xref: /linux/drivers/net/can/m_can/m_can.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/iopoll.h>
22 #include <linux/can/dev.h>
23 #include <linux/pinctrl/consumer.h>
24 
25 #include "m_can.h"
26 
27 /* registers definition */
28 enum m_can_reg {
29 	M_CAN_CREL	= 0x0,
30 	M_CAN_ENDN	= 0x4,
31 	M_CAN_CUST	= 0x8,
32 	M_CAN_DBTP	= 0xc,
33 	M_CAN_TEST	= 0x10,
34 	M_CAN_RWD	= 0x14,
35 	M_CAN_CCCR	= 0x18,
36 	M_CAN_NBTP	= 0x1c,
37 	M_CAN_TSCC	= 0x20,
38 	M_CAN_TSCV	= 0x24,
39 	M_CAN_TOCC	= 0x28,
40 	M_CAN_TOCV	= 0x2c,
41 	M_CAN_ECR	= 0x40,
42 	M_CAN_PSR	= 0x44,
43 	/* TDCR Register only available for version >=3.1.x */
44 	M_CAN_TDCR	= 0x48,
45 	M_CAN_IR	= 0x50,
46 	M_CAN_IE	= 0x54,
47 	M_CAN_ILS	= 0x58,
48 	M_CAN_ILE	= 0x5c,
49 	M_CAN_GFC	= 0x80,
50 	M_CAN_SIDFC	= 0x84,
51 	M_CAN_XIDFC	= 0x88,
52 	M_CAN_XIDAM	= 0x90,
53 	M_CAN_HPMS	= 0x94,
54 	M_CAN_NDAT1	= 0x98,
55 	M_CAN_NDAT2	= 0x9c,
56 	M_CAN_RXF0C	= 0xa0,
57 	M_CAN_RXF0S	= 0xa4,
58 	M_CAN_RXF0A	= 0xa8,
59 	M_CAN_RXBC	= 0xac,
60 	M_CAN_RXF1C	= 0xb0,
61 	M_CAN_RXF1S	= 0xb4,
62 	M_CAN_RXF1A	= 0xb8,
63 	M_CAN_RXESC	= 0xbc,
64 	M_CAN_TXBC	= 0xc0,
65 	M_CAN_TXFQS	= 0xc4,
66 	M_CAN_TXESC	= 0xc8,
67 	M_CAN_TXBRP	= 0xcc,
68 	M_CAN_TXBAR	= 0xd0,
69 	M_CAN_TXBCR	= 0xd4,
70 	M_CAN_TXBTO	= 0xd8,
71 	M_CAN_TXBCF	= 0xdc,
72 	M_CAN_TXBTIE	= 0xe0,
73 	M_CAN_TXBCIE	= 0xe4,
74 	M_CAN_TXEFC	= 0xf0,
75 	M_CAN_TXEFS	= 0xf4,
76 	M_CAN_TXEFA	= 0xf8,
77 };
78 
79 /* napi related */
80 #define M_CAN_NAPI_WEIGHT	64
81 
82 /* message ram configuration data length */
83 #define MRAM_CFG_LEN	8
84 
85 /* Core Release Register (CREL) */
86 #define CREL_REL_MASK		GENMASK(31, 28)
87 #define CREL_STEP_MASK		GENMASK(27, 24)
88 #define CREL_SUBSTEP_MASK	GENMASK(23, 20)
89 
90 /* Data Bit Timing & Prescaler Register (DBTP) */
91 #define DBTP_TDC		BIT(23)
92 #define DBTP_DBRP_MASK		GENMASK(20, 16)
93 #define DBTP_DTSEG1_MASK	GENMASK(12, 8)
94 #define DBTP_DTSEG2_MASK	GENMASK(7, 4)
95 #define DBTP_DSJW_MASK		GENMASK(3, 0)
96 
97 /* Transmitter Delay Compensation Register (TDCR) */
98 #define TDCR_TDCO_MASK		GENMASK(14, 8)
99 #define TDCR_TDCF_MASK		GENMASK(6, 0)
100 
101 /* Test Register (TEST) */
102 #define TEST_LBCK		BIT(4)
103 
104 /* CC Control Register (CCCR) */
105 #define CCCR_TXP		BIT(14)
106 #define CCCR_TEST		BIT(7)
107 #define CCCR_DAR		BIT(6)
108 #define CCCR_MON		BIT(5)
109 #define CCCR_CSR		BIT(4)
110 #define CCCR_CSA		BIT(3)
111 #define CCCR_ASM		BIT(2)
112 #define CCCR_CCE		BIT(1)
113 #define CCCR_INIT		BIT(0)
114 /* for version 3.0.x */
115 #define CCCR_CMR_MASK		GENMASK(11, 10)
116 #define CCCR_CMR_CANFD		0x1
117 #define CCCR_CMR_CANFD_BRS	0x2
118 #define CCCR_CMR_CAN		0x3
119 #define CCCR_CME_MASK		GENMASK(9, 8)
120 #define CCCR_CME_CAN		0
121 #define CCCR_CME_CANFD		0x1
122 #define CCCR_CME_CANFD_BRS	0x2
123 /* for version >=3.1.x */
124 #define CCCR_EFBI		BIT(13)
125 #define CCCR_PXHD		BIT(12)
126 #define CCCR_BRSE		BIT(9)
127 #define CCCR_FDOE		BIT(8)
128 /* for version >=3.2.x */
129 #define CCCR_NISO		BIT(15)
130 /* for version >=3.3.x */
131 #define CCCR_WMM		BIT(11)
132 #define CCCR_UTSU		BIT(10)
133 
134 /* Nominal Bit Timing & Prescaler Register (NBTP) */
135 #define NBTP_NSJW_MASK		GENMASK(31, 25)
136 #define NBTP_NBRP_MASK		GENMASK(24, 16)
137 #define NBTP_NTSEG1_MASK	GENMASK(15, 8)
138 #define NBTP_NTSEG2_MASK	GENMASK(6, 0)
139 
140 /* Timestamp Counter Configuration Register (TSCC) */
141 #define TSCC_TCP_MASK		GENMASK(19, 16)
142 #define TSCC_TSS_MASK		GENMASK(1, 0)
143 #define TSCC_TSS_DISABLE	0x0
144 #define TSCC_TSS_INTERNAL	0x1
145 #define TSCC_TSS_EXTERNAL	0x2
146 
147 /* Timestamp Counter Value Register (TSCV) */
148 #define TSCV_TSC_MASK		GENMASK(15, 0)
149 
150 /* Error Counter Register (ECR) */
151 #define ECR_RP			BIT(15)
152 #define ECR_REC_MASK		GENMASK(14, 8)
153 #define ECR_TEC_MASK		GENMASK(7, 0)
154 
155 /* Protocol Status Register (PSR) */
156 #define PSR_BO		BIT(7)
157 #define PSR_EW		BIT(6)
158 #define PSR_EP		BIT(5)
159 #define PSR_LEC_MASK	GENMASK(2, 0)
160 
161 /* Interrupt Register (IR) */
162 #define IR_ALL_INT	0xffffffff
163 
164 /* Renamed bits for versions > 3.1.x */
165 #define IR_ARA		BIT(29)
166 #define IR_PED		BIT(28)
167 #define IR_PEA		BIT(27)
168 
169 /* Bits for version 3.0.x */
170 #define IR_STE		BIT(31)
171 #define IR_FOE		BIT(30)
172 #define IR_ACKE		BIT(29)
173 #define IR_BE		BIT(28)
174 #define IR_CRCE		BIT(27)
175 #define IR_WDI		BIT(26)
176 #define IR_BO		BIT(25)
177 #define IR_EW		BIT(24)
178 #define IR_EP		BIT(23)
179 #define IR_ELO		BIT(22)
180 #define IR_BEU		BIT(21)
181 #define IR_BEC		BIT(20)
182 #define IR_DRX		BIT(19)
183 #define IR_TOO		BIT(18)
184 #define IR_MRAF		BIT(17)
185 #define IR_TSW		BIT(16)
186 #define IR_TEFL		BIT(15)
187 #define IR_TEFF		BIT(14)
188 #define IR_TEFW		BIT(13)
189 #define IR_TEFN		BIT(12)
190 #define IR_TFE		BIT(11)
191 #define IR_TCF		BIT(10)
192 #define IR_TC		BIT(9)
193 #define IR_HPM		BIT(8)
194 #define IR_RF1L		BIT(7)
195 #define IR_RF1F		BIT(6)
196 #define IR_RF1W		BIT(5)
197 #define IR_RF1N		BIT(4)
198 #define IR_RF0L		BIT(3)
199 #define IR_RF0F		BIT(2)
200 #define IR_RF0W		BIT(1)
201 #define IR_RF0N		BIT(0)
202 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
203 
204 /* Interrupts for version 3.0.x */
205 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
207 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
208 			 IR_RF1L | IR_RF0L)
209 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
210 
211 /* Interrupts for version >= 3.1.x */
212 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
213 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
214 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
215 			 IR_RF1L | IR_RF0L)
216 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
217 
218 /* Interrupt Line Select (ILS) */
219 #define ILS_ALL_INT0	0x0
220 #define ILS_ALL_INT1	0xFFFFFFFF
221 
222 /* Interrupt Line Enable (ILE) */
223 #define ILE_EINT1	BIT(1)
224 #define ILE_EINT0	BIT(0)
225 
226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227 #define RXFC_FWM_MASK	GENMASK(30, 24)
228 #define RXFC_FS_MASK	GENMASK(22, 16)
