1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <b29396@freescale.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * https://github.com/linux-can/can-doc/tree/master/m_can 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/can/dev.h> 13 #include <linux/ethtool.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/iopoll.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/netdevice.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 #include <linux/phy/phy.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 27 #include "m_can.h" 28 29 /* registers definition */ 30 enum m_can_reg { 31 M_CAN_CREL = 0x0, 32 M_CAN_ENDN = 0x4, 33 M_CAN_CUST = 0x8, 34 M_CAN_DBTP = 0xc, 35 M_CAN_TEST = 0x10, 36 M_CAN_RWD = 0x14, 37 M_CAN_CCCR = 0x18, 38 M_CAN_NBTP = 0x1c, 39 M_CAN_TSCC = 0x20, 40 M_CAN_TSCV = 0x24, 41 M_CAN_TOCC = 0x28, 42 M_CAN_TOCV = 0x2c, 43 M_CAN_ECR = 0x40, 44 M_CAN_PSR = 0x44, 45 /* TDCR Register only available for version >=3.1.x */ 46 M_CAN_TDCR = 0x48, 47 M_CAN_IR = 0x50, 48 M_CAN_IE = 0x54, 49 M_CAN_ILS = 0x58, 50 M_CAN_ILE = 0x5c, 51 M_CAN_GFC = 0x80, 52 M_CAN_SIDFC = 0x84, 53 M_CAN_XIDFC = 0x88, 54 M_CAN_XIDAM = 0x90, 55 M_CAN_HPMS = 0x94, 56 M_CAN_NDAT1 = 0x98, 57 M_CAN_NDAT2 = 0x9c, 58 M_CAN_RXF0C = 0xa0, 59 M_CAN_RXF0S = 0xa4, 60 M_CAN_RXF0A = 0xa8, 61 M_CAN_RXBC = 0xac, 62 M_CAN_RXF1C = 0xb0, 63 M_CAN_RXF1S = 0xb4, 64 M_CAN_RXF1A = 0xb8, 65 M_CAN_RXESC = 0xbc, 66 M_CAN_TXBC = 0xc0, 67 M_CAN_TXFQS = 0xc4, 68 M_CAN_TXESC = 0xc8, 69 M_CAN_TXBRP = 0xcc, 70 M_CAN_TXBAR = 0xd0, 71 M_CAN_TXBCR = 0xd4, 72 M_CAN_TXBTO = 0xd8, 73 M_CAN_TXBCF = 0xdc, 74 M_CAN_TXBTIE = 0xe0, 75 M_CAN_TXBCIE = 0xe4, 76 M_CAN_TXEFC = 0xf0, 77 M_CAN_TXEFS = 0xf4, 78 M_CAN_TXEFA = 0xf8, 79 }; 80 81 /* message ram configuration data length */ 82 #define MRAM_CFG_LEN 8 83 84 /* Core Release Register (CREL) */ 85 #define CREL_REL_MASK GENMASK(31, 28) 86 #define CREL_STEP_MASK GENMASK(27, 24) 87 #define CREL_SUBSTEP_MASK GENMASK(23, 20) 88 89 /* Data Bit Timing & Prescaler Register (DBTP) */ 90 #define DBTP_TDC BIT(23) 91 #define DBTP_DBRP_MASK GENMASK(20, 16) 92 #define DBTP_DTSEG1_MASK GENMASK(12, 8) 93 #define DBTP_DTSEG2_MASK GENMASK(7, 4) 94 #define DBTP_DSJW_MASK GENMASK(3, 0) 95 96 /* Transmitter Delay Compensation Register (TDCR) */ 97 #define TDCR_TDCO_MASK GENMASK(14, 8) 98 #define TDCR_TDCF_MASK GENMASK(6, 0) 99 100 /* Test Register (TEST) */ 101 #define TEST_LBCK BIT(4) 102 103 /* CC Control Register (CCCR) */ 104 #define CCCR_TXP BIT(14) 105 #define CCCR_TEST BIT(7) 106 #define CCCR_DAR BIT(6) 107 #define CCCR_MON BIT(5) 108 #define CCCR_CSR BIT(4) 109 #define CCCR_CSA BIT(3) 110 #define CCCR_ASM BIT(2) 111 #define CCCR_CCE BIT(1) 112 #define CCCR_INIT BIT(0) 113 /* for version 3.0.x */ 114 #define CCCR_CMR_MASK GENMASK(11, 10) 115 #define CCCR_CMR_CANFD 0x1 116 #define CCCR_CMR_CANFD_BRS 0x2 117 #define CCCR_CMR_CAN 0x3 118 #define CCCR_CME_MASK GENMASK(9, 8) 119 #define CCCR_CME_CAN 0 120 #define CCCR_CME_CANFD 0x1 121 #define CCCR_CME_CANFD_BRS 0x2 122 /* for version >=3.1.x */ 123 #define CCCR_EFBI BIT(13) 124 #define CCCR_PXHD BIT(12) 125 #define CCCR_BRSE BIT(9) 126 #define CCCR_FDOE BIT(8) 127 /* for version >=3.2.x */ 128 #define CCCR_NISO BIT(15) 129 /* for version >=3.3.x */ 130 #define CCCR_WMM BIT(11) 131 #define CCCR_UTSU BIT(10) 132 133 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 134 #define NBTP_NSJW_MASK GENMASK(31, 25) 135 #define NBTP_NBRP_MASK GENMASK(24, 16) 136 #define NBTP_NTSEG1_MASK GENMASK(15, 8) 137 #define NBTP_NTSEG2_MASK GENMASK(6, 0) 138 139 /* Timestamp Counter Configuration Register (TSCC) */ 140 #define TSCC_TCP_MASK GENMASK(19, 16) 141 #define TSCC_TSS_MASK GENMASK(1, 0) 142 #define TSCC_TSS_DISABLE 0x0 143 #define TSCC_TSS_INTERNAL 0x1 144 #define TSCC_TSS_EXTERNAL 0x2 145 146 /* Timestamp Counter Value Register (TSCV) */ 147 #define TSCV_TSC_MASK GENMASK(15, 0) 148 149 /* Error Counter Register (ECR) */ 150 #define ECR_RP BIT(15) 151 #define ECR_REC_MASK GENMASK(14, 8) 152 #define ECR_TEC_MASK GENMASK(7, 0) 153 154 /* Protocol Status Register (PSR) */ 155 #define PSR_BO BIT(7) 156 #define PSR_EW BIT(6) 157 #define PSR_EP BIT(5) 158 #define PSR_LEC_MASK GENMASK(2, 0) 159 #define PSR_DLEC_MASK GENMASK(10, 8) 160 161 /* Interrupt Register (IR) */ 162 #define IR_ALL_INT 0xffffffff 163 164 /* Renamed bits for versions > 3.1.x */ 165 #define IR_ARA BIT(29) 166 #define IR_PED BIT(28) 167 #define IR_PEA BIT(27) 168 169 /* Bits for version 3.0.x */ 170 #define IR_STE BIT(31) 171 #define IR_FOE BIT(30) 172 #define IR_ACKE BIT(29) 173 #define IR_BE BIT(28) 174 #define IR_CRCE BIT(27) 175 #define IR_WDI BIT(26) 176 #define IR_BO BIT(25) 177 #define IR_EW BIT(24) 178 #define IR_EP BIT(23) 179 #define IR_ELO BIT(22) 180 #define IR_BEU BIT(21) 181 #define IR_BEC BIT(20) 182 #define IR_DRX BIT(19) 183 #define IR_TOO BIT(18) 184 #define IR_MRAF BIT(17) 185 #define IR_TSW BIT(16) 186 #define IR_TEFL BIT(15) 187 #define IR_TEFF BIT(14) 188 #define IR_TEFW BIT(13) 189 #define IR_TEFN BIT(12) 190 #define IR_TFE BIT(11) 191 #define IR_TCF BIT(10) 192 #define IR_TC BIT(9) 193 #define IR_HPM BIT(8) 194 #define IR_RF1L BIT(7) 195 #define IR_RF1F BIT(6) 196 #define IR_RF1W BIT(5) 197 #define IR_RF1N BIT(4) 198 #define IR_RF0L BIT(3) 199 #define IR_RF0F BIT(2) 200 #define IR_RF0W BIT(1) 201 #define IR_RF0N BIT(0) 202 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 203 204 /* Interrupts for version 3.0.x */ 205 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 206 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \ 207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 208 IR_RF0L) 209 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 210 211 /* Interrupts for version >= 3.1.x */ 212 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 213 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \ 214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 215 IR_RF0L) 216 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 217 218 /* Interrupt Line Select (ILS) */ 219 #define ILS_ALL_INT0 0x0 220 #define ILS_ALL_INT1 0xFFFFFFFF 221 222 /* Interrupt Line Enable (ILE) */ 223 #define ILE_EINT1 BIT(1) 224 #define ILE_EINT0 BIT(0) 225 226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 227 #define RXFC_FWM_MASK GENMASK(30, 24) 228 #define RXFC_FS_MASK GENMASK(22, 16) 229 230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 231 #define RXFS_RFL BIT(25) 232 #define RXFS_FF BIT(24) 233 #define RXFS_FPI_MASK GENMASK(21, 16) 234 #define RXFS_FGI_MASK GENMASK(13, 8) 235 #define RXFS_FFL_MASK GENMASK(6, 0) 236 237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 238 #define RXESC_RBDS_MASK GENMASK(10, 8) 239 #define RXESC_F1DS_MASK GENMASK(6, 4) 240 #define RXESC_F0DS_MASK GENMASK(2, 0) 241 #define RXESC_64B 0x7 242 243 /* Tx Buffer Configuration (TXBC) */ 244 #define TXBC_TFQS_MASK GENMASK(29, 24) 245 #define TXBC_NDTB_MASK GENMASK(21, 16) 246 247 /* Tx FIFO/Queue Status (TXFQS) */ 248 #define TXFQS_TFQF BIT(21) 249 #define TXFQS_TFQPI_MASK GENMASK(20, 16) 250 #define TXFQS_TFGI_MASK GENMASK(12, 8) 251 #define TXFQS_TFFL_MASK GENMASK(5, 0) 252 253 /* Tx Buffer Element Size Configuration (TXESC) */ 254 #define TXESC_TBDS_MASK GENMASK(2, 0) 255 #define TXESC_TBDS_64B 0x7 256 257 /* Tx Event FIFO Configuration (TXEFC) */ 258 #define TXEFC_EFS_MASK GENMASK(21, 16) 259 260 /* Tx Event FIFO Status (TXEFS) */ 261 #define TXEFS_TEFL