xref: /linux/drivers/net/bonding/bond_main.c (revision f4a2a0d9a4226846693b5b4462d4350c1bfd58ea)
1 /*
2  * originally based on the dummy device.
3  *
4  * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5  * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6  *
7  * bonding.c: an Ethernet Bonding driver
8  *
9  * This is useful to talk to a Cisco EtherChannel compatible equipment:
10  *	Cisco 5500
11  *	Sun Trunking (Solaris)
12  *	Alteon AceDirector Trunks
13  *	Linux Bonding
14  *	and probably many L2 switches ...
15  *
16  * How it works:
17  *    ifconfig bond0 ipaddress netmask up
18  *      will setup a network device, with an ip address.  No mac address
19  *	will be assigned at this time.  The hw mac address will come from
20  *	the first slave bonded to the channel.  All slaves will then use
21  *	this hw mac address.
22  *
23  *    ifconfig bond0 down
24  *         will release all slaves, marking them as down.
25  *
26  *    ifenslave bond0 eth0
27  *	will attach eth0 to bond0 as a slave.  eth0 hw mac address will either
28  *	a: be used as initial mac address
29  *	b: if a hw mac address already is there, eth0's hw mac address
30  *	   will then be set from bond0.
31  *
32  */
33 
34 //#define BONDING_DEBUG 1
35 
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <asm/system.h>
57 #include <asm/io.h>
58 #include <asm/dma.h>
59 #include <asm/uaccess.h>
60 #include <linux/errno.h>
61 #include <linux/netdevice.h>
62 #include <linux/inetdevice.h>
63 #include <linux/igmp.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <net/sock.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/smp.h>
71 #include <linux/if_ether.h>
72 #include <net/arp.h>
73 #include <linux/mii.h>
74 #include <linux/ethtool.h>
75 #include <linux/if_vlan.h>
76 #include <linux/if_bonding.h>
77 #include <linux/jiffies.h>
78 #include <net/route.h>
79 #include <net/net_namespace.h>
80 #include "bonding.h"
81 #include "bond_3ad.h"
82 #include "bond_alb.h"
83 
84 /*---------------------------- Module parameters ----------------------------*/
85 
86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
87 #define BOND_LINK_MON_INTERV	0
88 #define BOND_LINK_ARP_INTERV	0
89 
90 static int max_bonds	= BOND_DEFAULT_MAX_BONDS;
91 static int num_grat_arp = 1;
92 static int miimon	= BOND_LINK_MON_INTERV;
93 static int updelay	= 0;
94 static int downdelay	= 0;
95 static int use_carrier	= 1;
96 static char *mode	= NULL;
97 static char *primary	= NULL;
98 static char *lacp_rate	= NULL;
99 static char *xmit_hash_policy = NULL;
100 static int arp_interval = BOND_LINK_ARP_INTERV;
101 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
102 static char *arp_validate = NULL;
103 static char *fail_over_mac = NULL;
104 struct bond_params bonding_defaults;
105 
106 module_param(max_bonds, int, 0);
107 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
108 module_param(num_grat_arp, int, 0644);
109 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event");
110 module_param(miimon, int, 0);
111 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
112 module_param(updelay, int, 0);
113 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
114 module_param(downdelay, int, 0);
115 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
116 			    "in milliseconds");
117 module_param(use_carrier, int, 0);
118 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
119 			      "0 for off, 1 for on (default)");
120 module_param(mode, charp, 0);
121 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
122 		       "1 for active-backup, 2 for balance-xor, "
123 		       "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
124 		       "6 for balance-alb");
125 module_param(primary, charp, 0);
126 MODULE_PARM_DESC(primary, "Primary network device to use");
127 module_param(lacp_rate, charp, 0);
128 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
129 			    "(slow/fast)");
130 module_param(xmit_hash_policy, charp, 0);
131 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
132 				   ", 1 for layer 3+4");
133 module_param(arp_interval, int, 0);
134 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
135 module_param_array(arp_ip_target, charp, NULL, 0);
136 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
137 module_param(arp_validate, charp, 0);
138 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all");
139 module_param(fail_over_mac, charp, 0);
140 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC.  none (default), active or follow");
141 
142 /*----------------------------- Global variables ----------------------------*/
143 
144 static const char * const version =
145 	DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
146 
147 LIST_HEAD(bond_dev_list);
148 
149 #ifdef CONFIG_PROC_FS
150 static struct proc_dir_entry *bond_proc_dir = NULL;
151 #endif
152 
153 extern struct rw_semaphore bonding_rwsem;
154 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
155 static int arp_ip_count	= 0;
156 static int bond_mode	= BOND_MODE_ROUNDROBIN;
157 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
158 static int lacp_fast	= 0;
159 
160 
161 struct bond_parm_tbl bond_lacp_tbl[] = {
162 {	"slow",		AD_LACP_SLOW},
163 {	"fast",		AD_LACP_FAST},
164 {	NULL,		-1},
165 };
166 
167 struct bond_parm_tbl bond_mode_tbl[] = {
168 {	"balance-rr",		BOND_MODE_ROUNDROBIN},
169 {	"active-backup",	BOND_MODE_ACTIVEBACKUP},
170 {	"balance-xor",		BOND_MODE_XOR},
171 {	"broadcast",		BOND_MODE_BROADCAST},
172 {	"802.3ad",		BOND_MODE_8023AD},
173 {	"balance-tlb",		BOND_MODE_TLB},
174 {	"balance-alb",		BOND_MODE_ALB},
175 {	NULL,			-1},
176 };
177 
178 struct bond_parm_tbl xmit_hashtype_tbl[] = {
179 {	"layer2",		BOND_XMIT_POLICY_LAYER2},
180 {	"layer3+4",		BOND_XMIT_POLICY_LAYER34},
181 {	"layer2+3",		BOND_XMIT_POLICY_LAYER23},
182 {	NULL,			-1},
183 };
184 
185 struct bond_parm_tbl arp_validate_tbl[] = {
186 {	"none",			BOND_ARP_VALIDATE_NONE},
187 {	"active",		BOND_ARP_VALIDATE_ACTIVE},
188 {	"backup",		BOND_ARP_VALIDATE_BACKUP},
189 {	"all",			BOND_ARP_VALIDATE_ALL},
190 {	NULL,			-1},
191 };
192 
193 struct bond_parm_tbl fail_over_mac_tbl[] = {
194 {	"none",			BOND_FOM_NONE},
195 {	"active",		BOND_FOM_ACTIVE},
196 {	"follow",		BOND_FOM_FOLLOW},
197 {	NULL,			-1},
198 };
199 
200 /*-------------------------- Forward declarations ---------------------------*/
201 
202 static void bond_send_gratuitous_arp(struct bonding *bond);
203 static void bond_deinit(struct net_device *bond_dev);
204 
205 /*---------------------------- General routines -----------------------------*/
206 
207 static const char *bond_mode_name(int mode)
208 {
209 	switch (mode) {
210 	case BOND_MODE_ROUNDROBIN :
211 		return "load balancing (round-robin)";
212 	case BOND_MODE_ACTIVEBACKUP :
213 		return "fault-tolerance (active-backup)";
214 	case BOND_MODE_XOR :
215 		return "load balancing (xor)";
216 	case BOND_MODE_BROADCAST :
217 		return "fault-tolerance (broadcast)";
218 	case BOND_MODE_8023AD:
219 		return "IEEE 802.3ad Dynamic link aggregation";
220 	case BOND_MODE_TLB:
221 		return "transmit load balancing";
222 	case BOND_MODE_ALB:
223 		return "adaptive load balancing";
224 	default:
225 		return "unknown";
226 	}
227 }
228 
229 /*---------------------------------- VLAN -----------------------------------*/
230 
231 /**
232  * bond_add_vlan - add a new vlan id on bond
233  * @bond: bond that got the notification
234  * @vlan_id: the vlan id to add
235  *
236  * Returns -ENOMEM if allocation failed.
237  */
238 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
239 {
240 	struct vlan_entry *vlan;
241 
242 	dprintk("bond: %s, vlan id %d\n",
243 		(bond ? bond->dev->name: "None"), vlan_id);
244 
245 	vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL);
246 	if (!vlan) {
247 		return -ENOMEM;
248 	}
249 
250 	INIT_LIST_HEAD(&vlan->vlan_list);
251 	vlan->vlan_id = vlan_id;
252 	vlan->vlan_ip = 0;
253 
254 	write_lock_bh(&bond->lock);
255 
256 	list_add_tail(&vlan->vlan_list, &bond->vlan_list);
257 
258 	write_unlock_bh(&bond->lock);
259 
260 	dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
261 
262 	return 0;
263 }
264 
265 /**
266  * bond_del_vlan - delete a vlan id from bond
267  * @bond: bond that got the notification
268  * @vlan_id: the vlan id to delete
269  *
270  * returns -ENODEV if @vlan_id was not found in @bond.
271  */
272 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
273 {
274 	struct vlan_entry *vlan;
275 	int res = -ENODEV;
276 
277 	dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
278 
279 	write_lock_bh(&bond->lock);
280 
281 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
282 		if (vlan->vlan_id == vlan_id) {
283 			list_del(&vlan->vlan_list);
284 
285 			if ((bond->params.mode == BOND_MODE_TLB) ||
286 			    (bond->params.mode == BOND_MODE_ALB)) {
287 				bond_alb_clear_vlan(bond, vlan_id);
288 			}
289 
290 			dprintk("removed VLAN ID %d from bond %s\n", vlan_id,
291 				bond->dev->name);
292 
293 			kfree(vlan);
294 
295 			if (list_empty(&bond->vlan_list) &&
296 			    (bond->slave_cnt == 0)) {
297 				/* Last VLAN removed and no slaves, so
298 				 * restore block on adding VLANs. This will
299 				 * be removed once new slaves that are not
300 				 * VLAN challenged will be added.
301 				 */
302 				bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
303 			}
304 
305 			res = 0;
306 			goto out;
307 		}
308 	}
309 
310 	dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id,
311 		bond->dev->name);
312 
313 out:
314 	write_unlock_bh(&bond->lock);
315 	return res;
316 }
317 
318 /**
319  * bond_has_challenged_slaves
320  * @bond: the bond we're working on
321  *
322  * Searches the slave list. Returns 1 if a vlan challenged slave
323  * was found, 0 otherwise.
324  *
325  * Assumes bond->lock is held.
326  */
327 static int bond_has_challenged_slaves(struct bonding *bond)
328 {
329 	struct slave *slave;
330 	int i;
331 
332 	bond_for_each_slave(bond, slave, i) {
333 		if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
334 			dprintk("found VLAN challenged slave - %s\n",
335 				slave->dev->name);
336 			return 1;
337 		}
338 	}
339 
340 	dprintk("no VLAN challenged slaves found\n");
341 	return 0;
342 }
343 
344 /**
345  * bond_next_vlan - safely skip to the next item in the vlans list.
346  * @bond: the bond we're working on
347  * @curr: item we're advancing from
348  *
349  * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
350  * or @curr->next otherwise (even if it is @curr itself again).
351  *
352  * Caller must hold bond->lock
353  */
354 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
355 {
356 	struct vlan_entry *next, *last;
357 
358 	if (list_empty(&bond->vlan_list)) {
359 		return NULL;
360 	}
361 
362 	if (!curr) {
363 		next = list_entry(bond->vlan_list.next,
364 				  struct vlan_entry, vlan_list);
365 	} else {
366 		last = list_entry(bond->vlan_list.prev,
367 				  struct vlan_entry, vlan_list);
368 		if (last == curr) {
369 			next = list_entry(bond->vlan_list.next,
370 					  struct vlan_entry, vlan_list);
371 		} else {
372 			next = list_entry(curr->vlan_list.next,
373 					  struct vlan_entry, vlan_list);
374 		}
375 	}
376 
377 	return next;
378 }
379 
380 /**
381  * bond_dev_queue_xmit - Prepare skb for xmit.
382  *
383  * @bond: bond device that got this skb for tx.
384  * @skb: hw accel VLAN tagged skb to transmit
385  * @slave_dev: slave that is supposed to xmit this skbuff
386  *
387  * When the bond gets an skb to transmit that is
388  * already hardware accelerated VLAN tagged, and it
389  * needs to relay this skb to a slave that is not
390  * hw accel capable, the skb needs to be "unaccelerated",
391  * i.e. strip the hwaccel tag and re-insert it as part
392  * of the payload.
393  */
394 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
395 {
396 	unsigned short uninitialized_var(vlan_id);
397 
398 	if (!list_empty(&bond->vlan_list) &&
399 	    !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
400 	    vlan_get_tag(skb, &vlan_id) == 0) {
401 		skb->dev = slave_dev;
402 		skb = vlan_put_tag(skb, vlan_id);
403 		if (!skb) {
404 			/* vlan_put_tag() frees the skb in case of error,
405 			 * so return success here so the calling functions
406 			 * won't attempt to free is again.
407 			 */
408 			return 0;
409 		}
410 	} else {
411 		skb->dev = slave_dev;
412 	}
413 
414 	skb->priority = 1;
415 	dev_queue_xmit(skb);
416 
417 	return 0;
418 }
419 
420 /*
421  * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
422  * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
423  * lock because:
424  * a. This operation is performed in IOCTL context,
425  * b. The operation is protected by the RTNL semaphore in the 8021q code,
426  * c. Holding a lock with BH disabled while directly calling a base driver
427  *    entry point is generally a BAD idea.
428  *
429  * The design of synchronization/protection for this operation in the 8021q
430  * module is good for one or more VLAN devices over a single physical device
431  * and cannot be extended for a teaming solution like bonding, so there is a
432  * potential race condition here where a net device from the vlan group might
433  * be referenced (either by a base driver or the 8021q code) while it is being
434  * removed from the system. However, it turns out we're not making matters
435  * worse, and if it works for regular VLAN usage it will work here too.
436 */
437 
438 /**
439  * bond_vlan_rx_register - Propagates registration to slaves
440  * @bond_dev: bonding net device that got called
441  * @grp: vlan group being registered
442  */
443 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
444 {
445 	struct bonding *bond = bond_dev->priv;
446 	struct slave *slave;
447 	int i;
448 
449 	bond->vlgrp = grp;
450 
451 	bond_for_each_slave(bond, slave, i) {
452 		struct net_device *slave_dev = slave->dev;
453 
454 		if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
455 		    slave_dev->vlan_rx_register) {
456 			slave_dev->vlan_rx_register(slave_dev, grp);
457 		}
458 	}
459 }
460 
461 /**
462  * bond_vlan_rx_add_vid - Propagates adding an id to slaves
463  * @bond_dev: bonding net device that got called
464  * @vid: vlan id being added
465  */
466 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
467 {
468 	struct bonding *bond = bond_dev->priv;
469 	struct slave *slave;
470 	int i, res;
471 
472 	bond_for_each_slave(bond, slave, i) {
473 		struct net_device *slave_dev = slave->dev;
474 
475 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
476 		    slave_dev->vlan_rx_add_vid) {
477 			slave_dev->vlan_rx_add_vid(slave_dev, vid);
478 		}
479 	}
480 
481 	res = bond_add_vlan(bond, vid);
482 	if (res) {
483 		printk(KERN_ERR DRV_NAME
484 		       ": %s: Error: Failed to add vlan id %d\n",
485 		       bond_dev->name, vid);
486 	}
487 }
488 
489 /**
490  * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
491  * @bond_dev: bonding net device that got called
492  * @vid: vlan id being removed
493  */
494 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
495 {
496 	struct bonding *bond = bond_dev->priv;
497 	struct slave *slave;
498 	struct net_device *vlan_dev;
499 	int i, res;
500 
501 	bond_for_each_slave(bond, slave, i) {
502 		struct net_device *slave_dev = slave->dev;
503 
504 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
505 		    slave_dev->vlan_rx_kill_vid) {
506 			/* Save and then restore vlan_dev in the grp array,
507 			 * since the slave's driver might clear it.
508 			 */
509 			vlan_dev = vlan_group_get_device(bond->vlgrp, vid);
510 			slave_dev->vlan_rx_kill_vid(slave_dev, vid);
511 			vlan_group_set_device(bond->vlgrp, vid, vlan_dev);
512 		}
513 	}
514 
515 	res = bond_del_vlan(bond, vid);
516 	if (res) {
517 		printk(KERN_ERR DRV_NAME
518 		       ": %s: Error: Failed to remove vlan id %d\n",
519 		       bond_dev->name, vid);
520 	}
521 }
522 
523 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
524 {
525 	struct vlan_entry *vlan;
526 
527 	write_lock_bh(&bond->lock);
528 
529 	if (list_empty(&bond->vlan_list)) {
530 		goto out;
531 	}
532 
533 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
534 	    slave_dev->vlan_rx_register) {
535 		slave_dev->vlan_rx_register(slave_dev, bond->vlgrp);
536 	}
537 
538 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
539 	    !(slave_dev->vlan_rx_add_vid)) {
540 		goto out;
541 	}
542 
543 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
544 		slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id);
545 	}
546 
547 out:
548 	write_unlock_bh(&bond->lock);
549 }
550 
551 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
552 {
553 	struct vlan_entry *vlan;
554 	struct net_device *vlan_dev;
555 
556 	write_lock_bh(&bond->lock);
557 
558 	if (list_empty(&bond->vlan_list)) {
559 		goto out;
560 	}
561 
562 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
563 	    !(slave_dev->vlan_rx_kill_vid)) {
564 		goto unreg;
565 	}
566 
567 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
568 		/* Save and then restore vlan_dev in the grp array,
569 		 * since the slave's driver might clear it.
570 		 */
571 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
572 		slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
573 		vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev);
574 	}
575 
576 unreg:
577 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
578 	    slave_dev->vlan_rx_register) {
579 		slave_dev->vlan_rx_register(slave_dev, NULL);
580 	}
581 
582 out:
583 	write_unlock_bh(&bond->lock);
584 }
585 
586 /*------------------------------- Link status -------------------------------*/
587 
588 /*
589  * Set the carrier state for the master according to the state of its
590  * slaves.  If any slaves are up, the master is up.  In 802.3ad mode,
591  * do special 802.3ad magic.
592  *
593  * Returns zero if carrier state does not change, nonzero if it does.
594  */
595 static int bond_set_carrier(struct bonding *bond)
596 {
597 	struct slave *slave;
598 	int i;
599 
600 	if (bond->slave_cnt == 0)
601 		goto down;
602 
603 	if (bond->params.mode == BOND_MODE_8023AD)
604 		return bond_3ad_set_carrier(bond);
605 
606 	bond_for_each_slave(bond, slave, i) {
607 		if (slave->link == BOND_LINK_UP) {
608 			if (!netif_carrier_ok(bond->dev)) {
609 				netif_carrier_on(bond->dev);
610 				return 1;
611 			}
612 			return 0;
613 		}
614 	}
615 
616 down:
617 	if (netif_carrier_ok(bond->dev)) {
618 		netif_carrier_off(bond->dev);
619 		return 1;
620 	}
621 	return 0;
622 }
623 
624 /*
625  * Get link speed and duplex from the slave's base driver
626  * using ethtool. If for some reason the call fails or the
627  * values are invalid, fake speed and duplex to 100/Full
628  * and return error.
629  */
630 static int bond_update_speed_duplex(struct slave *slave)
631 {
632 	struct net_device *slave_dev = slave->dev;
633 	struct ethtool_cmd etool;
634 	int res;
635 
636 	/* Fake speed and duplex */
637 	slave->speed = SPEED_100;
638 	slave->duplex = DUPLEX_FULL;
639 
640 	if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings)
641 		return -1;
642 
643 	res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
644 	if (res < 0)
645 		return -1;
646 
647 	switch (etool.speed) {
648 	case SPEED_10:
649 	case SPEED_100:
650 	case SPEED_1000:
651 	case SPEED_10000:
652 		break;
653 	default:
654 		return -1;
655 	}
656 
657 	switch (etool.duplex) {
658 	case DUPLEX_FULL:
659 	case DUPLEX_HALF:
660 		break;
661 	default:
662 		return -1;
663 	}
664 
665 	slave->speed = etool.speed;
666 	slave->duplex = etool.duplex;
667 
668 	return 0;
669 }
670 
671 /*
672  * if <dev> supports MII link status reporting, check its link status.
673  *
674  * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
675  * depening upon the setting of the use_carrier parameter.
676  *
677  * Return either BMSR_LSTATUS, meaning that the link is up (or we
678  * can't tell and just pretend it is), or 0, meaning that the link is
679  * down.
680  *
681  * If reporting is non-zero, instead of faking link up, return -1 if
682  * both ETHTOOL and MII ioctls fail (meaning the device does not
683  * support them).  If use_carrier is set, return whatever it says.
684  * It'd be nice if there was a good way to tell if a driver supports
685  * netif_carrier, but there really isn't.
686  */
687 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
688 {
689 	static int (* ioctl)(struct net_device *, struct ifreq *, int);
690 	struct ifreq ifr;
691 	struct mii_ioctl_data *mii;
692 
693 	if (bond->params.use_carrier) {
694 		return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
695 	}
696 
697 	ioctl = slave_dev->do_ioctl;
698 	if (ioctl) {
699 		/* TODO: set pointer to correct ioctl on a per team member */
700 		/*       bases to make this more efficient. that is, once  */
701 		/*       we determine the correct ioctl, we will always    */
702 		/*       call it and not the others for that team          */
703 		/*       member.                                           */
704 
705 		/*
706 		 * We cannot assume that SIOCGMIIPHY will also read a
707 		 * register; not all network drivers (e.g., e100)
708 		 * support that.
709 		 */
710 
711 		/* Yes, the mii is overlaid on the ifreq.ifr_ifru */
712 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
713 		mii = if_mii(&ifr);
714 		if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
715 			mii->reg_num = MII_BMSR;
716 			if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
717 				return (mii->val_out & BMSR_LSTATUS);
718 			}
719 		}
720 	}
721 
722 	/*
723 	 * Some drivers cache ETHTOOL_GLINK for a period of time so we only
724 	 * attempt to get link status from it if the above MII ioctls fail.
