xref: /linux/drivers/net/can/ctucanfd/ctucanfd_base.c (revision 704fd176204577459beadb37d46e164d376fabc3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3  *
4  * CTU CAN FD IP Core
5  *
6  * Copyright (C) 2015-2018 Ondrej Ille <ondrej.ille@gmail.com> FEE CTU
7  * Copyright (C) 2018-2021 Ondrej Ille <ondrej.ille@gmail.com> self-funded
8  * Copyright (C) 2018-2019 Martin Jerabek <martin.jerabek01@gmail.com> FEE CTU
9  * Copyright (C) 2018-2022 Pavel Pisa <pisa@cmp.felk.cvut.cz> FEE CTU/self-funded
10  *
11  * Project advisors:
12  *     Jiri Novak <jnovak@fel.cvut.cz>
13  *     Pavel Pisa <pisa@cmp.felk.cvut.cz>
14  *
15  * Department of Measurement         (http://meas.fel.cvut.cz/)
16  * Faculty of Electrical Engineering (http://www.fel.cvut.cz)
17  * Czech Technical University        (http://www.cvut.cz/)
18  ******************************************************************************/
19 
20 #include <linux/clk.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/bitfield.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/skbuff.h>
29 #include <linux/string.h>
30 #include <linux/types.h>
31 #include <linux/can/error.h>
32 #include <linux/can/led.h>
33 #include <linux/pm_runtime.h>
34 
35 #include "ctucanfd.h"
36 #include "ctucanfd_kregs.h"
37 #include "ctucanfd_kframe.h"
38 
39 #ifdef DEBUG
40 #define  ctucan_netdev_dbg(ndev, args...) \
41 		netdev_dbg(ndev, args)
42 #else
43 #define ctucan_netdev_dbg(...) do { } while (0)
44 #endif
45 
46 #define CTUCANFD_ID 0xCAFD
47 
48 /* TX buffer rotation:
49  * - when a buffer transitions to empty state, rotate order and priorities
50  * - if more buffers seem to transition at the same time, rotate by the number of buffers
51  * - it may be assumed that buffers transition to empty state in FIFO order (because we manage
52  *   priorities that way)
53  * - at frame filling, do not rotate anything, just increment buffer modulo counter
54  */
55 
56 #define CTUCANFD_FLAG_RX_FFW_BUFFERED	1
57 
58 #define CTUCAN_STATE_TO_TEXT_ENTRY(st) \
59 		[st] = #st
60 
61 enum ctucan_txtb_status {
62 	TXT_NOT_EXIST       = 0x0,
63 	TXT_RDY             = 0x1,
64 	TXT_TRAN            = 0x2,
65 	TXT_ABTP            = 0x3,
66 	TXT_TOK             = 0x4,
67 	TXT_ERR             = 0x6,
68 	TXT_ABT             = 0x7,
69 	TXT_ETY             = 0x8,
70 };
71 
72 enum ctucan_txtb_command {
73 	TXT_CMD_SET_EMPTY   = 0x01,
74 	TXT_CMD_SET_READY   = 0x02,
75 	TXT_CMD_SET_ABORT   = 0x04
76 };
77 
78 static const struct can_bittiming_const ctu_can_fd_bit_timing_max = {
79 	.name = "ctu_can_fd",
80 	.tseg1_min = 2,
81 	.tseg1_max = 190,
82 	.tseg2_min = 1,
83 	.tseg2_max = 63,
84 	.sjw_max = 31,
85 	.brp_min = 1,
86 	.brp_max = 8,
87 	.brp_inc = 1,
88 };
89 
90 static const struct can_bittiming_const ctu_can_fd_bit_timing_data_max = {
91 	.name = "ctu_can_fd",
92 	.tseg1_min = 2,
93 	.tseg1_max = 94,
94 	.tseg2_min = 1,
95 	.tseg2_max = 31,
96 	.sjw_max = 31,
97 	.brp_min = 1,
98 	.brp_max = 2,
99 	.brp_inc = 1,
100 };
101 
102 static const char * const ctucan_state_strings[CAN_STATE_MAX] = {
103 	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_ACTIVE),
104 	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_WARNING),
105 	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_PASSIVE),
106 	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_BUS_OFF),
107 	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_STOPPED),
108 	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_SLEEPING)
109 };
110 
111 static void ctucan_write32_le(struct ctucan_priv *priv,
112 			      enum ctu_can_fd_can_registers reg, u32 val)
113 {
114 	iowrite32(val, priv->mem_base + reg);
115 }
116 
117 static void ctucan_write32_be(struct ctucan_priv *priv,
118 			      enum ctu_can_fd_can_registers reg, u32 val)
119 {
120 	iowrite32be(val, priv->mem_base + reg);
121 }
122 
123 static u32 ctucan_read32_le(struct ctucan_priv *priv,
124 			    enum ctu_can_fd_can_registers reg)
125 {
126 	return ioread32(priv->mem_base + reg);
127 }
128 
129 static u32 ctucan_read32_be(struct ctucan_priv *priv,
130 			    enum ctu_can_fd_can_registers reg)
131 {
132 	return ioread32be(priv->mem_base + reg);
133 }
134 
135 static inline void ctucan_write32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg,
136 				  u32 val)
137 {
138 	priv->write_reg(priv, reg, val);
139 }
140 
141 static inline u32 ctucan_read32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg)
142 {
143 	return priv->read_reg(priv, reg);
144 }
145 
146 static void ctucan_write_txt_buf(struct ctucan_priv *priv, enum ctu_can_fd_can_registers buf_base,
147 				 u32 offset, u32 val)
148 {
149 	priv->write_reg(priv, buf_base + offset, val);
150 }
151 
152 #define CTU_CAN_FD_TXTNF(priv) (!!FIELD_GET(REG_STATUS_TXNF, ctucan_read32(priv, CTUCANFD_STATUS)))
153 #define CTU_CAN_FD_ENABLED(priv) (!!FIELD_GET(REG_MODE_ENA, ctucan_read32(priv, CTUCANFD_MODE)))
154 
155 /**
156  * ctucan_state_to_str() - Converts CAN controller state code to corresponding text
157  * @state:	CAN controller state code
158  *
159  * Return: Pointer to string representation of the error state
160  */
161 static const char *ctucan_state_to_str(enum can_state state)
162 {
163 	const char *txt = NULL;
164 
165 	if (state >= 0 && state < CAN_STATE_MAX)
166 		txt = ctucan_state_strings[state];
167 	return txt ? txt : "UNKNOWN";
168 }
169 
170 /**
171  * ctucan_reset() - Issues software reset request to CTU CAN FD
172  * @ndev:	Pointer to net_device structure
173  *
174  * Return: 0 for success, -%ETIMEDOUT if CAN controller does not leave reset
175  */
176 static int ctucan_reset(struct net_device *ndev)
177 {
178 	struct ctucan_priv *priv = netdev_priv(ndev);
179 	int i = 100;
180 
181 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
182 
183 	ctucan_write32(priv, CTUCANFD_MODE, REG_MODE_RST);
184 	clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
185 
186 	do {
187 		u16 device_id = FIELD_GET(REG_DEVICE_ID_DEVICE_ID,
188 					  ctucan_read32(priv, CTUCANFD_DEVICE_ID));
189 
190 		if (device_id == 0xCAFD)
191 			return 0;
192 		if (!i--) {
193 			netdev_warn(ndev, "device did not leave reset\n");
194 			return -ETIMEDOUT;
195 		}
196 		usleep_range(100, 200);
197 	} while (1);
198 }
199 
200 /**
201  * ctucan_set_btr() - Sets CAN bus bit timing in CTU CAN FD
202  * @ndev:	Pointer to net_device structure
203  * @bt:		Pointer to Bit timing structure
204  * @nominal:	True - Nominal bit timing, False - Data bit timing
205  *
206  * Return: 0 - OK, -%EPERM if controller is enabled
207  */
208 static int ctucan_set_btr(struct net_device *ndev, struct can_bittiming *bt, bool nominal)
209 {
210 	struct ctucan_priv *priv = netdev_priv(ndev);
211 	int max_ph1_len = 31;
212 	u32 btr = 0;
213 	u32 prop_seg = bt->prop_seg;
214 	u32 phase_seg1 = bt->phase_seg1;
215 
216 	if (CTU_CAN_FD_ENABLED(priv)) {
217 		netdev_err(ndev, "BUG! Cannot set bittiming - CAN is enabled\n");
218 		return -EPERM;
219 	}
220 
221 	if (nominal)
222 		max_ph1_len = 63;
223 
224 	/* The timing calculation functions have only constraints on tseg1, which is prop_seg +
225 	 * phase1_seg combined. tseg1 is then split in half and stored into prog_seg and phase_seg1.