229 
230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231 #define RXFS_RFL	BIT(25)
232 #define RXFS_FF		BIT(24)
233 #define RXFS_FPI_MASK	GENMASK(21, 16)
234 #define RXFS_FGI_MASK	GENMASK(13, 8)
235 #define RXFS_FFL_MASK	GENMASK(6, 0)
236 
237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238 #define RXESC_RBDS_MASK		GENMASK(10, 8)
239 #define RXESC_F1DS_MASK		GENMASK(6, 4)
240 #define RXESC_F0DS_MASK		GENMASK(2, 0)
241 #define RXESC_64B		0x7
242 
243 /* Tx Buffer Configuration (TXBC) */
244 #define TXBC_TFQS_MASK		GENMASK(29, 24)
245 #define TXBC_NDTB_MASK		GENMASK(21, 16)
246 
247 /* Tx FIFO/Queue Status (TXFQS) */
248 #define TXFQS_TFQF		BIT(21)
249 #define TXFQS_TFQPI_MASK	GENMASK(20, 16)
250 #define TXFQS_TFGI_MASK		GENMASK(12, 8)
251 #define TXFQS_TFFL_MASK		GENMASK(5, 0)
252 
253 /* Tx Buffer Element Size Configuration (TXESC) */
254 #define TXESC_TBDS_MASK		GENMASK(2, 0)
255 #define TXESC_TBDS_64B		0x7
256 
257 /* Tx Event FIFO Configuration (TXEFC) */
258 #define TXEFC_EFS_MASK		GENMASK(21, 16)
259 
260 /* Tx Event FIFO Status (TXEFS) */
261 #define TXEFS_TEFL		BIT(25)
262 #define TXEFS_EFF		BIT(24)
263 #define TXEFS_EFGI_MASK		GENMASK(12, 8)
264 #define TXEFS_EFFL_MASK		GENMASK(5, 0)
265 
266 /* Tx Event FIFO Acknowledge (TXEFA) */
267 #define TXEFA_EFAI_MASK		GENMASK(4, 0)
268 
269 /* Message RAM Configuration (in bytes) */
270 #define SIDF_ELEMENT_SIZE	4
271 #define XIDF_ELEMENT_SIZE	8
272 #define RXF0_ELEMENT_SIZE	72
273 #define RXF1_ELEMENT_SIZE	72
274 #define RXB_ELEMENT_SIZE	72
275 #define TXE_ELEMENT_SIZE	8
276 #define TXB_ELEMENT_SIZE	72
277 
278 /* Message RAM Elements */
279 #define M_CAN_FIFO_ID		0x0
280 #define M_CAN_FIFO_DLC		0x4
281 #define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
282 
283 /* Rx Buffer Element */
284 /* R0 */
285 #define RX_BUF_ESI		BIT(31)
286 #define RX_BUF_XTD		BIT(30)
287 #define RX_BUF_RTR		BIT(29)
288 /* R1 */
289 #define RX_BUF_ANMF		BIT(31)
290 #define RX_BUF_FDF		BIT(21)
291 #define RX_BUF_BRS		BIT(20)
292 #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
293 
294 /* Tx Buffer Element */
295 /* T0 */
296 #define TX_BUF_ESI		BIT(31)
297 #define TX_BUF_XTD		BIT(30)
298 #define TX_BUF_RTR		BIT(29)
299 /* T1 */
300 #define TX_BUF_EFC		BIT(23)
301 #define TX_BUF_FDF		BIT(21)
302 #define TX_BUF_BRS		BIT(20)
303 #define TX_BUF_MM_MASK		GENMASK(31, 24)
304 #define TX_BUF_DLC_MASK		GENMASK(19, 16)
305 
306 /* Tx event FIFO Element */
307 /* E1 */
308 #define TX_EVENT_MM_MASK	GENMASK(31, 24)
309 #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
310 
311 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
312 {
313 	return cdev->ops->read_reg(cdev, reg);
314 }
315 
316 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
317 			       u32 val)
318 {
319 	cdev->ops->write_reg(cdev, reg, val);
320 }
321 
322 static u32 m_can_fifo_read(struct m_can_classdev *cdev,
323 			   u32 fgi, unsigned int offset)
324 {
325 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
326 		offset;
327 
328 	return cdev->ops->read_fifo(cdev, addr_offset);
329 }
330 
331 static void m_can_fifo_write(struct m_can_classdev *cdev,
332 			     u32 fpi, unsigned int offset, u32 val)
333 {
334 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
335 		offset;
336 
337 	cdev->ops->write_fifo(cdev, addr_offset, val);
338 }
339 
340 static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
341 					   u32 fpi, u32 val)
342 {
343 	cdev->ops->write_fifo(cdev, fpi, val);
344 }
345 
346 static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
347 {
348 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
349 		offset;
350 
351 	return cdev->ops->read_fifo(cdev, addr_offset);
352 }
353 
354 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
355 {
356 	return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
357 }
358 
359 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
360 {
361 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
362 	u32 timeout = 10;
363 	u32 val = 0;
364 
365 	/* Clear the Clock stop request if it was set */
366 	if (cccr & CCCR_CSR)
367 		cccr &= ~CCCR_CSR;
368 
369 	if (enable) {
370 		/* enable m_can configuration */
371 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
372 		udelay(5);
373 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
374 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
375 	} else {
376 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
377 	}
378 
379 	/* there's a delay for module initialization */
380 	if (enable)
381 		val = CCCR_INIT | CCCR_CCE;
382 
383 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
384 		if (timeout == 0) {
385 			netdev_warn(cdev->net, "Failed to init module\n");
386 			return;
387 		}
388 		timeout--;
389 		udelay(1);
390 	}
391 }
392 
393 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
394 {
395 	/* Only interrupt line 0 is used in this driver */
396 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
397 }
398 
399 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
400 {
401 	m_can_write(cdev, M_CAN_ILE, 0x0);
402 }
403 
404 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
405  * width.
406  */
407 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
408 {
409 	u32 tscv;
410 	u32 tsc;
411 
412 	tscv = m_can_read(cdev, M_CAN_TSCV);
413 	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
414 
415 	return (tsc << 16);
416 }
417 
418 static void m_can_clean(struct net_device *net)
419 {
420 	struct m_can_classdev *cdev = netdev_priv(net);
421 
422 	if (cdev->tx_skb) {
423 		int putidx = 0;
424 
425 		net->stats.tx_errors++;
426 		if (cdev->version > 30)
427 			putidx = FIELD_GET(TXFQS_TFQPI_MASK,
428 					   m_can_read(cdev, M_CAN_TXFQS));
429 
430 		can_free_echo_skb(cdev->net, putidx, NULL);
431 		cdev->tx_skb = NULL;
432 	}
433 }
434 
435 /* For peripherals, pass skb to rx-offload, which will push skb from
436  * napi. For non-peripherals, RX is done in napi already, so push
437  * directly. timestamp is used to ensure good skb ordering in
438  * rx-offload and is ignored for non-peripherals.