725 	 */
726 	if (slave_dev->ethtool_ops) {
727 		if (slave_dev->ethtool_ops->get_link) {
728 			u32 link;
729 
730 			link = slave_dev->ethtool_ops->get_link(slave_dev);
731 
732 			return link ? BMSR_LSTATUS : 0;
733 		}
734 	}
735 
736 	/*
737 	 * If reporting, report that either there's no dev->do_ioctl,
738 	 * or both SIOCGMIIREG and get_link failed (meaning that we
739 	 * cannot report link status).  If not reporting, pretend
740 	 * we're ok.
741 	 */
742 	return (reporting ? -1 : BMSR_LSTATUS);
743 }
744 
745 /*----------------------------- Multicast list ------------------------------*/
746 
747 /*
748  * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
749  */
750 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
751 {
752 	return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
753 			dmi1->dmi_addrlen == dmi2->dmi_addrlen;
754 }
755 
756 /*
757  * returns dmi entry if found, NULL otherwise
758  */
759 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
760 {
761 	struct dev_mc_list *idmi;
762 
763 	for (idmi = mc_list; idmi; idmi = idmi->next) {
764 		if (bond_is_dmi_same(dmi, idmi)) {
765 			return idmi;
766 		}
767 	}
768 
769 	return NULL;
770 }
771 
772 /*
773  * Push the promiscuity flag down to appropriate slaves
774  */
775 static int bond_set_promiscuity(struct bonding *bond, int inc)
776 {
777 	int err = 0;
778 	if (USES_PRIMARY(bond->params.mode)) {
779 		/* write lock already acquired */
780 		if (bond->curr_active_slave) {
781 			err = dev_set_promiscuity(bond->curr_active_slave->dev,
782 						  inc);
783 		}
784 	} else {
785 		struct slave *slave;
786 		int i;
787 		bond_for_each_slave(bond, slave, i) {
788 			err = dev_set_promiscuity(slave->dev, inc);
789 			if (err)
790 				return err;
791 		}
792 	}
793 	return err;
794 }
795 
796 /*
797  * Push the allmulti flag down to all slaves
798  */
799 static int bond_set_allmulti(struct bonding *bond, int inc)
800 {
801 	int err = 0;
802 	if (USES_PRIMARY(bond->params.mode)) {
803 		/* write lock already acquired */
804 		if (bond->curr_active_slave) {
805 			err = dev_set_allmulti(bond->curr_active_slave->dev,
806 					       inc);
807 		}
808 	} else {
809 		struct slave *slave;
810 		int i;
811 		bond_for_each_slave(bond, slave, i) {
812 			err = dev_set_allmulti(slave->dev, inc);
813 			if (err)
814 				return err;
815 		}
816 	}
817 	return err;
818 }
819 
820 /*
821  * Add a Multicast address to slaves
822  * according to mode
823  */
824 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
825 {
826 	if (USES_PRIMARY(bond->params.mode)) {
827 		/* write lock already acquired */
828 		if (bond->curr_active_slave) {
829 			dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
830 		}
831 	} else {
832 		struct slave *slave;
833 		int i;
834 		bond_for_each_slave(bond, slave, i) {
835 			dev_mc_add(slave->dev, addr, alen, 0);
836 		}
837 	}
838 }
839 
840 /*
841  * Remove a multicast address from slave
842  * according to mode
843  */
844 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
845 {
846 	if (USES_PRIMARY(bond->params.mode)) {
847 		/* write lock already acquired */
848 		if (bond->curr_active_slave) {
849 			dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
850 		}
851 	} else {
852 		struct slave *slave;
853 		int i;
854 		bond_for_each_slave(bond, slave, i) {
855 			dev_mc_delete(slave->dev, addr, alen, 0);
856 		}
857 	}
858 }
859 
860 
861 /*
862  * Retrieve the list of registered multicast addresses for the bonding
863  * device and retransmit an IGMP JOIN request to the current active
864  * slave.
865  */
866 static void bond_resend_igmp_join_requests(struct bonding *bond)
867 {
868 	struct in_device *in_dev;
869 	struct ip_mc_list *im;
870 
871 	rcu_read_lock();
872 	in_dev = __in_dev_get_rcu(bond->dev);
873 	if (in_dev) {
874 		for (im = in_dev->mc_list; im; im = im->next) {
875 			ip_mc_rejoin_group(im);
876 		}
877 	}
878 
879 	rcu_read_unlock();
880 }
881 
882 /*
883  * Totally destroys the mc_list in bond
884  */
885 static void bond_mc_list_destroy(struct bonding *bond)
886 {
887 	struct dev_mc_list *dmi;
888 
889 	dmi = bond->mc_list;
890 	while (dmi) {
891 		bond->mc_list = dmi->next;
892 		kfree(dmi);
893 		dmi = bond->mc_list;
894 	}
895         bond->mc_list = NULL;
896 }
897 
898 /*
899  * Copy all the Multicast addresses from src to the bonding device dst
900  */
901 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
902 			     gfp_t gfp_flag)
903 {
904 	struct dev_mc_list *dmi, *new_dmi;
905 
906 	for (dmi = mc_list; dmi; dmi = dmi->next) {
907 		new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
908 
909 		if (!new_dmi) {
910 			/* FIXME: Potential memory leak !!! */
911 			return -ENOMEM;
912 		}
913 
914 		new_dmi->next = bond->mc_list;
915 		bond->mc_list = new_dmi;
916 		new_dmi->dmi_addrlen = dmi->dmi_addrlen;
917 		memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
918 		new_dmi->dmi_users = dmi->dmi_users;
919 		new_dmi->dmi_gusers = dmi->dmi_gusers;
920 	}
921 
922 	return 0;
923 }
924 
925 /*
926  * flush all members of flush->mc_list from device dev->mc_list
927  */
928 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
929 {
930 	struct bonding *bond = bond_dev->priv;
931 	struct dev_mc_list *dmi;
932 
933 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
934 		dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
935 	}
936 
937 	if (bond->params.mode == BOND_MODE_8023AD) {
938 		/* del lacpdu mc addr from mc list */
939 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
940 
941 		dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
942 	}
943 }
944 
945 /*--------------------------- Active slave change ---------------------------*/
946 
947 /*
948  * Update the mc list and multicast-related flags for the new and
949  * old active slaves (if any) according to the multicast mode, and
950  * promiscuous flags unconditionally.
951  */
952 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
953 {
954 	struct dev_mc_list *dmi;
955 
956 	if (!USES_PRIMARY(bond->params.mode)) {
957 		/* nothing to do -  mc list is already up-to-date on
958 		 * all slaves
959 		 */
960 		return;
961 	}
962 
963 	if (old_active) {
964 		if (bond->dev->flags & IFF_PROMISC) {
965 			dev_set_promiscuity(old_active->dev, -1);
966 		}
967 
968 		if (bond->dev->flags & IFF_ALLMULTI) {
969 			dev_set_allmulti(old_active->dev, -1);
970 		}
971 
972 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
973 			dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
974 		}
975 	}
976 
977 	if (new_active) {
978 		/* FIXME: Signal errors upstream. */
979 		if (bond->dev->flags & IFF_PROMISC) {
980 			dev_set_promiscuity(new_active->dev, 1);
981 		}
982 
983 		if (bond->dev->flags & IFF_ALLMULTI) {
984 			dev_set_allmulti(new_active->dev, 1);
985 		}
986 
987 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
988 			dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
989 		}
990 		bond_resend_igmp_join_requests(bond);
991 	}
992 }
993 
994 /*
995  * bond_do_fail_over_mac
996  *
997  * Perform special MAC address swapping for fail_over_mac settings
998  *
999  * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh.
1000  */
1001 static void bond_do_fail_over_mac(struct bonding *bond,
1002 				  struct slave *new_active,
1003 				  struct slave *old_active)
1004 {
1005 	u8 tmp_mac[ETH_ALEN];
1006 	struct sockaddr saddr;
1007 	int rv;
1008 
1009 	switch (bond->params.fail_over_mac) {
1010 	case BOND_FOM_ACTIVE:
1011 		if (new_active)
1012 			memcpy(bond->dev->dev_addr,  new_active->dev->dev_addr,
1013 			       new_active->dev->addr_len);
1014 		break;
1015 	case BOND_FOM_FOLLOW:
1016 		/*
1017 		 * if new_active && old_active, swap them
1018 		 * if just old_active, do nothing (going to no active slave)
1019 		 * if just new_active, set new_active to bond's MAC
1020 		 */
1021 		if (!new_active)
1022 			return;
1023 
1024 		write_unlock_bh(&bond->curr_slave_lock);
1025 		read_unlock(&bond->lock);
1026 
1027 		if (old_active) {
1028 			memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN);
1029 			memcpy(saddr.sa_data, old_active->dev->dev_addr,
1030 			       ETH_ALEN);
1031 			saddr.sa_family = new_active->dev->type;
1032 		} else {
1033 			memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN);
1034 			saddr.sa_family = bond->dev->type;
1035 		}
1036 
1037 		rv = dev_set_mac_address(new_active->dev, &saddr);
1038 		if (rv) {
1039 			printk(KERN_ERR DRV_NAME
1040 			       ": %s: Error %d setting MAC of slave %s\n",
1041 			       bond->dev->name, -rv, new_active->dev->name);
1042 			goto out;
1043 		}
1044 
1045 		if (!old_active)
1046 			goto out;
1047 
1048 		memcpy(saddr.sa_data, tmp_mac, ETH_ALEN);
1049 		saddr.sa_family = old_active->dev->type;
1050 
1051 		rv = dev_set_mac_address(old_active->dev, &saddr);
1052 		if (rv)
1053 			printk(KERN_ERR DRV_NAME
1054 			       ": %s: Error %d setting MAC of slave %s\n",
1055 			       bond->dev->name, -rv, new_active->dev->name);
1056 out:
1057 		read_lock(&bond->lock);
1058 		write_lock_bh(&bond->curr_slave_lock);
1059 		break;
1060 	default:
1061 		printk(KERN_ERR DRV_NAME
1062 		       ": %s: bond_do_fail_over_mac impossible: bad policy %d\n",
1063 		       bond->dev->name, bond->params.fail_over_mac);
1064 		break;
1065 	}
1066 
1067 }
1068 
1069 
1070 /**
1071  * find_best_interface - select the best available slave to be the active one
1072  * @bond: our bonding struct
1073  *
1074  * Warning: Caller must hold curr_slave_lock for writing.
1075  */
1076 static struct slave *bond_find_best_slave(struct bonding *bond)
1077 {
1078 	struct slave *new_active, *old_active;
1079 	struct slave *bestslave = NULL;
1080 	int mintime = bond->params.updelay;
1081 	int i;
1082 
1083 	new_active = old_active = bond->curr_active_slave;
1084 
1085 	if (!new_active) { /* there were no active slaves left */
1086 		if (bond->slave_cnt > 0) {  /* found one slave */
1087 			new_active = bond->first_slave;
1088 		} else {
1089 			return NULL; /* still no slave, return NULL */
1090 		}
1091 	}
1092 
1093 	/* first try the primary link; if arping, a link must tx/rx traffic
1094 	 * before it can be considered the curr_active_slave - also, we would skip
1095 	 * slaves between the curr_active_slave and primary_slave that may be up
1096 	 * and able to arp
1097 	 */
1098 	if ((bond->primary_slave) &&
1099 	    (!bond->params.arp_interval) &&
1100 	    (IS_UP(bond->primary_slave->dev))) {
1101 		new_active = bond->primary_slave;
1102 	}
1103 
1104 	/* remember where to stop iterating over the slaves */
1105 	old_active = new_active;
1106 
1107 	bond_for_each_slave_from(bond, new_active, i, old_active) {
1108 		if (IS_UP(new_active->dev)) {
1109 			if (new_active->link == BOND_LINK_UP) {
1110 				return new_active;
1111 			} else if (new_active->link == BOND_LINK_BACK) {
1112 				/* link up, but waiting for stabilization */
1113 				if (new_active->delay < mintime) {
1114 					mintime = new_active->delay;
1115 					bestslave = new_active;
1116 				}
1117 			}
1118 		}
1119 	}
1120 
1121 	return bestslave;
1122 }
1123 
1124 /**
1125  * change_active_interface - change the active slave into the specified one
1126  * @bond: our bonding struct
1127  * @new: the new slave to make the active one
1128  *
1129  * Set the new slave to the bond's settings and unset them on the old
1130  * curr_active_slave.
1131  * Setting include flags, mc-list, promiscuity, allmulti, etc.
1132  *
1133  * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1134  * because it is apparently the best available slave we have, even though its
1135  * updelay hasn't timed out yet.
1136  *
1137  * If new_active is not NULL, caller must hold bond->lock for read and
1138  * curr_slave_lock for write_bh.
1139  */
1140 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1141 {
1142 	struct slave *old_active = bond->curr_active_slave;
1143 
1144 	if (old_active == new_active) {
1145 		return;
1146 	}
1147 
1148 	if (new_active) {
1149 		new_active->jiffies = jiffies;
1150 
1151 		if (new_active->link == BOND_LINK_BACK) {
1152 			if (USES_PRIMARY(bond->params.mode)) {
1153 				printk(KERN_INFO DRV_NAME
1154 				       ": %s: making interface %s the new "
1155 				       "active one %d ms earlier.\n",
1156 				       bond->dev->name, new_active->dev->name,
1157 				       (bond->params.updelay - new_active->delay) * bond->params.miimon);
1158 			}
1159 
1160 			new_active->delay = 0;
1161 			new_active->link = BOND_LINK_UP;
1162 
1163 			if (bond->params.mode == BOND_MODE_8023AD) {
1164 				bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1165 			}
1166 
1167 			if ((bond->params.mode == BOND_MODE_TLB) ||
1168 			    (bond->params.mode == BOND_MODE_ALB)) {
1169 				bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1170 			}
1171 		} else {
1172 			if (USES_PRIMARY(bond->params.mode)) {
1173 				printk(KERN_INFO DRV_NAME
1174 				       ": %s: making interface %s the new "
1175 				       "active one.\n",
1176 				       bond->dev->name, new_active->dev->name);
1177 			}
1178 		}
1179 	}
1180 
1181 	if (USES_PRIMARY(bond->params.mode)) {
1182 		bond_mc_swap(bond, new_active, old_active);
1183 	}
1184 
1185 	if ((bond->params.mode == BOND_MODE_TLB) ||
1186 	    (bond->params.mode == BOND_MODE_ALB)) {
1187 		bond_alb_handle_active_change(bond, new_active);
1188 		if (old_active)
1189 			bond_set_slave_inactive_flags(old_active);
1190 		if (new_active)
1191 			bond_set_slave_active_flags(new_active);
1192 	} else {
1193 		bond->curr_active_slave = new_active;
1194 	}
1195 
1196 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1197 		if (old_active) {
1198 			bond_set_slave_inactive_flags(old_active);
1199 		}
1200 
1201 		if (new_active) {
1202 			bond_set_slave_active_flags(new_active);
1203 
1204 			if (bond->params.fail_over_mac)
1205 				bond_do_fail_over_mac(bond, new_active,
1206 						      old_active);
1207 
1208 			bond->send_grat_arp = bond->params.num_grat_arp;
1209 			bond_send_gratuitous_arp(bond);
1210 
1211 			write_unlock_bh(&bond->curr_slave_lock);
1212 			read_unlock(&bond->lock);
1213 
1214 			netdev_bonding_change(bond->dev);
1215 
1216 			read_lock(&bond->lock);
1217 			write_lock_bh(&bond->curr_slave_lock);
1218 		}
1219 	}
1220 }
1221 
1222 /**
1223  * bond_select_active_slave - select a new active slave, if needed
1224  * @bond: our bonding struct
1225  *
1226  * This functions shoud be called when one of the following occurs:
1227  * - The old curr_active_slave has been released or lost its link.
1228  * - The primary_slave has got its link back.
1229  * - A slave has got its link back and there's no old curr_active_slave.
1230  *
1231  * Caller must hold bond->lock for read and curr_slave_lock for write_bh.
1232  */
1233 void bond_select_active_slave(struct bonding *bond)
1234 {
1235 	struct slave *best_slave;
1236 	int rv;
1237 
1238 	best_slave = bond_find_best_slave(bond);
1239 	if (best_slave != bond->curr_active_slave) {
1240 		bond_change_active_slave(bond, best_slave);
1241 		rv = bond_set_carrier(bond);
1242 		if (!rv)
1243 			return;
1244 
1245 		if (netif_carrier_ok(bond->dev)) {
1246 			printk(KERN_INFO DRV_NAME
1247 			       ": %s: first active interface up!\n",
1248 			       bond->dev->name);
1249 		} else {
1250 			printk(KERN_INFO DRV_NAME ": %s: "
1251 			       "now running without any active interface !\n",
1252 			       bond->dev->name);
1253 		}
1254 	}
1255 }
1256 
1257 /*--------------------------- slave list handling ---------------------------*/
1258 
1259 /*
1260  * This function attaches the slave to the end of list.
1261  *
1262  * bond->lock held for writing by caller.
1263  */
1264 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1265 {
1266 	if (bond->first_slave == NULL) { /* attaching the first slave */
1267 		new_slave->next = new_slave;
1268 		new_slave->prev = new_slave;
1269 		bond->first_slave = new_slave;
1270 	} else {
1271 		new_slave->next = bond->first_slave;
1272 		new_slave->prev = bond->first_slave->prev;
1273 		new_slave->next->prev = new_slave;
1274 		new_slave->prev->next = new_slave;
1275 	}
1276 
1277 	bond->slave_cnt++;
1278 }
1279 
1280 /*
1281  * This function detaches the slave from the list.
1282  * WARNING: no check is made to verify if the slave effectively
1283  * belongs to <bond>.
1284  * Nothing is freed on return, structures are just unchained.
1285  * If any slave pointer in bond was pointing to <slave>,
1286  * it should be changed by the calling function.
1287  *
1288  * bond->lock held for writing by caller.
1289  */
1290 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1291 {
1292 	if (slave->next) {
1293 		slave->next->prev = slave->prev;
1294 	}
1295 
1296 	if (slave->prev) {
1297 		slave->prev->next = slave->next;
1298 	}
1299 
1300 	if (bond->first_slave == slave) { /* slave is the first slave */
1301 		if (bond->slave_cnt > 1) { /* there are more slave */
1302 			bond->first_slave = slave->next;
1303 		} else {
1304 			bond->first_slave = NULL; /* slave was the last one */
1305 		}
1306 	}
1307 
1308 	slave->next = NULL;
1309 	slave->prev = NULL;
1310 	bond->slave_cnt--;
1311 }
1312 
1313 /*---------------------------------- IOCTL ----------------------------------*/
1314 
1315 static int bond_sethwaddr(struct net_device *bond_dev,
1316 			  struct net_device *slave_dev)
1317 {
1318 	dprintk("bond_dev=%p\n", bond_dev);
1319 	dprintk("slave_dev=%p\n", slave_dev);
1320 	dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1321 	memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1322 	return 0;
1323 }
1324 
1325 #define BOND_VLAN_FEATURES \
1326 	(NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \
1327 	 NETIF_F_HW_VLAN_FILTER)
1328 
1329 /*
1330  * Compute the common dev->feature set available to all slaves.  Some
1331  * feature bits are managed elsewhere, so preserve those feature bits
1332  * on the master device.
1333  */
1334 static int bond_compute_features(struct bonding *bond)
1335 {
1336 	struct slave *slave;
1337 	struct net_device *bond_dev = bond->dev;
1338 	unsigned long features = bond_dev->features;
1339 	unsigned short max_hard_header_len = max((u16)ETH_HLEN,
1340 						bond_dev->hard_header_len);
1341 	int i;
1342 
1343 	features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES);
1344 	features |=  NETIF_F_GSO_MASK | NETIF_F_NO_CSUM;
1345 
1346 	if (!bond->first_slave)
1347 		goto done;
1348 
1349 	features &= ~NETIF_F_ONE_FOR_ALL;
1350 
1351 	bond_for_each_slave(bond, slave, i) {
1352 		features = netdev_increment_features(features,
1353 						     slave->dev->features,
1354 						     NETIF_F_ONE_FOR_ALL);
1355 		if (slave->dev->hard_header_len > max_hard_header_len)
1356 			max_hard_header_len = slave->dev->hard_header_len;
1357 	}
1358 
1359 done:
1360 	features |= (bond_dev->features & BOND_VLAN_FEATURES);
1361 	bond_dev->features = netdev_fix_features(features, NULL);
1362 	bond_dev->hard_header_len = max_hard_header_len;
1363 
1364 	return 0;
1365 }
1366 
1367 
1368 static void bond_setup_by_slave(struct net_device *bond_dev,
1369 				struct net_device *slave_dev)
1370 {
1371 	struct bonding *bond = bond_dev->priv;
1372 
1373 	bond_dev->neigh_setup           = slave_dev->neigh_setup;
1374 	bond_dev->header_ops		= slave_dev->header_ops;
1375 
1376 	bond_dev->type		    = slave_dev->type;
1377 	bond_dev->hard_header_len   = slave_dev->hard_header_len;
1378 	bond_dev->addr_len	    = slave_dev->addr_len;
1379 
1380 	memcpy(bond_dev->broadcast, slave_dev->broadcast,
1381 		slave_dev->addr_len);
1382 	bond->setup_by_slave = 1;
1383 }
1384 
1385 /* enslave device <slave> to bond device <master> */
1386 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1387 {
1388 	struct bonding *bond = bond_dev->priv;
1389 	struct slave *new_slave = NULL;
1390 	struct dev_mc_list *dmi;
1391 	struct sockaddr addr;
1392 	int link_reporting;
1393 	int old_features = bond_dev->features;
1394 	int res = 0;
1395 
1396 	if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1397 		slave_dev->do_ioctl == NULL) {
1398 		printk(KERN_WARNING DRV_NAME
1399 		       ": %s: Warning: no link monitoring support for %s\n",
1400 		       bond_dev->name, slave_dev->name);
1401 	}
1402 
1403 	/* bond must be initialized by bond_open() before enslaving */
1404 	if (!(bond_dev->flags & IFF_UP)) {
1405 		printk(KERN_WARNING DRV_NAME
1406 			" %s: master_dev is not up in bond_enslave\n",
1407 			bond_dev->name);
1408 	}
1409 
1410 	/* already enslaved */
1411 	if (slave_dev->flags & IFF_SLAVE) {
1412 		dprintk("Error, Device was already enslaved\n");
1413 		return -EBUSY;
1414 	}
1415 
1416 	/* vlan challenged mutual exclusion */
1417 	/* no need to lock since we're protected by rtnl_lock */
1418 	if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1419 		dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1420 		if (!list_empty(&bond->vlan_list)) {
1421 			printk(KERN_ERR DRV_NAME
1422 			       ": %s: Error: cannot enslave VLAN "
1423 			       "challenged slave %s on VLAN enabled "
1424 			       "bond %s\n", bond_dev->name, slave_dev->name,
1425 			       bond_dev->name);
1426 			return -EPERM;
1427 		} else {
1428 			printk(KERN_WARNING DRV_NAME
1429 			       ": %s: Warning: enslaved VLAN challenged "
1430 			       "slave %s. Adding VLANs will be blocked as "
1431 			       "long as %s is part of bond %s\n",
1432 			       bond_dev->name, slave_dev->name, slave_dev->name,
1433 			       bond_dev->name);
1434 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1435 		}
1436 	} else {
1437 		dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1438 		if (bond->slave_cnt == 0) {
1439 			/* First slave, and it is not VLAN challenged,
1440 			 * so remove the block of adding VLANs over the bond.
