xref: /linux/drivers/net/can/m_can/m_can.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/can/dev.h>
13 #include <linux/ethtool.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/phy/phy.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 
27 #include "m_can.h"
28 
29 /* registers definition */
30 enum m_can_reg {
31 	M_CAN_CREL	= 0x0,
32 	M_CAN_ENDN	= 0x4,
33 	M_CAN_CUST	= 0x8,
34 	M_CAN_DBTP	= 0xc,
35 	M_CAN_TEST	= 0x10,
36 	M_CAN_RWD	= 0x14,
37 	M_CAN_CCCR	= 0x18,
38 	M_CAN_NBTP	= 0x1c,
39 	M_CAN_TSCC	= 0x20,
40 	M_CAN_TSCV	= 0x24,
41 	M_CAN_TOCC	= 0x28,
42 	M_CAN_TOCV	= 0x2c,
43 	M_CAN_ECR	= 0x40,
44 	M_CAN_PSR	= 0x44,
45 	/* TDCR Register only available for version >=3.1.x */
46 	M_CAN_TDCR	= 0x48,
47 	M_CAN_IR	= 0x50,
48 	M_CAN_IE	= 0x54,
49 	M_CAN_ILS	= 0x58,
50 	M_CAN_ILE	= 0x5c,
51 	M_CAN_GFC	= 0x80,
52 	M_CAN_SIDFC	= 0x84,
53 	M_CAN_XIDFC	= 0x88,
54 	M_CAN_XIDAM	= 0x90,
55 	M_CAN_HPMS	= 0x94,
56 	M_CAN_NDAT1	= 0x98,
57 	M_CAN_NDAT2	= 0x9c,
58 	M_CAN_RXF0C	= 0xa0,
59 	M_CAN_RXF0S	= 0xa4,
60 	M_CAN_RXF0A	= 0xa8,
61 	M_CAN_RXBC	= 0xac,
62 	M_CAN_RXF1C	= 0xb0,
63 	M_CAN_RXF1S	= 0xb4,
64 	M_CAN_RXF1A	= 0xb8,
65 	M_CAN_RXESC	= 0xbc,
66 	M_CAN_TXBC	= 0xc0,
67 	M_CAN_TXFQS	= 0xc4,
68 	M_CAN_TXESC	= 0xc8,
69 	M_CAN_TXBRP	= 0xcc,
70 	M_CAN_TXBAR	= 0xd0,
71 	M_CAN_TXBCR	= 0xd4,
72 	M_CAN_TXBTO	= 0xd8,
73 	M_CAN_TXBCF	= 0xdc,
74 	M_CAN_TXBTIE	= 0xe0,
75 	M_CAN_TXBCIE	= 0xe4,
76 	M_CAN_TXEFC	= 0xf0,
77 	M_CAN_TXEFS	= 0xf4,
78 	M_CAN_TXEFA	= 0xf8,
79 };
80 
81 /* message ram configuration data length */
82 #define MRAM_CFG_LEN	8
83 
84 /* Core Release Register (CREL) */
85 #define CREL_REL_MASK		GENMASK(31, 28)
86 #define CREL_STEP_MASK		GENMASK(27, 24)
87 #define CREL_SUBSTEP_MASK	GENMASK(23, 20)
88 
89 /* Data Bit Timing & Prescaler Register (DBTP) */
90 #define DBTP_TDC		BIT(23)
91 #define DBTP_DBRP_MASK		GENMASK(20, 16)
92 #define DBTP_DTSEG1_MASK	GENMASK(12, 8)
93 #define DBTP_DTSEG2_MASK	GENMASK(7, 4)
94 #define DBTP_DSJW_MASK		GENMASK(3, 0)
95 
96 /* Transmitter Delay Compensation Register (TDCR) */
97 #define TDCR_TDCO_MASK		GENMASK(14, 8)
98 #define TDCR_TDCF_MASK		GENMASK(6, 0)
99 
100 /* Test Register (TEST) */
101 #define TEST_LBCK		BIT(4)
102 
103 /* CC Control Register (CCCR) */
104 #define CCCR_TXP		BIT(14)
105 #define CCCR_TEST		BIT(7)
106 #define CCCR_DAR		BIT(6)
107 #define CCCR_MON		BIT(5)
108 #define CCCR_CSR		BIT(4)
109 #define CCCR_CSA		BIT(3)
110 #define CCCR_ASM		BIT(2)
111 #define CCCR_CCE		BIT(1)
112 #define CCCR_INIT		BIT(0)
113 /* for version 3.0.x */
114 #define CCCR_CMR_MASK		GENMASK(11, 10)
115 #define CCCR_CMR_CANFD		0x1
116 #define CCCR_CMR_CANFD_BRS	0x2
117 #define CCCR_CMR_CAN		0x3
118 #define CCCR_CME_MASK		GENMASK(9, 8)
119 #define CCCR_CME_CAN		0
120 #define CCCR_CME_CANFD		0x1
121 #define CCCR_CME_CANFD_BRS	0x2
122 /* for version >=3.1.x */
123 #define CCCR_EFBI		BIT(13)
124 #define CCCR_PXHD		BIT(12)
125 #define CCCR_BRSE		BIT(9)
126 #define CCCR_FDOE		BIT(8)
127 /* for version >=3.2.x */
128 #define CCCR_NISO		BIT(15)
129 /* for version >=3.3.x */
130 #define CCCR_WMM		BIT(11)
131 #define CCCR_UTSU		BIT(10)
132 
133 /* Nominal Bit Timing & Prescaler Register (NBTP) */
134 #define NBTP_NSJW_MASK		GENMASK(31, 25)
135 #define NBTP_NBRP_MASK		GENMASK(24, 16)
136 #define NBTP_NTSEG1_MASK	GENMASK(15, 8)
137 #define NBTP_NTSEG2_MASK	GENMASK(6, 0)
138 
139 /* Timestamp Counter Configuration Register (TSCC) */
140 #define TSCC_TCP_MASK		GENMASK(19, 16)
141 #define TSCC_TSS_MASK		GENMASK(1, 0)
142 #define TSCC_TSS_DISABLE	0x0
143 #define TSCC_TSS_INTERNAL	0x1
144 #define TSCC_TSS_EXTERNAL	0x2
145 
146 /* Timestamp Counter Value Register (TSCV) */
147 #define TSCV_TSC_MASK		GENMASK(15, 0)
148 
149 /* Error Counter Register (ECR) */
150 #define ECR_RP			BIT(15)
151 #define ECR_REC_MASK		GENMASK(14, 8)
152 #define ECR_TEC_MASK		GENMASK(7, 0)
153 
154 /* Protocol Status Register (PSR) */
155 #define PSR_BO		BIT(7)
156 #define PSR_EW		BIT(6)
157 #define PSR_EP		BIT(5)
158 #define PSR_LEC_MASK	GENMASK(2, 0)
159 #define PSR_DLEC_MASK	GENMASK(10, 8)
160 
161 /* Interrupt Register (IR) */
162 #define IR_ALL_INT	0xffffffff
163 
164 /* Renamed bits for versions > 3.1.x */
165 #define IR_ARA		BIT(29)
166 #define IR_PED		BIT(28)
167 #define IR_PEA		BIT(27)
168 
169 /* Bits for version 3.0.x */
170 #define IR_STE		BIT(31)
171 #define IR_FOE		BIT(30)
172 #define IR_ACKE		BIT(29)
173 #define IR_BE		BIT(28)
174 #define IR_CRCE		BIT(27)
175 #define IR_WDI		BIT(26)
176 #define IR_BO		BIT(25)
177 #define IR_EW		BIT(24)
178 #define IR_EP		BIT(23)
179 #define IR_ELO		BIT(22)
180 #define IR_BEU		BIT(21)
181 #define IR_BEC		BIT(20)
182 #define IR_DRX		BIT(19)
183 #define IR_TOO		BIT(18)
184 #define IR_MRAF		BIT(17)
185 #define IR_TSW		BIT(16)
186 #define IR_TEFL		BIT(15)
187 #define IR_TEFF		BIT(14)
188 #define IR_TEFW		BIT(13)
189 #define IR_TEFN		BIT(12)
190 #define IR_TFE		BIT(11)
191 #define IR_TCF		BIT(10)
192 #define IR_TC		BIT(9)
193 #define IR_HPM		BIT(8)
194 #define IR_RF1L		BIT(7)
195 #define IR_RF1F		BIT(6)
196 #define IR_RF1W		BIT(5)
197 #define IR_RF1N		BIT(4)
198 #define IR_RF0L		BIT(3)
199 #define IR_RF0F		BIT(2)
200 #define IR_RF0W		BIT(1)
201 #define IR_RF0N		BIT(0)
202 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
203 
204 /* Interrupts for version 3.0.x */
205 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
208 			 IR_RF0L)
209 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
210 
211 /* Interrupts for version >= 3.1.x */
212 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
213 #define IR_ERR_BUS_31X	(IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
215 			 IR_RF0L)
216 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
217 
218 /* Interrupt Line Select (ILS) */
219 #define ILS_ALL_INT0	0x0
220 #define ILS_ALL_INT1	0xFFFFFFFF
221 
222 /* Interrupt Line Enable (ILE) */
223 #define ILE_EINT1	BIT(1)
224 #define ILE_EINT0	BIT(0)
225 
226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227 #define RXFC_FWM_MASK	GENMASK(30, 24)
228 #define RXFC_FS_MASK	GENMASK(22, 16)
229 
230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231 #define RXFS_RFL	BIT(25)
232 #define RXFS_FF		BIT(24)
233 #define RXFS_FPI_MASK	GENMASK(21, 16)
234 #define RXFS_FGI_MASK	GENMASK(13, 8)
235 #define RXFS_FFL_MASK	GENMASK(6, 0)
236 
237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238 #define RXESC_RBDS_MASK		GENMASK(10, 8)
239 #define RXESC_F1DS_MASK		GENMASK(6, 4)
240 #define RXESC_F0DS_MASK		GENMASK(2, 0)
241 #define RXESC_64B		0x7
242 
243 /* Tx Buffer Configuration (TXBC) */
244 #define TXBC_TFQS_MASK		GENMASK(29, 24)
245 #define TXBC_NDTB_MASK		GENMASK(21, 16)
246 
247 /* Tx FIFO/Queue Status (TXFQS) */
248 #define TXFQS_TFQF		BIT(21)
249 #define TXFQS_TFQPI_MASK	GENMASK(20, 16)
250 #define TXFQS_TFGI_MASK		GENMASK(12, 8)
251 #define TXFQS_TFFL_MASK		GENMASK(5, 0)
252 
253 /* Tx Buffer Element Size Configuration (TXESC) */
254 #define TXESC_TBDS_MASK		GENMASK(2, 0)
255 #define TXESC_TBDS_64B		0x7
256 
257 /* Tx Event FIFO Configuration (TXEFC) */
258 #define TXEFC_EFWM_MASK		GENMASK(29, 24)
259 #define TXEFC_EFS_MASK		GENMASK(21, 16)
260 
261 /* Tx Event FIFO Status (TXEFS) */
262 #define TXEFS_TEFL		BIT(25)
263 #define TXEFS_EFF		BIT(24)
264 #define TXEFS_EFGI_MASK		GENMASK(12, 8)
265 #define TXEFS_EFFL_MASK		GENMASK(5, 0)
266 
267 /* Tx Event FIFO Acknowledge (TXEFA) */
268 #define TXEFA_EFAI_MASK		GENMASK(4, 0)
269 
270 /* Message RAM Configuration (in bytes) */
271 #define SIDF_ELEMENT_SIZE	4
272 #define XIDF_ELEMENT_SIZE	8
273 #define RXF0_ELEMENT_SIZE	72
274 #define RXF1_ELEMENT_SIZE	72
275 #define RXB_ELEMENT_SIZE	72
276 #define TXE_ELEMENT_SIZE	8
277 #define TXB_ELEMENT_SIZE	72
278 
279 /* Message RAM Elements */
280 #define M_CAN_FIFO_ID		0x0
281 #define M_CAN_FIFO_DLC		0x4
282 #define M_CAN_FIFO_DATA		0x8
283 
284 /* Rx Buffer Element */
285 /* R0 */
286 #define RX_BUF_ESI		BIT(31)
287 #define RX_BUF_XTD		BIT(30)
288 #define RX_BUF_RTR		BIT(29)
289 /* R1 */
290 #define RX_BUF_ANMF		BIT(31)
291 #define RX_BUF_FDF		BIT(21)
292 #define RX_BUF_BRS		BIT(20)
293 #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
294 
295 /* Tx Buffer Element */
296 /* T0 */
297 #define TX_BUF_ESI		BIT(31)
298 #define TX_BUF_XTD		BIT(30)
299 #define TX_BUF_RTR		BIT(29)
300 /* T1 */
301 #define TX_BUF_EFC		BIT(23)
302 #define TX_BUF_FDF		BIT(21)
303 #define TX_BUF_BRS		BIT(20)
304 #define TX_BUF_MM_MASK		GENMASK(31, 24)
305 #define TX_BUF_DLC_MASK		GENMASK(19, 16)
306 
307 /* Tx event FIFO Element */
308 /* E1 */
309 #define TX_EVENT_MM_MASK	GENMASK(31, 24)
310 #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
311 
312 /* Hrtimer polling interval */
313 #define HRTIMER_POLL_INTERVAL_MS		1
314 
315 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
316  * and we can save a (potentially slow) bus round trip by combining
317  * reads and writes to them.
