1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <b29396@freescale.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * https://github.com/linux-can/can-doc/tree/master/m_can 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/can/dev.h> 13 #include <linux/ethtool.h> 14 #include <linux/hrtimer.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/iopoll.h> 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/netdevice.h> 21 #include <linux/of.h> 22 #include <linux/phy/phy.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 27 #include "m_can.h" 28 29 /* registers definition */ 30 enum m_can_reg { 31 M_CAN_CREL = 0x0, 32 M_CAN_ENDN = 0x4, 33 M_CAN_CUST = 0x8, 34 M_CAN_DBTP = 0xc, 35 M_CAN_TEST = 0x10, 36 M_CAN_RWD = 0x14, 37 M_CAN_CCCR = 0x18, 38 M_CAN_NBTP = 0x1c, 39 M_CAN_TSCC = 0x20, 40 M_CAN_TSCV = 0x24, 41 M_CAN_TOCC = 0x28, 42 M_CAN_TOCV = 0x2c, 43 M_CAN_ECR = 0x40, 44 M_CAN_PSR = 0x44, 45 /* TDCR Register only available for version >=3.1.x */ 46 M_CAN_TDCR = 0x48, 47 M_CAN_IR = 0x50, 48 M_CAN_IE = 0x54, 49 M_CAN_ILS = 0x58, 50 M_CAN_ILE = 0x5c, 51 M_CAN_GFC = 0x80, 52 M_CAN_SIDFC = 0x84, 53 M_CAN_XIDFC = 0x88, 54 M_CAN_XIDAM = 0x90, 55 M_CAN_HPMS = 0x94, 56 M_CAN_NDAT1 = 0x98, 57 M_CAN_NDAT2 = 0x9c, 58 M_CAN_RXF0C = 0xa0, 59 M_CAN_RXF0S = 0xa4, 60 M_CAN_RXF0A = 0xa8, 61 M_CAN_RXBC = 0xac, 62 M_CAN_RXF1C = 0xb0, 63 M_CAN_RXF1S = 0xb4, 64 M_CAN_RXF1A = 0xb8, 65 M_CAN_RXESC = 0xbc, 66 M_CAN_TXBC = 0xc0, 67 M_CAN_TXFQS = 0xc4, 68 M_CAN_TXESC = 0xc8, 69 M_CAN_TXBRP = 0xcc, 70 M_CAN_TXBAR = 0xd0, 71 M_CAN_TXBCR = 0xd4, 72 M_CAN_TXBTO = 0xd8, 73 M_CAN_TXBCF = 0xdc, 74 M_CAN_TXBTIE = 0xe0, 75 M_CAN_TXBCIE = 0xe4, 76 M_CAN_TXEFC = 0xf0, 77 M_CAN_TXEFS = 0xf4, 78 M_CAN_TXEFA = 0xf8, 79 }; 80 81 /* message ram configuration data length */ 82 #define MRAM_CFG_LEN 8 83 84 /* Core Release Register (CREL) */ 85 #define CREL_REL_MASK GENMASK(31, 28) 86 #define CREL_STEP_MASK GENMASK(27, 24) 87 #define CREL_SUBSTEP_MASK GENMASK(23, 20) 88 89 /* Data Bit Timing & Prescaler Register (DBTP) */ 90 #define DBTP_TDC BIT(23) 91 #define DBTP_DBRP_MASK GENMASK(20, 16) 92 #define DBTP_DTSEG1_MASK GENMASK(12, 8) 93 #define DBTP_DTSEG2_MASK GENMASK(7, 4) 94 #define DBTP_DSJW_MASK GENMASK(3, 0) 95 96 /* Transmitter Delay Compensation Register (TDCR) */ 97 #define TDCR_TDCO_MASK GENMASK(14, 8) 98 #define TDCR_TDCF_MASK GENMASK(6, 0) 99 100 /* Test Register (TEST) */ 101 #define TEST_LBCK BIT(4) 102 103 /* CC Control Register (CCCR) */ 104 #define CCCR_TXP BIT(14) 105 #define CCCR_TEST BIT(7) 106 #define CCCR_DAR BIT(6) 107 #define CCCR_MON BIT(5) 108 #define CCCR_CSR BIT(4) 109 #define CCCR_CSA BIT(3) 110 #define CCCR_ASM BIT(2) 111 #define CCCR_CCE BIT(1) 112 #define CCCR_INIT BIT(0) 113 /* for version 3.0.x */ 114 #define CCCR_CMR_MASK GENMASK(11, 10) 115 #define CCCR_CMR_CANFD 0x1 116 #define CCCR_CMR_CANFD_BRS 0x2 117 #define CCCR_CMR_CAN 0x3 118 #define CCCR_CME_MASK GENMASK(9, 8) 119 #define CCCR_CME_CAN 0 120 #define CCCR_CME_CANFD 0x1 121 #define CCCR_CME_CANFD_BRS 0x2 122 /* for version >=3.1.x */ 123 #define CCCR_EFBI BIT(13) 124 #define CCCR_PXHD BIT(12) 125 #define CCCR_BRSE BIT(9) 126 #define CCCR_FDOE BIT(8) 127 /* for version >=3.2.x */ 128 #define CCCR_NISO BIT(15) 129 /* for version >=3.3.x */ 130 #define CCCR_WMM BIT(11) 131 #define CCCR_UTSU BIT(10) 132 133 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 134 #define NBTP_NSJW_MASK GENMASK(31, 25) 135 #define NBTP_NBRP_MASK GENMASK(24, 16) 136 #define NBTP_NTSEG1_MASK GENMASK(15, 8) 137 #define NBTP_NTSEG2_MASK GENMASK(6, 0) 138 139 /* Timestamp Counter Configuration Register (TSCC) */ 140 #define TSCC_TCP_MASK GENMASK(19, 16) 141 #define TSCC_TSS_MASK GENMASK(1, 0) 142 #define TSCC_TSS_DISABLE 0x0 143 #define TSCC_TSS_INTERNAL 0x1 144 #define TSCC_TSS_EXTERNAL 0x2 145 146 /* Timestamp Counter Value Register (TSCV) */ 147 #define TSCV_TSC_MASK GENMASK(15, 0) 148 149 /* Error Counter Register (ECR) */ 150 #define ECR_RP BIT(15) 151 #define ECR_REC_MASK GENMASK(14, 8) 152 #define ECR_TEC_MASK GENMASK(7, 0) 153 154 /* Protocol Status Register (PSR) */ 155 #define PSR_BO BIT(7) 156 #define PSR_EW BIT(6) 157 #define PSR_EP BIT(5) 158 #define PSR_LEC_MASK GENMASK(2, 0) 159 #define PSR_DLEC_MASK GENMASK(10, 8) 160 161 /* Interrupt Register (IR) */ 162 #define IR_ALL_INT 0xffffffff 163 164 /* Renamed bits for versions > 3.1.x */ 165 #define IR_ARA BIT(29) 166 #define IR_PED BIT(28) 167 #define IR_PEA BIT(27) 168 169 /* Bits for version 3.0.x */ 170 #define IR_STE BIT(31) 171 #define IR_FOE BIT(30) 172 #define IR_ACKE BIT(29) 173 #define IR_BE BIT(28) 174 #define IR_CRCE BIT(27) 175 #define IR_WDI BIT(26) 176 #define IR_BO BIT(25) 177 #define IR_EW BIT(24) 178 #define IR_EP BIT(23) 179 #define IR_ELO BIT(22) 180 #define IR_BEU BIT(21) 181 #define IR_BEC BIT(20) 182 #define IR_DRX BIT(19) 183 #define IR_TOO BIT(18) 184 #define IR_MRAF BIT(17) 185 #define IR_TSW BIT(16) 186 #define IR_TEFL BIT(15) 187 #define IR_TEFF BIT(14) 188 #define IR_TEFW BIT(13) 189 #define IR_TEFN BIT(12) 190 #define IR_TFE BIT(11) 191 #define IR_TCF BIT(10) 192 #define IR_TC BIT(9) 193 #define IR_HPM BIT(8) 194 #define IR_RF1L BIT(7) 195 #define IR_RF1F BIT(6) 196 #define IR_RF1W BIT(5) 197 #define IR_RF1N BIT(4) 198 #define IR_RF0L BIT(3) 199 #define IR_RF0F BIT(2) 200 #define IR_RF0W BIT(1) 201 #define IR_RF0N BIT(0) 202 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 203 204 /* Interrupts for version 3.0.x */ 205 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 206 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \ 207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 208 IR_RF0L) 209 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 210 211 /* Interrupts for version >= 3.1.x */ 212 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 213 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \ 214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 215 IR_RF0L) 216 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 217 218 /* Interrupt Line Select (ILS) */ 219 #define ILS_ALL_INT0 0x0 220 #define ILS_ALL_INT1 0xFFFFFFFF 221 222 /* Interrupt Line Enable (ILE) */ 223 #define ILE_EINT1 BIT(1) 224 #define ILE_EINT0 BIT(0) 225 226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 227 #define RXFC_FWM_MASK GENMASK(30, 24) 228 #define RXFC_FS_MASK GENMASK(22, 16) 229 230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 231 #define RXFS_RFL BIT(25) 232 #define RXFS_FF BIT(24) 233 #define RXFS_FPI_MASK GENMASK(21, 16) 234 #define RXFS_FGI_MASK GENMASK(13, 8) 235 #define RXFS_FFL_MASK GENMASK(6, 0) 236 237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 238 #define RXESC_RBDS_MASK GENMASK(10, 8) 239 #define RXESC_F1DS_MASK GENMASK(6, 4) 240 #define RXESC_F0DS_MASK GENMASK(2, 0) 241 #define RXESC_64B 0x7 242 243 /* Tx Buffer Configuration (TXBC) */ 244 #define TXBC_TFQS_MASK GENMASK(29, 24) 245 #define TXBC_NDTB_MASK GENMASK(21, 16) 246 247 /* Tx FIFO/Queue Status (TXFQS) */ 248 #define TXFQS_TFQF BIT(21) 249 #define TXFQS_TFQPI_MASK GENMASK(20, 16) 250 #define TXFQS_TFGI_MASK GENMASK(12, 8) 251 #define TXFQS_TFFL_MASK GENMASK(5, 0) 252 253 /* Tx Buffer Element Size Configuration (TXESC) */ 254 #define TXESC_TBDS_MASK GENMASK(2, 0) 255 #define TXESC_TBDS_64B 0x7 256 257 /* Tx Event FIFO Configuration (TXEFC) */ 258 #define TXEFC_EFWM_MASK GENMASK(29, 24) 259 #define TXEFC_EFS_MASK GENMASK(21, 16) 260 261 /* Tx Event FIFO Status (TXEFS) */ 262 #define TXEFS_TEFL BIT(25) 263 #define TXEFS_EFF BIT(24) 264 #define TXEFS_EFGI_MASK GENMASK(12, 8) 265 #define TXEFS_EFFL_MASK GENMASK(5, 0) 266 267 /* Tx Event FIFO Acknowledge (TXEFA) */ 268 #define TXEFA_EFAI_MASK GENMASK(4, 0) 269 270 /* Message RAM Configuration (in bytes) */ 271 #define SIDF_ELEMENT_SIZE 4 272 #define XIDF_ELEMENT_SIZE 8 273 #define RXF0_ELEMENT_SIZE 72 274 #define RXF1_ELEMENT_SIZE 72 275 #define RXB_ELEMENT_SIZE 72 276 #define TXE_ELEMENT_SIZE 8 277 #define TXB_ELEMENT_SIZE 72 278 279 /* Message RAM Elements */ 280 #define M_CAN_FIFO_ID 0x0 281 #define M_CAN_FIFO_DLC 0x4 282 #define M_CAN_FIFO_DATA 0x8 283 284 /* Rx Buffer Element */ 285 /* R0 */ 286 #define RX_BUF_ESI BIT(31) 287 #define RX_BUF_XTD BIT(30) 288 #define RX_BUF_RTR BIT(29) 289 /* R1 */ 290 #define RX_BUF_ANMF BIT(31) 291 #define RX_BUF_FDF BIT(21) 292 #define RX_BUF_BRS BIT(20) 293 #define RX_BUF_RXTS_MASK GENMASK(15, 0) 294 295 /* Tx Buffer Element */ 296 /* T0 */ 297 #define TX_BUF_ESI BIT(31) 298 #define TX_BUF_XTD BIT(30) 299 #define TX_BUF_RTR BIT(29) 300 /* T1 */ 301 #define TX_BUF_EFC BIT(23) 302 #define TX_BUF_FDF BIT(21) 303 #define TX_BUF_BRS BIT(20) 304 #define TX_BUF_MM_MASK GENMASK(31, 24) 305 #define TX_BUF_DLC_MASK GENMASK(19, 16) 306 307 /* Tx event