226 	 * In CTU CAN FD, PROP is 6/7 bits wide but PH1 only 6/5, so we must re-distribute the
227 	 * values here.
228 	 */
229 	if (phase_seg1 > max_ph1_len) {
230 		prop_seg += phase_seg1 - max_ph1_len;
231 		phase_seg1 = max_ph1_len;
232 		bt->prop_seg = prop_seg;
233 		bt->phase_seg1 = phase_seg1;
234 	}
235 
236 	if (nominal) {
237 		btr = FIELD_PREP(REG_BTR_PROP, prop_seg);
238 		btr |= FIELD_PREP(REG_BTR_PH1, phase_seg1);
239 		btr |= FIELD_PREP(REG_BTR_PH2, bt->phase_seg2);
240 		btr |= FIELD_PREP(REG_BTR_BRP, bt->brp);
241 		btr |= FIELD_PREP(REG_BTR_SJW, bt->sjw);
242 
243 		ctucan_write32(priv, CTUCANFD_BTR, btr);
244 	} else {
245 		btr = FIELD_PREP(REG_BTR_FD_PROP_FD, prop_seg);
246 		btr |= FIELD_PREP(REG_BTR_FD_PH1_FD, phase_seg1);
247 		btr |= FIELD_PREP(REG_BTR_FD_PH2_FD, bt->phase_seg2);
248 		btr |= FIELD_PREP(REG_BTR_FD_BRP_FD, bt->brp);
249 		btr |= FIELD_PREP(REG_BTR_FD_SJW_FD, bt->sjw);
250 
251 		ctucan_write32(priv, CTUCANFD_BTR_FD, btr);
252 	}
253 
254 	return 0;
255 }
256 
257 /**
258  * ctucan_set_bittiming() - CAN set nominal bit timing routine
259  * @ndev:	Pointer to net_device structure
260  *
261  * Return: 0 on success, -%EPERM on error
262  */
263 static int ctucan_set_bittiming(struct net_device *ndev)
264 {
265 	struct ctucan_priv *priv = netdev_priv(ndev);
266 	struct can_bittiming *bt = &priv->can.bittiming;
267 
268 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
269 
270 	/* Note that bt may be modified here */
271 	return ctucan_set_btr(ndev, bt, true);
272 }
273 
274 /**
275  * ctucan_set_data_bittiming() - CAN set data bit timing routine
276  * @ndev:	Pointer to net_device structure
277  *
278  * Return: 0 on success, -%EPERM on error
279  */
280 static int ctucan_set_data_bittiming(struct net_device *ndev)
281 {
282 	struct ctucan_priv *priv = netdev_priv(ndev);
283 	struct can_bittiming *dbt = &priv->can.data_bittiming;
284 
285 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
286 
287 	/* Note that dbt may be modified here */
288 	return ctucan_set_btr(ndev, dbt, false);
289 }
290 
291 /**
292  * ctucan_set_secondary_sample_point() - Sets secondary sample point in CTU CAN FD
293  * @ndev:	Pointer to net_device structure
294  *
295  * Return: 0 on success, -%EPERM if controller is enabled
296  */
297 static int ctucan_set_secondary_sample_point(struct net_device *ndev)
298 {
299 	struct ctucan_priv *priv = netdev_priv(ndev);
300 	struct can_bittiming *dbt = &priv->can.data_bittiming;
301 	int ssp_offset = 0;
302 	u32 ssp_cfg = 0; /* No SSP by default */
303 
304 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
305 
306 	if (CTU_CAN_FD_ENABLED(priv)) {
307 		netdev_err(ndev, "BUG! Cannot set SSP - CAN is enabled\n");
308 		return -EPERM;
309 	}
310 
311 	/* Use SSP for bit-rates above 1 Mbits/s */
312 	if (dbt->bitrate > 1000000) {
313 		/* Calculate SSP in minimal time quanta */
314 		ssp_offset = (priv->can.clock.freq / 1000) * dbt->sample_point / dbt->bitrate;
315 
316 		if (ssp_offset > 127) {
317 			netdev_warn(ndev, "SSP offset saturated to 127\n");
318 			ssp_offset = 127;
319 		}
320 
321 		ssp_cfg = FIELD_PREP(REG_TRV_DELAY_SSP_OFFSET, ssp_offset);
322 		ssp_cfg |= FIELD_PREP(REG_TRV_DELAY_SSP_SRC, 0x1);
323 	}
324 
325 	ctucan_write32(priv, CTUCANFD_TRV_DELAY, ssp_cfg);
326 
327 	return 0;
328 }
329 
330 /**
331  * ctucan_set_mode() - Sets CTU CAN FDs mode
332  * @priv:	Pointer to private data
333  * @mode:	Pointer to controller modes to be set
334  */
335 static void ctucan_set_mode(struct ctucan_priv *priv, const struct can_ctrlmode *mode)
336 {
337 	u32 mode_reg = ctucan_read32(priv, CTUCANFD_MODE);
338 
339 	mode_reg = (mode->flags & CAN_CTRLMODE_LOOPBACK) ?
340 			(mode_reg | REG_MODE_ILBP) :
341 			(mode_reg & ~REG_MODE_ILBP);
342 
343 	mode_reg = (mode->flags & CAN_CTRLMODE_LISTENONLY) ?
344 			(mode_reg | REG_MODE_BMM) :
345 			(mode_reg & ~REG_MODE_BMM);
346 
347 	mode_reg = (mode->flags & CAN_CTRLMODE_FD) ?
348 			(mode_reg | REG_MODE_FDE) :
349 			(mode_reg & ~REG_MODE_FDE);
350 
351 	mode_reg = (mode->flags & CAN_CTRLMODE_PRESUME_ACK) ?
352 			(mode_reg | REG_MODE_ACF) :
353 			(mode_reg & ~REG_MODE_ACF);
354 
355 	mode_reg = (mode->flags & CAN_CTRLMODE_FD_NON_ISO) ?
356 			(mode_reg | REG_MODE_NISOFD) :
357 			(mode_reg & ~REG_MODE_NISOFD);
358 
359 	/* One shot mode supported indirectly via Retransmit limit */
360 	mode_reg &= ~FIELD_PREP(REG_MODE_RTRTH, 0xF);
361 	mode_reg = (mode->flags & CAN_CTRLMODE_ONE_SHOT) ?