318  */
319 struct id_and_dlc {
320 	u32 id;
321 	u32 dlc;
322 };
323 
324 struct m_can_fifo_element {
325 	u32 id;
326 	u32 dlc;
327 	u8 data[CANFD_MAX_DLEN];
328 };
329 
330 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
331 {
332 	return cdev->ops->read_reg(cdev, reg);
333 }
334 
335 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
336 			       u32 val)
337 {
338 	cdev->ops->write_reg(cdev, reg, val);
339 }
340 
341 static int
342 m_can_fifo_read(struct m_can_classdev *cdev,
343 		u32 fgi, unsigned int offset, void *val, size_t val_count)
344 {
345 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
346 		offset;
347 
348 	if (val_count == 0)
349 		return 0;
350 
351 	return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
352 }
353 
354 static int
355 m_can_fifo_write(struct m_can_classdev *cdev,
356 		 u32 fpi, unsigned int offset, const void *val, size_t val_count)
357 {
358 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
359 		offset;
360 
361 	if (val_count == 0)
362 		return 0;
363 
364 	return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
365 }
366 
367 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
368 					  u32 fpi, u32 val)
369 {
370 	return cdev->ops->write_fifo(cdev, fpi, &val, 1);
371 }
372 
373 static int
374 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
375 {
376 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
377 		offset;
378 
379 	return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
380 }
381 
382 static int m_can_cccr_update_bits(struct m_can_classdev *cdev, u32 mask, u32 val)
383 {
384 	u32 val_before = m_can_read(cdev, M_CAN_CCCR);
385 	u32 val_after = (val_before & ~mask) | val;
386 	size_t tries = 10;
387 
388 	if (!(mask & CCCR_INIT) && !(val_before & CCCR_INIT)) {
389 		dev_err(cdev->dev,
390 			"refusing to configure device when in normal mode\n");
391 		return -EBUSY;
392 	}
393 
394 	/* The chip should be in standby mode when changing the CCCR register,
395 	 * and some chips set the CSR and CSA bits when in standby. Furthermore,
396 	 * the CSR and CSA bits should be written as zeros, even when they read
397 	 * ones.
398 	 */
399 	val_after &= ~(CCCR_CSR | CCCR_CSA);
400 
401 	while (tries--) {
402 		u32 val_read;
403 
404 		/* Write the desired value in each try, as setting some bits in
405 		 * the CCCR register require other bits to be set first. E.g.
406 		 * setting the NISO bit requires setting the CCE bit first.
407 		 */
408 		m_can_write(cdev, M_CAN_CCCR, val_after);
409 
410 		val_read = m_can_read(cdev, M_CAN_CCCR) & ~(CCCR_CSR | CCCR_CSA);
411 
412 		if (val_read == val_after)
413 			return 0;
414 
415 		usleep_range(1, 5);
416 	}
417 
418 	return -ETIMEDOUT;
419 }
420 
421 static int m_can_config_enable(struct m_can_classdev *cdev)
422 {
423 	int err;
424 
425 	/* CCCR_INIT must be set in order to set CCCR_CCE, but access to
426 	 * configuration registers should only be enabled when in standby mode,
427 	 * where CCCR_INIT is always set.
428 	 */
429 	err = m_can_cccr_update_bits(cdev, CCCR_CCE, CCCR_CCE);
430 	if (err)
431 		netdev_err(cdev->net, "failed to enable configuration mode\n");
432 
433 	return err;
434 }
435 
436 static int m_can_config_disable(struct m_can_classdev *cdev)
437 {
438 	int err;
439 
440 	/* Only clear CCCR_CCE, since CCCR_INIT cannot be cleared while in
441 	 * standby mode
442 	 */
443 	err = m_can_cccr_update_bits(cdev, CCCR_CCE, 0);
444 	if (err)
445 		netdev_err(cdev->net, "failed to disable configuration registers\n");
446 
447 	return err;
448 }
449 
450 static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts)
451 {
452 	if (cdev->active_interrupts == interrupts)
453 		return;
454 	cdev->ops->write_reg(cdev, M_CAN_IE, interrupts);
455 	cdev->active_interrupts = interrupts;
456 }
457 
458 static void m_can_coalescing_disable(struct m_can_classdev *cdev)
459 {
460 	u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN;
461 
462 	if (!cdev->net->irq)
463 		return;
464 
465 	hrtimer_cancel(&cdev->hrtimer);
466 	m_can_interrupt_enable(cdev, new_interrupts);
467 }
468 
469 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
470 {
471 	if (!cdev->net->irq) {
472 		dev_dbg(cdev->dev, "Start hrtimer\n");
473 		hrtimer_start(&cdev->hrtimer,
474 			      ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
475 			      HRTIMER_MODE_REL_PINNED);
476 	}
477 
478 	/* Only interrupt line 0 is used in this driver */
479 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
480 }
481 
482 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
483 {
484 	m_can_coalescing_disable(cdev);
485 	m_can_write(cdev, M_CAN_ILE, 0x0);
486 
487 	if (!cdev->net->irq) {
488 		dev_dbg(cdev->dev, "Stop hrtimer\n");
489 		hrtimer_try_to_cancel(&cdev->hrtimer);
490 	}
491 }
492 
493 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
494  * width.
495  */
496 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
497 {
498 	u32 tscv;
499 	u32 tsc;
500 
501 	tscv = m_can_read(cdev, M_CAN_TSCV);
502 	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
503 
504 	return (tsc << 16);
505 }
506 
507 static void m_can_clean(struct net_device *net)
508 {
509 	struct m_can_classdev *cdev = netdev_priv(net);
510 	unsigned long irqflags;
511 
512 	if (cdev->tx_ops) {
513 		for (int i = 0; i != cdev->tx_fifo_size; ++i) {
514 			if (!cdev->tx_ops[i].skb)
515 				continue;
516 
517 			net->stats.tx_errors++;
518 			cdev->tx_ops[i].skb = NULL;
519 		}
520 	}
521 
522 	for (int i = 0; i != cdev->can.echo_skb_max; ++i)
523 		can_free_echo_skb(cdev->net, i, NULL);
524 
525 	netdev_reset_queue(cdev->net);
526 
527 	spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
528 	cdev->tx_fifo_in_flight = 0;
529 	spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
530 }
531 
532 /* For peripherals, pass skb to rx-offload, which will push skb from
533  * napi. For non-peripherals, RX is done in napi already, so push
534  * directly. timestamp is used to ensure good skb ordering in
535  * rx-offload and is ignored for non-peripherals.
