 unsigned int msg_mark; 1154 int processed = 0; 1155 unsigned int processed_frame_len = 0; 1156 1157 struct m_can_classdev *cdev = netdev_priv(dev); 1158 1159 /* read tx event fifo status */ 1160 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 1161 1162 /* Get Tx Event fifo element count */ 1163 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs); 1164 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs); 1165 1166 /* Get and process all sent elements */ 1167 for (i = 0; i < txe_count; i++) { 1168 u32 txe, timestamp = 0; 1169 1170 /* get message marker, timestamp */ 1171 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe); 1172 if (err) { 1173 netdev_err(dev, "TXE FIFO read returned %d\n", err); 1174 break; 1175 } 1176 1177 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe); 1178 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16; 1179 1180 ack_fgi = fgi; 1181 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi); 1182 1183 /* update stats */ 1184 processed_frame_len += m_can_tx_update_stats(cdev, msg_mark, 1185 timestamp); 1186 1187 ++processed; 1188 } 1189 1190 if (ack_fgi != -1) 1191 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK, 1192 ack_fgi)); 1193 1194 m_can_finish_tx(cdev, processed, processed_frame_len); 1195 1196 return err; 1197 } 1198 1199 static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir) 1200 { 1201 u32 new_interrupts = cdev->active_interrupts; 1202 bool enable_rx_timer = false; 1203 bool enable_tx_timer = false; 1204 1205 if (!cdev->net->irq) 1206 return; 1207 1208 if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) { 1209 enable_rx_timer = true; 1210 new_interrupts &= ~IR_RF0N; 1211 } 1212 if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) { 1213 enable_tx_timer = true; 1214 new_interrupts &= ~IR_TEFN; 1215 } 1216 if (!enable_rx_timer && !hrtimer_active(&cdev->hrtimer)) 1217 new_interrupts |= IR_RF0N; 1218 if (!enable_tx_timer && !hrtimer_active(&cdev->hrtimer)) 1219 new_interrupts |= IR_TEFN; 1220 1221 m_can_interrupt_enable(cdev, new_interrupts); 1222 if (enable_rx_timer | enable_tx_timer) 1223 hrtimer_start(&cdev->hrtimer, cdev->irq_timer_wait, 1224 HRTIMER_MODE_REL); 1225 } 1226 1227 /* This interrupt handler is called either from the interrupt thread or a 1228 * hrtimer. This has implications like cancelling a timer won't be possible 1229 * blocking. 1230 */ 1231 static int m_can_interrupt_handler(struct m_can_classdev *cdev) 1232 { 1233 struct net_device *dev = cdev->net; 1234 u32 ir = 0, ir_read; 1235 int ret; 1236 1237 if (pm_runtime_suspended(cdev->dev)) 1238 return IRQ_NONE; 1239 1240 /* The m_can controller signals its interrupt status as a level, but 1241 * depending in the integration the CPU may interpret the signal as 1242 * edge-triggered (for example with m_can_pci). For these 1243 * edge-triggered integrations, we must observe that IR is 0 at least 1244 * once to be sure that the next interrupt will generate an edge. 1245 */ 1246 while ((ir_read = m_can_read(cdev, M_CAN_IR)) != 0) { 1247 ir |= ir_read; 1248 1249 /* ACK all irqs */ 1250 m_can_write(cdev, M_CAN_IR, ir); 1251 1252 if (!cdev->irq_edge_triggered) 1253 break; 1254 } 1255 1256 m_can_coalescing_update(cdev, ir); 1257 if (!ir) 1258 return IRQ_NONE; 1259 1260 if (cdev->ops->clear_interrupts) 1261 cdev->ops->clear_interrupts(cdev); 1262 1263 /* schedule NAPI in case of 1264 * - rx IRQ 1265 * - state change IRQ 1266 * - bus error IRQ and bus error reporting 1267 */ 1268 if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) { 1269 cdev->irqstatus = ir; 1270 if (!cdev->is_peripheral) { 1271 m_can_disable_all_interrupts(cdev); 1272 napi_schedule(&cdev->napi); 1273 } else { 1274 ret = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, ir); 1275 if (ret < 0) 1276 return ret; 1277 } 1278 } 1279 1280 if (cdev->version == 30) { 1281 if (ir & IR_TC) { 1282 /* Transmission Complete Interrupt*/ 1283 u32 timestamp = 0; 1284 unsigned int frame_len; 1285 1286 if (cdev->is_peripheral) 1287 timestamp = m_can_get_timestamp(cdev); 1288 frame_len = m_can_tx_update_stats(cdev, 0, timestamp); 1289 m_can_finish_tx(cdev, 1, frame_len); 1290 } 1291 } else { 1292 if (ir & (IR_TEFN | IR_TEFW)) { 1293 /* New TX FIFO Element arrived */ 1294 ret = m_can_echo_tx_event(dev); 1295 if (ret != 0) 1296 return ret; 1297 } 1298 } 1299 1300 if (cdev->is_peripheral) 1301 can_rx_offload_threaded_irq_finish(&cdev->offload); 1302 1303 return IRQ_HANDLED; 1304 } 1305 1306 static irqreturn_t m_can_isr(int irq, void *dev_id) 1307 { 1308 struct net_device *dev = (struct net_device *)dev_id; 1309 struct m_can_classdev *cdev = netdev_priv(dev); 1310 int ret; 1311 1312 ret = m_can_interrupt_handler(cdev); 1313 if (ret < 0) { 1314 m_can_disable_all_interrupts(cdev); 1315 return IRQ_HANDLED; 1316 } 1317 1318 return ret; 1319 } 1320 1321 static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer) 1322 { 1323 struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer); 1324 1325 if (cdev->can.state == CAN_STATE_BUS_OFF || 1326 cdev->can.state == CAN_STATE_STOPPED) 1327 return HRTIMER_NORESTART; 1328 1329 irq_wake_thread(cdev->net->irq, cdev->net); 1330 1331 return HRTIMER_NORESTART; 1332 } 1333 1334 static const struct can_bittiming_const