BIT(25) 262 #define TXEFS_EFF BIT(24) 263 #define TXEFS_EFGI_MASK GENMASK(12, 8) 264 #define TXEFS_EFFL_MASK GENMASK(5, 0) 265 266 /* Tx Event FIFO Acknowledge (TXEFA) */ 267 #define TXEFA_EFAI_MASK GENMASK(4, 0) 268 269 /* Message RAM Configuration (in bytes) */ 270 #define SIDF_ELEMENT_SIZE 4 271 #define XIDF_ELEMENT_SIZE 8 272 #define RXF0_ELEMENT_SIZE 72 273 #define RXF1_ELEMENT_SIZE 72 274 #define RXB_ELEMENT_SIZE 72 275 #define TXE_ELEMENT_SIZE 8 276 #define TXB_ELEMENT_SIZE 72 277 278 /* Message RAM Elements */ 279 #define M_CAN_FIFO_ID 0x0 280 #define M_CAN_FIFO_DLC 0x4 281 #define M_CAN_FIFO_DATA 0x8 282 283 /* Rx Buffer Element */ 284 /* R0 */ 285 #define RX_BUF_ESI BIT(31) 286 #define RX_BUF_XTD BIT(30) 287 #define RX_BUF_RTR BIT(29) 288 /* R1 */ 289 #define RX_BUF_ANMF BIT(31) 290 #define RX_BUF_FDF BIT(21) 291 #define RX_BUF_BRS BIT(20) 292 #define RX_BUF_RXTS_MASK GENMASK(15, 0) 293 294 /* Tx Buffer Element */ 295 /* T0 */ 296 #define TX_BUF_ESI BIT(31) 297 #define TX_BUF_XTD BIT(30) 298 #define TX_BUF_RTR BIT(29) 299 /* T1 */ 300 #define TX_BUF_EFC BIT(23) 301 #define TX_BUF_FDF BIT(21) 302 #define TX_BUF_BRS BIT(20) 303 #define TX_BUF_MM_MASK GENMASK(31, 24) 304 #define TX_BUF_DLC_MASK GENMASK(19, 16) 305 306 /* Tx event FIFO Element */ 307 /* E1 */ 308 #define TX_EVENT_MM_MASK GENMASK(31, 24) 309 #define TX_EVENT_TXTS_MASK GENMASK(15, 0) 310 311 /* The ID and DLC registers are adjacent in M_CAN FIFO memory, 312 * and we can save a (potentially slow) bus round trip by combining 313 * reads and writes to them. 314 */ 315 struct id_and_dlc { 316 u32 id; 317 u32 dlc; 318 }; 319 320 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 321 { 322 return cdev->ops->read_reg(cdev, reg); 323 } 324 325 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 326 u32 val) 327 { 328 cdev->ops->write_reg(cdev, reg, val); 329 } 330 331 static int 332 m_can_fifo_read(struct m_can_classdev *cdev, 333 u32 fgi, unsigned int offset, void *val, size_t val_count) 334 { 335 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 336 offset; 337 338 if (val_count == 0) 339 return 0; 340 341 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count); 342 } 343 344 static int 345 m_can_fifo_write(struct m_can_classdev *cdev, 346 u32 fpi, unsigned int offset, const void *val, size_t val_count) 347 { 348 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 349 offset; 350 351 if (val_count == 0) 352 return 0; 353 354 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count); 355 } 356 357 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev, 358 u32 fpi, u32 val) 359 { 360 return cdev->ops->write_fifo(cdev, fpi, &val, 1); 361 } 362 363 static int 364 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val) 365 { 366 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 367 offset; 368 369 return cdev->ops->read_fifo(cdev, addr_offset, val, 1); 370 } 371 372 static inline bool _m_can_tx_fifo_full(u32 txfqs) 373 { 374 return !!(txfqs & TXFQS_TFQF); 375 } 376 377 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) 378 { 379 return _m_can_tx_fifo_full(m_can_read(cdev, M_CAN_TXFQS)); 380 } 381 382 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) 383 { 384 u32 cccr = m_can_read(cdev, M_CAN_CCCR); 385 u32 timeout = 10; 386 u32 val = 0; 387 388 /* Clear the Clock stop request if it was set */ 389 if (cccr & CCCR_CSR) 390 cccr &= ~CCCR_CSR; 391 392 if (enable) { 393 /* enable m_can configuration */ 394 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); 395 udelay(5); 396 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ 397 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); 398 } else { 399 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); 400 } 401 402 /* there's a delay for module initialization */ 403 if (enable) 404 val = CCCR_INIT | CCCR_CCE; 405 406 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { 407 if (timeout == 0) { 408 netdev_warn(cdev->net, "Failed to init module\n"); 409 return; 410 } 411 timeout--; 412 udelay(1); 413 } 414 } 415 416 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 417 { 418 /* Only interrupt line 0 is used in this driver */ 419 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 420 } 421 422 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 423 { 424 m_can_write(cdev, M_CAN_ILE, 0x0); 425 } 426 427 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit 428 * width. 429 */ 430 static u32 m_can_get_timestamp(struct m_can_classdev *cdev) 431 { 432 u32 tscv; 433 u32 tsc; 434 435 tscv = m_can_read(cdev, M_CAN_TSCV); 436 tsc = FIELD_GET(TSCV_TSC_MASK, tscv); 437 438 return (tsc << 16); 439 } 440 441 static void m_can_clean(struct net_device *net) 442 { 443 struct m_can_classdev *cdev = netdev_priv(net); 444 445 if (cdev->tx_skb) { 446 int putidx = 0; 447 448 net->stats.tx_errors++; 449 if (cdev->version > 30) 450 putidx = FIELD_GET(TXFQS_TFQPI_MASK, 451 m_can_read(cdev, M_CAN_TXFQS)); 452 453 can_free_echo_skb(cdev->net, putidx, NULL); 454 cdev->tx_skb = NULL; 455 } 456 } 457 458 /* For peripherals, pass skb to rx-offload, which will push skb from 459 * napi. For non-peripherals, RX is done in napi already, so push 460 * directly. timestamp is used to ensure good skb ordering in 461 * rx-offload and is ignored for non-peripherals. 462 */ 463 static void m_can_receive_skb(struct m_can_classdev *cdev, 464 struct sk_buff *skb, 465 u32 timestamp) 466 { 467 if (cdev->is_peripheral) { 468 struct net_device_stats *stats = &cdev->net->stats; 469 int err; 470 471 err = can_rx_offload_queue_timestamp(&cdev->offload, skb, 472 timestamp); 473 if (err) 474 stats->rx_fifo_errors++; 475 } else { 476 netif_receive_skb(skb); 477 } 478 } 479 480 static int m_can_read_fifo(struct net_device *dev, u32 fgi) 481 { 482 struct net_device_stats *stats = &dev->stats; 483 struct m_can_classdev *cdev = netdev_priv(dev); 484 struct canfd_frame *cf; 485 struct sk_buff *skb; 486 struct id_and_dlc fifo_header; 487 u32 timestamp = 0; 488 int err; 489 490 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2); 491 if (err) 492 goto out_fail; 493 494 if (fifo_header.dlc & RX_BUF_FDF) 495 skb = alloc_canfd_skb(dev, &cf); 496 else 497 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 498 if (!skb) { 499 stats->rx_dropped++; 500 return 0; 501 } 502 503 if (fifo_header.dlc & RX_BUF_FDF) 504 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F); 505 else 506 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F); 507 508 if (fifo_header.id & RX_BUF_XTD) 509 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG; 510 else 511 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK; 512 513 if (fifo_header.id & RX_BUF_ESI) { 514 cf->flags |= CANFD_ESI; 515 netdev_dbg(dev, "ESI Error\n"); 516 } 517 518 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) { 519 cf->can_id |= CAN_RTR_FLAG; 520 } else { 521 if (fifo_header.dlc & RX_BUF_BRS) 522 cf->flags |= CANFD_BRS; 523 524 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA, 525 cf->data, DIV_ROUND_UP(cf->len, 4)); 526 if (err) 527 goto out_free_skb; 528 529 stats->rx_bytes += cf->len; 530 } 531 stats->rx_packets++; 532 533 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16; 534 535 m_can_receive_skb(cdev, skb, timestamp); 536 537 return 0; 538 539 out_free_skb: 540 kfree_skb(skb); 541 out_fail: 542 netdev_err(dev, "FIFO read returned %d\n", err); 543 return err; 544 } 545 546 static int m_can_do_rx_poll(struct net_device *dev, int quota) 547 { 548 struct m_can_classdev *cdev = netdev_priv(dev); 549 u32 pkts = 0; 550 u32 rxfs; 551 u32 rx_count; 552 u32 fgi; 553 int ack_fgi = -1; 554 int i; 555 int err = 0; 556 557 rxfs = m_can_read(cdev, M_CAN_RXF0S); 558 if (!