1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Socket CAN driver for Aeroflex Gaisler GRCAN and GRHCAN. 4 * 5 * 2012 (c) Aeroflex Gaisler AB 6 * 7 * This driver supports GRCAN and GRHCAN CAN controllers available in the GRLIB 8 * VHDL IP core library. 9 * 10 * Full documentation of the GRCAN core can be found here: 11 * http://www.gaisler.com/products/grlib/grip.pdf 12 * 13 * See "Documentation/devicetree/bindings/net/can/grcan.txt" for information on 14 * open firmware properties. 15 * 16 * See "Documentation/ABI/testing/sysfs-class-net-grcan" for information on the 17 * sysfs interface. 18 * 19 * See "Documentation/admin-guide/kernel-parameters.rst" for information on the module 20 * parameters. 21 * 22 * Contributors: Andreas Larsson <andreas@gaisler.com> 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/interrupt.h> 28 #include <linux/netdevice.h> 29 #include <linux/delay.h> 30 #include <linux/ethtool.h> 31 #include <linux/io.h> 32 #include <linux/can/dev.h> 33 #include <linux/platform_device.h> 34 #include <linux/spinlock.h> 35 #include <linux/of.h> 36 #include <linux/of_irq.h> 37 38 #include <linux/dma-mapping.h> 39 40 #define DRV_NAME "grcan" 41 42 #define GRCAN_NAPI_WEIGHT 32 43 44 #define GRCAN_RESERVE_SIZE(slot1, slot2) (((slot2) - (slot1)) / 4 - 1) 45 46 struct grcan_registers { 47 u32 conf; /* 0x00 */ 48 u32 stat; /* 0x04 */ 49 u32 ctrl; /* 0x08 */ 50 u32 __reserved1[GRCAN_RESERVE_SIZE(0x08, 0x18)]; 51 u32 smask; /* 0x18 - CanMASK */ 52 u32 scode; /* 0x1c - CanCODE */ 53 u32 __reserved2[GRCAN_RESERVE_SIZE(0x1c, 0x100)]; 54 u32 pimsr; /* 0x100 */ 55 u32 pimr; /* 0x104 */ 56 u32 pisr; /* 0x108 */ 57 u32 pir; /* 0x10C */ 58 u32 imr; /* 0x110 */ 59 u32 picr; /* 0x114 */ 60 u32 __reserved3[GRCAN_RESERVE_SIZE(0x114, 0x200)]; 61 u32 txctrl; /* 0x200 */ 62 u32 txaddr; /* 0x204 */ 63 u32 txsize; /* 0x208 */ 64 u32 txwr; /* 0x20C */ 65 u32 txrd; /* 0x210 */ 66 u32 txirq; /* 0x214 */ 67 u32 __reserved4[GRCAN_RESERVE_SIZE(0x214, 0x300)]; 68 u32 rxctrl; /* 0x300 */ 69 u32 rxaddr; /* 0x304 */ 70 u32 rxsize; /* 0x308 */ 71 u32 rxwr; /* 0x30C */ 72 u32 rxrd; /* 0x310 */ 73 u32 rxirq; /* 0x314 */ 74 u32 rxmask; /* 0x318 */ 75 u32 rxcode; /* 0x31C */ 76 }; 77 78 #define GRCAN_CONF_ABORT 0x00000001 79 #define GRCAN_CONF_ENABLE0 0x00000002 80 #define GRCAN_CONF_ENABLE1 0x00000004 81 #define GRCAN_CONF_SELECT 0x00000008 82 #define GRCAN_CONF_SILENT 0x00000010 83 #define GRCAN_CONF_SAM 0x00000020 /* Available in some hardware */ 84 #define GRCAN_CONF_BPR 0x00000300 /* Note: not BRP */ 85 #define GRCAN_CONF_RSJ 0x00007000 86 #define GRCAN_CONF_PS1 0x00f00000 87 #define GRCAN_CONF_PS2 0x000f0000 88 #define GRCAN_CONF_SCALER 0xff000000 89 #define GRCAN_CONF_OPERATION \ 90 (GRCAN_CONF_ABORT | GRCAN_CONF_ENABLE0 | GRCAN_CONF_ENABLE1 \ 91 | GRCAN_CONF_SELECT | GRCAN_CONF_SILENT | GRCAN_CONF_SAM) 92 #define GRCAN_CONF_TIMING \ 93 (GRCAN_CONF_BPR | GRCAN_CONF_RSJ | GRCAN_CONF_PS1 \ 94 | GRCAN_CONF_PS2 | GRCAN_CONF_SCALER) 95 96 #define GRCAN_CONF_RSJ_MIN 1 97 #define GRCAN_CONF_RSJ_MAX 4 98 #define GRCAN_CONF_PS1_MIN 1 99 #define GRCAN_CONF_PS1_MAX 15 100 #define GRCAN_CONF_PS2_MIN 2 101 #define GRCAN_CONF_PS2_MAX 8 102 #define GRCAN_CONF_SCALER_MIN 0 103 #define GRCAN_CONF_SCALER_MAX 255 104 #define GRCAN_CONF_SCALER_INC 1 105 106 #define GRCAN_CONF_BPR_BIT 8 107 #define GRCAN_CONF_RSJ_BIT 12 108 #define GRCAN_CONF_PS1_BIT 20 109 #define GRCAN_CONF_PS2_BIT 16 110 #define GRCAN_CONF_SCALER_BIT 24 111 112 #define GRCAN_STAT_PASS 0x000001 113 #define GRCAN_STAT_OFF 0x000002 114 #define GRCAN_STAT_OR 0x000004 115 #define GRCAN_STAT_AHBERR 0x000008 116 #define GRCAN_STAT_ACTIVE 0x000010 117 #define GRCAN_STAT_RXERRCNT 0x00ff00 118 #define GRCAN_STAT_TXERRCNT 0xff0000 119 120 #define GRCAN_STAT_ERRCTR_RELATED (GRCAN_STAT_PASS | GRCAN_STAT_OFF) 121 122 #define GRCAN_STAT_RXERRCNT_BIT 8 123 #define GRCAN_STAT_TXERRCNT_BIT 16 124 125 #define GRCAN_STAT_ERRCNT_WARNING_LIMIT 96 126 #define GRCAN_STAT_ERRCNT_PASSIVE_LIMIT 127 127 128 #define GRCAN_CTRL_RESET 0x2 129 #define GRCAN_CTRL_ENABLE 0x1 130 131 #define GRCAN_TXCTRL_ENABLE 0x1 132 #define GRCAN_TXCTRL_ONGOING 0x2 133 #define GRCAN_TXCTRL_SINGLE 0x4 134 135 #define GRCAN_RXCTRL_ENABLE 0x1 136 #define GRCAN_RXCTRL_ONGOING 0x2 137 138 /* Relative offset of IRQ sources to AMBA Plug&Play */ 139 #define GRCAN_IRQIX_IRQ 0 140 #define GRCAN_IRQIX_TXSYNC 1 141 #define GRCAN_IRQIX_RXSYNC 2 142 143 #define GRCAN_IRQ_PASS 0x00001 144 #define GRCAN_IRQ_OFF 0x00002 145 #define GRCAN_IRQ_OR 0x00004 146 #define GRCAN_IRQ_RXAHBERR 0x00008 147 #define GRCAN_IRQ_TXAHBERR 0x00010 148 #define GRCAN_IRQ_RXIRQ 0x00020 149 #define GRCAN_IRQ_TXIRQ 0x00040 150 #define GRCAN_IRQ_RXFULL 0x00080 151 #define GRCAN_IRQ_TXEMPTY 0x00100 152 #define GRCAN_IRQ_RX 0x00200 153 #define GRCAN_IRQ_TX 0x00400 154 #define GRCAN_IRQ_RXSYNC 0x00800 155 #define GRCAN_IRQ_TXSYNC 0x01000 156 #define GRCAN_IRQ_RXERRCTR 0x02000 157 #define GRCAN_IRQ_TXERRCTR 0x04000 158 #define GRCAN_IRQ_RXMISS 0x08000 159 #define GRCAN_IRQ_TXLOSS 0x10000 160 161 #define GRCAN_IRQ_NONE 0 162 #define GRCAN_IRQ_ALL \ 163 (GRCAN_IRQ_PASS | GRCAN_IRQ_OFF | GRCAN_IRQ_OR \ 164 | GRCAN_IRQ_RXAHBERR | GRCAN_IRQ_TXAHBERR \ 165 | GRCAN_IRQ_RXIRQ | GRCAN_IRQ_TXIRQ \ 166 | GRCAN_IRQ_RXFULL | GRCAN_IRQ_TXEMPTY \ 167 | GRCAN_IRQ_RX | GRCAN_IRQ_TX | GRCAN_IRQ_RXSYNC \ 168 | GRCAN_IRQ_TXSYNC | GRCAN_IRQ_RXERRCTR \ 169 | GRCAN_IRQ_TXERRCTR | GRCAN_IRQ_RXMISS \ 170 | GRCAN_IRQ_TXLOSS) 171 172 #define GRCAN_IRQ_ERRCTR_RELATED (GRCAN_IRQ_RXERRCTR | GRCAN_IRQ_TXERRCTR \ 173 | GRCAN_IRQ_PASS | GRCAN_IRQ_OFF) 174 #define GRCAN_IRQ_ERRORS (GRCAN_IRQ_ERRCTR_RELATED | GRCAN_IRQ_OR \ 175 | GRCAN_IRQ_TXAHBERR | GRCAN_IRQ_RXAHBERR \ 176 | GRCAN_IRQ_TXLOSS) 177 #define GRCAN_IRQ_DEFAULT (GRCAN_IRQ_RX | GRCAN_IRQ_TX | GRCAN_IRQ_ERRORS) 178 179 #define GRCAN_MSG_SIZE 16 180 181 #define GRCAN_MSG_IDE 0x80000000 182 #define GRCAN_MSG_RTR 0x40000000 183 #define GRCAN_MSG_BID 0x1ffc0000 184 #define GRCAN_MSG_EID 0x1fffffff 185 #define GRCAN_MSG_IDE_BIT 31 186 #define GRCAN_MSG_RTR_BIT 30 187 #define GRCAN_MSG_BID_BIT 18 188 #define GRCAN_MSG_EID_BIT 0 189 190 #define GRCAN_MSG_DLC 0xf0000000 191 #define GRCAN_MSG_TXERRC 0x00ff0000 192 #define GRCAN_MSG_RXERRC 0x0000ff00 193 #define GRCAN_MSG_DLC_BIT 28 194 #define GRCAN_MSG_TXERRC_BIT 16 195 #define GRCAN_MSG_RXERRC_BIT 8 196 #define GRCAN_MSG_AHBERR 0x00000008 197 #define GRCAN_MSG_OR 0x00000004 198 #define GRCAN_MSG_OFF 0x00000002 199 #define GRCAN_MSG_PASS 0x00000001 200 201 #define GRCAN_MSG_DATA_SLOT_INDEX(i) (2 + (i) / 4) 202 #define GRCAN_MSG_DATA_SHIFT(i) ((3 - (i) % 4) * 8) 203 204 #define GRCAN_BUFFER_ALIGNMENT 1024 205 #define GRCAN_DEFAULT_BUFFER_SIZE 1024 206 #define GRCAN_VALID_TR_SIZE_MASK 0x001fffc0 207 208 #define GRCAN_INVALID_BUFFER_SIZE(s) \ 209 ((s) == 0 || ((s) & ~GRCAN_VALID_TR_SIZE_MASK)) 210 211 #if GRCAN_INVALID_BUFFER_SIZE(GRCAN_DEFAULT_BUFFER_SIZE) 