362 			(mode_reg | REG_MODE_RTRLE) :
363 			(mode_reg & ~REG_MODE_RTRLE);
364 
365 	/* Some bits fixed:
366 	 *   TSTM  - Off, User shall not be able to change REC/TEC by hand during operation
367 	 */
368 	mode_reg &= ~REG_MODE_TSTM;
369 
370 	ctucan_write32(priv, CTUCANFD_MODE, mode_reg);
371 }
372 
373 /**
374  * ctucan_chip_start() - This routine starts the driver
375  * @ndev:	Pointer to net_device structure
376  *
377  * Routine expects that chip is in reset state. It setups initial
378  * Tx buffers for FIFO priorities, sets bittiming, enables interrupts,
379  * switches core to operational mode and changes controller
380  * state to %CAN_STATE_STOPPED.
381  *
382  * Return: 0 on success and failure value on error
383  */
384 static int ctucan_chip_start(struct net_device *ndev)
385 {
386 	struct ctucan_priv *priv = netdev_priv(ndev);
387 	u32 int_ena, int_msk;
388 	u32 mode_reg;
389 	int err;
390 	struct can_ctrlmode mode;
391 
392 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
393 
394 	priv->txb_prio = 0x01234567;
395 	priv->txb_head = 0;
396 	priv->txb_tail = 0;
397 	ctucan_write32(priv, CTUCANFD_TX_PRIORITY, priv->txb_prio);
398 
399 	/* Configure bit-rates and ssp */
400 	err = ctucan_set_bittiming(ndev);
401 	if (err < 0)
402 		return err;
403 
404 	err = ctucan_set_data_bittiming(ndev);
405 	if (err < 0)
406 		return err;
407 
408 	err = ctucan_set_secondary_sample_point(ndev);
409 	if (err < 0)
410 		return err;
411 
412 	/* Configure modes */
413 	mode.flags = priv->can.ctrlmode;
414 	mode.mask = 0xFFFFFFFF;
415 	ctucan_set_mode(priv, &mode);
416 
417 	/* Configure interrupts */
418 	int_ena = REG_INT_STAT_RBNEI |
419 		  REG_INT_STAT_TXBHCI |
420 		  REG_INT_STAT_EWLI |
421 		  REG_INT_STAT_FCSI;
422 
423 	/* Bus error reporting -> Allow Error/Arb.lost interrupts */
424 	if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
425 		int_ena |= REG_INT_STAT_ALI |
426 			   REG_INT_STAT_BEI;
427 	}
428 
429 	int_msk = ~int_ena; /* Mask all disabled interrupts */
430 
431 	/* It's after reset, so there is no need to clear anything */
432 	ctucan_write32(priv, CTUCANFD_INT_MASK_SET, int_msk);
433 	ctucan_write32(priv, CTUCANFD_INT_ENA_SET, int_ena);
434 
435 	/* Controller enters ERROR_ACTIVE on initial FCSI */
436 	priv->can.state = CAN_STATE_STOPPED;
437 
438 	/* Enable the controller */
439 	mode_reg = ctucan_read32(priv, CTUCANFD_MODE);
440 	mode_reg |= REG_MODE_ENA;
441 	ctucan_write32(priv, CTUCANFD_MODE, mode_reg);
442 
443 	return 0;
444 }
445 
446 /**
447  * ctucan_do_set_mode() - Sets mode of the driver
448  * @ndev:	Pointer to net_device structure
449  * @mode:	Tells the mode of the driver
450  *
451  * This check the drivers state and calls the corresponding modes to set.
452  *
453  * Return: 0 on success and failure value on error
454  */
455 static int ctucan_do_set_mode(struct net_device *ndev, enum can_mode mode)
456 {
457 	int ret;
458 
459 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
460 
461 	switch (mode) {
462 	case CAN_MODE_START:
463 		ret = ctucan_reset(ndev);
464 		if (ret < 0)
465 			return ret;
466 		ret = ctucan_chip_start(ndev);
467 		if (ret < 0) {
468 			netdev_err(ndev, "ctucan_chip_start failed!\n");
469 			return ret;
470 		}
471 		netif_wake_queue(ndev);
472 		break;
473 	default:
474 		ret = -EOPNOTSUPP;
475 		break;
476 	}
477 
478 	return ret;
479 }
480 
481 /**
482  * ctucan_get_tx_status() - Gets status of TXT buffer
483  * @priv:	Pointer to private data
484  * @buf:	Buffer index (0-based)
485  *
486  * Return: Status of TXT buffer
487  */
488 static inline enum ctucan_txtb_status ctucan_get_tx_status(struct ctucan_priv *priv, u8 buf)
489 {
490 	u32 tx_status = ctucan_read32(priv, CTUCANFD_TX_STATUS);
491 	enum ctucan_txtb_status status = (tx_status >> (buf * 4)) & 0x7;
492 
493 	return status;
494 }
495 
496 /**
497  * ctucan_is_txt_buf_writable() - Checks if frame can be inserted to TXT Buffer
498  * @priv:	Pointer to private data
499  * @buf:	Buffer index (0-based)
500  *
501  * Return: True - Frame can be inserted to TXT Buffer, False - If attempted, frame will not be
502  *	   inserted to TXT Buffer
503  */
504 static bool ctucan_is_txt_buf_writable(struct ctucan_priv *priv, u8 buf)
505 {
506 	enum ctucan_txtb_status buf_status;
507 
508 	buf_status = ctucan_get_tx_status(priv, buf);
509 	if (buf_status == TXT_RDY || buf_status == TXT_TRAN || buf_status == TXT_ABTP)
510 		return false;
511 
512 	return true;
513 }
514 
515 /**
516  * ctucan_insert_frame() - Inserts frame to TXT buffer
517  * @priv:	Pointer to private data
518  * @cf:		Pointer to CAN frame to be inserted
519  * @buf:	TXT Buffer index to which frame is inserted (0-based)
520  * @isfdf:	True - CAN FD Frame, False - CAN 2.0 Frame
521  *
522  * Return: True - Frame inserted successfully
523  *	   False - Frame was not inserted due to one of:
524  *			1. TXT Buffer is not writable (it is in wrong state)
525  *			2. Invalid TXT buffer index
526  *			3. Invalid frame length
527  */
528 static bool ctucan_insert_frame(struct ctucan_priv *priv, const struct canfd_frame *cf, u8 buf,
529 				bool isfdf)
530 {
531 	u32 buf_base;
532 	u32 ffw = 0;
533 	u32 idw = 0;
534 	unsigned int i;
535 
536 	if (buf >= priv->ntxbufs)
537 		return false;
538 
539 	if (!ctucan_is_txt_buf_writable(priv, buf))
540 		return false;
541 
542 	if (cf->len > CANFD_MAX_DLEN)
543 		return false;
544 
545 	/* Prepare Frame format */
546 	if (cf->can_id & CAN_RTR_FLAG)
547 		ffw |= REG_FRAME_FORMAT_W_RTR;
548 
549 	if (cf->can_id & CAN_EFF_FLAG)
550 		ffw |= REG_FRAME_FORMAT_W_IDE;
551 
552 	if (isfdf) {
553 		ffw |= REG_FRAME_FORMAT_W_FDF;
554 		if (cf->flags & CANFD_BRS)
555 			ffw |= REG_FRAME_FORMAT_W_BRS;
556 	}
557 
558 	ffw |= FIELD_PREP(REG_FRAME_FORMAT_W_DLC, can_fd_len2dlc(cf->len));
559 
560 	/* Prepare identifier */
561 	if (cf->can_id & CAN_EFF_FLAG)
562 		idw = cf->can_id & CAN_EFF_MASK;
563 	else
564 		idw = FIELD_PREP(REG_IDENTIFIER_W_IDENTIFIER_BASE, cf->can_id & CAN_SFF_MASK);
565 
566 	/* Write ID, Frame format, Don't write timestamp -> Time triggered transmission disabled */
567 	buf_base = (buf + 1) * 0x100;
568 	ctucan_write_txt_buf(priv, buf_base, CTUCANFD_FRAME_FORMAT_W, ffw);
569 	ctucan_write_txt_buf(priv, buf_base, CTUCANFD_IDENTIFIER_W, idw);
570 
571 	/* Write Data payload */
572 	if (!(cf->can_id & CAN_RTR_FLAG)) {
573 		for (i = 0; i < cf->len; i += 4) {
574 			u32 data = le32_to_cpu(*(__le32 *)(cf->data + i));
575 
576 			ctucan_write_txt_buf(priv, buf_base, CTUCANFD_DATA_1_4_W + i, data);
577 		}
578 	}
579 
580 	return true;
581 }
582 
583 /**
584  * ctucan_give_txtb_cmd() - Applies command on TXT buffer
585  * @priv:	Pointer to private data
586  * @cmd:	Command to give
587  * @buf:	Buffer index (0-based)
588  */
589 static void ctucan_give_txtb_cmd(struct ctucan_priv *priv, enum ctucan_txtb_command cmd, u8 buf)
590 {
591 	u32 tx_cmd = cmd;
592 
593 	tx_cmd |= 1 << (buf + 8);
594 	ctucan_write32(priv, CTUCANFD_TX_COMMAND, tx_cmd);
595 }
596 
597 /**
598  * ctucan_start_xmit() - Starts the transmission
599  * @skb:	sk_buff pointer that contains data to be Txed
600  * @ndev:	Pointer to net_device structure
601  *
602  * Invoked from upper layers to initiate transmission. Uses the next available free TXT Buffer and
603  * populates its fields to start the transmission.