(rxfs & RXFS_FFL_MASK)) { 559 netdev_dbg(dev, "no messages in fifo0\n"); 560 return 0; 561 } 562 563 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs); 564 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs); 565 566 for (i = 0; i < rx_count && quota > 0; ++i) { 567 err = m_can_read_fifo(dev, fgi); 568 if (err) 569 break; 570 571 quota--; 572 pkts++; 573 ack_fgi = fgi; 574 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi); 575 } 576 577 if (ack_fgi != -1) 578 m_can_write(cdev, M_CAN_RXF0A, ack_fgi); 579 580 if (err) 581 return err; 582 583 return pkts; 584 } 585 586 static int m_can_handle_lost_msg(struct net_device *dev) 587 { 588 struct m_can_classdev *cdev = netdev_priv(dev); 589 struct net_device_stats *stats = &dev->stats; 590 struct sk_buff *skb; 591 struct can_frame *frame; 592 u32 timestamp = 0; 593 594 netdev_err(dev, "msg lost in rxf0\n"); 595 596 stats->rx_errors++; 597 stats->rx_over_errors++; 598 599 skb = alloc_can_err_skb(dev, &frame); 600 if (unlikely(!skb)) 601 return 0; 602 603 frame->can_id |= CAN_ERR_CRTL; 604 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 605 606 if (cdev->is_peripheral) 607 timestamp = m_can_get_timestamp(cdev); 608 609 m_can_receive_skb(cdev, skb, timestamp); 610 611 return 1; 612 } 613 614 static int m_can_handle_lec_err(struct net_device *dev, 615 enum m_can_lec_type lec_type) 616 { 617 struct m_can_classdev *cdev = netdev_priv(dev); 618 struct net_device_stats *stats = &dev->stats; 619 struct can_frame *cf; 620 struct sk_buff *skb; 621 u32 timestamp = 0; 622 623 cdev->can.can_stats.bus_error++; 624 stats->rx_errors++; 625 626 /* propagate the error condition to the CAN stack */ 627 skb = alloc_can_err_skb(dev, &cf); 628 if (unlikely(!skb)) 629 return 0; 630 631 /* check for 'last error code' which tells us the 632 * type of the last error to occur on the CAN bus 633 */ 634 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 635 636 switch (lec_type) { 637 case LEC_STUFF_ERROR: 638 netdev_dbg(dev, "stuff error\n"); 639 cf->data[2] |= CAN_ERR_PROT_STUFF; 640 break; 641 case LEC_FORM_ERROR: 642 netdev_dbg(dev, "form error\n"); 643 cf->data[2] |= CAN_ERR_PROT_FORM; 644 break; 645 case LEC_ACK_ERROR: 646 netdev_dbg(dev, "ack error\n"); 647 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 648 break; 649 case LEC_BIT1_ERROR: 650 netdev_dbg(dev, "bit1 error\n"); 651 cf->data[2] |= CAN_ERR_PROT_BIT1; 652 break; 653 case LEC_BIT0_ERROR: 654 netdev_dbg(dev, "bit0 error\n"); 655 cf->data[2] |= CAN_ERR_PROT_BIT0; 656 break; 657 case LEC_CRC_ERROR: 658 netdev_dbg(dev, "CRC error\n"); 659 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 660 break; 661 default: 662 break; 663 } 664 665 if (cdev->is_peripheral) 666 timestamp = m_can_get_timestamp(cdev); 667 668 m_can_receive_skb(cdev, skb, timestamp); 669 670 return 1; 671 } 672 673 static int __m_can_get_berr_counter(const struct net_device *dev, 674 struct can_berr_counter *bec) 675 { 676 struct m_can_classdev *cdev = netdev_priv(dev); 677 unsigned int ecr; 678 679 ecr = m_can_read(cdev, M_CAN_ECR); 680 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr); 681 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr); 682 683 return 0; 684 } 685 686 static int m_can_clk_start(struct m_can_classdev *cdev) 687 { 688 if (cdev->pm_clock_support == 0) 689 return 0; 690 691 return pm_runtime_resume_and_get(cdev->dev); 692 } 693 694 static void m_can_clk_stop(struct m_can_classdev *cdev) 695 { 696 if (cdev->pm_clock_support) 697 pm_runtime_put_sync(cdev->dev); 698 } 699 700 static int m_can_get_berr_counter(const struct net_device *dev, 701 struct can_berr_counter *bec) 702 { 703 struct m_can_classdev *cdev = netdev_priv(dev); 704 int err; 705 706 err = m_can_clk_start(cdev); 707 if (err) 708 return err; 709 710 __m_can_get_berr_counter(dev, bec); 711 712 m_can_clk_stop(cdev); 713 714 return 0; 715 } 716 717 static int m_can_handle_state_change(struct net_device *dev, 718 enum can_state new_state) 719 { 720 struct m_can_classdev *cdev = netdev_priv(dev); 721 struct can_frame *cf; 722 struct sk_buff *skb; 723 struct can_berr_counter bec; 724 unsigned int ecr; 725 u32 timestamp = 0; 726 727 switch (new_state) { 728 case CAN_STATE_ERROR_WARNING: 729 /* error warning state */ 730 cdev->can.can_stats.error_warning++; 731 cdev->can.state = CAN_STATE_ERROR_WARNING; 732 break; 733 case CAN_STATE_ERROR_PASSIVE: 734 /* error passive state */ 735 cdev->can.can_stats.error_passive++; 736 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 737 break; 738 case CAN_STATE_BUS_OFF: 739 /* bus-off state */ 740 cdev->can.state = CAN_STATE_BUS_OFF; 741 m_can_disable_all_interrupts(cdev); 742 cdev->can.can_stats.bus_off++; 743 can_bus_off(dev); 744 break; 745 default: 746 break; 747 } 748 749 /* propagate the error condition to the CAN stack */ 750 skb = alloc_can_err_skb(dev, &cf); 751 if (unlikely(!skb)) 752 return 0; 753 754 __m_can_get_berr_counter(dev, &bec); 755 756 switch (new_state) { 757 case CAN_STATE_ERROR_WARNING: 758 /* error warning state */ 759 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 760 cf->data[1] = (bec.txerr > bec.rxerr) ? 761 CAN_ERR_CRTL_TX_WARNING : 762 CAN_ERR_CRTL_RX_WARNING; 763 cf->data[6] = bec.txerr; 764 cf->data[7] = bec.rxerr; 765 break; 766 case CAN_STATE_ERROR_PASSIVE: 767 /* error passive state */ 768 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 769 ecr = m_can_read(cdev, M_CAN_ECR); 770 if (ecr & ECR_RP) 771 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 772 if (bec.txerr > 127) 773 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 774 cf->data[6] = bec.txerr; 775 cf->data[7] = bec.rxerr; 776 break; 777 case CAN_STATE_BUS_OFF: 778 /* bus-off state */ 779 cf->can_id |= CAN_ERR_BUSOFF; 780 break; 781 default: 782 break; 783 } 784 785 if (cdev->is_peripheral) 786 timestamp = m_can_get_timestamp(cdev); 787 788 m_can_receive_skb(cdev, skb, timestamp); 789 790 return 1; 791 } 792 793 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 794 { 795 struct m_can_classdev *cdev = netdev_priv(dev); 796 int work_done = 0; 797 798 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 799 netdev_dbg(dev, "entered error warning state\n"); 800 work_done += m_can_handle_state_change(dev, 801 CAN_STATE_ERROR_WARNING); 802 } 803 804 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 805 netdev_dbg(dev, "entered error passive state\n"); 806 work_done += m_can_handle_state_change(dev, 807 CAN_STATE_ERROR_PASSIVE); 808 } 809 810 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 811 netdev_dbg(dev, "entered error bus off state\n"); 812 work_done += m_can_handle_state_change(dev, 813 CAN_STATE_BUS_OFF); 814 } 815 816 return work_done; 817 } 818 819 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 820 { 821 if (irqstatus & IR_WDI) 822 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 823 if (irqstatus & IR_BEU) 824 netdev_err(dev, "Bit Error Uncorrected\n"); 825 if (irqstatus & IR_BEC) 826 netdev_err(dev, "Bit Error Corrected\n"); 827 if (irqstatus & IR_TOO) 828 netdev_err(dev, "Timeout reached\n"); 829 if (irqstatus & IR_MRAF) 