m_can_bittiming_const_30X = { 1335 .name = KBUILD_MODNAME, 1336 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1337 .tseg1_max = 64, 1338 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1339 .tseg2_max = 16, 1340 .sjw_max = 16, 1341 .brp_min = 1, 1342 .brp_max = 1024, 1343 .brp_inc = 1, 1344 }; 1345 1346 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1347 .name = KBUILD_MODNAME, 1348 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1349 .tseg1_max = 16, 1350 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1351 .tseg2_max = 8, 1352 .sjw_max = 4, 1353 .brp_min = 1, 1354 .brp_max = 32, 1355 .brp_inc = 1, 1356 }; 1357 1358 static const struct can_bittiming_const m_can_bittiming_const_31X = { 1359 .name = KBUILD_MODNAME, 1360 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1361 .tseg1_max = 256, 1362 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1363 .tseg2_max = 128, 1364 .sjw_max = 128, 1365 .brp_min = 1, 1366 .brp_max = 512, 1367 .brp_inc = 1, 1368 }; 1369 1370 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1371 .name = KBUILD_MODNAME, 1372 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1373 .tseg1_max = 32, 1374 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1375 .tseg2_max = 16, 1376 .sjw_max = 16, 1377 .brp_min = 1, 1378 .brp_max = 32, 1379 .brp_inc = 1, 1380 }; 1381 1382 static int m_can_set_bittiming(struct net_device *dev) 1383 { 1384 struct m_can_classdev *cdev = netdev_priv(dev); 1385 const struct can_bittiming *bt = &cdev->can.bittiming; 1386 const struct can_bittiming *dbt = &cdev->can.fd.data_bittiming; 1387 u16 brp, sjw, tseg1, tseg2; 1388 u32 reg_btp; 1389 1390 brp = bt->brp - 1; 1391 sjw = bt->sjw - 1; 1392 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1393 tseg2 = bt->phase_seg2 - 1; 1394 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) | 1395 FIELD_PREP(NBTP_NSJW_MASK, sjw) | 1396 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) | 1397 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2); 1398 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1399 1400 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1401 reg_btp = 0; 1402 brp = dbt->brp - 1; 1403 sjw = dbt->sjw - 1; 1404 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1405 tseg2 = dbt->phase_seg2 - 1; 1406 1407 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1408 * This is mentioned in the "Bit Time Requirements for CAN FD" 1409 * paper presented at the International CAN Conference 2013 1410 */ 1411 if (dbt->bitrate > 2500000) { 1412 u32 tdco, ssp; 1413 1414 /* Use the same value of secondary sampling point 1415 * as the data sampling point 1416 */ 1417 ssp = dbt->sample_point; 1418 1419 /* Equation based on Bosch's M_CAN User Manual's 1420 * Transmitter Delay Compensation Section 1421 */ 1422 tdco = (cdev->can.clock.freq / 1000) * 1423 ssp / dbt->bitrate; 1424 1425 /* Max valid TDCO value is 127 */ 1426 if (tdco > 127) { 1427 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1428 tdco); 1429 tdco = 127; 1430 } 1431 1432 reg_btp |= DBTP_TDC; 1433 m_can_write(cdev, M_CAN_TDCR, 1434 FIELD_PREP(TDCR_TDCO_MASK, tdco)); 1435 } 1436 1437 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) | 1438 FIELD_PREP(DBTP_DSJW_MASK, sjw) | 1439 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) | 1440 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2); 1441 1442 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1443 } 1444 1445 return 0; 1446 } 1447 1448 /* Configure M_CAN chip: 1449 * - set rx buffer/fifo element size 1450 * - configure rx fifo 1451 * - accept non-matching frame into fifo 0 1452 * - configure tx buffer 1453 * - >= v3.1.x: TX FIFO is used 1454 * - configure mode 1455 * - setup bittiming 1456 * - configure timestamp generation 1457 */ 1458 static int m_can_chip_config(struct net_device *dev) 1459 { 1460 struct m_can_classdev *cdev = netdev_priv(dev); 1461 u32 interrupts = IR_ALL_INT; 1462 u32 cccr, test; 1463 int err; 1464 1465 err = m_can_init_ram(cdev); 1466 if (err) { 1467 dev_err(cdev->dev, "Message RAM configuration failed\n"); 1468 return err; 1469 } 1470 1471 /* Disable unused interrupts */ 1472 interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF | 1473 IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F | 1474 IR_TSW); 1475 1476 err = m_can_config_enable(cdev); 1477 if (err) 1478 return err; 1479 1480 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1481 m_can_write(cdev, M_CAN_RXESC, 1482 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) | 1483 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) | 1484 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B)); 1485 1486 /* Accept Non-matching Frames Into FIFO 0 */ 1487 m_can_write(cdev, M_CAN_GFC, 0x0); 1488 1489 if (cdev->version == 30) { 1490 /* only support one Tx Buffer currently */ 1491 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) | 1492 cdev->mcfg[MRAM_TXB].off); 1493 } else { 1494 /* TX FIFO is used for newer IP Core versions */ 1495 m_can_write(cdev, M_CAN_TXBC, 1496 FIELD_PREP(TXBC_TFQS_MASK, 1497 cdev->mcfg[MRAM_TXB].num) | 1498 cdev->mcfg[MRAM_TXB].off); 1499 } 1500 1501 /* support 64 bytes payload */ 1502 m_can_write(cdev, M_CAN_TXESC, 1503 