604  *
605  * Return: %NETDEV_TX_OK on success, %NETDEV_TX_BUSY when no free TXT buffer is available,
606  *         negative return values reserved for error cases
607  */
608 static netdev_tx_t ctucan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
609 {
610 	struct ctucan_priv *priv = netdev_priv(ndev);
611 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
612 	u32 txtb_id;
613 	bool ok;
614 	unsigned long flags;
615 
616 	if (can_dropped_invalid_skb(ndev, skb))
617 		return NETDEV_TX_OK;
618 
619 	if (unlikely(!CTU_CAN_FD_TXTNF(priv))) {
620 		netif_stop_queue(ndev);
621 		netdev_err(ndev, "BUG!, no TXB free when queue awake!\n");
622 		return NETDEV_TX_BUSY;
623 	}
624 
625 	txtb_id = priv->txb_head % priv->ntxbufs;
626 	ctucan_netdev_dbg(ndev, "%s: using TXB#%u\n", __func__, txtb_id);
627 	ok = ctucan_insert_frame(priv, cf, txtb_id, can_is_canfd_skb(skb));
628 
629 	if (!ok) {
630 		netdev_err(ndev, "BUG! TXNF set but cannot insert frame into TXTB! HW Bug?");
631 		kfree_skb(skb);
632 		ndev->stats.tx_dropped++;
633 		return NETDEV_TX_OK;
634 	}
635 
636 	can_put_echo_skb(skb, ndev, txtb_id, 0);
637 
638 	spin_lock_irqsave(&priv->tx_lock, flags);
639 	ctucan_give_txtb_cmd(priv, TXT_CMD_SET_READY, txtb_id);
640 	priv->txb_head++;
641 
642 	/* Check if all TX buffers are full */
643 	if (!CTU_CAN_FD_TXTNF(priv))
644 		netif_stop_queue(ndev);
645 
646 	spin_unlock_irqrestore(&priv->tx_lock, flags);
647 
648 	return NETDEV_TX_OK;
649 }
650 
651 /**
652  * ctucan_read_rx_frame() - Reads frame from RX FIFO
653  * @priv:	Pointer to CTU CAN FD's private data
654  * @cf:		Pointer to CAN frame struct
655  * @ffw:	Previously read frame format word
656  *
657  * Note: Frame format word must be read separately and provided in 'ffw'.
658  */
659 static void ctucan_read_rx_frame(struct ctucan_priv *priv, struct canfd_frame *cf, u32 ffw)
660 {
661 	u32 idw;
662 	unsigned int i;
663 	unsigned int wc;
664 	unsigned int len;
665 
666 	idw = ctucan_read32(priv, CTUCANFD_RX_DATA);
667 	if (FIELD_GET(REG_FRAME_FORMAT_W_IDE, ffw))
668 		cf->can_id = (idw & CAN_EFF_MASK) | CAN_EFF_FLAG;
669 	else
670 		cf->can_id = (idw >> 18) & CAN_SFF_MASK;
671 
672 	/* BRS, ESI, RTR Flags */
673 	cf->flags = 0;
674 	if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw)) {
675 		if (FIELD_GET(REG_FRAME_FORMAT_W_BRS, ffw))
676 			cf->flags |= CANFD_BRS;
677 		if (FIELD_GET(REG_FRAME_FORMAT_W_ESI_RSV, ffw))
678 			cf->flags |= CANFD_ESI;
679 	} else if (FIELD_GET(REG_FRAME_FORMAT_W_RTR, ffw)) {
680 		cf->can_id |= CAN_RTR_FLAG;
681 	}
682 
683 	wc = FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw) - 3;
684 
685 	/* DLC */
686 	if (FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw) <= 8) {
687 		len = FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw);
688 	} else {
689 		if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw))
690 			len = wc << 2;
691 		else
692 			len = 8;
693 	}
694 	cf->len = len;
695 	if (unlikely(len > wc * 4))
696 		len = wc * 4;
697 
698 	/* Timestamp - Read and throw away */
699 	ctucan_read32(priv, CTUCANFD_RX_DATA);
700 	ctucan_read32(priv, CTUCANFD_RX_DATA);
701 
702 	/* Data */
703 	for (i = 0; i < len; i += 4) {
704 		u32 data = ctucan_read32(priv, CTUCANFD_RX_DATA);
705 		*(__le32 *)(cf->data + i) = cpu_to_le32(data);
706 	}
707 	while (unlikely(i < wc * 4)) {
708 		ctucan_read32(priv, CTUCANFD_RX_DATA);
709 		i += 4;
710 	}
711 }
712 
713 /**
714  * ctucan_rx() -  Called from CAN ISR to complete the received frame processing
715  * @ndev:	Pointer to net_device structure
716  *
717  * This function is invoked from the CAN isr(poll) to process the Rx frames. It does minimal
718  * processing and invokes "netif_receive_skb" to complete further processing.
719  * Return: 1 when frame is passed to the network layer, 0 when the first frame word is read but
720  *	   system is out of free SKBs temporally and left code to resolve SKB allocation later,
721  *         -%EAGAIN in a case of empty Rx FIFO.
722  */
723 static int ctucan_rx(struct net_device *ndev)
724 {
725 	struct ctucan_priv *priv = netdev_priv(ndev);
726 	struct net_device_stats *stats = &ndev->stats;
727 	struct canfd_frame *cf;
728 	struct sk_buff *skb;
729 	u32 ffw;
730 
731 	if (test_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags)) {
732 		ffw = priv->rxfrm_first_word;
733 		clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
734 	} else {
735 		ffw = ctucan_read32(priv, CTUCANFD_RX_DATA);
736 	}
737 
738 	if (!FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw))
739 		return -EAGAIN;
740 
741 	if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw))
742 		skb = alloc_canfd_skb(ndev, &cf);
743 	else
744 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
745 
746 	if (unlikely(!skb)) {
747 		priv->rxfrm_first_word = ffw;
748 		set_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
749 		return 0;
750 	}
751 
752 	ctucan_read_rx_frame(priv, cf, ffw);
753 
754 	stats->rx_bytes += cf->len;
755 	stats->rx_packets++;
756 	netif_receive_skb(skb);
757 
758 	return 1;
759 }
760 
761 /**
762  * ctucan_read_fault_state() - Reads CTU CAN FDs fault confinement state.