1441 			 */
1442 			bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1443 		}
1444 	}
1445 
1446 	/*
1447 	 * Old ifenslave binaries are no longer supported.  These can
1448 	 * be identified with moderate accurary by the state of the slave:
1449 	 * the current ifenslave will set the interface down prior to
1450 	 * enslaving it; the old ifenslave will not.
1451 	 */
1452 	if ((slave_dev->flags & IFF_UP)) {
1453 		printk(KERN_ERR DRV_NAME ": %s is up. "
1454 		       "This may be due to an out of date ifenslave.\n",
1455 		       slave_dev->name);
1456 		res = -EPERM;
1457 		goto err_undo_flags;
1458 	}
1459 
1460 	/* set bonding device ether type by slave - bonding netdevices are
1461 	 * created with ether_setup, so when the slave type is not ARPHRD_ETHER
1462 	 * there is a need to override some of the type dependent attribs/funcs.
1463 	 *
1464 	 * bond ether type mutual exclusion - don't allow slaves of dissimilar
1465 	 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond
1466 	 */
1467 	if (bond->slave_cnt == 0) {
1468 		if (slave_dev->type != ARPHRD_ETHER)
1469 			bond_setup_by_slave(bond_dev, slave_dev);
1470 	} else if (bond_dev->type != slave_dev->type) {
1471 		printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different "
1472 			"from other slaves (%d), can not enslave it.\n",
1473 			slave_dev->name,
1474 			slave_dev->type, bond_dev->type);
1475 			res = -EINVAL;
1476 			goto err_undo_flags;
1477 	}
1478 
1479 	if (slave_dev->set_mac_address == NULL) {
1480 		if (bond->slave_cnt == 0) {
1481 			printk(KERN_WARNING DRV_NAME
1482 			       ": %s: Warning: The first slave device "
1483 			       "specified does not support setting the MAC "
1484 			       "address. Setting fail_over_mac to active.",
1485 			       bond_dev->name);
1486 			bond->params.fail_over_mac = BOND_FOM_ACTIVE;
1487 		} else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1488 			printk(KERN_ERR DRV_NAME
1489 				": %s: Error: The slave device specified "
1490 				"does not support setting the MAC address, "
1491 				"but fail_over_mac is not set to active.\n"
1492 				, bond_dev->name);
1493 			res = -EOPNOTSUPP;
1494 			goto err_undo_flags;
1495 		}
1496 	}
1497 
1498 	new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1499 	if (!new_slave) {
1500 		res = -ENOMEM;
1501 		goto err_undo_flags;
1502 	}
1503 
1504 	/* save slave's original flags before calling
1505 	 * netdev_set_master and dev_open
1506 	 */
1507 	new_slave->original_flags = slave_dev->flags;
1508 
1509 	/*
1510 	 * Save slave's original ("permanent") mac address for modes
1511 	 * that need it, and for restoring it upon release, and then
1512 	 * set it to the master's address
1513 	 */
1514 	memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1515 
1516 	if (!bond->params.fail_over_mac) {
1517 		/*
1518 		 * Set slave to master's mac address.  The application already
1519 		 * set the master's mac address to that of the first slave
1520 		 */
1521 		memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1522 		addr.sa_family = slave_dev->type;
1523 		res = dev_set_mac_address(slave_dev, &addr);
1524 		if (res) {
1525 			dprintk("Error %d calling set_mac_address\n", res);
1526 			goto err_free;
1527 		}
1528 	}
1529 
1530 	res = netdev_set_master(slave_dev, bond_dev);
1531 	if (res) {
1532 		dprintk("Error %d calling netdev_set_master\n", res);
1533 		goto err_restore_mac;
1534 	}
1535 	/* open the slave since the application closed it */
1536 	res = dev_open(slave_dev);
1537 	if (res) {
1538 		dprintk("Openning slave %s failed\n", slave_dev->name);
1539 		goto err_unset_master;
1540 	}
1541 
1542 	new_slave->dev = slave_dev;
1543 	slave_dev->priv_flags |= IFF_BONDING;
1544 
1545 	if ((bond->params.mode == BOND_MODE_TLB) ||
1546 	    (bond->params.mode == BOND_MODE_ALB)) {
1547 		/* bond_alb_init_slave() must be called before all other stages since
1548 		 * it might fail and we do not want to have to undo everything
1549 		 */
1550 		res = bond_alb_init_slave(bond, new_slave);
1551 		if (res) {
1552 			goto err_close;
1553 		}
1554 	}
1555 
1556 	/* If the mode USES_PRIMARY, then the new slave gets the
1557 	 * master's promisc (and mc) settings only if it becomes the
1558 	 * curr_active_slave, and that is taken care of later when calling
1559 	 * bond_change_active()
1560 	 */
1561 	if (!USES_PRIMARY(bond->params.mode)) {
1562 		/* set promiscuity level to new slave */
1563 		if (bond_dev->flags & IFF_PROMISC) {
1564 			res = dev_set_promiscuity(slave_dev, 1);
1565 			if (res)
1566 				goto err_close;
1567 		}
1568 
1569 		/* set allmulti level to new slave */
1570 		if (bond_dev->flags & IFF_ALLMULTI) {
1571 			res = dev_set_allmulti(slave_dev, 1);
1572 			if (res)
1573 				goto err_close;
1574 		}
1575 
1576 		netif_addr_lock_bh(bond_dev);
1577 		/* upload master's mc_list to new slave */
1578 		for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1579 			dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1580 		}
1581 		netif_addr_unlock_bh(bond_dev);
1582 	}
1583 
1584 	if (bond->params.mode == BOND_MODE_8023AD) {
1585 		/* add lacpdu mc addr to mc list */
1586 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1587 
1588 		dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1589 	}
1590 
1591 	bond_add_vlans_on_slave(bond, slave_dev);
1592 
1593 	write_lock_bh(&bond->lock);
1594 
1595 	bond_attach_slave(bond, new_slave);
1596 
1597 	new_slave->delay = 0;
1598 	new_slave->link_failure_count = 0;
1599 
1600 	bond_compute_features(bond);
1601 
1602 	write_unlock_bh(&bond->lock);
1603 
1604 	read_lock(&bond->lock);
1605 
1606 	new_slave->last_arp_rx = jiffies;
1607 
1608 	if (bond->params.miimon && !bond->params.use_carrier) {
1609 		link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1610 
1611 		if ((link_reporting == -1) && !bond->params.arp_interval) {
1612 			/*
1613 			 * miimon is set but a bonded network driver
1614 			 * does not support ETHTOOL/MII and
1615 			 * arp_interval is not set.  Note: if
1616 			 * use_carrier is enabled, we will never go
1617 			 * here (because netif_carrier is always
1618 			 * supported); thus, we don't need to change
1619 			 * the messages for netif_carrier.
1620 			 */
1621 			printk(KERN_WARNING DRV_NAME
1622 			       ": %s: Warning: MII and ETHTOOL support not "
1623 			       "available for interface %s, and "
1624 			       "arp_interval/arp_ip_target module parameters "
1625 			       "not specified, thus bonding will not detect "
1626 			       "link failures! see bonding.txt for details.\n",
1627 			       bond_dev->name, slave_dev->name);
1628 		} else if (link_reporting == -1) {
1629 			/* unable get link status using mii/ethtool */
1630 			printk(KERN_WARNING DRV_NAME
1631 			       ": %s: Warning: can't get link status from "
1632 			       "interface %s; the network driver associated "
1633 			       "with this interface does not support MII or "
1634 			       "ETHTOOL link status reporting, thus miimon "
1635 			       "has no effect on this interface.\n",
1636 			       bond_dev->name, slave_dev->name);
1637 		}
1638 	}
1639 
1640 	/* check for initial state */
1641 	if (!bond->params.miimon ||
1642 	    (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1643 		if (bond->params.updelay) {
1644 			dprintk("Initial state of slave_dev is "
1645 				"BOND_LINK_BACK\n");
1646 			new_slave->link  = BOND_LINK_BACK;
1647 			new_slave->delay = bond->params.updelay;
1648 		} else {
1649 			dprintk("Initial state of slave_dev is "
1650 				"BOND_LINK_UP\n");
1651 			new_slave->link  = BOND_LINK_UP;
1652 		}
1653 		new_slave->jiffies = jiffies;
1654 	} else {
1655 		dprintk("Initial state of slave_dev is "
1656 			"BOND_LINK_DOWN\n");
1657 		new_slave->link  = BOND_LINK_DOWN;
1658 	}
1659 
1660 	if (bond_update_speed_duplex(new_slave) &&
1661 	    (new_slave->link != BOND_LINK_DOWN)) {
1662 		printk(KERN_WARNING DRV_NAME
1663 		       ": %s: Warning: failed to get speed and duplex from %s, "
1664 		       "assumed to be 100Mb/sec and Full.\n",
1665 		       bond_dev->name, new_slave->dev->name);
1666 
1667 		if (bond->params.mode == BOND_MODE_8023AD) {
1668 			printk(KERN_WARNING DRV_NAME
1669 			       ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1670 			       "support in base driver for proper aggregator "
1671 			       "selection.\n", bond_dev->name);
1672 		}
1673 	}
1674 
1675 	if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1676 		/* if there is a primary slave, remember it */
1677 		if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1678 			bond->primary_slave = new_slave;
1679 		}
1680 	}
1681 
1682 	write_lock_bh(&bond->curr_slave_lock);
1683 
1684 	switch (bond->params.mode) {
1685 	case BOND_MODE_ACTIVEBACKUP:
1686 		bond_set_slave_inactive_flags(new_slave);
1687 		bond_select_active_slave(bond);
1688 		break;
1689 	case BOND_MODE_8023AD:
1690 		/* in 802.3ad mode, the internal mechanism
1691 		 * will activate the slaves in the selected
1692 		 * aggregator
1693 		 */
1694 		bond_set_slave_inactive_flags(new_slave);
1695 		/* if this is the first slave */
1696 		if (bond->slave_cnt == 1) {
1697 			SLAVE_AD_INFO(new_slave).id = 1;
1698 			/* Initialize AD with the number of times that the AD timer is called in 1 second
1699 			 * can be called only after the mac address of the bond is set
1700 			 */
1701 			bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1702 					    bond->params.lacp_fast);
1703 		} else {
1704 			SLAVE_AD_INFO(new_slave).id =
1705 				SLAVE_AD_INFO(new_slave->prev).id + 1;
1706 		}
1707 
1708 		bond_3ad_bind_slave(new_slave);
1709 		break;
1710 	case BOND_MODE_TLB:
1711 	case BOND_MODE_ALB:
1712 		new_slave->state = BOND_STATE_ACTIVE;
1713 		bond_set_slave_inactive_flags(new_slave);
1714 		break;
1715 	default:
1716 		dprintk("This slave is always active in trunk mode\n");
1717 
1718 		/* always active in trunk mode */
1719 		new_slave->state = BOND_STATE_ACTIVE;
1720 
1721 		/* In trunking mode there is little meaning to curr_active_slave
1722 		 * anyway (it holds no special properties of the bond device),
1723 		 * so we can change it without calling change_active_interface()
1724 		 */
1725 		if (!bond->curr_active_slave) {
1726 			bond->curr_active_slave = new_slave;
1727 		}
1728 		break;
1729 	} /* switch(bond_mode) */
1730 
1731 	write_unlock_bh(&bond->curr_slave_lock);
1732 
1733 	bond_set_carrier(bond);
1734 
1735 	read_unlock(&bond->lock);
1736 
1737 	res = bond_create_slave_symlinks(bond_dev, slave_dev);
1738 	if (res)
1739 		goto err_close;
1740 
1741 	printk(KERN_INFO DRV_NAME
1742 	       ": %s: enslaving %s as a%s interface with a%s link.\n",
1743 	       bond_dev->name, slave_dev->name,
1744 	       new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1745 	       new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1746 
1747 	/* enslave is successful */
1748 	return 0;
1749 
1750 /* Undo stages on error */
1751 err_close:
1752 	dev_close(slave_dev);
1753 
1754 err_unset_master:
1755 	netdev_set_master(slave_dev, NULL);
1756 
1757 err_restore_mac:
1758 	if (!bond->params.fail_over_mac) {
1759 		/* XXX TODO - fom follow mode needs to change master's
1760 		 * MAC if this slave's MAC is in use by the bond, or at
1761 		 * least print a warning.
1762 		 */
1763 		memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1764 		addr.sa_family = slave_dev->type;
1765 		dev_set_mac_address(slave_dev, &addr);
1766 	}
1767 
1768 err_free:
1769 	kfree(new_slave);
1770 
1771 err_undo_flags:
1772 	bond_dev->features = old_features;
1773 
1774 	return res;
1775 }
1776 
1777 /*
1778  * Try to release the slave device <slave> from the bond device <master>
1779  * It is legal to access curr_active_slave without a lock because all the function
1780  * is write-locked.
1781  *
1782  * The rules for slave state should be:
1783  *   for Active/Backup:
1784  *     Active stays on all backups go down
1785  *   for Bonded connections:
1786  *     The first up interface should be left on and all others downed.
1787  */
1788 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1789 {
1790 	struct bonding *bond = bond_dev->priv;
1791 	struct slave *slave, *oldcurrent;
1792 	struct sockaddr addr;
1793 	int mac_addr_differ;
1794 	DECLARE_MAC_BUF(mac);
1795 
1796 	/* slave is not a slave or master is not master of this slave */
1797 	if (!(slave_dev->flags & IFF_SLAVE) ||
1798 	    (slave_dev->master != bond_dev)) {
1799 		printk(KERN_ERR DRV_NAME
1800 		       ": %s: Error: cannot release %s.\n",
1801 		       bond_dev->name, slave_dev->name);
1802 		return -EINVAL;
1803 	}
1804 
1805 	write_lock_bh(&bond->lock);
1806 
1807 	slave = bond_get_slave_by_dev(bond, slave_dev);
1808 	if (!slave) {
1809 		/* not a slave of this bond */
1810 		printk(KERN_INFO DRV_NAME
1811 		       ": %s: %s not enslaved\n",
1812 		       bond_dev->name, slave_dev->name);
1813 		write_unlock_bh(&bond->lock);
1814 		return -EINVAL;
1815 	}
1816 
1817 	if (!bond->params.fail_over_mac) {
1818 		mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr,
1819 					 ETH_ALEN);
1820 		if (!mac_addr_differ && (bond->slave_cnt > 1))
1821 			printk(KERN_WARNING DRV_NAME
1822 			       ": %s: Warning: the permanent HWaddr of %s - "
1823 			       "%s - is still in use by %s. "
1824 			       "Set the HWaddr of %s to a different address "
1825 			       "to avoid conflicts.\n",
1826 			       bond_dev->name, slave_dev->name,
1827 			       print_mac(mac, slave->perm_hwaddr),
1828 			       bond_dev->name, slave_dev->name);
1829 	}
1830 
1831 	/* Inform AD package of unbinding of slave. */
1832 	if (bond->params.mode == BOND_MODE_8023AD) {
1833 		/* must be called before the slave is
1834 		 * detached from the list
1835 		 */
1836 		bond_3ad_unbind_slave(slave);
1837 	}
1838 
1839 	printk(KERN_INFO DRV_NAME
1840 	       ": %s: releasing %s interface %s\n",
1841 	       bond_dev->name,
1842 	       (slave->state == BOND_STATE_ACTIVE)
1843 	       ? "active" : "backup",
1844 	       slave_dev->name);
1845 
1846 	oldcurrent = bond->curr_active_slave;
1847 
1848 	bond->current_arp_slave = NULL;
1849 
1850 	/* release the slave from its bond */
1851 	bond_detach_slave(bond, slave);
1852 
1853 	bond_compute_features(bond);
1854 
1855 	if (bond->primary_slave == slave) {
1856 		bond->primary_slave = NULL;
1857 	}
1858 
1859 	if (oldcurrent == slave) {
1860 		bond_change_active_slave(bond, NULL);
1861 	}
1862 
1863 	if ((bond->params.mode == BOND_MODE_TLB) ||
1864 	    (bond->params.mode == BOND_MODE_ALB)) {
1865 		/* Must be called only after the slave has been
1866 		 * detached from the list and the curr_active_slave
1867 		 * has been cleared (if our_slave == old_current),
1868 		 * but before a new active slave is selected.
1869 		 */
1870 		write_unlock_bh(&bond->lock);
1871 		bond_alb_deinit_slave(bond, slave);
1872 		write_lock_bh(&bond->lock);
1873 	}
1874 
1875 	if (oldcurrent == slave) {
1876 		/*
1877 		 * Note that we hold RTNL over this sequence, so there
1878 		 * is no concern that another slave add/remove event
1879 		 * will interfere.
1880 		 */
1881 		write_unlock_bh(&bond->lock);
1882 		read_lock(&bond->lock);
1883 		write_lock_bh(&bond->curr_slave_lock);
1884 
1885 		bond_select_active_slave(bond);
1886 
1887 		write_unlock_bh(&bond->curr_slave_lock);
1888 		read_unlock(&bond->lock);
1889 		write_lock_bh(&bond->lock);
1890 	}
1891 
1892 	if (bond->slave_cnt == 0) {
1893 		bond_set_carrier(bond);
1894 
1895 		/* if the last slave was removed, zero the mac address
1896 		 * of the master so it will be set by the application
1897 		 * to the mac address of the first slave
1898 		 */
1899 		memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1900 
1901 		if (list_empty(&bond->vlan_list)) {
1902 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1903 		} else {
1904 			printk(KERN_WARNING DRV_NAME
1905 			       ": %s: Warning: clearing HW address of %s while it "
1906 			       "still has VLANs.\n",
1907 			       bond_dev->name, bond_dev->name);
1908 			printk(KERN_WARNING DRV_NAME
1909 			       ": %s: When re-adding slaves, make sure the bond's "
1910 			       "HW address matches its VLANs'.\n",
1911 			       bond_dev->name);
1912 		}
1913 	} else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1914 		   !bond_has_challenged_slaves(bond)) {
1915 		printk(KERN_INFO DRV_NAME
1916 		       ": %s: last VLAN challenged slave %s "
1917 		       "left bond %s. VLAN blocking is removed\n",
1918 		       bond_dev->name, slave_dev->name, bond_dev->name);
1919 		bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1920 	}
1921 
1922 	write_unlock_bh(&bond->lock);
1923 
1924 	/* must do this from outside any spinlocks */
1925 	bond_destroy_slave_symlinks(bond_dev, slave_dev);
1926 
1927 	bond_del_vlans_from_slave(bond, slave_dev);
1928 
1929 	/* If the mode USES_PRIMARY, then we should only remove its
1930 	 * promisc and mc settings if it was the curr_active_slave, but that was
1931 	 * already taken care of above when we detached the slave
1932 	 */
1933 	if (!USES_PRIMARY(bond->params.mode)) {
1934 		/* unset promiscuity level from slave */
1935 		if (bond_dev->flags & IFF_PROMISC) {
1936 			dev_set_promiscuity(slave_dev, -1);
1937 		}
1938 
1939 		/* unset allmulti level from slave */
1940 		if (bond_dev->flags & IFF_ALLMULTI) {
1941 			dev_set_allmulti(slave_dev, -1);
1942 		}
1943 
1944 		/* flush master's mc_list from slave */
1945 		netif_addr_lock_bh(bond_dev);
1946 		bond_mc_list_flush(bond_dev, slave_dev);
1947 		netif_addr_unlock_bh(bond_dev);
1948 	}
1949 
1950 	netdev_set_master(slave_dev, NULL);
1951 
1952 	/* close slave before restoring its mac address */
1953 	dev_close(slave_dev);
1954 
1955 	if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1956 		/* restore original ("permanent") mac address */
1957 		memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1958 		addr.sa_family = slave_dev->type;
1959 		dev_set_mac_address(slave_dev, &addr);
1960 	}
1961 
1962 	slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1963 				   IFF_SLAVE_INACTIVE | IFF_BONDING |
1964 				   IFF_SLAVE_NEEDARP);
1965 
1966 	kfree(slave);
1967 
1968 	return 0;  /* deletion OK */
1969 }
1970 
1971 /*
1972 * Destroy a bonding device.
1973 * Must be under rtnl_lock when this function is called.
1974 */
1975 void bond_destroy(struct bonding *bond)
1976 {
1977 	bond_deinit(bond->dev);
1978 	bond_destroy_sysfs_entry(bond);
1979 	unregister_netdevice(bond->dev);
1980 }
1981 
1982 /*
1983 * First release a slave and than destroy the bond if no more slaves iare left.
1984 * Must be under rtnl_lock when this function is called.