FIFO Element */ 308 /* E1 */ 309 #define TX_EVENT_MM_MASK GENMASK(31, 24) 310 #define TX_EVENT_TXTS_MASK GENMASK(15, 0) 311 312 /* Hrtimer polling interval */ 313 #define HRTIMER_POLL_INTERVAL_MS 1 314 315 /* The ID and DLC registers are adjacent in M_CAN FIFO memory, 316 * and we can save a (potentially slow) bus round trip by combining 317 * reads and writes to them. 318 */ 319 struct id_and_dlc { 320 u32 id; 321 u32 dlc; 322 }; 323 324 struct m_can_fifo_element { 325 u32 id; 326 u32 dlc; 327 u8 data[CANFD_MAX_DLEN]; 328 }; 329 330 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 331 { 332 return cdev->ops->read_reg(cdev, reg); 333 } 334 335 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 336 u32 val) 337 { 338 cdev->ops->write_reg(cdev, reg, val); 339 } 340 341 static int 342 m_can_fifo_read(struct m_can_classdev *cdev, 343 u32 fgi, unsigned int offset, void *val, size_t val_count) 344 { 345 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 346 offset; 347 348 if (val_count == 0) 349 return 0; 350 351 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count); 352 } 353 354 static int 355 m_can_fifo_write(struct m_can_classdev *cdev, 356 u32 fpi, unsigned int offset, const void *val, size_t val_count) 357 { 358 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 359 offset; 360 361 if (val_count == 0) 362 return 0; 363 364 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count); 365 } 366 367 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev, 368 u32 fpi, u32 val) 369 { 370 return cdev->ops->write_fifo(cdev, fpi, &val, 1); 371 } 372 373 static int 374 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val) 375 { 376 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 377 offset; 378 379 return cdev->ops->read_fifo(cdev, addr_offset, val, 1); 380 } 381 382 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) 383 { 384 u32 cccr = m_can_read(cdev, M_CAN_CCCR); 385 u32 timeout = 10; 386 u32 val = 0; 387 388 /* Clear the Clock stop request if it was set */ 389 if (cccr & CCCR_CSR) 390 cccr &= ~CCCR_CSR; 391 392 if (enable) { 393 /* enable m_can configuration */ 394 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); 395 udelay(5); 396 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ 397 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); 398 } else { 399 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); 400 } 401 402 /* there's a delay for module initialization */ 403 if (enable) 404 val = CCCR_INIT | CCCR_CCE; 405 406 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { 407 if (timeout == 0) { 408 netdev_warn(cdev->net, "Failed to init module\n"); 409 return; 410 } 411 timeout--; 412 udelay(1); 413 } 414 } 415 416 static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts) 417 { 418 if (cdev->active_interrupts == interrupts) 419 return; 420 cdev->ops->write_reg(cdev, M_CAN_IE, interrupts); 421 cdev->active_interrupts = interrupts; 422 } 423 424 static void m_can_coalescing_disable(struct m_can_classdev *cdev) 425 { 426 u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN; 427 428 if (!cdev->net->irq) 429 return; 430 431 hrtimer_cancel(&cdev->hrtimer); 432 m_can_interrupt_enable(cdev, new_interrupts); 433 } 434 435 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 436 { 437 if (!cdev->net->irq) { 438 dev_dbg(cdev->dev, "Start hrtimer\n"); 439 hrtimer_start(&cdev->hrtimer, 440 ms_to_ktime(HRTIMER_POLL_INTERVAL_MS), 441 HRTIMER_MODE_REL_PINNED); 442 } 443 444 /* Only interrupt line 0 is used in this driver */ 445 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 446 } 447 448 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 449 { 450 m_can_coalescing_disable(cdev); 451 m_can_write(cdev, M_CAN_ILE, 0x0); 452 cdev->active_interrupts = 0x0; 453 454 if (!cdev->net->irq) { 455 dev_dbg(cdev->dev, "Stop hrtimer\n"); 456 hrtimer_cancel(&cdev->hrtimer); 457 } 458 } 459 460 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit 461 * width. 462 */ 463 static u32 m_can_get_timestamp(struct m_can_classdev *cdev) 464 { 465 u32 tscv; 466 u32 tsc; 467 468 tscv = m_can_read(cdev, M_CAN_TSCV); 469 tsc = FIELD_GET(TSCV_TSC_MASK, tscv); 470 471 return (tsc << 16); 472 } 473 474 static void m_can_clean(struct net_device *net) 475 { 476 struct m_can_classdev *cdev = netdev_priv(net); 477 unsigned long irqflags; 478 479 if (cdev->tx_ops) { 480 for (int i = 0; i != cdev->tx_fifo_size; ++i) { 481 if (!cdev->tx_ops[i].skb) 482 continue; 483 484 net->stats.tx_errors++; 485 cdev->tx_ops[i].skb = NULL; 486 } 487 } 488 489 for (int i = 0; i != cdev->can.echo_skb_max; ++i) 490 can_free_echo_skb(cdev->net, i, NULL); 491 492 netdev_reset_queue(cdev->net); 493 494 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags); 495 cdev->tx_fifo_in_flight = 0; 496 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 497 } 498 499 /* For peripherals, pass skb to rx-offload, which will push skb from 500 * napi. For non-peripherals, RX is done in napi already, so push 501 * directly. timestamp is used to ensure good skb ordering in 502 * rx-offload and is ignored for non-peripherals. 503 */ 504 static void m_can_receive_skb(struct m_can_classdev *cdev, 505 struct sk_buff *skb, 506 u32 timestamp) 507 { 508 if (cdev->is_peripheral) { 509 struct net_device_stats *stats = &cdev->net->stats; 510 int err; 511 512 err = can_rx_offload_queue_timestamp(&cdev->offload, skb, 513 timestamp); 514 if (err) 515 stats->rx_fifo_errors++; 516 } else { 517 netif_receive_skb(skb); 518 } 519 } 520 521 static int m_can_read_fifo(struct net_device *dev, u32 fgi) 522 { 523 struct net_device_stats *stats = &dev->stats; 524 struct m_can_classdev *cdev = netdev_priv(dev); 525 struct canfd_frame *cf; 526 struct sk_buff *skb; 527 struct id_and_dlc fifo_header; 528 u32 timestamp = 0; 529 int err; 530 531 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2); 532 if (err) 533 goto out_fail; 534 535 if (fifo_header.dlc & RX_BUF_FDF) 536 skb = alloc_canfd_skb(dev, &cf); 537 else 538 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 539 if (!skb) { 540 stats->rx_dropped++; 541 return 0; 542 } 543 544 if (fifo_header.dlc & RX_BUF_FDF) 545 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F); 546 else 547 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F); 548 549 if (fifo_header.id & RX_BUF_XTD) 550 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG; 551 else 552 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK; 553 554 if (fifo_header.id & RX_BUF_ESI) { 555 cf->flags |= CANFD_ESI; 556 netdev_dbg(dev, "ESI Error\n"); 557 } 558 559 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) { 560 cf->can_id |= CAN_RTR_FLAG; 561 } else { 562 if (fifo_header.dlc & RX_BUF_BRS) 563 cf->flags |= CANFD_BRS; 564 565 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA, 566 cf->data, DIV_ROUND_UP(cf->len, 4)); 567 if (err) 568 goto out_free_skb; 569 570 stats->rx_bytes += cf->len; 571 } 572 stats->rx_packets++; 573 574 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16; 575 576 m_can_receive_skb(cdev, skb, timestamp); 577 578 return 0; 579 580 out_free_skb: 581 kfree_skb(skb); 582 out_fail: 583 netdev_err(dev, "FIFO read returned %d\n", err); 584 return err; 585 } 586 587 static int m_can_do_rx_poll(struct net_device *dev, int quota) 588 { 589 struct m_can_classdev *cdev = netdev_priv(dev); 590 u32 pkts = 0; 591 u32 rxfs; 592 u32 rx_count; 593 u32 fgi; 594 int ack_fgi = -1; 595 int i; 596 int err = 0; 597 598 rxfs = m_can_read(cdev, M_CAN_RXF0S); 599 if (!