763  * @priv:	Pointer to private data
764  *
765  * Returns: Fault confinement state of controller
766  */
767 static enum can_state ctucan_read_fault_state(struct ctucan_priv *priv)
768 {
769 	u32 fs;
770 	u32 rec_tec;
771 	u32 ewl;
772 
773 	fs = ctucan_read32(priv, CTUCANFD_EWL);
774 	rec_tec = ctucan_read32(priv, CTUCANFD_REC);
775 	ewl = FIELD_GET(REG_EWL_EW_LIMIT, fs);
776 
777 	if (FIELD_GET(REG_EWL_ERA, fs)) {
778 		if (ewl > FIELD_GET(REG_REC_REC_VAL, rec_tec) &&
779 		    ewl > FIELD_GET(REG_REC_TEC_VAL, rec_tec))
780 			return CAN_STATE_ERROR_ACTIVE;
781 		else
782 			return CAN_STATE_ERROR_WARNING;
783 	} else if (FIELD_GET(REG_EWL_ERP, fs)) {
784 		return CAN_STATE_ERROR_PASSIVE;
785 	} else if (FIELD_GET(REG_EWL_BOF, fs)) {
786 		return CAN_STATE_BUS_OFF;
787 	}
788 
789 	WARN(true, "Invalid error state");
790 	return CAN_STATE_ERROR_PASSIVE;
791 }
792 
793 /**
794  * ctucan_get_rec_tec() - Reads REC/TEC counter values from controller
795  * @priv:	Pointer to private data
796  * @bec:	Pointer to Error counter structure
797  */
798 static void ctucan_get_rec_tec(struct ctucan_priv *priv, struct can_berr_counter *bec)
799 {
800 	u32 err_ctrs = ctucan_read32(priv, CTUCANFD_REC);
801 
802 	bec->rxerr = FIELD_GET(REG_REC_REC_VAL, err_ctrs);
803 	bec->txerr = FIELD_GET(REG_REC_TEC_VAL, err_ctrs);
804 }
805 
806 /**
807  * ctucan_err_interrupt() - Error frame ISR
808  * @ndev:	net_device pointer
809  * @isr:	interrupt status register value
810  *
811  * This is the CAN error interrupt and it will check the type of error and forward the error
812  * frame to upper layers.
813  */
814 static void ctucan_err_interrupt(struct net_device *ndev, u32 isr)
815 {
816 	struct ctucan_priv *priv = netdev_priv(ndev);
817 	struct net_device_stats *stats = &ndev->stats;
818 	struct can_frame *cf;
819 	struct sk_buff *skb;
820 	enum can_state state;
821 	struct can_berr_counter bec;
822 	u32 err_capt_alc;
823 	int dologerr = net_ratelimit();
824 
825 	ctucan_get_rec_tec(priv, &bec);
826 	state = ctucan_read_fault_state(priv);
827 	err_capt_alc = ctucan_read32(priv, CTUCANFD_ERR_CAPT);
828 
829 	if (dologerr)
830 		netdev_info(ndev, "%s: ISR = 0x%08x, rxerr %d, txerr %d, error type %lu, pos %lu, ALC id_field %lu, bit %lu\n",
831 			    __func__, isr, bec.rxerr, bec.txerr,
832 			    FIELD_GET(REG_ERR_CAPT_ERR_TYPE, err_capt_alc),
833 			    FIELD_GET(REG_ERR_CAPT_ERR_POS, err_capt_alc),
834 			    FIELD_GET(REG_ERR_CAPT_ALC_ID_FIELD, err_capt_alc),
835 			    FIELD_GET(REG_ERR_CAPT_ALC_BIT, err_capt_alc));
836 
837 	skb = alloc_can_err_skb(ndev, &cf);
838 
839 	/* EWLI: error warning limit condition met
840 	 * FCSI: fault confinement state changed
841 	 * ALI:  arbitration lost (just informative)
842 	 * BEI:  bus error interrupt
843 	 */
844 	if (FIELD_GET(REG_INT_STAT_FCSI, isr) || FIELD_GET(REG_INT_STAT_EWLI, isr)) {
845 		netdev_info(ndev, "state changes from %s to %s\n",
846 			    ctucan_state_to_str(priv->can.state),
847 			    ctucan_state_to_str(state));
848 
849 		if (priv->can.state == state)
850 			netdev_warn(ndev,
851 				    "current and previous state is the same! (missed interrupt?)\n");
852 
853 		priv->can.state = state;
854 		switch (state) {
855 		case CAN_STATE_BUS_OFF:
856 			priv->can.can_stats.bus_off++;
857 			can_bus_off(ndev);
858 			if (skb)
859 				cf->can_id |= CAN_ERR_BUSOFF;
860 			break;
861 		case CAN_STATE_ERROR_PASSIVE:
862 			priv->can.can_stats.error_passive++;
863 			if (skb) {
864 				cf->can_id |= CAN_ERR_CRTL;
865 				cf->data[1] = (bec.rxerr > 127) ?
866 						CAN_ERR_CRTL_RX_PASSIVE :
867 						CAN_ERR_CRTL_TX_PASSIVE;
868 				cf->data[6] = bec.txerr;
869 				cf->data[7] = bec.rxerr;
870 			}
871 			break;
872 		case CAN_STATE_ERROR_WARNING:
873 			priv->can.can_stats.error_warning++;
874 			if (skb) {
875 				cf->can_id |= CAN_ERR_CRTL;
876 				cf->data[1] |= (bec.txerr > bec.rxerr) ?
877 					CAN_ERR_CRTL_TX_WARNING :
878 					CAN_ERR_CRTL_RX_WARNING;
879 				cf->data[6] = bec.txerr;
880 				cf->data[7] = bec.rxerr;
881 			}
882 			break;
883 		case CAN_STATE_ERROR_ACTIVE:
884 			cf->data[1] = CAN_ERR_CRTL_ACTIVE;
885 			cf->data[6] = bec.txerr;
886 			cf->data[7] = bec.rxerr;
887 			break;
888 		default:
889 			netdev_warn(ndev, "unhandled error state (%d:%s)!\n",
890 				    state, ctucan_state_to_str(state));
891 			break;
892 		}
893 	}
894 
895 	/* Check for Arbitration Lost interrupt */
896 	if (FIELD_GET(REG_INT_STAT_ALI, isr)) {
897 		if (dologerr)
898 			netdev_info(ndev, "arbitration lost\n");
899 		priv->can.can_stats.arbitration_lost++;
900 		if (skb) {
901 			cf->can_id |= CAN_ERR_LOSTARB;
902 			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
903 		}
904 	}
905 
906 	/* Check for Bus Error interrupt */
907 	if (FIELD_GET(REG_INT_STAT_BEI, isr)) {
908 		netdev_info(ndev, "bus error\n");
909 		priv->can.can_stats.bus_error++;
910 		stats->rx_errors++;
911 		if (skb) {
912 			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
913 			cf->data[2] = CAN_ERR_PROT_UNSPEC;
914 			cf->data[3] = CAN_ERR_PROT_LOC_UNSPEC;
915 		}
916 	}
917 
918 	if (skb) {
919 		stats->rx_packets++;
920 		stats->rx_bytes += cf->can_dlc;
921 		netif_rx(skb);
922 	}
923 }
924 
925 /**
926  * ctucan_rx_poll() - Poll routine for rx packets (NAPI)
927  * @napi:	NAPI structure pointer
928  * @quota:	Max number of rx packets to be processed.
