xref: /linux/drivers/net/bonding/bond_main.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * originally based on the dummy device.
3  *
4  * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5  * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6  *
7  * bonding.c: an Ethernet Bonding driver
8  *
9  * This is useful to talk to a Cisco EtherChannel compatible equipment:
10  *	Cisco 5500
11  *	Sun Trunking (Solaris)
12  *	Alteon AceDirector Trunks
13  *	Linux Bonding
14  *	and probably many L2 switches ...
15  *
16  * How it works:
17  *    ifconfig bond0 ipaddress netmask up
18  *      will setup a network device, with an ip address.  No mac address
19  *	will be assigned at this time.  The hw mac address will come from
20  *	the first slave bonded to the channel.  All slaves will then use
21  *	this hw mac address.
22  *
23  *    ifconfig bond0 down
24  *         will release all slaves, marking them as down.
25  *
26  *    ifenslave bond0 eth0
27  *	will attach eth0 to bond0 as a slave.  eth0 hw mac address will either
28  *	a: be used as initial mac address
29  *	b: if a hw mac address already is there, eth0's hw mac address
30  *	   will then be set from bond0.
31  *
32  */
33 
34 //#define BONDING_DEBUG 1
35 
36 #include <linux/config.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/sched.h>
40 #include <linux/types.h>
41 #include <linux/fcntl.h>
42 #include <linux/interrupt.h>
43 #include <linux/ptrace.h>
44 #include <linux/ioport.h>
45 #include <linux/in.h>
46 #include <net/ip.h>
47 #include <linux/ip.h>
48 #include <linux/tcp.h>
49 #include <linux/udp.h>
50 #include <linux/slab.h>
51 #include <linux/string.h>
52 #include <linux/init.h>
53 #include <linux/timer.h>
54 #include <linux/socket.h>
55 #include <linux/ctype.h>
56 #include <linux/inet.h>
57 #include <linux/bitops.h>
58 #include <asm/system.h>
59 #include <asm/io.h>
60 #include <asm/dma.h>
61 #include <asm/uaccess.h>
62 #include <linux/errno.h>
63 #include <linux/netdevice.h>
64 #include <linux/inetdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <net/sock.h>
68 #include <linux/rtnetlink.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/smp.h>
72 #include <linux/if_ether.h>
73 #include <net/arp.h>
74 #include <linux/mii.h>
75 #include <linux/ethtool.h>
76 #include <linux/if_vlan.h>
77 #include <linux/if_bonding.h>
78 #include <net/route.h>
79 #include "bonding.h"
80 #include "bond_3ad.h"
81 #include "bond_alb.h"
82 
83 /*---------------------------- Module parameters ----------------------------*/
84 
85 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
86 #define BOND_LINK_MON_INTERV	0
87 #define BOND_LINK_ARP_INTERV	0
88 
89 static int max_bonds	= BOND_DEFAULT_MAX_BONDS;
90 static int miimon	= BOND_LINK_MON_INTERV;
91 static int updelay	= 0;
92 static int downdelay	= 0;
93 static int use_carrier	= 1;
94 static char *mode	= NULL;
95 static char *primary	= NULL;
96 static char *lacp_rate	= NULL;
97 static char *xmit_hash_policy = NULL;
98 static int arp_interval = BOND_LINK_ARP_INTERV;
99 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
100 struct bond_params bonding_defaults;
101 
102 module_param(max_bonds, int, 0);
103 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
104 module_param(miimon, int, 0);
105 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
106 module_param(updelay, int, 0);
107 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
108 module_param(downdelay, int, 0);
109 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
110 			    "in milliseconds");
111 module_param(use_carrier, int, 0);
112 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
113 			      "0 for off, 1 for on (default)");
114 module_param(mode, charp, 0);
115 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
116 		       "1 for active-backup, 2 for balance-xor, "
117 		       "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
