1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <b29396@freescale.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * https://github.com/linux-can/can-doc/tree/master/m_can 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/can/dev.h> 13 #include <linux/ethtool.h> 14 #include <linux/hrtimer.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/iopoll.h> 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/netdevice.h> 21 #include <linux/of.h> 22 #include <linux/phy/phy.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 27 #include "m_can.h" 28 29 /* registers definition */ 30 enum m_can_reg { 31 M_CAN_CREL = 0x0, 32 M_CAN_ENDN = 0x4, 33 M_CAN_CUST = 0x8, 34 M_CAN_DBTP = 0xc, 35 M_CAN_TEST = 0x10, 36 M_CAN_RWD = 0x14, 37 M_CAN_CCCR = 0x18, 38 M_CAN_NBTP = 0x1c, 39 M_CAN_TSCC = 0x20, 40 M_CAN_TSCV = 0x24, 41 M_CAN_TOCC = 0x28, 42 M_CAN_TOCV = 0x2c, 43 M_CAN_ECR = 0x40, 44 M_CAN_PSR = 0x44, 45 /* TDCR Register only available for version >=3.1.x */ 46 M_CAN_TDCR = 0x48, 47 M_CAN_IR = 0x50, 48 M_CAN_IE = 0x54, 49 M_CAN_ILS = 0x58, 50 M_CAN_ILE = 0x5c, 51 M_CAN_GFC = 0x80, 52 M_CAN_SIDFC = 0x84, 53 M_CAN_XIDFC = 0x88, 54 M_CAN_XIDAM = 0x90, 55 M_CAN_HPMS = 0x94, 56 M_CAN_NDAT1 = 0x98, 57 M_CAN_NDAT2 = 0x9c, 58 M_CAN_RXF0C = 0xa0, 59 M_CAN_RXF0S = 0xa4, 60 M_CAN_RXF0A = 0xa8, 61 M_CAN_RXBC = 0xac, 62 M_CAN_RXF1C = 0xb0, 63 M_CAN_RXF1S = 0xb4, 64 M_CAN_RXF1A = 0xb8, 65 M_CAN_RXESC = 0xbc, 66 M_CAN_TXBC = 0xc0, 67 M_CAN_TXFQS = 0xc4, 68 M_CAN_TXESC = 0xc8, 69 M_CAN_TXBRP = 0xcc, 70 M_CAN_TXBAR = 0xd0, 71 M_CAN_TXBCR = 0xd4, 72 M_CAN_TXBTO = 0xd8, 73 M_CAN_TXBCF = 0xdc, 74 M_CAN_TXBTIE = 0xe0, 75 M_CAN_TXBCIE = 0xe4, 76 M_CAN_TXEFC = 0xf0, 77 M_CAN_TXEFS = 0xf4, 78 M_CAN_TXEFA = 0xf8, 79 }; 80 81 /* message ram configuration data length */ 82 #define MRAM_CFG_LEN 8 83 84 /* Core Release Register (CREL) */ 85 #define CREL_REL_MASK GENMASK(31, 28) 86 #define CREL_STEP_MASK GENMASK(27, 24) 87 #define CREL_SUBSTEP_MASK GENMASK(23, 20) 88 89 /* Data Bit Timing & Prescaler Register (DBTP) */ 90 #define DBTP_TDC BIT(23) 91 #define DBTP_DBRP_MASK GENMASK(20, 16) 92 #define DBTP_DTSEG1_MASK GENMASK(12, 8) 93 #define DBTP_DTSEG2_MASK GENMASK(7, 4) 94 #define DBTP_DSJW_MASK GENMASK(3, 0) 95 96 /* Transmitter Delay Compensation Register (TDCR) */ 97 #define TDCR_TDCO_MASK GENMASK(14, 8) 98 #define TDCR_TDCF_MASK GENMASK(6, 0) 99 100 /* Test Register (TEST) */ 101 #define TEST_LBCK BIT(4) 102 103 /* CC Control Register (CCCR) */ 104 #define CCCR_TXP BIT(14) 105 #define CCCR_TEST BIT(7) 106 #define CCCR_DAR BIT(6) 107 #define CCCR_MON BIT(5) 108 #define CCCR_CSR BIT(4) 109 #define CCCR_CSA BIT(3) 110 #define CCCR_ASM BIT(2) 111 #define CCCR_CCE BIT(1) 112 #define CCCR_INIT BIT(0) 113 /* for version 3.0.x */ 114 #define CCCR_CMR_MASK GENMASK(11, 10) 115 #define CCCR_CMR_CANFD 0x1 116 #define CCCR_CMR_CANFD_BRS 0x2 117 #define CCCR_CMR_CAN 0x3 118 #define CCCR_CME_MASK GENMASK(9, 8) 119 #define CCCR_CME_CAN 0 120 #define CCCR_CME_CANFD 0x1 121 #define CCCR_CME_CANFD_BRS 0x2 122 /* for version >=3.1.x */ 123 #define CCCR_EFBI BIT(13) 124 #define CCCR_PXHD BIT(12) 125 #define CCCR_BRSE BIT(9) 126 #define CCCR_FDOE BIT(8) 127 /* for version >=3.2.x */ 128 #define CCCR_NISO BIT(15) 129 /* for version >=3.3.x */ 130 #define CCCR_WMM BIT(11) 131 #define CCCR_UTSU BIT(10) 132 133 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 134 #define NBTP_NSJW_MASK GENMASK(31, 25) 135 #define NBTP_NBRP_MASK GENMASK(24, 16) 136 #define NBTP_NTSEG1_MASK GENMASK(15, 8) 137 #define NBTP_NTSEG2_MASK GENMASK(6, 0) 138 139 /* Timestamp Counter Configuration Register (TSCC) */ 140 #define TSCC_TCP_MASK GENMASK(19, 16) 141 #define TSCC_TSS_MASK GENMASK(1, 0) 142 #define TSCC_TSS_DISABLE 0x0 143 #define TSCC_TSS_INTERNAL 0x1 144 #define TSCC_TSS_EXTERNAL 0x2 145 146 /* Timestamp Counter Value Register (TSCV) */ 147 #define TSCV_TSC_MASK GENMASK(15, 0) 148 149 /* Error Counter Register (ECR) */ 150 #define ECR_RP BIT(15) 151 #define ECR_REC_MASK GENMASK(14, 8) 152 #define ECR_TEC_MASK GENMASK(7, 0) 153 154 /* Protocol Status Register (PSR) */ 155 #define PSR_BO BIT(7) 156 #define PSR_EW BIT(6) 157 #define PSR_EP BIT(5) 158 #define PSR_LEC_MASK GENMASK(2, 0) 159 #define PSR_DLEC_MASK GENMASK(10, 8) 160 161 /* Interrupt Register (IR) */ 162 #define IR_ALL_INT 0xffffffff 163 164 /* Renamed bits for versions > 3.1.x */ 165 #define IR_ARA BIT(29) 166 #define IR_PED BIT(28) 167 #define IR_PEA BIT(27) 168 169 /* Bits for version 3.0.x */ 170 #define IR_STE BIT(31) 171 #define IR_FOE BIT(30) 172 #define IR_ACKE BIT(29) 173 #define IR_BE BIT(28) 174 #define IR_CRCE BIT(27) 175 #define IR_WDI BIT(26) 176 #define IR_BO BIT(25) 177 #define IR_EW BIT(24) 178 #define IR_EP BIT(23) 179 #define IR_ELO BIT(22) 180 #define IR_BEU BIT(21) 181 #define IR_BEC BIT(20) 182 #define IR_DRX BIT(19) 183 #define IR_TOO BIT(18) 184 #define IR_MRAF BIT(17) 185 #define IR_TSW BIT(16) 186 #define IR_TEFL BIT(15) 187 #define IR_TEFF BIT(14) 188 #define IR_TEFW BIT(13) 189 #define IR_TEFN BIT(12) 190 #define IR_TFE BIT(11) 191 #define IR_TCF BIT(10) 192 #define IR_TC BIT(9) 193 #define IR_HPM BIT(8) 194 #define IR_RF1L BIT(7) 195 #define IR_RF1F BIT(6) 196 #define IR_RF1W BIT(5) 197 #define IR_RF1N BIT(4) 198 #define IR_RF0L BIT(3) 199 #define IR_RF0F BIT(2) 200 #define IR_RF0W BIT(1) 201 #define IR_RF0N BIT(0) 202 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 203 204 /* Interrupts for version 3.0.x */ 205 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 206 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \ 207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 208 IR_RF0L) 209 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 210 211 /* Interrupts for version >= 3.1.x */ 212 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 213 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \ 214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 215 IR_RF0L) 216 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 217 218 /* Interrupt Line Select (ILS) */ 219 #define ILS_ALL_INT0 0x0 220 #define ILS_ALL_INT1 0xFFFFFFFF 221 222 /* Interrupt Line Enable (ILE) */ 223 #define ILE_EINT1 BIT(1) 224 #define ILE_EINT0 BIT(0) 225 226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 227 #define RXFC_FWM_MASK GENMASK(30, 24) 228 #define RXFC_FS_MASK GENMASK(22, 16) 229 230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 231 #define RXFS_RFL BIT(25) 232 #define RXFS_FF BIT(24) 233 #define RXFS_FPI_MASK GENMASK(21, 16) 234 #define RXFS_FGI_MASK GENMASK(13, 8) 235 #define RXFS_FFL_MASK GENMASK(6, 0) 236 237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 238 #define RXESC_RBDS_MASK GENMASK(10, 8) 239 #define RXESC_F1DS_MASK GENMASK(6, 4) 240 #define RXESC_F0DS_MASK GENMASK(2, 0) 241 #define RXESC_64B 0x7 242 243 /* Tx Buffer Configuration (TXBC) */ 244 #define TXBC_TFQS_MASK GENMASK(29, 24) 245 #define TXBC_NDTB_MASK GENMASK(21, 16) 246 247 /* Tx FIFO/Queue Status (TXFQS) */ 248 #define TXFQS_TFQF BIT(21) 249 #define TXFQS_TFQPI_MASK GENMASK(20, 16) 250 #define TXFQS_TFGI_MASK GENMASK(12, 8) 251 #define TXFQS_TFFL_MASK GENMASK(5, 0) 252 253 /* Tx Buffer Element Size Configuration (TXESC) */ 254 #define TXESC_TBDS_MASK GENMASK(2, 0) 255 #define TXESC_TBDS_64B 0x7 256 257 /* Tx Event FIFO Configuration (TXEFC) */ 258 #define TXEFC_EFWM_MASK GENMASK(29, 24) 259 #define TXEFC_EFS_MASK GENMASK(21, 16) 260 261 /* Tx Event FIFO Status (TXEFS) */ 262 #define TXEFS_TEFL BIT(25) 263 #define TXEFS_EFF BIT(24) 264 #define TXEFS_EFGI_MASK GENMASK(12, 8) 265 #define TXEFS_EFFL_MASK GENMASK(5, 0) 266 267 /* Tx Event FIFO Acknowledge (TXEFA) */ 268 #define TXEFA_EFAI_MASK GENMASK(4, 0) 269 270 /* Message RAM Configuration (in bytes) */ 271 #define SIDF_ELEMENT_SIZE 4 272 #define XIDF_ELEMENT_SIZE 8 273 #define RXF0_ELEMENT_SIZE 72 274 #define RXF1_ELEMENT_SIZE 72 275 #define RXB_ELEMENT_SIZE 72 276 #define TXE_ELEMENT_SIZE 8 277 #define TXB_ELEMENT_SIZE 72 278 279 /* Message RAM Elements */ 280 #define M_CAN_FIFO_ID 0x0 281 #define M_CAN_FIFO_DLC 0x4 282 #define M_CAN_FIFO_DATA 0x8 283 284 /* Rx Buffer Element */ 285 /* R0 */ 286 #define RX_BUF_ESI BIT(31) 287 #define RX_BUF_XTD BIT(30) 288 #define RX_BUF_RTR BIT(29) 289 /* R1 */ 290 #define RX_BUF_ANMF BIT(31) 291 #define RX_BUF_FDF BIT(21) 292 #define RX_BUF_BRS BIT(20) 293 #define RX_BUF_RXTS_MASK GENMASK(15, 0) 294 295 /* Tx Buffer Element */ 296 /* T0 */ 297 #define TX_BUF_ESI BIT(31) 298 #define TX_BUF_XTD BIT(30) 299 #define TX_BUF_RTR BIT(29) 300 /* T1 */ 301 #define TX_BUF_EFC BIT(23) 302 #define TX_BUF_FDF BIT(21) 303 #define TX_BUF_BRS BIT(20) 304 #define TX_BUF_MM_MASK GENMASK(31, 24) 305 #define TX_BUF_DLC_MASK GENMASK(19, 16) 306 307 /* Tx event FIFO Element */ 308 /* E1 */ 309 #define TX_EVENT_MM_MASK GENMASK(31, 24) 310 #define TX_EVENT_TXTS_MASK GENMASK(15, 0) 311 312 /* Hrtimer polling interval */ 313 #define HRTIMER_POLL_INTERVAL_MS 1 314 315 /* The ID and DLC registers are adjacent in M_CAN FIFO memory, 316 * and we can save a (potentially slow) bus round trip by combining 317 * reads and writes to them. 318 */ 319 struct id_and_dlc { 320 u32 id; 321 