929  *
930  * This is the poll routine for rx part. It will process the packets maximux quota value.
931  *
932  * Return: Number of packets received
933  */
934 static int ctucan_rx_poll(struct napi_struct *napi, int quota)
935 {
936 	struct net_device *ndev = napi->dev;
937 	struct ctucan_priv *priv = netdev_priv(ndev);
938 	int work_done = 0;
939 	u32 status;
940 	u32 framecnt;
941 	int res = 1;
942 
943 	framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS));
944 	while (framecnt && work_done < quota && res > 0) {
945 		res = ctucan_rx(ndev);
946 		work_done++;
947 		framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS));
948 	}
949 
950 	/* Check for RX FIFO Overflow */
951 	status = ctucan_read32(priv, CTUCANFD_STATUS);
952 	if (FIELD_GET(REG_STATUS_DOR, status)) {
953 		struct net_device_stats *stats = &ndev->stats;
954 		struct can_frame *cf;
955 		struct sk_buff *skb;
956 
957 		netdev_info(ndev, "rx_poll: rx fifo overflow\n");
958 		stats->rx_over_errors++;
959 		stats->rx_errors++;
960 		skb = alloc_can_err_skb(ndev, &cf);
961 		if (skb) {
962 			cf->can_id |= CAN_ERR_CRTL;
963 			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
964 			stats->rx_packets++;
965 			stats->rx_bytes += cf->can_dlc;
966 			netif_rx(skb);
967 		}
968 
969 		/* Clear Data Overrun */
970 		ctucan_write32(priv, CTUCANFD_COMMAND, REG_COMMAND_CDO);
971 	}
972 
973 	if (work_done)
974 		can_led_event(ndev, CAN_LED_EVENT_RX);
975 
976 	if (!framecnt && res != 0) {
977 		if (napi_complete_done(napi, work_done)) {
978 			/* Clear and enable RBNEI. It is level-triggered, so
979 			 * there is no race condition.
980 			 */
981 			ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_RBNEI);
982 			ctucan_write32(priv, CTUCANFD_INT_MASK_CLR, REG_INT_STAT_RBNEI);
983 		}
984 	}
985 
986 	return work_done;
987 }
988 
989 /**
990  * ctucan_rotate_txb_prio() - Rotates priorities of TXT Buffers
991  * @ndev:	net_device pointer
992  */
993 static void ctucan_rotate_txb_prio(struct net_device *ndev)
994 {
995 	struct ctucan_priv *priv = netdev_priv(ndev);
996 	u32 prio = priv->txb_prio;
997 
998 	prio = (prio << 4) | ((prio >> ((priv->ntxbufs - 1) * 4)) & 0xF);
999 	ctucan_netdev_dbg(ndev, "%s: from 0x%08x to 0x%08x\n", __func__, priv->txb_prio, prio);
1000 	priv->txb_prio = prio;
1001 	ctucan_write32(priv, CTUCANFD_TX_PRIORITY, prio);
1002 }
1003 
1004 /**
1005  * ctucan_tx_interrupt() - Tx done Isr
1006  * @ndev:	net_device pointer
1007  */
1008 static void ctucan_tx_interrupt(struct net_device *ndev)
1009 {
1010 	struct ctucan_priv *priv = netdev_priv(ndev);
1011 	struct net_device_stats *stats = &ndev->stats;
1012 	bool first = true;
1013 	bool some_buffers_processed;
1014 	unsigned long flags;
1015 	enum ctucan_txtb_status txtb_status;
1016 	u32 txtb_id;
1017 
1018 	/*  read tx_status
1019 	 *  if txb[n].finished (bit 2)
1020 	 *	if ok -> echo
1021 	 *	if error / aborted -> ?? (find how to handle oneshot mode)
1022 	 *	txb_tail++
1023 	 */
1024 	do {
1025 		spin_lock_irqsave(&priv->tx_lock, flags);
1026 
1027 		some_buffers_processed = false;
1028 		while ((int)(priv->txb_head - priv->txb_tail) > 0) {
1029 			txtb_id = priv->txb_tail % priv->ntxbufs;
1030 			txtb_status = ctucan_get_tx_status(priv, txtb_id);
1031 
1032 			ctucan_netdev_dbg(ndev, "TXI: TXB#%u: status 0x%x\n", txtb_id, txtb_status);
1033 
1034 			switch (txtb_status) {
1035 			case TXT_TOK:
1036 				ctucan_netdev_dbg(ndev, "TXT_OK\n");
1037 				stats->tx_bytes += can_get_echo_skb(ndev, txtb_id, NULL);
1038 				stats->tx_packets++;
1039 				break;
1040 			case TXT_ERR:
1041 				/* This indicated that retransmit limit has been reached. Obviously
1042 				 * we should not echo the frame, but also not indicate any kind of
1043 				 * error. If desired, it was already reported (possible multiple
1044 				 * times) on each arbitration lost.
1045 				 */
1046 				netdev_warn(ndev, "TXB in Error state\n");
1047 				can_free_echo_skb(ndev, txtb_id, NULL);
1048 				stats->tx_dropped++;
1049 				break;
1050 			case TXT_ABT:
1051 				/* Same as for TXT_ERR, only with different cause. We *could*
1052 				 * re-queue the frame, but multiqueue/abort is not supported yet
1053 				 * anyway.
1054 				 */
1055 				netdev_warn(ndev, "TXB in Aborted state\n");
1056 				can_free_echo_skb(ndev, txtb_id, NULL);
1057 				stats->tx_dropped++;
1058 				break;
1059 			default:
1060 				/* Bug only if the first buffer is not finished, otherwise it is
1061 				 * pretty much expected.
1062 				 */
1063 				if (first) {
1064 					netdev_err(ndev,
1065 						   "BUG: TXB#%u not in a finished state (0x%x)!\n",
1066 						   txtb_id, txtb_status);
1067 					spin_unlock_irqrestore(&priv->tx_lock, flags);
1068 					/* do not clear nor wake */
1069 					return;
1070 				}
1071 				goto clear;
1072 			}
1073 			priv->txb_tail++;
1074 			first = false;
1075 			some_buffers_processed = true;
1076 			/* Adjust priorities *before* marking the buffer as empty. */
1077 			ctucan_rotate_txb_prio(ndev);
1078 			ctucan_give_txtb_cmd(priv, TXT_CMD_SET_EMPTY, txtb_id);
1079 		}
1080 clear:
1081 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1082 
1083 		/* If no buffers were processed this time, we cannot clear - that would introduce
1084 		 * a race condition.
1085 		 */
1086 		if (some_buffers_processed) {
1087 			/* Clear the interrupt again. We do not want to receive again interrupt for
1088 			 * the buffer already handled. If it is the last finished one then it would
1089 			 * cause log of spurious interrupt.
1090 			 */
1091 			ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_TXBHCI);
1092 		}
1093 	} while (some_buffers_processed);
1094 
1095 	can_led_event(ndev, CAN_LED_EVENT_TX);
1096 
1097 	spin_lock_irqsave(&priv->tx_lock, flags);
1098 
1099 	/* Check if at least one TX buffer is free */
1100 	if (CTU_CAN_FD_TXTNF(priv))
1101 		netif_wake_queue(ndev);
1102 
1103 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1104 }
1105 
1106 /**
1107  * ctucan_interrupt() - CAN Isr
1108  * @irq:	irq number
1109  * @dev_id:	device id poniter
1110  *
1111  * This is the CTU CAN FD ISR. It checks for the type of interrupt
1112  * and invokes the corresponding ISR.
