xref: /linux/drivers/net/can/m_can/m_can.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/netdevice.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/iopoll.h>
21 #include <linux/can/dev.h>
22 #include <linux/pinctrl/consumer.h>
23 
24 #include "m_can.h"
25 
26 /* registers definition */
27 enum m_can_reg {
28 	M_CAN_CREL	= 0x0,
29 	M_CAN_ENDN	= 0x4,
30 	M_CAN_CUST	= 0x8,
31 	M_CAN_DBTP	= 0xc,
32 	M_CAN_TEST	= 0x10,
33 	M_CAN_RWD	= 0x14,
34 	M_CAN_CCCR	= 0x18,
35 	M_CAN_NBTP	= 0x1c,
36 	M_CAN_TSCC	= 0x20,
37 	M_CAN_TSCV	= 0x24,
38 	M_CAN_TOCC	= 0x28,
39 	M_CAN_TOCV	= 0x2c,
40 	M_CAN_ECR	= 0x40,
41 	M_CAN_PSR	= 0x44,
42 	/* TDCR Register only available for version >=3.1.x */
43 	M_CAN_TDCR	= 0x48,
44 	M_CAN_IR	= 0x50,
45 	M_CAN_IE	= 0x54,
46 	M_CAN_ILS	= 0x58,
47 	M_CAN_ILE	= 0x5c,
48 	M_CAN_GFC	= 0x80,
49 	M_CAN_SIDFC	= 0x84,
50 	M_CAN_XIDFC	= 0x88,
51 	M_CAN_XIDAM	= 0x90,
52 	M_CAN_HPMS	= 0x94,
53 	M_CAN_NDAT1	= 0x98,
54 	M_CAN_NDAT2	= 0x9c,
55 	M_CAN_RXF0C	= 0xa0,
56 	M_CAN_RXF0S	= 0xa4,
57 	M_CAN_RXF0A	= 0xa8,
58 	M_CAN_RXBC	= 0xac,
59 	M_CAN_RXF1C	= 0xb0,
60 	M_CAN_RXF1S	= 0xb4,
61 	M_CAN_RXF1A	= 0xb8,
62 	M_CAN_RXESC	= 0xbc,
63 	M_CAN_TXBC	= 0xc0,
64 	M_CAN_TXFQS	= 0xc4,
65 	M_CAN_TXESC	= 0xc8,
66 	M_CAN_TXBRP	= 0xcc,
67 	M_CAN_TXBAR	= 0xd0,
68 	M_CAN_TXBCR	= 0xd4,
69 	M_CAN_TXBTO	= 0xd8,
70 	M_CAN_TXBCF	= 0xdc,
71 	M_CAN_TXBTIE	= 0xe0,
72 	M_CAN_TXBCIE	= 0xe4,
73 	M_CAN_TXEFC	= 0xf0,
74 	M_CAN_TXEFS	= 0xf4,
75 	M_CAN_TXEFA	= 0xf8,
76 };
77 
78 /* napi related */
79 #define M_CAN_NAPI_WEIGHT	64
80 
81 /* message ram configuration data length */
82 #define MRAM_CFG_LEN	8
83 
84 /* Core Release Register (CREL) */
85 #define CREL_REL_SHIFT		28
86 #define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
87 #define CREL_STEP_SHIFT		24
88 #define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
89 #define CREL_SUBSTEP_SHIFT	20
90 #define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
91 
92 /* Data Bit Timing & Prescaler Register (DBTP) */
93 #define DBTP_TDC		BIT(23)
94 #define DBTP_DBRP_SHIFT		16
95 #define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
96 #define DBTP_DTSEG1_SHIFT	8
97 #define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
98 #define DBTP_DTSEG2_SHIFT	4
99 #define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
100 #define DBTP_DSJW_SHIFT		0
101 #define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
102 
103 /* Transmitter Delay Compensation Register (TDCR) */
104 #define TDCR_TDCO_SHIFT		8
105 #define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
106 #define TDCR_TDCF_SHIFT		0
107 #define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)
108 
109 /* Test Register (TEST) */
110 #define TEST_LBCK		BIT(4)
111 
112 /* CC Control Register(CCCR) */
113 #define CCCR_CMR_MASK		0x3
114 #define CCCR_CMR_SHIFT		10
115 #define CCCR_CMR_CANFD		0x1
116 #define CCCR_CMR_CANFD_BRS	0x2
117 #define CCCR_CMR_CAN		0x3
118 #define CCCR_CME_MASK		0x3
119 #define CCCR_CME_SHIFT		8
120 #define CCCR_CME_CAN		0
121 #define CCCR_CME_CANFD		0x1
122 #define CCCR_CME_CANFD_BRS	0x2
123 #define CCCR_TXP		BIT(14)
124 #define CCCR_TEST		BIT(7)
125 #define CCCR_DAR		BIT(6)
126 #define CCCR_MON		BIT(5)
127 #define CCCR_CSR		BIT(4)
128 #define CCCR_CSA		BIT(3)
129 #define CCCR_ASM		BIT(2)
130 #define CCCR_CCE		BIT(1)
131 #define CCCR_INIT		BIT(0)
132 #define CCCR_CANFD		0x10
133 /* for version >=3.1.x */
134 #define CCCR_EFBI		BIT(13)
135 #define CCCR_PXHD		BIT(12)
136 #define CCCR_BRSE		BIT(9)
137 #define CCCR_FDOE		BIT(8)
138 /* only for version >=3.2.x */
139 #define CCCR_NISO		BIT(15)
140 
141 /* Nominal Bit Timing & Prescaler Register (NBTP) */
142 #define NBTP_NSJW_SHIFT		25
143 #define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
144 #define NBTP_NBRP_SHIFT		16
145 #define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
146 #define NBTP_NTSEG1_SHIFT	8
147 #define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
148 #define NBTP_NTSEG2_SHIFT	0
149 #define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
150 
151 /* Error Counter Register(ECR) */
152 #define ECR_RP			BIT(15)
153 #define ECR_REC_SHIFT		8
154 #define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
155 #define ECR_TEC_SHIFT		0
156 #define ECR_TEC_MASK		0xff
157 
158 /* Protocol Status Register(PSR) */
159 #define PSR_BO		BIT(7)
160 #define PSR_EW		BIT(6)
161 #define PSR_EP		BIT(5)
162 #define PSR_LEC_MASK	0x7
163 
164 /* Interrupt Register(IR) */
165 #define IR_ALL_INT	0xffffffff
166 
167 /* Renamed bits for versions > 3.1.x */
168 #define IR_ARA		BIT(29)
169 #define IR_PED		BIT(28)
170 #define IR_PEA		BIT(27)
171 
172 /* Bits for version 3.0.x */
173 #define IR_STE		BIT(31)
174 #define IR_FOE		BIT(30)
175 #define IR_ACKE		BIT(29)
176 #define IR_BE		BIT(28)
177 #define IR_CRCE		BIT(27)
178 #define IR_WDI		BIT(26)
179 #define IR_BO		BIT(25)
180 #define IR_EW		BIT(24)
181 #define IR_EP		BIT(23)
182 #define IR_ELO		BIT(22)
183 #define IR_BEU		BIT(21)
184 #define IR_BEC		BIT(20)
185 #define IR_DRX		BIT(19)
186 #define IR_TOO		BIT(18)
187 #define IR_MRAF		BIT(17)
188 #define IR_TSW		BIT(16)
189 #define IR_TEFL		BIT(15)
190 #define IR_TEFF		BIT(14)
191 #define IR_TEFW		BIT(13)
192 #define IR_TEFN		BIT(12)
193 #define IR_TFE		BIT(11)
194 #define IR_TCF		BIT(10)
195 #define IR_TC		BIT(9)
196 #define IR_HPM		BIT(8)
197 #define IR_RF1L		BIT(7)
198 #define IR_RF1F		BIT(6)
199 #define IR_RF1W		BIT(5)
200 #define IR_RF1N		BIT(4)
201 #define IR_RF0L		BIT(3)
202 #define IR_RF0F		BIT(2)
203 #define IR_RF0W		BIT(1)
204 #define IR_RF0N		BIT(0)
205 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
206 
207 /* Interrupts for version 3.0.x */
208 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
209 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
210 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
211 			 IR_RF1L | IR_RF0L)
212 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
213 /* Interrupts for version >= 3.1.x */
214 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
215 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
216 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
217 			 IR_RF1L | IR_RF0L)
218 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
219 
220 /* Interrupt Line Select (ILS) */
221 #define ILS_ALL_INT0	0x0
222 #define ILS_ALL_INT1	0xFFFFFFFF
223 
224 /* Interrupt Line Enable (ILE) */
225 #define ILE_EINT1	BIT(1)
226 #define ILE_EINT0	BIT(0)
227 
228 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