1985 */
1986 int  bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev)
1987 {
1988 	struct bonding *bond = bond_dev->priv;
1989 	int ret;
1990 
1991 	ret = bond_release(bond_dev, slave_dev);
1992 	if ((ret == 0) && (bond->slave_cnt == 0)) {
1993 		printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n",
1994 		       bond_dev->name, bond_dev->name);
1995 		bond_destroy(bond);
1996 	}
1997 	return ret;
1998 }
1999 
2000 /*
2001  * This function releases all slaves.
2002  */
2003 static int bond_release_all(struct net_device *bond_dev)
2004 {
2005 	struct bonding *bond = bond_dev->priv;
2006 	struct slave *slave;
2007 	struct net_device *slave_dev;
2008 	struct sockaddr addr;
2009 
2010 	write_lock_bh(&bond->lock);
2011 
2012 	netif_carrier_off(bond_dev);
2013 
2014 	if (bond->slave_cnt == 0) {
2015 		goto out;
2016 	}
2017 
2018 	bond->current_arp_slave = NULL;
2019 	bond->primary_slave = NULL;
2020 	bond_change_active_slave(bond, NULL);
2021 
2022 	while ((slave = bond->first_slave) != NULL) {
2023 		/* Inform AD package of unbinding of slave
2024 		 * before slave is detached from the list.
2025 		 */
2026 		if (bond->params.mode == BOND_MODE_8023AD) {
2027 			bond_3ad_unbind_slave(slave);
2028 		}
2029 
2030 		slave_dev = slave->dev;
2031 		bond_detach_slave(bond, slave);
2032 
2033 		/* now that the slave is detached, unlock and perform
2034 		 * all the undo steps that should not be called from
2035 		 * within a lock.
2036 		 */
2037 		write_unlock_bh(&bond->lock);
2038 
2039 		if ((bond->params.mode == BOND_MODE_TLB) ||
2040 		    (bond->params.mode == BOND_MODE_ALB)) {
2041 			/* must be called only after the slave
2042 			 * has been detached from the list
2043 			 */
2044 			bond_alb_deinit_slave(bond, slave);
2045 		}
2046 
2047 		bond_compute_features(bond);
2048 
2049 		bond_destroy_slave_symlinks(bond_dev, slave_dev);
2050 		bond_del_vlans_from_slave(bond, slave_dev);
2051 
2052 		/* If the mode USES_PRIMARY, then we should only remove its
2053 		 * promisc and mc settings if it was the curr_active_slave, but that was
2054 		 * already taken care of above when we detached the slave
2055 		 */
2056 		if (!USES_PRIMARY(bond->params.mode)) {
2057 			/* unset promiscuity level from slave */
2058 			if (bond_dev->flags & IFF_PROMISC) {
2059 				dev_set_promiscuity(slave_dev, -1);
2060 			}
2061 
2062 			/* unset allmulti level from slave */
2063 			if (bond_dev->flags & IFF_ALLMULTI) {
2064 				dev_set_allmulti(slave_dev, -1);
2065 			}
2066 
2067 			/* flush master's mc_list from slave */
2068 			netif_addr_lock_bh(bond_dev);
2069 			bond_mc_list_flush(bond_dev, slave_dev);
2070 			netif_addr_unlock_bh(bond_dev);
2071 		}
2072 
2073 		netdev_set_master(slave_dev, NULL);
2074 
2075 		/* close slave before restoring its mac address */
2076 		dev_close(slave_dev);
2077 
2078 		if (!bond->params.fail_over_mac) {
2079 			/* restore original ("permanent") mac address*/
2080 			memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
2081 			addr.sa_family = slave_dev->type;
2082 			dev_set_mac_address(slave_dev, &addr);
2083 		}
2084 
2085 		slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
2086 					   IFF_SLAVE_INACTIVE);
2087 
2088 		kfree(slave);
2089 
2090 		/* re-acquire the lock before getting the next slave */
2091 		write_lock_bh(&bond->lock);
2092 	}
2093 
2094 	/* zero the mac address of the master so it will be
2095 	 * set by the application to the mac address of the
2096 	 * first slave
2097 	 */
2098 	memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
2099 
2100 	if (list_empty(&bond->vlan_list)) {
2101 		bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
2102 	} else {
2103 		printk(KERN_WARNING DRV_NAME
2104 		       ": %s: Warning: clearing HW address of %s while it "
2105 		       "still has VLANs.\n",
2106 		       bond_dev->name, bond_dev->name);
2107 		printk(KERN_WARNING DRV_NAME
2108 		       ": %s: When re-adding slaves, make sure the bond's "
2109 		       "HW address matches its VLANs'.\n",
2110 		       bond_dev->name);
2111 	}
2112 
2113 	printk(KERN_INFO DRV_NAME
2114 	       ": %s: released all slaves\n",
2115 	       bond_dev->name);
2116 
2117 out:
2118 	write_unlock_bh(&bond->lock);
2119 
2120 	return 0;
2121 }
2122 
2123 /*
2124  * This function changes the active slave to slave <slave_dev>.
2125  * It returns -EINVAL in the following cases.
2126  *  - <slave_dev> is not found in the list.
2127  *  - There is not active slave now.
2128  *  - <slave_dev> is already active.
2129  *  - The link state of <slave_dev> is not BOND_LINK_UP.
2130  *  - <slave_dev> is not running.
2131  * In these cases, this fuction does nothing.
2132  * In the other cases, currnt_slave pointer is changed and 0 is returned.
2133  */
2134 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
2135 {
2136 	struct bonding *bond = bond_dev->priv;
2137 	struct slave *old_active = NULL;
2138 	struct slave *new_active = NULL;
2139 	int res = 0;
2140 
2141 	if (!USES_PRIMARY(bond->params.mode)) {
2142 		return -EINVAL;
2143 	}
2144 
2145 	/* Verify that master_dev is indeed the master of slave_dev */
2146 	if (!(slave_dev->flags & IFF_SLAVE) ||
2147 	    (slave_dev->master != bond_dev)) {
2148 		return -EINVAL;
2149 	}
2150 
2151 	read_lock(&bond->lock);
2152 
2153 	read_lock(&bond->curr_slave_lock);
2154 	old_active = bond->curr_active_slave;
2155 	read_unlock(&bond->curr_slave_lock);
2156 
2157 	new_active = bond_get_slave_by_dev(bond, slave_dev);
2158 
2159 	/*
2160 	 * Changing to the current active: do nothing; return success.
2161 	 */
2162 	if (new_active && (new_active == old_active)) {
2163 		read_unlock(&bond->lock);
2164 		return 0;
2165 	}
2166 
2167 	if ((new_active) &&
2168 	    (old_active) &&
2169 	    (new_active->link == BOND_LINK_UP) &&
2170 	    IS_UP(new_active->dev)) {
2171 		write_lock_bh(&bond->curr_slave_lock);
2172 		bond_change_active_slave(bond, new_active);
2173 		write_unlock_bh(&bond->curr_slave_lock);
2174 	} else {
2175 		res = -EINVAL;
2176 	}
2177 
2178 	read_unlock(&bond->lock);
2179 
2180 	return res;
2181 }
2182 
2183 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
2184 {
2185 	struct bonding *bond = bond_dev->priv;
2186 
2187 	info->bond_mode = bond->params.mode;
2188 	info->miimon = bond->params.miimon;
2189 
2190 	read_lock(&bond->lock);
2191 	info->num_slaves = bond->slave_cnt;
2192 	read_unlock(&bond->lock);
2193 
2194 	return 0;
2195 }
2196 
2197 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
2198 {
2199 	struct bonding *bond = bond_dev->priv;
2200 	struct slave *slave;
2201 	int i, found = 0;
2202 
2203 	if (info->slave_id < 0) {
2204 		return -ENODEV;
2205 	}
2206 
2207 	read_lock(&bond->lock);
2208 
2209 	bond_for_each_slave(bond, slave, i) {
2210 		if (i == (int)info->slave_id) {
2211 			found = 1;
2212 			break;
2213 		}
2214 	}
2215 
2216 	read_unlock(&bond->lock);
2217 
2218 	if (found) {
2219 		strcpy(info->slave_name, slave->dev->name);
2220 		info->link = slave->link;
2221 		info->state = slave->state;
2222 		info->link_failure_count = slave->link_failure_count;
2223 	} else {
2224 		return -ENODEV;
2225 	}
2226 
2227 	return 0;
2228 }
2229 
2230 /*-------------------------------- Monitoring -------------------------------*/
2231 
2232 
2233 static int bond_miimon_inspect(struct bonding *bond)
2234 {
2235 	struct slave *slave;
2236 	int i, link_state, commit = 0;
2237 
2238 	bond_for_each_slave(bond, slave, i) {
2239 		slave->new_link = BOND_LINK_NOCHANGE;
2240 
2241 		link_state = bond_check_dev_link(bond, slave->dev, 0);
2242 
2243 		switch (slave->link) {
2244 		case BOND_LINK_UP:
2245 			if (link_state)
2246 				continue;
2247 
2248 			slave->link = BOND_LINK_FAIL;
2249 			slave->delay = bond->params.downdelay;
2250 			if (slave->delay) {
2251 				printk(KERN_INFO DRV_NAME
2252 				       ": %s: link status down for %s"
2253 				       "interface %s, disabling it in %d ms.\n",
2254 				       bond->dev->name,
2255 				       (bond->params.mode ==
2256 					BOND_MODE_ACTIVEBACKUP) ?
2257 				       ((slave->state == BOND_STATE_ACTIVE) ?
2258 					"active " : "backup ") : "",
2259 				       slave->dev->name,
2260 				       bond->params.downdelay * bond->params.miimon);
2261 			}
2262 			/*FALLTHRU*/
2263 		case BOND_LINK_FAIL:
2264 			if (link_state) {
2265 				/*
2266 				 * recovered before downdelay expired
2267 				 */
2268 				slave->link = BOND_LINK_UP;
2269 				slave->jiffies = jiffies;
2270 				printk(KERN_INFO DRV_NAME
2271 				       ": %s: link status up again after %d "
2272 				       "ms for interface %s.\n",
2273 				       bond->dev->name,
2274 				       (bond->params.downdelay - slave->delay) *
2275 				       bond->params.miimon,
2276 				       slave->dev->name);
2277 				continue;
2278 			}
2279 
2280 			if (slave->delay <= 0) {
2281 				slave->new_link = BOND_LINK_DOWN;
2282 				commit++;
2283 				continue;
2284 			}
2285 
2286 			slave->delay--;
2287 			break;
2288 
2289 		case BOND_LINK_DOWN:
2290 			if (!link_state)
2291 				continue;
2292 
2293 			slave->link = BOND_LINK_BACK;
2294 			slave->delay = bond->params.updelay;
2295 
2296 			if (slave->delay) {
2297 				printk(KERN_INFO DRV_NAME
2298 				       ": %s: link status up for "
2299 				       "interface %s, enabling it in %d ms.\n",
2300 				       bond->dev->name, slave->dev->name,
2301 				       bond->params.updelay *
2302 				       bond->params.miimon);
2303 			}
2304 			/*FALLTHRU*/
2305 		case BOND_LINK_BACK:
2306 			if (!link_state) {
2307 				slave->link = BOND_LINK_DOWN;
2308 				printk(KERN_INFO DRV_NAME
2309 				       ": %s: link status down again after %d "
2310 				       "ms for interface %s.\n",
2311 				       bond->dev->name,
2312 				       (bond->params.updelay - slave->delay) *
2313 				       bond->params.miimon,
2314 				       slave->dev->name);
2315 
2316 				continue;
2317 			}
2318 
2319 			if (slave->delay <= 0) {
2320 				slave->new_link = BOND_LINK_UP;
2321 				commit++;
2322 				continue;
2323 			}
2324 
2325 			slave->delay--;
2326 			break;
2327 		}
2328 	}
2329 
2330 	return commit;
2331 }
2332 
2333 static void bond_miimon_commit(struct bonding *bond)
2334 {
2335 	struct slave *slave;
2336 	int i;
2337 
2338 	bond_for_each_slave(bond, slave, i) {
2339 		switch (slave->new_link) {
2340 		case BOND_LINK_NOCHANGE:
2341 			continue;
2342 
2343 		case BOND_LINK_UP:
2344 			slave->link = BOND_LINK_UP;
2345 			slave->jiffies = jiffies;
2346 
2347 			if (bond->params.mode == BOND_MODE_8023AD) {
2348 				/* prevent it from being the active one */
2349 				slave->state = BOND_STATE_BACKUP;
2350 			} else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2351 				/* make it immediately active */
2352 				slave->state = BOND_STATE_ACTIVE;
2353 			} else if (slave != bond->primary_slave) {
2354 				/* prevent it from being the active one */
2355 				slave->state = BOND_STATE_BACKUP;
2356 			}
2357 
2358 			printk(KERN_INFO DRV_NAME
2359 			       ": %s: link status definitely "
2360 			       "up for interface %s.\n",
2361 			       bond->dev->name, slave->dev->name);
2362 
2363 			/* notify ad that the link status has changed */
2364 			if (bond->params.mode == BOND_MODE_8023AD)
2365 				bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2366 
2367 			if ((bond->params.mode == BOND_MODE_TLB) ||
2368 			    (bond->params.mode == BOND_MODE_ALB))
2369 				bond_alb_handle_link_change(bond, slave,
2370 							    BOND_LINK_UP);
2371 
2372 			if (!bond->curr_active_slave ||
2373 			    (slave == bond->primary_slave))
2374 				goto do_failover;
2375 
2376 			continue;
2377 
2378 		case BOND_LINK_DOWN:
2379 			slave->link = BOND_LINK_DOWN;
2380 
2381 			if (bond->params.mode == BOND_MODE_ACTIVEBACKUP ||
2382 			    bond->params.mode == BOND_MODE_8023AD)
2383 				bond_set_slave_inactive_flags(slave);
2384 
2385 			printk(KERN_INFO DRV_NAME
2386 			       ": %s: link status definitely down for "
2387 			       "interface %s, disabling it\n",
2388 			       bond->dev->name, slave->dev->name);
2389 
2390 			if (bond->params.mode == BOND_MODE_8023AD)
2391 				bond_3ad_handle_link_change(slave,
2392 							    BOND_LINK_DOWN);
2393 
2394 			if (bond->params.mode == BOND_MODE_TLB ||
2395 			    bond->params.mode == BOND_MODE_ALB)
2396 				bond_alb_handle_link_change(bond, slave,
2397 							    BOND_LINK_DOWN);
2398 
2399 			if (slave == bond->curr_active_slave)
2400 				goto do_failover;
2401 
2402 			continue;
2403 
2404 		default:
2405 			printk(KERN_ERR DRV_NAME
2406 			       ": %s: invalid new link %d on slave %s\n",
2407 			       bond->dev->name, slave->new_link,
2408 			       slave->dev->name);
2409 			slave->new_link = BOND_LINK_NOCHANGE;
2410 
2411 			continue;
2412 		}
2413 
2414 do_failover:
2415 		ASSERT_RTNL();
2416 		write_lock_bh(&bond->curr_slave_lock);
2417 		bond_select_active_slave(bond);
2418 		write_unlock_bh(&bond->curr_slave_lock);
2419 	}
2420 
2421 	bond_set_carrier(bond);
2422 }
2423 
2424 /*
2425  * bond_mii_monitor
2426  *
2427  * Really a wrapper that splits the mii monitor into two phases: an
2428  * inspection, then (if inspection indicates something needs to be done)
2429  * an acquisition of appropriate locks followed by a commit phase to
2430  * implement whatever link state changes are indicated.
2431  */
2432 void bond_mii_monitor(struct work_struct *work)
2433 {
2434 	struct bonding *bond = container_of(work, struct bonding,
2435 					    mii_work.work);
2436 
2437 	read_lock(&bond->lock);
2438 	if (bond->kill_timers)
2439 		goto out;
2440 
2441 	if (bond->slave_cnt == 0)
2442 		goto re_arm;
2443 
2444 	if (bond->send_grat_arp) {
2445 		read_lock(&bond->curr_slave_lock);
2446 		bond_send_gratuitous_arp(bond);
2447 		read_unlock(&bond->curr_slave_lock);
2448 	}
2449 
2450 	if (bond_miimon_inspect(bond)) {
2451 		read_unlock(&bond->lock);
2452 		rtnl_lock();
2453 		read_lock(&bond->lock);
2454 
2455 		bond_miimon_commit(bond);
2456 
2457 		read_unlock(&bond->lock);
2458 		rtnl_unlock();	/* might sleep, hold no other locks */
2459 		read_lock(&bond->lock);
2460 	}
2461 
2462 re_arm:
2463 	if (bond->params.miimon)
2464 		queue_delayed_work(bond->wq, &bond->mii_work,
2465 				   msecs_to_jiffies(bond->params.miimon));
2466 out:
2467 	read_unlock(&bond->lock);
2468 }
2469 
2470 static __be32 bond_glean_dev_ip(struct net_device *dev)
2471 {
2472 	struct in_device *idev;
2473 	struct in_ifaddr *ifa;
2474 	__be32 addr = 0;
2475 
2476 	if (!dev)
2477 		return 0;
2478 
2479 	rcu_read_lock();
2480 	idev = __in_dev_get_rcu(dev);
2481 	if (!idev)
2482 		goto out;
2483 
2484 	ifa = idev->ifa_list;
2485 	if (!ifa)
2486 		goto out;
2487 
2488 	addr = ifa->ifa_local;
2489 out:
2490 	rcu_read_unlock();
2491 	return addr;
2492 }
2493 
2494 static int bond_has_this_ip(struct bonding *bond, __be32 ip)
2495 {
2496 	struct vlan_entry *vlan;
2497 
2498 	if (ip == bond->master_ip)
2499 		return 1;
2500 
2501 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2502 		if (ip == vlan->vlan_ip)
2503 			return 1;
2504 	}
2505 
2506 	return 0;
2507 }
2508 
2509 /*
2510  * We go to the (large) trouble of VLAN tagging ARP frames because
2511  * switches in VLAN mode (especially if ports are configured as
2512  * "native" to a VLAN) might not pass non-tagged frames.
2513  */
2514 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id)
2515 {
2516 	struct sk_buff *skb;
2517 
2518 	dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2519 	       slave_dev->name, dest_ip, src_ip, vlan_id);
2520 
2521 	skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2522 			 NULL, slave_dev->dev_addr, NULL);
2523 
2524 	if (!skb) {
2525 		printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2526 		return;
2527 	}
2528 	if (vlan_id) {
2529 		skb = vlan_put_tag(skb, vlan_id);
2530 		if (!skb) {
2531 			printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2532 			return;
2533 		}
2534 	}
2535 	arp_xmit(skb);
2536 }
2537 
2538 
2539 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2540 {
2541 	int i, vlan_id, rv;
2542 	__be32 *targets = bond->params.arp_targets;
2543 	struct vlan_entry *vlan;
2544 	struct net_device *vlan_dev;
2545 	struct flowi fl;
2546 	struct rtable *rt;
2547 
2548 	for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2549 		if (!targets[i])
2550 			continue;
2551 		dprintk("basa: target %x\n", targets[i]);
2552 		if (list_empty(&bond->vlan_list)) {
2553 			dprintk("basa: empty vlan: arp_send\n");
2554 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2555 				      bond->master_ip, 0);
2556 			continue;
2557 		}
2558 
2559 		/*
2560 		 * If VLANs are configured, we do a route lookup to
2561 		 * determine which VLAN interface would be used, so we
2562 		 * can tag the ARP with the proper VLAN tag.
2563 		 */
2564 		memset(&fl, 0, sizeof(fl));
2565 		fl.fl4_dst = targets[i];
2566 		fl.fl4_tos = RTO_ONLINK;
2567 
2568 		rv = ip_route_output_key(&init_net, &rt, &fl);
2569 		if (rv) {
2570 			if (net_ratelimit()) {
2571 				printk(KERN_WARNING DRV_NAME
2572 			     ": %s: no route to arp_ip_target %u.%u.%u.%u\n",
2573 				       bond->dev->name, NIPQUAD(fl.fl4_dst));
2574 			}
2575 			continue;
2576 		}
2577 
2578 		/*
2579 		 * This target is not on a VLAN
2580 		 */
2581 		if (rt->u.dst.dev == bond->dev) {
2582 			ip_rt_put(rt);
2583 			dprintk("basa: rtdev == bond->dev: arp_send\n");
2584 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2585 				      bond->master_ip, 0);
2586 			continue;
2587 		}
2588 
2589 		vlan_id = 0;
2590 		list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2591 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2592 			if (vlan_dev == rt->u.dst.dev) {
2593 				vlan_id = vlan->vlan_id;
2594 				dprintk("basa: vlan match on %s %d\n",
2595 				       vlan_dev->name, vlan_id);
2596 				break;
2597 			}
2598 		}
2599 
2600 		if (vlan_id) {
2601 			ip_rt_put(rt);
2602 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2603 				      vlan->vlan_ip, vlan_id);
2604 			continue;
2605 		}
2606 
2607 		if (net_ratelimit()) {
2608 			printk(KERN_WARNING DRV_NAME
2609 	       ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n",
2610 			       bond->dev->name, NIPQUAD(fl.fl4_dst),
2611 			       rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2612 		}
2613 		ip_rt_put(rt);
2614 	}
2615 }
2616 
2617 /*
2618  * Kick out a gratuitous ARP for an IP on the bonding master plus one
2619  * for each VLAN above us.