u32 dlc; 322 }; 323 324 struct m_can_fifo_element { 325 u32 id; 326 u32 dlc; 327 u8 data[CANFD_MAX_DLEN]; 328 }; 329 330 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 331 { 332 return cdev->ops->read_reg(cdev, reg); 333 } 334 335 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 336 u32 val) 337 { 338 cdev->ops->write_reg(cdev, reg, val); 339 } 340 341 static int 342 m_can_fifo_read(struct m_can_classdev *cdev, 343 u32 fgi, unsigned int offset, void *val, size_t val_count) 344 { 345 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 346 offset; 347 348 if (val_count == 0) 349 return 0; 350 351 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count); 352 } 353 354 static int 355 m_can_fifo_write(struct m_can_classdev *cdev, 356 u32 fpi, unsigned int offset, const void *val, size_t val_count) 357 { 358 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 359 offset; 360 361 if (val_count == 0) 362 return 0; 363 364 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count); 365 } 366 367 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev, 368 u32 fpi, u32 val) 369 { 370 return cdev->ops->write_fifo(cdev, fpi, &val, 1); 371 } 372 373 static int 374 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val) 375 { 376 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 377 offset; 378 379 return cdev->ops->read_fifo(cdev, addr_offset, val, 1); 380 } 381 382 static int m_can_cccr_update_bits(struct m_can_classdev *cdev, u32 mask, u32 val) 383 { 384 u32 val_before = m_can_read(cdev, M_CAN_CCCR); 385 u32 val_after = (val_before & ~mask) | val; 386 size_t tries = 10; 387 388 if (!(mask & CCCR_INIT) && !(val_before & CCCR_INIT)) { 389 dev_err(cdev->dev, 390 "refusing to configure device when in normal mode\n"); 391 return -EBUSY; 392 } 393 394 /* The chip should be in standby mode when changing the CCCR register, 395 * and some chips set the CSR and CSA bits when in standby. Furthermore, 396 * the CSR and CSA bits should be written as zeros, even when they read 397 * ones. 398 */ 399 val_after &= ~(CCCR_CSR | CCCR_CSA); 400 401 while (tries--) { 402 u32 val_read; 403 404 /* Write the desired value in each try, as setting some bits in 405 * the CCCR register require other bits to be set first. E.g. 406 * setting the NISO bit requires setting the CCE bit first. 407 */ 408 m_can_write(cdev, M_CAN_CCCR, val_after); 409 410 val_read = m_can_read(cdev, M_CAN_CCCR) & ~(CCCR_CSR | CCCR_CSA); 411 412 if (val_read == val_after) 413 return 0; 414 415 usleep_range(1, 5); 416 } 417 418 return -ETIMEDOUT; 419 } 420 421 static int m_can_config_enable(struct m_can_classdev *cdev) 422 { 423 int err; 424 425 /* CCCR_INIT must be set in order to set CCCR_CCE, but access to 426 * configuration registers should only be enabled when in standby mode, 427 * where CCCR_INIT is always set. 428 */ 429 err = m_can_cccr_update_bits(cdev, CCCR_CCE, CCCR_CCE); 430 if (err) 431 netdev_err(cdev->net, "failed to enable configuration mode\n"); 432 433 return err; 434 } 435 436 static int m_can_config_disable(struct m_can_classdev *cdev) 437 { 438 int err; 439 440 /* Only clear CCCR_CCE, since CCCR_INIT cannot be cleared while in 441 * standby mode 442 */ 443 err = m_can_cccr_update_bits(cdev, CCCR_CCE, 0); 444 if (err) 445 netdev_err(cdev->net, "failed to disable configuration registers\n"); 446 447 return err; 448 } 449 450 static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts) 451 { 452 if (cdev->active_interrupts == interrupts) 453 return; 454 cdev->ops->write_reg(cdev, M_CAN_IE, interrupts); 455 cdev->active_interrupts = interrupts; 456 } 457 458 static void m_can_coalescing_disable(struct m_can_classdev *cdev) 459 { 460 u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN; 461 462 if (!cdev->net->irq) 463 return; 464 465 hrtimer_cancel(&cdev->hrtimer); 466 m_can_interrupt_enable(cdev, new_interrupts); 467 } 468 469 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 470 { 471 if (!cdev->net->irq) { 472 dev_dbg(cdev->dev, "Start hrtimer\n"); 473 hrtimer_start(&cdev->hrtimer, 474 ms_to_ktime(HRTIMER_POLL_INTERVAL_MS), 475 HRTIMER_MODE_REL_PINNED); 476 } 477 478 /* Only interrupt line 0 is used in this driver */ 479 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 480 } 481 482 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 483 { 484 m_can_coalescing_disable(cdev); 485 m_can_write(cdev, M_CAN_ILE, 0x0); 486 487 if (!cdev->net->irq) { 488 dev_dbg(cdev->dev, "Stop hrtimer\n"); 489 hrtimer_try_to_cancel(&cdev->hrtimer); 490 } 491 } 492 493 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit 494 * width. 495 */ 496 static u32 m_can_get_timestamp(struct m_can_classdev *cdev) 497 { 498 u32 tscv; 499 u32 tsc; 500 501 tscv = m_can_read(cdev, M_CAN_TSCV); 502 tsc = FIELD_GET(TSCV_TSC_MASK, tscv); 503 504 return (tsc << 16); 505 } 506 507 static void m_can_clean(struct net_device *net) 508 { 509 struct m_can_classdev *cdev = netdev_priv(net); 510 unsigned long irqflags; 511 512 if (cdev->tx_ops) { 513 for (int i = 0; i != cdev->tx_fifo_size; ++i) { 514 if (!cdev->tx_ops[i].skb) 515 continue; 516 517 net->stats.tx_errors++; 518 cdev->tx_ops[i].skb = NULL; 519 } 520 } 521 522 for (int i = 0; i != cdev->can.echo_skb_max; ++i) 523 can_free_echo_skb(cdev->net, i, NULL); 524 525 netdev_reset_queue(cdev->net); 526 527 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags); 528 cdev->tx_fifo_in_flight = 0; 529 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 530 } 531 532 /* For peripherals, pass skb to rx-offload, which will push skb from 533 * napi. For non-peripherals, RX is done in napi already, so push 534 * directly. timestamp is used to ensure good skb ordering in 535 * rx-offload and is ignored for non-peripherals. 536 */ 537 static void m_can_receive_skb(struct m_can_classdev *cdev, 538 struct sk_buff *skb, 539 u32 timestamp) 540 { 541 if (cdev->is_peripheral) { 542 struct net_device_stats *stats = &cdev->net->stats; 543 int err; 544 545 err = can_rx_offload_queue_timestamp(&cdev->offload, skb, 546 timestamp); 547 if (err) 548 stats->rx_fifo_errors++; 549 } else { 550 netif_receive_skb(skb); 551 } 552 } 553 554 static int m_can_read_fifo(struct net_device *dev, u32 fgi) 555 { 556 struct net_device_stats *stats = &dev->stats; 557 struct m_can_classdev *cdev = netdev_priv(dev); 558 struct canfd_frame *cf; 559 struct sk_buff *skb; 560 struct id_and_dlc fifo_header; 561 u32 timestamp = 0; 562 int err; 563 564 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2); 565 if (err) 566 goto out_fail; 567 568 if (fifo_header.dlc & RX_BUF_FDF) 569 skb = alloc_canfd_skb(dev, &cf); 570 else 571 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 572 if (!skb) { 573 stats->rx_dropped++; 574 return 0; 575 } 576 577 if (fifo_header.dlc & RX_BUF_FDF) 578 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F); 579 else 580 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F); 581 582 if (fifo_header.id & RX_BUF_XTD) 583 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG; 584 else 585 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK; 586 587 if (fifo_header.id & RX_BUF_ESI) { 588 cf->flags |= CANFD_ESI; 589 netdev_dbg(dev, "ESI Error\n"); 590 } 591 592 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) { 593 cf->can_id |= CAN_RTR_FLAG; 594 } else { 595 if (fifo_header.dlc & RX_BUF_BRS) 596 cf->flags |= CANFD_BRS; 597 598 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA, 599 cf->data, DIV_ROUND_UP(cf->len, 4)); 600 if (err) 601 goto out_free_skb; 602 603 stats->rx_bytes += cf->len; 604 } 605 stats->rx_packets++; 606 607 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16; 608 609 m_can_receive_skb(cdev, skb, timestamp); 610 611 return 0; 612 613 out_free_skb: 614 kfree_skb(skb); 615 out_fail: 616 netdev_err(dev, "FIFO read returned %d\n", err); 617 return err; 618 } 619 620 static int m_can_do_rx_poll(struct net_device *dev, int quota) 621 { 622 struct m_can_classdev *cdev = netdev_priv(dev); 623 u32 pkts = 0; 624 u32 rxfs; 625 u32 rx_count; 626 u32 fgi; 627 int ack_fgi = -1; 628 int i; 629 int err = 0; 630 631 rxfs = m_can_read(cdev, M_CAN_RXF0S); 632 if (!