229 #define RXFC_FWM_SHIFT	24
230 #define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
231 #define RXFC_FS_SHIFT	16
232 #define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
233 
234 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
235 #define RXFS_RFL	BIT(25)
236 #define RXFS_FF		BIT(24)
237 #define RXFS_FPI_SHIFT	16
238 #define RXFS_FPI_MASK	0x3f0000
239 #define RXFS_FGI_SHIFT	8
240 #define RXFS_FGI_MASK	0x3f00
241 #define RXFS_FFL_MASK	0x7f
242 
243 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
244 #define M_CAN_RXESC_8BYTES	0x0
245 #define M_CAN_RXESC_64BYTES	0x777
246 
247 /* Tx Buffer Configuration(TXBC) */
248 #define TXBC_NDTB_SHIFT		16
249 #define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
250 #define TXBC_TFQS_SHIFT		24
251 #define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
252 
253 /* Tx FIFO/Queue Status (TXFQS) */
254 #define TXFQS_TFQF		BIT(21)
255 #define TXFQS_TFQPI_SHIFT	16
256 #define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
257 #define TXFQS_TFGI_SHIFT	8
258 #define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
259 #define TXFQS_TFFL_SHIFT	0
260 #define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
261 
262 /* Tx Buffer Element Size Configuration(TXESC) */
263 #define TXESC_TBDS_8BYTES	0x0
264 #define TXESC_TBDS_64BYTES	0x7
265 
266 /* Tx Event FIFO Configuration (TXEFC) */
267 #define TXEFC_EFS_SHIFT		16
268 #define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
269 
270 /* Tx Event FIFO Status (TXEFS) */
271 #define TXEFS_TEFL		BIT(25)
272 #define TXEFS_EFF		BIT(24)
273 #define TXEFS_EFGI_SHIFT	8
274 #define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
275 #define TXEFS_EFFL_SHIFT	0
276 #define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
277 
278 /* Tx Event FIFO Acknowledge (TXEFA) */
279 #define TXEFA_EFAI_SHIFT	0
280 #define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
281 
282 /* Message RAM Configuration (in bytes) */
283 #define SIDF_ELEMENT_SIZE	4
284 #define XIDF_ELEMENT_SIZE	8
285 #define RXF0_ELEMENT_SIZE	72
286 #define RXF1_ELEMENT_SIZE	72
287 #define RXB_ELEMENT_SIZE	72
288 #define TXE_ELEMENT_SIZE	8
289 #define TXB_ELEMENT_SIZE	72
290 
291 /* Message RAM Elements */
292 #define M_CAN_FIFO_ID		0x0
293 #define M_CAN_FIFO_DLC		0x4
294 #define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
295 
296 /* Rx Buffer Element */
297 /* R0 */
298 #define RX_BUF_ESI		BIT(31)
299 #define RX_BUF_XTD		BIT(30)
300 #define RX_BUF_RTR		BIT(29)
301 /* R1 */
302 #define RX_BUF_ANMF		BIT(31)
303 #define RX_BUF_FDF		BIT(21)
304 #define RX_BUF_BRS		BIT(20)
305 
306 /* Tx Buffer Element */
307 /* T0 */
308 #define TX_BUF_ESI		BIT(31)
309 #define TX_BUF_XTD		BIT(30)
310 #define TX_BUF_RTR		BIT(29)
311 /* T1 */
312 #define TX_BUF_EFC		BIT(23)
313 #define TX_BUF_FDF		BIT(21)
314 #define TX_BUF_BRS		BIT(20)
315 #define TX_BUF_MM_SHIFT		24
316 #define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
317 
318 /* Tx event FIFO Element */
319 /* E1 */
320 #define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
321 #define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
322 
323 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
324 {
325 	return cdev->ops->read_reg(cdev, reg);
326 }
327 
328 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
329 			       u32 val)
330 {
331 	cdev->ops->write_reg(cdev, reg, val);
332 }
333 
334 static u32 m_can_fifo_read(struct m_can_classdev *cdev,
335 			   u32 fgi, unsigned int offset)
336 {
337 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
338 		offset;
339 
340 	return cdev->ops->read_fifo(cdev, addr_offset);
341 }
342 
343 static void m_can_fifo_write(struct m_can_classdev *cdev,
344 			     u32 fpi, unsigned int offset, u32 val)
345 {
346 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
347 		offset;
348 
349 	cdev->ops->write_fifo(cdev, addr_offset, val);
350 }
351 
352 static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
353 					   u32 fpi, u32 val)
354 {
355 	cdev->ops->write_fifo(cdev, fpi, val);
356 }
357 
358 static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
359 {
360 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
361 		offset;
362 
363 	return cdev->ops->read_fifo(cdev, addr_offset);
364 }
365 
366 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
367 {
368 	return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
369 }
370 
371 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
372 {
373 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
374 	u32 timeout = 10;
375 	u32 val = 0;
376 
377 	/* Clear the Clock stop request if it was set */
378 	if (cccr & CCCR_CSR)
379 		cccr &= ~CCCR_CSR;
380 
381 	if (enable) {
382 		/* enable m_can configuration */
383 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
384 		udelay(5);
385 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
386 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
387 	} else {
388 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
389 	}
390 
391 	/* there's a delay for module initialization */
392 	if (enable)
393 		val = CCCR_INIT | CCCR_CCE;
394 
395 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
396 		if (timeout == 0) {
397 			netdev_warn(cdev->net, "Failed to init module\n");
398 			return;
399 		}
400 		timeout--;
401 		udelay(1);
402 	}
403 }
404 
405 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
406 {
407 	/* Only interrupt line 0 is used in this driver */
408 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
409 }
410 
411 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
412 {
413 	m_can_write(cdev, M_CAN_ILE, 0x0);
414 }
415 
416 static void m_can_clean(struct net_device *net)
417 {
418 	struct m_can_classdev *cdev = netdev_priv(net);
419 
420 	if (cdev->tx_skb) {
421 		int putidx = 0;
422 
423 		net->stats.tx_errors++;
424 		if (cdev->version > 30)
425 			putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
426 				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
427 
428 		can_free_echo_skb(cdev->net, putidx);
429 		cdev->tx_skb = NULL;
430 	}
431 }
432 
433 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
434 {
435 	struct net_device_stats *stats = &dev->stats;
436 	struct m_can_classdev *cdev = netdev_priv(dev);
437 	struct canfd_frame *cf;
438 	struct sk_buff *skb;
439 	u32 id, fgi, dlc;
440 	int i;
441 
442 	/* calculate the fifo get index for where to read data */
443 	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