1113  *
1114  * Return:
1115  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1116  */
1117 static irqreturn_t ctucan_interrupt(int irq, void *dev_id)
1118 {
1119 	struct net_device *ndev = (struct net_device *)dev_id;
1120 	struct ctucan_priv *priv = netdev_priv(ndev);
1121 	u32 isr, icr;
1122 	u32 imask;
1123 	int irq_loops;
1124 
1125 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
1126 
1127 	for (irq_loops = 0; irq_loops < 10000; irq_loops++) {
1128 		/* Get the interrupt status */
1129 		isr = ctucan_read32(priv, CTUCANFD_INT_STAT);
1130 
1131 		if (!isr)
1132 			return irq_loops ? IRQ_HANDLED : IRQ_NONE;
1133 
1134 		/* Receive Buffer Not Empty Interrupt */
1135 		if (FIELD_GET(REG_INT_STAT_RBNEI, isr)) {
1136 			ctucan_netdev_dbg(ndev, "RXBNEI\n");
1137 			/* Mask RXBNEI the first, then clear interrupt and schedule NAPI. Even if
1138 			 * another IRQ fires, RBNEI will always be 0 (masked).
1139 			 */
1140 			icr = REG_INT_STAT_RBNEI;
1141 			ctucan_write32(priv, CTUCANFD_INT_MASK_SET, icr);
1142 			ctucan_write32(priv, CTUCANFD_INT_STAT, icr);
1143 			napi_schedule(&priv->napi);
1144 		}
1145 
1146 		/* TXT Buffer HW Command Interrupt */
1147 		if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) {
1148 			ctucan_netdev_dbg(ndev, "TXBHCI\n");
1149 			/* Cleared inside */
1150 			ctucan_tx_interrupt(ndev);
1151 		}
1152 
1153 		/* Error interrupts */
1154 		if (FIELD_GET(REG_INT_STAT_EWLI, isr) ||
1155 		    FIELD_GET(REG_INT_STAT_FCSI, isr) ||
1156 		    FIELD_GET(REG_INT_STAT_ALI, isr)) {
1157 			icr = isr & (REG_INT_STAT_EWLI | REG_INT_STAT_FCSI | REG_INT_STAT_ALI);
1158 
1159 			ctucan_netdev_dbg(ndev, "some ERR interrupt: clearing 0x%08x\n", icr);
1160 			ctucan_write32(priv, CTUCANFD_INT_STAT, icr);
1161 			ctucan_err_interrupt(ndev, isr);
1162 		}
1163 		/* Ignore RI, TI, LFI, RFI, BSI */
1164 	}
1165 
1166 	netdev_err(ndev, "%s: stuck interrupt (isr=0x%08x), stopping\n", __func__, isr);
1167 
1168 	if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) {
1169 		int i;
1170 
1171 		netdev_err(ndev, "txb_head=0x%08x txb_tail=0x%08x\n",
1172 			   priv->txb_head, priv->txb_tail);
1173 		for (i = 0; i < priv->ntxbufs; i++) {
1174 			u32 status = ctucan_get_tx_status(priv, i);
1175 
1176 			netdev_err(ndev, "txb[%d] txb status=0x%08x\n", i, status);
1177 		}
1178 	}
1179 
1180 	imask = 0xffffffff;
1181 	ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, imask);
1182 	ctucan_write32(priv, CTUCANFD_INT_MASK_SET, imask);
1183 
1184 	return IRQ_HANDLED;
1185 }
1186 
1187 /**
1188  * ctucan_chip_stop() - Driver stop routine
1189  * @ndev:	Pointer to net_device structure
1190  *
1191  * This is the drivers stop routine. It will disable the
1192  * interrupts and disable the controller.
1193  */
1194 static void ctucan_chip_stop(struct net_device *ndev)
1195 {
1196 	struct ctucan_priv *priv = netdev_priv(ndev);
1197 	u32 mask = 0xffffffff;
1198 	u32 mode;
1199 
1200 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
1201 
1202 	/* Disable interrupts and disable CAN */
1203 	ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, mask);
1204 	ctucan_write32(priv, CTUCANFD_INT_MASK_SET, mask);
1205 	mode = ctucan_read32(priv, CTUCANFD_MODE);
1206 	mode &= ~REG_MODE_ENA;
1207 	ctucan_write32(priv, CTUCANFD_MODE, mode);
1208 
1209 	priv->can.state = CAN_STATE_STOPPED;
1210 }
1211 
1212 /**
1213  * ctucan_open() - Driver open routine
1214  * @ndev:	Pointer to net_device structure
1215  *
1216  * This is the driver open routine.
1217  * Return: 0 on success and failure value on error
1218  */
1219 static int ctucan_open(struct net_device *ndev)
1220 {
1221 	struct ctucan_priv *priv = netdev_priv(ndev);
1222 	int ret;
1223 
1224 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
1225 
1226 	ret = pm_runtime_get_sync(priv->dev);
1227 	if (ret < 0) {
1228 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1229 			   __func__, ret);
1230 		pm_runtime_put_noidle(priv->dev);
1231 		return ret;
1232 	}
1233 
1234 	ret = ctucan_reset(ndev);
1235 	if (ret < 0)
1236 		goto err_reset;
1237 
1238 	/* Common open */
1239 	ret = open_candev(ndev);
1240 	if (ret) {
1241 		netdev_warn(ndev, "open_candev failed!\n");
1242 		goto err_open;
1243 	}
1244 
1245 	ret = request_irq(ndev->irq, ctucan_interrupt, priv->irq_flags, ndev->name, ndev);
1246 	if (ret < 0) {
1247 		netdev_err(ndev, "irq allocation for CAN failed\n");
1248 		goto err_irq;
1249 	}
1250 
1251 	ret = ctucan_chip_start(ndev);
1252 	if (ret < 0) {
1253 		netdev_err(ndev, "ctucan_chip_start failed!\n");
1254 		goto err_chip_start;
1255 	}
1256 
1257 	netdev_info(ndev, "ctu_can_fd device registered\n");
1258 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
1259 	napi_enable(&priv->napi);
1260 	netif_start_queue(ndev);
1261 
1262 	return 0;
1263 
1264 err_chip_start:
1265 	free_irq(ndev->irq, ndev);
1266 err_irq:
1267 	close_candev(ndev);
1268 err_open:
1269 err_reset:
1270 	pm_runtime_put(priv->dev);
1271 
1272 	return ret;
1273 }
1274 
1275 /**
1276  * ctucan_close() - Driver close routine
1277  * @ndev:	Pointer to net_device structure
1278  *
1279  * Return: 0 always
1280  */
1281 static int ctucan_close(struct net_device *ndev)
1282 {
1283 	struct ctucan_priv *priv = netdev_priv(ndev);
1284 
1285 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
1286 
1287 	netif_stop_queue(ndev);
1288 	napi_disable(&priv->napi);
1289 	ctucan_chip_stop(ndev);
1290 	free_irq(ndev->irq, ndev);
1291 	close_candev(ndev);
1292 
1293 	can_led_event(ndev, CAN_LED_EVENT_STOP);
1294 	pm_runtime_put(priv->dev);
1295 
1296 	return 0;
1297 }
1298 
1299 /**
1300  * ctucan_get_berr_counter() - error counter routine
1301  * @ndev:	Pointer to net_device structure
1302  * @bec:	Pointer to can_berr_counter structure
1303  *
1304  * This is the driver error counter routine.