2620  *
2621  * Caller must hold curr_slave_lock for read or better
2622  */
2623 static void bond_send_gratuitous_arp(struct bonding *bond)
2624 {
2625 	struct slave *slave = bond->curr_active_slave;
2626 	struct vlan_entry *vlan;
2627 	struct net_device *vlan_dev;
2628 
2629 	dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2630 				slave ? slave->dev->name : "NULL");
2631 
2632 	if (!slave || !bond->send_grat_arp ||
2633 	    test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state))
2634 		return;
2635 
2636 	bond->send_grat_arp--;
2637 
2638 	if (bond->master_ip) {
2639 		bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2640 				bond->master_ip, 0);
2641 	}
2642 
2643 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2644 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2645 		if (vlan->vlan_ip) {
2646 			bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2647 				      vlan->vlan_ip, vlan->vlan_id);
2648 		}
2649 	}
2650 }
2651 
2652 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip)
2653 {
2654 	int i;
2655 	__be32 *targets = bond->params.arp_targets;
2656 
2657 	targets = bond->params.arp_targets;
2658 	for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2659 		dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] "
2660 			"%u.%u.%u.%u bhti(tip) %d\n",
2661 		       NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]),
2662 		       bond_has_this_ip(bond, tip));
2663 		if (sip == targets[i]) {
2664 			if (bond_has_this_ip(bond, tip))
2665 				slave->last_arp_rx = jiffies;
2666 			return;
2667 		}
2668 	}
2669 }
2670 
2671 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
2672 {
2673 	struct arphdr *arp;
2674 	struct slave *slave;
2675 	struct bonding *bond;
2676 	unsigned char *arp_ptr;
2677 	__be32 sip, tip;
2678 
2679 	if (dev_net(dev) != &init_net)
2680 		goto out;
2681 
2682 	if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER))
2683 		goto out;
2684 
2685 	bond = dev->priv;
2686 	read_lock(&bond->lock);
2687 
2688 	dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n",
2689 		bond->dev->name, skb->dev ? skb->dev->name : "NULL",
2690 		orig_dev ? orig_dev->name : "NULL");
2691 
2692 	slave = bond_get_slave_by_dev(bond, orig_dev);
2693 	if (!slave || !slave_do_arp_validate(bond, slave))
2694 		goto out_unlock;
2695 
2696 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
2697 		goto out_unlock;
2698 
2699 	arp = arp_hdr(skb);
2700 	if (arp->ar_hln != dev->addr_len ||
2701 	    skb->pkt_type == PACKET_OTHERHOST ||
2702 	    skb->pkt_type == PACKET_LOOPBACK ||
2703 	    arp->ar_hrd != htons(ARPHRD_ETHER) ||
2704 	    arp->ar_pro != htons(ETH_P_IP) ||
2705 	    arp->ar_pln != 4)
2706 		goto out_unlock;
2707 
2708 	arp_ptr = (unsigned char *)(arp + 1);
2709 	arp_ptr += dev->addr_len;
2710 	memcpy(&sip, arp_ptr, 4);
2711 	arp_ptr += 4 + dev->addr_len;
2712 	memcpy(&tip, arp_ptr, 4);
2713 
2714 	dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u"
2715 		" tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name,
2716 		slave->state, bond->params.arp_validate,
2717 		slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip));
2718 
2719 	/*
2720 	 * Backup slaves won't see the ARP reply, but do come through
2721 	 * here for each ARP probe (so we swap the sip/tip to validate
2722 	 * the probe).  In a "redundant switch, common router" type of
2723 	 * configuration, the ARP probe will (hopefully) travel from
2724 	 * the active, through one switch, the router, then the other
2725 	 * switch before reaching the backup.
2726 	 */
2727 	if (slave->state == BOND_STATE_ACTIVE)
2728 		bond_validate_arp(bond, slave, sip, tip);
2729 	else
2730 		bond_validate_arp(bond, slave, tip, sip);
2731 
2732 out_unlock:
2733 	read_unlock(&bond->lock);
2734 out:
2735 	dev_kfree_skb(skb);
2736 	return NET_RX_SUCCESS;
2737 }
2738 
2739 /*
2740  * this function is called regularly to monitor each slave's link
2741  * ensuring that traffic is being sent and received when arp monitoring
2742  * is used in load-balancing mode. if the adapter has been dormant, then an
2743  * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2744  * arp monitoring in active backup mode.
2745  */
2746 void bond_loadbalance_arp_mon(struct work_struct *work)
2747 {
2748 	struct bonding *bond = container_of(work, struct bonding,
2749 					    arp_work.work);
2750 	struct slave *slave, *oldcurrent;
2751 	int do_failover = 0;
2752 	int delta_in_ticks;
2753 	int i;
2754 
2755 	read_lock(&bond->lock);
2756 
2757 	delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
2758 
2759 	if (bond->kill_timers) {
2760 		goto out;
2761 	}
2762 
2763 	if (bond->slave_cnt == 0) {
2764 		goto re_arm;
2765 	}
2766 
2767 	read_lock(&bond->curr_slave_lock);
2768 	oldcurrent = bond->curr_active_slave;
2769 	read_unlock(&bond->curr_slave_lock);
2770 
2771 	/* see if any of the previous devices are up now (i.e. they have
2772 	 * xmt and rcv traffic). the curr_active_slave does not come into
2773 	 * the picture unless it is null. also, slave->jiffies is not needed
2774 	 * here because we send an arp on each slave and give a slave as
2775 	 * long as it needs to get the tx/rx within the delta.
2776 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2777 	 *       so it can wait
2778 	 */
2779 	bond_for_each_slave(bond, slave, i) {
2780 		if (slave->link != BOND_LINK_UP) {
2781 			if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) &&
2782 			    time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) {
2783 
2784 				slave->link  = BOND_LINK_UP;
2785 				slave->state = BOND_STATE_ACTIVE;
2786 
2787 				/* primary_slave has no meaning in round-robin
2788 				 * mode. the window of a slave being up and
2789 				 * curr_active_slave being null after enslaving
2790 				 * is closed.
2791 				 */
2792 				if (!oldcurrent) {
2793 					printk(KERN_INFO DRV_NAME
2794 					       ": %s: link status definitely "
2795 					       "up for interface %s, ",
2796 					       bond->dev->name,
2797 					       slave->dev->name);
2798 					do_failover = 1;
2799 				} else {
2800 					printk(KERN_INFO DRV_NAME
2801 					       ": %s: interface %s is now up\n",
2802 					       bond->dev->name,
2803 					       slave->dev->name);
2804 				}
2805 			}
2806 		} else {
2807 			/* slave->link == BOND_LINK_UP */
2808 
2809 			/* not all switches will respond to an arp request
2810 			 * when the source ip is 0, so don't take the link down
2811 			 * if we don't know our ip yet
2812 			 */
2813 			if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) ||
2814 			    (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) {
2815 
2816 				slave->link  = BOND_LINK_DOWN;
2817 				slave->state = BOND_STATE_BACKUP;
2818 
2819 				if (slave->link_failure_count < UINT_MAX) {
2820 					slave->link_failure_count++;
2821 				}
2822 
2823 				printk(KERN_INFO DRV_NAME
2824 				       ": %s: interface %s is now down.\n",
2825 				       bond->dev->name,
2826 				       slave->dev->name);
2827 
2828 				if (slave == oldcurrent) {
2829 					do_failover = 1;
2830 				}
2831 			}
2832 		}
2833 
2834 		/* note: if switch is in round-robin mode, all links
2835 		 * must tx arp to ensure all links rx an arp - otherwise
2836 		 * links may oscillate or not come up at all; if switch is
2837 		 * in something like xor mode, there is nothing we can
2838 		 * do - all replies will be rx'ed on same link causing slaves
2839 		 * to be unstable during low/no traffic periods
2840 		 */
2841 		if (IS_UP(slave->dev)) {
2842 			bond_arp_send_all(bond, slave);
2843 		}
2844 	}
2845 
2846 	if (do_failover) {
2847 		write_lock_bh(&bond->curr_slave_lock);
2848 
2849 		bond_select_active_slave(bond);
2850 
2851 		write_unlock_bh(&bond->curr_slave_lock);
2852 	}
2853 
2854 re_arm:
2855 	if (bond->params.arp_interval)
2856 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
2857 out:
2858 	read_unlock(&bond->lock);
2859 }
2860 
2861 /*
2862  * Called to inspect slaves for active-backup mode ARP monitor link state
2863  * changes.  Sets new_link in slaves to specify what action should take
2864  * place for the slave.  Returns 0 if no changes are found, >0 if changes
2865  * to link states must be committed.
2866  *
2867  * Called with bond->lock held for read.
2868  */
2869 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks)
2870 {
2871 	struct slave *slave;
2872 	int i, commit = 0;
2873 
2874 	bond_for_each_slave(bond, slave, i) {
2875 		slave->new_link = BOND_LINK_NOCHANGE;
2876 
2877 		if (slave->link != BOND_LINK_UP) {
2878 			if (time_before_eq(jiffies, slave_last_rx(bond, slave) +
2879 					   delta_in_ticks)) {
2880 				slave->new_link = BOND_LINK_UP;
2881 				commit++;
2882 			}
2883 
2884 			continue;
2885 		}
2886 
2887 		/*
2888 		 * Give slaves 2*delta after being enslaved or made
2889 		 * active.  This avoids bouncing, as the last receive
2890 		 * times need a full ARP monitor cycle to be updated.
2891 		 */
2892 		if (!time_after_eq(jiffies, slave->jiffies +
2893 				   2 * delta_in_ticks))
2894 			continue;
2895 
2896 		/*
2897 		 * Backup slave is down if:
2898 		 * - No current_arp_slave AND
2899 		 * - more than 3*delta since last receive AND
2900 		 * - the bond has an IP address
2901 		 *
2902 		 * Note: a non-null current_arp_slave indicates
2903 		 * the curr_active_slave went down and we are
2904 		 * searching for a new one; under this condition
2905 		 * we only take the curr_active_slave down - this
2906 		 * gives each slave a chance to tx/rx traffic
2907 		 * before being taken out
2908 		 */
2909 		if (slave->state == BOND_STATE_BACKUP &&
2910 		    !bond->current_arp_slave &&
2911 		    time_after(jiffies, slave_last_rx(bond, slave) +
2912 			       3 * delta_in_ticks)) {
2913 			slave->new_link = BOND_LINK_DOWN;
2914 			commit++;
2915 		}
2916 
2917 		/*
2918 		 * Active slave is down if:
2919 		 * - more than 2*delta since transmitting OR
2920 		 * - (more than 2*delta since receive AND
2921 		 *    the bond has an IP address)
2922 		 */
2923 		if ((slave->state == BOND_STATE_ACTIVE) &&
2924 		    (time_after_eq(jiffies, slave->dev->trans_start +
2925 				    2 * delta_in_ticks) ||
2926 		      (time_after_eq(jiffies, slave_last_rx(bond, slave)
2927 				     + 2 * delta_in_ticks)))) {
2928 			slave->new_link = BOND_LINK_DOWN;
2929 			commit++;
2930 		}
2931 	}
2932 
2933 	read_lock(&bond->curr_slave_lock);
2934 
2935 	/*
2936 	 * Trigger a commit if the primary option setting has changed.
2937 	 */
2938 	if (bond->primary_slave &&
2939 	    (bond->primary_slave != bond->curr_active_slave) &&
2940 	    (bond->primary_slave->link == BOND_LINK_UP))
2941 		commit++;
2942 
2943 	read_unlock(&bond->curr_slave_lock);
2944 
2945 	return commit;
2946 }
2947 
2948 /*
2949  * Called to commit link state changes noted by inspection step of
2950  * active-backup mode ARP monitor.
2951  *
2952  * Called with RTNL and bond->lock for read.
2953  */
2954 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks)
2955 {
2956 	struct slave *slave;
2957 	int i;
2958 
2959 	bond_for_each_slave(bond, slave, i) {
2960 		switch (slave->new_link) {
2961 		case BOND_LINK_NOCHANGE:
2962 			continue;
2963 
2964 		case BOND_LINK_UP:
2965 			write_lock_bh(&bond->curr_slave_lock);
2966 
2967 			if (!bond->curr_active_slave &&
2968 			    time_before_eq(jiffies, slave->dev->trans_start +
2969 					   delta_in_ticks)) {
2970 				slave->link = BOND_LINK_UP;
2971 				bond_change_active_slave(bond, slave);
2972 				bond->current_arp_slave = NULL;
2973 
2974 				printk(KERN_INFO DRV_NAME
2975 				       ": %s: %s is up and now the "
2976 				       "active interface\n",
2977 				       bond->dev->name, slave->dev->name);
2978 
2979 			} else if (bond->curr_active_slave != slave) {
2980 				/* this slave has just come up but we
2981 				 * already have a current slave; this can
2982 				 * also happen if bond_enslave adds a new
2983 				 * slave that is up while we are searching
2984 				 * for a new slave
2985 				 */
2986 				slave->link = BOND_LINK_UP;
2987 				bond_set_slave_inactive_flags(slave);
2988 				bond->current_arp_slave = NULL;
2989 
2990 				printk(KERN_INFO DRV_NAME
2991 				       ": %s: backup interface %s is now up\n",
2992 				       bond->dev->name, slave->dev->name);
2993 			}
2994 
2995 			write_unlock_bh(&bond->curr_slave_lock);
2996 
2997 			break;
2998 
2999 		case BOND_LINK_DOWN:
3000 			if (slave->link_failure_count < UINT_MAX)
3001 				slave->link_failure_count++;
3002 
3003 			slave->link = BOND_LINK_DOWN;
3004 
3005 			if (slave == bond->curr_active_slave) {
3006 				printk(KERN_INFO DRV_NAME
3007 				       ": %s: link status down for active "
3008 				       "interface %s, disabling it\n",
3009 				       bond->dev->name, slave->dev->name);
3010 
3011 				bond_set_slave_inactive_flags(slave);
3012 
3013 				write_lock_bh(&bond->curr_slave_lock);
3014 
3015 				bond_select_active_slave(bond);
3016 				if (bond->curr_active_slave)
3017 					bond->curr_active_slave->jiffies =
3018 						jiffies;
3019 
3020 				write_unlock_bh(&bond->curr_slave_lock);
3021 
3022 				bond->current_arp_slave = NULL;
3023 
3024 			} else if (slave->state == BOND_STATE_BACKUP) {
3025 				printk(KERN_INFO DRV_NAME
3026 				       ": %s: backup interface %s is now down\n",
3027 				       bond->dev->name, slave->dev->name);
3028 
3029 				bond_set_slave_inactive_flags(slave);
3030 			}
3031 			break;
3032 
3033 		default:
3034 			printk(KERN_ERR DRV_NAME
3035 			       ": %s: impossible: new_link %d on slave %s\n",
3036 			       bond->dev->name, slave->new_link,
3037 			       slave->dev->name);
3038 		}
3039 	}
3040 
3041 	/*
3042 	 * No race with changes to primary via sysfs, as we hold rtnl.
3043 	 */
3044 	if (bond->primary_slave &&
3045 	    (bond->primary_slave != bond->curr_active_slave) &&
3046 	    (bond->primary_slave->link == BOND_LINK_UP)) {
3047 		write_lock_bh(&bond->curr_slave_lock);
3048 		bond_change_active_slave(bond, bond->primary_slave);
3049 		write_unlock_bh(&bond->curr_slave_lock);
3050 	}
3051 
3052 	bond_set_carrier(bond);
3053 }
3054 
3055 /*
3056  * Send ARP probes for active-backup mode ARP monitor.
3057  *
3058  * Called with bond->lock held for read.
3059  */
3060 static void bond_ab_arp_probe(struct bonding *bond)
3061 {
3062 	struct slave *slave;
3063 	int i;
3064 
3065 	read_lock(&bond->curr_slave_lock);
3066 
3067 	if (bond->current_arp_slave && bond->curr_active_slave)
3068 		printk("PROBE: c_arp %s && cas %s BAD\n",
3069 		       bond->current_arp_slave->dev->name,
3070 		       bond->curr_active_slave->dev->name);
3071 
3072 	if (bond->curr_active_slave) {
3073 		bond_arp_send_all(bond, bond->curr_active_slave);
3074 		read_unlock(&bond->curr_slave_lock);
3075 		return;
3076 	}
3077 
3078 	read_unlock(&bond->curr_slave_lock);
3079 
3080 	/* if we don't have a curr_active_slave, search for the next available
3081 	 * backup slave from the current_arp_slave and make it the candidate
3082 	 * for becoming the curr_active_slave
3083 	 */
3084 
3085 	if (!bond->current_arp_slave) {
3086 		bond->current_arp_slave = bond->first_slave;
3087 		if (!bond->current_arp_slave)
3088 			return;
3089 	}
3090 
3091 	bond_set_slave_inactive_flags(bond->current_arp_slave);
3092 
3093 	/* search for next candidate */
3094 	bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
3095 		if (IS_UP(slave->dev)) {
3096 			slave->link = BOND_LINK_BACK;
3097 			bond_set_slave_active_flags(slave);
3098 			bond_arp_send_all(bond, slave);
3099 			slave->jiffies = jiffies;
3100 			bond->current_arp_slave = slave;
3101 			break;
3102 		}
3103 
3104 		/* if the link state is up at this point, we
3105 		 * mark it down - this can happen if we have
3106 		 * simultaneous link failures and
3107 		 * reselect_active_interface doesn't make this
3108 		 * one the current slave so it is still marked
3109 		 * up when it is actually down
3110 		 */
3111 		if (slave->link == BOND_LINK_UP) {
3112 			slave->link = BOND_LINK_DOWN;
3113 			if (slave->link_failure_count < UINT_MAX)
3114 				slave->link_failure_count++;
3115 
3116 			bond_set_slave_inactive_flags(slave);
3117 
3118 			printk(KERN_INFO DRV_NAME
3119 			       ": %s: backup interface %s is now down.\n",
3120 			       bond->dev->name, slave->dev->name);
3121 		}
3122 	}
3123 }
3124 
3125 void bond_activebackup_arp_mon(struct work_struct *work)
3126 {
3127 	struct bonding *bond = container_of(work, struct bonding,
3128 					    arp_work.work);
3129 	int delta_in_ticks;
3130 
3131 	read_lock(&bond->lock);
3132 
3133 	if (bond->kill_timers)
3134 		goto out;
3135 
3136 	delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
3137 
3138 	if (bond->slave_cnt == 0)
3139 		goto re_arm;
3140 
3141 	if (bond->send_grat_arp) {
3142 		read_lock(&bond->curr_slave_lock);
3143 		bond_send_gratuitous_arp(bond);
3144 		read_unlock(&bond->curr_slave_lock);
3145 	}
3146 
3147 	if (bond_ab_arp_inspect(bond, delta_in_ticks)) {
3148 		read_unlock(&bond->lock);
3149 		rtnl_lock();
3150 		read_lock(&bond->lock);
3151 
3152 		bond_ab_arp_commit(bond, delta_in_ticks);
3153 
3154 		read_unlock(&bond->lock);
3155 		rtnl_unlock();
3156 		read_lock(&bond->lock);
3157 	}
3158 
3159 	bond_ab_arp_probe(bond);
3160 
3161 re_arm:
3162 	if (bond->params.arp_interval) {
3163 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
3164 	}
3165 out:
3166 	read_unlock(&bond->lock);
3167 }
3168 
3169 /*------------------------------ proc/seq_file-------------------------------*/
3170 
3171 #ifdef CONFIG_PROC_FS
3172 
3173 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
3174 {
3175 	struct bonding *bond = seq->private;
3176 	loff_t off = 0;
3177 	struct slave *slave;
3178 	int i;
3179 
3180 	/* make sure the bond won't be taken away */
3181 	read_lock(&dev_base_lock);
3182 	read_lock(&bond->lock);
3183 
3184 	if (*pos == 0) {
3185 		return SEQ_START_TOKEN;
3186 	}
3187 
3188 	bond_for_each_slave(bond, slave, i) {
3189 		if (++off == *pos) {
3190 			return slave;
3191 		}
3192 	}
3193 
3194 	return NULL;
3195 }
3196 
3197 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3198 {
3199 	struct bonding *bond = seq->private;
3200 	struct slave *slave = v;
3201 
3202 	++*pos;
3203 	if (v == SEQ_START_TOKEN) {
3204 		return bond->first_slave;
3205 	}
3206 
3207 	slave = slave->next;
3208 
3209 	return (slave == bond->first_slave) ? NULL : slave;
3210 }
3211 
3212 static void bond_info_seq_stop(struct seq_file *seq, void *v)
3213 {
3214 	struct bonding *bond = seq->private;
3215 
3216 	read_unlock(&bond->lock);
3217 	read_unlock(&dev_base_lock);
3218 }
3219 
3220 static void bond_info_show_master(struct seq_file *seq)
3221 {
3222 	struct bonding *bond = seq->private;
3223 	struct slave *curr;
3224 	int i;
3225 	u32 target;
3226 
3227 	read_lock(&bond->curr_slave_lock);
3228 	curr = bond->curr_active_slave;
3229 	read_unlock(&bond->curr_slave_lock);
3230 
3231 	seq_printf(seq, "Bonding Mode: %s",
3232 		   bond_mode_name(bond->params.mode));
3233 
3234 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP &&
3235 	    bond->params.fail_over_mac)
3236 		seq_printf(seq, " (fail_over_mac %s)",
3237 		   fail_over_mac_tbl[bond->params.fail_over_mac].modename);
3238 
3239 	seq_printf(seq, "\n");
3240 
3241 	if (bond->params.mode == BOND_MODE_XOR ||
3242 		bond->params.mode == BOND_MODE_8023AD) {
3243 		seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
3244 			xmit_hashtype_tbl[bond->params.xmit_policy].modename,
3245 			bond->params.xmit_policy);
3246 	}
3247 
3248 	if (USES_PRIMARY(bond->params.mode)) {
3249 		seq_printf(seq, "Primary Slave: %s\n",
3250 			   (bond->primary_slave) ?