(rxfs & RXFS_FFL_MASK)) { 633 netdev_dbg(dev, "no messages in fifo0\n"); 634 return 0; 635 } 636 637 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs); 638 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs); 639 640 for (i = 0; i < rx_count && quota > 0; ++i) { 641 err = m_can_read_fifo(dev, fgi); 642 if (err) 643 break; 644 645 quota--; 646 pkts++; 647 ack_fgi = fgi; 648 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi); 649 } 650 651 if (ack_fgi != -1) 652 m_can_write(cdev, M_CAN_RXF0A, ack_fgi); 653 654 if (err) 655 return err; 656 657 return pkts; 658 } 659 660 static int m_can_handle_lost_msg(struct net_device *dev) 661 { 662 struct m_can_classdev *cdev = netdev_priv(dev); 663 struct net_device_stats *stats = &dev->stats; 664 struct sk_buff *skb; 665 struct can_frame *frame; 666 u32 timestamp = 0; 667 668 netdev_err(dev, "msg lost in rxf0\n"); 669 670 stats->rx_errors++; 671 stats->rx_over_errors++; 672 673 skb = alloc_can_err_skb(dev, &frame); 674 if (unlikely(!skb)) 675 return 0; 676 677 frame->can_id |= CAN_ERR_CRTL; 678 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 679 680 if (cdev->is_peripheral) 681 timestamp = m_can_get_timestamp(cdev); 682 683 m_can_receive_skb(cdev, skb, timestamp); 684 685 return 1; 686 } 687 688 static int m_can_handle_lec_err(struct net_device *dev, 689 enum m_can_lec_type lec_type) 690 { 691 struct m_can_classdev *cdev = netdev_priv(dev); 692 struct net_device_stats *stats = &dev->stats; 693 struct can_frame *cf; 694 struct sk_buff *skb; 695 u32 timestamp = 0; 696 697 cdev->can.can_stats.bus_error++; 698 699 /* propagate the error condition to the CAN stack */ 700 skb = alloc_can_err_skb(dev, &cf); 701 702 /* check for 'last error code' which tells us the 703 * type of the last error to occur on the CAN bus 704 */ 705 if (likely(skb)) 706 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 707 708 switch (lec_type) { 709 case LEC_STUFF_ERROR: 710 netdev_dbg(dev, "stuff error\n"); 711 stats->rx_errors++; 712 if (likely(skb)) 713 cf->data[2] |= CAN_ERR_PROT_STUFF; 714 break; 715 case LEC_FORM_ERROR: 716 netdev_dbg(dev, "form error\n"); 717 stats->rx_errors++; 718 if (likely(skb)) 719 cf->data[2] |= CAN_ERR_PROT_FORM; 720 break; 721 case LEC_ACK_ERROR: 722 netdev_dbg(dev, "ack error\n"); 723 stats->tx_errors++; 724 if (likely(skb)) 725 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 726 break; 727 case LEC_BIT1_ERROR: 728 netdev_dbg(dev, "bit1 error\n"); 729 stats->tx_errors++; 730 if (likely(skb)) 731 cf->data[2] |= CAN_ERR_PROT_BIT1; 732 break; 733 case LEC_BIT0_ERROR: 734 netdev_dbg(dev, "bit0 error\n"); 735 stats->tx_errors++; 736 if (likely(skb)) 737 cf->data[2] |= CAN_ERR_PROT_BIT0; 738 break; 739 case LEC_CRC_ERROR: 740 netdev_dbg(dev, "CRC error\n"); 741 stats->rx_errors++; 742 if (likely(skb)) 743 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 744 break; 745 default: 746 break; 747 } 748 749 if (unlikely(!skb)) 750 return 0; 751 752 if (cdev->is_peripheral) 753 timestamp = m_can_get_timestamp(cdev); 754 755 m_can_receive_skb(cdev, skb, timestamp); 756 757 return 1; 758 } 759 760 static int __m_can_get_berr_counter(const struct net_device *dev, 761 struct can_berr_counter *bec) 762 { 763 struct m_can_classdev *cdev = netdev_priv(dev); 764 unsigned int ecr; 765 766 ecr = m_can_read(cdev, M_CAN_ECR); 767 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr); 768 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr); 769 770 return 0; 771 } 772 773 static int m_can_clk_start(struct m_can_classdev *cdev) 774 { 775 if (cdev->pm_clock_support == 0) 776 return 0; 777 778 return pm_runtime_resume_and_get(cdev->dev); 779 } 780 781 static void m_can_clk_stop(struct m_can_classdev *cdev) 782 { 783 if (cdev->pm_clock_support) 784 pm_runtime_put_sync(cdev->dev); 785 } 786 787 static int m_can_get_berr_counter(const struct net_device *dev, 788 struct can_berr_counter *bec) 789 { 790 struct m_can_classdev *cdev = netdev_priv(dev); 791 int err; 792 793 err = m_can_clk_start(cdev); 794 if (err) 795 return err; 796 797 __m_can_get_berr_counter(dev, bec); 798 799 m_can_clk_stop(cdev); 800 801 return 0; 802 } 803 804 static int m_can_handle_state_change(struct net_device *dev, 805 enum can_state new_state) 806 { 807 struct m_can_classdev *cdev = netdev_priv(dev); 808 struct can_frame *cf; 809 struct sk_buff *skb; 810 struct can_berr_counter bec; 811 unsigned int ecr; 812 u32 timestamp = 0; 813 814 switch (new_state) { 815 case CAN_STATE_ERROR_WARNING: 816 /* error warning state */ 817 cdev->can.can_stats.error_warning++; 818 cdev->can.state = CAN_STATE_ERROR_WARNING; 819 break; 820 case CAN_STATE_ERROR_PASSIVE: 821 /* error passive state */ 822 cdev->can.can_stats.error_passive++; 823 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 824 break; 825 case CAN_STATE_BUS_OFF: 826 /* bus-off state */ 827 cdev->can.state = CAN_STATE_BUS_OFF; 828 m_can_disable_all_interrupts(cdev); 829 cdev->can.can_stats.bus_off++; 830 can_bus_off(dev); 831 break; 832 default: 833 break; 834 } 835 836 /* propagate the error condition to the CAN stack */ 837 skb = alloc_can_err_skb(dev, &cf); 838 if (unlikely(!skb)) 839 return 0; 840 841 __m_can_get_berr_counter(dev, &bec); 842 843 switch (new_state) { 844 case CAN_STATE_ERROR_WARNING: 845 /* error warning state */ 846 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 847 cf->data[1] = (bec.txerr > bec.rxerr) ? 848 CAN_ERR_CRTL_TX_WARNING : 849 CAN_ERR_CRTL_RX_WARNING; 850 cf->data[6] = bec.txerr; 851 cf->data[7] = bec.rxerr; 852 break; 853 case CAN_STATE_ERROR_PASSIVE: 854 /* error passive state */ 855 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 856 ecr = m_can_read(cdev, M_CAN_ECR); 857 if (ecr & ECR_RP) 858 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 859 if (bec.txerr > 127) 860 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 861 cf->data[6] = bec.txerr; 862 cf->data[7] = bec.rxerr; 863 break; 864 case CAN_STATE_BUS_OFF: 865 /* bus-off state */ 866 cf->can_id |= CAN_ERR_BUSOFF; 867 break; 868 default: 869 break; 870 } 871 872 if (cdev->is_peripheral) 873 timestamp = m_can_get_timestamp(cdev); 874 875 m_can_receive_skb(cdev, skb, timestamp); 876 877 return 1; 878 } 879 880 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 881 { 882 struct m_can_classdev *cdev = netdev_priv(dev); 883 int work_done = 0; 884 885 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 886 netdev_dbg(dev, "entered error warning state\n"); 887 work_done += m_can_handle_state_change(dev, 888 CAN_STATE_ERROR_WARNING); 889 } 890 891 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 892 netdev_dbg(dev, "entered error passive state\n"); 893 work_done += m_can_handle_state_change(dev, 894 CAN_STATE_ERROR_PASSIVE); 895 } 896 897 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 898 netdev_dbg(dev, "entered error bus off state\n"); 899 work_done += m_can_handle_state_change(dev, 900 CAN_STATE_BUS_OFF); 901 } 902 903 return work_done; 904 } 905 906 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 907 { 908 if (irqstatus & IR_WDI) 909 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 910 if (irqstatus & IR_BEU) 911 netdev_err(dev, "Bit Error Uncorrected\n"); 912 if (irqstatus & IR_BEC) 913 netdev_err(dev, "Bit Error Corrected\n"); 914 if (irqstatus & IR_TOO) 915 netdev_err(dev, "Timeout reached\n"); 916 if (irqstatus & IR_MRAF) 917 netdev_err(dev, "Message RAM access failure occurred\n"); 918 } 919 920 static inline bool is_lec_err(u8 lec) 921 { 922 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE; 923 } 924 925 static inline bool m_can_is_protocol_err(u32 irqstatus) 926 { 927 return irqstatus & IR_ERR_LEC_31X; 928 } 929 930 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 931 { 932 struct net_device_stats *stats = &dev->stats; 933 struct m_can_classdev *cdev = netdev_priv(dev); 934 struct can_frame *cf; 935 struct sk_buff *skb; 936 u32 timestamp = 0; 937 938 /* propagate the error condition to the CAN stack */ 939 skb = alloc_can_err_skb(dev, &cf); 940 941 /* update tx error stats since there is protocol error */ 942 stats->tx_errors++; 943 944 /* update arbitration lost status */ 945 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 946 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 947 cdev->can.can_stats.arbitration_lost++; 948 if (skb) { 949 cf->can_id |= CAN_ERR_LOSTARB; 950 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 951 } 952 } 953 954 if (unlikely(!skb)) { 955 netdev_dbg(dev, "allocation of skb failed\n"); 956 return 0; 957 } 958 959 if (cdev->is_peripheral) 960 timestamp = m_can_get_timestamp(cdev); 961 962 m_can_receive_skb(cdev, skb, timestamp); 963 964 return 1; 965 } 966 967 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 968 u32 psr) 969 { 970 struct m_can_classdev *cdev = netdev_priv(dev); 971 int work_done = 0; 972 973 if (irqstatus & IR_RF0L) 974 work_done += m_can_handle_lost_msg(dev); 975 976 /* handle lec errors on the bus */ 977 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) { 978 u8 lec = FIELD_GET(PSR_LEC_MASK, psr); 979 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr); 980 981 if (is_lec_err(lec)) { 982 netdev_dbg(dev, "Arbitration phase error detected\n"); 983 work_done += m_can_handle_lec_err(dev, lec); 984 } 985 986 if (is_lec_err(dlec)) { 987 netdev_dbg(dev, "Data phase error detected\n"); 988 work_done += m_can_handle_lec_err(dev, dlec); 989 } 990 } 991 992 /* handle protocol errors in arbitration phase */ 993 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 994 m_can_is_protocol_err(irqstatus)) 995 work_done += m_can_handle_protocol_error(dev, irqstatus); 996 997 /* other unproccessed error interrupts */ 998 m_can_handle_other_err(dev, irqstatus); 999 1000 return work_done; 1001 } 1002 1003 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus) 1004 { 1005 struct m_can_classdev *cdev = netdev_priv(dev); 1006 int rx_work_or_err; 1007 int work_done = 0; 1008 1009 if (!irqstatus) 1010 goto end; 1011 1012 /* Errata workaround for issue "Needless activation of MRAF irq" 1013 * During frame reception while the MCAN is in Error Passive state 1014 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 1015 * it may happen that MCAN_IR.MRAF is set although there was no 1016 * Message RAM access failure. 