444 	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
445 	if (dlc & RX_BUF_FDF)
446 		skb = alloc_canfd_skb(dev, &cf);
447 	else
448 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
449 	if (!skb) {
450 		stats->rx_dropped++;
451 		return;
452 	}
453 
454 	if (dlc & RX_BUF_FDF)
455 		cf->len = can_fd_dlc2len((dlc >> 16) & 0x0F);
456 	else
457 		cf->len = can_cc_dlc2len((dlc >> 16) & 0x0F);
458 
459 	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
460 	if (id & RX_BUF_XTD)
461 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
462 	else
463 		cf->can_id = (id >> 18) & CAN_SFF_MASK;
464 
465 	if (id & RX_BUF_ESI) {
466 		cf->flags |= CANFD_ESI;
467 		netdev_dbg(dev, "ESI Error\n");
468 	}
469 
470 	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
471 		cf->can_id |= CAN_RTR_FLAG;
472 	} else {
473 		if (dlc & RX_BUF_BRS)
474 			cf->flags |= CANFD_BRS;
475 
476 		for (i = 0; i < cf->len; i += 4)
477 			*(u32 *)(cf->data + i) =
478 				m_can_fifo_read(cdev, fgi,
479 						M_CAN_FIFO_DATA(i / 4));
480 	}
481 
482 	/* acknowledge rx fifo 0 */
483 	m_can_write(cdev, M_CAN_RXF0A, fgi);
484 
485 	stats->rx_packets++;
486 	stats->rx_bytes += cf->len;
487 
488 	netif_receive_skb(skb);
489 }
490 
491 static int m_can_do_rx_poll(struct net_device *dev, int quota)
492 {
493 	struct m_can_classdev *cdev = netdev_priv(dev);
494 	u32 pkts = 0;
495 	u32 rxfs;
496 
497 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
498 	if (!(rxfs & RXFS_FFL_MASK)) {
499 		netdev_dbg(dev, "no messages in fifo0\n");
500 		return 0;
501 	}
502 
503 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
504 		if (rxfs & RXFS_RFL)
505 			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
506 
507 		m_can_read_fifo(dev, rxfs);
508 
509 		quota--;
510 		pkts++;
511 		rxfs = m_can_read(cdev, M_CAN_RXF0S);
512 	}
513 
514 	if (pkts)
515 		can_led_event(dev, CAN_LED_EVENT_RX);
516 
517 	return pkts;
518 }
519 
520 static int m_can_handle_lost_msg(struct net_device *dev)
521 {
522 	struct net_device_stats *stats = &dev->stats;
523 	struct sk_buff *skb;
524 	struct can_frame *frame;
525 
526 	netdev_err(dev, "msg lost in rxf0\n");
527 
528 	stats->rx_errors++;
529 	stats->rx_over_errors++;
530 
531 	skb = alloc_can_err_skb(dev, &frame);
532 	if (unlikely(!skb))
533 		return 0;
534 
535 	frame->can_id |= CAN_ERR_CRTL;
536 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
537 
538 	netif_receive_skb(skb);
539 
540 	return 1;
541 }
542 
543 static int m_can_handle_lec_err(struct net_device *dev,
544 				enum m_can_lec_type lec_type)
545 {
546 	struct m_can_classdev *cdev = netdev_priv(dev);
547 	struct net_device_stats *stats = &dev->stats;
548 	struct can_frame *cf;
549 	struct sk_buff *skb;
550 
551 	cdev->can.can_stats.bus_error++;
552 	stats->rx_errors++;
553 
554 	/* propagate the error condition to the CAN stack */
555 	skb = alloc_can_err_skb(dev, &cf);
556 	if (unlikely(!skb))
557 		return 0;
558 
559 	/* check for 'last error code' which tells us the
560 	 * type of the last error to occur on the CAN bus
561 	 */
562 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
563 
564 	switch (lec_type) {
565 	case LEC_STUFF_ERROR:
566 		netdev_dbg(dev, "stuff error\n");
567 		cf->data[2] |= CAN_ERR_PROT_STUFF;
568 		break;
569 	case LEC_FORM_ERROR:
570 		netdev_dbg(dev, "form error\n");
571 		cf->data[2] |= CAN_ERR_PROT_FORM;
572 		break;
573 	case LEC_ACK_ERROR:
574 		netdev_dbg(dev, "ack error\n");
575 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
576 		break;
577 	case LEC_BIT1_ERROR:
578 		netdev_dbg(dev, "bit1 error\n");
579 		cf->data[2] |= CAN_ERR_PROT_BIT1;
580 		break;
581 	case LEC_BIT0_ERROR:
582 		netdev_dbg(dev, "bit0 error\n");
583 		cf->data[2] |= CAN_ERR_PROT_BIT0;
584 		break;
585 	case LEC_CRC_ERROR:
586 		netdev_dbg(dev, "CRC error\n");
587 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
588 		break;
589 	default:
590 		break;
591 	}
592 
593 	stats->rx_packets++;
594 	stats->rx_bytes += cf->len;
595 	netif_receive_skb(skb);
596 
597 	return 1;
598 }
599 
600 static int __m_can_get_berr_counter(const struct net_device *dev,
601 				    struct can_berr_counter *bec)
602 {
603 	struct m_can_classdev *cdev = netdev_priv(dev);
604 	unsigned int ecr;
605 
606 	ecr = m_can_read(cdev, M_CAN_ECR);
607 	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
608 	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
609 
610 	return 0;
611 }
612 
613 static int m_can_clk_start(struct m_can_classdev *cdev)
614 {
615 	if (cdev->pm_clock_support == 0)
616 		return 0;
617 
618 	return pm_runtime_resume_and_get(cdev->dev);
619 }
620 
621 static void m_can_clk_stop(struct m_can_classdev *cdev)
622 {
623 	if (cdev->pm_clock_support)
624 		pm_runtime_put_sync(cdev->dev);
625 }
626 
627 static int m_can_get_berr_counter(const struct net_device *dev,
628 				  struct can_berr_counter *bec)
629 {
630 	struct m_can_classdev *cdev = netdev_priv(dev);
631 	int err;
632 
633 	err = m_can_clk_start(cdev);
634 	if (err)
635 		return err;
636 
637 	__m_can_get_berr_counter(dev, bec);
638 
639 	m_can_clk_stop(cdev);
640 
641 	return 0;
642 }
643 
644 static int m_can_handle_state_change(struct net_device *dev,
645 				     enum can_state new_state)
646 {
647 	struct m_can_classdev *cdev = netdev_priv(dev);
648 	struct net_device_stats *stats = &dev->stats;
649 	struct can_frame *cf;
650 	struct sk_buff *skb;
651 	struct can_berr_counter bec;
652 	unsigned int ecr;
653 
654 	switch (new_state) {
655 	case CAN_STATE_ERROR_WARNING:
656 		/* error warning state */
657 		cdev->can.can_stats.error_warning++;
658 		cdev->can.state = CAN_STATE_ERROR_WARNING;
659 		break;
660 	case CAN_STATE_ERROR_PASSIVE:
661 		/* error passive state */
662 		cdev->can.can_stats.error_passive++;
663 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
664 		break;
665 	case CAN_STATE_BUS_OFF:
666 		/* bus-off state */
667 		cdev->can.state = CAN_STATE_BUS_OFF;
668 		m_can_disable_all_interrupts(cdev);
669 		cdev->can.can_stats.bus_off++;
670 		can_bus_off(dev);
671 		break;
672 	default:
673 		break;
674 	}
675 
676 	/* propagate the error condition to the CAN stack */
677 	skb = alloc_can_err_skb(dev, &cf);
678 	if (unlikely(!skb))
679 		return 0;
680 
681 	__m_can_get_berr_counter(dev, &bec);
682 
683 	switch (new_state) {
684 	case CAN_STATE_ERROR_WARNING:
685 		/* error warning state */
686 		cf->can_id |= CAN_ERR_CRTL;
687 		cf->data[1] = (bec.txerr > bec.rxerr) ?