3251 			   bond->primary_slave->dev->name : "None");
3252 
3253 		seq_printf(seq, "Currently Active Slave: %s\n",
3254 			   (curr) ? curr->dev->name : "None");
3255 	}
3256 
3257 	seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
3258 		   "up" : "down");
3259 	seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
3260 	seq_printf(seq, "Up Delay (ms): %d\n",
3261 		   bond->params.updelay * bond->params.miimon);
3262 	seq_printf(seq, "Down Delay (ms): %d\n",
3263 		   bond->params.downdelay * bond->params.miimon);
3264 
3265 
3266 	/* ARP information */
3267 	if(bond->params.arp_interval > 0) {
3268 		int printed=0;
3269 		seq_printf(seq, "ARP Polling Interval (ms): %d\n",
3270 				bond->params.arp_interval);
3271 
3272 		seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
3273 
3274 		for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
3275 			if (!bond->params.arp_targets[i])
3276 				continue;
3277 			if (printed)
3278 				seq_printf(seq, ",");
3279 			target = ntohl(bond->params.arp_targets[i]);
3280 			seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target));
3281 			printed = 1;
3282 		}
3283 		seq_printf(seq, "\n");
3284 	}
3285 
3286 	if (bond->params.mode == BOND_MODE_8023AD) {
3287 		struct ad_info ad_info;
3288 		DECLARE_MAC_BUF(mac);
3289 
3290 		seq_puts(seq, "\n802.3ad info\n");
3291 		seq_printf(seq, "LACP rate: %s\n",
3292 			   (bond->params.lacp_fast) ? "fast" : "slow");
3293 
3294 		if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
3295 			seq_printf(seq, "bond %s has no active aggregator\n",
3296 				   bond->dev->name);
3297 		} else {
3298 			seq_printf(seq, "Active Aggregator Info:\n");
3299 
3300 			seq_printf(seq, "\tAggregator ID: %d\n",
3301 				   ad_info.aggregator_id);
3302 			seq_printf(seq, "\tNumber of ports: %d\n",
3303 				   ad_info.ports);
3304 			seq_printf(seq, "\tActor Key: %d\n",
3305 				   ad_info.actor_key);
3306 			seq_printf(seq, "\tPartner Key: %d\n",
3307 				   ad_info.partner_key);
3308 			seq_printf(seq, "\tPartner Mac Address: %s\n",
3309 				   print_mac(mac, ad_info.partner_system));
3310 		}
3311 	}
3312 }
3313 
3314 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
3315 {
3316 	struct bonding *bond = seq->private;
3317 	DECLARE_MAC_BUF(mac);
3318 
3319 	seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
3320 	seq_printf(seq, "MII Status: %s\n",
3321 		   (slave->link == BOND_LINK_UP) ?  "up" : "down");
3322 	seq_printf(seq, "Link Failure Count: %u\n",
3323 		   slave->link_failure_count);
3324 
3325 	seq_printf(seq,
3326 		   "Permanent HW addr: %s\n",
3327 		   print_mac(mac, slave->perm_hwaddr));
3328 
3329 	if (bond->params.mode == BOND_MODE_8023AD) {
3330 		const struct aggregator *agg
3331 			= SLAVE_AD_INFO(slave).port.aggregator;
3332 
3333 		if (agg) {
3334 			seq_printf(seq, "Aggregator ID: %d\n",
3335 				   agg->aggregator_identifier);
3336 		} else {
3337 			seq_puts(seq, "Aggregator ID: N/A\n");
3338 		}
3339 	}
3340 }
3341 
3342 static int bond_info_seq_show(struct seq_file *seq, void *v)
3343 {
3344 	if (v == SEQ_START_TOKEN) {
3345 		seq_printf(seq, "%s\n", version);
3346 		bond_info_show_master(seq);
3347 	} else {
3348 		bond_info_show_slave(seq, v);
3349 	}
3350 
3351 	return 0;
3352 }
3353 
3354 static struct seq_operations bond_info_seq_ops = {
3355 	.start = bond_info_seq_start,
3356 	.next  = bond_info_seq_next,
3357 	.stop  = bond_info_seq_stop,
3358 	.show  = bond_info_seq_show,
3359 };
3360 
3361 static int bond_info_open(struct inode *inode, struct file *file)
3362 {
3363 	struct seq_file *seq;
3364 	struct proc_dir_entry *proc;
3365 	int res;
3366 
3367 	res = seq_open(file, &bond_info_seq_ops);
3368 	if (!res) {
3369 		/* recover the pointer buried in proc_dir_entry data */
3370 		seq = file->private_data;
3371 		proc = PDE(inode);
3372 		seq->private = proc->data;
3373 	}
3374 
3375 	return res;
3376 }
3377 
3378 static const struct file_operations bond_info_fops = {
3379 	.owner   = THIS_MODULE,
3380 	.open    = bond_info_open,
3381 	.read    = seq_read,
3382 	.llseek  = seq_lseek,
3383 	.release = seq_release,
3384 };
3385 
3386 static int bond_create_proc_entry(struct bonding *bond)
3387 {
3388 	struct net_device *bond_dev = bond->dev;
3389 
3390 	if (bond_proc_dir) {
3391 		bond->proc_entry = proc_create_data(bond_dev->name,
3392 						    S_IRUGO, bond_proc_dir,
3393 						    &bond_info_fops, bond);
3394 		if (bond->proc_entry == NULL) {
3395 			printk(KERN_WARNING DRV_NAME
3396 			       ": Warning: Cannot create /proc/net/%s/%s\n",
3397 			       DRV_NAME, bond_dev->name);
3398 		} else {
3399 			memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3400 		}
3401 	}
3402 
3403 	return 0;
3404 }
3405 
3406 static void bond_remove_proc_entry(struct bonding *bond)
3407 {
3408 	if (bond_proc_dir && bond->proc_entry) {
3409 		remove_proc_entry(bond->proc_file_name, bond_proc_dir);
3410 		memset(bond->proc_file_name, 0, IFNAMSIZ);
3411 		bond->proc_entry = NULL;
3412 	}
3413 }
3414 
3415 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3416  * Caller must hold rtnl_lock.
3417  */
3418 static void bond_create_proc_dir(void)
3419 {
3420 	int len = strlen(DRV_NAME);
3421 
3422 	for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir;
3423 	     bond_proc_dir = bond_proc_dir->next) {
3424 		if ((bond_proc_dir->namelen == len) &&
3425 		    !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3426 			break;
3427 		}
3428 	}
3429 
3430 	if (!bond_proc_dir) {
3431 		bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net);
3432 		if (bond_proc_dir) {
3433 			bond_proc_dir->owner = THIS_MODULE;
3434 		} else {
3435 			printk(KERN_WARNING DRV_NAME
3436 				": Warning: cannot create /proc/net/%s\n",
3437 				DRV_NAME);
3438 		}
3439 	}
3440 }
3441 
3442 /* Destroy the bonding directory under /proc/net, if empty.
3443  * Caller must hold rtnl_lock.
3444  */
3445 static void bond_destroy_proc_dir(void)
3446 {
3447 	struct proc_dir_entry *de;
3448 
3449 	if (!bond_proc_dir) {
3450 		return;
3451 	}
3452 
3453 	/* verify that the /proc dir is empty */
3454 	for (de = bond_proc_dir->subdir; de; de = de->next) {
3455 		/* ignore . and .. */
3456 		if (*(de->name) != '.') {
3457 			break;
3458 		}
3459 	}
3460 
3461 	if (de) {
3462 		if (bond_proc_dir->owner == THIS_MODULE) {
3463 			bond_proc_dir->owner = NULL;
3464 		}
3465 	} else {
3466 		remove_proc_entry(DRV_NAME, init_net.proc_net);
3467 		bond_proc_dir = NULL;
3468 	}
3469 }
3470 #endif /* CONFIG_PROC_FS */
3471 
3472 /*-------------------------- netdev event handling --------------------------*/
3473 
3474 /*
3475  * Change device name
3476  */
3477 static int bond_event_changename(struct bonding *bond)
3478 {
3479 #ifdef CONFIG_PROC_FS
3480 	bond_remove_proc_entry(bond);
3481 	bond_create_proc_entry(bond);
3482 #endif
3483 	down_write(&(bonding_rwsem));
3484         bond_destroy_sysfs_entry(bond);
3485         bond_create_sysfs_entry(bond);
3486 	up_write(&(bonding_rwsem));
3487 	return NOTIFY_DONE;
3488 }
3489 
3490 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3491 {
3492 	struct bonding *event_bond = bond_dev->priv;
3493 
3494 	switch (event) {
3495 	case NETDEV_CHANGENAME:
3496 		return bond_event_changename(event_bond);
3497 	case NETDEV_UNREGISTER:
3498 		bond_release_all(event_bond->dev);
3499 		break;
3500 	default:
3501 		break;
3502 	}
3503 
3504 	return NOTIFY_DONE;
3505 }
3506 
3507 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3508 {
3509 	struct net_device *bond_dev = slave_dev->master;
3510 	struct bonding *bond = bond_dev->priv;
3511 
3512 	switch (event) {
3513 	case NETDEV_UNREGISTER:
3514 		if (bond_dev) {
3515 			if (bond->setup_by_slave)
3516 				bond_release_and_destroy(bond_dev, slave_dev);
3517 			else
3518 				bond_release(bond_dev, slave_dev);
3519 		}
3520 		break;
3521 	case NETDEV_CHANGE:
3522 		/*
3523 		 * TODO: is this what we get if somebody
3524 		 * sets up a hierarchical bond, then rmmod's
3525 		 * one of the slave bonding devices?
3526 		 */
3527 		break;
3528 	case NETDEV_DOWN:
3529 		/*
3530 		 * ... Or is it this?
3531 		 */
3532 		break;
3533 	case NETDEV_CHANGEMTU:
3534 		/*
3535 		 * TODO: Should slaves be allowed to
3536 		 * independently alter their MTU?  For
3537 		 * an active-backup bond, slaves need
3538 		 * not be the same type of device, so
3539 		 * MTUs may vary.  For other modes,
3540 		 * slaves arguably should have the
3541 		 * same MTUs. To do this, we'd need to
3542 		 * take over the slave's change_mtu
3543 		 * function for the duration of their
3544 		 * servitude.
3545 		 */
3546 		break;
3547 	case NETDEV_CHANGENAME:
3548 		/*
3549 		 * TODO: handle changing the primary's name
3550 		 */
3551 		break;
3552 	case NETDEV_FEAT_CHANGE:
3553 		bond_compute_features(bond);
3554 		break;
3555 	default:
3556 		break;
3557 	}
3558 
3559 	return NOTIFY_DONE;
3560 }
3561 
3562 /*
3563  * bond_netdev_event: handle netdev notifier chain events.
3564  *
3565  * This function receives events for the netdev chain.  The caller (an
3566  * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3567  * locks for us to safely manipulate the slave devices (RTNL lock,
3568  * dev_probe_lock).
3569  */
3570 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3571 {
3572 	struct net_device *event_dev = (struct net_device *)ptr;
3573 
3574 	if (dev_net(event_dev) != &init_net)
3575 		return NOTIFY_DONE;
3576 
3577 	dprintk("event_dev: %s, event: %lx\n",
3578 		(event_dev ? event_dev->name : "None"),
3579 		event);
3580 
3581 	if (!(event_dev->priv_flags & IFF_BONDING))
3582 		return NOTIFY_DONE;
3583 
3584 	if (event_dev->flags & IFF_MASTER) {
3585 		dprintk("IFF_MASTER\n");
3586 		return bond_master_netdev_event(event, event_dev);
3587 	}
3588 
3589 	if (event_dev->flags & IFF_SLAVE) {
3590 		dprintk("IFF_SLAVE\n");
3591 		return bond_slave_netdev_event(event, event_dev);
3592 	}
3593 
3594 	return NOTIFY_DONE;
3595 }
3596 
3597 /*
3598  * bond_inetaddr_event: handle inetaddr notifier chain events.
3599  *
3600  * We keep track of device IPs primarily to use as source addresses in
3601  * ARP monitor probes (rather than spewing out broadcasts all the time).
3602  *
3603  * We track one IP for the main device (if it has one), plus one per VLAN.
3604  */
3605 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3606 {
3607 	struct in_ifaddr *ifa = ptr;
3608 	struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3609 	struct bonding *bond;
3610 	struct vlan_entry *vlan;
3611 
3612 	if (dev_net(ifa->ifa_dev->dev) != &init_net)
3613 		return NOTIFY_DONE;
3614 
3615 	list_for_each_entry(bond, &bond_dev_list, bond_list) {
3616 		if (bond->dev == event_dev) {
3617 			switch (event) {
3618 			case NETDEV_UP:
3619 				bond->master_ip = ifa->ifa_local;
3620 				return NOTIFY_OK;
3621 			case NETDEV_DOWN:
3622 				bond->master_ip = bond_glean_dev_ip(bond->dev);
3623 				return NOTIFY_OK;
3624 			default:
3625 				return NOTIFY_DONE;
3626 			}
3627 		}
3628 
3629 		list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
3630 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
3631 			if (vlan_dev == event_dev) {
3632 				switch (event) {
3633 				case NETDEV_UP:
3634 					vlan->vlan_ip = ifa->ifa_local;
3635 					return NOTIFY_OK;
3636 				case NETDEV_DOWN:
3637 					vlan->vlan_ip =
3638 						bond_glean_dev_ip(vlan_dev);
3639 					return NOTIFY_OK;
3640 				default:
3641 					return NOTIFY_DONE;
3642 				}
3643 			}
3644 		}
3645 	}
3646 	return NOTIFY_DONE;
3647 }
3648 
3649 static struct notifier_block bond_netdev_notifier = {
3650 	.notifier_call = bond_netdev_event,
3651 };
3652 
3653 static struct notifier_block bond_inetaddr_notifier = {
3654 	.notifier_call = bond_inetaddr_event,
3655 };
3656 
3657 /*-------------------------- Packet type handling ---------------------------*/
3658 
3659 /* register to receive lacpdus on a bond */
3660 static void bond_register_lacpdu(struct bonding *bond)
3661 {
3662 	struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3663 
3664 	/* initialize packet type */
3665 	pk_type->type = PKT_TYPE_LACPDU;
3666 	pk_type->dev = bond->dev;
3667 	pk_type->func = bond_3ad_lacpdu_recv;
3668 
3669 	dev_add_pack(pk_type);
3670 }
3671 
3672 /* unregister to receive lacpdus on a bond */
3673 static void bond_unregister_lacpdu(struct bonding *bond)
3674 {
3675 	dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3676 }
3677 
3678 void bond_register_arp(struct bonding *bond)
3679 {
3680 	struct packet_type *pt = &bond->arp_mon_pt;
3681 
3682 	if (pt->type)
3683 		return;
3684 
3685 	pt->type = htons(ETH_P_ARP);
3686 	pt->dev = bond->dev;
3687 	pt->func = bond_arp_rcv;
3688 	dev_add_pack(pt);
3689 }
3690 
3691 void bond_unregister_arp(struct bonding *bond)
3692 {
3693 	struct packet_type *pt = &bond->arp_mon_pt;
3694 
3695 	dev_remove_pack(pt);
3696 	pt->type = 0;
3697 }
3698 
3699 /*---------------------------- Hashing Policies -----------------------------*/
3700 
3701 /*
3702  * Hash for the output device based upon layer 2 and layer 3 data. If
3703  * the packet is not IP mimic bond_xmit_hash_policy_l2()
3704  */
3705 static int bond_xmit_hash_policy_l23(struct sk_buff *skb,
3706 				     struct net_device *bond_dev, int count)
3707 {
3708 	struct ethhdr *data = (struct ethhdr *)skb->data;
3709 	struct iphdr *iph = ip_hdr(skb);
3710 
3711 	if (skb->protocol == htons(ETH_P_IP)) {
3712 		return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
3713 			(data->h_dest[5] ^ bond_dev->dev_addr[5])) % count;
3714 	}
3715 
3716 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3717 }
3718 
3719 /*
3720  * Hash for the output device based upon layer 3 and layer 4 data. If
3721  * the packet is a frag or not TCP or UDP, just use layer 3 data.  If it is
3722  * altogether not IP, mimic bond_xmit_hash_policy_l2()
3723  */
3724 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3725 				    struct net_device *bond_dev, int count)
3726 {
3727 	struct ethhdr *data = (struct ethhdr *)skb->data;
3728 	struct iphdr *iph = ip_hdr(skb);
3729 	__be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl);
3730 	int layer4_xor = 0;
3731 
3732 	if (skb->protocol == htons(ETH_P_IP)) {
3733 		if (!(iph->frag_off & htons(IP_MF|IP_OFFSET)) &&
3734 		    (iph->protocol == IPPROTO_TCP ||
3735 		     iph->protocol == IPPROTO_UDP)) {
3736 			layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1)));
3737 		}
3738 		return (layer4_xor ^
3739 			((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3740 
3741 	}
3742 
3743 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3744 }
3745 
3746 /*
3747  * Hash for the output device based upon layer 2 data
3748  */
3749 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3750 				   struct net_device *bond_dev, int count)
3751 {
3752 	struct ethhdr *data = (struct ethhdr *)skb->data;
3753 
3754 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3755 }
3756 
3757 /*-------------------------- Device entry points ----------------------------*/
3758 
3759 static int bond_open(struct net_device *bond_dev)
3760 {
3761 	struct bonding *bond = bond_dev->priv;
3762 
3763 	bond->kill_timers = 0;
3764 
3765 	if ((bond->params.mode == BOND_MODE_TLB) ||
3766 	    (bond->params.mode == BOND_MODE_ALB)) {
3767 		/* bond_alb_initialize must be called before the timer
3768 		 * is started.
3769 		 */
3770 		if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3771 			/* something went wrong - fail the open operation */
3772 			return -1;
3773 		}
3774 
3775 		INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor);
3776 		queue_delayed_work(bond->wq, &bond->alb_work, 0);
3777 	}
3778 
3779 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3780 		INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor);
3781 		queue_delayed_work(bond->wq, &bond->mii_work, 0);
3782 	}
3783 
3784 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3785 		if (bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3786 			INIT_DELAYED_WORK(&bond->arp_work,
3787 					  bond_activebackup_arp_mon);
3788 		else
3789 			INIT_DELAYED_WORK(&bond->arp_work,
3790 					  bond_loadbalance_arp_mon);
3791 
3792 		queue_delayed_work(bond->wq, &bond->arp_work, 0);
3793 		if (bond->params.arp_validate)
3794 			bond_register_arp(bond);
3795 	}
3796 
3797 	if (bond->params.mode == BOND_MODE_8023AD) {
3798 		INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler);
3799 		queue_delayed_work(bond->wq, &bond->ad_work, 0);
3800 		/* register to receive LACPDUs */
3801 		bond_register_lacpdu(bond);
3802 	}
3803 
3804 	return 0;
3805 }
3806 
3807 static int bond_close(struct net_device *bond_dev)
3808 {
3809 	struct bonding *bond = bond_dev->priv;
3810 
3811 	if (bond->params.mode == BOND_MODE_8023AD) {
3812 		/* Unregister the receive of LACPDUs */
3813 		bond_unregister_lacpdu(bond);
3814 	}
3815 
3816 	if (bond->params.arp_validate)
3817 		bond_unregister_arp(bond);
3818 
3819 	write_lock_bh(&bond->lock);
3820 
3821 	bond->send_grat_arp = 0;
3822 
3823 	/* signal timers not to re-arm */
3824 	bond->kill_timers = 1;
3825 
3826 	write_unlock_bh(&bond->lock);
3827 
3828 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3829 		cancel_delayed_work(&bond->mii_work);
3830 	}
3831 
3832 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3833 		cancel_delayed_work(&bond->arp_work);
3834 	}
3835 
3836 	switch (bond->params.mode) {
3837 	case BOND_MODE_8023AD:
3838 		cancel_delayed_work(&bond->ad_work);
3839 		break;
3840 	case BOND_MODE_TLB:
3841 	case BOND_MODE_ALB:
3842 		cancel_delayed_work(&bond->alb_work);
3843 		break;
3844 	default:
3845 		break;
3846 	}
3847 
3848 
3849 	if ((bond->params.mode == BOND_MODE_TLB) ||
3850 	    (bond->params.mode == BOND_MODE_ALB)) {
3851 		/* Must be called only after all
3852 		 * slaves have been released
3853 		 */
3854 		bond_alb_deinitialize(bond);
3855 	}
3856 
3857 	return 0;
3858 }
3859 
3860 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3861 {
3862 	struct bonding *bond = bond_dev->priv;
3863 	struct net_device_stats *stats = &(bond->stats), *sstats;
3864 	struct net_device_stats local_stats;
3865 	struct slave *slave;
3866 	int i;
3867 
3868 	memset(&local_stats, 0, sizeof(struct net_device_stats));
3869 
3870 	read_lock_bh(&bond->lock);
3871 
3872 	bond_for_each_slave(bond, slave, i) {
3873 		sstats = slave->dev->get_stats(slave->dev);
3874 		local_stats.rx_packets += sstats->rx_packets;
3875 		local_stats.rx_bytes += sstats->rx_bytes;
3876 		local_stats.rx_errors += sstats->rx_errors;
3877 		local_stats.rx_dropped += sstats->rx_dropped;
3878 
3879 		local_stats.tx_packets += sstats->tx_packets;
3880 		local_stats.tx_bytes += sstats->tx_bytes;
3881 		local_stats.tx_errors += sstats->tx_errors;
3882 		local_stats.tx_dropped += sstats->tx_dropped;
3883 
3884 		local_stats.multicast += sstats->multicast;
3885 		local_stats.collisions += sstats->collisions;
3886 
3887 		local_stats.rx_length_errors += sstats->rx_length_errors;
3888 		local_stats.rx_over_errors += sstats->rx_over_errors;
3889 		local_stats.rx_crc_errors += sstats->rx_crc_errors;
3890 		local_stats.rx_frame_errors += sstats->rx_frame_errors;
3891 		local_stats.rx_fifo_errors += sstats->rx_fifo_errors;
3892 		local_stats.rx_missed_errors += sstats->rx_missed_errors;
3893 
3894 		local_stats.tx_aborted_errors += sstats->tx_aborted_errors;
3895 		local_stats.tx_carrier_errors += sstats->tx_carrier_errors;
3896 		local_stats.tx_fifo_errors += sstats->tx_fifo_errors;
3897 		local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3898 		local_stats.tx_window_errors += sstats->tx_window_errors;
3899 	}
3900 
3901 	memcpy(stats, &local_stats, sizeof(struct net_device_stats));
3902 
3903 	read_unlock_bh(&bond->lock);
3904 
3905 	return stats;
3906 }
3907 
3908 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3909 {
3910 	struct net_device *slave_dev = NULL;
3911 	struct ifbond k_binfo;
3912 	struct ifbond __user *u_binfo = NULL;
3913 	struct ifslave k_sinfo;
3914 	struct ifslave __user *u_sinfo = NULL;
3915 	struct mii_ioctl_data *mii = NULL;
3916 	int res = 0;
3917 
3918 	dprintk("bond_ioctl: master=%s, cmd=%d\n",
3919 		bond_dev->name, cmd);
3920 
3921 	switch (cmd) {
3922 	case SIOCGMIIPHY:
3923 		mii = if_mii(ifr);
3924 		if (!mii) {
3925 			return -EINVAL;
3926 		}
3927 		mii->phy_id = 0;
3928 		/* Fall Through */
3929 	case SIOCGMIIREG:
3930 		/*
3931 		 * We do this again just in case we were called by SIOCGMIIREG
3932 		 * instead of SIOCGMIIPHY.