(rxfs & RXFS_FFL_MASK)) { 600 netdev_dbg(dev, "no messages in fifo0\n"); 601 return 0; 602 } 603 604 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs); 605 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs); 606 607 for (i = 0; i < rx_count && quota > 0; ++i) { 608 err = m_can_read_fifo(dev, fgi); 609 if (err) 610 break; 611 612 quota--; 613 pkts++; 614 ack_fgi = fgi; 615 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi); 616 } 617 618 if (ack_fgi != -1) 619 m_can_write(cdev, M_CAN_RXF0A, ack_fgi); 620 621 if (err) 622 return err; 623 624 return pkts; 625 } 626 627 static int m_can_handle_lost_msg(struct net_device *dev) 628 { 629 struct m_can_classdev *cdev = netdev_priv(dev); 630 struct net_device_stats *stats = &dev->stats; 631 struct sk_buff *skb; 632 struct can_frame *frame; 633 u32 timestamp = 0; 634 635 netdev_err(dev, "msg lost in rxf0\n"); 636 637 stats->rx_errors++; 638 stats->rx_over_errors++; 639 640 skb = alloc_can_err_skb(dev, &frame); 641 if (unlikely(!skb)) 642 return 0; 643 644 frame->can_id |= CAN_ERR_CRTL; 645 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 646 647 if (cdev->is_peripheral) 648 timestamp = m_can_get_timestamp(cdev); 649 650 m_can_receive_skb(cdev, skb, timestamp); 651 652 return 1; 653 } 654 655 static int m_can_handle_lec_err(struct net_device *dev, 656 enum m_can_lec_type lec_type) 657 { 658 struct m_can_classdev *cdev = netdev_priv(dev); 659 struct net_device_stats *stats = &dev->stats; 660 struct can_frame *cf; 661 struct sk_buff *skb; 662 u32 timestamp = 0; 663 664 cdev->can.can_stats.bus_error++; 665 stats->rx_errors++; 666 667 /* propagate the error condition to the CAN stack */ 668 skb = alloc_can_err_skb(dev, &cf); 669 if (unlikely(!skb)) 670 return 0; 671 672 /* check for 'last error code' which tells us the 673 * type of the last error to occur on the CAN bus 674 */ 675 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 676 677 switch (lec_type) { 678 case LEC_STUFF_ERROR: 679 netdev_dbg(dev, "stuff error\n"); 680 cf->data[2] |= CAN_ERR_PROT_STUFF; 681 break; 682 case LEC_FORM_ERROR: 683 netdev_dbg(dev, "form error\n"); 684 cf->data[2] |= CAN_ERR_PROT_FORM; 685 break; 686 case LEC_ACK_ERROR: 687 netdev_dbg(dev, "ack error\n"); 688 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 689 break; 690 case LEC_BIT1_ERROR: 691 netdev_dbg(dev, "bit1 error\n"); 692 cf->data[2] |= CAN_ERR_PROT_BIT1; 693 break; 694 case LEC_BIT0_ERROR: 695 netdev_dbg(dev, "bit0 error\n"); 696 cf->data[2] |= CAN_ERR_PROT_BIT0; 697 break; 698 case LEC_CRC_ERROR: 699 netdev_dbg(dev, "CRC error\n"); 700 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 701 break; 702 default: 703 break; 704 } 705 706 if (cdev->is_peripheral) 707 timestamp = m_can_get_timestamp(cdev); 708 709 m_can_receive_skb(cdev, skb, timestamp); 710 711 return 1; 712 } 713 714 static int __m_can_get_berr_counter(const struct net_device *dev, 715 struct can_berr_counter *bec) 716 { 717 struct m_can_classdev *cdev = netdev_priv(dev); 718 unsigned int ecr; 719 720 ecr = m_can_read(cdev, M_CAN_ECR); 721 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr); 722 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr); 723 724 return 0; 725 } 726 727 static int m_can_clk_start(struct m_can_classdev *cdev) 728 { 729 if (cdev->pm_clock_support == 0) 730 return 0; 731 732 return pm_runtime_resume_and_get(cdev->dev); 733 } 734 735 static void m_can_clk_stop(struct m_can_classdev *cdev) 736 { 737 if (cdev->pm_clock_support) 738 pm_runtime_put_sync(cdev->dev); 739 } 740 741 static int m_can_get_berr_counter(const struct net_device *dev, 742 struct can_berr_counter *bec) 743 { 744 struct m_can_classdev *cdev = netdev_priv(dev); 745 int err; 746 747 err = m_can_clk_start(cdev); 748 if (err) 749 return err; 750 751 __m_can_get_berr_counter(dev, bec); 752 753 m_can_clk_stop(cdev); 754 755 return 0; 756 } 757 758 static int m_can_handle_state_change(struct net_device *dev, 759 enum can_state new_state) 760 { 761 struct m_can_classdev *cdev = netdev_priv(dev); 762 struct can_frame *cf; 763 struct sk_buff *skb; 764 struct can_berr_counter bec; 765 unsigned int ecr; 766 u32 timestamp = 0; 767 768 switch (new_state) { 769 case CAN_STATE_ERROR_WARNING: 770 /* error warning state */ 771 cdev->can.can_stats.error_warning++; 772 cdev->can.state = CAN_STATE_ERROR_WARNING; 773 break; 774 case CAN_STATE_ERROR_PASSIVE: 775 /* error passive state */ 776 cdev->can.can_stats.error_passive++; 777 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 778 break; 779 case CAN_STATE_BUS_OFF: 780 /* bus-off state */ 781 cdev->can.state = CAN_STATE_BUS_OFF; 782 m_can_disable_all_interrupts(cdev); 783 cdev->can.can_stats.bus_off++; 784 can_bus_off(dev); 785 break; 786 default: 787 break; 788 } 789 790 /* propagate the error condition to the CAN stack */ 791 skb = alloc_can_err_skb(dev, &cf); 792 if (unlikely(!skb)) 793 return 0; 794 795 __m_can_get_berr_counter(dev, &bec); 796 797 switch (new_state) { 798 case CAN_STATE_ERROR_WARNING: 799 /* error warning state */ 800 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 801 cf->data[1] = (bec.txerr > bec.rxerr) ? 802 CAN_ERR_CRTL_TX_WARNING : 803 CAN_ERR_CRTL_RX_WARNING; 804 cf->data[6] = bec.txerr; 805 cf->data[7] = bec.rxerr; 806 break; 807 case CAN_STATE_ERROR_PASSIVE: 808 /* error passive state */ 809 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 810 ecr = m_can_read(cdev, M_CAN_ECR); 811 if (ecr & ECR_RP) 812 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 813 if (bec.txerr > 127) 814 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 815 cf->data[6] = bec.txerr; 816 cf->data[7] = bec.rxerr; 817 break; 818 case CAN_STATE_BUS_OFF: 819 /* bus-off state */ 820 cf->can_id |= CAN_ERR_BUSOFF; 821 break; 822 default: 823 break; 824 } 825 826 if (cdev->is_peripheral) 827 timestamp = m_can_get_timestamp(cdev); 828 829 m_can_receive_skb(cdev, skb, timestamp); 830 831 return 1; 832 } 833 834 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 835 { 836 struct m_can_classdev *cdev = netdev_priv(dev); 837 int work_done = 0; 838 839 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 840 netdev_dbg(dev, "entered error warning state\n"); 841 work_done += m_can_handle_state_change(dev, 842 CAN_STATE_ERROR_WARNING); 843 } 844 845 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 846 netdev_dbg(dev, "entered error passive state\n"); 847 work_done += m_can_handle_state_change(dev, 848 CAN_STATE_ERROR_PASSIVE); 849 } 850 851 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 852 netdev_dbg(dev, "entered error bus off state\n"); 853 work_done += m_can_handle_state_change(dev, 854 CAN_STATE_BUS_OFF); 855 } 856 857 return work_done; 858 } 859 860 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 861 { 862 if (irqstatus & IR_WDI) 863 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 864 if (irqstatus & IR_BEU) 865 netdev_err(dev, "Bit Error Uncorrected\n"); 866 if (irqstatus & IR_BEC) 867 netdev_err(dev, "Bit Error Corrected\n"); 868 if (irqstatus & IR_TOO) 869 netdev_err(dev, "Timeout reached\n"); 870 if (irqstatus & IR_MRAF) 871 netdev_err(dev, "Message RAM access failure occurred\n"); 872 } 873 874 static inline bool is_lec_err(u8 lec) 875 { 876 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE; 877 } 878 879 static inline bool m_can_is_protocol_err(u32 irqstatus) 880 { 881 return irqstatus & IR_ERR_LEC_31X; 882 } 883 884 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 885 { 886 struct net_device_stats *stats = &dev->stats; 887 struct m_can_classdev *cdev = netdev_priv(dev); 888 struct can_frame *cf; 889 struct sk_buff *skb; 890 u32 timestamp = 0; 891 892 /* propagate the error condition to the CAN stack */ 893 skb = alloc_can_err_skb(dev, &cf); 894 895 /* update tx error stats since there is protocol error */ 896 stats->tx_errors++; 897 898 /* update arbitration lost status */ 899 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 900 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 901 cdev->can.can_stats.arbitration_lost++; 902 if (skb) { 903 cf->can_id |= CAN_ERR_LOSTARB; 904 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 905 } 906 } 907 908 if (unlikely(!skb)) { 909 netdev_dbg(dev, "allocation of skb failed\n"); 910 return 0; 911 } 912 913 if (cdev->is_peripheral) 914 timestamp = m_can_get_timestamp(cdev); 915 916 m_can_receive_skb(cdev, skb, timestamp); 917 918 return 1; 919 } 920 921 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 922 u32 psr) 923 { 924 struct m_can_classdev *cdev = netdev_priv(dev); 925 int work_done = 0; 926 927 if (irqstatus & IR_RF0L) 928 work_done += m_can_handle_lost_msg(dev); 929 930 /* handle lec errors on the bus */ 931 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) { 932 u8 lec = FIELD_GET(PSR_LEC_MASK, psr); 933 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr); 934 935 if (is_lec_err(lec)) { 936 netdev_dbg(dev, "Arbitration phase error detected\n"); 937 work_done += m_can_handle_lec_err(dev, lec); 938 } 939 940 if (is_lec_err(dlec)) { 941 netdev_dbg(dev, "Data phase error detected\n"); 942 work_done += m_can_handle_lec_err(dev, dlec); 943 } 944 } 945 946 /* handle protocol errors in arbitration phase */ 947 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 948 m_can_is_protocol_err(irqstatus)) 949 work_done += m_can_handle_protocol_error(dev, irqstatus); 950 951 /* other unproccessed error interrupts */ 952 m_can_handle_other_err(dev, irqstatus); 953 954 return work_done; 955 } 956 957 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus) 958 { 959 struct m_can_classdev *cdev = netdev_priv(dev); 960 int rx_work_or_err; 961 int work_done = 0; 962 963 if (!irqstatus) 964 goto end; 965 966 /* Errata workaround for issue "Needless activation of MRAF irq" 967 * During frame reception while the MCAN is in Error Passive state 968 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 969 * it may happen that MCAN_IR.MRAF is set although there was no 970 * Message RAM access failure. 