688 			CAN_ERR_CRTL_TX_WARNING :
689 			CAN_ERR_CRTL_RX_WARNING;
690 		cf->data[6] = bec.txerr;
691 		cf->data[7] = bec.rxerr;
692 		break;
693 	case CAN_STATE_ERROR_PASSIVE:
694 		/* error passive state */
695 		cf->can_id |= CAN_ERR_CRTL;
696 		ecr = m_can_read(cdev, M_CAN_ECR);
697 		if (ecr & ECR_RP)
698 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
699 		if (bec.txerr > 127)
700 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
701 		cf->data[6] = bec.txerr;
702 		cf->data[7] = bec.rxerr;
703 		break;
704 	case CAN_STATE_BUS_OFF:
705 		/* bus-off state */
706 		cf->can_id |= CAN_ERR_BUSOFF;
707 		break;
708 	default:
709 		break;
710 	}
711 
712 	stats->rx_packets++;
713 	stats->rx_bytes += cf->len;
714 	netif_receive_skb(skb);
715 
716 	return 1;
717 }
718 
719 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
720 {
721 	struct m_can_classdev *cdev = netdev_priv(dev);
722 	int work_done = 0;
723 
724 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
725 		netdev_dbg(dev, "entered error warning state\n");
726 		work_done += m_can_handle_state_change(dev,
727 						       CAN_STATE_ERROR_WARNING);
728 	}
729 
730 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
731 		netdev_dbg(dev, "entered error passive state\n");
732 		work_done += m_can_handle_state_change(dev,
733 						       CAN_STATE_ERROR_PASSIVE);
734 	}
735 
736 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
737 		netdev_dbg(dev, "entered error bus off state\n");
738 		work_done += m_can_handle_state_change(dev,
739 						       CAN_STATE_BUS_OFF);
740 	}
741 
742 	return work_done;
743 }
744 
745 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
746 {
747 	if (irqstatus & IR_WDI)
748 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
749 	if (irqstatus & IR_ELO)
750 		netdev_err(dev, "Error Logging Overflow\n");
751 	if (irqstatus & IR_BEU)
752 		netdev_err(dev, "Bit Error Uncorrected\n");
753 	if (irqstatus & IR_BEC)
754 		netdev_err(dev, "Bit Error Corrected\n");
755 	if (irqstatus & IR_TOO)
756 		netdev_err(dev, "Timeout reached\n");
757 	if (irqstatus & IR_MRAF)
758 		netdev_err(dev, "Message RAM access failure occurred\n");
759 }
760 
761 static inline bool is_lec_err(u32 psr)
762 {
763 	psr &= LEC_UNUSED;
764 
765 	return psr && (psr != LEC_UNUSED);
766 }
767 
768 static inline bool m_can_is_protocol_err(u32 irqstatus)
769 {
770 	return irqstatus & IR_ERR_LEC_31X;
771 }
772 
773 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
774 {
775 	struct net_device_stats *stats = &dev->stats;
776 	struct m_can_classdev *cdev = netdev_priv(dev);
777 	struct can_frame *cf;
778 	struct sk_buff *skb;
779 
780 	/* propagate the error condition to the CAN stack */
781 	skb = alloc_can_err_skb(dev, &cf);
782 
783 	/* update tx error stats since there is protocol error */
784 	stats->tx_errors++;
785 
786 	/* update arbitration lost status */
787 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
788 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
789 		cdev->can.can_stats.arbitration_lost++;
790 		if (skb) {
791 			cf->can_id |= CAN_ERR_LOSTARB;
792 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
793 		}
794 	}
795 
796 	if (unlikely(!skb)) {
797 		netdev_dbg(dev, "allocation of skb failed\n");
798 		return 0;
799 	}
800 	netif_receive_skb(skb);
801 
802 	return 1;
803 }
804 
805 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
806 				   u32 psr)
807 {
808 	struct m_can_classdev *cdev = netdev_priv(dev);
809 	int work_done = 0;
810 
811 	if (irqstatus & IR_RF0L)
812 		work_done += m_can_handle_lost_msg(dev);
813 
814 	/* handle lec errors on the bus */
815 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
816 	    is_lec_err(psr))
817 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
818 
819 	/* handle protocol errors in arbitration phase */
820 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
821 	    m_can_is_protocol_err(irqstatus))
822 		work_done += m_can_handle_protocol_error(dev, irqstatus);
823 
824 	/* other unproccessed error interrupts */
825 	m_can_handle_other_err(dev, irqstatus);
826 
827 	return work_done;
828 }
829 
830 static int m_can_rx_handler(struct net_device *dev, int quota)
831 {
832 	struct m_can_classdev *cdev = netdev_priv(dev);
833 	int work_done = 0;
834 	u32 irqstatus, psr;
835 
836 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
837 	if (!irqstatus)
838 		goto end;
839 
840 	/* Errata workaround for issue "Needless activation of MRAF irq"
841 	 * During frame reception while the MCAN is in Error Passive state
842 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
843 	 * it may happen that MCAN_IR.MRAF is set although there was no
844 	 * Message RAM access failure.
845 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
846 	 * The Message RAM Access Failure interrupt routine needs to check
847 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
848 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
849 	 */
850 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
851 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
852 		struct can_berr_counter bec;
853 
854 		__m_can_get_berr_counter(dev, &bec);
855 		if (bec.rxerr == 127) {
856 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
857 			irqstatus &= ~IR_MRAF;
858 		}
859 	}
860 
861 	psr = m_can_read(cdev, M_CAN_PSR);
862 
863 	if (irqstatus & IR_ERR_STATE)
864 		work_done += m_can_handle_state_errors(dev, psr);
865 
866 	if (irqstatus & IR_ERR_BUS_30X)
867 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
868 
869 	if (irqstatus & IR_RF0N)
870 		work_done += m_can_do_rx_poll(dev, (quota - work_done));
871 end:
872 	return work_done;
873 }
874 
875 static int m_can_rx_peripheral(struct net_device *dev)
876 {
877 	struct m_can_classdev *cdev = netdev_priv(dev);
878 
879 	m_can_rx_handler(dev, 1);
880 
881 	m_can_enable_all_interrupts(cdev);
882 
883 	return 0;
884 }
885 
886 static int m_can_poll(struct napi_struct *napi, int quota)
887 {
888 	struct net_device *dev = napi->dev;
889 	struct m_can_classdev *cdev = netdev_priv(dev);
890 	int work_done;
891 
892 	work_done = m_can_rx_handler(dev, quota);
893 	if (work_done < quota) {
894 		napi_complete_done(napi, work_done);
895 		m_can_enable_all_interrupts(cdev);
896 	}
897 
898 	return work_done;
899 }
900 
901 static void m_can_echo_tx_event(struct net_device *dev)
902 {
903 	u32 txe_count = 0;
904 	u32 m_can_txefs;
905 	u32 fgi = 0;
906 	int i = 0;
907 	unsigned int msg_mark;
908 
909 	struct m_can_classdev *cdev = netdev_priv(dev);
910 	struct net_device_stats *stats = &dev->stats;
911 
912 	/* read tx event fifo status */
913 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
914 
915 	/* Get Tx Event fifo element count */
916 	txe_count = (m_can_txefs & TXEFS_EFFL_MASK) >> TXEFS_EFFL_SHIFT;
917 
918 	/* Get and process all sent elements */
919 	for (i = 0; i < txe_count; i++) {
920 		/* retrieve get index */
921 		fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK) >>
922 			TXEFS_EFGI_SHIFT;
923 
924 		/* get message marker */