212 #error "Invalid default buffer size" 213 #endif 214 215 struct grcan_dma_buffer { 216 size_t size; 217 void *buf; 218 dma_addr_t handle; 219 }; 220 221 struct grcan_dma { 222 size_t base_size; 223 void *base_buf; 224 dma_addr_t base_handle; 225 struct grcan_dma_buffer tx; 226 struct grcan_dma_buffer rx; 227 }; 228 229 /* GRCAN configuration parameters */ 230 struct grcan_device_config { 231 unsigned short enable0; 232 unsigned short enable1; 233 unsigned short select; 234 unsigned int txsize; 235 unsigned int rxsize; 236 }; 237 238 #define GRCAN_DEFAULT_DEVICE_CONFIG { \ 239 .enable0 = 0, \ 240 .enable1 = 0, \ 241 .select = 0, \ 242 .txsize = GRCAN_DEFAULT_BUFFER_SIZE, \ 243 .rxsize = GRCAN_DEFAULT_BUFFER_SIZE, \ 244 } 245 246 #define GRCAN_TXBUG_SAFE_GRLIB_VERSION 4100 247 #define GRLIB_VERSION_MASK 0xffff 248 249 /* GRCAN private data structure */ 250 struct grcan_priv { 251 struct can_priv can; /* must be the first member */ 252 struct net_device *dev; 253 struct device *ofdev_dev; 254 struct napi_struct napi; 255 256 struct grcan_registers __iomem *regs; /* ioremap'ed registers */ 257 struct grcan_device_config config; 258 struct grcan_dma dma; 259 260 struct sk_buff **echo_skb; /* We allocate this on our own */ 261 262 /* The echo skb pointer, pointing into echo_skb and indicating which 263 * frames can be echoed back. See the "Notes on the tx cyclic buffer 264 * handling"-comment for grcan_start_xmit for more details. 265 */ 266 u32 eskbp; 267 268 /* Lock for controlling changes to the netif tx queue state, accesses to 269 * the echo_skb pointer eskbp and for making sure that a running reset 270 * and/or a close of the interface is done without interference from 271 * other parts of the code. 272 * 273 * The echo_skb pointer, eskbp, should only be accessed under this lock 274 * as it can be changed in several places and together with decisions on 275 * whether to wake up the tx queue. 276 * 277 * The tx queue must never be woken up if there is a running reset or 278 * close in progress. 279 * 280 * A running reset (see below on need_txbug_workaround) should never be 281 * done if the interface is closing down and several running resets 282 * should never be scheduled simultaneously. 283 */ 284 spinlock_t lock; 285 286 /* Whether a workaround is needed due to a bug in older hardware. In 287 * this case, the driver both tries to prevent the bug from being 288 * triggered and recovers, if the bug nevertheless happens, by doing a 289 * running reset. A running reset, resets the device and continues from 290 * where it were without being noticeable from outside the driver (apart 291 * from slight delays). 292 */ 293 bool need_txbug_workaround; 294 295 /* To trigger initization of running reset and to trigger running reset 296 * respectively in the case of a hanged device due to a txbug. 297 */ 298 struct timer_list hang_timer; 299 struct timer_list rr_timer; 300 301 /* To avoid waking up the netif queue and restarting timers 302 * when a reset is scheduled or when closing of the device is 303 * undergoing 304 */ 305 bool resetting; 306 bool closing; 307 }; 308 309 /* Wait time for a short wait for ongoing to clear */ 310 #define GRCAN_SHORTWAIT_USECS 10 311 312 /* Limit on the number of transmitted bits of an eff frame according to the CAN 313 * specification: 1 bit start of frame, 32 bits arbitration field, 6 bits 314 * control field, 8 bytes data field, 16 bits crc field, 2 bits ACK field and 7 315 * bits end of frame 316 */ 317 #define GRCAN_EFF_FRAME_MAX_BITS (1+32+6+8*8+16+2+7) 318 319 #if defined(__BIG_ENDIAN) 320 static inline u32 grcan_read_reg(u32 __iomem *reg) 321 { 322 return ioread32be(reg); 323 } 324 325 static inline void grcan_write_reg(u32 __iomem *reg, u32 val) 326 { 327 iowrite32be(val, reg); 328 } 329 #else 330 static inline u32 grcan_read_reg(u32 __iomem *reg) 331 { 332 return ioread32(reg); 333 } 334 335 static inline void grcan_write_reg(u32 __iomem *reg, u32 val) 336 { 337 iowrite32(val, reg); 338 } 339 #endif 340 341 static inline void grcan_clear_bits(u32 __iomem *reg, u32 mask) 342 { 343 grcan_write_reg(reg, grcan_read_reg(reg) & ~mask); 344 } 345 346 static inline void grcan_set_bits(u32 __iomem *reg, u32 mask) 347 { 348 grcan_write_reg(reg, grcan_read_reg(reg) | mask); 349 } 350 351 static inline u32 grcan_read_bits(u32 __iomem *reg, u32 mask) 352 { 353 return grcan_read_reg(reg) & mask; 354 } 355 356 static inline void grcan_write_bits(u32 __iomem *reg, u32 value, u32 mask) 357 { 358 u32 old = grcan_read_reg(reg); 359 360 grcan_write_reg(reg, (old & ~mask) | (value & mask)); 361 } 362 363 /* a and b should both be in [0,size] and a == b == size should not hold */ 364 static inline u32 grcan_ring_add(u32 a, u32 b, u32 size) 365 { 366 u32 sum = a + b; 367 368 if (sum < size) 369 return sum; 370 else 371 return sum - size; 372 } 373 374 /* a and b should both be in [0,size) */ 375 static inline u32 grcan_ring_sub(u32 a, u32 b, u32 size) 376 { 377 return grcan_ring_add(a, size - b, size); 378 } 379 380 /* Available slots for new transmissions */ 381 static inline u32 grcan_txspace(size_t txsize, u32 txwr, u32 eskbp) 382 { 383 u32 slots = txsize / GRCAN_MSG_SIZE - 1; 384 u32 used = grcan_ring_sub(txwr, eskbp, txsize) / GRCAN_MSG_SIZE; 385 386 return slots - used; 387 } 388 389 /* Configuration parameters that can be set via module parameters */ 390 static struct grcan_device_config grcan_module_config = 391 GRCAN_DEFAULT_DEVICE_CONFIG; 392 393 static const struct can_bittiming_const grcan_bittiming_const = { 394 .name = DRV_NAME, 395 .tseg1_min = GRCAN_CONF_PS1_MIN + 1, 396 .tseg1_max = GRCAN_CONF_PS1_MAX + 1, 397 .tseg2_min = GRCAN_CONF_PS2_MIN, 398 .tseg2_max = GRCAN_CONF_PS2_MAX, 399 .sjw_max = GRCAN_CONF_RSJ_MAX, 400 .brp_min = GRCAN_CONF_SCALER_MIN + 1, 401 .brp_max = GRCAN_CONF_SCALER_MAX + 1, 402 .brp_inc = GRCAN_CONF_SCALER_INC, 403 }; 404 405 static int grcan_set_bittiming(struct net_device *dev) 406 { 407 struct grcan_priv *priv = netdev_priv(dev); 408 struct grcan_registers __iomem *regs = priv->regs; 409 struct can_bittiming *bt = &priv->can.bittiming; 410 u32 timing = 0; 411 int bpr, rsj, ps1, ps2, scaler; 412 413 /* Should never happen - function will not be called when 414 * device is up 415 */ 416 if (grcan_read_bits(®s->ctrl, GRCAN_CTRL_ENABLE)) 417 return -EBUSY; 418 419 bpr = 0; /* Note bpr and brp are different concepts */ 420 rsj = bt->sjw; 421 ps1 = (bt->prop_seg + bt->phase_seg1) - 1; /* tseg1 - 1 */ 422 ps2 = bt->phase_seg2; 423 scaler = (bt->brp - 1); 424 netdev_dbg(dev, "Request for BPR=%d, RSJ=%d, PS1=%d, PS2=%d, SCALER=%d", 425 bpr, rsj, ps1, ps2, scaler); 426 if (!(ps1 > ps2)) { 427 netdev_err(dev, "PS1 > PS2 must hold: PS1=%d, PS2=%d\n", 428 ps1, ps2); 429 return -EINVAL; 430 } 431 if (!