536  */
537 static void m_can_receive_skb(struct m_can_classdev *cdev,
538 			      struct sk_buff *skb,
539 			      u32 timestamp)
540 {
541 	if (cdev->is_peripheral) {
542 		struct net_device_stats *stats = &cdev->net->stats;
543 		int err;
544 
545 		err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
546 						     timestamp);
547 		if (err)
548 			stats->rx_fifo_errors++;
549 	} else {
550 		netif_receive_skb(skb);
551 	}
552 }
553 
554 static int m_can_read_fifo(struct net_device *dev, u32 fgi)
555 {
556 	struct net_device_stats *stats = &dev->stats;
557 	struct m_can_classdev *cdev = netdev_priv(dev);
558 	struct canfd_frame *cf;
559 	struct sk_buff *skb;
560 	struct id_and_dlc fifo_header;
561 	u32 timestamp = 0;
562 	int err;
563 
564 	err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
565 	if (err)
566 		goto out_fail;
567 
568 	if (fifo_header.dlc & RX_BUF_FDF)
569 		skb = alloc_canfd_skb(dev, &cf);
570 	else
571 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
572 	if (!skb) {
573 		stats->rx_dropped++;
574 		return 0;
575 	}
576 
577 	if (fifo_header.dlc & RX_BUF_FDF)
578 		cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
579 	else
580 		cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
581 
582 	if (fifo_header.id & RX_BUF_XTD)
583 		cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
584 	else
585 		cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
586 
587 	if (fifo_header.id & RX_BUF_ESI) {
588 		cf->flags |= CANFD_ESI;
589 		netdev_dbg(dev, "ESI Error\n");
590 	}
591 
592 	if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
593 		cf->can_id |= CAN_RTR_FLAG;
594 	} else {
595 		if (fifo_header.dlc & RX_BUF_BRS)
596 			cf->flags |= CANFD_BRS;
597 
598 		err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
599 				      cf->data, DIV_ROUND_UP(cf->len, 4));
600 		if (err)
601 			goto out_free_skb;
602 
603 		stats->rx_bytes += cf->len;
604 	}
605 	stats->rx_packets++;
606 
607 	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
608 
609 	m_can_receive_skb(cdev, skb, timestamp);
610 
611 	return 0;
612 
613 out_free_skb:
614 	kfree_skb(skb);
615 out_fail:
616 	netdev_err(dev, "FIFO read returned %d\n", err);
617 	return err;
618 }
619 
620 static int m_can_do_rx_poll(struct net_device *dev, int quota)
621 {
622 	struct m_can_classdev *cdev = netdev_priv(dev);
623 	u32 pkts = 0;
624 	u32 rxfs;
625 	u32 rx_count;
626 	u32 fgi;
627 	int ack_fgi = -1;
628 	int i;
629 	int err = 0;
630 
631 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
632 	if (!(rxfs & RXFS_FFL_MASK)) {
633 		netdev_dbg(dev, "no messages in fifo0\n");
634 		return 0;
635 	}
636 
637 	rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
638 	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
639 
640 	for (i = 0; i < rx_count && quota > 0; ++i) {
641 		err = m_can_read_fifo(dev, fgi);
642 		if (err)
643 			break;
644 
645 		quota--;
646 		pkts++;
647 		ack_fgi = fgi;
648 		fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
649 	}
650 
651 	if (ack_fgi != -1)
652 		m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
653 
654 	if (err)
655 		return err;
656 
657 	return pkts;
658 }
659 
660 static int m_can_handle_lost_msg(struct net_device *dev)
661 {
662 	struct m_can_classdev *cdev = netdev_priv(dev);
663 	struct net_device_stats *stats = &dev->stats;
664 	struct sk_buff *skb;
665 	struct can_frame *frame;
666 	u32 timestamp = 0;
667 
668 	netdev_err(dev, "msg lost in rxf0\n");
669 
670 	stats->rx_errors++;
671 	stats->rx_over_errors++;
672 
673 	skb = alloc_can_err_skb(dev, &frame);
674 	if (unlikely(!skb))
675 		return 0;
676 
677 	frame->can_id |= CAN_ERR_CRTL;
678 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
679 
680 	if (cdev->is_peripheral)
681 		timestamp = m_can_get_timestamp(cdev);
682 
683 	m_can_receive_skb(cdev, skb, timestamp);
684 
685 	return 1;
686 }
687 
688 static int m_can_handle_lec_err(struct net_device *dev,
689 				enum m_can_lec_type lec_type)
690 {
691 	struct m_can_classdev *cdev = netdev_priv(dev);
692 	struct net_device_stats *stats = &dev->stats;
693 	struct can_frame *cf;
694 	struct sk_buff *skb;
695 	u32 timestamp = 0;
696 
697 	cdev->can.can_stats.bus_error++;
698 
699 	/* propagate the error condition to the CAN stack */
700 	skb = alloc_can_err_skb(dev, &cf);
701 
702 	/* check for 'last error code' which tells us the
703 	 * type of the last error to occur on the CAN bus
704 	 */
705 	if (likely(skb))
706 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
707 
708 	switch (lec_type) {
709 	case LEC_STUFF_ERROR:
710 		netdev_dbg(dev, "stuff error\n");
711 		stats->rx_errors++;
712 		if (likely(skb))
713 			cf->data[2] |= CAN_ERR_PROT_STUFF;
714 		break;
715 	case LEC_FORM_ERROR:
716 		netdev_dbg(dev, "form error\n");
717 		stats->rx_errors++;
718 		if (likely(skb))
719 			cf->data[2] |= CAN_ERR_PROT_FORM;
720 		break;
721 	case LEC_ACK_ERROR:
722 		netdev_dbg(dev, "ack error\n");
723 		stats->tx_errors++;
724 		if (likely(skb))
725 			cf->data[3] = CAN_ERR_PROT_LOC_ACK;
726 		break;
727 	case LEC_BIT1_ERROR:
728 		netdev_dbg(dev, "bit1 error\n");
729 		stats->tx_errors++;
730 		if (likely(skb))
731 			cf->data[2] |= CAN_ERR_PROT_BIT1;
732 		break;
733 	case LEC_BIT0_ERROR:
734 		netdev_dbg(dev, "bit0 error\n");
735 		stats->tx_errors++;
736 		if (likely(skb))
737 			cf->data[2] |= CAN_ERR_PROT_BIT0;
738 		break;
739 	case LEC_CRC_ERROR:
740 		netdev_dbg(dev, "CRC error\n");
741 		stats->rx_errors++;
742 		if (likely(skb))
743 			cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
744 		break;
745 	default:
746 		break;
747 	}
748 
749 	if (unlikely(!skb))
750 		return 0;
751 
752 	if (cdev->is_peripheral)
753 		timestamp = m_can_get_timestamp(cdev);
754 
755 	m_can_receive_skb(cdev, skb, timestamp);
756 
757 	return 1;
758 }
759 
760 static int __m_can_get_berr_counter(const struct net_device *dev,
761 				    struct can_berr_counter *bec)
762 {
763 	struct m_can_classdev *cdev = netdev_priv(dev);
764 	unsigned int ecr;
765 
766 	ecr = m_can_read(cdev, M_CAN_ECR);
767 	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
768 	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
769 
770 	return 0;
771 }
772 
773 static int m_can_clk_start(struct m_can_classdev *cdev)
774 {
775 	if (cdev->pm_clock_support == 0)
776 		return 0;
777 
778 	return pm_runtime_resume_and_get(cdev->dev);
779 }
780 
781 static void m_can_clk_stop(struct m_can_classdev *cdev)
782 {
783 	if (cdev->pm_clock_support)
784 		pm_runtime_put_sync(cdev->dev);
785 }
786 
787 static int m_can_get_berr_counter(const struct net_device *dev,
788 				  struct can_berr_counter *bec)
789 {
790 	struct m_can_classdev *cdev = netdev_priv(dev);
791 	int err;
792 
793 	err = m_can_clk_start(cdev);
794 	if (err)
795 		return err;
796 
797 	__m_can_get_berr_counter(dev, bec);
798 
799 	m_can_clk_stop(cdev);
800 
801 	return 0;
802 }
803 
804 static int m_can_handle_state_change(struct net_device *dev,
805 				     enum can_state new_state)
806 {
807 	struct m_can_classdev *cdev = netdev_priv(dev);
808 	struct can_frame *cf;
809 	struct sk_buff *skb;
810 	struct can_berr_counter bec;
811 	unsigned int ecr;
812 	u32 timestamp = 0;
813 
814 	switch (new_state) {
815 	case CAN_STATE_ERROR_WARNING:
816 		/* error warning state */
817 		cdev->can.can_stats.error_warning++;
818 		cdev->can.state = CAN_STATE_ERROR_WARNING;
819 		break;
820 	case CAN_STATE_ERROR_PASSIVE:
821 		/* error passive state */
822 		cdev->can.can_stats.error_passive++;
823 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
824 		break;
825 	case CAN_STATE_BUS_OFF:
826 		/* bus-off state */
827 		cdev->can.state = CAN_STATE_BUS_OFF;
828 		m_can_disable_all_interrupts(cdev);
829 		cdev->can.can_stats.bus_off++;
830 		can_bus_off(dev);
831 		break;
832 	default:
833 		break;
834 	}
835 
836 	/* propagate the error condition to the CAN stack */
837 	skb = alloc_can_err_skb(dev, &cf);
838 	if (unlikely(!skb))
839 		return 0;
840 
841 	__m_can_get_berr_counter(dev, &bec);
842 
843 	switch (new_state) {
844 	case CAN_STATE_ERROR_WARNING:
845 		/* error warning state */
846 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
847 		cf->data[1] = (bec.txerr > bec.rxerr) ?