439 */
440 static void m_can_receive_skb(struct m_can_classdev *cdev,
441 			      struct sk_buff *skb,
442 			      u32 timestamp)
443 {
444 	if (cdev->is_peripheral) {
445 		struct net_device_stats *stats = &cdev->net->stats;
446 		int err;
447 
448 		err = can_rx_offload_queue_sorted(&cdev->offload, skb,
449 						  timestamp);
450 		if (err)
451 			stats->rx_fifo_errors++;
452 	} else {
453 		netif_receive_skb(skb);
454 	}
455 }
456 
457 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
458 {
459 	struct net_device_stats *stats = &dev->stats;
460 	struct m_can_classdev *cdev = netdev_priv(dev);
461 	struct canfd_frame *cf;
462 	struct sk_buff *skb;
463 	u32 id, fgi, dlc;
464 	u32 timestamp = 0;
465 	int i;
466 
467 	/* calculate the fifo get index for where to read data */
468 	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
469 	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
470 	if (dlc & RX_BUF_FDF)
471 		skb = alloc_canfd_skb(dev, &cf);
472 	else
473 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
474 	if (!skb) {
475 		stats->rx_dropped++;
476 		return;
477 	}
478 
479 	if (dlc & RX_BUF_FDF)
480 		cf->len = can_fd_dlc2len((dlc >> 16) & 0x0F);
481 	else
482 		cf->len = can_cc_dlc2len((dlc >> 16) & 0x0F);
483 
484 	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
485 	if (id & RX_BUF_XTD)
486 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
487 	else
488 		cf->can_id = (id >> 18) & CAN_SFF_MASK;
489 
490 	if (id & RX_BUF_ESI) {
491 		cf->flags |= CANFD_ESI;
492 		netdev_dbg(dev, "ESI Error\n");
493 	}
494 
495 	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
496 		cf->can_id |= CAN_RTR_FLAG;
497 	} else {
498 		if (dlc & RX_BUF_BRS)
499 			cf->flags |= CANFD_BRS;
500 
501 		for (i = 0; i < cf->len; i += 4)
502 			*(u32 *)(cf->data + i) =
503 				m_can_fifo_read(cdev, fgi,
504 						M_CAN_FIFO_DATA(i / 4));
505 	}
506 
507 	/* acknowledge rx fifo 0 */
508 	m_can_write(cdev, M_CAN_RXF0A, fgi);
509 
510 	stats->rx_packets++;
511 	stats->rx_bytes += cf->len;
512 
513 	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, dlc);
514 
515 	m_can_receive_skb(cdev, skb, timestamp);
516 }
517 
518 static int m_can_do_rx_poll(struct net_device *dev, int quota)
519 {
520 	struct m_can_classdev *cdev = netdev_priv(dev);
521 	u32 pkts = 0;
522 	u32 rxfs;
523 
524 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
525 	if (!(rxfs & RXFS_FFL_MASK)) {
526 		netdev_dbg(dev, "no messages in fifo0\n");
527 		return 0;
528 	}
529 
530 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
531 		m_can_read_fifo(dev, rxfs);
532 
533 		quota--;
534 		pkts++;
535 		rxfs = m_can_read(cdev, M_CAN_RXF0S);
536 	}
537 
538 	if (pkts)
539 		can_led_event(dev, CAN_LED_EVENT_RX);
540 
541 	return pkts;
542 }
543 
544 static int m_can_handle_lost_msg(struct net_device *dev)
545 {
546 	struct m_can_classdev *cdev = netdev_priv(dev);
547 	struct net_device_stats *stats = &dev->stats;
548 	struct sk_buff *skb;
549 	struct can_frame *frame;
550 	u32 timestamp = 0;
551 
552 	netdev_err(dev, "msg lost in rxf0\n");
553 
554 	stats->rx_errors++;
555 	stats->rx_over_errors++;
556 
557 	skb = alloc_can_err_skb(dev, &frame);
558 	if (unlikely(!skb))
559 		return 0;
560 
561 	frame->can_id |= CAN_ERR_CRTL;
562 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
563 
564 	if (cdev->is_peripheral)
565 		timestamp = m_can_get_timestamp(cdev);
566 
567 	m_can_receive_skb(cdev, skb, timestamp);
568 
569 	return 1;
570 }
571 
572 static int m_can_handle_lec_err(struct net_device *dev,
573 				enum m_can_lec_type lec_type)
574 {
575 	struct m_can_classdev *cdev = netdev_priv(dev);
576 	struct net_device_stats *stats = &dev->stats;
577 	struct can_frame *cf;
578 	struct sk_buff *skb;
579 	u32 timestamp = 0;
580 
581 	cdev->can.can_stats.bus_error++;
582 	stats->rx_errors++;
583 
584 	/* propagate the error condition to the CAN stack */
585 	skb = alloc_can_err_skb(dev, &cf);
586 	if (unlikely(!skb))
587 		return 0;
588 
589 	/* check for 'last error code' which tells us the
590 	 * type of the last error to occur on the CAN bus
591 	 */
592 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
593 
594 	switch (lec_type) {
595 	case LEC_STUFF_ERROR:
596 		netdev_dbg(dev, "stuff error\n");
597 		cf->data[2] |= CAN_ERR_PROT_STUFF;
598 		break;
599 	case LEC_FORM_ERROR:
600 		netdev_dbg(dev, "form error\n");
601 		cf->data[2] |= CAN_ERR_PROT_FORM;
602 		break;
603 	case LEC_ACK_ERROR:
604 		netdev_dbg(dev, "ack error\n");
605 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
606 		break;
607 	case LEC_BIT1_ERROR:
608 		netdev_dbg(dev, "bit1 error\n");
609 		cf->data[2] |= CAN_ERR_PROT_BIT1;
610 		break;
611 	case LEC_BIT0_ERROR:
612 		netdev_dbg(dev, "bit0 error\n");
613 		cf->data[2] |= CAN_ERR_PROT_BIT0;
614 		break;
615 	case LEC_CRC_ERROR:
616 		netdev_dbg(dev, "CRC error\n");
617 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
618 		break;
619 	default:
620 		break;
621 	}
622 
623 	stats->rx_packets++;
624 	stats->rx_bytes += cf->len;
625 
626 	if (cdev->is_peripheral)
627 		timestamp = m_can_get_timestamp(cdev);
628 
629 	m_can_receive_skb(cdev, skb, timestamp);
630 
631 	return 1;
632 }
633 
634 static int __m_can_get_berr_counter(const struct net_device *dev,
635 				    struct can_berr_counter *bec)
636 {
637 	struct m_can_classdev *cdev = netdev_priv(dev);
638 	unsigned int ecr;
639 
640 	ecr = m_can_read(cdev, M_CAN_ECR);
641 	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
642 	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
643 
644 	return 0;
645 }
646 
647 static int m_can_clk_start(struct m_can_classdev *cdev)
648 {
649 	if (cdev->pm_clock_support == 0)
650 		return 0;
651 
652 	return pm_runtime_resume_and_get(cdev->dev);
653 }
654 
655 static void m_can_clk_stop(struct m_can_classdev *cdev)
656 {
657 	if (cdev->pm_clock_support)
658 		pm_runtime_put_sync(cdev->dev);
659 }
660 
661 static int m_can_get_berr_counter(const struct net_device *dev,
662 				  struct can_berr_counter *bec)
663 {
664 	struct m_can_classdev *cdev = netdev_priv(dev);
665 	int err;
666 
667 	err = m_can_clk_start(cdev);
668 	if (err)
669 		return err;
670 
671 	__m_can_get_berr_counter(dev, bec);
672 
673 	m_can_clk_stop(cdev);
674 
675 	return 0;
676 }
677 
678 static int m_can_handle_state_change(struct net_device *dev,
679 				     enum can_state new_state)
680 {
681 	struct m_can_classdev *cdev = netdev_priv(dev);
682 	struct net_device_stats *stats = &dev->stats;
683 	struct can_frame *cf;
684 	struct sk_buff *skb;
685 	struct can_berr_counter bec;
686 	unsigned int ecr;
687 	u32 timestamp = 0;
688 
689 	switch (new_state) {
690 	case CAN_STATE_ERROR_WARNING:
691 		/* error warning state */
692 		cdev->can.can_stats.error_warning++;
693 		cdev->can.state = CAN_STATE_ERROR_WARNING;
694 		break;
695 	case CAN_STATE_ERROR_PASSIVE:
696 		/* error passive state */
697 		cdev->can.can_stats.error_passive++;
698 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
699 		break;
700 	case CAN_STATE_BUS_OFF:
701 		/* bus-off state */
702 		cdev->can.state = CAN_STATE_BUS_OFF;
703 		m_can_disable_all_interrupts(cdev);
704 		cdev->can.can_stats.bus_off++;
705 		can_bus_off(dev);
706 		break;
707 	default:
708 		break;
709 	}
710 
711 	/* propagate the error condition to the CAN stack */
712 	skb = alloc_can_err_skb(dev, &cf);
713 	if (unlikely(!skb))
714 		return 0;
715 
716 	__m_can_get_berr_counter(dev, &bec);
717 
718 	switch (new_state) {
719 	case CAN_STATE_ERROR_WARNING:
720 		/* error warning state */
721 		cf->can_id |= CAN_ERR_CRTL;
722 		cf->data[1] = (bec.txerr > bec.rxerr) ?