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B)); 1504 1505 /* TX Event FIFO */ 1506 if (cdev->version == 30) { 1507 m_can_write(cdev, M_CAN_TXEFC, 1508 FIELD_PREP(TXEFC_EFS_MASK, 1) | 1509 cdev->mcfg[MRAM_TXE].off); 1510 } else { 1511 /* Full TX Event FIFO is used */ 1512 m_can_write(cdev, M_CAN_TXEFC, 1513 FIELD_PREP(TXEFC_EFWM_MASK, 1514 cdev->tx_max_coalesced_frames_irq) | 1515 FIELD_PREP(TXEFC_EFS_MASK, 1516 cdev->mcfg[MRAM_TXE].num) | 1517 cdev->mcfg[MRAM_TXE].off); 1518 } 1519 1520 /* rx fifo configuration, blocking mode, fifo size 1 */ 1521 m_can_write(cdev, M_CAN_RXF0C, 1522 FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) | 1523 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) | 1524 cdev->mcfg[MRAM_RXF0].off); 1525 1526 m_can_write(cdev, M_CAN_RXF1C, 1527 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) | 1528 cdev->mcfg[MRAM_RXF1].off); 1529 1530 cccr = m_can_read(cdev, M_CAN_CCCR); 1531 test = m_can_read(cdev, M_CAN_TEST); 1532 test &= ~TEST_LBCK; 1533 if (cdev->version == 30) { 1534 /* Version 3.0.x */ 1535 1536 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1537 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) | 1538 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK))); 1539 1540 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1541 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS); 1542 1543 } else { 1544 /* Version 3.1.x or 3.2.x */ 1545 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1546 CCCR_NISO | CCCR_DAR); 1547 1548 /* Only 3.2.x has NISO Bit implemented */ 1549 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1550 cccr |= CCCR_NISO; 1551 1552 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1553 cccr |= (CCCR_BRSE | CCCR_FDOE); 1554 } 1555 1556 /* Loopback Mode */ 1557 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1558 cccr |= CCCR_TEST | CCCR_MON; 1559 test |= TEST_LBCK; 1560 } 1561 1562 /* Enable Monitoring (all versions) */ 1563 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1564 cccr |= CCCR_MON; 1565 1566 /* Disable Auto Retransmission (all versions) */ 1567 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1568 cccr |= CCCR_DAR; 1569 1570 /* Write config */ 1571 m_can_write(cdev, M_CAN_CCCR, cccr); 1572 m_can_write(cdev, M_CAN_TEST, test); 1573 1574 /* Enable interrupts */ 1575 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) { 1576 if (cdev->version == 30) 1577 interrupts &= ~(IR_ERR_LEC_30X); 1578 else 1579 interrupts &= ~(IR_ERR_LEC_31X); 1580 } 1581 cdev->active_interrupts = 0; 1582 m_can_interrupt_enable(cdev, interrupts); 1583 1584 /* route all interrupts to INT0 */ 1585 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1586 1587 /* set bittiming params */ 1588 m_can_set_bittiming(dev); 1589 1590 /* enable internal timestamp generation, with a prescaler of 16. The 1591 * prescaler is applied to the nominal bit timing 1592 */ 1593 m_can_write(cdev, M_CAN_TSCC, 1594 FIELD_PREP(TSCC_TCP_MASK, 0xf) | 1595 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL)); 1596 1597 err = m_can_config_disable(cdev); 1598 if (err) 1599 return err; 1600 1601 if (cdev->ops->init) 1602 cdev->ops->init(cdev); 1603 1604 return 0; 1605 } 1606 1607 static int m_can_start(struct net_device *dev) 1608 { 1609 struct m_can_classdev *cdev = netdev_priv(dev); 1610 int ret; 1611 1612 /* basic m_can configuration */ 1613 ret = m_can_chip_config(dev); 1614 if (ret) 1615 return ret; 1616 1617 netdev_queue_set_dql_min_limit(netdev_get_tx_queue(cdev->net, 0), 1618 cdev->tx_max_coalesced_frames); 1619 1620 cdev->can.state = m_can_state_get_by_psr(cdev); 1621 1622 m_can_enable_all_interrupts(cdev); 1623 1624 if (cdev->version > 30) 1625 cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK, 1626 m_can_read(cdev, M_CAN_TXFQS)); 1627 1628 ret = m_can_cccr_update_bits(cdev, CCCR_INIT, 0); 1629 if (ret) 1630 netdev_err(dev, "failed to enter normal mode\n"); 1631 1632 return ret; 1633 } 1634 1635 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1636 { 1637 switch (mode) { 1638 case CAN_MODE_START: 1639 m_can_clean(dev); 1640 m_can_start(dev); 1641 netif_wake_queue(dev); 1642 break; 1643 default: 1644 return -EOPNOTSUPP; 1645 } 1646 1647 return 0; 1648 } 1649 1650 /* Checks core release number of M_CAN 1651 * returns 0 if an unsupported device is detected 1652 * else it returns the release and step coded as: 1653 * return value = 10 * <release> + 1 * <step> 1654 */ 1655 static int m_can_check_core_release(struct m_can_classdev *cdev) 1656 { 1657 u32 crel_reg; 1658 u8 rel; 1659 u8 step; 1660 int res; 1661 1662 /* Read Core Release Version and split into version number 1663 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1664 */ 1665 crel_reg = m_can_read(cdev, M_CAN_CREL); 1666 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg); 1667 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg); 1668 1669 if (rel == 3) { 1670 /* M_CAN v3.x.y: create return value */ 1671 res = 30 + step; 1672 } else { 1673 /* Unsupported M_CAN version */ 1674 res = 0; 1675 } 1676 1677 return res; 1678 } 1679 1680 /* Selectable Non ISO support only in version 3.2.x 1681 * Return 1 if the bit is writable, 0 if it is not, or negative on error. 