848 			CAN_ERR_CRTL_TX_WARNING :
849 			CAN_ERR_CRTL_RX_WARNING;
850 		cf->data[6] = bec.txerr;
851 		cf->data[7] = bec.rxerr;
852 		break;
853 	case CAN_STATE_ERROR_PASSIVE:
854 		/* error passive state */
855 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
856 		ecr = m_can_read(cdev, M_CAN_ECR);
857 		if (ecr & ECR_RP)
858 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
859 		if (bec.txerr > 127)
860 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
861 		cf->data[6] = bec.txerr;
862 		cf->data[7] = bec.rxerr;
863 		break;
864 	case CAN_STATE_BUS_OFF:
865 		/* bus-off state */
866 		cf->can_id |= CAN_ERR_BUSOFF;
867 		break;
868 	default:
869 		break;
870 	}
871 
872 	if (cdev->is_peripheral)
873 		timestamp = m_can_get_timestamp(cdev);
874 
875 	m_can_receive_skb(cdev, skb, timestamp);
876 
877 	return 1;
878 }
879 
880 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
881 {
882 	struct m_can_classdev *cdev = netdev_priv(dev);
883 	int work_done = 0;
884 
885 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
886 		netdev_dbg(dev, "entered error warning state\n");
887 		work_done += m_can_handle_state_change(dev,
888 						       CAN_STATE_ERROR_WARNING);
889 	}
890 
891 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
892 		netdev_dbg(dev, "entered error passive state\n");
893 		work_done += m_can_handle_state_change(dev,
894 						       CAN_STATE_ERROR_PASSIVE);
895 	}
896 
897 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
898 		netdev_dbg(dev, "entered error bus off state\n");
899 		work_done += m_can_handle_state_change(dev,
900 						       CAN_STATE_BUS_OFF);
901 	}
902 
903 	return work_done;
904 }
905 
906 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
907 {
908 	if (irqstatus & IR_WDI)
909 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
910 	if (irqstatus & IR_BEU)
911 		netdev_err(dev, "Bit Error Uncorrected\n");
912 	if (irqstatus & IR_BEC)
913 		netdev_err(dev, "Bit Error Corrected\n");
914 	if (irqstatus & IR_TOO)
915 		netdev_err(dev, "Timeout reached\n");
916 	if (irqstatus & IR_MRAF)
917 		netdev_err(dev, "Message RAM access failure occurred\n");
918 }
919 
920 static inline bool is_lec_err(u8 lec)
921 {
922 	return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
923 }
924 
925 static inline bool m_can_is_protocol_err(u32 irqstatus)
926 {
927 	return irqstatus & IR_ERR_LEC_31X;
928 }
929 
930 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
931 {
932 	struct net_device_stats *stats = &dev->stats;
933 	struct m_can_classdev *cdev = netdev_priv(dev);
934 	struct can_frame *cf;
935 	struct sk_buff *skb;
936 	u32 timestamp = 0;
937 
938 	/* propagate the error condition to the CAN stack */
939 	skb = alloc_can_err_skb(dev, &cf);
940 
941 	/* update tx error stats since there is protocol error */
942 	stats->tx_errors++;
943 
944 	/* update arbitration lost status */
945 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
946 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
947 		cdev->can.can_stats.arbitration_lost++;
948 		if (skb) {
949 			cf->can_id |= CAN_ERR_LOSTARB;
950 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
951 		}
952 	}
953 
954 	if (unlikely(!skb)) {
955 		netdev_dbg(dev, "allocation of skb failed\n");
956 		return 0;
957 	}
958 
959 	if (cdev->is_peripheral)
960 		timestamp = m_can_get_timestamp(cdev);
961 
962 	m_can_receive_skb(cdev, skb, timestamp);
963 
964 	return 1;
965 }
966 
967 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
968 				   u32 psr)
969 {
970 	struct m_can_classdev *cdev = netdev_priv(dev);
971 	int work_done = 0;
972 
973 	if (irqstatus & IR_RF0L)
974 		work_done += m_can_handle_lost_msg(dev);
975 
976 	/* handle lec errors on the bus */
977 	if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
978 		u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
979 		u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
980 
981 		if (is_lec_err(lec)) {
982 			netdev_dbg(dev, "Arbitration phase error detected\n");
983 			work_done += m_can_handle_lec_err(dev, lec);
984 		}
985 
986 		if (is_lec_err(dlec)) {
987 			netdev_dbg(dev, "Data phase error detected\n");
988 			work_done += m_can_handle_lec_err(dev, dlec);
989 		}
990 	}
991 
992 	/* handle protocol errors in arbitration phase */
993 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
994 	    m_can_is_protocol_err(irqstatus))
995 		work_done += m_can_handle_protocol_error(dev, irqstatus);
996 
997 	/* other unproccessed error interrupts */
998 	m_can_handle_other_err(dev, irqstatus);
999 
1000 	return work_done;
1001 }
1002 
1003 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
1004 {
1005 	struct m_can_classdev *cdev = netdev_priv(dev);
1006 	int rx_work_or_err;
1007 	int work_done = 0;
1008 
1009 	if (!irqstatus)
1010 		goto end;
1011 
1012 	/* Errata workaround for issue "Needless activation of MRAF irq"
1013 	 * During frame reception while the MCAN is in Error Passive state
1014 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
1015 	 * it may happen that MCAN_IR.MRAF is set although there was no
1016 	 * Message RAM access failure.
1017 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
1018 	 * The Message RAM Access Failure interrupt routine needs to check
1019 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
1020 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
1021 	 */
1022 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
1023 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
1024 		struct can_berr_counter bec;
1025 
1026 		__m_can_get_berr_counter(dev, &bec);
1027 		if (bec.rxerr == 127) {
1028 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
1029 			irqstatus &= ~IR_MRAF;
1030 		}
1031 	}
1032 
1033 	if (irqstatus & IR_ERR_STATE)
1034 		work_done += m_can_handle_state_errors(dev,
1035 						       m_can_read(cdev, M_CAN_PSR));
1036 
1037 	if (irqstatus & IR_ERR_BUS_30X)
1038 		work_done += m_can_handle_bus_errors(dev, irqstatus,
1039 						     m_can_read(cdev, M_CAN_PSR));
1040 
1041 	if (irqstatus & IR_RF0N) {
1042 		rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
1043 		if (rx_work_or_err < 0)
1044 			return rx_work_or_err;
1045 
1046 		work_done += rx_work_or_err;
1047 	}
1048 end:
1049 	return work_done;
1050 }
1051 
1052 static int m_can_poll(struct napi_struct *napi, int quota)
1053 {
1054 	struct net_device *dev = napi->dev;
1055 	struct m_can_classdev *cdev = netdev_priv(dev);
1056 	int work_done;
1057 	u32 irqstatus;
1058 
1059 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
1060 
1061 	work_done = m_can_rx_handler(dev, quota, irqstatus);
1062 
1063 	/* Don't re-enable interrupts if the driver had a fatal error
1064 	 * (e.g., FIFO read failure).
1065 	 */
1066 	if (work_done >= 0 && work_done < quota) {
1067 		napi_complete_done(napi, work_done);
1068 		m_can_enable_all_interrupts(cdev);
1069 	}
1070 
1071 	return work_done;
1072 }
1073 
1074 /* Echo tx skb and update net stats. Peripherals use rx-offload for
1075  * echo. timestamp is used for peripherals to ensure correct ordering
1076  * by rx-offload, and is ignored for non-peripherals.
1077  */
1078 static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev,
1079 					  unsigned int msg_mark, u32 timestamp)
1080 {
1081 	struct net_device *dev = cdev->net;
1082 	struct net_device_stats *stats = &dev->stats;
1083 	unsigned int frame_len;
1084 
1085 	if (cdev->is_peripheral)
1086 		stats->tx_bytes +=
1087 			can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
1088 								    msg_mark,
1089 								    timestamp,
1090 								    &frame_len);
1091 	else
1092 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, &frame_len);
1093 
1094 	stats->tx_packets++;
1095 
1096 	return frame_len;
1097 }
1098 
1099 static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted,
1100 			    unsigned int transmitted_frame_len)
1101 {
1102 	unsigned long irqflags;
1103 
1104 	netdev_completed_queue(cdev->net, transmitted, transmitted_frame_len);
1105 
1106 	spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1107 	if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0)
1108 		netif_wake_queue(cdev->net);
1109 	cdev->tx_fifo_in_flight -= transmitted;
1110 	spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1111 }
1112 
1113 static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev)
1114 {
1115 	unsigned long irqflags;
1116 	int tx_fifo_in_flight;
1117 
1118 	spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1119 	tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1;
1120 	if (tx_fifo_in_flight >= cdev->tx_fifo_size) {
1121 		netif_stop_queue(cdev->net);
1122 		if (tx_fifo_in_flight > cdev->tx_fifo_size) {
1123 			netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n");
1124 			spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1125 			return NETDEV_TX_BUSY;
1126 		}
1127 	}
1128 	cdev->tx_fifo_in_flight = tx_fifo_in_flight;
1129 	spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1130 
1131 	return NETDEV_TX_OK;
1132 }
1133 
1134 static int m_can_echo_tx_event(struct net_device *dev)
1135 {
1136 	u32 txe_count = 0;
1137 	u32 m_can_txefs;
1138 	u32 fgi = 0;
1139 	int ack_fgi = -1;
1140 	int i = 0;
1141 	int err = 0;
1142 	unsigned int msg_mark;
1143 	int processed = 0;
1144 	unsigned int processed_frame_len = 0;
1145 
1146 	struct m_can_classdev *cdev = netdev_priv(dev);
1147 
1148 	/* read tx event fifo status */
1149 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1150 
1151 	/* Get Tx Event fifo element count */
1152 	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1153 	fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1154 
1155 	/* Get and process all sent elements */
1156 	for (i = 0; i < txe_count; i++) {
1157 		u32 txe, timestamp = 0;
1158 
1159 		/* get message marker, timestamp */
1160 		err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1161 		if (err) {
1162 			netdev_err(dev, "TXE FIFO read returned %d\n", err);
1163 			break;
1164 		}
1165 
1166 		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1167 		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1168 
1169 		ack_fgi = fgi;
1170 		fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1171 
1172 		/* update stats */
1173 		processed_frame_len += m_can_tx_update_stats(cdev, msg_mark,
1174 							     timestamp);
1175 
1176 		++processed;
1177 	}
1178 
1179 	if (ack_fgi != -1)
1180 		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1181 							  ack_fgi));
1182 
1183 	m_can_finish_tx(cdev, processed, processed_frame_len);
1184 
1185 	return err;
1186 }
1187 
1188 static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir)
1189 {
1190 	u32 new_interrupts = cdev->active_interrupts;
1191 	bool enable_rx_timer = false;
1192 	bool enable_tx_timer = false;
1193 
1194 	if (!cdev->net->irq)
1195 		return;
1196 
1197 	if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) {
1198 		enable_rx_timer = true;
1199 		new_interrupts &= ~IR_RF0N;
1200 	}
1201 	if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) {
1202 		enable_tx_timer = true;
1203 		new_interrupts &= ~IR_TEFN;
1204 	}
1205 	if (!enable_rx_timer && !hrtimer_active(&cdev->hrtimer))
1206 		new_interrupts |= IR_RF0N;
1207 	if (!enable_tx_timer && !hrtimer_active(&cdev->hrtimer))
1208 		new_interrupts |= IR_TEFN;
1209 
1210 	m_can_interrupt_enable(cdev, new_interrupts);
1211 	if (enable_rx_timer | enable_tx_timer)
1212 		hrtimer_start(&cdev->hrtimer, cdev->irq_timer_wait,
1213 			      HRTIMER_MODE_REL);
1214 }
1215 
1216 /* This interrupt handler is called either from the interrupt thread or a
1217  * hrtimer. This has implications like cancelling a timer won't be possible
1218  * blocking.
1219  */
1220 static int m_can_interrupt_handler(struct m_can_classdev *cdev)
1221 {
1222 	struct net_device *dev = cdev->net;
1223 	u32 ir = 0, ir_read;
1224 	int ret;
1225 
1226 	if (pm_runtime_suspended(cdev->dev))
1227 		return IRQ_NONE;
1228 
1229 	/* The m_can controller signals its interrupt status as a level, but
1230 	 * depending in the integration the CPU may interpret the signal as
1231 	 * edge-triggered (for example with m_can_pci). For these
1232 	 * edge-triggered integrations, we must observe that IR is 0 at least
1233 	 * once to be sure that the next interrupt will generate an edge.