118 		       "6 for balance-alb");
119 module_param(primary, charp, 0);
120 MODULE_PARM_DESC(primary, "Primary network device to use");
121 module_param(lacp_rate, charp, 0);
122 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
123 			    "(slow/fast)");
124 module_param(xmit_hash_policy, charp, 0);
125 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
126 				   ", 1 for layer 3+4");
127 module_param(arp_interval, int, 0);
128 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
129 module_param_array(arp_ip_target, charp, NULL, 0);
130 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
131 
132 /*----------------------------- Global variables ----------------------------*/
133 
134 static const char * const version =
135 	DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
136 
137 LIST_HEAD(bond_dev_list);
138 
139 #ifdef CONFIG_PROC_FS
140 static struct proc_dir_entry *bond_proc_dir = NULL;
141 #endif
142 
143 extern struct rw_semaphore bonding_rwsem;
144 static u32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
145 static int arp_ip_count	= 0;
146 static int bond_mode	= BOND_MODE_ROUNDROBIN;
147 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
148 static int lacp_fast	= 0;
149 
150 
151 struct bond_parm_tbl bond_lacp_tbl[] = {
152 {	"slow",		AD_LACP_SLOW},
153 {	"fast",		AD_LACP_FAST},
154 {	NULL,		-1},
155 };
156 
157 struct bond_parm_tbl bond_mode_tbl[] = {
158 {	"balance-rr",		BOND_MODE_ROUNDROBIN},
159 {	"active-backup",	BOND_MODE_ACTIVEBACKUP},
160 {	"balance-xor",		BOND_MODE_XOR},
161 {	"broadcast",		BOND_MODE_BROADCAST},
162 {	"802.3ad",		BOND_MODE_8023AD},
163 {	"balance-tlb",		BOND_MODE_TLB},
164 {	"balance-alb",		BOND_MODE_ALB},
165 {	NULL,			-1},
166 };
167 
168 struct bond_parm_tbl xmit_hashtype_tbl[] = {
169 {	"layer2",		BOND_XMIT_POLICY_LAYER2},
170 {	"layer3+4",		BOND_XMIT_POLICY_LAYER34},
171 {	NULL,			-1},
172 };
173 
174 /*-------------------------- Forward declarations ---------------------------*/
175 
176 static void bond_send_gratuitous_arp(struct bonding *bond);
177 
178 /*---------------------------- General routines -----------------------------*/
179 
180 const char *bond_mode_name(int mode)
181 {
182 	switch (mode) {
183 	case BOND_MODE_ROUNDROBIN :
184 		return "load balancing (round-robin)";
185 	case BOND_MODE_ACTIVEBACKUP :
186 		return "fault-tolerance (active-backup)";
187 	case BOND_MODE_XOR :
188 		return "load balancing (xor)";
189 	case BOND_MODE_BROADCAST :
190 		return "fault-tolerance (broadcast)";
191 	case BOND_MODE_8023AD:
192 		return "IEEE 802.3ad Dynamic link aggregation";
193 	case BOND_MODE_TLB:
194 		return "transmit load balancing";
195 	case BOND_MODE_ALB:
196 		return "adaptive load balancing";
197 	default:
198 		return "unknown";
199 	}
200 }
201 
202 /*---------------------------------- VLAN -----------------------------------*/
203 
204 /**
205  * bond_add_vlan - add a new vlan id on bond
206  * @bond: bond that got the notification
207  * @vlan_id: the vlan id to add
208  *
209  * Returns -ENOMEM if allocation failed.
210  */
211 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
212 {
213 	struct vlan_entry *vlan;
214 
215 	dprintk("bond: %s, vlan id %d\n",
216 		(bond ? bond->dev->name: "None"), vlan_id);
217 
218 	vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL);
219 	if (!vlan) {
220 		return -ENOMEM;
221 	}
222 
223 	INIT_LIST_HEAD(&vlan->vlan_list);
224 	vlan->vlan_id = vlan_id;
225 	vlan->vlan_ip = 0;
226 
227 	write_lock_bh(&bond->lock);
228 
229 	list_add_tail(&vlan->vlan_list, &bond->vlan_list);
230 
231 	write_unlock_bh(&bond->lock);
232 
233 	dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
234 
235 	return 0;
236 }
237 
238 /**
239  * bond_del_vlan - delete a vlan id from bond
240  * @bond: bond that got the notification
241  * @vlan_id: the vlan id to delete
242  *
243  * returns -ENODEV if @vlan_id was not found in @bond.