1017 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 1018 * The Message RAM Access Failure interrupt routine needs to check 1019 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 1020 * In this case, reset MCAN_IR.MRAF. No further action is required. 1021 */ 1022 if (cdev->version <= 31 && irqstatus & IR_MRAF && 1023 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 1024 struct can_berr_counter bec; 1025 1026 __m_can_get_berr_counter(dev, &bec); 1027 if (bec.rxerr == 127) { 1028 m_can_write(cdev, M_CAN_IR, IR_MRAF); 1029 irqstatus &= ~IR_MRAF; 1030 } 1031 } 1032 1033 if (irqstatus & IR_ERR_STATE) 1034 work_done += m_can_handle_state_errors(dev, 1035 m_can_read(cdev, M_CAN_PSR)); 1036 1037 if (irqstatus & IR_ERR_BUS_30X) 1038 work_done += m_can_handle_bus_errors(dev, irqstatus, 1039 m_can_read(cdev, M_CAN_PSR)); 1040 1041 if (irqstatus & IR_RF0N) { 1042 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done)); 1043 if (rx_work_or_err < 0) 1044 return rx_work_or_err; 1045 1046 work_done += rx_work_or_err; 1047 } 1048 end: 1049 return work_done; 1050 } 1051 1052 static int m_can_poll(struct napi_struct *napi, int quota) 1053 { 1054 struct net_device *dev = napi->dev; 1055 struct m_can_classdev *cdev = netdev_priv(dev); 1056 int work_done; 1057 u32 irqstatus; 1058 1059 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 1060 1061 work_done = m_can_rx_handler(dev, quota, irqstatus); 1062 1063 /* Don't re-enable interrupts if the driver had a fatal error 1064 * (e.g., FIFO read failure). 1065 */ 1066 if (work_done >= 0 && work_done < quota) { 1067 napi_complete_done(napi, work_done); 1068 m_can_enable_all_interrupts(cdev); 1069 } 1070 1071 return work_done; 1072 } 1073 1074 /* Echo tx skb and update net stats. Peripherals use rx-offload for 1075 * echo. timestamp is used for peripherals to ensure correct ordering 1076 * by rx-offload, and is ignored for non-peripherals. 1077 */ 1078 static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev, 1079 unsigned int msg_mark, u32 timestamp) 1080 { 1081 struct net_device *dev = cdev->net; 1082 struct net_device_stats *stats = &dev->stats; 1083 unsigned int frame_len; 1084 1085 if (cdev->is_peripheral) 1086 stats->tx_bytes += 1087 can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload, 1088 msg_mark, 1089 timestamp, 1090 &frame_len); 1091 else 1092 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, &frame_len); 1093 1094 stats->tx_packets++; 1095 1096 return frame_len; 1097 } 1098 1099 static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted, 1100 unsigned int transmitted_frame_len) 1101 { 1102 unsigned long irqflags; 1103 1104 netdev_completed_queue(cdev->net, transmitted, transmitted_frame_len); 1105 1106 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags); 1107 if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0) 1108 netif_wake_queue(cdev->net); 1109 cdev->tx_fifo_in_flight -= transmitted; 1110 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 1111 } 1112 1113 static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev) 1114 { 1115 unsigned long irqflags; 1116 int tx_fifo_in_flight; 1117 1118 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags); 1119 tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1; 1120 if (tx_fifo_in_flight >= cdev->tx_fifo_size) { 1121 netif_stop_queue(cdev->net); 1122 if (tx_fifo_in_flight > cdev->tx_fifo_size) { 1123 netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n"); 1124 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 1125 return NETDEV_TX_BUSY; 1126 } 1127 } 1128 cdev->tx_fifo_in_flight = tx_fifo_in_flight; 1129 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags); 1130 1131 return NETDEV_TX_OK; 1132 } 1133 1134 static int m_can_echo_tx_event(struct net_device *dev) 1135 { 1136 u32 txe_count = 0; 1137 u32 m_can_txefs; 1138 u32 fgi = 0; 1139 int ack_fgi = -1; 1140 int i = 0; 1141 int err = 0; 1142 unsigned int msg_mark; 1143 int processed = 0; 1144 unsigned int processed_frame_len = 0; 1145 1146 struct m_can_classdev *cdev = netdev_priv(dev); 1147 1148 /* read tx event fifo status */ 1149 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 1150 1151 /* Get Tx Event fifo element count */ 1152 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs); 1153 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs); 1154 1155 /* Get and process all sent elements */ 1156 for (i = 0; i < txe_count; i++) { 1157 u32 txe, timestamp = 0; 1158 1159 /* get message marker, timestamp */ 1160 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe); 1161 if (err) { 1162 netdev_err(dev, "TXE FIFO read returned %d\n", err); 1163 break; 1164 } 1165 1166 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe); 1167 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16; 1168 1169 ack_fgi = fgi; 1170 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi); 1171 1172 /* update stats */ 1173 processed_frame_len += m_can_tx_update_stats(cdev, msg_mark, 1174 timestamp); 1175 1176 ++processed; 1177 } 1178 1179 if (ack_fgi != -1) 1180 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK, 1181 ack_fgi)); 1182 1183 m_can_finish_tx(cdev, processed, processed_frame_len); 1184 1185 return err; 1186 } 1187 1188 static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir) 1189 { 1190 u32 new_interrupts = cdev->active_interrupts; 1191 bool enable_rx_timer = false; 1192 bool enable_tx_timer = false; 1193 1194 if (!cdev->net->irq) 1195 return; 1196 1197 if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) { 1198 enable_rx_timer = true; 1199 new_interrupts &= ~IR_RF0N; 1200 } 1201 if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) { 1202 enable_tx_timer = true; 1203 new_interrupts &= ~IR_TEFN; 1204 } 1205 if (!enable_rx_timer && !hrtimer_active(&cdev->hrtimer)) 1206 new_interrupts |= IR_RF0N; 1207 if (!enable_tx_timer && !hrtimer_active(&cdev->hrtimer)) 1208 new_interrupts |= IR_TEFN; 1209 1210 m_can_interrupt_enable(cdev, new_interrupts); 1211 if (enable_rx_timer | enable_tx_timer) 1212 hrtimer_start(&cdev->hrtimer, cdev->irq_timer_wait, 1213 HRTIMER_MODE_REL); 1214 } 1215 1216 /* This interrupt handler is called either from the interrupt thread or a 1217 * hrtimer. This has implications like cancelling a timer won't be possible 1218 * blocking. 1219 */ 1220 static int m_can_interrupt_handler(struct m_can_classdev *cdev) 1221 { 1222 struct net_device *dev = cdev->net; 1223 u32 ir = 0, ir_read; 1224 int ret; 1225 1226 if (pm_runtime_suspended(cdev->dev)) 1227 return IRQ_NONE; 1228 1229 /* The m_can controller signals its interrupt status as a level, but 1230 * depending in the integration the CPU may interpret the signal as 1231 * edge-triggered (for example with m_can_pci). For these 1232 * edge-triggered integrations, we must observe that IR is 0 at least 1233 * once to be sure that the next interrupt will generate an edge. 1234 */ 1235 while ((ir_read = m_can_read(cdev, M_CAN_IR)) != 0) { 1236 ir |= ir_read; 1237 1238 /* ACK all irqs */ 1239 m_can_write(cdev, M_CAN_IR, ir); 1240 1241 if (!cdev->irq_edge_triggered) 1242 break; 1243 } 1244 1245 m_can_coalescing_update(cdev, ir); 1246 if (!ir) 1247 return IRQ_NONE; 1248 1249 if (cdev->ops->clear_interrupts) 1250 cdev->ops->clear_interrupts(cdev); 1251 1252 /* schedule NAPI in case of 1253 * - rx IRQ 1254 * - state change IRQ 1255 * - bus error IRQ and bus error reporting 1256 */ 1257 if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) { 1258 cdev->irqstatus = ir; 1259 if (!cdev->is_peripheral) { 1260 m_can_disable_all_interrupts(cdev); 1261 napi_schedule(&cdev->napi); 1262 } else { 1263 ret = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, ir); 1264 if (ret < 0) 1265 return ret; 1266 } 1267 } 1268 1269 if (cdev->version == 30) { 1270 if (ir & IR_TC) { 1271 /* Transmission Complete Interrupt*/ 1272 u32 timestamp = 0; 1273 unsigned int frame_len; 1274 1275 if (cdev->is_peripheral) 1276 timestamp = m_can_get_timestamp(cdev); 1277 frame_len = m_can_tx_update_stats(cdev, 0, timestamp); 1278 m_can_finish_tx(cdev, 1, frame_len); 1279 } 1280 } else { 1281 if (ir & (IR_TEFN | IR_TEFW)) { 1282 /* New TX FIFO Element arrived */ 1283 ret = m_can_echo_tx_event(dev); 1284 if (ret != 0) 1285 return ret; 1286 } 1287 } 1288 1289 if (cdev->is_peripheral) 1290 can_rx_offload_threaded_irq_finish(&cdev->offload); 1291 1292 return IRQ_HANDLED; 1293 } 1294 1295 static irqreturn_t m_can_isr(int irq, void *dev_id) 1296 { 1297 struct net_device *dev = (struct net_device *)dev_id; 1298 struct m_can_classdev *cdev = netdev_priv(dev); 1299 int ret; 1300 1301 ret = m_can_interrupt_handler(cdev); 1302 if (ret < 0) { 1303 m_can_disable_all_interrupts(cdev); 1304 return IRQ_HANDLED; 1305 } 1306 1307 return ret; 1308 } 1309 1310 static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer) 1311 { 1312 struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer); 1313 1314 if (cdev->can.state == CAN_STATE_BUS_OFF || 1315 cdev->can.state == CAN_STATE_STOPPED) 