1234 	 */
1235 	while ((ir_read = m_can_read(cdev, M_CAN_IR)) != 0) {
1236 		ir |= ir_read;
1237 
1238 		/* ACK all irqs */
1239 		m_can_write(cdev, M_CAN_IR, ir);
1240 
1241 		if (!cdev->irq_edge_triggered)
1242 			break;
1243 	}
1244 
1245 	m_can_coalescing_update(cdev, ir);
1246 	if (!ir)
1247 		return IRQ_NONE;
1248 
1249 	if (cdev->ops->clear_interrupts)
1250 		cdev->ops->clear_interrupts(cdev);
1251 
1252 	/* schedule NAPI in case of
1253 	 * - rx IRQ
1254 	 * - state change IRQ
1255 	 * - bus error IRQ and bus error reporting
1256 	 */
1257 	if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) {
1258 		cdev->irqstatus = ir;
1259 		if (!cdev->is_peripheral) {
1260 			m_can_disable_all_interrupts(cdev);
1261 			napi_schedule(&cdev->napi);
1262 		} else {
1263 			ret = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, ir);
1264 			if (ret < 0)
1265 				return ret;
1266 		}
1267 	}
1268 
1269 	if (cdev->version == 30) {
1270 		if (ir & IR_TC) {
1271 			/* Transmission Complete Interrupt*/
1272 			u32 timestamp = 0;
1273 			unsigned int frame_len;
1274 
1275 			if (cdev->is_peripheral)
1276 				timestamp = m_can_get_timestamp(cdev);
1277 			frame_len = m_can_tx_update_stats(cdev, 0, timestamp);
1278 			m_can_finish_tx(cdev, 1, frame_len);
1279 		}
1280 	} else  {
1281 		if (ir & (IR_TEFN | IR_TEFW)) {
1282 			/* New TX FIFO Element arrived */
1283 			ret = m_can_echo_tx_event(dev);
1284 			if (ret != 0)
1285 				return ret;
1286 		}
1287 	}
1288 
1289 	if (cdev->is_peripheral)
1290 		can_rx_offload_threaded_irq_finish(&cdev->offload);
1291 
1292 	return IRQ_HANDLED;
1293 }
1294 
1295 static irqreturn_t m_can_isr(int irq, void *dev_id)
1296 {
1297 	struct net_device *dev = (struct net_device *)dev_id;
1298 	struct m_can_classdev *cdev = netdev_priv(dev);
1299 	int ret;
1300 
1301 	ret =  m_can_interrupt_handler(cdev);
1302 	if (ret < 0) {
1303 		m_can_disable_all_interrupts(cdev);
1304 		return IRQ_HANDLED;
1305 	}
1306 
1307 	return ret;
1308 }
1309 
1310 static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer)
1311 {
1312 	struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer);
1313 
1314 	if (cdev->can.state == CAN_STATE_BUS_OFF ||
1315 	    cdev->can.state == CAN_STATE_STOPPED)
1316 		return HRTIMER_NORESTART;
1317 
1318 	irq_wake_thread(cdev->net->irq, cdev->net);
1319 
1320 	return HRTIMER_NORESTART;
1321 }
1322 
1323 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1324 	.name = KBUILD_MODNAME,
1325 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1326 	.tseg1_max = 64,
1327 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1328 	.tseg2_max = 16,
1329 	.sjw_max = 16,
1330 	.brp_min = 1,
1331 	.brp_max = 1024,
1332 	.brp_inc = 1,
1333 };
1334 
1335 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1336 	.name = KBUILD_MODNAME,
1337 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1338 	.tseg1_max = 16,
1339 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1340 	.tseg2_max = 8,
1341 	.sjw_max = 4,
1342 	.brp_min = 1,
1343 	.brp_max = 32,
1344 	.brp_inc = 1,
1345 };
1346 
1347 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1348 	.name = KBUILD_MODNAME,
1349 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1350 	.tseg1_max = 256,
1351 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1352 	.tseg2_max = 128,
1353 	.sjw_max = 128,
1354 	.brp_min = 1,
1355 	.brp_max = 512,
1356 	.brp_inc = 1,
1357 };
1358 
1359 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1360 	.name = KBUILD_MODNAME,
1361 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1362 	.tseg1_max = 32,
1363 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1364 	.tseg2_max = 16,
1365 	.sjw_max = 16,
1366 	.brp_min = 1,
1367 	.brp_max = 32,
1368 	.brp_inc = 1,
1369 };
1370 
1371 static int m_can_set_bittiming(struct net_device *dev)
1372 {
1373 	struct m_can_classdev *cdev = netdev_priv(dev);
1374 	const struct can_bittiming *bt = &cdev->can.bittiming;
1375 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1376 	u16 brp, sjw, tseg1, tseg2;
1377 	u32 reg_btp;
1378 
1379 	brp = bt->brp - 1;
1380 	sjw = bt->sjw - 1;
1381 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1382 	tseg2 = bt->phase_seg2 - 1;
1383 	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1384 		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1385 		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1386 		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1387 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1388 
1389 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1390 		reg_btp = 0;
1391 		brp = dbt->brp - 1;
1392 		sjw = dbt->sjw - 1;
1393 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1394 		tseg2 = dbt->phase_seg2 - 1;
1395 
1396 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1397 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1398 		 * paper presented at the International CAN Conference 2013
1399 		 */
1400 		if (dbt->bitrate > 2500000) {
1401 			u32 tdco, ssp;
1402 
1403 			/* Use the same value of secondary sampling point
1404 			 * as the data sampling point
1405 			 */
1406 			ssp = dbt->sample_point;
1407 
1408 			/* Equation based on Bosch's M_CAN User Manual's
1409 			 * Transmitter Delay Compensation Section
1410 			 */
1411 			tdco = (cdev->can.clock.freq / 1000) *
1412 				ssp / dbt->bitrate;
1413 
1414 			/* Max valid TDCO value is 127 */
1415 			if (tdco > 127) {
1416 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1417 					    tdco);
1418 				tdco = 127;
1419 			}
1420 
1421 			reg_btp |= DBTP_TDC;
1422 			m_can_write(cdev, M_CAN_TDCR,
1423 				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1424 		}
1425 
1426 		reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1427 			FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1428 			FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1429 			FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1430 
1431 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 /* Configure M_CAN chip:
1438  * - set rx buffer/fifo element size
1439  * - configure rx fifo
1440  * - accept non-matching frame into fifo 0
1441  * - configure tx buffer
1442  *		- >= v3.1.x: TX FIFO is used
1443  * - configure mode
1444  * - setup bittiming
1445  * - configure timestamp generation
1446  */
1447 static int m_can_chip_config(struct net_device *dev)
1448 {
1449 	struct m_can_classdev *cdev = netdev_priv(dev);
1450 	u32 interrupts = IR_ALL_INT;
1451 	u32 cccr, test;
1452 	int err;
1453 
1454 	err = m_can_init_ram(cdev);
1455 	if (err) {
1456 		dev_err(cdev->dev, "Message RAM configuration failed\n");
1457 		return err;
1458 	}
1459 
1460 	/* Disable unused interrupts */
1461 	interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF |
1462 			IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F |
1463 			IR_TSW);
1464 
1465 	err = m_can_config_enable(cdev);
1466 	if (err)
1467 		return err;
1468 
1469 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1470 	m_can_write(cdev, M_CAN_RXESC,
1471 		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1472 		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1473 		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1474 
1475 	/* Accept Non-matching Frames Into FIFO 0 */
1476 	m_can_write(cdev, M_CAN_GFC, 0x0);
1477 
1478 	if (cdev->version == 30) {
1479 		/* only support one Tx Buffer currently */
1480 		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1481 			    cdev->mcfg[MRAM_TXB].off);
1482 	} else {
1483 		/* TX FIFO is used for newer IP Core versions */
1484 		m_can_write(cdev, M_CAN_TXBC,
1485 			    FIELD_PREP(TXBC_TFQS_MASK,
1486 				       cdev->mcfg[MRAM_TXB].num) |
1487 			    cdev->mcfg[MRAM_TXB].off);
1488 	}
1489 
1490 	/* support 64 bytes payload */
1491 	m_can_write(cdev, M_CAN_TXESC,
1492 		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1493 
1494 	/* TX Event FIFO */
1495 	if (cdev->version == 30) {
1496 		m_can_write(cdev, M_CAN_TXEFC,
1497 			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
1498 			    cdev->mcfg[MRAM_TXE].off);
1499 	} else {
1500 		/* Full TX Event FIFO is used */
1501 		m_can_write(cdev, M_CAN_TXEFC,
1502 			    FIELD_PREP(TXEFC_EFWM_MASK,
1503 				       cdev->tx_max_coalesced_frames_irq) |
1504 			    FIELD_PREP(TXEFC_EFS_MASK,
1505 				       cdev->mcfg[MRAM_TXE].num) |
1506 			    cdev->mcfg[MRAM_TXE].off);
1507 	}
1508 
1509 	/* rx fifo configuration, blocking mode, fifo size 1 */
1510 	m_can_write(cdev, M_CAN_RXF0C,
1511 		    FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) |
1512 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1513 		    cdev->mcfg[MRAM_RXF0].off);
1514 
1515 	m_can_write(cdev, M_CAN_RXF1C,
1516 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1517 		    cdev->mcfg[MRAM_RXF1].off);
1518 
1519 	cccr = m_can_read(cdev, M_CAN_CCCR);
1520 	test = m_can_read(cdev, M_CAN_TEST);
1521 	test &= ~TEST_LBCK;
1522 	if (cdev->version == 30) {
1523 		/* Version 3.0.x */
1524 
1525 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1526 			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1527 			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1528 
1529 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1530 			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1531 
1532 	} else {
1533 		/* Version 3.1.x or 3.2.x */
1534 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1535 			  CCCR_NISO | CCCR_DAR);
1536 
1537 		/* Only 3.2.x has NISO Bit implemented */
1538 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1539 			cccr |= CCCR_NISO;
1540 
1541 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1542 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1543 	}
1544 
1545 	/* Loopback Mode */
1546 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1547 		cccr |= CCCR_TEST | CCCR_MON;
1548 		test |= TEST_LBCK;
1549 	}
1550 
1551 	/* Enable Monitoring (all versions) */
1552 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1553 		cccr |= CCCR_MON;
1554 
1555 	/* Disable Auto Retransmission (all versions) */
1556 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1557 		cccr |= CCCR_DAR;
1558 
1559 	/* Write config */
1560 	m_can_write(cdev, M_CAN_CCCR, cccr);
1561 	m_can_write(cdev, M_CAN_TEST, test);
1562 
1563 	/* Enable interrupts */
1564 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1565 		if (cdev->version == 30)
1566 			interrupts &= ~(IR_ERR_LEC_30X);
1567 		else
1568 			interrupts &= ~(IR_ERR_LEC_31X);
1569 	}
1570 	cdev->active_interrupts = 0;
1571 	m_can_interrupt_enable(cdev, interrupts);
1572 
1573 	/* route all interrupts to INT0 */
1574 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1575 
1576 	/* set bittiming params */
1577 	m_can_set_bittiming(dev);
1578 
1579 	/* enable internal timestamp generation, with a prescaler of 16. The
1580 	 * prescaler is applied to the nominal bit timing
1581 	 */
1582 	m_can_write(cdev, M_CAN_TSCC,
1583 		    FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1584 		    FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1585 
1586 	err = m_can_config_disable(cdev);
1587 	if (err)
1588 		return err;
1589 
1590 	if (cdev->ops->init)
1591 		cdev->ops->init(cdev);
1592 
1593 	return 0;
1594 }
1595 
1596 static int m_can_start(struct net_device *dev)
1597 {
1598 	struct m_can_classdev *cdev = netdev_priv(dev);
1599 	int ret;
1600 
1601 	/* basic m_can configuration */
1602 	ret = m_can_chip_config(dev);
1603 	if (ret)
1604 		return ret;
1605 
1606 	netdev_queue_set_dql_min_limit(netdev_get_tx_queue(cdev->net, 0),
1607 				       cdev->tx_max_coalesced_frames);
1608 
1609 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1610 
1611 	m_can_enable_all_interrupts(cdev);
1612 
1613 	if (cdev->version > 30)
1614 		cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1615 						 m_can_read(cdev, M_CAN_TXFQS));
1616 
1617 	ret = m_can_cccr_update_bits(cdev, CCCR_INIT, 0);
1618 	if (ret)
1619 		netdev_err(dev, "failed to enter normal mode\n");
1620 
1621 	return ret;
1622 }
1623 
1624 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1625 {
1626 	switch (mode) {
1627 	case CAN_MODE_START:
1628 		m_can_clean(dev);
1629 		m_can_start(dev);
1630 		netif_wake_queue(dev);
1631 		break;
1632 	default:
1633 		return -EOPNOTSUPP;
1634 	}
1635 
1636 	return 0;
1637 }
1638 
1639 /* Checks core release number of M_CAN
1640  * returns 0 if an unsupported device is detected
1641  * else it returns the release and step coded as:
1642  * return value = 10 * <release> + 1 * <step>
1643  */
1644 static int m_can_check_core_release(struct m_can_classdev *cdev)
1645 {
1646 	u32 crel_reg;
1647 	u8 rel;
1648 	u8 step;
1649 	int res;
1650 
1651 	/* Read Core Release Version and split into version number
1652 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1653 	 */
1654 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1655 	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1656 	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1657 
1658 	if (rel == 3) {
1659 		/* M_CAN v3.x.y: create return value */
1660 		res = 30 + step;
1661 	} else {
1662 		/* Unsupported M_CAN version */
1663 		res = 0;
1664 	}
1665 
1666 	return res;
1667 }
1668 
1669 /* Selectable Non ISO support only in version 3.2.x
1670  * Return 1 if the bit is writable, 0 if it is not, or negative on error.