1682 */ 1683 static int m_can_niso_supported(struct m_can_classdev *cdev) 1684 { 1685 int ret, niso; 1686 1687 ret = m_can_config_enable(cdev); 1688 if (ret) 1689 return ret; 1690 1691 /* First try to set the NISO bit. */ 1692 niso = m_can_cccr_update_bits(cdev, CCCR_NISO, CCCR_NISO); 1693 1694 /* Then clear the it again. */ 1695 ret = m_can_cccr_update_bits(cdev, CCCR_NISO, 0); 1696 if (ret) { 1697 dev_err(cdev->dev, "failed to revert the NON-ISO bit in CCCR\n"); 1698 return ret; 1699 } 1700 1701 ret = m_can_config_disable(cdev); 1702 if (ret) 1703 return ret; 1704 1705 return niso == 0; 1706 } 1707 1708 static int m_can_dev_setup(struct m_can_classdev *cdev) 1709 { 1710 struct net_device *dev = cdev->net; 1711 int m_can_version, err, niso; 1712 1713 m_can_version = m_can_check_core_release(cdev); 1714 /* return if unsupported version */ 1715 if (!m_can_version) { 1716 dev_err(cdev->dev, "Unsupported version number: %2d", 1717 m_can_version); 1718 return -EINVAL; 1719 } 1720 1721 /* Write the INIT bit, in case no hardware reset has happened before 1722 * the probe (for example, it was observed that the Intel Elkhart Lake 1723 * SoCs do not properly reset the CAN controllers on reboot) 1724 */ 1725 err = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT); 1726 if (err) 1727 return err; 1728 1729 if (!cdev->is_peripheral) 1730 netif_napi_add(dev, &cdev->napi, m_can_poll); 1731 1732 /* Shared properties of all M_CAN versions */ 1733 cdev->version = m_can_version; 1734 cdev->can.do_set_mode = m_can_set_mode; 1735 cdev->can.do_get_berr_counter = m_can_get_berr_counter; 1736 1737 /* Set M_CAN supported operations */ 1738 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1739 CAN_CTRLMODE_LISTENONLY | 1740 CAN_CTRLMODE_BERR_REPORTING | 1741 CAN_CTRLMODE_FD | 1742 CAN_CTRLMODE_ONE_SHOT; 1743 1744 /* Set properties depending on M_CAN version */ 1745 switch (cdev->version) { 1746 case 30: 1747 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1748 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1749 if (err) 1750 return err; 1751 cdev->can.bittiming_const = &m_can_bittiming_const_30X; 1752 cdev->can.fd.data_bittiming_const = &m_can_data_bittiming_const_30X; 1753 break; 1754 case 31: 1755 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1756 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1757 if (err) 1758 return err; 1759 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1760 cdev->can.fd.data_bittiming_const = &m_can_data_bittiming_const_31X; 1761 break; 1762 case 32: 1763 case 33: 1764 /* Support both MCAN version v3.2.x and v3.3.0 */ 1765 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1766 cdev->can.fd.data_bittiming_const = &m_can_data_bittiming_const_31X; 1767 1768 niso = m_can_niso_supported(cdev); 1769 if (niso < 0) 1770 return niso; 1771 if (niso) 1772 cdev->can.ctrlmode_supported |= CAN_CTRLMODE_FD_NON_ISO; 1773 break; 1774 default: 1775 dev_err(cdev->dev, "Unsupported version number: %2d", 1776 cdev->version); 1777 return -EINVAL; 1778 } 1779 1780 return 0; 1781 } 1782 1783 static void m_can_stop(struct net_device *dev) 1784 { 1785 struct m_can_classdev *cdev = netdev_priv(dev); 1786 int ret; 1787 1788 /* disable all interrupts */ 1789 m_can_disable_all_interrupts(cdev); 1790 1791 /* Set init mode to disengage from the network */ 1792 ret = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT); 1793 if (ret) 1794 netdev_err(dev, "failed to enter standby mode: %pe\n", 1795 ERR_PTR(ret)); 1796 1797 /* set the state as STOPPED */ 1798 cdev->can.state = CAN_STATE_STOPPED; 1799 1800 if (cdev->ops->deinit) { 1801 ret = cdev->ops->deinit(cdev); 1802 if (ret) 1803 netdev_err(dev, "failed to deinitialize: %pe\n", 1804 ERR_PTR(ret)); 1805 } 1806 } 1807 1808 static int m_can_close(struct net_device *dev) 1809 { 1810 struct m_can_classdev *cdev = netdev_priv(dev); 1811 1812 netif_stop_queue(dev); 1813 1814 m_can_stop(dev); 1815 if (dev->irq) 1816 free_irq(dev->irq, dev); 1817 1818 m_can_clean(dev); 1819 1820 if (cdev->is_peripheral) { 1821 destroy_workqueue(cdev->tx_wq); 1822 cdev->tx_wq = NULL; 1823 can_rx_offload_disable(&cdev->offload); 1824 } else { 1825 napi_disable(&cdev->napi); 1826 } 1827 1828 close_candev(dev); 1829 1830 m_can_clk_stop(cdev); 1831 phy_power_off(cdev->transceiver); 1832 1833 return 0; 1834 } 1835 1836 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev, 1837 struct sk_buff *skb) 1838 { 1839 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1840 u8 len_padded = DIV_ROUND_UP(cf->len, 4); 1841 struct m_can_fifo_element fifo_element; 1842 struct net_device *dev = cdev->net; 1843 u32 cccr, fdflags; 1844 int err; 1845 u32 putidx; 1846 unsigned int frame_len = can_skb_get_frame_len(skb); 1847 1848 /* Generate ID field for TX buffer Element */ 1849 /* Common to all supported M_CAN versions */ 1850 if (cf->can_id & CAN_EFF_FLAG) { 1851 fifo_element.id = cf->can_id & CAN_EFF_MASK; 1852 fifo_element.id |= TX_BUF_XTD; 1853 } else { 1854 fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18); 1855 } 1856 1857 if (cf->can_id & CAN_RTR_FLAG) 1858 fifo_element.id |= TX_BUF_RTR; 1859 1860 if (cdev->version == 30) { 1861 netif_stop_queue(dev); 1862 1863 fifo_element.dlc = can_fd_len2dlc(cf->len) << 16; 1864 1865 /* Write the frame ID, DLC, and payload