723 			CAN_ERR_CRTL_TX_WARNING :
724 			CAN_ERR_CRTL_RX_WARNING;
725 		cf->data[6] = bec.txerr;
726 		cf->data[7] = bec.rxerr;
727 		break;
728 	case CAN_STATE_ERROR_PASSIVE:
729 		/* error passive state */
730 		cf->can_id |= CAN_ERR_CRTL;
731 		ecr = m_can_read(cdev, M_CAN_ECR);
732 		if (ecr & ECR_RP)
733 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
734 		if (bec.txerr > 127)
735 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
736 		cf->data[6] = bec.txerr;
737 		cf->data[7] = bec.rxerr;
738 		break;
739 	case CAN_STATE_BUS_OFF:
740 		/* bus-off state */
741 		cf->can_id |= CAN_ERR_BUSOFF;
742 		break;
743 	default:
744 		break;
745 	}
746 
747 	stats->rx_packets++;
748 	stats->rx_bytes += cf->len;
749 
750 	if (cdev->is_peripheral)
751 		timestamp = m_can_get_timestamp(cdev);
752 
753 	m_can_receive_skb(cdev, skb, timestamp);
754 
755 	return 1;
756 }
757 
758 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
759 {
760 	struct m_can_classdev *cdev = netdev_priv(dev);
761 	int work_done = 0;
762 
763 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
764 		netdev_dbg(dev, "entered error warning state\n");
765 		work_done += m_can_handle_state_change(dev,
766 						       CAN_STATE_ERROR_WARNING);
767 	}
768 
769 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
770 		netdev_dbg(dev, "entered error passive state\n");
771 		work_done += m_can_handle_state_change(dev,
772 						       CAN_STATE_ERROR_PASSIVE);
773 	}
774 
775 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
776 		netdev_dbg(dev, "entered error bus off state\n");
777 		work_done += m_can_handle_state_change(dev,
778 						       CAN_STATE_BUS_OFF);
779 	}
780 
781 	return work_done;
782 }
783 
784 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
785 {
786 	if (irqstatus & IR_WDI)
787 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
788 	if (irqstatus & IR_ELO)
789 		netdev_err(dev, "Error Logging Overflow\n");
790 	if (irqstatus & IR_BEU)
791 		netdev_err(dev, "Bit Error Uncorrected\n");
792 	if (irqstatus & IR_BEC)
793 		netdev_err(dev, "Bit Error Corrected\n");
794 	if (irqstatus & IR_TOO)
795 		netdev_err(dev, "Timeout reached\n");
796 	if (irqstatus & IR_MRAF)
797 		netdev_err(dev, "Message RAM access failure occurred\n");
798 }
799 
800 static inline bool is_lec_err(u32 psr)
801 {
802 	psr &= LEC_UNUSED;
803 
804 	return psr && (psr != LEC_UNUSED);
805 }
806 
807 static inline bool m_can_is_protocol_err(u32 irqstatus)
808 {
809 	return irqstatus & IR_ERR_LEC_31X;
810 }
811 
812 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
813 {
814 	struct net_device_stats *stats = &dev->stats;
815 	struct m_can_classdev *cdev = netdev_priv(dev);
816 	struct can_frame *cf;
817 	struct sk_buff *skb;
818 	u32 timestamp = 0;
819 
820 	/* propagate the error condition to the CAN stack */
821 	skb = alloc_can_err_skb(dev, &cf);
822 
823 	/* update tx error stats since there is protocol error */
824 	stats->tx_errors++;
825 
826 	/* update arbitration lost status */
827 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
828 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
829 		cdev->can.can_stats.arbitration_lost++;
830 		if (skb) {
831 			cf->can_id |= CAN_ERR_LOSTARB;
832 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
833 		}
834 	}
835 
836 	if (unlikely(!skb)) {
837 		netdev_dbg(dev, "allocation of skb failed\n");
838 		return 0;
839 	}
840 
841 	if (cdev->is_peripheral)
842 		timestamp = m_can_get_timestamp(cdev);
843 
844 	m_can_receive_skb(cdev, skb, timestamp);
845 
846 	return 1;
847 }
848 
849 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
850 				   u32 psr)
851 {
852 	struct m_can_classdev *cdev = netdev_priv(dev);
853 	int work_done = 0;
854 
855 	if (irqstatus & IR_RF0L)
856 		work_done += m_can_handle_lost_msg(dev);
857 
858 	/* handle lec errors on the bus */
859 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
860 	    is_lec_err(psr))
861 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
862 
863 	/* handle protocol errors in arbitration phase */
864 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
865 	    m_can_is_protocol_err(irqstatus))
866 		work_done += m_can_handle_protocol_error(dev, irqstatus);
867 
868 	/* other unproccessed error interrupts */
869 	m_can_handle_other_err(dev, irqstatus);
870 
871 	return work_done;
872 }
873 
874 static int m_can_rx_handler(struct net_device *dev, int quota)
875 {
876 	struct m_can_classdev *cdev = netdev_priv(dev);
877 	int work_done = 0;
878 	u32 irqstatus, psr;
879 
880 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
881 	if (!irqstatus)
882 		goto end;
883 
884 	/* Errata workaround for issue "Needless activation of MRAF irq"
885 	 * During frame reception while the MCAN is in Error Passive state
886 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
887 	 * it may happen that MCAN_IR.MRAF is set although there was no
888 	 * Message RAM access failure.
889 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
890 	 * The Message RAM Access Failure interrupt routine needs to check
891 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
892 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
893 	 */
894 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
895 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
896 		struct can_berr_counter bec;
897 
898 		__m_can_get_berr_counter(dev, &bec);
899 		if (bec.rxerr == 127) {
900 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
901 			irqstatus &= ~IR_MRAF;
902 		}
903 	}
904 
905 	psr = m_can_read(cdev, M_CAN_PSR);
906 
907 	if (irqstatus & IR_ERR_STATE)
908 		work_done += m_can_handle_state_errors(dev, psr);
909 
910 	if (irqstatus & IR_ERR_BUS_30X)
911 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
912 
913 	if (irqstatus & IR_RF0N)
914 		work_done += m_can_do_rx_poll(dev, (quota - work_done));
915 end:
916 	return work_done;
917 }
918 
919 static int m_can_rx_peripheral(struct net_device *dev)
920 {
921 	struct m_can_classdev *cdev = netdev_priv(dev);
922 
923 	m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT);
924 
925 	m_can_enable_all_interrupts(cdev);
926 
927 	return 0;
928 }
929 
930 static int m_can_poll(struct napi_struct *napi, int quota)
931 {
932 	struct net_device *dev = napi->dev;
933 	struct m_can_classdev *cdev = netdev_priv(dev);
934 	int work_done;
935 
936 	work_done = m_can_rx_handler(dev, quota);
937 	if (work_done < quota) {
938 		napi_complete_done(napi, work_done);
939 		m_can_enable_all_interrupts(cdev);
940 	}
941 
942 	return work_done;
943 }
944 
945 /* Echo tx skb and update net stats. Peripherals use rx-offload for
946  * echo. timestamp is used for peripherals to ensure correct ordering
947  * by rx-offload, and is ignored for non-peripherals.