3933 		 */
3934 		mii = if_mii(ifr);
3935 		if (!mii) {
3936 			return -EINVAL;
3937 		}
3938 
3939 		if (mii->reg_num == 1) {
3940 			struct bonding *bond = bond_dev->priv;
3941 			mii->val_out = 0;
3942 			read_lock(&bond->lock);
3943 			read_lock(&bond->curr_slave_lock);
3944 			if (netif_carrier_ok(bond->dev)) {
3945 				mii->val_out = BMSR_LSTATUS;
3946 			}
3947 			read_unlock(&bond->curr_slave_lock);
3948 			read_unlock(&bond->lock);
3949 		}
3950 
3951 		return 0;
3952 	case BOND_INFO_QUERY_OLD:
3953 	case SIOCBONDINFOQUERY:
3954 		u_binfo = (struct ifbond __user *)ifr->ifr_data;
3955 
3956 		if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
3957 			return -EFAULT;
3958 		}
3959 
3960 		res = bond_info_query(bond_dev, &k_binfo);
3961 		if (res == 0) {
3962 			if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
3963 				return -EFAULT;
3964 			}
3965 		}
3966 
3967 		return res;
3968 	case BOND_SLAVE_INFO_QUERY_OLD:
3969 	case SIOCBONDSLAVEINFOQUERY:
3970 		u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3971 
3972 		if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
3973 			return -EFAULT;
3974 		}
3975 
3976 		res = bond_slave_info_query(bond_dev, &k_sinfo);
3977 		if (res == 0) {
3978 			if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
3979 				return -EFAULT;
3980 			}
3981 		}
3982 
3983 		return res;
3984 	default:
3985 		/* Go on */
3986 		break;
3987 	}
3988 
3989 	if (!capable(CAP_NET_ADMIN)) {
3990 		return -EPERM;
3991 	}
3992 
3993 	down_write(&(bonding_rwsem));
3994 	slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave);
3995 
3996 	dprintk("slave_dev=%p: \n", slave_dev);
3997 
3998 	if (!slave_dev) {
3999 		res = -ENODEV;
4000 	} else {
4001 		dprintk("slave_dev->name=%s: \n", slave_dev->name);
4002 		switch (cmd) {
4003 		case BOND_ENSLAVE_OLD:
4004 		case SIOCBONDENSLAVE:
4005 			res = bond_enslave(bond_dev, slave_dev);
4006 			break;
4007 		case BOND_RELEASE_OLD:
4008 		case SIOCBONDRELEASE:
4009 			res = bond_release(bond_dev, slave_dev);
4010 			break;
4011 		case BOND_SETHWADDR_OLD:
4012 		case SIOCBONDSETHWADDR:
4013 			res = bond_sethwaddr(bond_dev, slave_dev);
4014 			break;
4015 		case BOND_CHANGE_ACTIVE_OLD:
4016 		case SIOCBONDCHANGEACTIVE:
4017 			res = bond_ioctl_change_active(bond_dev, slave_dev);
4018 			break;
4019 		default:
4020 			res = -EOPNOTSUPP;
4021 		}
4022 
4023 		dev_put(slave_dev);
4024 	}
4025 
4026 	up_write(&(bonding_rwsem));
4027 	return res;
4028 }
4029 
4030 static void bond_set_multicast_list(struct net_device *bond_dev)
4031 {
4032 	struct bonding *bond = bond_dev->priv;
4033 	struct dev_mc_list *dmi;
4034 
4035 	/*
4036 	 * Do promisc before checking multicast_mode
4037 	 */
4038 	if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
4039 		/*
4040 		 * FIXME: Need to handle the error when one of the multi-slaves
4041 		 * encounters error.
4042 		 */
4043 		bond_set_promiscuity(bond, 1);
4044 	}
4045 
4046 	if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
4047 		bond_set_promiscuity(bond, -1);
4048 	}
4049 
4050 	/* set allmulti flag to slaves */
4051 	if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
4052 		/*
4053 		 * FIXME: Need to handle the error when one of the multi-slaves
4054 		 * encounters error.
4055 		 */
4056 		bond_set_allmulti(bond, 1);
4057 	}
4058 
4059 	if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
4060 		bond_set_allmulti(bond, -1);
4061 	}
4062 
4063 	read_lock(&bond->lock);
4064 
4065 	bond->flags = bond_dev->flags;
4066 
4067 	/* looking for addresses to add to slaves' mc list */
4068 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
4069 		if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
4070 			bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
4071 		}
4072 	}
4073 
4074 	/* looking for addresses to delete from slaves' list */
4075 	for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
4076 		if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
4077 			bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
4078 		}
4079 	}
4080 
4081 	/* save master's multicast list */
4082 	bond_mc_list_destroy(bond);
4083 	bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
4084 
4085 	read_unlock(&bond->lock);
4086 }
4087 
4088 /*
4089  * Change the MTU of all of a master's slaves to match the master
4090  */
4091 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
4092 {
4093 	struct bonding *bond = bond_dev->priv;
4094 	struct slave *slave, *stop_at;
4095 	int res = 0;
4096 	int i;
4097 
4098 	dprintk("bond=%p, name=%s, new_mtu=%d\n", bond,
4099 		(bond_dev ? bond_dev->name : "None"), new_mtu);
4100 
4101 	/* Can't hold bond->lock with bh disabled here since
4102 	 * some base drivers panic. On the other hand we can't
4103 	 * hold bond->lock without bh disabled because we'll
4104 	 * deadlock. The only solution is to rely on the fact
4105 	 * that we're under rtnl_lock here, and the slaves
4106 	 * list won't change. This doesn't solve the problem
4107 	 * of setting the slave's MTU while it is
4108 	 * transmitting, but the assumption is that the base
4109 	 * driver can handle that.
4110 	 *
4111 	 * TODO: figure out a way to safely iterate the slaves
4112 	 * list, but without holding a lock around the actual
4113 	 * call to the base driver.
4114 	 */
4115 
4116 	bond_for_each_slave(bond, slave, i) {
4117 		dprintk("s %p s->p %p c_m %p\n", slave,
4118 			slave->prev, slave->dev->change_mtu);
4119 
4120 		res = dev_set_mtu(slave->dev, new_mtu);
4121 
4122 		if (res) {
4123 			/* If we failed to set the slave's mtu to the new value
4124 			 * we must abort the operation even in ACTIVE_BACKUP
4125 			 * mode, because if we allow the backup slaves to have
4126 			 * different mtu values than the active slave we'll
4127 			 * need to change their mtu when doing a failover. That
4128 			 * means changing their mtu from timer context, which
4129 			 * is probably not a good idea.
4130 			 */
4131 			dprintk("err %d %s\n", res, slave->dev->name);
4132 			goto unwind;
4133 		}
4134 	}
4135 
4136 	bond_dev->mtu = new_mtu;
4137 
4138 	return 0;
4139 
4140 unwind:
4141 	/* unwind from head to the slave that failed */
4142 	stop_at = slave;
4143 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4144 		int tmp_res;
4145 
4146 		tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
4147 		if (tmp_res) {
4148 			dprintk("unwind err %d dev %s\n", tmp_res,
4149 				slave->dev->name);
4150 		}
4151 	}
4152 
4153 	return res;
4154 }
4155 
4156 /*
4157  * Change HW address
4158  *
4159  * Note that many devices must be down to change the HW address, and
4160  * downing the master releases all slaves.  We can make bonds full of
4161  * bonding devices to test this, however.
4162  */
4163 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
4164 {
4165 	struct bonding *bond = bond_dev->priv;
4166 	struct sockaddr *sa = addr, tmp_sa;
4167 	struct slave *slave, *stop_at;
4168 	int res = 0;
4169 	int i;
4170 
4171 	dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
4172 
4173 	/*
4174 	 * If fail_over_mac is set to active, do nothing and return
4175 	 * success.  Returning an error causes ifenslave to fail.
4176 	 */
4177 	if (bond->params.fail_over_mac == BOND_FOM_ACTIVE)
4178 		return 0;
4179 
4180 	if (!is_valid_ether_addr(sa->sa_data)) {
4181 		return -EADDRNOTAVAIL;
4182 	}
4183 
4184 	/* Can't hold bond->lock with bh disabled here since
4185 	 * some base drivers panic. On the other hand we can't
4186 	 * hold bond->lock without bh disabled because we'll
4187 	 * deadlock. The only solution is to rely on the fact
4188 	 * that we're under rtnl_lock here, and the slaves
4189 	 * list won't change. This doesn't solve the problem
4190 	 * of setting the slave's hw address while it is
4191 	 * transmitting, but the assumption is that the base
4192 	 * driver can handle that.
4193 	 *
4194 	 * TODO: figure out a way to safely iterate the slaves
4195 	 * list, but without holding a lock around the actual
4196 	 * call to the base driver.
4197 	 */
4198 
4199 	bond_for_each_slave(bond, slave, i) {
4200 		dprintk("slave %p %s\n", slave, slave->dev->name);
4201 
4202 		if (slave->dev->set_mac_address == NULL) {
4203 			res = -EOPNOTSUPP;
4204 			dprintk("EOPNOTSUPP %s\n", slave->dev->name);
4205 			goto unwind;
4206 		}
4207 
4208 		res = dev_set_mac_address(slave->dev, addr);
4209 		if (res) {
4210 			/* TODO: consider downing the slave
4211 			 * and retry ?
4212 			 * User should expect communications
4213 			 * breakage anyway until ARP finish
4214 			 * updating, so...
4215 			 */
4216 			dprintk("err %d %s\n", res, slave->dev->name);
4217 			goto unwind;
4218 		}
4219 	}
4220 
4221 	/* success */
4222 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
4223 	return 0;
4224 
4225 unwind:
4226 	memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
4227 	tmp_sa.sa_family = bond_dev->type;
4228 
4229 	/* unwind from head to the slave that failed */
4230 	stop_at = slave;
4231 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4232 		int tmp_res;
4233 
4234 		tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
4235 		if (tmp_res) {
4236 			dprintk("unwind err %d dev %s\n", tmp_res,
4237 				slave->dev->name);
4238 		}
4239 	}
4240 
4241 	return res;
4242 }
4243 
4244 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
4245 {
4246 	struct bonding *bond = bond_dev->priv;
4247 	struct slave *slave, *start_at;
4248 	int i, slave_no, res = 1;
4249 
4250 	read_lock(&bond->lock);
4251 
4252 	if (!BOND_IS_OK(bond)) {
4253 		goto out;
4254 	}
4255 
4256 	/*
4257 	 * Concurrent TX may collide on rr_tx_counter; we accept that
4258 	 * as being rare enough not to justify using an atomic op here
4259 	 */
4260 	slave_no = bond->rr_tx_counter++ % bond->slave_cnt;
4261 
4262 	bond_for_each_slave(bond, slave, i) {
4263 		slave_no--;
4264 		if (slave_no < 0) {
4265 			break;
4266 		}
4267 	}
4268 
4269 	start_at = slave;
4270 	bond_for_each_slave_from(bond, slave, i, start_at) {
4271 		if (IS_UP(slave->dev) &&
4272 		    (slave->link == BOND_LINK_UP) &&
4273 		    (slave->state == BOND_STATE_ACTIVE)) {
4274 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4275 			break;
4276 		}
4277 	}
4278 
4279 out:
4280 	if (res) {
4281 		/* no suitable interface, frame not sent */
4282 		dev_kfree_skb(skb);
4283 	}
4284 	read_unlock(&bond->lock);
4285 	return 0;
4286 }
4287 
4288 
4289 /*
4290  * in active-backup mode, we know that bond->curr_active_slave is always valid if
4291  * the bond has a usable interface.
4292  */
4293 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
4294 {
4295 	struct bonding *bond = bond_dev->priv;
4296 	int res = 1;
4297 
4298 	read_lock(&bond->lock);
4299 	read_lock(&bond->curr_slave_lock);
4300 
4301 	if (!BOND_IS_OK(bond)) {
4302 		goto out;
4303 	}
4304 
4305 	if (!bond->curr_active_slave)
4306 		goto out;
4307 
4308 	res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
4309 
4310 out:
4311 	if (res) {
4312 		/* no suitable interface, frame not sent */
4313 		dev_kfree_skb(skb);
4314 	}
4315 	read_unlock(&bond->curr_slave_lock);
4316 	read_unlock(&bond->lock);
4317 	return 0;
4318 }
4319 
4320 /*
4321  * In bond_xmit_xor() , we determine the output device by using a pre-
4322  * determined xmit_hash_policy(), If the selected device is not enabled,
4323  * find the next active slave.
4324  */
4325 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
4326 {
4327 	struct bonding *bond = bond_dev->priv;
4328 	struct slave *slave, *start_at;
4329 	int slave_no;
4330 	int i;
4331 	int res = 1;
4332 
4333 	read_lock(&bond->lock);
4334 
4335 	if (!BOND_IS_OK(bond)) {
4336 		goto out;
4337 	}
4338 
4339 	slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
4340 
4341 	bond_for_each_slave(bond, slave, i) {
4342 		slave_no--;
4343 		if (slave_no < 0) {
4344 			break;
4345 		}
4346 	}
4347 
4348 	start_at = slave;
4349 
4350 	bond_for_each_slave_from(bond, slave, i, start_at) {
4351 		if (IS_UP(slave->dev) &&
4352 		    (slave->link == BOND_LINK_UP) &&
4353 		    (slave->state == BOND_STATE_ACTIVE)) {
4354 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4355 			break;
4356 		}
4357 	}
4358 
4359 out:
4360 	if (res) {
4361 		/* no suitable interface, frame not sent */
4362 		dev_kfree_skb(skb);
4363 	}
4364 	read_unlock(&bond->lock);
4365 	return 0;
4366 }
4367 
4368 /*
4369  * in broadcast mode, we send everything to all usable interfaces.
4370  */
4371 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4372 {
4373 	struct bonding *bond = bond_dev->priv;
4374 	struct slave *slave, *start_at;
4375 	struct net_device *tx_dev = NULL;
4376 	int i;
4377 	int res = 1;
4378 
4379 	read_lock(&bond->lock);
4380 
4381 	if (!BOND_IS_OK(bond)) {
4382 		goto out;
4383 	}
4384 
4385 	read_lock(&bond->curr_slave_lock);
4386 	start_at = bond->curr_active_slave;
4387 	read_unlock(&bond->curr_slave_lock);
4388 
4389 	if (!start_at) {
4390 		goto out;
4391 	}
4392 
4393 	bond_for_each_slave_from(bond, slave, i, start_at) {
4394 		if (IS_UP(slave->dev) &&
4395 		    (slave->link == BOND_LINK_UP) &&
4396 		    (slave->state == BOND_STATE_ACTIVE)) {
4397 			if (tx_dev) {
4398 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4399 				if (!skb2) {
4400 					printk(KERN_ERR DRV_NAME
4401 					       ": %s: Error: bond_xmit_broadcast(): "
4402 					       "skb_clone() failed\n",
4403 					       bond_dev->name);
4404 					continue;
4405 				}
4406 
4407 				res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4408 				if (res) {
4409 					dev_kfree_skb(skb2);
4410 					continue;
4411 				}
4412 			}
4413 			tx_dev = slave->dev;
4414 		}
4415 	}
4416 
4417 	if (tx_dev) {
4418 		res = bond_dev_queue_xmit(bond, skb, tx_dev);
4419 	}
4420 
4421 out:
4422 	if (res) {
4423 		/* no suitable interface, frame not sent */
4424 		dev_kfree_skb(skb);
4425 	}
4426 	/* frame sent to all suitable interfaces */
4427 	read_unlock(&bond->lock);
4428 	return 0;
4429 }
4430 
4431 /*------------------------- Device initialization ---------------------------*/
4432 
4433 static void bond_set_xmit_hash_policy(struct bonding *bond)
4434 {
4435 	switch (bond->params.xmit_policy) {
4436 	case BOND_XMIT_POLICY_LAYER23:
4437 		bond->xmit_hash_policy = bond_xmit_hash_policy_l23;
4438 		break;
4439 	case BOND_XMIT_POLICY_LAYER34:
4440 		bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4441 		break;
4442 	case BOND_XMIT_POLICY_LAYER2:
4443 	default:
4444 		bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4445 		break;
4446 	}
4447 }
4448 
4449 /*
4450  * set bond mode specific net device operations
4451  */
4452 void bond_set_mode_ops(struct bonding *bond, int mode)
4453 {
4454 	struct net_device *bond_dev = bond->dev;
4455 
4456 	switch (mode) {
4457 	case BOND_MODE_ROUNDROBIN:
4458 		bond_dev->hard_start_xmit = bond_xmit_roundrobin;
4459 		break;
4460 	case BOND_MODE_ACTIVEBACKUP:
4461 		bond_dev->hard_start_xmit = bond_xmit_activebackup;
4462 		break;
4463 	case BOND_MODE_XOR:
4464 		bond_dev->hard_start_xmit = bond_xmit_xor;
4465 		bond_set_xmit_hash_policy(bond);
4466 		break;
4467 	case BOND_MODE_BROADCAST:
4468 		bond_dev->hard_start_xmit = bond_xmit_broadcast;
4469 		break;
4470 	case BOND_MODE_8023AD:
4471 		bond_set_master_3ad_flags(bond);
4472 		bond_dev->hard_start_xmit = bond_3ad_xmit_xor;
4473 		bond_set_xmit_hash_policy(bond);
4474 		break;
4475 	case BOND_MODE_ALB:
4476 		bond_set_master_alb_flags(bond);
4477 		/* FALLTHRU */
4478 	case BOND_MODE_TLB:
4479 		bond_dev->hard_start_xmit = bond_alb_xmit;
4480 		bond_dev->set_mac_address = bond_alb_set_mac_address;
4481 		break;
4482 	default:
4483 		/* Should never happen, mode already checked */
4484 		printk(KERN_ERR DRV_NAME
4485 		       ": %s: Error: Unknown bonding mode %d\n",
4486 		       bond_dev->name,
4487 		       mode);
4488 		break;
4489 	}
4490 }
4491 
4492 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4493 				    struct ethtool_drvinfo *drvinfo)
4494 {
4495 	strncpy(drvinfo->driver, DRV_NAME, 32);
4496 	strncpy(drvinfo->version, DRV_VERSION, 32);
4497 	snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4498 }
4499 
4500 static const struct ethtool_ops bond_ethtool_ops = {
4501 	.get_drvinfo		= bond_ethtool_get_drvinfo,
4502 	.get_link		= ethtool_op_get_link,
4503 	.get_tx_csum		= ethtool_op_get_tx_csum,
4504 	.get_sg			= ethtool_op_get_sg,
4505 	.get_tso		= ethtool_op_get_tso,
4506 	.get_ufo		= ethtool_op_get_ufo,
4507 	.get_flags		= ethtool_op_get_flags,
4508 };
4509 
4510 /*
4511  * Does not allocate but creates a /proc entry.
4512  * Allowed to fail.
4513  */
4514 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4515 {
4516 	struct bonding *bond = bond_dev->priv;
4517 
4518 	dprintk("Begin bond_init for %s\n", bond_dev->name);
4519 
4520 	/* initialize rwlocks */
4521 	rwlock_init(&bond->lock);
4522 	rwlock_init(&bond->curr_slave_lock);
4523 
4524 	bond->params = *params; /* copy params struct */
4525 
4526 	bond->wq = create_singlethread_workqueue(bond_dev->name);
4527 	if (!bond->wq)
4528 		return -ENOMEM;
4529 
4530 	/* Initialize pointers */
4531 	bond->first_slave = NULL;
4532 	bond->curr_active_slave = NULL;
4533 	bond->current_arp_slave = NULL;
4534 	bond->primary_slave = NULL;
4535 	bond->dev = bond_dev;
4536 	bond->send_grat_arp = 0;
4537 	bond->setup_by_slave = 0;
4538 	INIT_LIST_HEAD(&bond->vlan_list);
4539 
4540 	/* Initialize the device entry points */
4541 	bond_dev->open = bond_open;
4542 	bond_dev->stop = bond_close;
4543 	bond_dev->get_stats = bond_get_stats;
4544 	bond_dev->do_ioctl = bond_do_ioctl;
4545 	bond_dev->ethtool_ops = &bond_ethtool_ops;
4546 	bond_dev->set_multicast_list = bond_set_multicast_list;
4547 	bond_dev->change_mtu = bond_change_mtu;
4548 	bond_dev->set_mac_address = bond_set_mac_address;
4549 	bond_dev->validate_addr = NULL;
4550 
4551 	bond_set_mode_ops(bond, bond->params.mode);
4552 
4553 	bond_dev->destructor = free_netdev;
4554 
4555 	/* Initialize the device options */
4556 	bond_dev->tx_queue_len = 0;
4557 	bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4558 	bond_dev->priv_flags |= IFF_BONDING;
4559 
4560 	/* At first, we block adding VLANs. That's the only way to
4561 	 * prevent problems that occur when adding VLANs over an
4562 	 * empty bond. The block will be removed once non-challenged
4563 	 * slaves are enslaved.
4564 	 */
4565 	bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4566 
4567 	/* don't acquire bond device's netif_tx_lock when
4568 	 * transmitting */
4569 	bond_dev->features |= NETIF_F_LLTX;
4570 
4571 	/* By default, we declare the bond to be fully
4572 	 * VLAN hardware accelerated capable. Special
4573 	 * care is taken in the various xmit functions
4574 	 * when there are slaves that are not hw accel
4575 	 * capable
4576 	 */
4577 	bond_dev->vlan_rx_register = bond_vlan_rx_register;
4578 	bond_dev->vlan_rx_add_vid  = bond_vlan_rx_add_vid;
4579 	bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid;
4580 	bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4581 			       NETIF_F_HW_VLAN_RX |
4582 			       NETIF_F_HW_VLAN_FILTER);
4583 
4584 #ifdef CONFIG_PROC_FS
4585 	bond_create_proc_entry(bond);
4586 #endif
4587 	list_add_tail(&bond->bond_list, &bond_dev_list);
4588 
4589 	return 0;
4590 }
4591 
4592 /* De-initialize device specific data.