to the FIFO element. */ 1866 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_element, 2); 1867 if (err) 1868 goto out_fail; 1869 1870 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA, 1871 cf->data, len_padded); 1872 if (err) 1873 goto out_fail; 1874 1875 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1876 cccr = m_can_read(cdev, M_CAN_CCCR); 1877 cccr &= ~CCCR_CMR_MASK; 1878 if (can_is_canfd_skb(skb)) { 1879 if (cf->flags & CANFD_BRS) 1880 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1881 CCCR_CMR_CANFD_BRS); 1882 else 1883 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1884 CCCR_CMR_CANFD); 1885 } else { 1886 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN); 1887 } 1888 m_can_write(cdev, M_CAN_CCCR, cccr); 1889 } 1890 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1891 1892 can_put_echo_skb(skb, dev, 0, frame_len); 1893 1894 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1895 /* End of xmit function for version 3.0.x */ 1896 } else { 1897 /* Transmit routine for version >= v3.1.x */ 1898 1899 /* get put index for frame */ 1900 putidx = cdev->tx_fifo_putidx; 1901 1902 /* Construct DLC Field, with CAN-FD configuration. 1903 * Use the put index of the fifo as the message marker, 1904 * used in the TX interrupt for sending the correct echo frame. 1905 */ 1906 1907 /* get CAN FD configuration of frame */ 1908 fdflags = 0; 1909 if (can_is_canfd_skb(skb)) { 1910 fdflags |= TX_BUF_FDF; 1911 if (cf->flags & CANFD_BRS) 1912 fdflags |= TX_BUF_BRS; 1913 } 1914 1915 fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) | 1916 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) | 1917 fdflags | TX_BUF_EFC; 1918 1919 memcpy_and_pad(fifo_element.data, CANFD_MAX_DLEN, &cf->data, 1920 cf->len, 0); 1921 1922 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, 1923 &fifo_element, 2 + len_padded); 1924 if (err) 1925 goto out_fail; 1926 1927 /* Push loopback echo. 1928 * Will be looped back on TX interrupt based on message marker 1929 */ 1930 can_put_echo_skb(skb, dev, putidx, frame_len); 1931 1932 if (cdev->is_peripheral) { 1933 /* Delay enabling TX FIFO element */ 1934 cdev->tx_peripheral_submit |= BIT(putidx); 1935 } else { 1936 /* Enable TX FIFO element to start transfer */ 1937 m_can_write(cdev, M_CAN_TXBAR, BIT(putidx)); 1938 } 1939 cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ? 1940 0 : cdev->tx_fifo_putidx); 1941 } 1942 1943 return NETDEV_TX_OK; 1944 1945 out_fail: 1946 netdev_err(dev, "FIFO write returned %d\n", err); 1947 m_can_disable_all_interrupts(cdev); 1948 return NETDEV_TX_BUSY; 1949 } 1950 1951 static void m_can_tx_submit(struct m_can_classdev *cdev) 1952 { 1953 if (cdev->version == 30) 1954 return; 1955 if (!cdev->is_peripheral) 1956 return; 1957 1958 m_can_write(cdev, M_CAN_TXBAR, cdev->tx_peripheral_submit); 1959 cdev->tx_peripheral_submit = 0; 1960 } 1961 1962 static void m_can_tx_work_queue(struct work_struct *ws) 1963 { 1964 struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work); 1965 struct m_can_classdev *cdev = op->cdev; 1966 struct sk_buff *skb = op->skb; 1967 1968 op->skb = NULL; 1969 m_can_tx_handler(cdev, skb); 1970 if (op->submit) 1971 m_can_tx_submit(cdev); 1972 } 1973 1974 static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb, 1975 bool submit) 1976 { 1977 cdev->tx_ops[cdev->next_tx_op].skb = skb; 1978 cdev->tx_ops[cdev->next_tx_op].submit = submit; 1979 queue_work(cdev->tx_wq, &cdev->tx_ops[cdev->next_tx_op].work); 1980 1981 ++cdev->next_tx_op; 1982 if (cdev->next_tx_op >= cdev->tx_fifo_size) 1983 cdev->next_tx_op = 0; 1984 } 1985 1986 static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev, 1987 struct sk_buff *skb) 1988 { 1989 bool submit; 1990 1991 ++cdev->nr_txs_without_submit; 1992 if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames || 1993 !netdev_xmit_more()) { 1994 cdev->nr_txs_without_submit = 0; 1995 submit = true; 1996 } else { 1997 submit = false; 1998 } 1999 m_can_tx_queue_skb(cdev, skb, submit); 2000 2001 return NETDEV_TX_OK; 2002 } 2003 2004 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 2005 struct net_device *dev) 2006 { 2007 struct m_can_classdev *cdev = netdev_priv(dev); 2008 unsigned int frame_len; 2009 netdev_tx_t ret; 2010 2011 if (can_dev_dropped_skb(dev, skb)) 2012 return NETDEV_TX_OK; 2013 2014 frame_len = can_skb_get_frame_len(skb); 2015 2016 if (cdev->can.state == CAN_STATE_BUS_OFF) { 2017 m_can_clean(cdev->net); 2018 return NETDEV_TX_OK; 2019 } 2020 2021 ret = m_can_start_tx(cdev); 2022 if (ret != NETDEV_TX_OK) 2023 return ret; 2024 2025 netdev_sent_queue(dev, frame_len); 2026 2027 if (cdev->is_peripheral) 2028 ret = m_can_start_peripheral_xmit(cdev, skb); 2029 else 2030 ret = m_can_tx_handler(cdev, skb); 2031 2032 if (ret != NETDEV_TX_OK) 2033 netdev_completed_queue(dev, 1, frame_len); 2034 2035 return ret; 2036 } 2037 2038 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer) 2039 { 2040 struct m_can_classdev *cdev = container_of(timer, struct 2041 m_can_classdev, hrtimer); 2042 int ret; 2043 2044 if (cdev->can.state == CAN_STATE_BUS_OFF || 2045 cdev->can.state == CAN_STATE_STOPPED) 2046 return HRTIMER_NORESTART; 2047 2048 ret = m_can_interrupt_handler(cdev); 2049 2050 /* On error or if napi is