830 netdev_err(dev, "Message RAM access failure occurred\n"); 831 } 832 833 static inline bool is_lec_err(u8 lec) 834 { 835 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE; 836 } 837 838 static inline bool m_can_is_protocol_err(u32 irqstatus) 839 { 840 return irqstatus & IR_ERR_LEC_31X; 841 } 842 843 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 844 { 845 struct net_device_stats *stats = &dev->stats; 846 struct m_can_classdev *cdev = netdev_priv(dev); 847 struct can_frame *cf; 848 struct sk_buff *skb; 849 u32 timestamp = 0; 850 851 /* propagate the error condition to the CAN stack */ 852 skb = alloc_can_err_skb(dev, &cf); 853 854 /* update tx error stats since there is protocol error */ 855 stats->tx_errors++; 856 857 /* update arbitration lost status */ 858 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 859 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 860 cdev->can.can_stats.arbitration_lost++; 861 if (skb) { 862 cf->can_id |= CAN_ERR_LOSTARB; 863 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 864 } 865 } 866 867 if (unlikely(!skb)) { 868 netdev_dbg(dev, "allocation of skb failed\n"); 869 return 0; 870 } 871 872 if (cdev->is_peripheral) 873 timestamp = m_can_get_timestamp(cdev); 874 875 m_can_receive_skb(cdev, skb, timestamp); 876 877 return 1; 878 } 879 880 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 881 u32 psr) 882 { 883 struct m_can_classdev *cdev = netdev_priv(dev); 884 int work_done = 0; 885 886 if (irqstatus & IR_RF0L) 887 work_done += m_can_handle_lost_msg(dev); 888 889 /* handle lec errors on the bus */ 890 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) { 891 u8 lec = FIELD_GET(PSR_LEC_MASK, psr); 892 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr); 893 894 if (is_lec_err(lec)) { 895 netdev_dbg(dev, "Arbitration phase error detected\n"); 896 work_done += m_can_handle_lec_err(dev, lec); 897 } 898 899 if (is_lec_err(dlec)) { 900 netdev_dbg(dev, "Data phase error detected\n"); 901 work_done += m_can_handle_lec_err(dev, dlec); 902 } 903 } 904 905 /* handle protocol errors in arbitration phase */ 906 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 907 m_can_is_protocol_err(irqstatus)) 908 work_done += m_can_handle_protocol_error(dev, irqstatus); 909 910 /* other unproccessed error interrupts */ 911 m_can_handle_other_err(dev, irqstatus); 912 913 return work_done; 914 } 915 916 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus) 917 { 918 struct m_can_classdev *cdev = netdev_priv(dev); 919 int rx_work_or_err; 920 int work_done = 0; 921 922 if (!irqstatus) 923 goto end; 924 925 /* Errata workaround for issue "Needless activation of MRAF irq" 926 * During frame reception while the MCAN is in Error Passive state 927 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 928 * it may happen that MCAN_IR.MRAF is set although there was no 929 * Message RAM access failure. 930 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 931 * The Message RAM Access Failure interrupt routine needs to check 932 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 933 * In this case, reset MCAN_IR.MRAF. No further action is required. 934 */ 935 if (cdev->version <= 31 && irqstatus & IR_MRAF && 936 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 937 struct can_berr_counter bec; 938 939 __m_can_get_berr_counter(dev, &bec); 940 if (bec.rxerr == 127) { 941 m_can_write(cdev, M_CAN_IR, IR_MRAF); 942 irqstatus &= ~IR_MRAF; 943 } 944 } 945 946 if (irqstatus & IR_ERR_STATE) 947 work_done += m_can_handle_state_errors(dev, 948 m_can_read(cdev, M_CAN_PSR)); 949 950 if (irqstatus & IR_ERR_BUS_30X) 951 work_done += m_can_handle_bus_errors(dev, irqstatus, 952 m_can_read(cdev, M_CAN_PSR)); 953 954 if (irqstatus & IR_RF0N) { 955 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done)); 956 if (rx_work_or_err < 0) 957 return rx_work_or_err; 958 959 work_done += rx_work_or_err; 960 } 961 end: 962 return work_done; 963 } 964 965 static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus) 966 { 967 struct m_can_classdev *cdev = netdev_priv(dev); 968 int work_done; 969 970 work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus); 971 972 /* Don't re-enable interrupts if the driver had a fatal error 973 * (e.g., FIFO read failure). 974 */ 975 if (work_done >= 0) 976 m_can_enable_all_interrupts(cdev); 977 978 return work_done; 979 } 980 981 static int m_can_poll(struct napi_struct *napi, int quota) 982 { 983 struct net_device *dev = napi->dev; 984 struct m_can_classdev *cdev = netdev_priv(dev); 985 int work_done; 986 u32 irqstatus; 987 988 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 989 990 work_done = m_can_rx_handler(dev, quota, irqstatus); 991 992 /* Don't re-enable interrupts if the driver had a fatal error 993 * (e.g., FIFO read failure). 994 */ 995 if (work_done >= 0 && work_done < quota) { 996 napi_complete_done(napi, work_done); 997 m_can_enable_all_interrupts(cdev); 998 } 999 1000 return work_done; 1001 } 1002 1003 /* Echo tx skb and update net stats. Peripherals use rx-offload for 1004 * echo. timestamp is used for peripherals to ensure correct ordering 1005 * by rx-offload, and is ignored for non-peripherals. 1006 */ 1007 static void m_can_tx_update_stats(struct m_can_classdev *cdev, 1008 unsigned int msg_mark, 1009 u32 timestamp) 1010 { 1011 struct net_device *dev = cdev->net; 1012 struct net_device_stats *stats = &dev->stats; 1013 1014 if (cdev->is_peripheral) 1015 stats->tx_bytes += 1016 can_rx_offload_get_echo_skb(&cdev->offload, 1017 msg_mark, 1018 timestamp, 1019 NULL); 1020 else 1021 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL); 1022 1023 stats->tx_packets++; 1024 } 1025 1026 static int m_can_echo_tx_event(struct net_device *dev) 1027 { 1028 u32 txe_count = 0; 1029 u32 m_can_txefs; 1030 u32 fgi = 0; 1031 int ack_fgi = -1; 1032 int i = 0; 1033 int err = 0; 1034 unsigned int msg_mark; 1035 1036 struct m_can_classdev *cdev = netdev_priv(dev); 1037 1038 /* read tx event fifo status */ 1039 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 1040 1041 /* Get Tx Event fifo element count */ 1042 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs); 1043 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs); 1044 1045 /* Get and process all sent elements */ 1046 for (i = 0; i < txe_count; i++) { 1047 u32 txe, timestamp = 0; 1048 1049 /* get message marker, timestamp */ 1050 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe); 1051 if (err) { 1052 netdev_err(dev, "TXE FIFO read returned %d\n", err); 1053 break; 1054 } 1055 1056 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe); 1057 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16; 1058 1059 ack_fgi = fgi; 1060 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi); 1061 1062 /* update stats */ 1063 m_can_tx_update_stats(cdev, msg_mark, timestamp); 1064 } 1065 1066 if (ack_fgi != -1) 1067 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK, 1068 ack_fgi)); 1069 1070 return err; 1071 } 1072 1073 static irqreturn_t m_can_isr(int irq, void *dev_id) 1074 { 1075 struct net_device *dev = (struct net_device *)dev_id; 1076 struct m_can_classdev *cdev = netdev_priv(dev); 1077 u32 ir; 1078 1079 if (pm_runtime_suspended(cdev->dev)) 1080 return IRQ_NONE; 1081 ir = m_can_read(cdev, M_CAN_IR); 1082 if (!ir) 1083 return IRQ_NONE; 1084 1085 /* ACK all irqs */ 1086 if (ir & IR_ALL_INT) 1087 m_can_write(cdev, M_CAN_IR, ir); 