971 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 972 * The Message RAM Access Failure interrupt routine needs to check 973 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 974 * In this case, reset MCAN_IR.MRAF. No further action is required. 975 */ 976 if (cdev->version <= 31 && irqstatus & IR_MRAF && 977 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 978 struct can_berr_counter bec; 979 980 __m_can_get_berr_counter(dev, &bec); 981 if (bec.rxerr == 127) { 982 m_can_write(cdev, M_CAN_IR, IR_MRAF); 983 irqstatus &= ~IR_MRAF; 984 } 985 } 986 987 if (irqstatus & IR_ERR_STATE) 988 work_done += m_can_handle_state_errors(dev, 989 m_can_read(cdev, M_CAN_PSR)); 990 991 if (irqstatus & IR_ERR_BUS_30X) 992 work_done += m_can_handle_bus_errors(dev, irqstatus, 993 m_can_read(cdev, M_CAN_PSR)); 994 995 if (irqstatus & IR_RF0N) { 996 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done)); 997 if (rx_work_or_err < 0) 998 return rx_work_or_err; 999 1000 work_done += rx_work_or_err; 1001 } 1002 end: 1003 return work_done; 1004 } 1005 1006 static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus) 1007 { 1008 struct m_can_classdev *cdev = netdev_priv(dev); 1009 int work_done; 1010 1011 work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus); 1012 1013 /* Don't re-enable interrupts if the driver had a fatal error 1014 * (e.g., FIFO read failure). 1015 */ 1016 if (work_done < 0) 1017 m_can_disable_all_interrupts(cdev); 1018 1019 return work_done; 1020 } 1021 1022 static int m_can_poll(struct napi_struct *napi, int quota) 1023 { 1024 struct net_device *dev = napi->dev; 1025 struct m_can_classdev *cdev = netdev_priv(dev); 1026 int work_done; 1027 u32 irqstatus; 1028 1029 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 1030 1031 work_done = m_can_rx_handler(dev, quota, irqstatus); 1032 1033 /* Don't re-enable interrupts if the driver had a fatal error 1034 * (e.g., FIFO read failure). 1035 */ 1036 if (work_done >= 0 && work_done < quota) { 1037 napi_complete_done(napi, work_done); 1038 m_can_enable_all_interrupts(cdev); 1039 } 1040 1041 return work_done; 1042 } 1043 1044 /* Echo tx skb and update net stats. Peripherals use rx-offload for 1045 * echo. timestamp is used for peripherals to ensure correct ordering 1046 * by rx-offload, and is ignored for non-peripherals. 1047 */ 1048 static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev, 1049 unsigned int msg_mark, u32 timestamp) 1050 { 1051 struct net_device *dev = cdev->net; 1052 struct net_device_stats *stats = &dev->stats; 1053 unsigned int frame_len; 1054 1055 if (cdev->is_peripheral) 1056 stats->tx_bytes += 1057 can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload, 1058 msg_mark, 1059 timestamp, 1060 &frame_len); 1061 else 1062 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, &frame_len); 1063 1064 stats->tx_packets++; 1065 1066 return frame_len; 1067 } 1068 1069 static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted, 1070 unsigned int transmitted_frame_len) 1071 { 1072 unsigned long irqflags; 1073 1074 netdev_completed_queue(cdev->net, transmitted, transmitted_frame_len); 1075 1076 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags); 1077 if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0) 1078 netif_wake_queue(cdev->net); 1079 cdev->tx_fifo_in_flight -= transmitted; 1080 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 1081 } 1082 1083 static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev) 1084 { 1085 unsigned long irqflags; 1086 int tx_fifo_in_flight; 1087 1088 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags); 1089 tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1; 1090 if (tx_fifo_in_flight >= cdev->tx_fifo_size) { 1091 netif_stop_queue(cdev->net); 1092 if (tx_fifo_in_flight > cdev->tx_fifo_size) { 1093 netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n"); 1094 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 1095 return NETDEV_TX_BUSY; 1096 } 1097 } 1098 cdev->tx_fifo_in_flight = tx_fifo_in_flight; 1099 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 1100 1101 return NETDEV_TX_OK; 1102 } 1103 1104 static int m_can_echo_tx_event(struct net_device *dev) 1105 { 1106 u32 txe_count = 0; 1107 u32 m_can_txefs; 1108 u32 fgi = 0; 1109 int ack_fgi = -1; 1110 int i = 0; 1111 int err = 0; 1112 unsigned int msg_mark; 1113 int processed = 0; 1114 unsigned int processed_frame_len = 0; 1115 1116 struct m_can_classdev *cdev = netdev_priv(dev); 1117 1118 /* read tx event fifo status */ 1119 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 1120 1121 /* Get Tx Event fifo element count */ 1122 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs); 1123 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs); 1124 1125 /* Get and process all sent elements */ 1126 for (i = 0; i < txe_count; i++) { 1127 u32 txe, timestamp = 0; 1128 1129 /* get message marker, timestamp */ 1130 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe); 1131 if (err) { 1132 netdev_err(dev, "TXE FIFO read returned %d\n", err); 1133 break; 1134 } 1135 1136 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe); 1137 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16; 1138 1139 ack_fgi = fgi; 1140 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi); 1141 1142 /* update stats */ 1143 processed_frame_len += m_can_tx_update_stats(cdev, msg_mark, 1144 timestamp); 1145 1146 ++processed; 1147 } 1148 1149 if (ack_fgi != -1) 1150 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK, 1151 ack_fgi)); 1152 1153 m_can_finish_tx(cdev, processed, processed_frame_len); 1154 1155 return err; 1156 } 1157 1158 static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir) 1159 { 1160 u32 new_interrupts = cdev->active_interrupts; 1161 bool enable_rx_timer = false; 1162 bool enable_tx_timer = false; 1163 1164 if (!cdev->net->irq) 1165 return; 1166 1167 if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) { 1168 enable_rx_timer = true; 1169 new_interrupts &= ~IR_RF0N; 1170 } 1171 if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) { 1172 enable_tx_timer = true; 1173 new_interrupts &= ~IR_TEFN; 1174 } 1175 if (!enable_rx_timer && !hrtimer_active(&cdev->hrtimer)) 1176 new_interrupts |= IR_RF0N; 1177 if (!enable_tx_timer && !hrtimer_active(&cdev->hrtimer)) 1178 new_interrupts |= IR_TEFN; 1179 1180 m_can_interrupt_enable(cdev, new_interrupts); 1181 if (enable_rx_timer | enable_tx_timer) 1182 hrtimer_start(&cdev->hrtimer, cdev->irq_timer_wait, 1183 HRTIMER_MODE_REL); 1184 } 1185 1186 static irqreturn_t m_can_isr(int irq, void *dev_id) 1187 { 1188 struct net_device *dev = (struct net_device *)dev_id; 1189 struct m_can_classdev *cdev = netdev_priv(dev); 1190 u32 ir; 1191 1192 if (pm_runtime_suspended(cdev->dev)) { 1193 m_can_coalescing_disable(cdev); 1194 return IRQ_NONE; 1195 } 1196 1197 ir = m_can_read(cdev, M_CAN_IR); 1198 m_can_coalescing_update(cdev, ir); 1199 if (!ir) 1200 return IRQ_NONE; 1201 1202 /* ACK all irqs */ 1203 m_can_write(cdev, M_CAN_IR, ir); 1204 1205 if (cdev->ops->clear_interrupts) 1206 cdev->ops->clear_interrupts(cdev); 1207 1208 /* schedule NAPI in case of 1209 * - rx IRQ 1210 * - state change IRQ 1211 * - bus error IRQ and bus error reporting 1212 */ 1213 if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) { 1214 cdev->irqstatus = ir; 1215 if (!cdev->is_peripheral) { 1216 m_can_disable_all_interrupts(cdev); 1217 napi_schedule(&cdev->napi); 1218 } else { 1219 int pkts; 1220 1221 pkts = m_can_rx_peripheral(dev, ir); 1222 if (pkts < 0) 1223 goto out_fail; 1224 } 1225 } 1226 1227 if (cdev->version == 30) { 1228 if (ir & IR_TC) { 1229 /* Transmission Complete Interrupt*/ 1230 u32 timestamp = 0; 1231 unsigned int frame_len; 1232 1233 if (cdev->is_peripheral) 1234 timestamp = m_can_get_timestamp(cdev); 1235 frame_len = m_can_tx_update_stats(cdev, 0, timestamp); 1236 m_can_finish_tx(cdev, 1, frame_len); 1237 } 1238 } else { 1239 if (ir & (IR_TEFN | IR_TEFW)) { 1240 /* New TX FIFO Element arrived */ 1241 if (m_can_echo_tx_event(dev) != 0) 1242 goto out_fail; 1243 } 1244 } 1245 1246 if (cdev->is_peripheral) 1247 can_rx_offload_threaded_irq_finish(&cdev->offload); 1248 1249 return IRQ_HANDLED; 1250 1251 out_fail: 1252 m_can_disable_all_interrupts(cdev); 1253 return IRQ_HANDLED; 1254 } 1255 1256 static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer) 1257 { 1258 struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer); 1259 1260 irq_wake_thread(cdev->net->irq, cdev->net); 1261 1262 return HRTIMER_NORESTART; 1263 } 1264 1265 static const struct can_bittiming_const m_can_bittiming_const_30X = { 1266 .name = KBUILD_MODNAME, 