1316 return HRTIMER_NORESTART; 1317 1318 irq_wake_thread(cdev->net->irq, cdev->net); 1319 1320 return HRTIMER_NORESTART; 1321 } 1322 1323 static const struct can_bittiming_const m_can_bittiming_const_30X = { 1324 .name = KBUILD_MODNAME, 1325 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1326 .tseg1_max = 64, 1327 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1328 .tseg2_max = 16, 1329 .sjw_max = 16, 1330 .brp_min = 1, 1331 .brp_max = 1024, 1332 .brp_inc = 1, 1333 }; 1334 1335 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1336 .name = KBUILD_MODNAME, 1337 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1338 .tseg1_max = 16, 1339 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1340 .tseg2_max = 8, 1341 .sjw_max = 4, 1342 .brp_min = 1, 1343 .brp_max = 32, 1344 .brp_inc = 1, 1345 }; 1346 1347 static const struct can_bittiming_const m_can_bittiming_const_31X = { 1348 .name = KBUILD_MODNAME, 1349 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1350 .tseg1_max = 256, 1351 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1352 .tseg2_max = 128, 1353 .sjw_max = 128, 1354 .brp_min = 1, 1355 .brp_max = 512, 1356 .brp_inc = 1, 1357 }; 1358 1359 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1360 .name = KBUILD_MODNAME, 1361 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1362 .tseg1_max = 32, 1363 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1364 .tseg2_max = 16, 1365 .sjw_max = 16, 1366 .brp_min = 1, 1367 .brp_max = 32, 1368 .brp_inc = 1, 1369 }; 1370 1371 static int m_can_set_bittiming(struct net_device *dev) 1372 { 1373 struct m_can_classdev *cdev = netdev_priv(dev); 1374 const struct can_bittiming *bt = &cdev->can.bittiming; 1375 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1376 u16 brp, sjw, tseg1, tseg2; 1377 u32 reg_btp; 1378 1379 brp = bt->brp - 1; 1380 sjw = bt->sjw - 1; 1381 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1382 tseg2 = bt->phase_seg2 - 1; 1383 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) | 1384 FIELD_PREP(NBTP_NSJW_MASK, sjw) | 1385 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) | 1386 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2); 1387 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1388 1389 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1390 reg_btp = 0; 1391 brp = dbt->brp - 1; 1392 sjw = dbt->sjw - 1; 1393 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1394 tseg2 = dbt->phase_seg2 - 1; 1395 1396 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1397 * This is mentioned in the "Bit Time Requirements for CAN FD" 1398 * paper presented at the International CAN Conference 2013 1399 */ 1400 if (dbt->bitrate > 2500000) { 1401 u32 tdco, ssp; 1402 1403 /* Use the same value of secondary sampling point 1404 * as the data sampling point 1405 */ 1406 ssp = dbt->sample_point; 1407 1408 /* Equation based on Bosch's M_CAN User Manual's 1409 * Transmitter Delay Compensation Section 1410 */ 1411 tdco = (cdev->can.clock.freq / 1000) * 1412 ssp / dbt->bitrate; 1413 1414 /* Max valid TDCO value is 127 */ 1415 if (tdco > 127) { 1416 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1417 tdco); 1418 tdco = 127; 1419 } 1420 1421 reg_btp |= DBTP_TDC; 1422 m_can_write(cdev, M_CAN_TDCR, 1423 FIELD_PREP(TDCR_TDCO_MASK, tdco)); 1424 } 1425 1426 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) | 1427 FIELD_PREP(DBTP_DSJW_MASK, sjw) | 1428 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) | 1429 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2); 1430 1431 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1432 } 1433 1434 return 0; 1435 } 1436 1437 /* Configure M_CAN chip: 1438 * - set rx buffer/fifo element size 1439 * - configure rx fifo 1440 * - accept non-matching frame into fifo 0 1441 * - configure tx buffer 1442 * - >= v3.1.x: TX FIFO is used 1443 * - configure mode 1444 * - setup bittiming 1445 * - configure timestamp generation 1446 */ 1447 static int m_can_chip_config(struct net_device *dev) 1448 { 1449 struct m_can_classdev *cdev = netdev_priv(dev); 1450 u32 interrupts = IR_ALL_INT; 1451 u32 cccr, test; 1452 int err; 1453 1454 err = m_can_init_ram(cdev); 1455 if (err) { 1456 dev_err(cdev->dev, "Message RAM configuration failed\n"); 1457 return err; 1458 } 1459 1460 /* Disable unused interrupts */ 1461 interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF | 1462 IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F | 1463 IR_TSW); 1464 1465 err = m_can_config_enable(cdev); 1466 if (err) 1467 return err; 1468 1469 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1470 m_can_write(cdev, M_CAN_RXESC, 1471 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) | 1472 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) | 1473 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B)); 1474 1475 /* Accept Non-matching Frames Into FIFO 0 */ 1476 m_can_write(cdev, M_CAN_GFC, 0x0); 1477 1478 if (cdev->version == 30) { 1479 /* only support one Tx Buffer currently */ 1480 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) | 1481 cdev->mcfg[MRAM_TXB].off); 1482 } else { 1483 /* TX FIFO is used for newer IP Core versions */ 1484 m_can_write(cdev, M_CAN_TXBC, 1485 FIELD_PREP(TXBC_TFQS_MASK, 1486 cdev->mcfg[MRAM_TXB].num) | 1487 cdev->mcfg[MRAM_TXB].off); 1488 } 1489 1490 /* support 64 bytes payload */ 1491 m_can_write(cdev, M_CAN_TXESC, 1492 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B)); 1493 1494 /* TX Event FIFO */ 1495 if (cdev->version == 30) { 1496 m_can_write(cdev, M_CAN_TXEFC, 1497 FIELD_PREP(TXEFC_EFS_MASK, 1) | 1498 cdev->mcfg[MRAM_TXE].off); 1499 } else { 1500 /* Full TX Event FIFO is used */ 1501 m_can_write(cdev, M_CAN_TXEFC, 1502 FIELD_PREP(TXEFC_EFWM_MASK, 1503 cdev->tx_max_coalesced_frames_irq) | 1504 FIELD_PREP(TXEFC_EFS_MASK, 1505 cdev->mcfg[MRAM_TXE].num) | 1506 cdev->mcfg[MRAM_TXE].off); 1507 } 1508 1509 /* rx fifo configuration, blocking mode, fifo size 1 */ 1510 m_can_write(cdev, M_CAN_RXF0C, 1511 FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) | 1512 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) | 1513 cdev->mcfg[MRAM_RXF0].off); 1514 1515 m_can_write(cdev, M_CAN_RXF1C, 1516 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) | 1517 cdev->mcfg[MRAM_RXF1].off); 1518 1519 cccr = m_can_read(cdev, M_CAN_CCCR); 1520 test = m_can_read(cdev, M_CAN_TEST); 1521 test &= ~TEST_LBCK; 1522 if (cdev->version == 30) { 1523 /* Version 3.0.x */ 1524 1525 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1526 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) | 1527 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK))); 1528 1529 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1530 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS); 1531 1532 } else { 1533 /* Version 3.1.x or 3.2.x */ 1534 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1535 CCCR_NISO | CCCR_DAR); 1536 1537 /* Only 3.2.x has NISO Bit implemented */ 1538 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1539 cccr |= CCCR_NISO; 1540 1541 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1542 cccr |= (CCCR_BRSE | CCCR_FDOE); 1543 } 1544 1545 /* Loopback Mode */ 1546 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1547 cccr |= CCCR_TEST | CCCR_MON; 1548 test |= TEST_LBCK; 1549 } 1550 1551 /* Enable Monitoring (all versions) */ 1552 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1553 cccr |= CCCR_MON; 1554 1555 /* Disable Auto Retransmission (all versions) */ 1556 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1557 cccr |= CCCR_DAR; 1558 1559 /* Write config */ 1560 m_can_write(cdev, M_CAN_CCCR, cccr); 1561 m_can_write(cdev, M_CAN_TEST, test); 1562 1563 /* Enable interrupts */ 1564 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) { 1565 if (cdev->version == 30) 1566 interrupts &= ~(IR_ERR_LEC_30X); 1567 else 1568 interrupts &= ~(IR_ERR_LEC_31X); 1569 } 1570 cdev->active_interrupts = 0; 1571 m_can_interrupt_enable(cdev, interrupts); 1572 1573 /* route all interrupts to INT0 */ 1574 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1575 1576 /* set bittiming params */ 1577 m_can_set_bittiming(dev); 1578 1579 /* enable internal timestamp generation, with a prescaler of 16. The 1580 * prescaler is applied to the nominal bit timing 1581 */ 1582 m_can_write(cdev, M_CAN_TSCC, 1583 FIELD_PREP(TSCC_TCP_MASK, 0xf) | 1584 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL)); 1585 1586 err = m_can_config_disable(cdev); 1587 if (err) 1588 return err; 1589 1590 if (cdev->ops->init) 1591 cdev->ops->init(cdev); 1592 1593 return 0; 1594 } 1595 1596 static int m_can_start(struct net_device *dev) 1597 { 1598 struct m_can_classdev *cdev = netdev_priv(dev); 1599 int ret; 1600 1601 /* basic m_can configuration */ 1602 ret = m_can_chip_config(dev); 1603 if (ret) 1604 return ret; 1605 1606 netdev_queue_set_dql_min_limit(netdev_get_tx_queue(cdev->net, 0), 1607 cdev->tx_max_coalesced_frames); 1608 1609 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1610 1611 m_can_enable_all_interrupts(cdev); 1612 1613 if (cdev->version > 30) 1614 cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK, 