(ps2 >= rsj)) { 432 netdev_err(dev, "PS2 >= RSJ must hold: PS2=%d, RSJ=%d\n", 433 ps2, rsj); 434 return -EINVAL; 435 } 436 437 timing |= (bpr << GRCAN_CONF_BPR_BIT) & GRCAN_CONF_BPR; 438 timing |= (rsj << GRCAN_CONF_RSJ_BIT) & GRCAN_CONF_RSJ; 439 timing |= (ps1 << GRCAN_CONF_PS1_BIT) & GRCAN_CONF_PS1; 440 timing |= (ps2 << GRCAN_CONF_PS2_BIT) & GRCAN_CONF_PS2; 441 timing |= (scaler << GRCAN_CONF_SCALER_BIT) & GRCAN_CONF_SCALER; 442 netdev_info(dev, "setting timing=0x%x\n", timing); 443 grcan_write_bits(®s->conf, timing, GRCAN_CONF_TIMING); 444 445 return 0; 446 } 447 448 static int grcan_get_berr_counter(const struct net_device *dev, 449 struct can_berr_counter *bec) 450 { 451 struct grcan_priv *priv = netdev_priv(dev); 452 struct grcan_registers __iomem *regs = priv->regs; 453 u32 status = grcan_read_reg(®s->stat); 454 455 bec->txerr = (status & GRCAN_STAT_TXERRCNT) >> GRCAN_STAT_TXERRCNT_BIT; 456 bec->rxerr = (status & GRCAN_STAT_RXERRCNT) >> GRCAN_STAT_RXERRCNT_BIT; 457 return 0; 458 } 459 460 static int grcan_poll(struct napi_struct *napi, int budget); 461 462 /* Reset device, but keep configuration information */ 463 static void grcan_reset(struct net_device *dev) 464 { 465 struct grcan_priv *priv = netdev_priv(dev); 466 struct grcan_registers __iomem *regs = priv->regs; 467 u32 config = grcan_read_reg(®s->conf); 468 469 grcan_set_bits(®s->ctrl, GRCAN_CTRL_RESET); 470 grcan_write_reg(®s->conf, config); 471 472 priv->eskbp = grcan_read_reg(®s->txrd); 473 priv->can.state = CAN_STATE_STOPPED; 474 475 /* Turn off hardware filtering - regs->rxcode set to 0 by reset */ 476 grcan_write_reg(®s->rxmask, 0); 477 } 478 479 /* stop device without changing any configurations */ 480 static void grcan_stop_hardware(struct net_device *dev) 481 { 482 struct grcan_priv *priv = netdev_priv(dev); 483 struct grcan_registers __iomem *regs = priv->regs; 484 485 grcan_write_reg(®s->imr, GRCAN_IRQ_NONE); 486 grcan_clear_bits(®s->txctrl, GRCAN_TXCTRL_ENABLE); 487 grcan_clear_bits(®s->rxctrl, GRCAN_RXCTRL_ENABLE); 488 grcan_clear_bits(®s->ctrl, GRCAN_CTRL_ENABLE); 489 } 490 491 /* Let priv->eskbp catch up to regs->txrd and echo back the skbs if echo 492 * is true and free them otherwise. 493 * 494 * If budget is >= 0, stop after handling at most budget skbs. Otherwise, 495 * continue until priv->eskbp catches up to regs->txrd. 496 * 497 * priv->lock *must* be held when calling this function 498 */ 499 static int catch_up_echo_skb(struct net_device *dev, int budget, bool echo) 500 { 501 struct grcan_priv *priv = netdev_priv(dev); 502 struct grcan_registers __iomem *regs = priv->regs; 503 struct grcan_dma *dma = &priv->dma; 504 struct net_device_stats *stats = &dev->stats; 505 int i, work_done; 506 507 /* Updates to priv->eskbp and wake-ups of the queue needs to 508 * be atomic towards the reads of priv->eskbp and shut-downs 509 * of the queue in grcan_start_xmit. 510 */ 511 u32 txrd = grcan_read_reg(®s->txrd); 512 513 for (work_done = 0; work_done < budget || budget < 0; work_done++) { 514 if (priv->eskbp == txrd) 515 break; 516 i = priv->eskbp / GRCAN_MSG_SIZE; 517 if (echo) { 518 /* Normal echo of messages */ 519 stats->tx_packets++; 520 stats->tx_bytes += can_get_echo_skb(dev, i, NULL); 521 } else { 522 /* For cleanup of untransmitted messages */ 523 can_free_echo_skb(dev, i, NULL); 524 } 525 526 priv->eskbp = grcan_ring_add(priv->eskbp, GRCAN_MSG_SIZE, 527 dma->tx.size); 528 txrd = grcan_read_reg(®s->txrd); 529 } 530 return work_done; 531 } 532 533 static void grcan_lost_one_shot_frame(struct net_device *dev) 534 { 535 struct grcan_priv *priv = netdev_priv(dev); 536 struct grcan_registers __iomem *regs = priv->regs; 537 struct grcan_dma *dma = &priv->dma; 538 u32 txrd; 539 unsigned long flags; 540 541 spin_lock_irqsave(&priv->lock, flags); 542 543 catch_up_echo_skb(dev, -1, true); 544 545 if (unlikely(grcan_read_bits(®s->txctrl, GRCAN_TXCTRL_ENABLE))) { 546 /* Should never happen */ 547 netdev_err(dev, "TXCTRL enabled at TXLOSS in one shot mode\n"); 548 } else { 549 /* By the time an GRCAN_IRQ_TXLOSS is generated in 550 * one-shot mode there is no problem in writing 551 * to TXRD even in versions of the hardware in 552 * which GRCAN_TXCTRL_ONGOING is not cleared properly 553 * in one-shot mode. 554 */ 555 556 /* Skip message and discard echo-skb */ 557 txrd = grcan_read_reg(®s->txrd); 558 txrd = grcan_ring_add(txrd, GRCAN_MSG_SIZE, dma->tx.size); 559 grcan_write_reg(®s->txrd, txrd); 560 catch_up_echo_skb(dev, -1, false); 561 562 if (!priv->resetting && !priv->closing && 563 !(priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)) { 564 netif_wake_queue(dev); 565 grcan_set_bits(®s->txctrl, GRCAN_TXCTRL_ENABLE); 566 } 567 } 568 569 spin_unlock_irqrestore(&priv->lock, flags); 570 } 571 572 static void grcan_err(struct net_device *dev, u32 sources, u32 status) 573 { 574 struct grcan_priv *priv = netdev_priv(dev); 575 struct grcan_registers __iomem *regs = priv->regs; 576 struct grcan_dma *dma = &priv->dma; 577 struct net_device_stats *stats = &dev->stats; 578 struct can_frame cf; 579 580 /* Zero potential error_frame */ 581 memset(&cf, 0, sizeof(cf)); 582 583 /* Message lost interrupt. This might be due to arbitration error, but 584 * is also triggered when there is no one else on the can bus or when 585 * there is a problem with the hardware interface or the bus itself. As 586 * arbitration errors can not be singled out, no error frames are 587 * generated reporting this event as an arbitration error. 588 */ 589 if (sources & GRCAN_IRQ_TXLOSS) { 590 /* Take care of failed one-shot transmit */ 591 if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 592 grcan_lost_one_shot_frame(dev); 593 594 /* Stop printing as soon as error passive or bus off is in 595 * effect to limit the amount of txloss debug printouts. 596 */ 597 if (!(status & GRCAN_STAT_ERRCTR_RELATED)) { 598 netdev_dbg(dev, "tx message lost\n"); 599 stats->tx_errors++; 600 } 601 } 602 603 /* Conditions dealing with the error counters. There is no interrupt for 604 * error warning, but there are interrupts for increases of the error 605 * counters. 606 */ 607 if ((sources & GRCAN_IRQ_ERRCTR_RELATED) || 608 (status & GRCAN_STAT_ERRCTR_RELATED)) { 609 enum can_state state = priv->can.state; 610 enum can_state oldstate = state; 611 u32 txerr = (status & GRCAN_STAT_TXERRCNT) 612 >> GRCAN_STAT_TXERRCNT_BIT; 613 u32 rxerr = (status & GRCAN_STAT_RXERRCNT) 614 >> GRCAN_STAT_RXERRCNT_BIT; 615 616 /* Figure out current state */ 617 if (status & GRCAN_STAT_OFF) { 618 state = CAN_STATE_BUS_OFF; 619 } else if (status & GRCAN_STAT_PASS) { 620 state = CAN_STATE_ERROR_PASSIVE; 621 } else if (txerr >= GRCAN_STAT_ERRCNT_WARNING_LIMIT || 622 rxerr >= GRCAN_STAT_ERRCNT_WARNING_LIMIT) { 623 state = CAN_STATE_ERROR_WARNING; 624 } else { 625 state = CAN_STATE_ERROR_ACTIVE; 626 } 627 628 /* Handle and report state changes */ 629 if (state != oldstate) { 630 switch (state) { 631 case CAN_STATE_BUS_OFF: 632 netdev_dbg(dev, "bus-off\n"); 633 netif_carrier_off(dev); 634 priv->can.can_stats.bus_off++; 635 636 /* Prevent the hardware from recovering from bus 637 * off on its own if restart is disabled. 