925 		msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
926 			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
927 
928 		/* ack txe element */
929 		m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
930 						(fgi << TXEFA_EFAI_SHIFT)));
931 
932 		/* update stats */
933 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
934 		stats->tx_packets++;
935 	}
936 }
937 
938 static irqreturn_t m_can_isr(int irq, void *dev_id)
939 {
940 	struct net_device *dev = (struct net_device *)dev_id;
941 	struct m_can_classdev *cdev = netdev_priv(dev);
942 	struct net_device_stats *stats = &dev->stats;
943 	u32 ir;
944 
945 	if (pm_runtime_suspended(cdev->dev))
946 		return IRQ_NONE;
947 	ir = m_can_read(cdev, M_CAN_IR);
948 	if (!ir)
949 		return IRQ_NONE;
950 
951 	/* ACK all irqs */
952 	if (ir & IR_ALL_INT)
953 		m_can_write(cdev, M_CAN_IR, ir);
954 
955 	if (cdev->ops->clear_interrupts)
956 		cdev->ops->clear_interrupts(cdev);
957 
958 	/* schedule NAPI in case of
959 	 * - rx IRQ
960 	 * - state change IRQ
961 	 * - bus error IRQ and bus error reporting
962 	 */
963 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
964 		cdev->irqstatus = ir;
965 		m_can_disable_all_interrupts(cdev);
966 		if (!cdev->is_peripheral)
967 			napi_schedule(&cdev->napi);
968 		else
969 			m_can_rx_peripheral(dev);
970 	}
971 
972 	if (cdev->version == 30) {
973 		if (ir & IR_TC) {
974 			/* Transmission Complete Interrupt*/
975 			stats->tx_bytes += can_get_echo_skb(dev, 0, NULL);
976 			stats->tx_packets++;
977 			can_led_event(dev, CAN_LED_EVENT_TX);
978 			netif_wake_queue(dev);
979 		}
980 	} else  {
981 		if (ir & IR_TEFN) {
982 			/* New TX FIFO Element arrived */
983 			m_can_echo_tx_event(dev);
984 			can_led_event(dev, CAN_LED_EVENT_TX);
985 			if (netif_queue_stopped(dev) &&
986 			    !m_can_tx_fifo_full(cdev))
987 				netif_wake_queue(dev);
988 		}
989 	}
990 
991 	return IRQ_HANDLED;
992 }
993 
994 static const struct can_bittiming_const m_can_bittiming_const_30X = {
995 	.name = KBUILD_MODNAME,
996 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
997 	.tseg1_max = 64,
998 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
999 	.tseg2_max = 16,
1000 	.sjw_max = 16,
1001 	.brp_min = 1,
1002 	.brp_max = 1024,
1003 	.brp_inc = 1,
1004 };
1005 
1006 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1007 	.name = KBUILD_MODNAME,
1008 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1009 	.tseg1_max = 16,
1010 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1011 	.tseg2_max = 8,
1012 	.sjw_max = 4,
1013 	.brp_min = 1,
1014 	.brp_max = 32,
1015 	.brp_inc = 1,
1016 };
1017 
1018 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1019 	.name = KBUILD_MODNAME,
1020 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1021 	.tseg1_max = 256,
1022 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1023 	.tseg2_max = 128,
1024 	.sjw_max = 128,
1025 	.brp_min = 1,
1026 	.brp_max = 512,
1027 	.brp_inc = 1,
1028 };
1029 
1030 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1031 	.name = KBUILD_MODNAME,
1032 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1033 	.tseg1_max = 32,
1034 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1035 	.tseg2_max = 16,
1036 	.sjw_max = 16,
1037 	.brp_min = 1,
1038 	.brp_max = 32,
1039 	.brp_inc = 1,
1040 };
1041 
1042 static int m_can_set_bittiming(struct net_device *dev)
1043 {
1044 	struct m_can_classdev *cdev = netdev_priv(dev);
1045 	const struct can_bittiming *bt = &cdev->can.bittiming;
1046 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1047 	u16 brp, sjw, tseg1, tseg2;
1048 	u32 reg_btp;
1049 
1050 	brp = bt->brp - 1;
1051 	sjw = bt->sjw - 1;
1052 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1053 	tseg2 = bt->phase_seg2 - 1;
1054 	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1055 		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1056 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1057 
1058 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1059 		reg_btp = 0;
1060 		brp = dbt->brp - 1;
1061 		sjw = dbt->sjw - 1;
1062 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1063 		tseg2 = dbt->phase_seg2 - 1;
1064 
1065 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1066 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1067 		 * paper presented at the International CAN Conference 2013
1068 		 */
1069 		if (dbt->bitrate > 2500000) {
1070 			u32 tdco, ssp;
1071 
1072 			/* Use the same value of secondary sampling point
1073 			 * as the data sampling point
1074 			 */
1075 			ssp = dbt->sample_point;
1076 
1077 			/* Equation based on Bosch's M_CAN User Manual's
1078 			 * Transmitter Delay Compensation Section
1079 			 */
1080 			tdco = (cdev->can.clock.freq / 1000) *
1081 				ssp / dbt->bitrate;
1082 
1083 			/* Max valid TDCO value is 127 */
1084 			if (tdco > 127) {
1085 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1086 					    tdco);
1087 				tdco = 127;
1088 			}
1089 
1090 			reg_btp |= DBTP_TDC;
1091 			m_can_write(cdev, M_CAN_TDCR,
1092 				    tdco << TDCR_TDCO_SHIFT);
1093 		}
1094 
1095 		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1096 			(sjw << DBTP_DSJW_SHIFT) |
1097 			(tseg1 << DBTP_DTSEG1_SHIFT) |
1098 			(tseg2 << DBTP_DTSEG2_SHIFT);
1099 
1100 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 /* Configure M_CAN chip:
1107  * - set rx buffer/fifo element size
1108  * - configure rx fifo
1109  * - accept non-matching frame into fifo 0
1110  * - configure tx buffer
1111  *		- >= v3.1.x: TX FIFO is used
1112  * - configure mode
1113  * - setup bittiming
1114  */
1115 static void m_can_chip_config(struct net_device *dev)
1116 {
1117 	struct m_can_classdev *cdev = netdev_priv(dev);
1118 	u32 cccr, test;
1119 
1120 	m_can_config_endisable(cdev, true);
1121 
1122 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1123 	m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1124 
1125 	/* Accept Non-matching Frames Into FIFO 0 */
1126 	m_can_write(cdev, M_CAN_GFC, 0x0);
1127 
1128 	if (cdev->version == 30) {
1129 		/* only support one Tx Buffer currently */
1130 		m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1131 			    cdev->mcfg[MRAM_TXB].off);
1132 	} else {
1133 		/* TX FIFO is used for newer IP Core versions */
1134 		m_can_write(cdev, M_CAN_TXBC,
1135 			    (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1136 			    (cdev->mcfg[MRAM_TXB].off));
1137 	}
1138 
1139 	/* support 64 bytes payload */
1140 	m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1141 
1142 	/* TX Event FIFO */
1143 	if (cdev->version == 30) {
1144 		m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1145 			    cdev->mcfg[MRAM_TXE].off);
1146 	} else {
1147 		/* Full TX Event FIFO is used */
1148 		m_can_write(cdev, M_CAN_TXEFC,
1149 			    ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1150 			     & TXEFC_EFS_MASK) |
1151 			    cdev->mcfg[MRAM_TXE].off);
1152 	}
1153 
1154 	/* rx fifo configuration, blocking mode, fifo size 1 */
1155 	m_can_write(cdev, M_CAN_RXF0C,
1156 		    (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1157 		    cdev->mcfg[MRAM_RXF0].off);