244  */
245 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
246 {
247 	struct vlan_entry *vlan, *next;
248 	int res = -ENODEV;
249 
250 	dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
251 
252 	write_lock_bh(&bond->lock);
253 
254 	list_for_each_entry_safe(vlan, next, &bond->vlan_list, vlan_list) {
255 		if (vlan->vlan_id == vlan_id) {
256 			list_del(&vlan->vlan_list);
257 
258 			if ((bond->params.mode == BOND_MODE_TLB) ||
259 			    (bond->params.mode == BOND_MODE_ALB)) {
260 				bond_alb_clear_vlan(bond, vlan_id);
261 			}
262 
263 			dprintk("removed VLAN ID %d from bond %s\n", vlan_id,
264 				bond->dev->name);
265 
266 			kfree(vlan);
267 
268 			if (list_empty(&bond->vlan_list) &&
269 			    (bond->slave_cnt == 0)) {
270 				/* Last VLAN removed and no slaves, so
271 				 * restore block on adding VLANs. This will
272 				 * be removed once new slaves that are not
273 				 * VLAN challenged will be added.
274 				 */
275 				bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
276 			}
277 
278 			res = 0;
279 			goto out;
280 		}
281 	}
282 
283 	dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id,
284 		bond->dev->name);
285 
286 out:
287 	write_unlock_bh(&bond->lock);
288 	return res;
289 }
290 
291 /**
292  * bond_has_challenged_slaves
293  * @bond: the bond we're working on
294  *
295  * Searches the slave list. Returns 1 if a vlan challenged slave
296  * was found, 0 otherwise.
297  *
298  * Assumes bond->lock is held.
299  */
300 static int bond_has_challenged_slaves(struct bonding *bond)
301 {
302 	struct slave *slave;
303 	int i;
304 
305 	bond_for_each_slave(bond, slave, i) {
306 		if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
307 			dprintk("found VLAN challenged slave - %s\n",
308 				slave->dev->name);
309 			return 1;
310 		}
311 	}
312 
313 	dprintk("no VLAN challenged slaves found\n");
314 	return 0;
315 }
316 
317 /**
318  * bond_next_vlan - safely skip to the next item in the vlans list.
319  * @bond: the bond we're working on
320  * @curr: item we're advancing from
321  *
322  * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
323  * or @curr->next otherwise (even if it is @curr itself again).
324  *
325  * Caller must hold bond->lock
326  */
327 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
328 {
329 	struct vlan_entry *next, *last;
330 
331 	if (list_empty(&bond->vlan_list)) {
332 		return NULL;
333 	}
334 
335 	if (!curr) {
336 		next = list_entry(bond->vlan_list.next,
337 				  struct vlan_entry, vlan_list);
338 	} else {
339 		last = list_entry(bond->vlan_list.prev,
340 				  struct vlan_entry, vlan_list);
341 		if (last == curr) {
342 			next = list_entry(bond->vlan_list.next,
343 					  struct vlan_entry, vlan_list);
344 		} else {
345 			next = list_entry(curr->vlan_list.next,
346 					  struct vlan_entry, vlan_list);
347 		}
348 	}
349 
350 	return next;
351 }
352 
353 /**
354  * bond_dev_queue_xmit - Prepare skb for xmit.
355  *
356  * @bond: bond device that got this skb for tx.
357  * @skb: hw accel VLAN tagged skb to transmit
358  * @slave_dev: slave that is supposed to xmit this skbuff
359  *
360  * When the bond gets an skb to transmit that is
361  * already hardware accelerated VLAN tagged, and it
362  * needs to relay this skb to a slave that is not
363  * hw accel capable, the skb needs to be "unaccelerated",
364  * i.e. strip the hwaccel tag and re-insert it as part
365  * of the payload.
366  */
367 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
368 {
369 	unsigned short vlan_id;
370 
371 	if (!list_empty(&bond->vlan_list) &&
372 	    !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
373 	    vlan_get_tag(skb, &vlan_id) == 0) {
374 		skb->dev = slave_dev;
375 		skb = vlan_put_tag(skb, vlan_id);
376 		if (!skb) {
377 			/* vlan_put_tag() frees the skb in case of error,
378 			 * so return success here so the calling functions
379 			 * won't attempt to free is again.
380 			 */
381 			return 0;
382 		}
383 	} else {
384 		skb->dev = slave_dev;
385 	}
386 
387 	skb->priority = 1;
388 	dev_queue_xmit(skb);
389 
390 	return 0;
391 }
392 
393 /*
394  * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
395  * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
396  * lock because:
397  * a. This operation is performed in IOCTL context,
398  * b. The operation is protected by the RTNL semaphore in the 8021q code,
399  * c. Holding a lock with BH disabled while directly calling a base driver
400  *    entry point is generally a BAD idea.