1088 1089 if (cdev->ops->clear_interrupts) 1090 cdev->ops->clear_interrupts(cdev); 1091 1092 /* schedule NAPI in case of 1093 * - rx IRQ 1094 * - state change IRQ 1095 * - bus error IRQ and bus error reporting 1096 */ 1097 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { 1098 cdev->irqstatus = ir; 1099 m_can_disable_all_interrupts(cdev); 1100 if (!cdev->is_peripheral) 1101 napi_schedule(&cdev->napi); 1102 else if (m_can_rx_peripheral(dev, ir) < 0) 1103 goto out_fail; 1104 } 1105 1106 if (cdev->version == 30) { 1107 if (ir & IR_TC) { 1108 /* Transmission Complete Interrupt*/ 1109 u32 timestamp = 0; 1110 1111 if (cdev->is_peripheral) 1112 timestamp = m_can_get_timestamp(cdev); 1113 m_can_tx_update_stats(cdev, 0, timestamp); 1114 netif_wake_queue(dev); 1115 } 1116 } else { 1117 if (ir & IR_TEFN) { 1118 /* New TX FIFO Element arrived */ 1119 if (m_can_echo_tx_event(dev) != 0) 1120 goto out_fail; 1121 1122 if (netif_queue_stopped(dev) && 1123 !m_can_tx_fifo_full(cdev)) 1124 netif_wake_queue(dev); 1125 } 1126 } 1127 1128 if (cdev->is_peripheral) 1129 can_rx_offload_threaded_irq_finish(&cdev->offload); 1130 1131 return IRQ_HANDLED; 1132 1133 out_fail: 1134 m_can_disable_all_interrupts(cdev); 1135 return IRQ_HANDLED; 1136 } 1137 1138 static const struct can_bittiming_const m_can_bittiming_const_30X = { 1139 .name = KBUILD_MODNAME, 1140 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1141 .tseg1_max = 64, 1142 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1143 .tseg2_max = 16, 1144 .sjw_max = 16, 1145 .brp_min = 1, 1146 .brp_max = 1024, 1147 .brp_inc = 1, 1148 }; 1149 1150 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1151 .name = KBUILD_MODNAME, 1152 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1153 .tseg1_max = 16, 1154 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1155 .tseg2_max = 8, 1156 .sjw_max = 4, 1157 .brp_min = 1, 1158 .brp_max = 32, 1159 .brp_inc = 1, 1160 }; 1161 1162 static const struct can_bittiming_const m_can_bittiming_const_31X = { 1163 .name = KBUILD_MODNAME, 1164 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1165 .tseg1_max = 256, 1166 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1167 .tseg2_max = 128, 1168 .sjw_max = 128, 1169 .brp_min = 1, 1170 .brp_max = 512, 1171 .brp_inc = 1, 1172 }; 1173 1174 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1175 .name = KBUILD_MODNAME, 1176 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1177 .tseg1_max = 32, 1178 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1179 .tseg2_max = 16, 1180 .sjw_max = 16, 1181 .brp_min = 1, 1182 .brp_max = 32, 1183 .brp_inc = 1, 1184 }; 1185 1186 static int m_can_set_bittiming(struct net_device *dev) 1187 { 1188 struct m_can_classdev *cdev = netdev_priv(dev); 1189 const struct can_bittiming *bt = &cdev->can.bittiming; 1190 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1191 u16 brp, sjw, tseg1, tseg2; 1192 u32 reg_btp; 1193 1194 brp = bt->brp - 1; 1195 sjw = bt->sjw - 1; 1196 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1197 tseg2 = bt->phase_seg2 - 1; 1198 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) | 1199 FIELD_PREP(NBTP_NSJW_MASK, sjw) | 1200 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) | 1201 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2); 1202 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1203 1204 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1205 reg_btp = 0; 1206 brp = dbt->brp - 1; 1207 sjw = dbt->sjw - 1; 1208 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1209 tseg2 = dbt->phase_seg2 - 1; 1210 1211 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1212 * This is mentioned in the "Bit Time Requirements for CAN FD" 1213 * paper presented at the International CAN Conference 2013 1214 */ 1215 if (dbt->bitrate > 2500000) { 1216 u32 tdco, ssp; 1217 1218 /* Use the same value of secondary sampling point 1219 * as the data sampling point 1220 */ 1221 ssp = dbt->sample_point; 1222 1223 /* Equation based on Bosch's M_CAN User Manual's 1224 * Transmitter Delay Compensation Section 1225 */ 1226 tdco = (cdev->can.clock.freq / 1000) * 1227 ssp / dbt->bitrate; 1228 1229 /* Max valid TDCO value is 127 */ 1230 if (tdco > 127) { 1231 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1232 tdco); 1233 tdco = 127; 1234 } 1235 1236 reg_btp |= DBTP_TDC; 1237 m_can_write(cdev, M_CAN_TDCR, 1238 FIELD_PREP(TDCR_TDCO_MASK, tdco)); 1239 } 1240 1241 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) | 1242 FIELD_PREP(DBTP_DSJW_MASK, sjw) | 1243 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) | 1244 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2); 1245 1246 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1247 } 1248 1249 return 0; 1250 } 1251 1252 /* Configure M_CAN chip: 1253 * - set rx buffer/fifo element size 1254 * - configure rx fifo 1255 * - accept non-matching frame into fifo 0 1256 * - configure tx buffer 1257 * - >= v3.1.x: TX FIFO is used 1258 * - configure mode 1259 * - setup bittiming 1260 * - configure timestamp generation 1261 */ 1262 static int m_can_chip_config(struct net_device *dev) 1263 { 1264 struct m_can_classdev *cdev = netdev_priv(dev); 1265 u32 cccr, test; 1266 int err; 1267 1268 err = m_can_init_ram(cdev); 1269 if (err) { 1270 dev_err(cdev->dev, "Message RAM configuration failed\n"); 1271 return err; 1272 } 1273 1274 m_can_config_endisable(cdev, true); 1275 1276 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1277 m_can_write(cdev, M_CAN_RXESC, 1278 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) | 1279 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) | 1280 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B)); 1281 1282 /* Accept Non-matching Frames Into FIFO 0 */ 1283 m_can_write(cdev, M_CAN_GFC, 0x0); 1284 1285 if (cdev->version == 30) { 1286 /* only support one Tx Buffer currently */ 1287 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) | 1288 cdev->mcfg[MRAM_TXB].off); 1289 } else { 1290 /* TX FIFO is used for newer IP Core versions */ 1291 m_can_write(cdev, M_CAN_TXBC, 1292 FIELD_PREP(TXBC_TFQS_MASK, 1293 cdev->mcfg[MRAM_TXB].num) | 1294 cdev->mcfg[MRAM_TXB].off); 1295 } 1296 1297 /* support 64 bytes payload */ 1298 m_can_write(cdev, M_CAN_TXESC, 1299 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B)); 1300 1301 /* TX Event FIFO */ 1302 if (cdev->version == 30) { 1303 m_can_write(cdev, M_CAN_TXEFC, 1304 FIELD_PREP(TXEFC_EFS_MASK, 1) | 1305 cdev->mcfg[MRAM_TXE].off); 1306 } else { 1307 /* Full TX Event FIFO is used */ 1308 m_can_write(cdev, M_CAN_TXEFC, 1309 FIELD_PREP(TXEFC_EFS_MASK, 1310 cdev->mcfg[MRAM_TXE].num) | 1311 cdev->mcfg[MRAM_TXE].off); 1312 } 1313 1314 /* rx fifo configuration, blocking mode, fifo size 1 */ 1315 m_can_write(cdev, M_CAN_RXF0C, 1316 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) | 1317 cdev->mcfg[MRAM_RXF0].off); 1318 1319 m_can_write(cdev, M_CAN_RXF1C, 1320 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) | 1321 cdev->mcfg[MRAM_RXF1].off); 1322 1323 cccr = m_can_read(cdev, M_CAN_CCCR); 1324 test = m_can_read(cdev, M_CAN_TEST); 1325 test &= ~TEST_LBCK; 1326 if (cdev->version == 30) { 1327 /* Version 3.0.x */ 1328 1329 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1330 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) | 1331 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK))); 1332 1333 