1267 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1268 .tseg1_max = 64, 1269 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1270 .tseg2_max = 16, 1271 .sjw_max = 16, 1272 .brp_min = 1, 1273 .brp_max = 1024, 1274 .brp_inc = 1, 1275 }; 1276 1277 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1278 .name = KBUILD_MODNAME, 1279 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1280 .tseg1_max = 16, 1281 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1282 .tseg2_max = 8, 1283 .sjw_max = 4, 1284 .brp_min = 1, 1285 .brp_max = 32, 1286 .brp_inc = 1, 1287 }; 1288 1289 static const struct can_bittiming_const m_can_bittiming_const_31X = { 1290 .name = KBUILD_MODNAME, 1291 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1292 .tseg1_max = 256, 1293 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1294 .tseg2_max = 128, 1295 .sjw_max = 128, 1296 .brp_min = 1, 1297 .brp_max = 512, 1298 .brp_inc = 1, 1299 }; 1300 1301 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1302 .name = KBUILD_MODNAME, 1303 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1304 .tseg1_max = 32, 1305 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1306 .tseg2_max = 16, 1307 .sjw_max = 16, 1308 .brp_min = 1, 1309 .brp_max = 32, 1310 .brp_inc = 1, 1311 }; 1312 1313 static int m_can_set_bittiming(struct net_device *dev) 1314 { 1315 struct m_can_classdev *cdev = netdev_priv(dev); 1316 const struct can_bittiming *bt = &cdev->can.bittiming; 1317 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1318 u16 brp, sjw, tseg1, tseg2; 1319 u32 reg_btp; 1320 1321 brp = bt->brp - 1; 1322 sjw = bt->sjw - 1; 1323 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1324 tseg2 = bt->phase_seg2 - 1; 1325 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) | 1326 FIELD_PREP(NBTP_NSJW_MASK, sjw) | 1327 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) | 1328 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2); 1329 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1330 1331 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1332 reg_btp = 0; 1333 brp = dbt->brp - 1; 1334 sjw = dbt->sjw - 1; 1335 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1336 tseg2 = dbt->phase_seg2 - 1; 1337 1338 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1339 * This is mentioned in the "Bit Time Requirements for CAN FD" 1340 * paper presented at the International CAN Conference 2013 1341 */ 1342 if (dbt->bitrate > 2500000) { 1343 u32 tdco, ssp; 1344 1345 /* Use the same value of secondary sampling point 1346 * as the data sampling point 1347 */ 1348 ssp = dbt->sample_point; 1349 1350 /* Equation based on Bosch's M_CAN User Manual's 1351 * Transmitter Delay Compensation Section 1352 */ 1353 tdco = (cdev->can.clock.freq / 1000) * 1354 ssp / dbt->bitrate; 1355 1356 /* Max valid TDCO value is 127 */ 1357 if (tdco > 127) { 1358 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1359 tdco); 1360 tdco = 127; 1361 } 1362 1363 reg_btp |= DBTP_TDC; 1364 m_can_write(cdev, M_CAN_TDCR, 1365 FIELD_PREP(TDCR_TDCO_MASK, tdco)); 1366 } 1367 1368 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) | 1369 FIELD_PREP(DBTP_DSJW_MASK, sjw) | 1370 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) | 1371 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2); 1372 1373 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1374 } 1375 1376 return 0; 1377 } 1378 1379 /* Configure M_CAN chip: 1380 * - set rx buffer/fifo element size 1381 * - configure rx fifo 1382 * - accept non-matching frame into fifo 0 1383 * - configure tx buffer 1384 * - >= v3.1.x: TX FIFO is used 1385 * - configure mode 1386 * - setup bittiming 1387 * - configure timestamp generation 1388 */ 1389 static int m_can_chip_config(struct net_device *dev) 1390 { 1391 struct m_can_classdev *cdev = netdev_priv(dev); 1392 u32 interrupts = IR_ALL_INT; 1393 u32 cccr, test; 1394 int err; 1395 1396 err = m_can_init_ram(cdev); 1397 if (err) { 1398 dev_err(cdev->dev, "Message RAM configuration failed\n"); 1399 return err; 1400 } 1401 1402 /* Disable unused interrupts */ 1403 interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF | 1404 IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F); 1405 1406 m_can_config_endisable(cdev, true); 1407 1408 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1409 m_can_write(cdev, M_CAN_RXESC, 1410 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) | 1411 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) | 1412 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B)); 1413 1414 /* Accept Non-matching Frames Into FIFO 0 */ 1415 m_can_write(cdev, M_CAN_GFC, 0x0); 1416 1417 if (cdev->version == 30) { 1418 /* only support one Tx Buffer currently */ 1419 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) | 1420 cdev->mcfg[MRAM_TXB].off); 1421 } else { 1422 /* TX FIFO is used for newer IP Core versions */ 1423 m_can_write(cdev, M_CAN_TXBC, 1424 FIELD_PREP(TXBC_TFQS_MASK, 1425 cdev->mcfg[MRAM_TXB].num) | 1426 cdev->mcfg[MRAM_TXB].off); 1427 } 1428 1429 /* support 64 bytes payload */ 1430 m_can_write(cdev, M_CAN_TXESC, 1431 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B)); 1432 1433 /* TX Event FIFO */ 1434 if (cdev->version == 30) { 1435 m_can_write(cdev, M_CAN_TXEFC, 1436 FIELD_PREP(TXEFC_EFS_MASK, 1) | 1437 cdev->mcfg[MRAM_TXE].off); 1438 } else { 1439 /* Full TX Event FIFO is used */ 1440 m_can_write(cdev, M_CAN_TXEFC, 1441 FIELD_PREP(TXEFC_EFWM_MASK, 1442 cdev->tx_max_coalesced_frames_irq) | 1443 FIELD_PREP(TXEFC_EFS_MASK, 1444 cdev->mcfg[MRAM_TXE].num) | 1445 cdev->mcfg[MRAM_TXE].off); 1446 } 1447 1448 /* rx fifo configuration, blocking mode, fifo size 1 */ 1449 m_can_write(cdev, M_CAN_RXF0C, 1450 FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) | 1451 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) | 1452 cdev->mcfg[MRAM_RXF0].off); 1453 1454 m_can_write(cdev, M_CAN_RXF1C, 1455 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) | 1456 cdev->mcfg[MRAM_RXF1].off); 1457 1458 cccr = m_can_read(cdev, M_CAN_CCCR); 1459 test = m_can_read(cdev, M_CAN_TEST); 1460 test &= ~TEST_LBCK; 1461 if (cdev->version == 30) { 1462 /* Version 3.0.x */ 1463 1464 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1465 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) | 1466 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK))); 1467 1468 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1469 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS); 1470 1471 } else { 1472 /* Version 3.1.x or 3.2.x */ 1473 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1474 CCCR_NISO | CCCR_DAR); 1475 1476 /* Only 3.2.x has NISO Bit implemented */ 1477 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1478 cccr |= CCCR_NISO; 1479 1480 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1481 cccr |= (CCCR_BRSE | CCCR_FDOE); 1482 } 1483 1484 /* Loopback Mode */ 1485 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1486 cccr |= CCCR_TEST | CCCR_MON; 1487 test |= TEST_LBCK; 1488 } 1489 1490 /* Enable Monitoring (all versions) */ 1491 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1492 cccr |= CCCR_MON; 1493 1494 /* Disable Auto Retransmission (all versions) */ 1495 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1496 cccr |= CCCR_DAR; 1497 1498 /* Write config */ 1499 m_can_write(cdev, M_CAN_CCCR, cccr); 1500 m_can_write(cdev, M_CAN_TEST, test); 1501 1502 /* Enable interrupts */ 1503 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) { 1504 if (cdev->version == 30) 1505 interrupts &= ~(IR_ERR_LEC_30X); 1506 else 1507 interrupts &= ~(IR_ERR_LEC_31X); 1508 } 1509 m_can_interrupt_enable(cdev, interrupts); 1510 1511 /* route all interrupts to INT0 */ 1512 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1513 1514 /* set bittiming params */ 1515 m_can_set_bittiming(dev); 1516 1517 /* enable internal timestamp generation, with a prescaler of 16. The 1518 * prescaler is applied to the nominal bit timing 1519 */ 1520 m_can_write(cdev, M_CAN_TSCC, 1521 FIELD_PREP(TSCC_TCP_MASK, 0xf) | 1522 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL)); 1523 1524 m_can_config_endisable(cdev, false); 1525 1526 if (cdev->ops->init) 1527 cdev->ops->init(cdev); 1528 1529 return 0; 1530 } 1531 1532 static int m_can_start(struct net_device *dev) 1533 { 1534 struct m_can_classdev *cdev = netdev_priv(dev); 1535 int ret; 1536 1537 /* basic m_can configuration */ 1538 ret = m_can_chip_config(dev); 1539 if (ret) 1540 return ret; 1541 1542 netdev_queue_set_dql_min_limit(netdev_get_tx_queue(cdev->net, 0), 1543 cdev->tx_max_coalesced_frames); 1544 1545 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1546 1547 m_can_enable_all_interrupts(cdev); 1548 