1615 m_can_read(cdev, M_CAN_TXFQS)); 1616 1617 ret = m_can_cccr_update_bits(cdev, CCCR_INIT, 0); 1618 if (ret) 1619 netdev_err(dev, "failed to enter normal mode\n"); 1620 1621 return ret; 1622 } 1623 1624 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1625 { 1626 switch (mode) { 1627 case CAN_MODE_START: 1628 m_can_clean(dev); 1629 m_can_start(dev); 1630 netif_wake_queue(dev); 1631 break; 1632 default: 1633 return -EOPNOTSUPP; 1634 } 1635 1636 return 0; 1637 } 1638 1639 /* Checks core release number of M_CAN 1640 * returns 0 if an unsupported device is detected 1641 * else it returns the release and step coded as: 1642 * return value = 10 * <release> + 1 * <step> 1643 */ 1644 static int m_can_check_core_release(struct m_can_classdev *cdev) 1645 { 1646 u32 crel_reg; 1647 u8 rel; 1648 u8 step; 1649 int res; 1650 1651 /* Read Core Release Version and split into version number 1652 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1653 */ 1654 crel_reg = m_can_read(cdev, M_CAN_CREL); 1655 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg); 1656 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg); 1657 1658 if (rel == 3) { 1659 /* M_CAN v3.x.y: create return value */ 1660 res = 30 + step; 1661 } else { 1662 /* Unsupported M_CAN version */ 1663 res = 0; 1664 } 1665 1666 return res; 1667 } 1668 1669 /* Selectable Non ISO support only in version 3.2.x 1670 * Return 1 if the bit is writable, 0 if it is not, or negative on error. 1671 */ 1672 static int m_can_niso_supported(struct m_can_classdev *cdev) 1673 { 1674 int ret, niso; 1675 1676 ret = m_can_config_enable(cdev); 1677 if (ret) 1678 return ret; 1679 1680 /* First try to set the NISO bit. */ 1681 niso = m_can_cccr_update_bits(cdev, CCCR_NISO, CCCR_NISO); 1682 1683 /* Then clear the it again. */ 1684 ret = m_can_cccr_update_bits(cdev, CCCR_NISO, 0); 1685 if (ret) { 1686 dev_err(cdev->dev, "failed to revert the NON-ISO bit in CCCR\n"); 1687 return ret; 1688 } 1689 1690 ret = m_can_config_disable(cdev); 1691 if (ret) 1692 return ret; 1693 1694 return niso == 0; 1695 } 1696 1697 static int m_can_dev_setup(struct m_can_classdev *cdev) 1698 { 1699 struct net_device *dev = cdev->net; 1700 int m_can_version, err, niso; 1701 1702 m_can_version = m_can_check_core_release(cdev); 1703 /* return if unsupported version */ 1704 if (!m_can_version) { 1705 dev_err(cdev->dev, "Unsupported version number: %2d", 1706 m_can_version); 1707 return -EINVAL; 1708 } 1709 1710 /* Write the INIT bit, in case no hardware reset has happened before 1711 * the probe (for example, it was observed that the Intel Elkhart Lake 1712 * SoCs do not properly reset the CAN controllers on reboot) 1713 */ 1714 err = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT); 1715 if (err) 1716 return err; 1717 1718 if (!cdev->is_peripheral) 1719 netif_napi_add(dev, &cdev->napi, m_can_poll); 1720 1721 /* Shared properties of all M_CAN versions */ 1722 cdev->version = m_can_version; 1723 cdev->can.do_set_mode = m_can_set_mode; 1724 cdev->can.do_get_berr_counter = m_can_get_berr_counter; 1725 1726 /* Set M_CAN supported operations */ 1727 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1728 CAN_CTRLMODE_LISTENONLY | 1729 CAN_CTRLMODE_BERR_REPORTING | 1730 CAN_CTRLMODE_FD | 1731 CAN_CTRLMODE_ONE_SHOT; 1732 1733 /* Set properties depending on M_CAN version */ 1734 switch (cdev->version) { 1735 case 30: 1736 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1737 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1738 if (err) 1739 return err; 1740 cdev->can.bittiming_const = &m_can_bittiming_const_30X; 1741 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X; 1742 break; 1743 case 31: 1744 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1745 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1746 if (err) 1747 return err; 1748 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1749 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1750 break; 1751 case 32: 1752 case 33: 1753 /* Support both MCAN version v3.2.x and v3.3.0 */ 1754 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1755 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1756 1757 niso = m_can_niso_supported(cdev); 1758 if (niso < 0) 1759 return niso; 1760 if (niso) 1761 cdev->can.ctrlmode_supported |= CAN_CTRLMODE_FD_NON_ISO; 1762 break; 1763 default: 1764 dev_err(cdev->dev, "Unsupported version number: %2d", 1765 cdev->version); 1766 return -EINVAL; 1767 } 1768 1769 return 0; 1770 } 1771 1772 static void m_can_stop(struct net_device *dev) 1773 { 1774 struct m_can_classdev *cdev = netdev_priv(dev); 1775 int ret; 1776 1777 /* disable all interrupts */ 1778 m_can_disable_all_interrupts(cdev); 1779 1780 /* Set init mode to disengage from the network */ 1781 ret = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT); 1782 if (ret) 1783 netdev_err(dev, "failed to enter standby mode: %pe\n", 1784 ERR_PTR(ret)); 1785 1786 /* set the state as STOPPED */ 1787 cdev->can.state = CAN_STATE_STOPPED; 1788 } 1789 1790 static int m_can_close(struct net_device *dev) 1791 { 1792 struct m_can_classdev *cdev = netdev_priv(dev); 1793 1794 netif_stop_queue(dev); 1795 1796 m_can_stop(dev); 1797 if (dev->irq) 1798 free_irq(dev->irq, dev); 1799 1800 m_can_clean(dev); 1801 1802 if (cdev->is_peripheral) { 1803 destroy_workqueue(cdev->tx_wq); 1804 cdev->tx_wq = NULL; 1805 can_rx_offload_disable(&cdev->offload); 1806 } else { 1807 napi_disable(&cdev->napi); 1808 } 1809 1810 close_candev(dev); 1811 1812 m_can_clk_stop(cdev); 1813 phy_power_off(cdev->transceiver); 1814 1815 return 0; 1816 } 1817 1818 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev, 1819 struct sk_buff *skb) 1820 { 1821 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1822 u8 len_padded = DIV_ROUND_UP(cf->len, 4); 1823 struct m_can_fifo_element fifo_element; 1824 struct net_device *dev = cdev->net; 1825 u32 cccr, fdflags; 1826 int err; 1827 u32 putidx; 1828 unsigned int frame_len = can_skb_get_frame_len(skb); 1829 1830 /* Generate ID field for TX buffer Element */ 1831 /* Common to all supported M_CAN versions */ 1832 if (cf->can_id & CAN_EFF_FLAG) { 1833 fifo_element.id = cf->can_id & CAN_EFF_MASK; 1834 fifo_element.id |= TX_BUF_XTD; 1835 } else { 1836 fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18); 1837 } 1838 1839 if (cf->can_id & CAN_RTR_FLAG) 1840 fifo_element.id |= TX_BUF_RTR; 1841 1842 if (cdev->version == 30) { 1843 netif_stop_queue(dev); 1844 1845 fifo_element.dlc = can_fd_len2dlc(cf->len) << 16; 1846 1847 /* Write the frame ID, DLC, and payload to the FIFO element. */ 1848 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_element, 2); 1849 if (err) 1850 goto out_fail; 1851 1852 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA, 1853 cf->data, len_padded); 1854 if (err) 1855 goto out_fail; 1856 1857 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1858 cccr = m_can_read(cdev, M_CAN_CCCR); 1859 cccr &= ~CCCR_CMR_MASK; 1860 if (can_is_canfd_skb(skb)) { 1861 if (cf->flags & CANFD_BRS) 1862 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1863 CCCR_CMR_CANFD_BRS); 1864 else 1865 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1866 CCCR_CMR_CANFD); 1867 } else { 1868 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN); 1869 } 1870 m_can_write(cdev, M_CAN_CCCR, cccr); 1871 } 1872 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1873 1874 can_put_echo_skb(skb, dev, 0, frame_len); 1875 1876 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1877 /* End of xmit function for version 3.0.x */ 1878 } else { 1879 /* Transmit routine for version >= v3.1.x */ 1880 1881 /* get put index for frame */ 1882 putidx = cdev->tx_fifo_putidx; 1883 1884 /* Construct DLC Field, with CAN-FD configuration. 1885 * Use the put index of the fifo as the message marker, 1886 * used in the TX interrupt for sending the correct echo frame. 1887 */ 1888 1889 /* get CAN FD configuration of frame */ 1890 fdflags = 0; 1891 if (can_is_canfd_skb(skb)) { 1892 fdflags |= TX_BUF_FDF; 1893 if (cf->flags & CANFD_BRS) 1894 fdflags |= TX_BUF_BRS; 1895 } 1896 1897 fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) | 1898 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) | 1899 fdflags | TX_BUF_EFC; 1900 1901 memcpy_and_pad(fifo_element.data, CANFD_MAX_DLEN, &cf->data, 1902 cf->len, 0); 1903 1904 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, 1905 &fifo_element, 2 + len_padded); 1906 if (err) 1907 goto out_fail; 1908 1909 /* Push loopback echo. 1910 * Will be looped back on TX interrupt based on message marker 1911 */ 1912 can_put_echo_skb(skb, dev, putidx, frame_len); 1913 1914 if (cdev->is_peripheral) { 1915 /* Delay enabling TX FIFO element */ 1916 cdev->tx_peripheral_submit |= BIT(putidx); 1917 } else { 1918 /* Enable TX FIFO element to start transfer */ 1919 m_can_write(cdev, M_CAN_TXBAR, BIT(putidx)); 1920 } 1921 cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ? 