scheduled to read, stop the timer */ 2051 if (ret < 0 || napi_is_scheduled(&cdev->napi)) 2052 return HRTIMER_NORESTART; 2053 2054 hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS)); 2055 2056 return HRTIMER_RESTART; 2057 } 2058 2059 static int m_can_open(struct net_device *dev) 2060 { 2061 struct m_can_classdev *cdev = netdev_priv(dev); 2062 int err; 2063 2064 err = phy_power_on(cdev->transceiver); 2065 if (err) 2066 return err; 2067 2068 err = m_can_clk_start(cdev); 2069 if (err) 2070 goto out_phy_power_off; 2071 2072 /* open the can device */ 2073 err = open_candev(dev); 2074 if (err) { 2075 netdev_err(dev, "failed to open can device\n"); 2076 goto exit_disable_clks; 2077 } 2078 2079 if (cdev->is_peripheral) 2080 can_rx_offload_enable(&cdev->offload); 2081 else 2082 napi_enable(&cdev->napi); 2083 2084 /* register interrupt handler */ 2085 if (cdev->is_peripheral) { 2086 cdev->tx_wq = alloc_ordered_workqueue("mcan_wq", 2087 WQ_FREEZABLE | WQ_MEM_RECLAIM); 2088 if (!cdev->tx_wq) { 2089 err = -ENOMEM; 2090 goto out_wq_fail; 2091 } 2092 2093 for (int i = 0; i != cdev->tx_fifo_size; ++i) { 2094 cdev->tx_ops[i].cdev = cdev; 2095 INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue); 2096 } 2097 2098 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 2099 IRQF_ONESHOT, 2100 dev->name, dev); 2101 } else if (dev->irq) { 2102 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 2103 dev); 2104 } 2105 2106 if (err < 0) { 2107 netdev_err(dev, "failed to request interrupt\n"); 2108 goto exit_irq_fail; 2109 } 2110 2111 /* start the m_can controller */ 2112 err = m_can_start(dev); 2113 if (err) 2114 goto exit_start_fail; 2115 2116 netif_start_queue(dev); 2117 2118 return 0; 2119 2120 exit_start_fail: 2121 if (cdev->is_peripheral || dev->irq) 2122 free_irq(dev->irq, dev); 2123 exit_irq_fail: 2124 if (cdev->is_peripheral) 2125 destroy_workqueue(cdev->tx_wq); 2126 out_wq_fail: 2127 if (cdev->is_peripheral) 2128 can_rx_offload_disable(&cdev->offload); 2129 else 2130 napi_disable(&cdev->napi); 2131 close_candev(dev); 2132 exit_disable_clks: 2133 m_can_clk_stop(cdev); 2134 out_phy_power_off: 2135 phy_power_off(cdev->transceiver); 2136 return err; 2137 } 2138 2139 static const struct net_device_ops m_can_netdev_ops = { 2140 .ndo_open = m_can_open, 2141 .ndo_stop = m_can_close, 2142 .ndo_start_xmit = m_can_start_xmit, 2143 .ndo_change_mtu = can_change_mtu, 2144 }; 2145 2146 static int m_can_get_coalesce(struct net_device *dev, 2147 struct ethtool_coalesce *ec, 2148 struct kernel_ethtool_coalesce *kec, 2149 struct netlink_ext_ack *ext_ack) 2150 { 2151 struct m_can_classdev *cdev = netdev_priv(dev); 2152 2153 ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq; 2154 ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq; 2155 ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames; 2156 ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq; 2157 ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq; 2158 2159 return 0; 2160 } 2161 2162 static int m_can_set_coalesce(struct net_device *dev, 2163 struct ethtool_coalesce *ec, 2164 struct kernel_ethtool_coalesce *kec, 2165 struct netlink_ext_ack *ext_ack) 2166 { 2167 struct m_can_classdev *cdev = netdev_priv(dev); 2168 2169 if (cdev->can.state != CAN_STATE_STOPPED) { 2170 netdev_err(dev, "Device is in use, please shut it down first\n"); 2171 return -EBUSY; 2172 } 2173 2174 if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) { 2175 netdev_err(dev, "rx-frames-irq %u greater than the RX FIFO %u\n", 2176 ec->rx_max_coalesced_frames_irq, 2177 cdev->mcfg[MRAM_RXF0].num); 2178 return -EINVAL; 2179 } 2180 if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) { 2181 netdev_err(dev, "rx-frames-irq and rx-usecs-irq can only be set together\n"); 2182 return -EINVAL; 2183 } 2184 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) { 2185 netdev_err(dev, "tx-frames-irq %u greater than the TX event FIFO %u\n", 2186 ec->tx_max_coalesced_frames_irq, 2187 cdev->mcfg[MRAM_TXE].num); 2188 return -EINVAL; 2189 } 2190 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) { 2191 netdev_err(dev, "tx-frames-irq %u greater than the TX FIFO %u\n", 2192 ec->tx_max_coalesced_frames_irq, 2193 cdev->mcfg[MRAM_TXB].num); 2194 return -EINVAL; 2195 } 2196 if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) { 2197 netdev_err(dev, "tx-frames-irq and tx-usecs-irq can only be set together\n"); 2198 return -EINVAL; 2199 } 2200 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) { 2201 netdev_err(dev, "tx-frames %u greater than the TX event FIFO %u\n", 2202 ec->tx_max_coalesced_frames, 2203 cdev->mcfg[MRAM_TXE].num); 2204 return -EINVAL; 2205 } 2206 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) { 2207 netdev_err(dev, "tx-frames %u greater than the TX FIFO %u\n", 2208 ec->tx_max_coalesced_frames, 2209 cdev->mcfg[MRAM_TXB].num); 2210 return -EINVAL; 2211 } 2212 if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 && 2213 ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) { 2214 netdev_err(dev, "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n", 2215 ec->rx_coalesce_usecs_irq, 2216 ec->tx_coalesce_usecs_irq); 2217 return -EINVAL; 2218 } 2219 2220 cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq; 