1158 
1159 	m_can_write(cdev, M_CAN_RXF1C,
1160 		    (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1161 		    cdev->mcfg[MRAM_RXF1].off);
1162 
1163 	cccr = m_can_read(cdev, M_CAN_CCCR);
1164 	test = m_can_read(cdev, M_CAN_TEST);
1165 	test &= ~TEST_LBCK;
1166 	if (cdev->version == 30) {
1167 		/* Version 3.0.x */
1168 
1169 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1170 			  (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1171 			  (CCCR_CME_MASK << CCCR_CME_SHIFT));
1172 
1173 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1174 			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1175 
1176 	} else {
1177 		/* Version 3.1.x or 3.2.x */
1178 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1179 			  CCCR_NISO | CCCR_DAR);
1180 
1181 		/* Only 3.2.x has NISO Bit implemented */
1182 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1183 			cccr |= CCCR_NISO;
1184 
1185 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1186 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1187 	}
1188 
1189 	/* Loopback Mode */
1190 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1191 		cccr |= CCCR_TEST | CCCR_MON;
1192 		test |= TEST_LBCK;
1193 	}
1194 
1195 	/* Enable Monitoring (all versions) */
1196 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1197 		cccr |= CCCR_MON;
1198 
1199 	/* Disable Auto Retransmission (all versions) */
1200 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1201 		cccr |= CCCR_DAR;
1202 
1203 	/* Write config */
1204 	m_can_write(cdev, M_CAN_CCCR, cccr);
1205 	m_can_write(cdev, M_CAN_TEST, test);
1206 
1207 	/* Enable interrupts */
1208 	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1209 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1210 		if (cdev->version == 30)
1211 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1212 				    ~(IR_ERR_LEC_30X));
1213 		else
1214 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1215 				    ~(IR_ERR_LEC_31X));
1216 	else
1217 		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1218 
1219 	/* route all interrupts to INT0 */
1220 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1221 
1222 	/* set bittiming params */
1223 	m_can_set_bittiming(dev);
1224 
1225 	m_can_config_endisable(cdev, false);
1226 
1227 	if (cdev->ops->init)
1228 		cdev->ops->init(cdev);
1229 }
1230 
1231 static void m_can_start(struct net_device *dev)
1232 {
1233 	struct m_can_classdev *cdev = netdev_priv(dev);
1234 
1235 	/* basic m_can configuration */
1236 	m_can_chip_config(dev);
1237 
1238 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1239 
1240 	m_can_enable_all_interrupts(cdev);
1241 }
1242 
1243 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1244 {
1245 	switch (mode) {
1246 	case CAN_MODE_START:
1247 		m_can_clean(dev);
1248 		m_can_start(dev);
1249 		netif_wake_queue(dev);
1250 		break;
1251 	default:
1252 		return -EOPNOTSUPP;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 /* Checks core release number of M_CAN
1259  * returns 0 if an unsupported device is detected
1260  * else it returns the release and step coded as:
1261  * return value = 10 * <release> + 1 * <step>
1262  */
1263 static int m_can_check_core_release(struct m_can_classdev *cdev)
1264 {
1265 	u32 crel_reg;
1266 	u8 rel;
1267 	u8 step;
1268 	int res;
1269 
1270 	/* Read Core Release Version and split into version number
1271 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1272 	 */
1273 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1274 	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1275 	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1276 
1277 	if (rel == 3) {
1278 		/* M_CAN v3.x.y: create return value */
1279 		res = 30 + step;
1280 	} else {
1281 		/* Unsupported M_CAN version */
1282 		res = 0;
1283 	}
1284 
1285 	return res;
1286 }
1287 
1288 /* Selectable Non ISO support only in version 3.2.x
1289  * This function checks if the bit is writable.
1290  */
1291 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1292 {
1293 	u32 cccr_reg, cccr_poll = 0;
1294 	int niso_timeout = -ETIMEDOUT;
1295 	int i;
1296 
1297 	m_can_config_endisable(cdev, true);
1298 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1299 	cccr_reg |= CCCR_NISO;
1300 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1301 
1302 	for (i = 0; i <= 10; i++) {
1303 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1304 		if (cccr_poll == cccr_reg) {
1305 			niso_timeout = 0;
1306 			break;
1307 		}
1308 
1309 		usleep_range(1, 5);
1310 	}
1311 
1312 	/* Clear NISO */
1313 	cccr_reg &= ~(CCCR_NISO);
1314 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1315 
1316 	m_can_config_endisable(cdev, false);
1317 
1318 	/* return false if time out (-ETIMEDOUT), else return true */
1319 	return !niso_timeout;
1320 }
1321 
1322 static int m_can_dev_setup(struct m_can_classdev *cdev)
1323 {
1324 	struct net_device *dev = cdev->net;
1325 	int m_can_version;
1326 
1327 	m_can_version = m_can_check_core_release(cdev);
1328 	/* return if unsupported version */
1329 	if (!m_can_version) {
1330 		dev_err(cdev->dev, "Unsupported version number: %2d",
1331 			m_can_version);
1332 		return -EINVAL;
1333 	}
1334 
1335 	if (!cdev->is_peripheral)
1336 		netif_napi_add(dev, &cdev->napi,
1337 			       m_can_poll, M_CAN_NAPI_WEIGHT);
1338 
1339 	/* Shared properties of all M_CAN versions */
1340 	cdev->version = m_can_version;
1341 	cdev->can.do_set_mode = m_can_set_mode;
1342 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1343 
1344 	/* Set M_CAN supported operations */
1345 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1346 		CAN_CTRLMODE_LISTENONLY |
1347 		CAN_CTRLMODE_BERR_REPORTING |
1348 		CAN_CTRLMODE_FD |
1349 		CAN_CTRLMODE_ONE_SHOT;
1350 
1351 	/* Set properties depending on M_CAN version */
1352 	switch (cdev->version) {
1353 	case 30:
1354 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1355 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1356 		cdev->can.bittiming_const = cdev->bit_timing ?
1357 			cdev->bit_timing : &m_can_bittiming_const_30X;
1358 
1359 		cdev->can.data_bittiming_const = cdev->data_timing ?
1360 			cdev->data_timing :
1361 			&m_can_data_bittiming_const_30X;
1362 		break;
1363 	case 31:
1364 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1365 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1366 		cdev->can.bittiming_const = cdev->bit_timing ?
1367 			cdev->bit_timing : &m_can_bittiming_const_31X;
1368 
1369 		cdev->can.data_bittiming_const = cdev->data_timing ?
1370 			cdev->data_timing :
1371 			&m_can_data_bittiming_const_31X;
1372 		break;
1373 	case 32:
1374 	case 33:
1375 		/* Support both MCAN version v3.2.x and v3.3.0 */
1376 		cdev->can.bittiming_const = cdev->bit_timing ?
1377 			cdev->bit_timing : &m_can_bittiming_const_31X;
1378 
1379 		cdev->can.data_bittiming_const = cdev->data_timing ?
1380 			cdev->data_timing :
1381 			&m_can_data_bittiming_const_31X;
1382 
1383 		cdev->can.ctrlmode_supported |=
1384 			(m_can_niso_supported(cdev) ?