1549 if (cdev->version > 30) 1550 cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK, 1551 m_can_read(cdev, M_CAN_TXFQS)); 1552 1553 return 0; 1554 } 1555 1556 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1557 { 1558 switch (mode) { 1559 case CAN_MODE_START: 1560 m_can_clean(dev); 1561 m_can_start(dev); 1562 netif_wake_queue(dev); 1563 break; 1564 default: 1565 return -EOPNOTSUPP; 1566 } 1567 1568 return 0; 1569 } 1570 1571 /* Checks core release number of M_CAN 1572 * returns 0 if an unsupported device is detected 1573 * else it returns the release and step coded as: 1574 * return value = 10 * <release> + 1 * <step> 1575 */ 1576 static int m_can_check_core_release(struct m_can_classdev *cdev) 1577 { 1578 u32 crel_reg; 1579 u8 rel; 1580 u8 step; 1581 int res; 1582 1583 /* Read Core Release Version and split into version number 1584 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1585 */ 1586 crel_reg = m_can_read(cdev, M_CAN_CREL); 1587 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg); 1588 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg); 1589 1590 if (rel == 3) { 1591 /* M_CAN v3.x.y: create return value */ 1592 res = 30 + step; 1593 } else { 1594 /* Unsupported M_CAN version */ 1595 res = 0; 1596 } 1597 1598 return res; 1599 } 1600 1601 /* Selectable Non ISO support only in version 3.2.x 1602 * This function checks if the bit is writable. 1603 */ 1604 static bool m_can_niso_supported(struct m_can_classdev *cdev) 1605 { 1606 u32 cccr_reg, cccr_poll = 0; 1607 int niso_timeout = -ETIMEDOUT; 1608 int i; 1609 1610 m_can_config_endisable(cdev, true); 1611 cccr_reg = m_can_read(cdev, M_CAN_CCCR); 1612 cccr_reg |= CCCR_NISO; 1613 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1614 1615 for (i = 0; i <= 10; i++) { 1616 cccr_poll = m_can_read(cdev, M_CAN_CCCR); 1617 if (cccr_poll == cccr_reg) { 1618 niso_timeout = 0; 1619 break; 1620 } 1621 1622 usleep_range(1, 5); 1623 } 1624 1625 /* Clear NISO */ 1626 cccr_reg &= ~(CCCR_NISO); 1627 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1628 1629 m_can_config_endisable(cdev, false); 1630 1631 /* return false if time out (-ETIMEDOUT), else return true */ 1632 return !niso_timeout; 1633 } 1634 1635 static int m_can_dev_setup(struct m_can_classdev *cdev) 1636 { 1637 struct net_device *dev = cdev->net; 1638 int m_can_version, err; 1639 1640 m_can_version = m_can_check_core_release(cdev); 1641 /* return if unsupported version */ 1642 if (!m_can_version) { 1643 dev_err(cdev->dev, "Unsupported version number: %2d", 1644 m_can_version); 1645 return -EINVAL; 1646 } 1647 1648 if (!cdev->is_peripheral) 1649 netif_napi_add(dev, &cdev->napi, m_can_poll); 1650 1651 /* Shared properties of all M_CAN versions */ 1652 cdev->version = m_can_version; 1653 cdev->can.do_set_mode = m_can_set_mode; 1654 cdev->can.do_get_berr_counter = m_can_get_berr_counter; 1655 1656 /* Set M_CAN supported operations */ 1657 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1658 CAN_CTRLMODE_LISTENONLY | 1659 CAN_CTRLMODE_BERR_REPORTING | 1660 CAN_CTRLMODE_FD | 1661 CAN_CTRLMODE_ONE_SHOT; 1662 1663 /* Set properties depending on M_CAN version */ 1664 switch (cdev->version) { 1665 case 30: 1666 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1667 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1668 if (err) 1669 return err; 1670 cdev->can.bittiming_const = &m_can_bittiming_const_30X; 1671 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X; 1672 break; 1673 case 31: 1674 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1675 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1676 if (err) 1677 return err; 1678 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1679 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1680 break; 1681 case 32: 1682 case 33: 1683 /* Support both MCAN version v3.2.x and v3.3.0 */ 1684 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1685 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1686 1687 cdev->can.ctrlmode_supported |= 1688 (m_can_niso_supported(cdev) ? 1689 CAN_CTRLMODE_FD_NON_ISO : 0); 1690 break; 1691 default: 1692 dev_err(cdev->dev, "Unsupported version number: %2d", 1693 cdev->version); 1694 return -EINVAL; 1695 } 1696 1697 if (cdev->ops->init) 1698 cdev->ops->init(cdev); 1699 1700 return 0; 1701 } 1702 1703 static void m_can_stop(struct net_device *dev) 1704 { 1705 struct m_can_classdev *cdev = netdev_priv(dev); 1706 1707 /* disable all interrupts */ 1708 m_can_disable_all_interrupts(cdev); 1709 1710 /* Set init mode to disengage from the network */ 1711 m_can_config_endisable(cdev, true); 1712 1713 /* set the state as STOPPED */ 1714 cdev->can.state = CAN_STATE_STOPPED; 1715 } 1716 1717 static int m_can_close(struct net_device *dev) 1718 { 1719 struct m_can_classdev *cdev = netdev_priv(dev); 1720 1721 netif_stop_queue(dev); 1722 1723 if (!cdev->is_peripheral) 1724 napi_disable(&cdev->napi); 1725 1726 m_can_stop(dev); 1727 m_can_clk_stop(cdev); 1728 free_irq(dev->irq, dev); 1729 1730 m_can_clean(dev); 1731 1732 if (cdev->is_peripheral) { 1733 destroy_workqueue(cdev->tx_wq); 1734 cdev->tx_wq = NULL; 1735 can_rx_offload_disable(&cdev->offload); 1736 } 1737 1738 close_candev(dev); 1739 1740 phy_power_off(cdev->transceiver); 1741 1742 return 0; 1743 } 1744 1745 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev, 1746 struct sk_buff *skb) 1747 { 1748 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1749 u8 len_padded = DIV_ROUND_UP(cf->len, 4); 1750 struct m_can_fifo_element fifo_element; 1751 struct net_device *dev = cdev->net; 1752 u32 cccr, fdflags; 1753 int err; 1754 u32 putidx; 1755 unsigned int frame_len = can_skb_get_frame_len(skb); 1756 1757 /* Generate ID field for TX buffer Element */ 1758 /* Common to all supported M_CAN versions */ 1759 if (cf->can_id & CAN_EFF_FLAG) { 1760 fifo_element.id = cf->can_id & CAN_EFF_MASK; 1761 fifo_element.id |= TX_BUF_XTD; 1762 } else { 1763 fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18); 1764 } 1765 1766 if (cf->can_id & CAN_RTR_FLAG) 1767 fifo_element.id |= TX_BUF_RTR; 1768 1769 if (cdev->version == 30) { 1770 netif_stop_queue(dev); 1771 1772 fifo_element.dlc = can_fd_len2dlc(cf->len) << 16; 1773 1774 /* Write the frame ID, DLC, and payload to the FIFO element. */ 1775 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_element, 2); 1776 if (err) 1777 goto out_fail; 1778 1779 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA, 1780 cf->data, len_padded); 1781 if (err) 1782 goto out_fail; 1783 1784 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1785 cccr = m_can_read(cdev, M_CAN_CCCR); 1786 cccr &= ~CCCR_CMR_MASK; 1787 if (can_is_canfd_skb(skb)) { 1788 if (cf->flags & CANFD_BRS) 1789 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1790 CCCR_CMR_CANFD_BRS); 1791 else 1792 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1793 CCCR_CMR_CANFD); 1794 } else { 1795 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN); 1796 } 1797 m_can_write(cdev, M_CAN_CCCR, cccr); 1798 } 1799 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1800 1801 can_put_echo_skb(skb, dev, 0, frame_len); 1802 1803 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1804 /* End of xmit function for version 3.0.x */ 1805 } else { 1806 /* Transmit routine for version >= v3.1.x */ 1807 1808 /* get put index for frame */ 1809 putidx = cdev->tx_fifo_putidx; 1810 1811 /* Construct DLC Field, with CAN-FD configuration. 1812 * Use the put index of the fifo as the message marker, 1813 * used in the TX interrupt for sending the correct echo frame. 1814 */ 1815 1816 /* get CAN FD configuration of frame */ 1817 fdflags = 0; 1818 if (can_is_canfd_skb(skb)) { 1819 fdflags |= TX_BUF_FDF; 1820 if (cf->flags & CANFD_BRS) 1821 fdflags |= TX_BUF_BRS; 1822 } 1823 1824 fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) | 1825 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) | 1826 fdflags | TX_BUF_EFC; 1827 1828 memcpy_and_pad(fifo_element.data, CANFD_MAX_DLEN, &cf->data, 1829 cf->len, 0); 1830 1831 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, 1832 &fifo_element, 2 + len_padded); 1833 if (err) 1834 goto out_fail; 1835 1836 /* Push loopback echo. 1837 * Will be looped back on TX interrupt based on message marker 1838 */ 1839 can_put_echo_skb(skb, dev, putidx, frame_len); 1840 1841 if (cdev->is_peripheral) { 1842 /* Delay enabling TX FIFO element */ 1843 cdev->tx_peripheral_submit |= BIT(putidx); 1844 } else { 1845 /* Enable TX FIFO element to start transfer */ 1846 m_can_write(cdev, M_CAN_TXBAR, BIT(putidx)); 1847 } 1848 cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ? 