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1334 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS); 1335 1336 } else { 1337 /* Version 3.1.x or 3.2.x */ 1338 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1339 CCCR_NISO | CCCR_DAR); 1340 1341 /* Only 3.2.x has NISO Bit implemented */ 1342 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1343 cccr |= CCCR_NISO; 1344 1345 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1346 cccr |= (CCCR_BRSE | CCCR_FDOE); 1347 } 1348 1349 /* Loopback Mode */ 1350 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1351 cccr |= CCCR_TEST | CCCR_MON; 1352 test |= TEST_LBCK; 1353 } 1354 1355 /* Enable Monitoring (all versions) */ 1356 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1357 cccr |= CCCR_MON; 1358 1359 /* Disable Auto Retransmission (all versions) */ 1360 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1361 cccr |= CCCR_DAR; 1362 1363 /* Write config */ 1364 m_can_write(cdev, M_CAN_CCCR, cccr); 1365 m_can_write(cdev, M_CAN_TEST, test); 1366 1367 /* Enable interrupts */ 1368 m_can_write(cdev, M_CAN_IR, IR_ALL_INT); 1369 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) 1370 if (cdev->version == 30) 1371 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1372 ~(IR_ERR_LEC_30X)); 1373 else 1374 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1375 ~(IR_ERR_LEC_31X)); 1376 else 1377 m_can_write(cdev, M_CAN_IE, IR_ALL_INT); 1378 1379 /* route all interrupts to INT0 */ 1380 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1381 1382 /* set bittiming params */ 1383 m_can_set_bittiming(dev); 1384 1385 /* enable internal timestamp generation, with a prescaler of 16. The 1386 * prescaler is applied to the nominal bit timing 1387 */ 1388 m_can_write(cdev, M_CAN_TSCC, 1389 FIELD_PREP(TSCC_TCP_MASK, 0xf) | 1390 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL)); 1391 1392 m_can_config_endisable(cdev, false); 1393 1394 if (cdev->ops->init) 1395 cdev->ops->init(cdev); 1396 1397 return 0; 1398 } 1399 1400 static int m_can_start(struct net_device *dev) 1401 { 1402 struct m_can_classdev *cdev = netdev_priv(dev); 1403 int ret; 1404 1405 /* basic m_can configuration */ 1406 ret = m_can_chip_config(dev); 1407 if (ret) 1408 return ret; 1409 1410 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1411 1412 m_can_enable_all_interrupts(cdev); 1413 1414 return 0; 1415 } 1416 1417 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1418 { 1419 switch (mode) { 1420 case CAN_MODE_START: 1421 m_can_clean(dev); 1422 m_can_start(dev); 1423 netif_wake_queue(dev); 1424 break; 1425 default: 1426 return -EOPNOTSUPP; 1427 } 1428 1429 return 0; 1430 } 1431 1432 /* Checks core release number of M_CAN 1433 * returns 0 if an unsupported device is detected 1434 * else it returns the release and step coded as: 1435 * return value = 10 * <release> + 1 * <step> 1436 */ 1437 static int m_can_check_core_release(struct m_can_classdev *cdev) 1438 { 1439 u32 crel_reg; 1440 u8 rel; 1441 u8 step; 1442 int res; 1443 1444 /* Read Core Release Version and split into version number 1445 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1446 */ 1447 crel_reg = m_can_read(cdev, M_CAN_CREL); 1448 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg); 1449 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg); 1450 1451 if (rel == 3) { 1452 /* M_CAN v3.x.y: create return value */ 1453 res = 30 + step; 1454 } else { 1455 /* Unsupported M_CAN version */ 1456 res = 0; 1457 } 1458 1459 return res; 1460 } 1461 1462 /* Selectable Non ISO support only in version 3.2.x 1463 * This function checks if the bit is writable. 1464 */ 1465 static bool m_can_niso_supported(struct m_can_classdev *cdev) 1466 { 1467 u32 cccr_reg, cccr_poll = 0; 1468 int niso_timeout = -ETIMEDOUT; 1469 int i; 1470 1471 m_can_config_endisable(cdev, true); 1472 cccr_reg = m_can_read(cdev, M_CAN_CCCR); 1473 cccr_reg |= CCCR_NISO; 1474 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1475 1476 for (i = 0; i <= 10; i++) { 1477 cccr_poll = m_can_read(cdev, M_CAN_CCCR); 1478 if (cccr_poll == cccr_reg) { 1479 niso_timeout = 0; 1480 break; 1481 } 1482 1483 usleep_range(1, 5); 1484 } 1485 1486 /* Clear NISO */ 1487 cccr_reg &= ~(CCCR_NISO); 1488 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1489 1490 m_can_config_endisable(cdev, false); 1491 1492 /* return false if time out (-ETIMEDOUT), else return true */ 1493 return !niso_timeout; 1494 } 1495 1496 static int m_can_dev_setup(struct m_can_classdev *cdev) 1497 { 1498 struct net_device *dev = cdev->net; 1499 int m_can_version, err; 1500 1501 m_can_version = m_can_check_core_release(cdev); 1502 /* return if unsupported version */ 1503 if (!m_can_version) { 1504 dev_err(cdev->dev, "Unsupported version number: %2d", 1505 m_can_version); 1506 return -EINVAL; 1507 } 1508 1509 if (!cdev->is_peripheral) 1510 netif_napi_add(dev, &cdev->napi, m_can_poll); 1511 1512 /* Shared properties of all M_CAN versions */ 1513 cdev->version = m_can_version; 1514 cdev->can.do_set_mode = m_can_set_mode; 1515 cdev->can.do_get_berr_counter = m_can_get_berr_counter; 1516 1517 /* Set M_CAN supported operations */ 1518 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1519 CAN_CTRLMODE_LISTENONLY | 1520 CAN_CTRLMODE_BERR_REPORTING | 1521 CAN_CTRLMODE_FD | 1522 CAN_CTRLMODE_ONE_SHOT; 1523 1524 /* Set properties depending on M_CAN version */ 1525 switch (cdev->version) { 1526 case 30: 1527 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1528 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1529 if (err) 1530 return err; 1531 cdev->can.bittiming_const = &m_can_bittiming_const_30X; 1532 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X; 1533 break; 1534 case 31: 1535 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1536 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1537 if (err) 1538 return err; 1539 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1540 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1541 break; 1542 case 32: 1543 case 33: 1544 /* Support both MCAN version v3.2.x and v3.3.0 */ 1545 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1546 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1547 1548 cdev->can.ctrlmode_supported |= 1549 (m_can_niso_supported(cdev) ? 1550 CAN_CTRLMODE_FD_NON_ISO : 0); 1551 break; 1552 default: 1553 dev_err(cdev->dev, "Unsupported version number: %2d", 1554 cdev->version); 1555 return -EINVAL; 1556 } 1557 1558 if (cdev->ops->init) 1559 cdev->ops->init(cdev); 1560 1561 return 0; 1562 } 1563 1564 static void m_can_stop(struct net_device *dev) 1565 { 1566 struct m_can_classdev *cdev = netdev_priv(dev); 1567 1568 /* disable all interrupts */ 1569 m_can_disable_all_interrupts(cdev); 1570 1571 /* Set init mode to disengage from the network */ 1572 m_can_config_endisable(cdev, true); 1573 1574 /* set the state as STOPPED */ 1575 cdev->can.state = CAN_STATE_STOPPED; 1576 } 1577 1578 static int m_can_close(struct net_device *dev) 1579 { 1580 struct m_can_classdev *cdev = netdev_priv(dev); 1581 1582 netif_stop_queue(dev); 1583 1584 if (!cdev->is_peripheral) 1585 napi_disable(&cdev->napi); 1586 1587 m_can_stop(dev); 1588 m_can_clk_stop(cdev); 1589 free_irq(dev->irq, dev); 1590 1591 if (cdev->is_peripheral) { 1592 cdev->tx_skb = NULL; 1593 destroy_workqueue(cdev->tx_wq); 1594 cdev->tx_wq = NULL; 1595 } 1596 1597 if (cdev->is_peripheral) 1598 can_rx_offload_disable(&cdev->offload); 1599 1600 close_candev(dev); 1601 1602 phy_power_off(cdev->transceiver); 1603 1604 return 0; 1605 } 1606 1607 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) 1608 { 1609 struct m_can_classdev *cdev = netdev_priv(dev); 1610 /*get wrap around for loopback skb index */ 1611 unsigned int wrap = cdev->can.echo_skb_max; 1612 int next_idx; 1613 1614 /* calculate next index */ 1615 next_idx = (++putidx >= wrap ? 