1385 			 CAN_CTRLMODE_FD_NON_ISO : 0);
1386 		break;
1387 	default:
1388 		dev_err(cdev->dev, "Unsupported version number: %2d",
1389 			cdev->version);
1390 		return -EINVAL;
1391 	}
1392 
1393 	if (cdev->ops->init)
1394 		cdev->ops->init(cdev);
1395 
1396 	return 0;
1397 }
1398 
1399 static void m_can_stop(struct net_device *dev)
1400 {
1401 	struct m_can_classdev *cdev = netdev_priv(dev);
1402 
1403 	/* disable all interrupts */
1404 	m_can_disable_all_interrupts(cdev);
1405 
1406 	/* Set init mode to disengage from the network */
1407 	m_can_config_endisable(cdev, true);
1408 
1409 	/* set the state as STOPPED */
1410 	cdev->can.state = CAN_STATE_STOPPED;
1411 }
1412 
1413 static int m_can_close(struct net_device *dev)
1414 {
1415 	struct m_can_classdev *cdev = netdev_priv(dev);
1416 
1417 	netif_stop_queue(dev);
1418 
1419 	if (!cdev->is_peripheral)
1420 		napi_disable(&cdev->napi);
1421 
1422 	m_can_stop(dev);
1423 	m_can_clk_stop(cdev);
1424 	free_irq(dev->irq, dev);
1425 
1426 	if (cdev->is_peripheral) {
1427 		cdev->tx_skb = NULL;
1428 		destroy_workqueue(cdev->tx_wq);
1429 		cdev->tx_wq = NULL;
1430 	}
1431 
1432 	close_candev(dev);
1433 	can_led_event(dev, CAN_LED_EVENT_STOP);
1434 
1435 	return 0;
1436 }
1437 
1438 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1439 {
1440 	struct m_can_classdev *cdev = netdev_priv(dev);
1441 	/*get wrap around for loopback skb index */
1442 	unsigned int wrap = cdev->can.echo_skb_max;
1443 	int next_idx;
1444 
1445 	/* calculate next index */
1446 	next_idx = (++putidx >= wrap ? 0 : putidx);
1447 
1448 	/* check if occupied */
1449 	return !!cdev->can.echo_skb[next_idx];
1450 }
1451 
1452 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1453 {
1454 	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1455 	struct net_device *dev = cdev->net;
1456 	struct sk_buff *skb = cdev->tx_skb;
1457 	u32 id, cccr, fdflags;
1458 	int i;
1459 	int putidx;
1460 
1461 	/* Generate ID field for TX buffer Element */
1462 	/* Common to all supported M_CAN versions */
1463 	if (cf->can_id & CAN_EFF_FLAG) {
1464 		id = cf->can_id & CAN_EFF_MASK;
1465 		id |= TX_BUF_XTD;
1466 	} else {
1467 		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1468 	}
1469 
1470 	if (cf->can_id & CAN_RTR_FLAG)
1471 		id |= TX_BUF_RTR;
1472 
1473 	if (cdev->version == 30) {
1474 		netif_stop_queue(dev);
1475 
1476 		/* message ram configuration */
1477 		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1478 		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1479 				 can_fd_len2dlc(cf->len) << 16);
1480 
1481 		for (i = 0; i < cf->len; i += 4)
1482 			m_can_fifo_write(cdev, 0,
1483 					 M_CAN_FIFO_DATA(i / 4),
1484 					 *(u32 *)(cf->data + i));
1485 
1486 		can_put_echo_skb(skb, dev, 0, 0);
1487 
1488 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1489 			cccr = m_can_read(cdev, M_CAN_CCCR);
1490 			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1491 			if (can_is_canfd_skb(skb)) {
1492 				if (cf->flags & CANFD_BRS)
1493 					cccr |= CCCR_CMR_CANFD_BRS <<
1494 						CCCR_CMR_SHIFT;
1495 				else
1496 					cccr |= CCCR_CMR_CANFD <<
1497 						CCCR_CMR_SHIFT;
1498 			} else {
1499 				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1500 			}
1501 			m_can_write(cdev, M_CAN_CCCR, cccr);
1502 		}
1503 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1504 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1505 		/* End of xmit function for version 3.0.x */
1506 	} else {
1507 		/* Transmit routine for version >= v3.1.x */
1508 
1509 		/* Check if FIFO full */
1510 		if (m_can_tx_fifo_full(cdev)) {
1511 			/* This shouldn't happen */
1512 			netif_stop_queue(dev);
1513 			netdev_warn(dev,
1514 				    "TX queue active although FIFO is full.");
1515 
1516 			if (cdev->is_peripheral) {
1517 				kfree_skb(skb);
1518 				dev->stats.tx_dropped++;
1519 				return NETDEV_TX_OK;
1520 			} else {
1521 				return NETDEV_TX_BUSY;
1522 			}
1523 		}
1524 
1525 		/* get put index for frame */
1526 		putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1527 			  >> TXFQS_TFQPI_SHIFT);
1528 		/* Write ID Field to FIFO Element */
1529 		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1530 
1531 		/* get CAN FD configuration of frame */
1532 		fdflags = 0;
1533 		if (can_is_canfd_skb(skb)) {
1534 			fdflags |= TX_BUF_FDF;
1535 			if (cf->flags & CANFD_BRS)
1536 				fdflags |= TX_BUF_BRS;
1537 		}
1538 
1539 		/* Construct DLC Field. Also contains CAN-FD configuration
1540 		 * use put index of fifo as message marker
1541 		 * it is used in TX interrupt for
1542 		 * sending the correct echo frame
1543 		 */
1544 		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1545 				 ((putidx << TX_BUF_MM_SHIFT) &
1546 				  TX_BUF_MM_MASK) |
1547 				 (can_fd_len2dlc(cf->len) << 16) |
1548 				 fdflags | TX_BUF_EFC);
1549 
1550 		for (i = 0; i < cf->len; i += 4)
1551 			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1552 					 *(u32 *)(cf->data + i));
1553 
1554 		/* Push loopback echo.
1555 		 * Will be looped back on TX interrupt based on message marker
1556 		 */
1557 		can_put_echo_skb(skb, dev, putidx, 0);
1558 
1559 		/* Enable TX FIFO element to start transfer  */
1560 		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1561 
1562 		/* stop network queue if fifo full */
1563 		if (m_can_tx_fifo_full(cdev) ||
1564 		    m_can_next_echo_skb_occupied(dev, putidx))
1565 			netif_stop_queue(dev);
1566 	}
1567 
1568 	return NETDEV_TX_OK;
1569 }
1570 
1571 static void m_can_tx_work_queue(struct work_struct *ws)
1572 {
1573 	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1574 						   tx_work);
1575 
1576 	m_can_tx_handler(cdev);
1577 	cdev->tx_skb = NULL;
1578 }
1579 
1580 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1581 				    struct net_device *dev)
1582 {
1583 	struct m_can_classdev *cdev = netdev_priv(dev);
1584 
1585 	if (can_dropped_invalid_skb(dev, skb))
1586 		return NETDEV_TX_OK;
1587 
1588 	if (cdev->is_peripheral) {
1589 		if (cdev->tx_skb) {
1590 			netdev_err(dev, "hard_xmit called while tx busy\n");
1591 			return NETDEV_TX_BUSY;
1592 		}
1593 
1594 		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1595 			m_can_clean(dev);
1596 		} else {
1597 			/* Need to stop the queue to avoid numerous requests
1598 			 * from being sent.  Suggested improvement is to create
1599 			 * a queueing mechanism that will queue the skbs and
1600 			 * process them in order.