1671  */
1672 static int m_can_niso_supported(struct m_can_classdev *cdev)
1673 {
1674 	int ret, niso;
1675 
1676 	ret = m_can_config_enable(cdev);
1677 	if (ret)
1678 		return ret;
1679 
1680 	/* First try to set the NISO bit. */
1681 	niso = m_can_cccr_update_bits(cdev, CCCR_NISO, CCCR_NISO);
1682 
1683 	/* Then clear the it again. */
1684 	ret = m_can_cccr_update_bits(cdev, CCCR_NISO, 0);
1685 	if (ret) {
1686 		dev_err(cdev->dev, "failed to revert the NON-ISO bit in CCCR\n");
1687 		return ret;
1688 	}
1689 
1690 	ret = m_can_config_disable(cdev);
1691 	if (ret)
1692 		return ret;
1693 
1694 	return niso == 0;
1695 }
1696 
1697 static int m_can_dev_setup(struct m_can_classdev *cdev)
1698 {
1699 	struct net_device *dev = cdev->net;
1700 	int m_can_version, err, niso;
1701 
1702 	m_can_version = m_can_check_core_release(cdev);
1703 	/* return if unsupported version */
1704 	if (!m_can_version) {
1705 		dev_err(cdev->dev, "Unsupported version number: %2d",
1706 			m_can_version);
1707 		return -EINVAL;
1708 	}
1709 
1710 	/* Write the INIT bit, in case no hardware reset has happened before
1711 	 * the probe (for example, it was observed that the Intel Elkhart Lake
1712 	 * SoCs do not properly reset the CAN controllers on reboot)
1713 	 */
1714 	err = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT);
1715 	if (err)
1716 		return err;
1717 
1718 	if (!cdev->is_peripheral)
1719 		netif_napi_add(dev, &cdev->napi, m_can_poll);
1720 
1721 	/* Shared properties of all M_CAN versions */
1722 	cdev->version = m_can_version;
1723 	cdev->can.do_set_mode = m_can_set_mode;
1724 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1725 
1726 	/* Set M_CAN supported operations */
1727 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1728 		CAN_CTRLMODE_LISTENONLY |
1729 		CAN_CTRLMODE_BERR_REPORTING |
1730 		CAN_CTRLMODE_FD |
1731 		CAN_CTRLMODE_ONE_SHOT;
1732 
1733 	/* Set properties depending on M_CAN version */
1734 	switch (cdev->version) {
1735 	case 30:
1736 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1737 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1738 		if (err)
1739 			return err;
1740 		cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1741 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1742 		break;
1743 	case 31:
1744 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1745 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1746 		if (err)
1747 			return err;
1748 		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1749 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1750 		break;
1751 	case 32:
1752 	case 33:
1753 		/* Support both MCAN version v3.2.x and v3.3.0 */
1754 		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1755 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1756 
1757 		niso = m_can_niso_supported(cdev);
1758 		if (niso < 0)
1759 			return niso;
1760 		if (niso)
1761 			cdev->can.ctrlmode_supported |= CAN_CTRLMODE_FD_NON_ISO;
1762 		break;
1763 	default:
1764 		dev_err(cdev->dev, "Unsupported version number: %2d",
1765 			cdev->version);
1766 		return -EINVAL;
1767 	}
1768 
1769 	return 0;
1770 }
1771 
1772 static void m_can_stop(struct net_device *dev)
1773 {
1774 	struct m_can_classdev *cdev = netdev_priv(dev);
1775 	int ret;
1776 
1777 	/* disable all interrupts */
1778 	m_can_disable_all_interrupts(cdev);
1779 
1780 	/* Set init mode to disengage from the network */
1781 	ret = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT);
1782 	if (ret)
1783 		netdev_err(dev, "failed to enter standby mode: %pe\n",
1784 			   ERR_PTR(ret));
1785 
1786 	/* set the state as STOPPED */
1787 	cdev->can.state = CAN_STATE_STOPPED;
1788 }
1789 
1790 static int m_can_close(struct net_device *dev)
1791 {
1792 	struct m_can_classdev *cdev = netdev_priv(dev);
1793 
1794 	netif_stop_queue(dev);
1795 
1796 	m_can_stop(dev);
1797 	if (dev->irq)
1798 		free_irq(dev->irq, dev);
1799 
1800 	m_can_clean(dev);
1801 
1802 	if (cdev->is_peripheral) {
1803 		destroy_workqueue(cdev->tx_wq);
1804 		cdev->tx_wq = NULL;
1805 		can_rx_offload_disable(&cdev->offload);
1806 	} else {
1807 		napi_disable(&cdev->napi);
1808 	}
1809 
1810 	close_candev(dev);
1811 
1812 	m_can_clk_stop(cdev);
1813 	phy_power_off(cdev->transceiver);
1814 
1815 	return 0;
1816 }
1817 
1818 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev,
1819 				    struct sk_buff *skb)
1820 {
1821 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1822 	u8 len_padded = DIV_ROUND_UP(cf->len, 4);
1823 	struct m_can_fifo_element fifo_element;
1824 	struct net_device *dev = cdev->net;
1825 	u32 cccr, fdflags;
1826 	int err;
1827 	u32 putidx;
1828 	unsigned int frame_len = can_skb_get_frame_len(skb);
1829 
1830 	/* Generate ID field for TX buffer Element */
1831 	/* Common to all supported M_CAN versions */
1832 	if (cf->can_id & CAN_EFF_FLAG) {
1833 		fifo_element.id = cf->can_id & CAN_EFF_MASK;
1834 		fifo_element.id |= TX_BUF_XTD;
1835 	} else {
1836 		fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1837 	}
1838 
1839 	if (cf->can_id & CAN_RTR_FLAG)
1840 		fifo_element.id |= TX_BUF_RTR;
1841 
1842 	if (cdev->version == 30) {
1843 		netif_stop_queue(dev);
1844 
1845 		fifo_element.dlc = can_fd_len2dlc(cf->len) << 16;
1846 
1847 		/* Write the frame ID, DLC, and payload to the FIFO element. */
1848 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_element, 2);
1849 		if (err)
1850 			goto out_fail;
1851 
1852 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1853 				       cf->data, len_padded);
1854 		if (err)
1855 			goto out_fail;
1856 
1857 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1858 			cccr = m_can_read(cdev, M_CAN_CCCR);
1859 			cccr &= ~CCCR_CMR_MASK;
1860 			if (can_is_canfd_skb(skb)) {
1861 				if (cf->flags & CANFD_BRS)
1862 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1863 							   CCCR_CMR_CANFD_BRS);
1864 				else
1865 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1866 							   CCCR_CMR_CANFD);
1867 			} else {
1868 				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1869 			}
1870 			m_can_write(cdev, M_CAN_CCCR, cccr);
1871 		}
1872 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1873 
1874 		can_put_echo_skb(skb, dev, 0, frame_len);
1875 
1876 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1877 		/* End of xmit function for version 3.0.x */
1878 	} else {
1879 		/* Transmit routine for version >= v3.1.x */
1880 
1881 		/* get put index for frame */
1882 		putidx = cdev->tx_fifo_putidx;
1883 
1884 		/* Construct DLC Field, with CAN-FD configuration.
1885 		 * Use the put index of the fifo as the message marker,
1886 		 * used in the TX interrupt for sending the correct echo frame.
1887 		 */
1888 
1889 		/* get CAN FD configuration of frame */
1890 		fdflags = 0;
1891 		if (can_is_canfd_skb(skb)) {
1892 			fdflags |= TX_BUF_FDF;
1893 			if (cf->flags & CANFD_BRS)
1894 				fdflags |= TX_BUF_BRS;
1895 		}
1896 
1897 		fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1898 			FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1899 			fdflags | TX_BUF_EFC;
1900 
1901 		memcpy_and_pad(fifo_element.data, CANFD_MAX_DLEN, &cf->data,
1902 			       cf->len, 0);
1903 
1904 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID,
1905 				       &fifo_element, 2 + len_padded);
1906 		if (err)
1907 			goto out_fail;
1908 
1909 		/* Push loopback echo.