2221 cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq; 2222 cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames; 2223 cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq; 2224 cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq; 2225 2226 if (cdev->rx_coalesce_usecs_irq) 2227 cdev->irq_timer_wait = us_to_ktime(cdev->rx_coalesce_usecs_irq); 2228 else 2229 cdev->irq_timer_wait = us_to_ktime(cdev->tx_coalesce_usecs_irq); 2230 2231 return 0; 2232 } 2233 2234 static const struct ethtool_ops m_can_ethtool_ops_coalescing = { 2235 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ | 2236 ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ | 2237 ETHTOOL_COALESCE_TX_USECS_IRQ | 2238 ETHTOOL_COALESCE_TX_MAX_FRAMES | 2239 ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ, 2240 .get_ts_info = ethtool_op_get_ts_info, 2241 .get_coalesce = m_can_get_coalesce, 2242 .set_coalesce = m_can_set_coalesce, 2243 }; 2244 2245 static const struct ethtool_ops m_can_ethtool_ops = { 2246 .get_ts_info = ethtool_op_get_ts_info, 2247 }; 2248 2249 static int register_m_can_dev(struct m_can_classdev *cdev) 2250 { 2251 struct net_device *dev = cdev->net; 2252 2253 dev->flags |= IFF_ECHO; /* we support local echo */ 2254 dev->netdev_ops = &m_can_netdev_ops; 2255 if (dev->irq && cdev->is_peripheral) 2256 dev->ethtool_ops = &m_can_ethtool_ops_coalescing; 2257 else 2258 dev->ethtool_ops = &m_can_ethtool_ops; 2259 2260 return register_candev(dev); 2261 } 2262 2263 int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size) 2264 { 2265 u32 total_size; 2266 2267 total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off + 2268 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 2269 if (total_size > mram_max_size) { 2270 dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n", 2271 total_size, mram_max_size); 2272 return -EINVAL; 2273 } 2274 2275 return 0; 2276 } 2277 EXPORT_SYMBOL_GPL(m_can_check_mram_cfg); 2278 2279 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 2280 const u32 *mram_config_vals) 2281 { 2282 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 2283 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 2284 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 2285 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 2286 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 2287 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 2288 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 2289 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 2290 FIELD_MAX(RXFC_FS_MASK); 2291 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 2292 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 2293 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 2294 FIELD_MAX(RXFC_FS_MASK); 2295 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 2296 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 2297 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 2298 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 2299 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 2300 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 2301 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 2302 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 2303 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 2304 FIELD_MAX(TXBC_NDTB_MASK); 2305 2306 dev_dbg(cdev->dev, 2307 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 2308 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 2309 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 2310 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 2311 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 2312 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 2313 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 2314 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 2315 } 2316 2317 int m_can_init_ram(struct m_can_classdev *cdev) 2318 { 2319 int end, i, start; 2320 int err = 0; 2321 2322 /* initialize the entire Message RAM in use to avoid possible 2323 * ECC/parity checksum errors when reading an uninitialized buffer 2324 */ 2325 start = cdev->mcfg[MRAM_SIDF].off; 2326 end = cdev->mcfg[MRAM_TXB].off + 2327 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 2328 2329 for (i = start; i < end; i += 4) { 2330 err = m_can_fifo_write_no_off(cdev, i, 0x0); 2331 if (err) 2332 break; 2333 } 2334 2335 return err; 2336 } 2337 EXPORT_SYMBOL_GPL(m_can_init_ram); 2338 2339 int m_can_class_get_clocks(struct m_can_classdev *cdev) 2340 { 2341 int ret = 0; 2342 2343 cdev->hclk = devm_clk_get(cdev->dev, "hclk"); 2344 cdev->cclk = devm_clk_get(cdev->dev, "cclk"); 2345 2346 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) { 2347 dev_err(cdev->dev, "no clock found\n"); 2348 ret = -ENODEV; 2349 } 2350 2351 return ret; 2352 } 2353 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 2354 2355 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev, 2356 int sizeof_priv) 2357 { 2358 struct m_can_classdev *class_dev = NULL; 2359 u32 mram_config_vals[MRAM_CFG_LEN]; 2360 struct net_device *net_dev; 2361 u32 tx_fifo_size; 2362 int ret; 2363 2364 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 2365 "bosch,mram-cfg", 2366 mram_config_vals, 2367 sizeof(mram_config_vals) / 