1601 			 */
1602 			cdev->tx_skb = skb;
1603 			netif_stop_queue(cdev->net);
1604 			queue_work(cdev->tx_wq, &cdev->tx_work);
1605 		}
1606 	} else {
1607 		cdev->tx_skb = skb;
1608 		return m_can_tx_handler(cdev);
1609 	}
1610 
1611 	return NETDEV_TX_OK;
1612 }
1613 
1614 static int m_can_open(struct net_device *dev)
1615 {
1616 	struct m_can_classdev *cdev = netdev_priv(dev);
1617 	int err;
1618 
1619 	err = m_can_clk_start(cdev);
1620 	if (err)
1621 		return err;
1622 
1623 	/* open the can device */
1624 	err = open_candev(dev);
1625 	if (err) {
1626 		netdev_err(dev, "failed to open can device\n");
1627 		goto exit_disable_clks;
1628 	}
1629 
1630 	/* register interrupt handler */
1631 	if (cdev->is_peripheral) {
1632 		cdev->tx_skb = NULL;
1633 		cdev->tx_wq = alloc_workqueue("mcan_wq",
1634 					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1635 		if (!cdev->tx_wq) {
1636 			err = -ENOMEM;
1637 			goto out_wq_fail;
1638 		}
1639 
1640 		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1641 
1642 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1643 					   IRQF_ONESHOT,
1644 					   dev->name, dev);
1645 	} else {
1646 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1647 				  dev);
1648 	}
1649 
1650 	if (err < 0) {
1651 		netdev_err(dev, "failed to request interrupt\n");
1652 		goto exit_irq_fail;
1653 	}
1654 
1655 	/* start the m_can controller */
1656 	m_can_start(dev);
1657 
1658 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1659 
1660 	if (!cdev->is_peripheral)
1661 		napi_enable(&cdev->napi);
1662 
1663 	netif_start_queue(dev);
1664 
1665 	return 0;
1666 
1667 exit_irq_fail:
1668 	if (cdev->is_peripheral)
1669 		destroy_workqueue(cdev->tx_wq);
1670 out_wq_fail:
1671 	close_candev(dev);
1672 exit_disable_clks:
1673 	m_can_clk_stop(cdev);
1674 	return err;
1675 }
1676 
1677 static const struct net_device_ops m_can_netdev_ops = {
1678 	.ndo_open = m_can_open,
1679 	.ndo_stop = m_can_close,
1680 	.ndo_start_xmit = m_can_start_xmit,
1681 	.ndo_change_mtu = can_change_mtu,
1682 };
1683 
1684 static int register_m_can_dev(struct net_device *dev)
1685 {
1686 	dev->flags |= IFF_ECHO;	/* we support local echo */
1687 	dev->netdev_ops = &m_can_netdev_ops;
1688 
1689 	return register_candev(dev);
1690 }
1691 
1692 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1693 				const u32 *mram_config_vals)
1694 {
1695 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1696 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1697 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1698 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1699 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1700 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1701 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1702 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1703 		(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1704 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1705 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1706 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1707 		(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1708 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1709 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1710 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1711 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1712 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1713 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1714 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1715 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1716 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1717 		(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1718 
1719 	dev_dbg(cdev->dev,
1720 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1721 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1722 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1723 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1724 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1725 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1726 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1727 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1728 }
1729 
1730 void m_can_init_ram(struct m_can_classdev *cdev)
1731 {
1732 	int end, i, start;
1733 
1734 	/* initialize the entire Message RAM in use to avoid possible
1735 	 * ECC/parity checksum errors when reading an uninitialized buffer
1736 	 */
1737 	start = cdev->mcfg[MRAM_SIDF].off;
1738 	end = cdev->mcfg[MRAM_TXB].off +
1739 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1740 
1741 	for (i = start; i < end; i += 4)
1742 		m_can_fifo_write_no_off(cdev, i, 0x0);
1743 }
1744 EXPORT_SYMBOL_GPL(m_can_init_ram);
1745 
1746 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1747 {
1748 	int ret = 0;
1749 
1750 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1751 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1752 
1753 	if (IS_ERR(cdev->cclk)) {
1754 		dev_err(cdev->dev, "no clock found\n");
1755 		ret = -ENODEV;
1756 	}
1757 
1758 	return ret;
1759 }
1760 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1761 
1762 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1763 						int sizeof_priv)
1764 {
1765 	struct m_can_classdev *class_dev = NULL;
1766 	u32 mram_config_vals[MRAM_CFG_LEN];
1767 	struct net_device *net_dev;
1768 	u32 tx_fifo_size;
1769 	int ret;
1770 
1771 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1772 					     "bosch,mram-cfg",
1773 					     mram_config_vals,
1774 					     sizeof(mram_config_vals) / 4);
1775 	if (ret) {
1776 		dev_err(dev, "Could not get Message RAM configuration.");
1777 		goto out;
1778 	}
1779 
1780 	/* Get TX FIFO size
1781 	 * Defines the total amount of echo buffers for loopback
1782 	 */
1783 	tx_fifo_size = mram_config_vals[7];
1784 
1785 	/* allocate the m_can device */
1786 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
1787 	if (!net_dev) {
1788 		dev_err(dev, "Failed to allocate CAN device");
1789 		goto out;
1790 	}
1791 
1792 	class_dev = netdev_priv(net_dev);
1793 	if (!class_dev) {
1794 		dev_err(dev, "Failed to init netdev cdevate");
1795 		goto out;
1796 	}
1797 
1798 	class_dev->net = net_dev;
1799 	class_dev->dev = dev;
1800 	SET_NETDEV_DEV(net_dev, dev);
1801 
1802 	m_can_of_parse_mram(class_dev, mram_config_vals);
1803 out:
1804 	return class_dev;
1805 }
1806 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1807 
1808 void m_can_class_free_dev(struct net_device *net)
1809 {
1810 	free_candev(net);
1811 }
1812 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1813 
1814 int m_can_class_register(struct m_can_classdev *cdev)
1815 {
1816 	int ret;
1817 
1818 	if (cdev->pm_clock_support) {
1819 		ret = m_can_clk_start(cdev);
1820 		if (ret)
1821 			return ret;
1822 	}
1823 
1824 	ret = m_can_dev_setup(cdev);
1825 	if (ret)
1826 		goto clk_disable;
1827 
1828 	ret = register_m_can_dev(cdev->net);
1829 	if (ret) {
1830 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
1831 			cdev->net->name, ret);
1832 		goto clk_disable;
1833 	}
1834 
1835 	devm_can_led_init(cdev->net);
1836 
1837 	of_can_transceiver(cdev->net);
1838 
1839 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
1840 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
1841 
1842 	/* Probe finished
1843 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1844 	 */
1845 clk_disable:
1846 	m_can_clk_stop(cdev);
1847 
1848 	return ret;
1849 }
1850 EXPORT_SYMBOL_GPL(m_can_class_register);
1851 
1852 void m_can_class_unregister(struct m_can_classdev *cdev)
1853 {
1854 	unregister_candev(cdev->net);
1855 }
1856 EXPORT_SYMBOL_GPL(m_can_class_unregister);
1857 
1858 int m_can_class_suspend(struct device *dev)
1859 {
1860 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
1861 	struct net_device *ndev = cdev->net;
1862 
1863 	if (netif_running(ndev)) {
1864 		netif_stop_queue(ndev);
1865 		netif_device_detach(ndev);
1866 		m_can_stop(ndev);
1867 		m_can_clk_stop(cdev);
1868 	}
1869 
1870 	pinctrl_pm_select_sleep_state(dev);
1871 
1872 	cdev->can.state = CAN_STATE_SLEEPING;
1873 
1874 	return 0;
1875 }
1876 EXPORT_SYMBOL_GPL(m_can_class_suspend);
1877 
1878 int m_can_class_resume(struct device *dev)
1879 {
1880 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
1881 	struct net_device *ndev = cdev->net;
1882 
1883 	pinctrl_pm_select_default_state(dev);
1884 
1885 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1886 
1887 	if (netif_running(ndev)) {
1888 		int ret;
1889 
1890 		ret = m_can_clk_start(cdev);
1891 		if (ret)
1892 			return ret;
1893 
1894 		m_can_init_ram(cdev);
1895 		m_can_start(ndev);
1896 		netif_device_attach(ndev);
1897 		netif_start_queue(ndev);
1898 	}
1899 
1900 	return 0;
1901 }
1902 EXPORT_SYMBOL_GPL(m_can_class_resume);
1903 
1904 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1905 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1906 MODULE_LICENSE("GPL v2");
1907 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1908