1849 0 : cdev->tx_fifo_putidx); 1850 } 1851 1852 return NETDEV_TX_OK; 1853 1854 out_fail: 1855 netdev_err(dev, "FIFO write returned %d\n", err); 1856 m_can_disable_all_interrupts(cdev); 1857 return NETDEV_TX_BUSY; 1858 } 1859 1860 static void m_can_tx_submit(struct m_can_classdev *cdev) 1861 { 1862 if (cdev->version == 30) 1863 return; 1864 if (!cdev->is_peripheral) 1865 return; 1866 1867 m_can_write(cdev, M_CAN_TXBAR, cdev->tx_peripheral_submit); 1868 cdev->tx_peripheral_submit = 0; 1869 } 1870 1871 static void m_can_tx_work_queue(struct work_struct *ws) 1872 { 1873 struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work); 1874 struct m_can_classdev *cdev = op->cdev; 1875 struct sk_buff *skb = op->skb; 1876 1877 op->skb = NULL; 1878 m_can_tx_handler(cdev, skb); 1879 if (op->submit) 1880 m_can_tx_submit(cdev); 1881 } 1882 1883 static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb, 1884 bool submit) 1885 { 1886 cdev->tx_ops[cdev->next_tx_op].skb = skb; 1887 cdev->tx_ops[cdev->next_tx_op].submit = submit; 1888 queue_work(cdev->tx_wq, &cdev->tx_ops[cdev->next_tx_op].work); 1889 1890 ++cdev->next_tx_op; 1891 if (cdev->next_tx_op >= cdev->tx_fifo_size) 1892 cdev->next_tx_op = 0; 1893 } 1894 1895 static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev, 1896 struct sk_buff *skb) 1897 { 1898 bool submit; 1899 1900 ++cdev->nr_txs_without_submit; 1901 if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames || 1902 !netdev_xmit_more()) { 1903 cdev->nr_txs_without_submit = 0; 1904 submit = true; 1905 } else { 1906 submit = false; 1907 } 1908 m_can_tx_queue_skb(cdev, skb, submit); 1909 1910 return NETDEV_TX_OK; 1911 } 1912 1913 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1914 struct net_device *dev) 1915 { 1916 struct m_can_classdev *cdev = netdev_priv(dev); 1917 unsigned int frame_len; 1918 netdev_tx_t ret; 1919 1920 if (can_dev_dropped_skb(dev, skb)) 1921 return NETDEV_TX_OK; 1922 1923 frame_len = can_skb_get_frame_len(skb); 1924 1925 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1926 m_can_clean(cdev->net); 1927 return NETDEV_TX_OK; 1928 } 1929 1930 ret = m_can_start_tx(cdev); 1931 if (ret != NETDEV_TX_OK) 1932 return ret; 1933 1934 netdev_sent_queue(dev, frame_len); 1935 1936 if (cdev->is_peripheral) 1937 ret = m_can_start_peripheral_xmit(cdev, skb); 1938 else 1939 ret = m_can_tx_handler(cdev, skb); 1940 1941 if (ret != NETDEV_TX_OK) 1942 netdev_completed_queue(dev, 1, frame_len); 1943 1944 return ret; 1945 } 1946 1947 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer) 1948 { 1949 struct m_can_classdev *cdev = container_of(timer, struct 1950 m_can_classdev, hrtimer); 1951 1952 m_can_isr(0, cdev->net); 1953 1954 hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS)); 1955 1956 return HRTIMER_RESTART; 1957 } 1958 1959 static int m_can_open(struct net_device *dev) 1960 { 1961 struct m_can_classdev *cdev = netdev_priv(dev); 1962 int err; 1963 1964 err = phy_power_on(cdev->transceiver); 1965 if (err) 1966 return err; 1967 1968 err = m_can_clk_start(cdev); 1969 if (err) 1970 goto out_phy_power_off; 1971 1972 /* open the can device */ 1973 err = open_candev(dev); 1974 if (err) { 1975 netdev_err(dev, "failed to open can device\n"); 1976 goto exit_disable_clks; 1977 } 1978 1979 if (cdev->is_peripheral) 1980 can_rx_offload_enable(&cdev->offload); 1981 1982 /* register interrupt handler */ 1983 if (cdev->is_peripheral) { 1984 cdev->tx_wq = alloc_ordered_workqueue("mcan_wq", 1985 WQ_FREEZABLE | WQ_MEM_RECLAIM); 1986 if (!cdev->tx_wq) { 1987 err = -ENOMEM; 1988 goto out_wq_fail; 1989 } 1990 1991 for (int i = 0; i != cdev->tx_fifo_size; ++i) { 1992 cdev->tx_ops[i].cdev = cdev; 1993 INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue); 1994 } 1995 1996 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 1997 IRQF_ONESHOT, 1998 dev->name, dev); 1999 } else if (dev->irq) { 2000 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 2001 dev); 2002 } 2003 2004 if (err < 0) { 2005 netdev_err(dev, "failed to request interrupt\n"); 2006 goto exit_irq_fail; 2007 } 2008 2009 /* start the m_can controller */ 2010 err = m_can_start(dev); 2011 if (err) 2012 goto exit_irq_fail; 2013 2014 if (!cdev->is_peripheral) 2015 napi_enable(&cdev->napi); 2016 2017 netif_start_queue(dev); 2018 2019 return 0; 2020 2021 exit_irq_fail: 2022 if (cdev->is_peripheral) 2023 destroy_workqueue(cdev->tx_wq); 2024 out_wq_fail: 2025 if (cdev->is_peripheral) 2026 can_rx_offload_disable(&cdev->offload); 2027 close_candev(dev); 2028 exit_disable_clks: 2029 m_can_clk_stop(cdev); 2030 out_phy_power_off: 2031 phy_power_off(cdev->transceiver); 2032 return err; 2033 } 2034 2035 static const struct net_device_ops m_can_netdev_ops = { 2036 .ndo_open = m_can_open, 2037 .ndo_stop = m_can_close, 2038 .ndo_start_xmit = m_can_start_xmit, 2039 .ndo_change_mtu = can_change_mtu, 2040 }; 2041 2042 static int m_can_get_coalesce(struct net_device *dev, 2043 struct ethtool_coalesce *ec, 2044 struct kernel_ethtool_coalesce *kec, 2045 struct netlink_ext_ack *ext_ack) 2046 { 2047 struct m_can_classdev *cdev = netdev_priv(dev); 2048 2049 ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq; 2050 ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq; 2051 ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames; 2052 ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq; 2053 ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq; 2054 2055 return 0; 2056 } 2057 2058 static int m_can_set_coalesce(struct net_device *dev, 2059 struct ethtool_coalesce *ec, 2060 struct kernel_ethtool_coalesce *kec, 2061 struct netlink_ext_ack *ext_ack) 2062 { 2063 struct m_can_classdev *cdev = netdev_priv(dev); 2064 2065 if (cdev->can.state != CAN_STATE_STOPPED) { 2066 netdev_err(dev, "Device is in use, please shut it down first\n"); 2067 return -EBUSY; 2068 } 2069 2070 if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) { 2071 netdev_err(dev, "rx-frames-irq %u greater than the RX FIFO %u\n", 2072 ec->rx_max_coalesced_frames_irq, 2073 cdev->mcfg[MRAM_RXF0].num); 2074 return -EINVAL; 2075 } 2076 if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) { 2077 netdev_err(dev, "rx-frames-irq and rx-usecs-irq can only be set together\n"); 2078 return -EINVAL; 2079 } 2080 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) { 2081 netdev_err(dev, "tx-frames-irq %u greater than the TX event FIFO %u\n", 2082 ec->tx_max_coalesced_frames_irq, 2083 cdev->mcfg[MRAM_TXE].num); 2084 return -EINVAL; 2085 } 2086 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) { 2087 netdev_err(dev, "tx-frames-irq %u greater than the TX FIFO %u\n", 2088 ec->tx_max_coalesced_frames_irq, 2089 cdev->mcfg[MRAM_TXB].num); 2090 return -EINVAL; 2091 } 2092 if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) { 2093 netdev_err(dev, "tx-frames-irq and tx-usecs-irq can only be set together\n"); 2094 return -EINVAL; 2095 } 2096 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) { 2097 netdev_err(dev, "tx-frames %u greater than the TX event FIFO %u\n", 2098 ec->tx_max_coalesced_frames, 2099 cdev->mcfg[MRAM_TXE].num); 2100 return -EINVAL; 2101 } 2102 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) { 2103 netdev_err(dev, "tx-frames %u greater than the TX FIFO %u\n", 2104 ec->tx_max_coalesced_frames, 2105 cdev->mcfg[MRAM_TXB].num); 2106 return -EINVAL; 2107 } 2108 if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 && 2109 ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) { 2110 netdev_err(dev, "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n", 2111 ec->rx_coalesce_usecs_irq, 2112 ec->tx_coalesce_usecs_irq); 2113 return -EINVAL; 2114 } 2115 2116 cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq; 2117 cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq; 2118 cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames; 2119 cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq; 2120 cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq; 2121 2122 if (cdev->rx_coalesce_usecs_irq) 2123 cdev->irq_timer_wait = 2124 ns_to_ktime(cdev->rx_coalesce_usecs_irq * NSEC_PER_USEC); 2125 else 2126 cdev->irq_timer_wait = 2127 ns_to_ktime(cdev->tx_coalesce_usecs_irq * NSEC_PER_USEC); 2128 2129 return 0; 2130 } 2131 2132 static const struct ethtool_ops m_can_ethtool_ops = { 2133 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ | 2134 ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ | 2135 ETHTOOL_COALESCE_TX_USECS_IRQ | 2136 ETHTOOL_COALESCE_TX_MAX_FRAMES | 2137 ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ, 2138 .get_ts_info = ethtool_op_get_ts_info, 2139 .get_coalesce = m_can_get_coalesce, 2140 .set_coalesce = m_can_set_coalesce, 2141 }; 2142 2143 static const struct ethtool_ops m_can_ethtool_ops_polling = { 2144 .get_ts_info = ethtool_op_get_ts_info, 2145 }; 2146 2147 static int