638 */ 639 if (!priv->can.restart_ms) 640 grcan_stop_hardware(dev); 641 642 cf.can_id |= CAN_ERR_BUSOFF; 643 break; 644 645 case CAN_STATE_ERROR_PASSIVE: 646 netdev_dbg(dev, "Error passive condition\n"); 647 priv->can.can_stats.error_passive++; 648 649 cf.can_id |= CAN_ERR_CRTL; 650 if (txerr >= GRCAN_STAT_ERRCNT_PASSIVE_LIMIT) 651 cf.data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 652 if (rxerr >= GRCAN_STAT_ERRCNT_PASSIVE_LIMIT) 653 cf.data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 654 break; 655 656 case CAN_STATE_ERROR_WARNING: 657 netdev_dbg(dev, "Error warning condition\n"); 658 priv->can.can_stats.error_warning++; 659 660 cf.can_id |= CAN_ERR_CRTL; 661 if (txerr >= GRCAN_STAT_ERRCNT_WARNING_LIMIT) 662 cf.data[1] |= CAN_ERR_CRTL_TX_WARNING; 663 if (rxerr >= GRCAN_STAT_ERRCNT_WARNING_LIMIT) 664 cf.data[1] |= CAN_ERR_CRTL_RX_WARNING; 665 break; 666 667 case CAN_STATE_ERROR_ACTIVE: 668 netdev_dbg(dev, "Error active condition\n"); 669 cf.can_id |= CAN_ERR_CRTL; 670 break; 671 672 default: 673 /* There are no others at this point */ 674 break; 675 } 676 cf.can_id |= CAN_ERR_CNT; 677 cf.data[6] = txerr; 678 cf.data[7] = rxerr; 679 priv->can.state = state; 680 } 681 682 /* Report automatic restarts */ 683 if (priv->can.restart_ms && oldstate == CAN_STATE_BUS_OFF) { 684 unsigned long flags; 685 686 cf.can_id |= CAN_ERR_RESTARTED; 687 netdev_dbg(dev, "restarted\n"); 688 priv->can.can_stats.restarts++; 689 netif_carrier_on(dev); 690 691 spin_lock_irqsave(&priv->lock, flags); 692 693 if (!priv->resetting && !priv->closing) { 694 u32 txwr = grcan_read_reg(®s->txwr); 695 696 if (grcan_txspace(dma->tx.size, txwr, 697 priv->eskbp)) 698 netif_wake_queue(dev); 699 } 700 701 spin_unlock_irqrestore(&priv->lock, flags); 702 } 703 } 704 705 /* Data overrun interrupt */ 706 if ((sources & GRCAN_IRQ_OR) || (status & GRCAN_STAT_OR)) { 707 netdev_dbg(dev, "got data overrun interrupt\n"); 708 stats->rx_over_errors++; 709 stats->rx_errors++; 710 711 cf.can_id |= CAN_ERR_CRTL; 712 cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW; 713 } 714 715 /* AHB bus error interrupts (not CAN bus errors) - shut down the 716 * device. 717 */ 718 if (sources & (GRCAN_IRQ_TXAHBERR | GRCAN_IRQ_RXAHBERR) || 719 (status & GRCAN_STAT_AHBERR)) { 720 char *txrx = ""; 721 unsigned long flags; 722 723 if (sources & GRCAN_IRQ_TXAHBERR) { 724 txrx = "on tx "; 725 stats->tx_errors++; 726 } else if (sources & GRCAN_IRQ_RXAHBERR) { 727 txrx = "on rx "; 728 stats->rx_errors++; 729 } 730 netdev_err(dev, "Fatal AHB bus error %s- halting device\n", 731 txrx); 732 733 spin_lock_irqsave(&priv->lock, flags); 734 735 /* Prevent anything to be enabled again and halt device */ 736 priv->closing = true; 737 netif_stop_queue(dev); 738 grcan_stop_hardware(dev); 739 priv->can.state = CAN_STATE_STOPPED; 740 741 spin_unlock_irqrestore(&priv->lock, flags); 742 } 743 744 /* Pass on error frame if something to report, 745 * i.e. id contains some information 746 */ 747 if (cf.can_id) { 748 struct can_frame *skb_cf; 749 struct sk_buff *skb = alloc_can_err_skb(dev, &skb_cf); 750 751 if (skb == NULL) { 752 netdev_dbg(dev, "could not allocate error frame\n"); 753 return; 754 } 755 skb_cf->can_id |= cf.can_id; 756 memcpy(skb_cf->data, cf.data, sizeof(cf.data)); 757 758 netif_rx(skb); 759 } 760 } 761 762 static irqreturn_t grcan_interrupt(int irq, void *dev_id) 763 { 764 struct net_device *dev = dev_id; 765 struct grcan_priv *priv = netdev_priv(dev); 766 struct grcan_registers __iomem *regs = priv->regs; 767 u32 sources, status; 768 769 /* Find out the source */ 770 sources = grcan_read_reg(®s->pimsr); 771 if (!sources) 772 return IRQ_NONE; 773 grcan_write_reg(®s->picr, sources); 774 status = grcan_read_reg(®s->stat); 775 776 /* If we got TX progress, the device has not hanged, 777 * so disable the hang timer 778 */ 779 if (priv->need_txbug_workaround && 780 (sources & (GRCAN_IRQ_TX | GRCAN_IRQ_TXLOSS))) { 781 del_timer(&priv->hang_timer); 782 } 783 784 /* Frame(s) received or transmitted */ 785 if (sources & (GRCAN_IRQ_TX | GRCAN_IRQ_RX)) { 786 /* Disable tx/rx interrupts and schedule poll(). No need for 787 * locking as interference from a running reset at worst leads 788 * to an extra interrupt. 789 */ 790 grcan_clear_bits(®s->imr, GRCAN_IRQ_TX | GRCAN_IRQ_RX); 791 napi_schedule(&priv->napi); 792 } 793 794 /* (Potential) error conditions to take care of */ 795 if (sources & GRCAN_IRQ_ERRORS) 796 grcan_err(dev, sources, status); 797 798 return IRQ_HANDLED; 799 } 800 801 /* Reset device and restart operations from where they were. 802 * 803 * This assumes that RXCTRL & RXCTRL is properly disabled and that RX 804 * is not ONGOING (TX might be stuck in ONGOING due to a harwrware bug 805 * for single shot) 806 */ 807 static void grcan_running_reset(struct timer_list *t) 808 { 809 struct grcan_priv *priv = from_timer(priv, t, rr_timer); 810 struct net_device *dev = priv->dev; 811 struct grcan_registers __iomem *regs = priv->regs; 812 unsigned long flags; 813 814 /* This temporarily messes with eskbp, so we need to lock 815 * priv->lock 816 */ 817 spin_lock_irqsave(&priv->lock, flags); 818 819 priv->resetting = false; 820 del_timer(&priv->hang_timer); 821 del_timer(&priv->rr_timer); 822 823 if (!priv->closing) { 824 /* Save and reset - config register preserved by grcan_reset */ 825 u32 imr = grcan_read_reg(®s->imr); 826 827 u32 txaddr = grcan_read_reg(®s->txaddr); 828 u32 txsize = grcan_read_reg(®s->txsize); 829 u32 txwr = grcan_read_reg(®s->txwr); 830 u32 txrd = grcan_read_reg(®s->txrd); 831 u32 eskbp = priv->eskbp; 832 833 u32 rxaddr = grcan_read_reg(®s->rxaddr); 834 u32 rxsize = grcan_read_reg(®s->rxsize); 835 u32 rxwr = grcan_read_reg(®s->rxwr); 836 u32 rxrd = grcan_read_reg(®s->rxrd); 837 838 grcan_reset(dev); 839 840 /* Restore */ 841 grcan_write_reg(®s->txaddr, txaddr); 842 grcan_write_reg(®s->txsize, txsize); 843 grcan_write_reg(®s->txwr, txwr); 844 grcan_write_reg(®s->txrd, txrd); 845 priv->eskbp = eskbp; 846 847 grcan_write_reg(®s->rxaddr, rxaddr); 848 grcan_write_reg(®s->rxsize, rxsize); 849 grcan_write_reg(®s->rxwr, rxwr); 850 grcan_write_reg(®s->rxrd, rxrd); 851 852 /* Turn on device again */ 853 grcan_write_reg(®s->imr, imr); 854 priv->can.state = CAN_STATE_ERROR_ACTIVE; 855 grcan_write_reg(®s->txctrl, GRCAN_TXCTRL_ENABLE 856 | (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT 857 ? GRCAN_TXCTRL_SINGLE : 0)); 858 grcan_write_reg(®s->rxctrl, GRCAN_RXCTRL_ENABLE); 859 grcan_write_reg(®s->ctrl, GRCAN_CTRL_ENABLE); 860 861 /* Start queue if there is size and listen-onle mode is not 862 * enabled 863 */ 864 if (grcan_txspace(priv->dma.tx.size, txwr, priv->eskbp) && 865 !(priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)) 866 netif_wake_queue(dev); 867 } 868 869 spin_unlock_irqrestore(&priv->lock, flags); 870 871 netdev_err(dev, "Device reset and restored\n"); 872 } 873 874 /* Waiting time in usecs corresponding to the transmission of three maximum 875 * sized can frames in the given bitrate (in bits/sec). Waiting for this amount 876 * of time makes sure that the can controller have time to finish sending or 877 * receiving a frame with a good margin. 878 * 879 * usecs/sec * number of frames * bits/frame / bits/sec 880 */ 881 static inline u32 grcan_ongoing_wait_usecs(__u32 bitrate) 882 { 883 return 1000000 * 3 * GRCAN_EFF_FRAME_MAX_BITS / bitrate; 884 } 885 886 /* Set timer so that it will not fire until after a period in which the can 887 * controller have a good margin to finish transmitting a frame unless it has 888 * hanged 889 */ 890 static inline void grcan_reset_timer(struct timer_list *timer, __u32 bitrate) 891 { 892 u32 wait_jiffies = usecs_to_jiffies(grcan_ongoing_wait_usecs(bitrate)); 893 894 mod_timer(timer, jiffies + wait_jiffies); 895 } 896 897 /* Disable channels and schedule a running reset */ 898 static void grcan_initiate_running_reset(struct timer_list *t) 899 { 900 struct grcan_priv *priv = from_timer(priv, t, hang_timer); 901 struct net_device *dev = priv->dev; 902 struct grcan_registers __iomem *regs = priv->regs; 903 unsigned long flags; 904 905 netdev_err(dev, "Device seems hanged - reset scheduled\n"); 906 907 spin_lock_irqsave(&priv->lock, flags); 908 909 /* The main body of this function must never be executed again 910 * until after an execution of grcan_running_reset 911 */ 912 if (!priv->resetting && !priv->closing) { 913 priv->resetting = true; 914 netif_stop_queue(dev); 915 grcan_clear_bits(®s->txctrl, GRCAN_TXCTRL_ENABLE); 916 grcan_clear_bits(®s->rxctrl, GRCAN_RXCTRL_ENABLE); 917 grcan_reset_timer(&priv->rr_timer, priv->can.bittiming.bitrate); 918 } 919 920 spin_unlock_irqrestore(&priv->lock, flags); 921 } 922 923 static void grcan_free_dma_buffers(struct net_device *dev) 924 { 925 struct grcan_priv *priv = netdev_priv(dev); 926 struct grcan_dma *dma = &priv->dma; 927 928 dma_free_coherent(priv->ofdev_dev, dma->base_size, dma->base_buf, 929 dma->base_handle); 930 memset(dma, 0, sizeof(*dma)); 931 } 932 933 static int grcan_allocate_dma_buffers(struct net_device *dev, 934 size_t tsize, size_t rsize) 935 { 936 struct grcan_priv *priv = netdev_priv(dev); 937 struct grcan_dma *dma = &priv->dma; 938 struct grcan_dma_buffer *large = rsize > tsize ? &dma->rx : &dma->tx; 939 struct grcan_dma_buffer *small = rsize > tsize ? &dma->tx : &dma->rx; 940 size_t shift; 941 942 /* Need a whole number of GRCAN_BUFFER_ALIGNMENT for the large, 943 * i.e. first buffer 944 */ 945 size_t maxs = max(tsize, rsize); 946 size_t lsize = ALIGN(maxs, GRCAN_BUFFER_ALIGNMENT); 947 948 /* Put the small buffer after that */ 949 size_t ssize = min(tsize, rsize); 950 951 /* Extra GRCAN_BUFFER_ALIGNMENT to allow for alignment */ 952 dma->base_size = lsize + ssize + GRCAN_BUFFER_ALIGNMENT; 953 dma->base_buf = dma_alloc_coherent(priv->ofdev_dev, 954 dma->base_size, 955 &dma->base_handle, 956 GFP_KERNEL); 957 958 if (!dma->base_buf) 959 return -ENOMEM; 960 961 dma->tx.size = tsize; 962 dma->rx.size = rsize; 963 964 large->handle = ALIGN(dma->base_handle, GRCAN_BUFFER_ALIGNMENT); 965 small->handle = large->handle + lsize; 966 shift = large->handle - dma->base_handle; 967 968 large->buf = dma->base_buf + shift; 969 small->buf = large->buf + lsize; 970 971 return 0; 972 } 973 974 /* priv->lock *must* be held when calling this function */ 975 static int grcan_start(struct net_device *dev) 976 { 977 struct grcan_priv *priv = netdev_priv(dev); 978 struct grcan_registers __iomem *regs = priv->regs; 979 u32 confop, txctrl; 980 981 grcan_reset(dev); 982 983 grcan_write_reg(®s->txaddr, priv->dma.tx.handle); 984 grcan_write_reg(®s->txsize, priv->dma.tx.size); 985 /* regs->txwr, regs->txrd and priv->eskbp already set to 0 by reset */ 986 987 grcan_write_reg(®s->rxaddr, priv->dma.rx.handle); 988 grcan_write_reg(®s->rxsize, priv->dma.rx.size); 989 /* regs->rxwr and regs->rxrd already set to 0 by reset */ 990 991 /* Enable interrupts */ 992 grcan_read_reg(®s->pir); 993 grcan_write_reg(®s->imr, GRCAN_IRQ_DEFAULT); 994 995 /* Enable interfaces, channels and device */ 996 confop = GRCAN_CONF_ABORT 997 | (priv->config.enable0 ? GRCAN_CONF_ENABLE0 : 0) 998 | (priv->config.enable1 ? GRCAN_CONF_ENABLE1 : 0) 999 | (priv->config.select ? GRCAN_CONF_SELECT : 0) 1000 | (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY ? 1001 GRCAN_CONF_SILENT : 0) 1002 | (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ? 1003 GRCAN_CONF_SAM : 0); 1004 grcan_write_bits(®s->conf, confop, GRCAN_CONF_OPERATION); 1005 txctrl = GRCAN_TXCTRL_ENABLE 1006 | (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT 1007 ? GRCAN_TXCTRL_SINGLE : 0); 1008 grcan_write_reg(®s->txctrl, txctrl); 1009 grcan_write_reg(®s->rxctrl, GRCAN_RXCTRL_ENABLE); 1010 grcan_write_reg(®s->ctrl, GRCAN_CTRL_ENABLE); 1011 1012 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1013 1014 return 0; 1015 } 1016 1017 static int grcan_set_mode(struct net_device *dev, enum can_mode mode) 1018 { 1019 struct grcan_priv *priv = netdev_priv(dev); 1020 unsigned long flags; 1021 int err = 0; 1022 1023 if (mode == CAN_MODE_START) { 1024 /* This might be called to restart the device to recover from 1025 * bus off errors 1026 */ 1027 spin_lock_irqsave(&priv->lock, flags); 1028 if (priv->closing || priv->resetting) { 1029 err = -EBUSY; 1030 } else { 1031 netdev_info(dev, "Restarting device\n"); 1032 grcan_start(dev); 1033 if (!(priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)) 1034 netif_wake_queue(dev); 1035 } 1036 spin_unlock_irqrestore(&priv->lock, flags); 1037 return err; 1038 } 1039 return -EOPNOTSUPP; 1040 } 1041 1042 static int grcan_open(struct net_device *dev) 1043 { 1044 struct grcan_priv *priv = netdev_priv(dev); 1045 struct grcan_dma *dma = &priv->dma; 1046 unsigned long flags; 1047 int err; 1048 1049 /* Allocate memory */ 1050 err = grcan_allocate_dma_buffers(dev, priv->config.txsize, 1051 priv->config.rxsize); 1052 if (err) { 1053 netdev_err(dev, "could not allocate DMA buffers\n"); 1054 return err; 1055 } 1056 1057 priv->echo_skb = kcalloc(dma->tx.size, sizeof(*priv->echo_skb), 1058 GFP_KERNEL); 1059 if (!priv->echo_skb) { 1060 err = -ENOMEM; 1061 goto exit_free_dma_buffers; 1062 } 1063 priv->can.echo_skb_max = dma->tx.size; 1064 priv->can.echo_skb = priv->echo_skb; 1065 1066 /* Get can device up */ 1067 err = open_candev(dev); 1068 if (err) 1069 goto exit_free_echo_skb; 1070 1071 err = request_irq(dev->irq, grcan_interrupt, IRQF_SHARED, 1072 dev->name, dev); 1073 if (err) 1074 goto exit_close_candev; 1075 1076 napi_enable(&priv->napi); 1077 1078 spin_lock_irqsave(&priv->lock, flags); 1079 1080 grcan_start(dev); 1081 if (!(priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)) 1082 netif_start_queue(dev); 1083 priv->resetting = false; 1084 priv->closing = false; 1085 1086 spin_unlock_irqrestore(&priv->lock, flags); 1087 1088 return 0; 1089 1090 exit_close_candev: 1091 close_candev(dev); 1092 exit_free_echo_skb: 1093 kfree(priv->echo_skb); 1094 exit_free_dma_buffers: 1095 grcan_free_dma_buffers(dev); 1096 return err; 1097 } 1098 1099 static int grcan_close(struct net_device *dev) 1100 { 1101 struct grcan_priv *priv = netdev_priv(dev); 1102 unsigned long flags; 1103 1104 napi_disable(&priv->napi); 1105 1106 spin_lock_irqsave(&priv->lock, flags); 1107 1108 priv->closing = true; 1109 if (priv->need_txbug_workaround) { 1110 spin_unlock_irqrestore(&priv->lock, flags); 1111 del_timer_sync(&priv->hang_timer); 1112 del_timer_sync(&priv->rr_timer); 1113 spin_lock_irqsave(&priv->lock, flags); 1114 } 1115 netif_stop_queue(dev); 1116 grcan_stop_hardware(dev); 1117 priv->can.state = CAN_STATE_STOPPED; 1118 1119 spin_unlock_irqrestore(&priv->lock, flags); 1120 1121 free_irq(dev->irq, dev); 1122 close_candev(dev); 1123 1124 grcan_free_dma_buffers(dev); 1125 priv->can.echo_skb_max = 0; 1126 priv->can.echo_skb = NULL; 1127 kfree(priv->echo_skb); 1128 1129 return 0; 1130 } 1131 1132 static void grcan_transmit_catch_up(struct net_device *dev) 1133 { 1134 struct grcan_priv *priv = netdev_priv(dev); 1135 unsigned long flags; 1136 int work_done; 1137 1138 spin_lock_irqsave(&priv->lock, flags); 1139 1140 work_done = catch_up_echo_skb(dev, -1, true); 1141 if (work_done) { 1142 if (!priv->resetting && !priv->closing && 1143 !(priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)) 1144 netif_wake_queue(dev); 1145 1146 /* With napi we don't get TX interrupts for a while, 1147 * so prevent a running reset while catching up 1148 */ 1149 if (priv->need_txbug_workaround) 1150 del_timer(&priv->hang_timer); 1151 } 1152 1153 spin_unlock_irqrestore(&priv->lock, flags); 1154 } 1155 1156 static int grcan_receive(struct net_device *dev, int budget) 1157 { 1158 struct grcan_priv *priv = netdev_priv(dev); 1159 struct grcan_registers __iomem *regs = priv->regs; 1160 struct grcan_dma *dma = &priv->dma; 1161 struct net_device_stats *stats = &dev->stats; 1162 struct can_frame *cf; 1163 struct sk_buff *skb; 1164 u32 wr, rd, startrd; 1165 u32 *slot; 1166 u32 i, rtr, eff, j, shift; 1167 int work_done = 0; 1168 1169 rd = grcan_read_reg(®s->rxrd); 1170 startrd = rd; 1171 for (work_done = 0; work_done < budget; work_done++) { 1172 /* Check for packet to receive */ 1173 wr = grcan_read_reg(®s->rxwr); 1174 if (rd == wr) 1175 break; 1176 1177 /* Take care of packet */ 1178 skb = alloc_can_skb(dev, &cf); 1179 if (skb == NULL) { 1180 netdev_err(dev, 1181 "dropping frame: skb allocation failed\n"); 1182 stats->rx_dropped++; 1183 continue; 1184 } 1185 1186 slot = dma->rx.buf + rd; 1187 eff = slot[0] & GRCAN_MSG_IDE; 1188 rtr = slot[0] & GRCAN_MSG_RTR; 1189 if (eff) { 1190 cf->can_id = ((slot[0] & GRCAN_MSG_EID) 1191 >> GRCAN_MSG_EID_BIT); 1192 cf->can_id |= CAN_EFF_FLAG; 1193 } else { 1194 cf->can_id = ((slot[0] & GRCAN_MSG_BID) 1195 >> GRCAN_MSG_BID_BIT); 1196 } 1197 cf->len = can_cc_dlc2len((slot[1] & GRCAN_MSG_DLC) 1198 >> GRCAN_MSG_DLC_BIT); 1199 if (rtr) { 1200 cf->can_id |= CAN_RTR_FLAG; 1201 } else { 1202 for (i = 0; i < cf->len; i++) { 1203 j = GRCAN_MSG_DATA_SLOT_INDEX(i); 1204 shift = GRCAN_MSG_DATA_SHIFT(i); 1205 cf->data[i] = (u8)(slot[j] >> shift); 1206 } 1207 1208 stats->rx_bytes += cf->len; 1209 } 1210 stats->rx_packets++; 1211 1212 netif_receive_skb(skb); 1213 1214 rd = grcan_ring_add(rd, GRCAN_MSG_SIZE, dma->rx.size); 1215 } 1216 1217 /* Make sure everything is read before allowing hardware to 1218 * use the memory 1219 */ 1220 mb(); 1221 1222 /* Update read pointer - no need to check for ongoing */ 1223 if (likely(rd != startrd)) 1224 grcan_write_reg(®s->rxrd, rd); 1225 1226 return work_done; 1227 } 1228 1229 static int grcan_poll(struct napi_struct *napi, int budget) 1230 { 1231 struct grcan_priv *priv = container_of(napi, struct grcan_priv, napi); 1232 struct net_device *dev = priv->dev; 1233 struct grcan_registers __iomem *regs = priv->regs; 1234 unsigned long flags; 1235 int work_done; 1236 1237 work_done = grcan_receive(dev, budget); 1238 1239 grcan_transmit_catch_up(dev); 1240 1241 if (work_done < budget) { 1242 napi_complete(napi); 1243 1244 /* Guarantee no interference with a running reset that otherwise 1245 * could turn off interrupts. 1246 */ 1247 spin_lock_irqsave(&priv->lock, flags); 1248 1249 /* Enable tx and rx interrupts again. No need to check 1250 * priv->closing as napi_disable in grcan_close is waiting for 1251 * scheduled napi calls to finish. 1252 */ 1253 grcan_set_bits(®s->imr, GRCAN_IRQ_TX | GRCAN_IRQ_RX); 1254 1255 spin_unlock_irqrestore(&priv->lock, flags); 1256 } 1257 1258 return work_done; 1259 } 1260 1261 /* Work tx bug by waiting while for the risky situation to clear. If that fails, 1262 * drop a frame in one-shot mode or indicate a busy device otherwise. 1263 * 1264 * Returns 0 on successful wait. Otherwise it sets *netdev_tx_status to the 1265 * value that should be returned by grcan_start_xmit when aborting the xmit. 1266 */ 1267 static int grcan_txbug_workaround(struct net_device *dev, struct sk_buff *skb, 1268 u32 txwr, u32 oneshotmode, 1269 netdev_tx_t *netdev_tx_status) 1270 { 1271 struct grcan_priv *priv = netdev_priv(dev); 1272 struct grcan_registers __iomem *regs = priv->regs; 1273 struct grcan_dma *dma = &priv->dma; 1274 int i; 1275 unsigned long flags; 1276 1277 /* Wait a while for ongoing to be cleared or read pointer to catch up to 1278 * write pointer. The latter is needed due to a bug in older versions of 1279 * GRCAN in which ONGOING is not cleared properly one-shot mode when a 1280 * transmission fails. 1281 */ 1282 for (i = 0; i < GRCAN_SHORTWAIT_USECS; i++) { 1283 udelay(1); 1284 if (!grcan_read_bits(®s->txctrl, GRCAN_TXCTRL_ONGOING) || 1285 grcan_read_reg(®s->txrd) == txwr) { 1286 return 0; 1287 } 1288 } 1289 1290 /* Clean up, in case the situation was not resolved */ 1291 spin_lock_irqsave(&priv->lock, flags); 1292 if (!priv->resetting && !priv->closing) { 1293 /* Queue might have been stopped earlier in grcan_start_xmit */ 1294 if (grcan_txspace(dma->tx.size, txwr, priv->eskbp)) 1295 netif_wake_queue(dev); 1296 /* Set a timer to resolve a hanged tx controller */ 1297 if (!timer_pending(&priv->hang_timer)) 1298 grcan_reset_timer(&priv->hang_timer, 1299 priv->can.bittiming.bitrate); 1300 } 1301 spin_unlock_irqrestore(&priv->lock, flags); 1302 1303 if (oneshotmode) { 1304 /* In one-shot mode we should never end up here because 1305 * then the interrupt handler increases txrd on TXLOSS, 1306 * but it is consistent with one-shot mode to drop the 1307 * frame in this case. 1308 */ 1309 kfree_skb(skb); 1310 *netdev_tx_status = NETDEV_TX_OK; 1311 } else { 1312 /* In normal mode the socket-can transmission