948 */
949 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
950 				  unsigned int msg_mark,
951 				  u32 timestamp)
952 {
953 	struct net_device *dev = cdev->net;
954 	struct net_device_stats *stats = &dev->stats;
955 
956 	if (cdev->is_peripheral)
957 		stats->tx_bytes +=
958 			can_rx_offload_get_echo_skb(&cdev->offload,
959 						    msg_mark,
960 						    timestamp,
961 						    NULL);
962 	else
963 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
964 
965 	stats->tx_packets++;
966 }
967 
968 static void m_can_echo_tx_event(struct net_device *dev)
969 {
970 	u32 txe_count = 0;
971 	u32 m_can_txefs;
972 	u32 fgi = 0;
973 	int i = 0;
974 	unsigned int msg_mark;
975 
976 	struct m_can_classdev *cdev = netdev_priv(dev);
977 
978 	/* read tx event fifo status */
979 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
980 
981 	/* Get Tx Event fifo element count */
982 	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
983 
984 	/* Get and process all sent elements */
985 	for (i = 0; i < txe_count; i++) {
986 		u32 txe, timestamp = 0;
987 
988 		/* retrieve get index */
989 		fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS));
990 
991 		/* get message marker, timestamp */
992 		txe = m_can_txe_fifo_read(cdev, fgi, 4);
993 		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
994 		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe);
995 
996 		/* ack txe element */
997 		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
998 							  fgi));
999 
1000 		/* update stats */
1001 		m_can_tx_update_stats(cdev, msg_mark, timestamp);
1002 	}
1003 }
1004 
1005 static irqreturn_t m_can_isr(int irq, void *dev_id)
1006 {
1007 	struct net_device *dev = (struct net_device *)dev_id;
1008 	struct m_can_classdev *cdev = netdev_priv(dev);
1009 	u32 ir;
1010 
1011 	if (pm_runtime_suspended(cdev->dev))
1012 		return IRQ_NONE;
1013 	ir = m_can_read(cdev, M_CAN_IR);
1014 	if (!ir)
1015 		return IRQ_NONE;
1016 
1017 	/* ACK all irqs */
1018 	if (ir & IR_ALL_INT)
1019 		m_can_write(cdev, M_CAN_IR, ir);
1020 
1021 	if (cdev->ops->clear_interrupts)
1022 		cdev->ops->clear_interrupts(cdev);
1023 
1024 	/* schedule NAPI in case of
1025 	 * - rx IRQ
1026 	 * - state change IRQ
1027 	 * - bus error IRQ and bus error reporting
1028 	 */
1029 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1030 		cdev->irqstatus = ir;
1031 		m_can_disable_all_interrupts(cdev);
1032 		if (!cdev->is_peripheral)
1033 			napi_schedule(&cdev->napi);
1034 		else
1035 			m_can_rx_peripheral(dev);
1036 	}
1037 
1038 	if (cdev->version == 30) {
1039 		if (ir & IR_TC) {
1040 			/* Transmission Complete Interrupt*/
1041 			u32 timestamp = 0;
1042 
1043 			if (cdev->is_peripheral)
1044 				timestamp = m_can_get_timestamp(cdev);
1045 			m_can_tx_update_stats(cdev, 0, timestamp);
1046 
1047 			can_led_event(dev, CAN_LED_EVENT_TX);
1048 			netif_wake_queue(dev);
1049 		}
1050 	} else  {
1051 		if (ir & IR_TEFN) {
1052 			/* New TX FIFO Element arrived */
1053 			m_can_echo_tx_event(dev);
1054 			can_led_event(dev, CAN_LED_EVENT_TX);
1055 			if (netif_queue_stopped(dev) &&
1056 			    !m_can_tx_fifo_full(cdev))
1057 				netif_wake_queue(dev);
1058 		}
1059 	}
1060 
1061 	return IRQ_HANDLED;
1062 }
1063 
1064 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1065 	.name = KBUILD_MODNAME,
1066 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1067 	.tseg1_max = 64,
1068 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1069 	.tseg2_max = 16,
1070 	.sjw_max = 16,
1071 	.brp_min = 1,
1072 	.brp_max = 1024,
1073 	.brp_inc = 1,
1074 };
1075 
1076 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1077 	.name = KBUILD_MODNAME,
1078 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1079 	.tseg1_max = 16,
1080 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1081 	.tseg2_max = 8,
1082 	.sjw_max = 4,
1083 	.brp_min = 1,
1084 	.brp_max = 32,
1085 	.brp_inc = 1,
1086 };
1087 
1088 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1089 	.name = KBUILD_MODNAME,
1090 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1091 	.tseg1_max = 256,
1092 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1093 	.tseg2_max = 128,
1094 	.sjw_max = 128,
1095 	.brp_min = 1,
1096 	.brp_max = 512,
1097 	.brp_inc = 1,
1098 };
1099 
1100 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1101 	.name = KBUILD_MODNAME,
1102 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1103 	.tseg1_max = 32,
1104 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1105 	.tseg2_max = 16,
1106 	.sjw_max = 16,
1107 	.brp_min = 1,
1108 	.brp_max = 32,
1109 	.brp_inc = 1,
1110 };
1111 
1112 static int m_can_set_bittiming(struct net_device *dev)
1113 {
1114 	struct m_can_classdev *cdev = netdev_priv(dev);
1115 	const struct can_bittiming *bt = &cdev->can.bittiming;
1116 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1117 	u16 brp, sjw, tseg1, tseg2;
1118 	u32 reg_btp;
1119 
1120 	brp = bt->brp - 1;
1121 	sjw = bt->sjw - 1;
1122 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1123 	tseg2 = bt->phase_seg2 - 1;
1124 	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1125 		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1126 		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1127 		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1128 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1129 
1130 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1131 		reg_btp = 0;
1132 		brp = dbt->brp - 1;
1133 		sjw = dbt->sjw - 1;
1134 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1135 		tseg2 = dbt->phase_seg2 - 1;
1136 
1137 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1138 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1139 		 * paper presented at the International CAN Conference 2013
1140 		 */
1141 		if (dbt->bitrate > 2500000) {
1142 			u32 tdco, ssp;
1143 
1144 			/* Use the same value of secondary sampling point
1145 			 * as the data sampling point
1146 			 */
1147 			ssp = dbt->sample_point;
1148 
1149 			/* Equation based on Bosch's M_CAN User Manual's
1150 			 * Transmitter Delay Compensation Section
1151 			 */
1152 			tdco = (cdev->can.clock.freq / 1000) *
1153 				ssp / dbt->bitrate;
1154 
1155 			/* Max valid TDCO value is 127 */
1156 			if (tdco > 127) {
1157 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1158 					    tdco);
1159 				tdco = 127;
1160 			}
1161 
1162 			reg_btp |= DBTP_TDC;
1163 			m_can_write(cdev, M_CAN_TDCR,
1164 				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1165 		}
1166 
1167 		reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1168 			  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1169 			  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1170 			  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1171 
1172 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 /* Configure M_CAN chip:
1179  * - set rx buffer/fifo element size
1180  * - configure rx fifo
1181  * - accept non-matching frame into fifo 0
1182  * - configure tx buffer
1183  *		- >= v3.1.x: TX FIFO is used
1184  * - configure mode
1185  * - setup bittiming
1186  * - configure timestamp generation
1187  */
1188 static void m_can_chip_config(struct net_device *dev)
1189 {
1190 	struct m_can_classdev *cdev = netdev_priv(dev);
1191 	u32 cccr, test;
1192 
1193 	m_can_config_endisable(cdev, true);
1194 
1195 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1196 	m_can_write(cdev, M_CAN_RXESC,
1197 		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1198 		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1199 		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1200 
1201 	/* Accept Non-matching Frames Into FIFO 0 */
1202 	m_can_write(cdev, M_CAN_GFC, 0x0);
1203 
1204 	if (cdev->version == 30) {
1205 		/* only support one Tx Buffer currently */
1206 		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1207 			    cdev->mcfg[MRAM_TXB].off);
1208 	} else {
1209 		/* TX FIFO is used for newer IP Core versions */
1210 		m_can_write(cdev, M_CAN_TXBC,
1211 			    FIELD_PREP(TXBC_TFQS_MASK,