1910 		 * Will be looped back on TX interrupt based on message marker
1911 		 */
1912 		can_put_echo_skb(skb, dev, putidx, frame_len);
1913 
1914 		if (cdev->is_peripheral) {
1915 			/* Delay enabling TX FIFO element */
1916 			cdev->tx_peripheral_submit |= BIT(putidx);
1917 		} else {
1918 			/* Enable TX FIFO element to start transfer  */
1919 			m_can_write(cdev, M_CAN_TXBAR, BIT(putidx));
1920 		}
1921 		cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ?
1922 					0 : cdev->tx_fifo_putidx);
1923 	}
1924 
1925 	return NETDEV_TX_OK;
1926 
1927 out_fail:
1928 	netdev_err(dev, "FIFO write returned %d\n", err);
1929 	m_can_disable_all_interrupts(cdev);
1930 	return NETDEV_TX_BUSY;
1931 }
1932 
1933 static void m_can_tx_submit(struct m_can_classdev *cdev)
1934 {
1935 	if (cdev->version == 30)
1936 		return;
1937 	if (!cdev->is_peripheral)
1938 		return;
1939 
1940 	m_can_write(cdev, M_CAN_TXBAR, cdev->tx_peripheral_submit);
1941 	cdev->tx_peripheral_submit = 0;
1942 }
1943 
1944 static void m_can_tx_work_queue(struct work_struct *ws)
1945 {
1946 	struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work);
1947 	struct m_can_classdev *cdev = op->cdev;
1948 	struct sk_buff *skb = op->skb;
1949 
1950 	op->skb = NULL;
1951 	m_can_tx_handler(cdev, skb);
1952 	if (op->submit)
1953 		m_can_tx_submit(cdev);
1954 }
1955 
1956 static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb,
1957 			       bool submit)
1958 {
1959 	cdev->tx_ops[cdev->next_tx_op].skb = skb;
1960 	cdev->tx_ops[cdev->next_tx_op].submit = submit;
1961 	queue_work(cdev->tx_wq, &cdev->tx_ops[cdev->next_tx_op].work);
1962 
1963 	++cdev->next_tx_op;
1964 	if (cdev->next_tx_op >= cdev->tx_fifo_size)
1965 		cdev->next_tx_op = 0;
1966 }
1967 
1968 static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev,
1969 					       struct sk_buff *skb)
1970 {
1971 	bool submit;
1972 
1973 	++cdev->nr_txs_without_submit;
1974 	if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames ||
1975 	    !netdev_xmit_more()) {
1976 		cdev->nr_txs_without_submit = 0;
1977 		submit = true;
1978 	} else {
1979 		submit = false;
1980 	}
1981 	m_can_tx_queue_skb(cdev, skb, submit);
1982 
1983 	return NETDEV_TX_OK;
1984 }
1985 
1986 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1987 				    struct net_device *dev)
1988 {
1989 	struct m_can_classdev *cdev = netdev_priv(dev);
1990 	unsigned int frame_len;
1991 	netdev_tx_t ret;
1992 
1993 	if (can_dev_dropped_skb(dev, skb))
1994 		return NETDEV_TX_OK;
1995 
1996 	frame_len = can_skb_get_frame_len(skb);
1997 
1998 	if (cdev->can.state == CAN_STATE_BUS_OFF) {
1999 		m_can_clean(cdev->net);
2000 		return NETDEV_TX_OK;
2001 	}
2002 
2003 	ret = m_can_start_tx(cdev);
2004 	if (ret != NETDEV_TX_OK)
2005 		return ret;
2006 
2007 	netdev_sent_queue(dev, frame_len);
2008 
2009 	if (cdev->is_peripheral)
2010 		ret = m_can_start_peripheral_xmit(cdev, skb);
2011 	else
2012 		ret = m_can_tx_handler(cdev, skb);
2013 
2014 	if (ret != NETDEV_TX_OK)
2015 		netdev_completed_queue(dev, 1, frame_len);
2016 
2017 	return ret;
2018 }
2019 
2020 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
2021 {
2022 	struct m_can_classdev *cdev = container_of(timer, struct
2023 						   m_can_classdev, hrtimer);
2024 	int ret;
2025 
2026 	if (cdev->can.state == CAN_STATE_BUS_OFF ||
2027 	    cdev->can.state == CAN_STATE_STOPPED)
2028 		return HRTIMER_NORESTART;
2029 
2030 	ret = m_can_interrupt_handler(cdev);
2031 
2032 	/* On error or if napi is scheduled to read, stop the timer */
2033 	if (ret < 0 || napi_is_scheduled(&cdev->napi))
2034 		return HRTIMER_NORESTART;
2035 
2036 	hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
2037 
2038 	return HRTIMER_RESTART;
2039 }
2040 
2041 static int m_can_open(struct net_device *dev)
2042 {
2043 	struct m_can_classdev *cdev = netdev_priv(dev);
2044 	int err;
2045 
2046 	err = phy_power_on(cdev->transceiver);
2047 	if (err)
2048 		return err;
2049 
2050 	err = m_can_clk_start(cdev);
2051 	if (err)
2052 		goto out_phy_power_off;
2053 
2054 	/* open the can device */
2055 	err = open_candev(dev);
2056 	if (err) {
2057 		netdev_err(dev, "failed to open can device\n");
2058 		goto exit_disable_clks;
2059 	}
2060 
2061 	if (cdev->is_peripheral)
2062 		can_rx_offload_enable(&cdev->offload);
2063 	else
2064 		napi_enable(&cdev->napi);
2065 
2066 	/* register interrupt handler */
2067 	if (cdev->is_peripheral) {
2068 		cdev->tx_wq = alloc_ordered_workqueue("mcan_wq",
2069 						      WQ_FREEZABLE | WQ_MEM_RECLAIM);
2070 		if (!cdev->tx_wq) {
2071 			err = -ENOMEM;
2072 			goto out_wq_fail;
2073 		}
2074 
2075 		for (int i = 0; i != cdev->tx_fifo_size; ++i) {
2076 			cdev->tx_ops[i].cdev = cdev;
2077 			INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue);
2078 		}
2079 
2080 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
2081 					   IRQF_ONESHOT,
2082 					   dev->name, dev);
2083 	} else if (dev->irq) {
2084 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
2085 				  dev);
2086 	}
2087 
2088 	if (err < 0) {
2089 		netdev_err(dev, "failed to request interrupt\n");
2090 		goto exit_irq_fail;
2091 	}
2092 
2093 	/* start the m_can controller */
2094 	err = m_can_start(dev);
2095 	if (err)
2096 		goto exit_start_fail;
2097 
2098 	netif_start_queue(dev);
2099 
2100 	return 0;
2101 
2102 exit_start_fail:
2103 	if (cdev->is_peripheral || dev->irq)
2104 		free_irq(dev->irq, dev);
2105 exit_irq_fail:
2106 	if (cdev->is_peripheral)
2107 		destroy_workqueue(cdev->tx_wq);
2108 out_wq_fail:
2109 	if (cdev->is_peripheral)
2110 		can_rx_offload_disable(&cdev->offload);
2111 	else
2112 		napi_disable(&cdev->napi);
2113 	close_candev(dev);
2114 exit_disable_clks:
2115 	m_can_clk_stop(cdev);
2116 out_phy_power_off:
2117 	phy_power_off(cdev->transceiver);
2118 	return err;
2119 }
2120 
2121 static const struct net_device_ops m_can_netdev_ops = {
2122 	.ndo_open = m_can_open,
2123 	.ndo_stop = m_can_close,
2124 	.ndo_start_xmit = m_can_start_xmit,
2125 	.ndo_change_mtu = can_change_mtu,
2126 };
2127 
2128 static int m_can_get_coalesce(struct net_device *dev,
2129 			      struct ethtool_coalesce *ec,
2130 			      struct kernel_ethtool_coalesce *kec,
2131 			      struct netlink_ext_ack *ext_ack)
2132 {
2133 	struct m_can_classdev *cdev = netdev_priv(dev);
2134 
2135 	ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq;
2136 	ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq;
2137 	ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames;
2138 	ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq;
2139 	ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq;
2140 
2141 	return 0;
2142 }
2143 
2144 static int m_can_set_coalesce(struct net_device *dev,
2145 			      struct ethtool_coalesce *ec,
2146 			      struct kernel_ethtool_coalesce *kec,
2147 			      struct netlink_ext_ack *ext_ack)
2148 {
2149 	struct m_can_classdev *cdev = netdev_priv(dev);
2150 
2151 	if (cdev->can.state != CAN_STATE_STOPPED) {
2152 		netdev_err(dev, "Device is in use, please shut it down first\n");
2153 		return -EBUSY;
2154 	}
2155 
2156 	if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) {
2157 		netdev_err(dev, "rx-frames-irq %u greater than the RX FIFO %u\n",
2158 			   ec->rx_max_coalesced_frames_irq,
2159 			   cdev->mcfg[MRAM_RXF0].num);
2160 		return -EINVAL;
2161 	}
2162 	if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) {
2163 		netdev_err(dev, "rx-frames-irq and rx-usecs-irq can only be set together\n");
2164 		return -EINVAL;
2165 	}
2166 	if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) {
2167 		netdev_err(dev, "tx-frames-irq %u greater than the TX event FIFO %u\n",
2168 			   ec->tx_max_coalesced_frames_irq,
2169 			   cdev->mcfg[MRAM_TXE].num);
2170 		return -EINVAL;
2171 	}
2172 	if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) {
2173 		netdev_err(dev, "tx-frames-irq %u greater than the TX FIFO %u\n",
2174 			   ec->tx_max_coalesced_frames_irq,
2175 			   cdev->mcfg[MRAM_TXB].num);
2176 		return -EINVAL;
2177 	}
2178 	if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) {
2179 		netdev_err(dev, "tx-frames-irq and tx-usecs-irq can only be set together\n");
2180 		return -EINVAL;
2181 	}
2182 	if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) {
2183 		netdev_err(dev, "tx-frames %u greater than the TX event FIFO %u\n",
2184 			   ec->tx_max_coalesced_frames,
2185 			   cdev->mcfg[MRAM_TXE].num);
2186 		return -EINVAL;
2187 	}
2188 	if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) {
2189 		netdev_err(dev, "tx-frames %u greater than the TX FIFO %u\n",
2190 			   ec->tx_max_coalesced_frames,
2191 			   cdev->mcfg[MRAM_TXB].num);
2192 		return -EINVAL;
2193 	}
2194 	if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 &&
2195 	    ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) {
2196 		netdev_err(dev, "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n",
2197 			   ec->rx_coalesce_usecs_irq,
2198 			   ec->tx_coalesce_usecs_irq);
2199 		return -EINVAL;
2200 	}
2201 
2202 	cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq;
2203 	cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq;
2204 	cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames;
2205 	cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq;
2206 	cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq;
2207 
2208 	if (cdev->rx_coalesce_usecs_irq)
2209 		cdev->irq_timer_wait =
2210 			ns_to_ktime(cdev->rx_coalesce_usecs_irq * NSEC_PER_USEC);
2211 	else
2212 		cdev->irq_timer_wait =
2213 			ns_to_ktime(cdev->tx_coalesce_usecs_irq * NSEC_PER_USEC);
2214 
2215 	return 0;
2216 }
2217 
2218 static const struct ethtool_ops m_can_ethtool_ops_coalescing = {
2219 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ |
2220 		ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ |
2221 		ETHTOOL_COALESCE_TX_USECS_IRQ |
2222 		ETHTOOL_COALESCE_TX_MAX_FRAMES |
2223 		ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ,