1305  * Return: 0 on success and failure value on error
1306  */
1307 static int ctucan_get_berr_counter(const struct net_device *ndev, struct can_berr_counter *bec)
1308 {
1309 	struct ctucan_priv *priv = netdev_priv(ndev);
1310 	int ret;
1311 
1312 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
1313 
1314 	ret = pm_runtime_get_sync(priv->dev);
1315 	if (ret < 0) {
1316 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", __func__, ret);
1317 		pm_runtime_put_noidle(priv->dev);
1318 		return ret;
1319 	}
1320 
1321 	ctucan_get_rec_tec(priv, bec);
1322 	pm_runtime_put(priv->dev);
1323 
1324 	return 0;
1325 }
1326 
1327 static const struct net_device_ops ctucan_netdev_ops = {
1328 	.ndo_open	= ctucan_open,
1329 	.ndo_stop	= ctucan_close,
1330 	.ndo_start_xmit	= ctucan_start_xmit,
1331 	.ndo_change_mtu	= can_change_mtu,
1332 };
1333 
1334 int ctucan_suspend(struct device *dev)
1335 {
1336 	struct net_device *ndev = dev_get_drvdata(dev);
1337 	struct ctucan_priv *priv = netdev_priv(ndev);
1338 
1339 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
1340 
1341 	if (netif_running(ndev)) {
1342 		netif_stop_queue(ndev);
1343 		netif_device_detach(ndev);
1344 	}
1345 
1346 	priv->can.state = CAN_STATE_SLEEPING;
1347 
1348 	return 0;
1349 }
1350 EXPORT_SYMBOL(ctucan_suspend);
1351 
1352 int ctucan_resume(struct device *dev)
1353 {
1354 	struct net_device *ndev = dev_get_drvdata(dev);
1355 	struct ctucan_priv *priv = netdev_priv(ndev);
1356 
1357 	ctucan_netdev_dbg(ndev, "%s\n", __func__);
1358 
1359 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1360 
1361 	if (netif_running(ndev)) {
1362 		netif_device_attach(ndev);
1363 		netif_start_queue(ndev);
1364 	}
1365 
1366 	return 0;
1367 }
1368 EXPORT_SYMBOL(ctucan_resume);
1369 
1370 int ctucan_probe_common(struct device *dev, void __iomem *addr, int irq, unsigned int ntxbufs,
1371 			unsigned long can_clk_rate, int pm_enable_call,
1372 			void (*set_drvdata_fnc)(struct device *dev, struct net_device *ndev))
1373 {
1374 	struct ctucan_priv *priv;
1375 	struct net_device *ndev;
1376 	int ret;
1377 
1378 	/* Create a CAN device instance */
1379 	ndev = alloc_candev(sizeof(struct ctucan_priv), ntxbufs);
1380 	if (!ndev)
1381 		return -ENOMEM;
1382 
1383 	priv = netdev_priv(ndev);
1384 	spin_lock_init(&priv->tx_lock);
1385 	INIT_LIST_HEAD(&priv->peers_on_pdev);
1386 	priv->ntxbufs = ntxbufs;
1387 	priv->dev = dev;
1388 	priv->can.bittiming_const = &ctu_can_fd_bit_timing_max;
1389 	priv->can.data_bittiming_const = &ctu_can_fd_bit_timing_data_max;
1390 	priv->can.do_set_mode = ctucan_do_set_mode;
1391 
1392 	/* Needed for timing adjustment to be performed as soon as possible */
1393 	priv->can.do_set_bittiming = ctucan_set_bittiming;
1394 	priv->can.do_set_data_bittiming = ctucan_set_data_bittiming;
1395 
1396 	priv->can.do_get_berr_counter = ctucan_get_berr_counter;
1397 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK
1398 					| CAN_CTRLMODE_LISTENONLY
1399 					| CAN_CTRLMODE_FD
1400 					| CAN_CTRLMODE_PRESUME_ACK
1401 					| CAN_CTRLMODE_BERR_REPORTING
1402 					| CAN_CTRLMODE_FD_NON_ISO
1403 					| CAN_CTRLMODE_ONE_SHOT;
1404 	priv->mem_base = addr;
1405 
1406 	/* Get IRQ for the device */
1407 	ndev->irq = irq;
1408 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1409 
1410 	if (set_drvdata_fnc)
1411 		set_drvdata_fnc(dev, ndev);
1412 	SET_NETDEV_DEV(ndev, dev);
1413 	ndev->netdev_ops = &ctucan_netdev_ops;
1414 
1415 	/* Getting the can_clk info */
1416 	if (!can_clk_rate) {
1417 		priv->can_clk = devm_clk_get(dev, NULL);
1418 		if (IS_ERR(priv->can_clk)) {
1419 			dev_err(dev, "Device clock not found.\n");
1420 			ret = PTR_ERR(priv->can_clk);
1421 			goto err_free;
1422 		}
1423 		can_clk_rate = clk_get_rate(priv->can_clk);
1424 	}
1425 
1426 	priv->write_reg = ctucan_write32_le;
1427 	priv->read_reg = ctucan_read32_le;
1428 
1429 	if (pm_enable_call)
1430 		pm_runtime_enable(dev);
1431 	ret = pm_runtime_get_sync(dev);
1432 	if (ret < 0) {
1433 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1434 			   __func__, ret);
1435 		pm_runtime_put_noidle(priv->dev);
1436 		goto err_pmdisable;
1437 	}
1438 
1439 	/* Check for big-endianity and set according IO-accessors */
1440 	if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) {
1441 		priv->write_reg = ctucan_write32_be;
1442 		priv->read_reg = ctucan_read32_be;
1443 		if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) {
1444 			netdev_err(ndev, "CTU_CAN_FD signature not found\n");
1445 			ret = -ENODEV;
1446 			goto err_deviceoff;
1447 		}
1448 	}
1449 
1450 	ret = ctucan_reset(ndev);
1451 	if (ret < 0)
1452 		goto err_deviceoff;
1453 
1454 	priv->can.clock.freq = can_clk_rate;
1455 
1456 	netif_napi_add(ndev, &priv->napi, ctucan_rx_poll, NAPI_POLL_WEIGHT);
1457 
1458 	ret = register_candev(ndev);
1459 	if (ret) {
1460 		dev_err(dev, "fail to register failed (err=%d)\n", ret);
1461 		goto err_deviceoff;
1462 	}
1463 
1464 	devm_can_led_init(ndev);
1465 
1466 	pm_runtime_put(dev);
1467 
1468 	netdev_dbg(ndev, "mem_base=0x%p irq=%d clock=%d, no. of txt buffers:%d\n",
1469 		   priv->mem_base, ndev->irq, priv->can.clock.freq, priv->ntxbufs);
1470 
1471 	return 0;
1472 
1473 err_deviceoff:
1474 	pm_runtime_put(priv->dev);
1475 err_pmdisable:
1476 	if (pm_enable_call)
1477 		pm_runtime_disable(dev);
1478 err_free:
1479 	list_del_init(&priv->peers_on_pdev);
1480 	free_candev(ndev);
1481 	return ret;
1482 }
1483 EXPORT_SYMBOL(ctucan_probe_common);
1484 
1485 MODULE_LICENSE("GPL");
1486 MODULE_AUTHOR("Martin Jerabek <martin.jerabek01@gmail.com>");
1487 MODULE_AUTHOR("Pavel Pisa <pisa@cmp.felk.cvut.cz>");
1488 MODULE_AUTHOR("Ondrej Ille <ondrej.ille@gmail.com>");
1489 MODULE_DESCRIPTION("CTU CAN FD interface");
1490