4); 2368 if (ret) { 2369 dev_err(dev, "Could not get Message RAM configuration."); 2370 goto out; 2371 } 2372 2373 /* Get TX FIFO size 2374 * Defines the total amount of echo buffers for loopback 2375 */ 2376 tx_fifo_size = mram_config_vals[7]; 2377 2378 /* allocate the m_can device */ 2379 net_dev = alloc_candev(sizeof_priv, tx_fifo_size); 2380 if (!net_dev) { 2381 dev_err(dev, "Failed to allocate CAN device"); 2382 goto out; 2383 } 2384 2385 class_dev = netdev_priv(net_dev); 2386 class_dev->net = net_dev; 2387 class_dev->dev = dev; 2388 SET_NETDEV_DEV(net_dev, dev); 2389 2390 m_can_of_parse_mram(class_dev, mram_config_vals); 2391 spin_lock_init(&class_dev->tx_handling_spinlock); 2392 out: 2393 return class_dev; 2394 } 2395 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 2396 2397 void m_can_class_free_dev(struct net_device *net) 2398 { 2399 free_candev(net); 2400 } 2401 EXPORT_SYMBOL_GPL(m_can_class_free_dev); 2402 2403 int m_can_class_register(struct m_can_classdev *cdev) 2404 { 2405 int ret; 2406 2407 cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num, 2408 cdev->mcfg[MRAM_TXE].num)); 2409 if (cdev->is_peripheral) { 2410 cdev->tx_ops = 2411 devm_kzalloc(cdev->dev, 2412 cdev->tx_fifo_size * sizeof(*cdev->tx_ops), 2413 GFP_KERNEL); 2414 if (!cdev->tx_ops) { 2415 dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n"); 2416 return -ENOMEM; 2417 } 2418 } 2419 2420 ret = m_can_clk_start(cdev); 2421 if (ret) 2422 return ret; 2423 2424 if (cdev->is_peripheral) { 2425 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload, 2426 NAPI_POLL_WEIGHT); 2427 if (ret) 2428 goto clk_disable; 2429 } 2430 2431 if (!cdev->net->irq) { 2432 dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer"); 2433 hrtimer_setup(&cdev->hrtimer, &hrtimer_callback, CLOCK_MONOTONIC, 2434 HRTIMER_MODE_REL_PINNED); 2435 } else { 2436 hrtimer_setup(&cdev->hrtimer, m_can_coalescing_timer, CLOCK_MONOTONIC, 2437 HRTIMER_MODE_REL); 2438 } 2439 2440 ret = m_can_dev_setup(cdev); 2441 if (ret) 2442 goto rx_offload_del; 2443 2444 ret = register_m_can_dev(cdev); 2445 if (ret) { 2446 dev_err(cdev->dev, "registering %s failed (err=%d)\n", 2447 cdev->net->name, ret); 2448 goto rx_offload_del; 2449 } 2450 2451 of_can_transceiver(cdev->net); 2452 2453 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n", 2454 KBUILD_MODNAME, cdev->net->irq, cdev->version); 2455 2456 /* Probe finished 2457 * Stop clocks. They will be reactivated once the M_CAN device is opened 2458 */ 2459 m_can_clk_stop(cdev); 2460 2461 return 0; 2462 2463 rx_offload_del: 2464 if (cdev->is_peripheral) 2465 can_rx_offload_del(&cdev->offload); 2466 clk_disable: 2467 m_can_clk_stop(cdev); 2468 2469 return ret; 2470 } 2471 EXPORT_SYMBOL_GPL(m_can_class_register); 2472 2473 void m_can_class_unregister(struct m_can_classdev *cdev) 2474 { 2475 unregister_candev(cdev->net); 2476 if (cdev->is_peripheral) 2477 can_rx_offload_del(&cdev->offload); 2478 } 2479 EXPORT_SYMBOL_GPL(m_can_class_unregister); 2480 2481 int m_can_class_suspend(struct device *dev) 2482 { 2483 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2484 struct net_device *ndev = cdev->net; 2485 int ret = 0; 2486 2487 if (netif_running(ndev)) { 2488 netif_stop_queue(ndev); 2489 netif_device_detach(ndev); 2490 2491 /* leave the chip running with rx interrupt enabled if it is 2492 * used as a wake-up source. Coalescing needs to be reset then, 2493 * the timer is cancelled here, interrupts are done in resume. 2494 */ 2495 if (cdev->pm_wake_source) { 2496 hrtimer_cancel(&cdev->hrtimer); 2497 m_can_write(cdev, M_CAN_IE, IR_RF0N); 2498 2499 if (cdev->ops->deinit) 2500 ret = cdev->ops->deinit(cdev); 2501 } else { 2502 m_can_stop(ndev); 2503 } 2504 2505 m_can_clk_stop(cdev); 2506 cdev->can.state = CAN_STATE_SLEEPING; 2507 } 2508 2509 pinctrl_pm_select_sleep_state(dev); 2510 2511 return ret; 2512 } 2513 EXPORT_SYMBOL_GPL(m_can_class_suspend); 2514 2515 int m_can_class_resume(struct device *dev) 2516 { 2517 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2518 struct net_device *ndev = cdev->net; 2519 int ret = 0; 2520 2521 pinctrl_pm_select_default_state(dev); 2522 2523 if (netif_running(ndev)) { 2524 ret = m_can_clk_start(cdev); 2525 if (ret) 2526 return ret; 2527 2528 if (cdev->pm_wake_source) { 2529 /* Restore active interrupts but disable coalescing as 2530 * we may have missed important waterlevel interrupts 2531 * between suspend and resume. Timers are already 2532 * stopped in suspend. Here we enable all interrupts 2533 * again. 2534 */ 2535 cdev->active_interrupts |= IR_RF0N | IR_TEFN; 2536 2537 if (cdev->ops->init) 2538 ret = cdev->ops->init(cdev); 2539 2540 cdev->can.state = m_can_state_get_by_psr(cdev); 2541 2542 m_can_write(cdev, M_CAN_IE, cdev->active_interrupts); 2543 } else { 2544 ret = m_can_start(ndev); 2545 if (ret) { 2546 m_can_clk_stop(cdev); 2547 return ret; 2548 } 2549 } 2550 2551 netif_device_attach(ndev); 2552 netif_start_queue(ndev); 2553 } 2554 2555 return ret; 2556 } 2557 EXPORT_SYMBOL_GPL(m_can_class_resume); 2558 2559 MODULE_AUTHOR("Dong Aisheng <aisheng.dong@nxp.com>"); 2560 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 2561 MODULE_LICENSE("GPL v2"); 2562 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 2563