2224 	.get_ts_info = ethtool_op_get_ts_info,
2225 	.get_coalesce = m_can_get_coalesce,
2226 	.set_coalesce = m_can_set_coalesce,
2227 };
2228 
2229 static const struct ethtool_ops m_can_ethtool_ops = {
2230 	.get_ts_info = ethtool_op_get_ts_info,
2231 };
2232 
2233 static int register_m_can_dev(struct m_can_classdev *cdev)
2234 {
2235 	struct net_device *dev = cdev->net;
2236 
2237 	dev->flags |= IFF_ECHO;	/* we support local echo */
2238 	dev->netdev_ops = &m_can_netdev_ops;
2239 	if (dev->irq && cdev->is_peripheral)
2240 		dev->ethtool_ops = &m_can_ethtool_ops_coalescing;
2241 	else
2242 		dev->ethtool_ops = &m_can_ethtool_ops;
2243 
2244 	return register_candev(dev);
2245 }
2246 
2247 int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
2248 {
2249 	u32 total_size;
2250 
2251 	total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
2252 			cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2253 	if (total_size > mram_max_size) {
2254 		dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
2255 			total_size, mram_max_size);
2256 		return -EINVAL;
2257 	}
2258 
2259 	return 0;
2260 }
2261 EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);
2262 
2263 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
2264 				const u32 *mram_config_vals)
2265 {
2266 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
2267 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
2268 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
2269 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
2270 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
2271 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
2272 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
2273 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
2274 		FIELD_MAX(RXFC_FS_MASK);
2275 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
2276 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
2277 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
2278 		FIELD_MAX(RXFC_FS_MASK);
2279 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
2280 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
2281 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
2282 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
2283 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
2284 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
2285 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
2286 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
2287 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
2288 		FIELD_MAX(TXBC_NDTB_MASK);
2289 
2290 	dev_dbg(cdev->dev,
2291 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
2292 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
2293 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
2294 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
2295 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
2296 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
2297 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
2298 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
2299 }
2300 
2301 int m_can_init_ram(struct m_can_classdev *cdev)
2302 {
2303 	int end, i, start;
2304 	int err = 0;
2305 
2306 	/* initialize the entire Message RAM in use to avoid possible
2307 	 * ECC/parity checksum errors when reading an uninitialized buffer
2308 	 */
2309 	start = cdev->mcfg[MRAM_SIDF].off;
2310 	end = cdev->mcfg[MRAM_TXB].off +
2311 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2312 
2313 	for (i = start; i < end; i += 4) {
2314 		err = m_can_fifo_write_no_off(cdev, i, 0x0);
2315 		if (err)
2316 			break;
2317 	}
2318 
2319 	return err;
2320 }
2321 EXPORT_SYMBOL_GPL(m_can_init_ram);
2322 
2323 int m_can_class_get_clocks(struct m_can_classdev *cdev)
2324 {
2325 	int ret = 0;
2326 
2327 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
2328 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
2329 
2330 	if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
2331 		dev_err(cdev->dev, "no clock found\n");
2332 		ret = -ENODEV;
2333 	}
2334 
2335 	return ret;
2336 }
2337 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
2338 
2339 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
2340 						int sizeof_priv)
2341 {
2342 	struct m_can_classdev *class_dev = NULL;
2343 	u32 mram_config_vals[MRAM_CFG_LEN];
2344 	struct net_device *net_dev;
2345 	u32 tx_fifo_size;
2346 	int ret;
2347 
2348 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2349 					     "bosch,mram-cfg",
2350 					     mram_config_vals,
2351 					     sizeof(mram_config_vals) / 4);
2352 	if (ret) {
2353 		dev_err(dev, "Could not get Message RAM configuration.");
2354 		goto out;
2355 	}
2356 
2357 	/* Get TX FIFO size
2358 	 * Defines the total amount of echo buffers for loopback
2359 	 */
2360 	tx_fifo_size = mram_config_vals[7];
2361 
2362 	/* allocate the m_can device */
2363 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2364 	if (!net_dev) {
2365 		dev_err(dev, "Failed to allocate CAN device");
2366 		goto out;
2367 	}
2368 
2369 	class_dev = netdev_priv(net_dev);
2370 	class_dev->net = net_dev;
2371 	class_dev->dev = dev;
2372 	SET_NETDEV_DEV(net_dev, dev);
2373 
2374 	m_can_of_parse_mram(class_dev, mram_config_vals);
2375 out:
2376 	return class_dev;
2377 }
2378 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2379 
2380 void m_can_class_free_dev(struct net_device *net)
2381 {
2382 	free_candev(net);
2383 }
2384 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2385 
2386 int m_can_class_register(struct m_can_classdev *cdev)
2387 {
2388 	int ret;
2389 
2390 	cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num,
2391 					cdev->mcfg[MRAM_TXE].num));
2392 	if (cdev->is_peripheral) {
2393 		cdev->tx_ops =
2394 			devm_kzalloc(cdev->dev,
2395 				     cdev->tx_fifo_size * sizeof(*cdev->tx_ops),
2396 				     GFP_KERNEL);
2397 		if (!cdev->tx_ops) {
2398 			dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n");
2399 			return -ENOMEM;
2400 		}
2401 	}
2402 
2403 	ret = m_can_clk_start(cdev);
2404 	if (ret)
2405 		return ret;
2406 
2407 	if (cdev->is_peripheral) {
2408 		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2409 						NAPI_POLL_WEIGHT);
2410 		if (ret)
2411 			goto clk_disable;
2412 	}
2413 
2414 	if (!cdev->net->irq) {
2415 		dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer");
2416 		hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC,
2417 			     HRTIMER_MODE_REL_PINNED);
2418 		cdev->hrtimer.function = &hrtimer_callback;
2419 	} else {
2420 		hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2421 		cdev->hrtimer.function = m_can_coalescing_timer;
2422 	}
2423 
2424 	ret = m_can_dev_setup(cdev);
2425 	if (ret)
2426 		goto rx_offload_del;
2427 
2428 	ret = register_m_can_dev(cdev);
2429 	if (ret) {
2430 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2431 			cdev->net->name, ret);
2432 		goto rx_offload_del;
2433 	}
2434 
2435 	of_can_transceiver(cdev->net);
2436 
2437 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2438 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2439 
2440 	/* Probe finished
2441 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
2442 	 */
2443 	m_can_clk_stop(cdev);
2444 
2445 	return 0;
2446 
2447 rx_offload_del:
2448 	if (cdev->is_peripheral)
2449 		can_rx_offload_del(&cdev->offload);
2450 clk_disable:
2451 	m_can_clk_stop(cdev);
2452 
2453 	return ret;
2454 }
2455 EXPORT_SYMBOL_GPL(m_can_class_register);
2456 
2457 void m_can_class_unregister(struct m_can_classdev *cdev)
2458 {
2459 	if (cdev->is_peripheral)
2460 		can_rx_offload_del(&cdev->offload);
2461 	unregister_candev(cdev->net);
2462 }
2463 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2464 
2465 int m_can_class_suspend(struct device *dev)
2466 {
2467 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2468 	struct net_device *ndev = cdev->net;
2469 
2470 	if (netif_running(ndev)) {
2471 		netif_stop_queue(ndev);
2472 		netif_device_detach(ndev);
2473 
2474 		/* leave the chip running with rx interrupt enabled if it is
2475 		 * used as a wake-up source. Coalescing needs to be reset then,
2476 		 * the timer is cancelled here, interrupts are done in resume.
2477 		 */
2478 		if (cdev->pm_wake_source) {
2479 			hrtimer_cancel(&cdev->hrtimer);
2480 			m_can_write(cdev, M_CAN_IE, IR_RF0N);
2481 		} else {
2482 			m_can_stop(ndev);
2483 		}
2484 
2485 		m_can_clk_stop(cdev);
2486 	}
2487 
2488 	pinctrl_pm_select_sleep_state(dev);
2489 
2490 	cdev->can.state = CAN_STATE_SLEEPING;
2491 
2492 	return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2495 
2496 int m_can_class_resume(struct device *dev)
2497 {
2498 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2499 	struct net_device *ndev = cdev->net;
2500 
2501 	pinctrl_pm_select_default_state(dev);
2502 
2503 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2504 
2505 	if (netif_running(ndev)) {
2506 		int ret;
2507 
2508 		ret = m_can_clk_start(cdev);
2509 		if (ret)
2510 			return ret;
2511 
2512 		if (cdev->pm_wake_source) {
2513 			/* Restore active interrupts but disable coalescing as
2514 			 * we may have missed important waterlevel interrupts
2515 			 * between suspend and resume. Timers are already
2516 			 * stopped in suspend. Here we enable all interrupts
2517 			 * again.
2518 			 */
2519 			cdev->active_interrupts |= IR_RF0N | IR_TEFN;
2520 			m_can_write(cdev, M_CAN_IE, cdev->active_interrupts);
2521 		} else {
2522 			ret  = m_can_start(ndev);
2523 			if (ret) {
2524 				m_can_clk_stop(cdev);
2525 				return ret;
2526 			}
2527 		}
2528 
2529 		netif_device_attach(ndev);
2530 		netif_start_queue(ndev);
2531 	}
2532 
2533 	return 0;
2534 }
2535 EXPORT_SYMBOL_GPL(m_can_class_resume);
2536 
2537 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2538 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2539 MODULE_LICENSE("GPL v2");
2540 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2541