1212 				       cdev->mcfg[MRAM_TXB].num) |
1213 			    cdev->mcfg[MRAM_TXB].off);
1214 	}
1215 
1216 	/* support 64 bytes payload */
1217 	m_can_write(cdev, M_CAN_TXESC,
1218 		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1219 
1220 	/* TX Event FIFO */
1221 	if (cdev->version == 30) {
1222 		m_can_write(cdev, M_CAN_TXEFC,
1223 			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
1224 			    cdev->mcfg[MRAM_TXE].off);
1225 	} else {
1226 		/* Full TX Event FIFO is used */
1227 		m_can_write(cdev, M_CAN_TXEFC,
1228 			    FIELD_PREP(TXEFC_EFS_MASK,
1229 				       cdev->mcfg[MRAM_TXE].num) |
1230 			    cdev->mcfg[MRAM_TXE].off);
1231 	}
1232 
1233 	/* rx fifo configuration, blocking mode, fifo size 1 */
1234 	m_can_write(cdev, M_CAN_RXF0C,
1235 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1236 		    cdev->mcfg[MRAM_RXF0].off);
1237 
1238 	m_can_write(cdev, M_CAN_RXF1C,
1239 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1240 		    cdev->mcfg[MRAM_RXF1].off);
1241 
1242 	cccr = m_can_read(cdev, M_CAN_CCCR);
1243 	test = m_can_read(cdev, M_CAN_TEST);
1244 	test &= ~TEST_LBCK;
1245 	if (cdev->version == 30) {
1246 		/* Version 3.0.x */
1247 
1248 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1249 			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1250 			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1251 
1252 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1253 			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1254 
1255 	} else {
1256 		/* Version 3.1.x or 3.2.x */
1257 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1258 			  CCCR_NISO | CCCR_DAR);
1259 
1260 		/* Only 3.2.x has NISO Bit implemented */
1261 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1262 			cccr |= CCCR_NISO;
1263 
1264 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1265 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1266 	}
1267 
1268 	/* Loopback Mode */
1269 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1270 		cccr |= CCCR_TEST | CCCR_MON;
1271 		test |= TEST_LBCK;
1272 	}
1273 
1274 	/* Enable Monitoring (all versions) */
1275 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1276 		cccr |= CCCR_MON;
1277 
1278 	/* Disable Auto Retransmission (all versions) */
1279 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1280 		cccr |= CCCR_DAR;
1281 
1282 	/* Write config */
1283 	m_can_write(cdev, M_CAN_CCCR, cccr);
1284 	m_can_write(cdev, M_CAN_TEST, test);
1285 
1286 	/* Enable interrupts */
1287 	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1288 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1289 		if (cdev->version == 30)
1290 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1291 				    ~(IR_ERR_LEC_30X));
1292 		else
1293 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1294 				    ~(IR_ERR_LEC_31X));
1295 	else
1296 		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1297 
1298 	/* route all interrupts to INT0 */
1299 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1300 
1301 	/* set bittiming params */
1302 	m_can_set_bittiming(dev);
1303 
1304 	/* enable internal timestamp generation, with a prescalar of 16. The
1305 	 * prescalar is applied to the nominal bit timing */
1306 	m_can_write(cdev, M_CAN_TSCC, FIELD_PREP(TSCC_TCP_MASK, 0xf));
1307 
1308 	m_can_config_endisable(cdev, false);
1309 
1310 	if (cdev->ops->init)
1311 		cdev->ops->init(cdev);
1312 }
1313 
1314 static void m_can_start(struct net_device *dev)
1315 {
1316 	struct m_can_classdev *cdev = netdev_priv(dev);
1317 
1318 	/* basic m_can configuration */
1319 	m_can_chip_config(dev);
1320 
1321 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1322 
1323 	m_can_enable_all_interrupts(cdev);
1324 }
1325 
1326 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1327 {
1328 	switch (mode) {
1329 	case CAN_MODE_START:
1330 		m_can_clean(dev);
1331 		m_can_start(dev);
1332 		netif_wake_queue(dev);
1333 		break;
1334 	default:
1335 		return -EOPNOTSUPP;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 /* Checks core release number of M_CAN
1342  * returns 0 if an unsupported device is detected
1343  * else it returns the release and step coded as:
1344  * return value = 10 * <release> + 1 * <step>
1345  */
1346 static int m_can_check_core_release(struct m_can_classdev *cdev)
1347 {
1348 	u32 crel_reg;
1349 	u8 rel;
1350 	u8 step;
1351 	int res;
1352 
1353 	/* Read Core Release Version and split into version number
1354 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1355 	 */
1356 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1357 	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1358 	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1359 
1360 	if (rel == 3) {
1361 		/* M_CAN v3.x.y: create return value */
1362 		res = 30 + step;
1363 	} else {
1364 		/* Unsupported M_CAN version */
1365 		res = 0;
1366 	}
1367 
1368 	return res;
1369 }
1370 
1371 /* Selectable Non ISO support only in version 3.2.x
1372  * This function checks if the bit is writable.
1373  */
1374 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1375 {
1376 	u32 cccr_reg, cccr_poll = 0;
1377 	int niso_timeout = -ETIMEDOUT;
1378 	int i;
1379 
1380 	m_can_config_endisable(cdev, true);
1381 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1382 	cccr_reg |= CCCR_NISO;
1383 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1384 
1385 	for (i = 0; i <= 10; i++) {
1386 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1387 		if (cccr_poll == cccr_reg) {
1388 			niso_timeout = 0;
1389 			break;
1390 		}
1391 
1392 		usleep_range(1, 5);
1393 	}
1394 
1395 	/* Clear NISO */
1396 	cccr_reg &= ~(CCCR_NISO);
1397 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1398 
1399 	m_can_config_endisable(cdev, false);
1400 
1401 	/* return false if time out (-ETIMEDOUT), else return true */
1402 	return !niso_timeout;
1403 }
1404 
1405 static int m_can_dev_setup(struct m_can_classdev *cdev)
1406 {
1407 	struct net_device *dev = cdev->net;
1408 	int m_can_version;
1409 
1410 	m_can_version = m_can_check_core_release(cdev);
1411 	/* return if unsupported version */
1412 	if (!m_can_version) {
1413 		dev_err(cdev->dev, "Unsupported version number: %2d",
1414 			m_can_version);
1415 		return -EINVAL;
1416 	}
1417 
1418 	if (!cdev->is_peripheral)
1419 		netif_napi_add(dev, &cdev->napi,
1420 			       m_can_poll, M_CAN_NAPI_WEIGHT);
1421 
1422 	/* Shared properties of all M_CAN versions */
1423 	cdev->version = m_can_version;
1424 	cdev->can.do_set_mode = m_can_set_mode;
1425 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1426 
1427 	/* Set M_CAN supported operations */
1428 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1429 		CAN_CTRLMODE_LISTENONLY |
1430 		CAN_CTRLMODE_BERR_REPORTING |
1431 		CAN_CTRLMODE_FD |
1432 		CAN_CTRLMODE_ONE_SHOT;
1433 
1434 	/* Set properties depending on M_CAN version */
1435 	switch (cdev->version) {
1436 	case 30:
1437 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1438 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1439 		cdev->can.bittiming_const = cdev->bit_timing ?
1440 			cdev->bit_timing : &m_can_bittiming_const_30X;
1441 
1442 		cdev->can.data_bittiming_const = cdev->data_timing ?
1443 			cdev->data_timing :
1444 			&m_can_data_bittiming_const_30X;
1445 		break;
1446 	case 31:
1447 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1448 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1449 		cdev->can.bittiming_const = cdev->bit_timing ?
1450 			cdev->bit_timing : &m_can_bittiming_const_31X;
1451 
1452 		cdev->can.data_bittiming_const = cdev->data_timing ?
1453 			cdev->data_timing :
1454 			&m_can_data_bittiming_const_31X;
1455 		break;
1456 	case 32:
1457 	case 33:
1458 		/* Support both MCAN version v3.2.x and v3.3.0 */
1459 		cdev->can.bittiming_const = cdev->bit_timing ?
1460 			cdev->bit_timing : &m_can_bittiming_const_31X;
1461 
1462 		cdev->can.data_bittiming_const = cdev->data_timing ?
1463 			cdev->data_timing :
1464 			&m_can_data_bittiming_const_31X;
1465 
1466 		cdev->can.ctrlmode_supported |=
1467 			(m_can_niso_supported(cdev) ?
