xref: /linux/drivers/net/can/dev/calc_bittiming.c (revision 362d051c90b6e27b01dceed8c47ddfc86e60db2c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  * Copyright (C) 2021-2025 Vincent Mailhol <mailhol@kernel.org>
6  */
7 
8 #include <linux/units.h>
9 #include <linux/can/dev.h>
10 
11 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
12 
13 /* CiA recommended sample points for Non Return to Zero encoding. */
14 static int can_calc_sample_point_nrz(const struct can_bittiming *bt)
15 {
16 	if (bt->bitrate > 800 * KILO /* BPS */)
17 		return 750;
18 
19 	if (bt->bitrate > 500 * KILO /* BPS */)
20 		return 800;
21 
22 	return 875;
23 }
24 
25 /* Sample points for Pulse-Width Modulation encoding. */
26 static int can_calc_sample_point_pwm(const struct can_bittiming *bt)
27 {
28 	if (bt->bitrate > 15 * MEGA /* BPS */)
29 		return 625;
30 
31 	if (bt->bitrate > 9 * MEGA /* BPS */)
32 		return 600;
33 
34 	if (bt->bitrate > 4 * MEGA /* BPS */)
35 		return 560;
36 
37 	return 520;
38 }
39 
40 /* Bit-timing calculation derived from:
41  *
42  * Code based on LinCAN sources and H8S2638 project
43  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
44  * Copyright 2005      Stanislav Marek
45  * email: pisa@cmp.felk.cvut.cz
46  *
47  * Calculates proper bit-timing parameters for a specified bit-rate
48  * and sample-point, which can then be used to set the bit-timing
49  * registers of the CAN controller. You can find more information
50  * in the header file linux/can/netlink.h.
51  */
52 static int
53 can_update_sample_point(const struct can_bittiming_const *btc,
54 			const unsigned int sample_point_reference, const unsigned int tseg,
55 			unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
56 			unsigned int *sample_point_error_ptr)
57 {
58 	unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
59 	unsigned int sample_point, best_sample_point = 0;
60 	unsigned int tseg1, tseg2;
61 	int i;
62 
63 	for (i = 0; i <= 1; i++) {
64 		tseg2 = tseg + CAN_SYNC_SEG -
65 			(sample_point_reference * (tseg + CAN_SYNC_SEG)) /
66 			1000 - i;
67 		tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
68 		tseg1 = tseg - tseg2;
69 		if (tseg1 > btc->tseg1_max) {
70 			tseg1 = btc->tseg1_max;
71 			tseg2 = tseg - tseg1;
72 		}
73 
74 		sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
75 			(tseg + CAN_SYNC_SEG);
76 		sample_point_error = abs(sample_point_reference - sample_point);
77 
78 		if (sample_point <= sample_point_reference &&
79 		    sample_point_error < best_sample_point_error) {
80 			best_sample_point = sample_point;
81 			best_sample_point_error = sample_point_error;
82 			*tseg1_ptr = tseg1;
83 			*tseg2_ptr = tseg2;
84 		}
85 	}
86 
87 	if (sample_point_error_ptr)
88 		*sample_point_error_ptr = best_sample_point_error;
89 
90 	return best_sample_point;
91 }
92 
93 int can_calc_bittiming(const struct net_device *dev, struct can_bittiming *bt,
94 		       const struct can_bittiming_const *btc, struct netlink_ext_ack *extack)
95 {
96 	struct can_priv *priv = netdev_priv(dev);
97 	unsigned int bitrate;			/* current bitrate */
98 	unsigned int bitrate_error;		/* diff between calculated and reference value */
99 	unsigned int best_bitrate_error = UINT_MAX;
100 	unsigned int sample_point_error;	/* diff between calculated and reference value */
101 	unsigned int best_sample_point_error = UINT_MAX;
102 	unsigned int sample_point_reference;	/* reference sample point */
103 	unsigned int best_tseg = 0;		/* current best value for tseg */
104 	unsigned int best_brp = 0;		/* current best value for brp */
105 	unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
106 	u64 v64;
107 	int err;
108 
109 	if (bt->sample_point)
110 		sample_point_reference = bt->sample_point;
111 	else if (btc == priv->xl.data_bittiming_const &&
112 		 (priv->ctrlmode & CAN_CTRLMODE_XL_TMS))
113 		sample_point_reference = can_calc_sample_point_pwm(bt);
114 	else
115 		sample_point_reference = can_calc_sample_point_nrz(bt);
116 
117 	/* tseg even = round down, odd = round up */
118 	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
119 	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
120 		tsegall = CAN_SYNC_SEG + tseg / 2;
121 
122 		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
123 		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
124 
125 		/* choose brp step which is possible in system */
126 		brp = (brp / btc->brp_inc) * btc->brp_inc;