0 : putidx); 1616 1617 /* check if occupied */ 1618 return !!cdev->can.echo_skb[next_idx]; 1619 } 1620 1621 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) 1622 { 1623 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; 1624 struct net_device *dev = cdev->net; 1625 struct sk_buff *skb = cdev->tx_skb; 1626 struct id_and_dlc fifo_header; 1627 u32 cccr, fdflags; 1628 u32 txfqs; 1629 int err; 1630 int putidx; 1631 1632 cdev->tx_skb = NULL; 1633 1634 /* Generate ID field for TX buffer Element */ 1635 /* Common to all supported M_CAN versions */ 1636 if (cf->can_id & CAN_EFF_FLAG) { 1637 fifo_header.id = cf->can_id & CAN_EFF_MASK; 1638 fifo_header.id |= TX_BUF_XTD; 1639 } else { 1640 fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18); 1641 } 1642 1643 if (cf->can_id & CAN_RTR_FLAG) 1644 fifo_header.id |= TX_BUF_RTR; 1645 1646 if (cdev->version == 30) { 1647 netif_stop_queue(dev); 1648 1649 fifo_header.dlc = can_fd_len2dlc(cf->len) << 16; 1650 1651 /* Write the frame ID, DLC, and payload to the FIFO element. */ 1652 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2); 1653 if (err) 1654 goto out_fail; 1655 1656 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA, 1657 cf->data, DIV_ROUND_UP(cf->len, 4)); 1658 if (err) 1659 goto out_fail; 1660 1661 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1662 cccr = m_can_read(cdev, M_CAN_CCCR); 1663 cccr &= ~CCCR_CMR_MASK; 1664 if (can_is_canfd_skb(skb)) { 1665 if (cf->flags & CANFD_BRS) 1666 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1667 CCCR_CMR_CANFD_BRS); 1668 else 1669 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1670 CCCR_CMR_CANFD); 1671 } else { 1672 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN); 1673 } 1674 m_can_write(cdev, M_CAN_CCCR, cccr); 1675 } 1676 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1677 1678 can_put_echo_skb(skb, dev, 0, 0); 1679 1680 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1681 /* End of xmit function for version 3.0.x */ 1682 } else { 1683 /* Transmit routine for version >= v3.1.x */ 1684 1685 txfqs = m_can_read(cdev, M_CAN_TXFQS); 1686 1687 /* Check if FIFO full */ 1688 if (_m_can_tx_fifo_full(txfqs)) { 1689 /* This shouldn't happen */ 1690 netif_stop_queue(dev); 1691 netdev_warn(dev, 1692 "TX queue active although FIFO is full."); 1693 1694 if (cdev->is_peripheral) { 1695 kfree_skb(skb); 1696 dev->stats.tx_dropped++; 1697 return NETDEV_TX_OK; 1698 } else { 1699 return NETDEV_TX_BUSY; 1700 } 1701 } 1702 1703 /* get put index for frame */ 1704 putidx = FIELD_GET(TXFQS_TFQPI_MASK, txfqs); 1705 1706 /* Construct DLC Field, with CAN-FD configuration. 1707 * Use the put index of the fifo as the message marker, 1708 * used in the TX interrupt for sending the correct echo frame. 1709 */ 1710 1711 /* get CAN FD configuration of frame */ 1712 fdflags = 0; 1713 if (can_is_canfd_skb(skb)) { 1714 fdflags |= TX_BUF_FDF; 1715 if (cf->flags & CANFD_BRS) 1716 fdflags |= TX_BUF_BRS; 1717 } 1718 1719 fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) | 1720 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) | 1721 fdflags | TX_BUF_EFC; 1722 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2); 1723 if (err) 1724 goto out_fail; 1725 1726 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA, 1727 cf->data, DIV_ROUND_UP(cf->len, 4)); 1728 if (err) 1729 goto out_fail; 1730 1731 /* Push loopback echo. 1732 * Will be looped back on TX interrupt based on message marker 1733 */ 1734 can_put_echo_skb(skb, dev, putidx, 0); 1735 1736 /* Enable TX FIFO element to start transfer */ 1737 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); 1738 1739 /* stop network queue if fifo full */ 1740 if (m_can_tx_fifo_full(cdev) || 1741 m_can_next_echo_skb_occupied(dev, putidx)) 1742 netif_stop_queue(dev); 1743 } 1744 1745 return NETDEV_TX_OK; 1746 1747 out_fail: 1748 netdev_err(dev, "FIFO write returned %d\n", err); 1749 m_can_disable_all_interrupts(cdev); 1750 return NETDEV_TX_BUSY; 1751 } 1752 1753 static void m_can_tx_work_queue(struct work_struct *ws) 1754 { 1755 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, 1756 tx_work); 1757 1758 m_can_tx_handler(cdev); 1759 } 1760 1761 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1762 struct net_device *dev) 1763 { 1764 struct m_can_classdev *cdev = netdev_priv(dev); 1765 1766 if (can_dev_dropped_skb(dev, skb)) 1767 return NETDEV_TX_OK; 1768 1769 if (cdev->is_peripheral) { 1770 if (cdev->tx_skb) { 1771 netdev_err(dev, "hard_xmit called while tx busy\n"); 1772 return NETDEV_TX_BUSY; 1773 } 1774 1775 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1776 m_can_clean(dev); 1777 } else { 1778 /* Need to stop the queue to avoid numerous requests 1779 * from being sent. Suggested improvement is to create 1780 * a queueing mechanism that will queue the skbs and 1781 * process them in order. 1782 */ 1783 cdev->tx_skb = skb; 1784 netif_stop_queue(cdev->net); 1785 queue_work(cdev->tx_wq, &cdev->tx_work); 1786 } 1787 } else { 1788 cdev->tx_skb = skb; 1789 return m_can_tx_handler(cdev); 1790 } 1791 1792 return NETDEV_TX_OK; 1793 } 1794 1795 static int m_can_open(struct net_device *dev) 1796 { 1797 struct m_can_classdev *cdev = netdev_priv(dev); 1798 int err; 1799 1800 err = phy_power_on(cdev->transceiver); 1801 if (err) 1802 return err; 1803 1804 err = m_can_clk_start(cdev); 1805 if (err) 1806 goto out_phy_power_off; 1807 1808 /* open the can device */ 1809 err = open_candev(dev); 1810 if (err) { 1811 netdev_err(dev, "failed to open can device\n"); 1812 goto exit_disable_clks; 1813 } 1814 1815 if (cdev->is_peripheral) 1816 can_rx_offload_enable(&cdev->offload); 1817 1818 /* register interrupt handler */ 1819 if (cdev->is_peripheral) { 1820 cdev->tx_skb = NULL; 1821 cdev->tx_wq = alloc_workqueue("mcan_wq", 1822 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); 1823 if (!cdev->tx_wq) { 1824 err = -ENOMEM; 1825 goto out_wq_fail; 1826 } 1827 1828 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); 1829 1830 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 1831 IRQF_ONESHOT, 1832 dev->name, dev); 1833 } else { 1834 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 1835 dev); 1836 } 1837 1838 if (err < 0) { 1839 netdev_err(dev, "failed to request interrupt\n"); 1840 goto exit_irq_fail; 1841 } 1842 1843 /* start the m_can controller */ 1844 err = m_can_start(dev); 1845 if (err) 1846 goto exit_irq_fail; 1847 1848 if (!cdev->is_peripheral) 1849 napi_enable(&cdev->napi); 1850 1851 netif_start_queue(dev); 1852 1853 return 0; 1854 1855 exit_irq_fail: 1856 if (cdev->is_peripheral) 1857 destroy_workqueue(cdev->tx_wq); 1858 out_wq_fail: 1859 if (cdev->is_peripheral) 1860 can_rx_offload_disable(&cdev->offload); 1861 close_candev(dev); 1862 exit_disable_clks: 1863 m_can_clk_stop(cdev); 1864 out_phy_power_off: 1865 phy_power_off(cdev->transceiver); 1866 return err; 1867 } 1868 1869 static const struct net_device_ops m_can_netdev_ops = { 1870 .ndo_open = m_can_open, 1871 .ndo_stop = m_can_close, 1872 .ndo_start_xmit = m_can_start_xmit, 1873 .ndo_change_mtu = can_change_mtu, 1874 }; 1875 1876 static const struct ethtool_ops m_can_ethtool_ops = { 1877 .get_ts_info = ethtool_op_get_ts_info, 1878 }; 1879 1880 static int register_m_can_dev(struct net_device *dev) 1881 { 1882 dev->flags |= IFF_ECHO; /* we support local echo */ 1883 dev->netdev_ops = &m_can_netdev_ops; 1884 dev->ethtool_ops = &m_can_ethtool_ops; 1885 1886 return register_candev(dev); 1887 } 1888 1889 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 1890 const u32 *mram_config_vals) 1891 { 1892 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 1893 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 1894 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 1895 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 1896 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 1897 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 1898 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 1899 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 1900 FIELD_MAX(RXFC_FS_MASK); 1901 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 1902 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 1903 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 1904 FIELD_MAX(RXFC_FS_MASK); 1905 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 1906 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 1907 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 1908 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 1909 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 1910 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 1911 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 1912 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 1913 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 1914 FIELD_MAX(TXBC_NDTB_MASK); 1915 1916 dev_dbg(cdev->dev, 1917 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 1918 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 1919 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 1920 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 1921 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 1922 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 1923 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 1924 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 1925 } 1926 1927 int m_can_init_ram(struct m_can_classdev *cdev) 1928 { 1929 int end, i, start; 1930 int err = 0; 1931 1932 /* initialize the entire Message RAM in use to avoid possible 1933 * ECC/parity checksum errors when reading an uninitialized buffer 1934 */ 1935 start = cdev->mcfg[MRAM_SIDF].off; 1936 end = cdev->mcfg[MRAM_TXB].off + 1937 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 1938 1939 for (i = start; i < end; i += 4) { 1940 err = m_can_fifo_write_no_off(cdev, i, 0x0); 1941 if (err) 1942 break; 1943 } 1944 1945 return err; 1946 } 1947 EXPORT_SYMBOL_GPL(m_can_init_ram); 1948 1949 int m_can_class_get_clocks(struct m_can_classdev *cdev) 1950 { 1951 int ret = 0; 1952 1953 cdev->hclk = devm_clk_get(cdev->dev, "hclk"); 1954 cdev->cclk = devm_clk_get(cdev->dev, "cclk"); 1955 1956 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) { 1957 dev_err(cdev->dev, "no clock found\n"); 1958 ret = -ENODEV; 1959 } 1960 1961 return ret; 1962 } 1963 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 1964 1965 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev, 1966 int sizeof_priv) 1967 { 1968 struct m_can_classdev *class_dev = NULL; 1969 u32 mram_config_vals[MRAM_CFG_LEN]; 1970 struct net_device *net_dev; 1971 u32 tx_fifo_size; 1972 int ret; 1973 1974 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 1975 "bosch,mram-cfg", 1976 mram_config_vals, 1977 sizeof(mram_config_vals) / 4); 1978 if (ret) { 1979 dev_err(dev, "Could not get Message RAM configuration."); 1980 goto out; 1981 } 1982 1983 /* Get TX FIFO size 1984 * Defines the total amount of echo buffers for loopback 1985 */ 1986 tx_fifo_size = mram_config_vals[7]; 1987 1988 /* allocate the m_can device */ 1989 net_dev = alloc_candev(sizeof_priv, tx_fifo_size); 1990 if (!net_dev) { 1991 dev_err(dev, "Failed to allocate CAN device"); 1992 goto out; 1993 } 1994 1995 class_dev = netdev_priv(net_dev); 1996 class_dev->net = net_dev; 1997 class_dev->dev = dev; 1998 SET_NETDEV_DEV(net_dev, dev); 1999 2000 m_can_of_parse_mram(class_dev, mram_config_vals); 2001 out: 2002 return class_dev; 2003 } 2004 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 2005 2006 void m_can_class_free_dev(struct net_device *net) 2007 { 2008 free_candev(net); 2009 } 2010 EXPORT_SYMBOL_GPL(m_can_class_free_dev); 2011 2012 int m_can_class_register(struct m_can_classdev *cdev) 2013 { 2014 int ret; 2015 2016 if (cdev->pm_clock_support) { 2017 ret = m_can_clk_start(cdev); 2018 if (ret) 2019 return ret; 2020 } 2021 2022 if (cdev->is_peripheral) { 2023 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload, 2024 NAPI_POLL_WEIGHT); 2025 if (ret) 2026 goto clk_disable; 2027 } 2028 2029 ret = m_can_dev_setup(cdev); 2030 if (ret) 2031 goto rx_offload_del; 2032 2033 ret = register_m_can_dev(cdev->net); 2034 if (ret) { 2035 dev_err(cdev->dev, "registering %s failed (err=%d)\n", 2036 cdev->net->name, ret); 2037 goto rx_offload_del; 2038 } 2039 2040 of_can_transceiver(cdev->net); 2041 2042 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n", 2043 KBUILD_MODNAME, cdev->net->irq, cdev->version); 2044 2045 /* Probe finished 2046 * Stop clocks. They will be reactivated once the M_CAN device is opened 2047 */ 2048 m_can_clk_stop(cdev); 2049 2050 return 0; 2051 2052 rx_offload_del: 2053 if (cdev->is_peripheral) 2054 can_rx_offload_del(&cdev->offload); 2055 clk_disable: 2056 m_can_clk_stop(cdev); 2057 2058 return ret; 2059 } 2060 EXPORT_SYMBOL_GPL(m_can_class_register); 2061 2062 void m_can_class_unregister(struct m_can_classdev *cdev) 2063 { 2064 if (cdev->is_peripheral) 2065 can_rx_offload_del(&cdev->offload); 2066 unregister_candev(cdev->net); 2067 } 2068 EXPORT_SYMBOL_GPL(m_can_class_unregister); 2069 2070 int m_can_class_suspend(struct device *dev) 2071 { 2072 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2073 struct net_device *ndev = cdev->net; 2074 2075 if (netif_running(ndev)) { 2076 netif_stop_queue(ndev); 2077 netif_device_detach(ndev); 2078 m_can_stop(ndev); 2079 m_can_clk_stop(cdev); 2080 } 2081 2082 pinctrl_pm_select_sleep_state(dev); 2083 2084 cdev->can.state = CAN_STATE_SLEEPING; 2085 2086 return 0; 2087 } 2088 EXPORT_SYMBOL_GPL(m_can_class_suspend); 2089 2090 int m_can_class_resume(struct device *dev) 2091 { 2092 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2093 struct net_device *ndev = cdev->net; 2094 2095 pinctrl_pm_select_default_state(dev); 2096 2097 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 2098 2099 if (netif_running(ndev)) { 2100 int ret; 2101 2102 ret = m_can_clk_start(cdev); 2103 if (ret) 2104 return ret; 2105 ret = m_can_start(ndev); 2106 if (ret) { 2107 m_can_clk_stop(cdev); 2108 2109 return ret; 2110 } 2111 2112 netif_device_attach(ndev); 2113 netif_start_queue(ndev); 2114 } 2115 2116 return 0; 2117 } 2118 EXPORT_SYMBOL_GPL(m_can_class_resume); 2119 2120 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 2121 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 2122 MODULE_LICENSE("GPL v2"); 2123 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 2124