queue get 1313 * to keep the frame so that it can be retransmitted 1314 * later 1315 */ 1316 *netdev_tx_status = NETDEV_TX_BUSY; 1317 } 1318 return -EBUSY; 1319 } 1320 1321 /* Notes on the tx cyclic buffer handling: 1322 * 1323 * regs->txwr - the next slot for the driver to put data to be sent 1324 * regs->txrd - the next slot for the device to read data 1325 * priv->eskbp - the next slot for the driver to call can_put_echo_skb for 1326 * 1327 * grcan_start_xmit can enter more messages as long as regs->txwr does 1328 * not reach priv->eskbp (within 1 message gap) 1329 * 1330 * The device sends messages until regs->txrd reaches regs->txwr 1331 * 1332 * The interrupt calls handler calls can_put_echo_skb until 1333 * priv->eskbp reaches regs->txrd 1334 */ 1335 static netdev_tx_t grcan_start_xmit(struct sk_buff *skb, 1336 struct net_device *dev) 1337 { 1338 struct grcan_priv *priv = netdev_priv(dev); 1339 struct grcan_registers __iomem *regs = priv->regs; 1340 struct grcan_dma *dma = &priv->dma; 1341 struct can_frame *cf = (struct can_frame *)skb->data; 1342 u32 id, txwr, txrd, space, txctrl; 1343 int slotindex; 1344 u32 *slot; 1345 u32 i, rtr, eff, dlc, tmp, err; 1346 int j, shift; 1347 unsigned long flags; 1348 u32 oneshotmode = priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT; 1349 1350 if (can_dev_dropped_skb(dev, skb)) 1351 return NETDEV_TX_OK; 1352 1353 /* Trying to transmit in silent mode will generate error interrupts, but 1354 * this should never happen - the queue should not have been started. 1355 */ 1356 if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1357 return NETDEV_TX_BUSY; 1358 1359 /* Reads of priv->eskbp and shut-downs of the queue needs to 1360 * be atomic towards the updates to priv->eskbp and wake-ups 1361 * of the queue in the interrupt handler. 1362 */ 1363 spin_lock_irqsave(&priv->lock, flags); 1364 1365 txwr = grcan_read_reg(®s->txwr); 1366 space = grcan_txspace(dma->tx.size, txwr, priv->eskbp); 1367 1368 slotindex = txwr / GRCAN_MSG_SIZE; 1369 slot = dma->tx.buf + txwr; 1370 1371 if (unlikely(space == 1)) 1372 netif_stop_queue(dev); 1373 1374 spin_unlock_irqrestore(&priv->lock, flags); 1375 /* End of critical section*/ 1376 1377 /* This should never happen. If circular buffer is full, the 1378 * netif_stop_queue should have been stopped already. 1379 */ 1380 if (unlikely(!space)) { 1381 netdev_err(dev, "No buffer space, but queue is non-stopped.\n"); 1382 return NETDEV_TX_BUSY; 1383 } 1384 1385 /* Convert and write CAN message to DMA buffer */ 1386 eff = cf->can_id & CAN_EFF_FLAG; 1387 rtr = cf->can_id & CAN_RTR_FLAG; 1388 id = cf->can_id & (eff ? CAN_EFF_MASK : CAN_SFF_MASK); 1389 dlc = cf->len; 1390 if (eff) 1391 tmp = (id << GRCAN_MSG_EID_BIT) & GRCAN_MSG_EID; 1392 else 1393 tmp = (id << GRCAN_MSG_BID_BIT) & GRCAN_MSG_BID; 1394 slot[0] = (eff ? GRCAN_MSG_IDE : 0) | (rtr ? GRCAN_MSG_RTR : 0) | tmp; 1395 1396 slot[1] = ((dlc << GRCAN_MSG_DLC_BIT) & GRCAN_MSG_DLC); 1397 slot[2] = 0; 1398 slot[3] = 0; 1399 for (i = 0; i < dlc; i++) { 1400 j = GRCAN_MSG_DATA_SLOT_INDEX(i); 1401 shift = GRCAN_MSG_DATA_SHIFT(i); 1402 slot[j] |= cf->data[i] << shift; 1403 } 1404 1405 /* Checking that channel has not been disabled. These cases 1406 * should never happen 1407 */ 1408 txctrl = grcan_read_reg(®s->txctrl); 1409 if (!(txctrl & GRCAN_TXCTRL_ENABLE)) 1410 netdev_err(dev, "tx channel spuriously disabled\n"); 1411 1412 if (oneshotmode && !(txctrl & GRCAN_TXCTRL_SINGLE)) 1413 netdev_err(dev, "one-shot mode spuriously disabled\n"); 1414 1415 /* Bug workaround for old version of grcan where updating txwr 1416 * in the same clock cycle as the controller updates txrd to 1417 * the current txwr could hang the can controller 1418 */ 1419 if (priv->need_txbug_workaround) { 1420 txrd = grcan_read_reg(®s->txrd); 1421 if (unlikely(grcan_ring_sub(txwr, txrd, dma->tx.size) == 1)) { 1422 netdev_tx_t txstatus; 1423 1424 err = grcan_txbug_workaround(dev, skb, txwr, 1425 oneshotmode, &txstatus); 1426 if (err) 1427 return txstatus; 1428 } 1429 } 1430 1431 /* Prepare skb for echoing. This must be after the bug workaround above 1432 * as ownership of the skb is passed on by calling can_put_echo_skb. 1433 * Returning NETDEV_TX_BUSY or accessing skb or cf after a call to 1434 * can_put_echo_skb would be an error unless other measures are 1435 * taken. 1436 */ 1437 can_put_echo_skb(skb, dev, slotindex, 0); 1438 1439 /* Make sure everything is written before allowing hardware to 1440 * read from the memory 1441 */ 1442 wmb(); 1443 1444 /* Update write pointer to start transmission */ 1445 grcan_write_reg(®s->txwr, 1446 grcan_ring_add(txwr, GRCAN_MSG_SIZE, dma->tx.size)); 1447 1448 return NETDEV_TX_OK; 1449 } 1450 1451 /* ========== Setting up sysfs interface and module parameters ========== */ 1452 1453 #define GRCAN_NOT_BOOL(unsigned_val) ((unsigned_val) > 1) 1454 1455 #define GRCAN_MODULE_PARAM(name, mtype, valcheckf, desc) \ 1456 static void grcan_sanitize_##name(struct platform_device *pd) \ 1457 { \ 1458 struct grcan_device_config grcan_default_config \ 1459 = GRCAN_DEFAULT_DEVICE_CONFIG; \ 1460 if (valcheckf(grcan_module_config.name)) { \ 1461 dev_err(&pd->dev, \ 1462 "Invalid module parameter value for " \ 1463 #name " - setting default\n"); \ 1464 grcan_module_config.name = \ 1465 grcan_default_config.name; \ 1466 } \ 1467 } \ 1468 module_param_named(name, grcan_module_config.name, \ 1469 mtype, 0444); \ 1470 MODULE_PARM_DESC(name, desc) 1471 1472 #define GRCAN_CONFIG_ATTR(name, desc) \ 1473 static ssize_t grcan_store_##name(struct device *sdev, \ 1474 struct device_attribute *att, \ 1475 const char *buf, \ 1476 size_t count) \ 1477 { \ 1478 struct net_device *dev = to_net_dev(sdev); \ 1479 struct grcan_priv *priv = netdev_priv(dev); \ 1480 u8 val; \ 1481 int ret; \ 1482 if (dev->flags & IFF_UP) \ 1483 return -EBUSY; \ 1484 ret = kstrtou8(buf, 0, &val); \ 1485 if (ret < 0 || val > 1) \ 1486 return -EINVAL; \ 1487 priv->config.name = val; \ 1488 return count; \ 1489 } \ 1490 static ssize_t grcan_show_##name(struct device *sdev, \ 1491 struct device_attribute *att, \ 1492 char *buf) \ 1493 { \ 1494 struct net_device *dev = to_net_dev(sdev); \ 1495 struct grcan_priv *priv = netdev_priv(dev); \ 1496 return sprintf(buf, "%d\n", priv->config.name); \ 1497 } \ 1498 static DEVICE_ATTR(name, 0644, \ 1499 grcan_show_##name, \ 1500 grcan_store_##name); \ 1501 GRCAN_MODULE_PARAM(name, ushort, GRCAN_NOT_BOOL, desc) 1502 1503 /* The following configuration options are made available both via module 1504 * parameters and writable sysfs files. See the chapter about GRCAN in the 1505 * documentation for the GRLIB VHDL library for further details. 1506 */ 1507 GRCAN_CONFIG_ATTR(enable0, 1508 "Configuration of physical interface 0. Determines\n" \ 1509 "the \"Enable 0\" bit of the configuration register.