1468 			 CAN_CTRLMODE_FD_NON_ISO : 0);
1469 		break;
1470 	default:
1471 		dev_err(cdev->dev, "Unsupported version number: %2d",
1472 			cdev->version);
1473 		return -EINVAL;
1474 	}
1475 
1476 	if (cdev->ops->init)
1477 		cdev->ops->init(cdev);
1478 
1479 	return 0;
1480 }
1481 
1482 static void m_can_stop(struct net_device *dev)
1483 {
1484 	struct m_can_classdev *cdev = netdev_priv(dev);
1485 
1486 	/* disable all interrupts */
1487 	m_can_disable_all_interrupts(cdev);
1488 
1489 	/* Set init mode to disengage from the network */
1490 	m_can_config_endisable(cdev, true);
1491 
1492 	/* set the state as STOPPED */
1493 	cdev->can.state = CAN_STATE_STOPPED;
1494 }
1495 
1496 static int m_can_close(struct net_device *dev)
1497 {
1498 	struct m_can_classdev *cdev = netdev_priv(dev);
1499 
1500 	netif_stop_queue(dev);
1501 
1502 	if (!cdev->is_peripheral)
1503 		napi_disable(&cdev->napi);
1504 
1505 	m_can_stop(dev);
1506 	m_can_clk_stop(cdev);
1507 	free_irq(dev->irq, dev);
1508 
1509 	if (cdev->is_peripheral) {
1510 		cdev->tx_skb = NULL;
1511 		destroy_workqueue(cdev->tx_wq);
1512 		cdev->tx_wq = NULL;
1513 	}
1514 
1515 	if (cdev->is_peripheral)
1516 		can_rx_offload_disable(&cdev->offload);
1517 
1518 	close_candev(dev);
1519 	can_led_event(dev, CAN_LED_EVENT_STOP);
1520 
1521 	return 0;
1522 }
1523 
1524 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1525 {
1526 	struct m_can_classdev *cdev = netdev_priv(dev);
1527 	/*get wrap around for loopback skb index */
1528 	unsigned int wrap = cdev->can.echo_skb_max;
1529 	int next_idx;
1530 
1531 	/* calculate next index */
1532 	next_idx = (++putidx >= wrap ? 0 : putidx);
1533 
1534 	/* check if occupied */
1535 	return !!cdev->can.echo_skb[next_idx];
1536 }
1537 
1538 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1539 {
1540 	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1541 	struct net_device *dev = cdev->net;
1542 	struct sk_buff *skb = cdev->tx_skb;
1543 	u32 id, cccr, fdflags;
1544 	int i;
1545 	int putidx;
1546 
1547 	cdev->tx_skb = NULL;
1548 
1549 	/* Generate ID field for TX buffer Element */
1550 	/* Common to all supported M_CAN versions */
1551 	if (cf->can_id & CAN_EFF_FLAG) {
1552 		id = cf->can_id & CAN_EFF_MASK;
1553 		id |= TX_BUF_XTD;
1554 	} else {
1555 		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1556 	}
1557 
1558 	if (cf->can_id & CAN_RTR_FLAG)
1559 		id |= TX_BUF_RTR;
1560 
1561 	if (cdev->version == 30) {
1562 		netif_stop_queue(dev);
1563 
1564 		/* message ram configuration */
1565 		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1566 		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1567 				 can_fd_len2dlc(cf->len) << 16);
1568 
1569 		for (i = 0; i < cf->len; i += 4)
1570 			m_can_fifo_write(cdev, 0,
1571 					 M_CAN_FIFO_DATA(i / 4),
1572 					 *(u32 *)(cf->data + i));
1573 
1574 		can_put_echo_skb(skb, dev, 0, 0);
1575 
1576 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1577 			cccr = m_can_read(cdev, M_CAN_CCCR);
1578 			cccr &= ~CCCR_CMR_MASK;
1579 			if (can_is_canfd_skb(skb)) {
1580 				if (cf->flags & CANFD_BRS)
1581 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1582 							   CCCR_CMR_CANFD_BRS);
1583 				else
1584 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1585 							   CCCR_CMR_CANFD);
1586 			} else {
1587 				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1588 			}
1589 			m_can_write(cdev, M_CAN_CCCR, cccr);
1590 		}
1591 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1592 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1593 		/* End of xmit function for version 3.0.x */
1594 	} else {
1595 		/* Transmit routine for version >= v3.1.x */
1596 
1597 		/* Check if FIFO full */
1598 		if (m_can_tx_fifo_full(cdev)) {
1599 			/* This shouldn't happen */
1600 			netif_stop_queue(dev);
1601 			netdev_warn(dev,
1602 				    "TX queue active although FIFO is full.");
1603 
1604 			if (cdev->is_peripheral) {
1605 				kfree_skb(skb);
1606 				dev->stats.tx_dropped++;
1607 				return NETDEV_TX_OK;
1608 			} else {
1609 				return NETDEV_TX_BUSY;
1610 			}
1611 		}
1612 
1613 		/* get put index for frame */
1614 		putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1615 				   m_can_read(cdev, M_CAN_TXFQS));
1616 		/* Write ID Field to FIFO Element */
1617 		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1618 
1619 		/* get CAN FD configuration of frame */
1620 		fdflags = 0;
1621 		if (can_is_canfd_skb(skb)) {
1622 			fdflags |= TX_BUF_FDF;
1623 			if (cf->flags & CANFD_BRS)
1624 				fdflags |= TX_BUF_BRS;
1625 		}
1626 
1627 		/* Construct DLC Field. Also contains CAN-FD configuration
1628 		 * use put index of fifo as message marker
1629 		 * it is used in TX interrupt for
1630 		 * sending the correct echo frame
1631 		 */
1632 		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1633 				 FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1634 				 FIELD_PREP(TX_BUF_DLC_MASK,
1635 					    can_fd_len2dlc(cf->len)) |
1636 				 fdflags | TX_BUF_EFC);
1637 
1638 		for (i = 0; i < cf->len; i += 4)
1639 			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1640 					 *(u32 *)(cf->data + i));
1641 
1642 		/* Push loopback echo.
1643 		 * Will be looped back on TX interrupt based on message marker
1644 		 */
1645 		can_put_echo_skb(skb, dev, putidx, 0);
1646 
1647 		/* Enable TX FIFO element to start transfer  */
1648 		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1649 
1650 		/* stop network queue if fifo full */
1651 		if (m_can_tx_fifo_full(cdev) ||
1652 		    m_can_next_echo_skb_occupied(dev, putidx))
1653 			netif_stop_queue(dev);
1654 	}
1655 
1656 	return NETDEV_TX_OK;
1657 }
1658 
1659 static void m_can_tx_work_queue(struct work_struct *ws)
1660 {
1661 	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1662 						   tx_work);
1663 
1664 	m_can_tx_handler(cdev);
1665 }
1666 
1667 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1668 				    struct net_device *dev)
1669 {
1670 	struct m_can_classdev *cdev = netdev_priv(dev);
1671 
1672 	if (can_dropped_invalid_skb(dev, skb))
1673 		return NETDEV_TX_OK;
1674 
1675 	if (cdev->is_peripheral) {
1676 		if (cdev->tx_skb) {
1677 			netdev_err(dev, "hard_xmit called while tx busy\n");
1678 			return NETDEV_TX_BUSY;
1679 		}
1680 
1681 		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1682 			m_can_clean(dev);
1683 		} else {
1684 			/* Need to stop the queue to avoid numerous requests
1685 			 * from being sent.  Suggested improvement is to create
1686 			 * a queueing mechanism that will queue the skbs and
1687 			 * process them in order.