register_m_can_dev(struct net_device *dev) 2148 { 2149 dev->flags |= IFF_ECHO; /* we support local echo */ 2150 dev->netdev_ops = &m_can_netdev_ops; 2151 if (dev->irq) 2152 dev->ethtool_ops = &m_can_ethtool_ops; 2153 else 2154 dev->ethtool_ops = &m_can_ethtool_ops_polling; 2155 2156 return register_candev(dev); 2157 } 2158 2159 int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size) 2160 { 2161 u32 total_size; 2162 2163 total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off + 2164 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 2165 if (total_size > mram_max_size) { 2166 dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n", 2167 total_size, mram_max_size); 2168 return -EINVAL; 2169 } 2170 2171 return 0; 2172 } 2173 EXPORT_SYMBOL_GPL(m_can_check_mram_cfg); 2174 2175 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 2176 const u32 *mram_config_vals) 2177 { 2178 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 2179 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 2180 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 2181 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 2182 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 2183 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 2184 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 2185 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 2186 FIELD_MAX(RXFC_FS_MASK); 2187 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 2188 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 2189 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 2190 FIELD_MAX(RXFC_FS_MASK); 2191 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 2192 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 2193 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 2194 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 2195 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 2196 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 2197 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 2198 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 2199 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 2200 FIELD_MAX(TXBC_NDTB_MASK); 2201 2202 dev_dbg(cdev->dev, 2203 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 2204 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 2205 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 2206 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 2207 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 2208 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 2209 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 2210 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 2211 } 2212 2213 int m_can_init_ram(struct m_can_classdev *cdev) 2214 { 2215 int end, i, start; 2216 int err = 0; 2217 2218 /* initialize the entire Message RAM in use to avoid possible 2219 * ECC/parity checksum errors when reading an uninitialized buffer 2220 */ 2221 start = cdev->mcfg[MRAM_SIDF].off; 2222 end = cdev->mcfg[MRAM_TXB].off + 2223 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 2224 2225 for (i = start; i < end; i += 4) { 2226 err = m_can_fifo_write_no_off(cdev, i, 0x0); 2227 if (err) 2228 break; 2229 } 2230 2231 return err; 2232 } 2233 EXPORT_SYMBOL_GPL(m_can_init_ram); 2234 2235 int m_can_class_get_clocks(struct m_can_classdev *cdev) 2236 { 2237 int ret = 0; 2238 2239 cdev->hclk = devm_clk_get(cdev->dev, "hclk"); 2240 cdev->cclk = devm_clk_get(cdev->dev, "cclk"); 2241 2242 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) { 2243 dev_err(cdev->dev, "no clock found\n"); 2244 ret = -ENODEV; 2245 } 2246 2247 return ret; 2248 } 2249 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 2250 2251 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev, 2252 int sizeof_priv) 2253 { 2254 struct m_can_classdev *class_dev = NULL; 2255 u32 mram_config_vals[MRAM_CFG_LEN]; 2256 struct net_device *net_dev; 2257 u32 tx_fifo_size; 2258 int ret; 2259 2260 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 2261 "bosch,mram-cfg", 2262 mram_config_vals, 2263 sizeof(mram_config_vals) / 4); 2264 if (ret) { 2265 dev_err(dev, "Could not get Message RAM configuration."); 2266 goto out; 2267 } 2268 2269 /* Get TX FIFO size 2270 * Defines the total amount of echo buffers for loopback 2271 */ 2272 tx_fifo_size = mram_config_vals[7]; 2273 2274 /* allocate the m_can device */ 2275 net_dev = alloc_candev(sizeof_priv, tx_fifo_size); 2276 if (!net_dev) { 2277 dev_err(dev, "Failed to allocate CAN device"); 2278 goto out; 2279 } 2280 2281 class_dev = netdev_priv(net_dev); 2282 class_dev->net = net_dev; 2283 class_dev->dev = dev; 2284 SET_NETDEV_DEV(net_dev, dev); 2285 2286 m_can_of_parse_mram(class_dev, mram_config_vals); 2287 out: 2288 return class_dev; 2289 } 2290 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 2291 2292 void m_can_class_free_dev(struct net_device *net) 2293 { 2294 free_candev(net); 2295 } 2296 EXPORT_SYMBOL_GPL(m_can_class_free_dev); 2297 2298 int m_can_class_register(struct m_can_classdev *cdev) 2299 { 2300 int ret; 2301 2302 cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num, 2303 cdev->mcfg[MRAM_TXE].num)); 2304 if (cdev->is_peripheral) { 2305 cdev->tx_ops = 2306 devm_kzalloc(cdev->dev, 2307 cdev->tx_fifo_size * sizeof(*cdev->tx_ops), 2308 GFP_KERNEL); 2309 if (!cdev->tx_ops) { 2310 dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n"); 2311 return -ENOMEM; 2312 } 2313 } 2314 2315 ret = m_can_clk_start(cdev); 2316 if (ret) 2317 return ret; 2318 2319 if (cdev->is_peripheral) { 2320 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload, 2321 NAPI_POLL_WEIGHT); 2322 if (ret) 2323 goto clk_disable; 2324 } 2325 2326 if (!cdev->net->irq) { 2327 dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer"); 2328 hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, 2329 HRTIMER_MODE_REL_PINNED); 2330 cdev->hrtimer.function = &hrtimer_callback; 2331 } else { 2332 hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2333 cdev->hrtimer.function = m_can_coalescing_timer; 2334 } 2335 2336 ret = m_can_dev_setup(cdev); 2337 if (ret) 2338 goto rx_offload_del; 2339 2340 ret = register_m_can_dev(cdev->net); 2341 if (ret) { 2342 dev_err(cdev->dev, "registering %s failed (err=%d)\n", 2343 cdev->net->name, ret); 2344 goto rx_offload_del; 2345 } 2346 2347 of_can_transceiver(cdev->net); 2348 2349 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n", 2350 KBUILD_MODNAME, cdev->net->irq, cdev->version); 2351 2352 /* Probe finished 2353 * Stop clocks. They will be reactivated once the M_CAN device is opened 2354 */ 2355 m_can_clk_stop(cdev); 2356 2357 return 0; 2358 2359 rx_offload_del: 2360 if (cdev->is_peripheral) 2361 can_rx_offload_del(&cdev->offload); 2362 clk_disable: 2363 m_can_clk_stop(cdev); 2364 2365 return ret; 2366 } 2367 EXPORT_SYMBOL_GPL(m_can_class_register); 2368 2369 void m_can_class_unregister(struct m_can_classdev *cdev) 2370 { 2371 if (cdev->is_peripheral) 2372 can_rx_offload_del(&cdev->offload); 2373 unregister_candev(cdev->net); 2374 } 2375 EXPORT_SYMBOL_GPL(m_can_class_unregister); 2376 2377 int m_can_class_suspend(struct device *dev) 2378 { 2379 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2380 struct net_device *ndev = cdev->net; 2381 2382 if (netif_running(ndev)) { 2383 netif_stop_queue(ndev); 2384 netif_device_detach(ndev); 2385 2386 /* leave the chip running with rx interrupt enabled if it is 2387 * used as a wake-up source. 2388 */ 2389 if (cdev->pm_wake_source) 2390 m_can_write(cdev, M_CAN_IE, IR_RF0N); 2391 else 2392 m_can_stop(ndev); 2393 2394 m_can_clk_stop(cdev); 2395 } 2396 2397 pinctrl_pm_select_sleep_state(dev); 2398 2399 cdev->can.state = CAN_STATE_SLEEPING; 2400 2401 return 0; 2402 } 2403 EXPORT_SYMBOL_GPL(m_can_class_suspend); 2404 2405 int m_can_class_resume(struct device *dev) 2406 { 2407 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2408 struct net_device *ndev = cdev->net; 2409 2410 pinctrl_pm_select_default_state(dev); 2411 2412 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 2413 2414 if (netif_running(ndev)) { 2415 int ret; 2416 2417 ret = m_can_clk_start(cdev); 2418 if (ret) 2419 return ret; 2420 2421 if (cdev->pm_wake_source) { 2422 m_can_write(cdev, M_CAN_IE, cdev->active_interrupts); 2423 } else { 2424 ret = m_can_start(ndev); 2425 if (ret) { 2426 m_can_clk_stop(cdev); 2427 return ret; 2428 } 2429 } 2430 2431 netif_device_attach(ndev); 2432 netif_start_queue(ndev); 2433 } 2434 2435 return 0; 2436 } 2437 EXPORT_SYMBOL_GPL(m_can_class_resume); 2438 2439 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 2440 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 2441 MODULE_LICENSE("GPL v2"); 2442 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 2443