4593  * Caller must hold rtnl_lock.
4594  */
4595 static void bond_deinit(struct net_device *bond_dev)
4596 {
4597 	struct bonding *bond = bond_dev->priv;
4598 
4599 	list_del(&bond->bond_list);
4600 
4601 #ifdef CONFIG_PROC_FS
4602 	bond_remove_proc_entry(bond);
4603 #endif
4604 }
4605 
4606 static void bond_work_cancel_all(struct bonding *bond)
4607 {
4608 	write_lock_bh(&bond->lock);
4609 	bond->kill_timers = 1;
4610 	write_unlock_bh(&bond->lock);
4611 
4612 	if (bond->params.miimon && delayed_work_pending(&bond->mii_work))
4613 		cancel_delayed_work(&bond->mii_work);
4614 
4615 	if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work))
4616 		cancel_delayed_work(&bond->arp_work);
4617 
4618 	if (bond->params.mode == BOND_MODE_ALB &&
4619 	    delayed_work_pending(&bond->alb_work))
4620 		cancel_delayed_work(&bond->alb_work);
4621 
4622 	if (bond->params.mode == BOND_MODE_8023AD &&
4623 	    delayed_work_pending(&bond->ad_work))
4624 		cancel_delayed_work(&bond->ad_work);
4625 }
4626 
4627 /* Unregister and free all bond devices.
4628  * Caller must hold rtnl_lock.
4629  */
4630 static void bond_free_all(void)
4631 {
4632 	struct bonding *bond, *nxt;
4633 
4634 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4635 		struct net_device *bond_dev = bond->dev;
4636 
4637 		bond_work_cancel_all(bond);
4638 		netif_addr_lock_bh(bond_dev);
4639 		bond_mc_list_destroy(bond);
4640 		netif_addr_unlock_bh(bond_dev);
4641 		/* Release the bonded slaves */
4642 		bond_release_all(bond_dev);
4643 		bond_destroy(bond);
4644 	}
4645 
4646 #ifdef CONFIG_PROC_FS
4647 	bond_destroy_proc_dir();
4648 #endif
4649 }
4650 
4651 /*------------------------- Module initialization ---------------------------*/
4652 
4653 /*
4654  * Convert string input module parms.  Accept either the
4655  * number of the mode or its string name.  A bit complicated because
4656  * some mode names are substrings of other names, and calls from sysfs
4657  * may have whitespace in the name (trailing newlines, for example).
4658  */
4659 int bond_parse_parm(const char *buf, struct bond_parm_tbl *tbl)
4660 {
4661 	int mode = -1, i, rv;
4662 	char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, };
4663 
4664 	for (p = (char *)buf; *p; p++)
4665 		if (!(isdigit(*p) || isspace(*p)))
4666 			break;
4667 
4668 	if (*p)
4669 		rv = sscanf(buf, "%20s", modestr);
4670 	else
4671 		rv = sscanf(buf, "%d", &mode);
4672 
4673 	if (!rv)
4674 		return -1;
4675 
4676 	for (i = 0; tbl[i].modename; i++) {
4677 		if (mode == tbl[i].mode)
4678 			return tbl[i].mode;
4679 		if (strcmp(modestr, tbl[i].modename) == 0)
4680 			return tbl[i].mode;
4681 	}
4682 
4683 	return -1;
4684 }
4685 
4686 static int bond_check_params(struct bond_params *params)
4687 {
4688 	int arp_validate_value, fail_over_mac_value;
4689 
4690 	/*
4691 	 * Convert string parameters.
4692 	 */
4693 	if (mode) {
4694 		bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4695 		if (bond_mode == -1) {
4696 			printk(KERN_ERR DRV_NAME
4697 			       ": Error: Invalid bonding mode \"%s\"\n",
4698 			       mode == NULL ? "NULL" : mode);
4699 			return -EINVAL;
4700 		}
4701 	}
4702 
4703 	if (xmit_hash_policy) {
4704 		if ((bond_mode != BOND_MODE_XOR) &&
4705 		    (bond_mode != BOND_MODE_8023AD)) {
4706 			printk(KERN_INFO DRV_NAME
4707 			       ": xor_mode param is irrelevant in mode %s\n",
4708 			       bond_mode_name(bond_mode));
4709 		} else {
4710 			xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4711 							xmit_hashtype_tbl);
4712 			if (xmit_hashtype == -1) {
4713 				printk(KERN_ERR DRV_NAME
4714 			       	": Error: Invalid xmit_hash_policy \"%s\"\n",
4715 			       	xmit_hash_policy == NULL ? "NULL" :
4716 				       xmit_hash_policy);
4717 				return -EINVAL;
4718 			}
4719 		}
4720 	}
4721 
4722 	if (lacp_rate) {
4723 		if (bond_mode != BOND_MODE_8023AD) {
4724 			printk(KERN_INFO DRV_NAME
4725 			       ": lacp_rate param is irrelevant in mode %s\n",
4726 			       bond_mode_name(bond_mode));
4727 		} else {
4728 			lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4729 			if (lacp_fast == -1) {
4730 				printk(KERN_ERR DRV_NAME
4731 				       ": Error: Invalid lacp rate \"%s\"\n",
4732 				       lacp_rate == NULL ? "NULL" : lacp_rate);
4733 				return -EINVAL;
4734 			}
4735 		}
4736 	}
4737 
4738 	if (max_bonds < 0 || max_bonds > INT_MAX) {
4739 		printk(KERN_WARNING DRV_NAME
4740 		       ": Warning: max_bonds (%d) not in range %d-%d, so it "
4741 		       "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4742 		       max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4743 		max_bonds = BOND_DEFAULT_MAX_BONDS;
4744 	}
4745 
4746 	if (miimon < 0) {
4747 		printk(KERN_WARNING DRV_NAME
4748 		       ": Warning: miimon module parameter (%d), "
4749 		       "not in range 0-%d, so it was reset to %d\n",
4750 		       miimon, INT_MAX, BOND_LINK_MON_INTERV);
4751 		miimon = BOND_LINK_MON_INTERV;
4752 	}
4753 
4754 	if (updelay < 0) {
4755 		printk(KERN_WARNING DRV_NAME
4756 		       ": Warning: updelay module parameter (%d), "
4757 		       "not in range 0-%d, so it was reset to 0\n",
4758 		       updelay, INT_MAX);
4759 		updelay = 0;
4760 	}
4761 
4762 	if (downdelay < 0) {
4763 		printk(KERN_WARNING DRV_NAME
4764 		       ": Warning: downdelay module parameter (%d), "
4765 		       "not in range 0-%d, so it was reset to 0\n",
4766 		       downdelay, INT_MAX);
4767 		downdelay = 0;
4768 	}
4769 
4770 	if ((use_carrier != 0) && (use_carrier != 1)) {
4771 		printk(KERN_WARNING DRV_NAME
4772 		       ": Warning: use_carrier module parameter (%d), "
4773 		       "not of valid value (0/1), so it was set to 1\n",
4774 		       use_carrier);
4775 		use_carrier = 1;
4776 	}
4777 
4778 	if (num_grat_arp < 0 || num_grat_arp > 255) {
4779 		printk(KERN_WARNING DRV_NAME
4780 		       ": Warning: num_grat_arp (%d) not in range 0-255 so it "
4781 		       "was reset to 1 \n", num_grat_arp);
4782 		num_grat_arp = 1;
4783 	}
4784 
4785 	/* reset values for 802.3ad */
4786 	if (bond_mode == BOND_MODE_8023AD) {
4787 		if (!miimon) {
4788 			printk(KERN_WARNING DRV_NAME
4789 			       ": Warning: miimon must be specified, "
4790 			       "otherwise bonding will not detect link "
4791 			       "failure, speed and duplex which are "
4792 			       "essential for 802.3ad operation\n");
4793 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4794 			miimon = 100;
4795 		}
4796 	}
4797 
4798 	/* reset values for TLB/ALB */
4799 	if ((bond_mode == BOND_MODE_TLB) ||
4800 	    (bond_mode == BOND_MODE_ALB)) {
4801 		if (!miimon) {
4802 			printk(KERN_WARNING DRV_NAME
4803 			       ": Warning: miimon must be specified, "
4804 			       "otherwise bonding will not detect link "
4805 			       "failure and link speed which are essential "
4806 			       "for TLB/ALB load balancing\n");
4807 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4808 			miimon = 100;
4809 		}
4810 	}
4811 
4812 	if (bond_mode == BOND_MODE_ALB) {
4813 		printk(KERN_NOTICE DRV_NAME
4814 		       ": In ALB mode you might experience client "
4815 		       "disconnections upon reconnection of a link if the "
4816 		       "bonding module updelay parameter (%d msec) is "
4817 		       "incompatible with the forwarding delay time of the "
4818 		       "switch\n",
4819 		       updelay);
4820 	}
4821 
4822 	if (!miimon) {
4823 		if (updelay || downdelay) {
4824 			/* just warn the user the up/down delay will have
4825 			 * no effect since miimon is zero...
4826 			 */
4827 			printk(KERN_WARNING DRV_NAME
4828 			       ": Warning: miimon module parameter not set "
4829 			       "and updelay (%d) or downdelay (%d) module "
4830 			       "parameter is set; updelay and downdelay have "
4831 			       "no effect unless miimon is set\n",
4832 			       updelay, downdelay);
4833 		}
4834 	} else {
4835 		/* don't allow arp monitoring */
4836 		if (arp_interval) {
4837 			printk(KERN_WARNING DRV_NAME
4838 			       ": Warning: miimon (%d) and arp_interval (%d) "
4839 			       "can't be used simultaneously, disabling ARP "
4840 			       "monitoring\n",
4841 			       miimon, arp_interval);
4842 			arp_interval = 0;
4843 		}
4844 
4845 		if ((updelay % miimon) != 0) {
4846 			printk(KERN_WARNING DRV_NAME
4847 			       ": Warning: updelay (%d) is not a multiple "
4848 			       "of miimon (%d), updelay rounded to %d ms\n",
4849 			       updelay, miimon, (updelay / miimon) * miimon);
4850 		}
4851 
4852 		updelay /= miimon;
4853 
4854 		if ((downdelay % miimon) != 0) {
4855 			printk(KERN_WARNING DRV_NAME
4856 			       ": Warning: downdelay (%d) is not a multiple "
4857 			       "of miimon (%d), downdelay rounded to %d ms\n",
4858 			       downdelay, miimon,
4859 			       (downdelay / miimon) * miimon);
4860 		}
4861 
4862 		downdelay /= miimon;
4863 	}
4864 
4865 	if (arp_interval < 0) {
4866 		printk(KERN_WARNING DRV_NAME
4867 		       ": Warning: arp_interval module parameter (%d) "
4868 		       ", not in range 0-%d, so it was reset to %d\n",
4869 		       arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4870 		arp_interval = BOND_LINK_ARP_INTERV;
4871 	}
4872 
4873 	for (arp_ip_count = 0;
4874 	     (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4875 	     arp_ip_count++) {
4876 		/* not complete check, but should be good enough to
4877 		   catch mistakes */
4878 		if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4879 			printk(KERN_WARNING DRV_NAME
4880 			       ": Warning: bad arp_ip_target module parameter "
4881 			       "(%s), ARP monitoring will not be performed\n",
4882 			       arp_ip_target[arp_ip_count]);
4883 			arp_interval = 0;
4884 		} else {
4885 			__be32 ip = in_aton(arp_ip_target[arp_ip_count]);
4886 			arp_target[arp_ip_count] = ip;
4887 		}
4888 	}
4889 
4890 	if (arp_interval && !arp_ip_count) {
4891 		/* don't allow arping if no arp_ip_target given... */
4892 		printk(KERN_WARNING DRV_NAME
4893 		       ": Warning: arp_interval module parameter (%d) "
4894 		       "specified without providing an arp_ip_target "
4895 		       "parameter, arp_interval was reset to 0\n",
4896 		       arp_interval);
4897 		arp_interval = 0;
4898 	}
4899 
4900 	if (arp_validate) {
4901 		if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4902 			printk(KERN_ERR DRV_NAME
4903 	       ": arp_validate only supported in active-backup mode\n");
4904 			return -EINVAL;
4905 		}
4906 		if (!arp_interval) {
4907 			printk(KERN_ERR DRV_NAME
4908 			       ": arp_validate requires arp_interval\n");
4909 			return -EINVAL;
4910 		}
4911 
4912 		arp_validate_value = bond_parse_parm(arp_validate,
4913 						     arp_validate_tbl);
4914 		if (arp_validate_value == -1) {
4915 			printk(KERN_ERR DRV_NAME
4916 			       ": Error: invalid arp_validate \"%s\"\n",
4917 			       arp_validate == NULL ? "NULL" : arp_validate);
4918 			return -EINVAL;
4919 		}
4920 	} else
4921 		arp_validate_value = 0;
4922 
4923 	if (miimon) {
4924 		printk(KERN_INFO DRV_NAME
4925 		       ": MII link monitoring set to %d ms\n",
4926 		       miimon);
4927 	} else if (arp_interval) {
4928 		int i;
4929 
4930 		printk(KERN_INFO DRV_NAME
4931 		       ": ARP monitoring set to %d ms, validate %s, with %d target(s):",
4932 		       arp_interval,
4933 		       arp_validate_tbl[arp_validate_value].modename,
4934 		       arp_ip_count);
4935 
4936 		for (i = 0; i < arp_ip_count; i++)
4937 			printk (" %s", arp_ip_target[i]);
4938 
4939 		printk("\n");
4940 
4941 	} else if (max_bonds) {
4942 		/* miimon and arp_interval not set, we need one so things
4943 		 * work as expected, see bonding.txt for details
4944 		 */
4945 		printk(KERN_WARNING DRV_NAME
4946 		       ": Warning: either miimon or arp_interval and "
4947 		       "arp_ip_target module parameters must be specified, "
4948 		       "otherwise bonding will not detect link failures! see "
4949 		       "bonding.txt for details.\n");
4950 	}
4951 
4952 	if (primary && !USES_PRIMARY(bond_mode)) {
4953 		/* currently, using a primary only makes sense
4954 		 * in active backup, TLB or ALB modes
4955 		 */
4956 		printk(KERN_WARNING DRV_NAME
4957 		       ": Warning: %s primary device specified but has no "
4958 		       "effect in %s mode\n",
4959 		       primary, bond_mode_name(bond_mode));
4960 		primary = NULL;
4961 	}
4962 
4963 	if (fail_over_mac) {
4964 		fail_over_mac_value = bond_parse_parm(fail_over_mac,
4965 						      fail_over_mac_tbl);
4966 		if (fail_over_mac_value == -1) {
4967 			printk(KERN_ERR DRV_NAME
4968 			       ": Error: invalid fail_over_mac \"%s\"\n",
4969 			       arp_validate == NULL ? "NULL" : arp_validate);
4970 			return -EINVAL;
4971 		}
4972 
4973 		if (bond_mode != BOND_MODE_ACTIVEBACKUP)
4974 			printk(KERN_WARNING DRV_NAME
4975 			       ": Warning: fail_over_mac only affects "
4976 			       "active-backup mode.\n");
4977 	} else {
4978 		fail_over_mac_value = BOND_FOM_NONE;
4979 	}
4980 
4981 	/* fill params struct with the proper values */
4982 	params->mode = bond_mode;
4983 	params->xmit_policy = xmit_hashtype;
4984 	params->miimon = miimon;
4985 	params->num_grat_arp = num_grat_arp;
4986 	params->arp_interval = arp_interval;
4987 	params->arp_validate = arp_validate_value;
4988 	params->updelay = updelay;
4989 	params->downdelay = downdelay;
4990 	params->use_carrier = use_carrier;
4991 	params->lacp_fast = lacp_fast;
4992 	params->primary[0] = 0;
4993 	params->fail_over_mac = fail_over_mac_value;
4994 
4995 	if (primary) {
4996 		strncpy(params->primary, primary, IFNAMSIZ);
4997 		params->primary[IFNAMSIZ - 1] = 0;
4998 	}
4999 
5000 	memcpy(params->arp_targets, arp_target, sizeof(arp_target));
5001 
5002 	return 0;
5003 }
5004 
5005 static struct lock_class_key bonding_netdev_xmit_lock_key;
5006 static struct lock_class_key bonding_netdev_addr_lock_key;
5007 
5008 static void bond_set_lockdep_class_one(struct net_device *dev,
5009 				       struct netdev_queue *txq,
5010 				       void *_unused)
5011 {
5012 	lockdep_set_class(&txq->_xmit_lock,
5013 			  &bonding_netdev_xmit_lock_key);
5014 }
5015 
5016 static void bond_set_lockdep_class(struct net_device *dev)
5017 {
5018 	lockdep_set_class(&dev->addr_list_lock,
5019 			  &bonding_netdev_addr_lock_key);
5020 	netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL);
5021 }
5022 
5023 /* Create a new bond based on the specified name and bonding parameters.
5024  * If name is NULL, obtain a suitable "bond%d" name for us.
5025  * Caller must NOT hold rtnl_lock; we need to release it here before we
5026  * set up our sysfs entries.
5027  */
5028 int bond_create(char *name, struct bond_params *params)
5029 {
5030 	struct net_device *bond_dev;
5031 	struct bonding *bond;
5032 	int res;
5033 
5034 	rtnl_lock();
5035 	down_write(&bonding_rwsem);
5036 
5037 	/* Check to see if the bond already exists. */
5038 	if (name) {
5039 		list_for_each_entry(bond, &bond_dev_list, bond_list)
5040 			if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) {
5041 				printk(KERN_ERR DRV_NAME
5042 			       ": cannot add bond %s; it already exists\n",
5043 				       name);
5044 				res = -EPERM;
5045 				goto out_rtnl;
5046 			}
5047 	}
5048 
5049 	bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "",
5050 				ether_setup);
5051 	if (!bond_dev) {
5052 		printk(KERN_ERR DRV_NAME
5053 		       ": %s: eek! can't alloc netdev!\n",
5054 		       name);
5055 		res = -ENOMEM;
5056 		goto out_rtnl;
5057 	}
5058 
5059 	if (!name) {
5060 		res = dev_alloc_name(bond_dev, "bond%d");
5061 		if (res < 0)
5062 			goto out_netdev;
5063 	}
5064 
5065 	/* bond_init() must be called after dev_alloc_name() (for the
5066 	 * /proc files), but before register_netdevice(), because we
5067 	 * need to set function pointers.
5068 	 */
5069 
5070 	res = bond_init(bond_dev, params);
5071 	if (res < 0) {
5072 		goto out_netdev;
5073 	}
5074 
5075 	res = register_netdevice(bond_dev);
5076 	if (res < 0) {
5077 		goto out_bond;
5078 	}
5079 
5080 	bond_set_lockdep_class(bond_dev);
5081 
5082 	netif_carrier_off(bond_dev);
5083 
5084 	up_write(&bonding_rwsem);
5085 	rtnl_unlock(); /* allows sysfs registration of net device */
5086 	res = bond_create_sysfs_entry(bond_dev->priv);
5087 	if (res < 0) {
5088 		rtnl_lock();
5089 		down_write(&bonding_rwsem);
5090 		bond_deinit(bond_dev);
5091 		unregister_netdevice(bond_dev);
5092 		goto out_rtnl;
5093 	}
5094 
5095 	return 0;
5096 
5097 out_bond:
5098 	bond_deinit(bond_dev);
5099 out_netdev:
5100 	free_netdev(bond_dev);
5101 out_rtnl:
5102 	up_write(&bonding_rwsem);
5103 	rtnl_unlock();
5104 	return res;
5105 }
5106 
5107 static int __init bonding_init(void)
5108 {
5109 	int i;
5110 	int res;
5111 	struct bonding *bond;
5112 
5113 	printk(KERN_INFO "%s", version);
5114 
5115 	res = bond_check_params(&bonding_defaults);
5116 	if (res) {
5117 		goto out;
5118 	}
5119 
5120 #ifdef CONFIG_PROC_FS
5121 	bond_create_proc_dir();
5122 #endif
5123 
5124 	init_rwsem(&bonding_rwsem);
5125 
5126 	for (i = 0; i < max_bonds; i++) {
5127 		res = bond_create(NULL, &bonding_defaults);
5128 		if (res)
5129 			goto err;
5130 	}
5131 
5132 	res = bond_create_sysfs();
5133 	if (res)
5134 		goto err;
5135 
5136 	register_netdevice_notifier(&bond_netdev_notifier);
5137 	register_inetaddr_notifier(&bond_inetaddr_notifier);
5138 
5139 	goto out;
5140 err:
5141 	list_for_each_entry(bond, &bond_dev_list, bond_list) {
5142 		bond_work_cancel_all(bond);
5143 		destroy_workqueue(bond->wq);
5144 	}
5145 
5146 	bond_destroy_sysfs();
5147 
5148 	rtnl_lock();
5149 	bond_free_all();
5150 	rtnl_unlock();
5151 out:
5152 	return res;
5153 
5154 }
5155 
5156 static void __exit bonding_exit(void)
5157 {
5158 	unregister_netdevice_notifier(&bond_netdev_notifier);
5159 	unregister_inetaddr_notifier(&bond_inetaddr_notifier);
5160 
5161 	bond_destroy_sysfs();
5162 
5163 	rtnl_lock();
5164 	bond_free_all();
5165 	rtnl_unlock();
5166 }
5167 
5168 module_init(bonding_init);
5169 module_exit(bonding_exit);
5170 MODULE_LICENSE("GPL");
5171 MODULE_VERSION(DRV_VERSION);
5172 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
5173 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
5174 MODULE_SUPPORTED_DEVICE("most ethernet devices");
5175 
5176 /*
5177  * Local variables:
5178  *  c-indent-level: 8
5179  *  c-basic-offset: 8
5180  *  tab-width: 8
5181  * End:
5182  */
5183 
5184