1922 0 : cdev->tx_fifo_putidx); 1923 } 1924 1925 return NETDEV_TX_OK; 1926 1927 out_fail: 1928 netdev_err(dev, "FIFO write returned %d\n", err); 1929 m_can_disable_all_interrupts(cdev); 1930 return NETDEV_TX_BUSY; 1931 } 1932 1933 static void m_can_tx_submit(struct m_can_classdev *cdev) 1934 { 1935 if (cdev->version == 30) 1936 return; 1937 if (!cdev->is_peripheral) 1938 return; 1939 1940 m_can_write(cdev, M_CAN_TXBAR, cdev->tx_peripheral_submit); 1941 cdev->tx_peripheral_submit = 0; 1942 } 1943 1944 static void m_can_tx_work_queue(struct work_struct *ws) 1945 { 1946 struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work); 1947 struct m_can_classdev *cdev = op->cdev; 1948 struct sk_buff *skb = op->skb; 1949 1950 op->skb = NULL; 1951 m_can_tx_handler(cdev, skb); 1952 if (op->submit) 1953 m_can_tx_submit(cdev); 1954 } 1955 1956 static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb, 1957 bool submit) 1958 { 1959 cdev->tx_ops[cdev->next_tx_op].skb = skb; 1960 cdev->tx_ops[cdev->next_tx_op].submit = submit; 1961 queue_work(cdev->tx_wq, &cdev->tx_ops[cdev->next_tx_op].work); 1962 1963 ++cdev->next_tx_op; 1964 if (cdev->next_tx_op >= cdev->tx_fifo_size) 1965 cdev->next_tx_op = 0; 1966 } 1967 1968 static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev, 1969 struct sk_buff *skb) 1970 { 1971 bool submit; 1972 1973 ++cdev->nr_txs_without_submit; 1974 if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames || 1975 !netdev_xmit_more()) { 1976 cdev->nr_txs_without_submit = 0; 1977 submit = true; 1978 } else { 1979 submit = false; 1980 } 1981 m_can_tx_queue_skb(cdev, skb, submit); 1982 1983 return NETDEV_TX_OK; 1984 } 1985 1986 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1987 struct net_device *dev) 1988 { 1989 struct m_can_classdev *cdev = netdev_priv(dev); 1990 unsigned int frame_len; 1991 netdev_tx_t ret; 1992 1993 if (can_dev_dropped_skb(dev, skb)) 1994 return NETDEV_TX_OK; 1995 1996 frame_len = can_skb_get_frame_len(skb); 1997 1998 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1999 m_can_clean(cdev->net); 2000 return NETDEV_TX_OK; 2001 } 2002 2003 ret = m_can_start_tx(cdev); 2004 if (ret != NETDEV_TX_OK) 2005 return ret; 2006 2007 netdev_sent_queue(dev, frame_len); 2008 2009 if (cdev->is_peripheral) 2010 ret = m_can_start_peripheral_xmit(cdev, skb); 2011 else 2012 ret = m_can_tx_handler(cdev, skb); 2013 2014 if (ret != NETDEV_TX_OK) 2015 netdev_completed_queue(dev, 1, frame_len); 2016 2017 return ret; 2018 } 2019 2020 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer) 2021 { 2022 struct m_can_classdev *cdev = container_of(timer, struct 2023 m_can_classdev, hrtimer); 2024 int ret; 2025 2026 if (cdev->can.state == CAN_STATE_BUS_OFF || 2027 cdev->can.state == CAN_STATE_STOPPED) 2028 return HRTIMER_NORESTART; 2029 2030 ret = m_can_interrupt_handler(cdev); 2031 2032 /* On error or if napi is scheduled to read, stop the timer */ 2033 if (ret < 0 || napi_is_scheduled(&cdev->napi)) 2034 return HRTIMER_NORESTART; 2035 2036 hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS)); 2037 2038 return HRTIMER_RESTART; 2039 } 2040 2041 static int m_can_open(struct net_device *dev) 2042 { 2043 struct m_can_classdev *cdev = netdev_priv(dev); 2044 int err; 2045 2046 err = phy_power_on(cdev->transceiver); 2047 if (err) 2048 return err; 2049 2050 err = m_can_clk_start(cdev); 2051 if (err) 2052 goto out_phy_power_off; 2053 2054 /* open the can device */ 2055 err = open_candev(dev); 2056 if (err) { 2057 netdev_err(dev, "failed to open can device\n"); 2058 goto exit_disable_clks; 2059 } 2060 2061 if (cdev->is_peripheral) 2062 can_rx_offload_enable(&cdev->offload); 2063 else 2064 napi_enable(&cdev->napi); 2065 2066 /* register interrupt handler */ 2067 if (cdev->is_peripheral) { 2068 cdev->tx_wq = alloc_ordered_workqueue("mcan_wq", 2069 WQ_FREEZABLE | WQ_MEM_RECLAIM); 2070 if (!cdev->tx_wq) { 2071 err = -ENOMEM; 2072 goto out_wq_fail; 2073 } 2074 2075 for (int i = 0; i != cdev->tx_fifo_size; ++i) { 2076 cdev->tx_ops[i].cdev = cdev; 2077 INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue); 2078 } 2079 2080 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 2081 IRQF_ONESHOT, 2082 dev->name, dev); 2083 } else if (dev->irq) { 2084 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 2085 dev); 2086 } 2087 2088 if (err < 0) { 2089 netdev_err(dev, "failed to request interrupt\n"); 2090 goto exit_irq_fail; 2091 } 2092 2093 /* start the m_can controller */ 2094 err = m_can_start(dev); 2095 if (err) 2096 goto exit_start_fail; 2097 2098 netif_start_queue(dev); 2099 2100 return 0; 2101 2102 exit_start_fail: 2103 if (cdev->is_peripheral || dev->irq) 2104 free_irq(dev->irq, dev); 2105 exit_irq_fail: 2106 if (cdev->is_peripheral) 2107 destroy_workqueue(cdev->tx_wq); 2108 out_wq_fail: 2109 if (cdev->is_peripheral) 2110 can_rx_offload_disable(&cdev->offload); 2111 else 2112 napi_disable(&cdev->napi); 2113 close_candev(dev); 2114 exit_disable_clks: 2115 m_can_clk_stop(cdev); 2116 out_phy_power_off: 2117 phy_power_off(cdev->transceiver); 2118 return err; 2119 } 2120 2121 static const struct net_device_ops m_can_netdev_ops = { 2122 .ndo_open = m_can_open, 2123 .ndo_stop = m_can_close, 2124 .ndo_start_xmit = m_can_start_xmit, 2125 .ndo_change_mtu = can_change_mtu, 2126 }; 2127 2128 static int m_can_get_coalesce(struct net_device *dev, 2129 struct ethtool_coalesce *ec, 2130 struct kernel_ethtool_coalesce *kec, 2131 struct netlink_ext_ack *ext_ack) 2132 { 2133 struct m_can_classdev *cdev = netdev_priv(dev); 2134 2135 ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq; 2136 ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq; 2137 ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames; 2138 ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq; 2139 ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq; 2140 2141 return 0; 2142 } 2143 2144 static int m_can_set_coalesce(struct net_device *dev, 2145 struct ethtool_coalesce *ec, 2146 struct kernel_ethtool_coalesce *kec, 2147 struct netlink_ext_ack *ext_ack) 2148 { 2149 struct m_can_classdev *cdev = netdev_priv(dev); 2150 2151 if (cdev->can.state != CAN_STATE_STOPPED) { 2152 netdev_err(dev, "Device is in use, please shut it down first\n"); 2153 return -EBUSY; 2154 } 2155 2156 if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) { 2157 netdev_err(dev, "rx-frames-irq %u greater than the RX FIFO %u\n", 2158 ec->rx_max_coalesced_frames_irq, 2159 cdev->mcfg[MRAM_RXF0].num); 2160 return -EINVAL; 2161 } 2162 if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) { 2163 netdev_err(dev, "rx-frames-irq and rx-usecs-irq can only be set together\n"); 2164 return -EINVAL; 2165 } 2166 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) { 2167 netdev_err(dev, "tx-frames-irq %u greater than the TX event FIFO %u\n", 2168 ec->tx_max_coalesced_frames_irq, 2169 cdev->mcfg[MRAM_TXE].num); 2170 return -EINVAL; 2171 } 2172 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) { 2173 netdev_err(dev, "tx-frames-irq %u greater than the TX FIFO %u\n", 2174 ec->tx_max_coalesced_frames_irq, 2175 cdev->mcfg[MRAM_TXB].num); 2176 return -EINVAL; 2177 } 2178 if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) { 2179 netdev_err(dev, "tx-frames-irq and tx-usecs-irq can only be set together\n"); 2180 return -EINVAL; 2181 } 2182 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) { 2183 netdev_err(dev, "tx-frames %u greater than the TX event FIFO %u\n", 2184 ec->tx_max_coalesced_frames, 2185 cdev->mcfg[MRAM_TXE].num); 2186 return -EINVAL; 2187 } 2188 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) { 2189 netdev_err(dev, "tx-frames %u greater than the TX FIFO %u\n", 2190 ec->tx_max_coalesced_frames, 2191 cdev->mcfg[MRAM_TXB].num); 2192 return -EINVAL; 2193 } 2194 if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 && 2195 ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) { 2196 netdev_err(dev, "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n", 2197 ec->rx_coalesce_usecs_irq, 2198 ec->tx_coalesce_usecs_irq); 2199 return -EINVAL; 2200 } 2201 2202 cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq; 2203 cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq; 2204 cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames; 2205 cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq; 2206 cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq; 2207 2208 if (cdev->rx_coalesce_usecs_irq) 2209 cdev->irq_timer_wait = 2210 ns_to_ktime(cdev->rx_coalesce_usecs_irq * NSEC_PER_USEC); 2211 else 2212 cdev->irq_timer_wait = 2213 ns_to_ktime(cdev->tx_coalesce_usecs_irq * NSEC_PER_USEC); 2214 2215 return 0; 2216 } 2217 2218 static const struct ethtool_ops m_can_ethtool_ops_coalescing = { 2219 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ | 2220 ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ | 2221 ETHTOOL_COALESCE_TX_USECS_IRQ | 2222 ETHTOOL_COALESCE_TX_MAX_FRAMES | 2223 ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ, 2224 .get_ts_info = ethtool_op_get_ts_info, 2225 .get_coalesce = m_can_get_coalesce, 2226 .set_coalesce = m_can_set_coalesce, 2227 }; 2228 2229 static const struct ethtool_ops m_can_ethtool_ops = { 2230 .get_ts_info = ethtool_op_get_ts_info, 2231 }; 2232 2233 static int register_m_can_dev(struct m_can_classdev *cdev) 2234 { 2235 struct net_device *dev = cdev->net; 2236 2237 dev->flags |= IFF_ECHO; /* we support local echo */ 2238 dev->netdev_ops = &m_can_netdev_ops; 2239 if (dev->irq && cdev->is_peripheral) 2240 dev->ethtool_ops = &m_can_ethtool_ops_coalescing; 2241 else 2242 dev->ethtool_ops = &m_can_ethtool_ops; 2243 2244 return register_candev(dev); 2245 } 2246 2247 int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size) 2248 { 2249 u32 total_size; 2250 2251 total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off + 2252 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 2253 if (total_size > mram_max_size) { 2254 dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n", 2255 total_size, mram_max_size); 2256 return -EINVAL; 2257 } 2258 2259 return 0; 2260 } 2261 EXPORT_SYMBOL_GPL(m_can_check_mram_cfg); 2262 2263 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 2264 const u32 *mram_config_vals) 2265 { 2266 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 2267 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 2268 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 2269 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 2270 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 2271 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 2272 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 2273 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 2274 FIELD_MAX(RXFC_FS_MASK); 2275 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 2276 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 2277 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 2278 FIELD_MAX(RXFC_FS_MASK); 2279 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 2280 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 2281 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 2282 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 2283 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 2284 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 2285 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 2286 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 2287 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 2288 FIELD_MAX(TXBC_NDTB_MASK); 2289 2290 dev_dbg(cdev->dev, 2291 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 2292 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 2293 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 2294 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 2295 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 2296 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 2297 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 2298 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 2299 } 2300 2301 int m_can_init_ram(struct m_can_classdev *cdev) 2302 { 2303 int end, i, start; 2304 int err = 0; 2305 2306 /* initialize the entire Message RAM in use to avoid possible 2307 * ECC/parity checksum errors when reading an uninitialized buffer 2308 */ 2309 start = cdev->mcfg[MRAM_SIDF].off; 2310 end = cdev->mcfg[MRAM_TXB].off + 2311 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 2312 2313 for (i = start; i < end; i += 4) { 2314 err = m_can_fifo_write_no_off(cdev, i, 0x0); 2315 if (err) 2316 break; 2317 } 2318 2319 return err; 2320 } 2321 EXPORT_SYMBOL_GPL(m_can_init_ram); 2322 2323 int m_can_class_get_clocks(struct m_can_classdev *cdev) 2324 { 2325 int ret = 0; 2326 2327 cdev->hclk = devm_clk_get(cdev->dev, "hclk"); 2328 cdev->cclk = devm_clk_get(cdev->dev, "cclk"); 2329 2330 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) { 2331 dev_err(cdev->dev, "no clock found\n"); 2332 ret = -ENODEV; 2333 } 2334 2335 return ret; 2336 } 2337 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 2338 2339 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev, 2340 int sizeof_priv) 2341 { 2342 struct m_can_classdev *class_dev = NULL; 2343 u32 mram_config_vals[MRAM_CFG_LEN]; 2344 struct net_device *net_dev; 2345 u32 tx_fifo_size; 2346 int ret; 2347 2348 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 2349 "bosch,mram-cfg", 2350 mram_config_vals, 2351 sizeof(mram_config_vals) / 4); 2352 if (ret) { 2353 dev_err(dev, "Could not get Message RAM configuration."); 2354 goto out; 2355 } 2356 2357 /* Get TX FIFO size 2358 * Defines the total amount of echo buffers for loopback 2359 */ 2360 tx_fifo_size = mram_config_vals[7]; 2361 2362 /* allocate the m_can device */ 2363 net_dev = alloc_candev(sizeof_priv, tx_fifo_size); 2364 if (!net_dev) { 2365 dev_err(dev, "Failed to allocate CAN device"); 2366 goto out; 2367 } 2368 2369 class_dev = netdev_priv(net_dev); 2370 class_dev->net = net_dev; 2371 class_dev->dev = dev; 2372 SET_NETDEV_DEV(net_dev, dev); 2373 2374 m_can_of_parse_mram(class_dev, mram_config_vals); 2375 out: 2376 return class_dev; 2377 } 2378 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 2379 2380 void m_can_class_free_dev(struct net_device *net) 2381 { 2382 free_candev(net); 2383 } 2384 EXPORT_SYMBOL_GPL(m_can_class_free_dev); 2385 2386 int m_can_class_register(struct m_can_classdev *cdev) 2387 { 2388 int ret; 2389 2390 cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num, 2391 cdev->mcfg[MRAM_TXE].num)); 2392 if (cdev->is_peripheral) { 2393 cdev->tx_ops = 2394 devm_kzalloc(cdev->dev, 2395 cdev->tx_fifo_size * sizeof(*cdev->tx_ops), 2396 GFP_KERNEL); 2397 if (!cdev->tx_ops) { 2398 dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n"); 2399 return -ENOMEM; 2400 } 2401 } 2402 2403 ret = m_can_clk_start(cdev); 2404 if (ret) 2405 return ret; 2406 2407 if (cdev->is_peripheral) { 2408 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload, 2409 NAPI_POLL_WEIGHT); 2410 if (ret) 2411 goto clk_disable; 2412 } 2413 2414 if (!cdev->net->irq) { 2415 dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer"); 2416 hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, 2417 HRTIMER_MODE_REL_PINNED); 2418 cdev->hrtimer.function = &hrtimer_callback; 2419 } else { 2420 hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2421 cdev->hrtimer.function = m_can_coalescing_timer; 2422 } 2423 2424 ret = m_can_dev_setup(cdev); 2425 if (ret) 2426 goto rx_offload_del; 2427 2428 ret = register_m_can_dev(cdev); 2429 if (ret) { 2430 dev_err(cdev->dev, "registering %s failed (err=%d)\n", 2431 cdev->net->name, ret); 2432 goto rx_offload_del; 2433 } 2434 2435 of_can_transceiver(cdev->net); 2436 2437 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n", 2438 KBUILD_MODNAME, cdev->net->irq, cdev->version); 2439 2440 /* Probe finished 2441 * Stop clocks. They will be reactivated once the M_CAN device is opened 2442 */ 2443 m_can_clk_stop(cdev); 2444 2445 return 0; 2446 2447 rx_offload_del: 2448 if (cdev->is_peripheral) 2449 can_rx_offload_del(&cdev->offload); 2450 clk_disable: 2451 m_can_clk_stop(cdev); 2452 2453 return ret; 2454 } 2455 EXPORT_SYMBOL_GPL(m_can_class_register); 2456 2457 void m_can_class_unregister(struct m_can_classdev *cdev) 2458 { 2459 if (cdev->is_peripheral) 2460 can_rx_offload_del(&cdev->offload); 2461 unregister_candev(cdev->net); 2462 } 2463 EXPORT_SYMBOL_GPL(m_can_class_unregister); 2464 2465 int m_can_class_suspend(struct device *dev) 2466 { 2467 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2468 struct net_device *ndev = cdev->net; 2469 2470 if (netif_running(ndev)) { 2471 netif_stop_queue(ndev); 2472 netif_device_detach(ndev); 2473 2474 /* leave the chip running with rx interrupt enabled if it is 2475 * used as a wake-up source. Coalescing needs to be reset then, 2476 * the timer is cancelled here, interrupts are done in resume. 2477 */ 2478 if (cdev->pm_wake_source) { 2479 hrtimer_cancel(&cdev->hrtimer); 2480 m_can_write(cdev, M_CAN_IE, IR_RF0N); 2481 } else { 2482 m_can_stop(ndev); 2483 } 2484 2485 m_can_clk_stop(cdev); 2486 } 2487 2488 pinctrl_pm_select_sleep_state(dev); 2489 2490 cdev->can.state = CAN_STATE_SLEEPING; 2491 2492 return 0; 2493 } 2494 EXPORT_SYMBOL_GPL(m_can_class_suspend); 2495 2496 int m_can_class_resume(struct device *dev) 2497 { 2498 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2499 struct net_device *ndev = cdev->net; 2500 2501 pinctrl_pm_select_default_state(dev); 2502 2503 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 2504 2505 if (netif_running(ndev)) { 2506 int ret; 2507 2508 ret = m_can_clk_start(cdev); 2509 if (ret) 2510 return ret; 2511 2512 if (cdev->pm_wake_source) { 2513 /* Restore active interrupts but disable coalescing as 2514 * we may have missed important waterlevel interrupts 2515 * between suspend and resume. Timers are already 2516 * stopped in suspend. Here we enable all interrupts 2517 * again. 2518 */ 2519 cdev->active_interrupts |= IR_RF0N | IR_TEFN; 2520 m_can_write(cdev, M_CAN_IE, cdev->active_interrupts); 2521 } else { 2522 ret = m_can_start(ndev); 2523 if (ret) { 2524 m_can_clk_stop(cdev); 2525 return ret; 2526 } 2527 } 2528 2529 netif_device_attach(ndev); 2530 netif_start_queue(ndev); 2531 } 2532 2533 return 0; 2534 } 2535 EXPORT_SYMBOL_GPL(m_can_class_resume); 2536 2537 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 2538 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 2539 MODULE_LICENSE("GPL v2"); 2540 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 2541