1688 			 */
1689 			cdev->tx_skb = skb;
1690 			netif_stop_queue(cdev->net);
1691 			queue_work(cdev->tx_wq, &cdev->tx_work);
1692 		}
1693 	} else {
1694 		cdev->tx_skb = skb;
1695 		return m_can_tx_handler(cdev);
1696 	}
1697 
1698 	return NETDEV_TX_OK;
1699 }
1700 
1701 static int m_can_open(struct net_device *dev)
1702 {
1703 	struct m_can_classdev *cdev = netdev_priv(dev);
1704 	int err;
1705 
1706 	err = m_can_clk_start(cdev);
1707 	if (err)
1708 		return err;
1709 
1710 	/* open the can device */
1711 	err = open_candev(dev);
1712 	if (err) {
1713 		netdev_err(dev, "failed to open can device\n");
1714 		goto exit_disable_clks;
1715 	}
1716 
1717 	if (cdev->is_peripheral)
1718 		can_rx_offload_enable(&cdev->offload);
1719 
1720 	/* register interrupt handler */
1721 	if (cdev->is_peripheral) {
1722 		cdev->tx_skb = NULL;
1723 		cdev->tx_wq = alloc_workqueue("mcan_wq",
1724 					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1725 		if (!cdev->tx_wq) {
1726 			err = -ENOMEM;
1727 			goto out_wq_fail;
1728 		}
1729 
1730 		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1731 
1732 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1733 					   IRQF_ONESHOT,
1734 					   dev->name, dev);
1735 	} else {
1736 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1737 				  dev);
1738 	}
1739 
1740 	if (err < 0) {
1741 		netdev_err(dev, "failed to request interrupt\n");
1742 		goto exit_irq_fail;
1743 	}
1744 
1745 	/* start the m_can controller */
1746 	m_can_start(dev);
1747 
1748 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1749 
1750 	if (!cdev->is_peripheral)
1751 		napi_enable(&cdev->napi);
1752 
1753 	netif_start_queue(dev);
1754 
1755 	return 0;
1756 
1757 exit_irq_fail:
1758 	if (cdev->is_peripheral)
1759 		destroy_workqueue(cdev->tx_wq);
1760 out_wq_fail:
1761 	if (cdev->is_peripheral)
1762 		can_rx_offload_disable(&cdev->offload);
1763 	close_candev(dev);
1764 exit_disable_clks:
1765 	m_can_clk_stop(cdev);
1766 	return err;
1767 }
1768 
1769 static const struct net_device_ops m_can_netdev_ops = {
1770 	.ndo_open = m_can_open,
1771 	.ndo_stop = m_can_close,
1772 	.ndo_start_xmit = m_can_start_xmit,
1773 	.ndo_change_mtu = can_change_mtu,
1774 };
1775 
1776 static int register_m_can_dev(struct net_device *dev)
1777 {
1778 	dev->flags |= IFF_ECHO;	/* we support local echo */
1779 	dev->netdev_ops = &m_can_netdev_ops;
1780 
1781 	return register_candev(dev);
1782 }
1783 
1784 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1785 				const u32 *mram_config_vals)
1786 {
1787 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1788 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1789 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1790 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1791 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1792 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1793 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1794 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1795 		FIELD_MAX(RXFC_FS_MASK);
1796 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1797 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1798 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1799 		FIELD_MAX(RXFC_FS_MASK);
1800 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1801 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1802 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1803 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1804 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1805 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1806 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1807 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1808 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1809 		FIELD_MAX(TXBC_NDTB_MASK);
1810 
1811 	dev_dbg(cdev->dev,
1812 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1813 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1814 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1815 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1816 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1817 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1818 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1819 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1820 }
1821 
1822 void m_can_init_ram(struct m_can_classdev *cdev)
1823 {
1824 	int end, i, start;
1825 
1826 	/* initialize the entire Message RAM in use to avoid possible
1827 	 * ECC/parity checksum errors when reading an uninitialized buffer
1828 	 */
1829 	start = cdev->mcfg[MRAM_SIDF].off;
1830 	end = cdev->mcfg[MRAM_TXB].off +
1831 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1832 
1833 	for (i = start; i < end; i += 4)
1834 		m_can_fifo_write_no_off(cdev, i, 0x0);
1835 }
1836 EXPORT_SYMBOL_GPL(m_can_init_ram);
1837 
1838 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1839 {
1840 	int ret = 0;
1841 
1842 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1843 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1844 
1845 	if (IS_ERR(cdev->cclk)) {
1846 		dev_err(cdev->dev, "no clock found\n");
1847 		ret = -ENODEV;
1848 	}
1849 
1850 	return ret;
1851 }
1852 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1853 
1854 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1855 						int sizeof_priv)
1856 {
1857 	struct m_can_classdev *class_dev = NULL;
1858 	u32 mram_config_vals[MRAM_CFG_LEN];
1859 	struct net_device *net_dev;
1860 	u32 tx_fifo_size;
1861 	int ret;
1862 
1863 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1864 					     "bosch,mram-cfg",
1865 					     mram_config_vals,
1866 					     sizeof(mram_config_vals) / 4);
1867 	if (ret) {
1868 		dev_err(dev, "Could not get Message RAM configuration.");
1869 		goto out;
1870 	}
1871 
1872 	/* Get TX FIFO size
1873 	 * Defines the total amount of echo buffers for loopback
1874 	 */
1875 	tx_fifo_size = mram_config_vals[7];
1876 
1877 	/* allocate the m_can device */
1878 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
1879 	if (!net_dev) {
1880 		dev_err(dev, "Failed to allocate CAN device");
1881 		goto out;
1882 	}
1883 
1884 	class_dev = netdev_priv(net_dev);
1885 	class_dev->net = net_dev;
1886 	class_dev->dev = dev;
1887 	SET_NETDEV_DEV(net_dev, dev);
1888 
1889 	m_can_of_parse_mram(class_dev, mram_config_vals);
1890 out:
1891 	return class_dev;
1892 }
1893 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1894 
1895 void m_can_class_free_dev(struct net_device *net)
1896 {
1897 	free_candev(net);
1898 }
1899 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1900 
1901 int m_can_class_register(struct m_can_classdev *cdev)
1902 {
1903 	int ret;
1904 
1905 	if (cdev->pm_clock_support) {
1906 		ret = m_can_clk_start(cdev);
1907 		if (ret)
1908 			return ret;
1909 	}
1910 
1911 	if (cdev->is_peripheral) {
1912 		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
1913 						M_CAN_NAPI_WEIGHT);
1914 		if (ret)
1915 			goto clk_disable;
1916 	}
1917 
1918 	ret = m_can_dev_setup(cdev);
1919 	if (ret)
1920 		goto rx_offload_del;
1921 
1922 	ret = register_m_can_dev(cdev->net);
1923 	if (ret) {
1924 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
1925 			cdev->net->name, ret);
1926 		goto rx_offload_del;
1927 	}
1928 
1929 	devm_can_led_init(cdev->net);
1930 
1931 	of_can_transceiver(cdev->net);
1932 
1933 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
1934 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
1935 
1936 	/* Probe finished
1937 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1938 	 */
1939 	m_can_clk_stop(cdev);
1940 
1941 	return 0;
1942 
1943 rx_offload_del:
1944 	if (cdev->is_peripheral)
1945 		can_rx_offload_del(&cdev->offload);
1946 clk_disable:
1947 	m_can_clk_stop(cdev);
1948 
1949 	return ret;
1950 }
1951 EXPORT_SYMBOL_GPL(m_can_class_register);
1952 
1953 void m_can_class_unregister(struct m_can_classdev *cdev)
1954 {
1955 	if (cdev->is_peripheral)
1956 		can_rx_offload_del(&cdev->offload);
1957 	unregister_candev(cdev->net);
1958 }
1959 EXPORT_SYMBOL_GPL(m_can_class_unregister);
1960 
1961 int m_can_class_suspend(struct device *dev)
1962 {
1963 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
1964 	struct net_device *ndev = cdev->net;
1965 
1966 	if (netif_running(ndev)) {
1967 		netif_stop_queue(ndev);
1968 		netif_device_detach(ndev);
1969 		m_can_stop(ndev);
1970 		m_can_clk_stop(cdev);
1971 	}
1972 
1973 	pinctrl_pm_select_sleep_state(dev);
1974 
1975 	cdev->can.state = CAN_STATE_SLEEPING;
1976 
1977 	return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(m_can_class_suspend);
1980 
1981 int m_can_class_resume(struct device *dev)
1982 {
1983 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
1984 	struct net_device *ndev = cdev->net;
1985 
1986 	pinctrl_pm_select_default_state(dev);
1987 
1988 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1989 
1990 	if (netif_running(ndev)) {
1991 		int ret;
1992 
1993 		ret = m_can_clk_start(cdev);
1994 		if (ret)
1995 			return ret;
1996 
1997 		m_can_init_ram(cdev);
1998 		m_can_start(ndev);
1999 		netif_device_attach(ndev);
2000 		netif_start_queue(ndev);
2001 	}
2002 
2003 	return 0;
2004 }
2005 EXPORT_SYMBOL_GPL(m_can_class_resume);
2006 
2007 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2008 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2009 MODULE_LICENSE("GPL v2");
2010 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2011