127 		if (brp < btc->brp_min || brp > btc->brp_max)
128 			continue;
129 
130 		bitrate = priv->clock.freq / (brp * tsegall);
131 		bitrate_error = abs(bt->bitrate - bitrate);
132 
133 		/* tseg brp biterror */
134 		if (bitrate_error > best_bitrate_error)
135 			continue;
136 
137 		/* reset sample point error if we have a better bitrate */
138 		if (bitrate_error < best_bitrate_error)
139 			best_sample_point_error = UINT_MAX;
140 
141 		can_update_sample_point(btc, sample_point_reference, tseg / 2,
142 					&tseg1, &tseg2, &sample_point_error);
143 		if (sample_point_error >= best_sample_point_error)
144 			continue;
145 
146 		best_sample_point_error = sample_point_error;
147 		best_bitrate_error = bitrate_error;
148 		best_tseg = tseg / 2;
149 		best_brp = brp;
150 
151 		if (bitrate_error == 0 && sample_point_error == 0)
152 			break;
153 	}
154 
155 	if (best_bitrate_error) {
156 		/* Error in one-hundredth of a percent */
157 		v64 = (u64)best_bitrate_error * 10000;
158 		do_div(v64, bt->bitrate);
159 		bitrate_error = (u32)v64;
160 		/* print at least 0.01% if the error is smaller */
161 		bitrate_error = max(bitrate_error, 1U);
162 		if (bitrate_error > CAN_CALC_MAX_ERROR) {
163 			NL_SET_ERR_MSG_FMT(extack,
164 					   "bitrate error: %u.%02u%% too high",
165 					   bitrate_error / 100,
166 					   bitrate_error % 100);
167 			return -EINVAL;
168 		}
169 		NL_SET_ERR_MSG_FMT(extack,
170 				   "bitrate error: %u.%02u%%",
171 				   bitrate_error / 100, bitrate_error % 100);
172 	}
173 
174 	/* real sample point */
175 	bt->sample_point = can_update_sample_point(btc, sample_point_reference,
176 						   best_tseg, &tseg1, &tseg2,
177 						   NULL);
178 
179 	v64 = (u64)best_brp * 1000 * 1000 * 1000;
180 	do_div(v64, priv->clock.freq);
181 	bt->tq = (u32)v64;
182 	bt->prop_seg = tseg1 / 2;
183 	bt->phase_seg1 = tseg1 - bt->prop_seg;
184 	bt->phase_seg2 = tseg2;
185 
186 	can_sjw_set_default(bt);
187 
188 	err = can_sjw_check(dev, bt, btc, extack);
189 	if (err)
190 		return err;
191 
192 	bt->brp = best_brp;
193 
194 	/* real bitrate */
195 	bt->bitrate = priv->clock.freq /
196 		(bt->brp * can_bit_time(bt));
197 
198 	return 0;
199 }
200 
201 void can_calc_tdco(struct can_tdc *tdc, const struct can_tdc_const *tdc_const,
202 		   const struct can_bittiming *dbt,
203 		   u32 tdc_mask, u32 *ctrlmode, u32 ctrlmode_supported)
204 
205 {
206 	u32 tdc_auto = tdc_mask & CAN_CTRLMODE_TDC_AUTO_MASK;
207 
208 	if (!tdc_const || !(ctrlmode_supported & tdc_auto))
209 		return;
210 
211 	*ctrlmode &= ~tdc_mask;
212 
213 	/* As specified in ISO 11898-1 section 11.3.3 "Transmitter
214 	 * delay compensation" (TDC) is only applicable if data BRP is
215 	 * one or two.
216 	 */
217 	if (dbt->brp == 1 || dbt->brp == 2) {
218 		/* Sample point in clock periods */
219 		u32 sample_point_in_tc = (CAN_SYNC_SEG + dbt->prop_seg +
220 					  dbt->phase_seg1) * dbt->brp;
221 
222 		if (sample_point_in_tc < tdc_const->tdco_min)
223 			return;
224 		tdc->tdco = min(sample_point_in_tc, tdc_const->tdco_max);
225 		*ctrlmode |= tdc_auto;
226 	}
227 }
228 
229 int can_calc_pwm(struct net_device *dev, struct netlink_ext_ack *extack)
230 {
231 	struct can_priv *priv = netdev_priv(dev);
232 	const struct can_pwm_const *pwm_const = priv->xl.pwm_const;
233 	struct can_pwm *pwm = &priv->xl.pwm;
234 	u32 xl_tqmin = can_bit_time_tqmin(&priv->xl.data_bittiming);
235 	u32 xl_ns = can_tqmin_to_ns(xl_tqmin, priv->clock.freq);
236 	u32 nom_tqmin = can_bit_time_tqmin(&priv->bittiming);
237 	int pwm_per_bit_max = xl_tqmin / (pwm_const->pwms_min + pwm_const->pwml_min);
238 	int pwm_per_bit;
239 	u32 pwm_tqmin;
240 
241 	/* For 5 MB/s databitrate or greater, xl_ns < CAN_PWM_NS_MAX
242 	 * giving us a pwm_per_bit of 1 and the loop immediately breaks
243 	 */
244 	for (pwm_per_bit = DIV_ROUND_UP(xl_ns, CAN_PWM_NS_MAX);
245 	     pwm_per_bit <= pwm_per_bit_max; pwm_per_bit++)
246 		if (xl_tqmin % pwm_per_bit == 0)
247 			break;
248 
249 	if (pwm_per_bit > pwm_per_bit_max) {
250 		NL_SET_ERR_MSG_FMT(extack,
251 				   "Can not divide the XL data phase's bit time: %u tqmin into multiple PWM symbols",
252 				   xl_tqmin);
253 		return -EINVAL;
254 	}
255 
256 	pwm_tqmin = xl_tqmin / pwm_per_bit;
257 	pwm->pwms = DIV_ROUND_UP_POW2(pwm_tqmin, 4);
258 	pwm->pwml = pwm_tqmin - pwm->pwms;
259 	pwm->pwmo = nom_tqmin % pwm_tqmin;
260 
261 	return 0;
262 }
263