\n" \ 1510 "Format: 0 | 1\nDefault: 0\n"); 1511 1512 GRCAN_CONFIG_ATTR(enable1, 1513 "Configuration of physical interface 1. Determines\n" \ 1514 "the \"Enable 1\" bit of the configuration register.\n" \ 1515 "Format: 0 | 1\nDefault: 0\n"); 1516 1517 GRCAN_CONFIG_ATTR(select, 1518 "Select which physical interface to use.\n" \ 1519 "Format: 0 | 1\nDefault: 0\n"); 1520 1521 /* The tx and rx buffer size configuration options are only available via module 1522 * parameters. 1523 */ 1524 GRCAN_MODULE_PARAM(txsize, uint, GRCAN_INVALID_BUFFER_SIZE, 1525 "Sets the size of the tx buffer.\n" \ 1526 "Format: <unsigned int> where (txsize & ~0x1fffc0) == 0\n" \ 1527 "Default: 1024\n"); 1528 GRCAN_MODULE_PARAM(rxsize, uint, GRCAN_INVALID_BUFFER_SIZE, 1529 "Sets the size of the rx buffer.\n" \ 1530 "Format: <unsigned int> where (size & ~0x1fffc0) == 0\n" \ 1531 "Default: 1024\n"); 1532 1533 /* Function that makes sure that configuration done using 1534 * module parameters are set to valid values 1535 */ 1536 static void grcan_sanitize_module_config(struct platform_device *ofdev) 1537 { 1538 grcan_sanitize_enable0(ofdev); 1539 grcan_sanitize_enable1(ofdev); 1540 grcan_sanitize_select(ofdev); 1541 grcan_sanitize_txsize(ofdev); 1542 grcan_sanitize_rxsize(ofdev); 1543 } 1544 1545 static const struct attribute *const sysfs_grcan_attrs[] = { 1546 /* Config attrs */ 1547 &dev_attr_enable0.attr, 1548 &dev_attr_enable1.attr, 1549 &dev_attr_select.attr, 1550 NULL, 1551 }; 1552 1553 static const struct attribute_group sysfs_grcan_group = { 1554 .name = "grcan", 1555 .attrs = (struct attribute **)sysfs_grcan_attrs, 1556 }; 1557 1558 /* ========== Setting up the driver ========== */ 1559 1560 static const struct net_device_ops grcan_netdev_ops = { 1561 .ndo_open = grcan_open, 1562 .ndo_stop = grcan_close, 1563 .ndo_start_xmit = grcan_start_xmit, 1564 .ndo_change_mtu = can_change_mtu, 1565 }; 1566 1567 static const struct ethtool_ops grcan_ethtool_ops = { 1568 .get_ts_info = ethtool_op_get_ts_info, 1569 }; 1570 1571 static int grcan_setup_netdev(struct platform_device *ofdev, 1572 void __iomem *base, 1573 int irq, u32 ambafreq, bool txbug) 1574 { 1575 struct net_device *dev; 1576 struct grcan_priv *priv; 1577 struct grcan_registers __iomem *regs; 1578 int err; 1579 1580 dev = alloc_candev(sizeof(struct grcan_priv), 0); 1581 if (!dev) 1582 return -ENOMEM; 1583 1584 dev->irq = irq; 1585 dev->flags |= IFF_ECHO; 1586 dev->netdev_ops = &grcan_netdev_ops; 1587 dev->ethtool_ops = &grcan_ethtool_ops; 1588 dev->sysfs_groups[0] = &sysfs_grcan_group; 1589 1590 priv = netdev_priv(dev); 1591 memcpy(&priv->config, &grcan_module_config, 1592 sizeof(struct grcan_device_config)); 1593 priv->dev = dev; 1594 priv->ofdev_dev = &ofdev->dev; 1595 priv->regs = base; 1596 priv->can.bittiming_const = &grcan_bittiming_const; 1597 priv->can.do_set_bittiming = grcan_set_bittiming; 1598 priv->can.do_set_mode = grcan_set_mode; 1599 priv->can.do_get_berr_counter = grcan_get_berr_counter; 1600 priv->can.clock.freq = ambafreq; 1601 priv->can.ctrlmode_supported = 1602 CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_ONE_SHOT; 1603 priv->need_txbug_workaround = txbug; 1604 1605 /* Discover if triple sampling is supported by hardware */ 1606 regs = priv->regs; 1607 grcan_set_bits(®s->ctrl, GRCAN_CTRL_RESET); 1608 grcan_set_bits(®s->conf, GRCAN_CONF_SAM); 1609 if (grcan_read_bits(®s->conf, GRCAN_CONF_SAM)) { 1610 priv->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES; 1611 dev_dbg(&ofdev->dev, "Hardware supports triple-sampling\n"); 1612 } 1613 1614 spin_lock_init(&priv->lock); 1615 1616 if (priv->need_txbug_workaround) { 1617 timer_setup(&priv->rr_timer, grcan_running_reset, 0); 1618 timer_setup(&priv->hang_timer, grcan_initiate_running_reset, 0); 1619 } 1620 1621 netif_napi_add_weight(dev, &priv->napi, grcan_poll, GRCAN_NAPI_WEIGHT); 1622 1623 SET_NETDEV_DEV(dev, &ofdev->dev); 1624 dev_info(&ofdev->dev, "regs=0x%p, irq=%d, clock=%d\n", 1625 priv->regs, dev->irq, priv->can.clock.freq); 1626 1627 err = register_candev(dev); 1628 if (err) 1629 goto exit_free_candev; 1630 1631 platform_set_drvdata(ofdev, dev); 1632 1633 /* Reset device to allow bit-timing to be set. No need to call 1634 * grcan_reset at this stage. That is done in grcan_open. 1635 */ 1636 grcan_write_reg(®s->ctrl, GRCAN_CTRL_RESET); 1637 1638 return 0; 1639 exit_free_candev: 1640 free_candev(dev); 1641 return err; 1642 } 1643 1644 static int grcan_probe(struct platform_device *ofdev) 1645 { 1646 struct device_node *np = ofdev->dev.of_node; 1647 struct device_node *sysid_parent; 1648 u32 sysid, ambafreq; 1649 int irq, err; 1650 void __iomem *base; 1651 bool txbug = true; 1652 1653 /* Compare GRLIB version number with the first that does not 1654 * have the tx bug (see start_xmit) 1655 */ 1656 sysid_parent = of_find_node_by_path("/ambapp0"); 1657 if (sysid_parent) { 1658 err = of_property_read_u32(sysid_parent, "systemid", &sysid); 1659 if (!err && ((sysid & GRLIB_VERSION_MASK) >= 1660 GRCAN_TXBUG_SAFE_GRLIB_VERSION)) 1661 txbug = false; 1662 of_node_put(sysid_parent); 1663 } 1664 1665 err = of_property_read_u32(np, "freq", &ambafreq); 1666 if (err) { 1667 dev_err(&ofdev->dev, "unable to fetch \"freq\" property\n"); 1668 goto exit_error; 1669 } 1670 1671 base = devm_platform_ioremap_resource(ofdev, 0); 1672 if (IS_ERR(base)) { 1673 err = PTR_ERR(base); 1674 goto exit_error; 1675 } 1676 1677 irq = irq_of_parse_and_map(np, GRCAN_IRQIX_IRQ); 1678 if (!irq) { 1679 dev_err(&ofdev->dev, "no irq found\n"); 1680 err = -ENODEV; 1681 goto exit_error; 1682 } 1683 1684 grcan_sanitize_module_config(ofdev); 1685 1686 err = grcan_setup_netdev(ofdev, base, irq, ambafreq, txbug); 1687 if (err) 1688 goto exit_dispose_irq; 1689 1690 return 0; 1691 1692 exit_dispose_irq: 1693 irq_dispose_mapping(irq); 1694 exit_error: 1695 dev_err(&ofdev->dev, 1696 "%s socket CAN driver initialization failed with error %d\n", 1697 DRV_NAME, err); 1698 return err; 1699 } 1700 1701 static void grcan_remove(struct platform_device *ofdev) 1702 { 1703 struct net_device *dev = platform_get_drvdata(ofdev); 1704 struct grcan_priv *priv = netdev_priv(dev); 1705 1706 unregister_candev(dev); /* Will in turn call grcan_close */ 1707 1708 irq_dispose_mapping(dev->irq); 1709 netif_napi_del(&priv->napi); 1710 free_candev(dev); 1711 } 1712 1713 static const struct of_device_id grcan_match[] = { 1714 {.name = "GAISLER_GRCAN"}, 1715 {.name = "01_03d"}, 1716 {.name = "GAISLER_GRHCAN"}, 1717 {.name = "01_034"}, 1718 {}, 1719 }; 1720 1721 MODULE_DEVICE_TABLE(of, grcan_match); 1722 1723 static struct platform_driver grcan_driver = { 1724 .driver = { 1725 .name = DRV_NAME, 1726 .of_match_table = grcan_match, 1727 }, 1728 .probe = grcan_probe, 1729 .remove = grcan_remove, 1730 }; 1731 1732 module_platform_driver(grcan_driver); 1733 1734 MODULE_AUTHOR("Aeroflex Gaisler AB."); 1735 MODULE_DESCRIPTION("Socket CAN driver for Aeroflex Gaisler GRCAN"); 1736 MODULE_LICENSE("GPL"); 1737