401  *
402  * The design of synchronization/protection for this operation in the 8021q
403  * module is good for one or more VLAN devices over a single physical device
404  * and cannot be extended for a teaming solution like bonding, so there is a
405  * potential race condition here where a net device from the vlan group might
406  * be referenced (either by a base driver or the 8021q code) while it is being
407  * removed from the system. However, it turns out we're not making matters
408  * worse, and if it works for regular VLAN usage it will work here too.
409 */
410 
411 /**
412  * bond_vlan_rx_register - Propagates registration to slaves
413  * @bond_dev: bonding net device that got called
414  * @grp: vlan group being registered
415  */
416 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
417 {
418 	struct bonding *bond = bond_dev->priv;
419 	struct slave *slave;
420 	int i;
421 
422 	bond->vlgrp = grp;
423 
424 	bond_for_each_slave(bond, slave, i) {
425 		struct net_device *slave_dev = slave->dev;
426 
427 		if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
428 		    slave_dev->vlan_rx_register) {
429 			slave_dev->vlan_rx_register(slave_dev, grp);
430 		}
431 	}
432 }
433 
434 /**
435  * bond_vlan_rx_add_vid - Propagates adding an id to slaves
436  * @bond_dev: bonding net device that got called
437  * @vid: vlan id being added
438  */
439 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
440 {
441 	struct bonding *bond = bond_dev->priv;
442 	struct slave *slave;
443 	int i, res;
444 
445 	bond_for_each_slave(bond, slave, i) {
446 		struct net_device *slave_dev = slave->dev;
447 
448 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
449 		    slave_dev->vlan_rx_add_vid) {
450 			slave_dev->vlan_rx_add_vid(slave_dev, vid);
451 		}
452 	}
453 
454 	res = bond_add_vlan(bond, vid);
455 	if (res) {
456 		printk(KERN_ERR DRV_NAME
457 		       ": %s: Error: Failed to add vlan id %d\n",
458 		       bond_dev->name, vid);
459 	}
460 }
461 
462 /**
463  * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
464  * @bond_dev: bonding net device that got called
465  * @vid: vlan id being removed
466  */
467 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
468 {
469 	struct bonding *bond = bond_dev->priv;
470 	struct slave *slave;
471 	struct net_device *vlan_dev;
472 	int i, res;
473 
474 	bond_for_each_slave(bond, slave, i) {
475 		struct net_device *slave_dev = slave->dev;
476 
477 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
478 		    slave_dev->vlan_rx_kill_vid) {
479 			/* Save and then restore vlan_dev in the grp array,
480 			 * since the slave's driver might clear it.
481 			 */
482 			vlan_dev = bond->vlgrp->vlan_devices[vid];
483 			slave_dev->vlan_rx_kill_vid(slave_dev, vid);
484 			bond->vlgrp->vlan_devices[vid] = vlan_dev;
485 		}
486 	}
487 
488 	res = bond_del_vlan(bond, vid);
489 	if (res) {
490 		printk(KERN_ERR DRV_NAME
491 		       ": %s: Error: Failed to remove vlan id %d\n",
492 		       bond_dev->name, vid);
493 	}
494 }
495 
496 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
497 {
498 	struct vlan_entry *vlan;
499 
500 	write_lock_bh(&bond->lock);
501 
502 	if (list_empty(&bond->vlan_list)) {
503 		goto out;
504 	}
505 
506 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
507 	    slave_dev->vlan_rx_register) {
508 		slave_dev->vlan_rx_register(slave_dev, bond->vlgrp);
509 	}
510 
511 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
512 	    !(slave_dev->vlan_rx_add_vid)) {
513 		goto out;
514 	}
515 
516 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
517 		slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id);
518 	}
519 
520 out:
521 	write_unlock_bh(&bond->lock);
522 }
523 
524 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
525 {
526 	struct vlan_entry *vlan;
527 	struct net_device *vlan_dev;
528 
529 	write_lock_bh(&bond->lock);
530 
531 	if (list_empty(&bond->vlan_list)) {
532 		goto out;
533 	}
534 
535 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
536 	    !(slave_dev->vlan_rx_kill_vid)) {
537 		goto unreg;
538 	}
539 
540 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
541 		/* Save and then restore vlan_dev in the grp array,
542 		 * since the slave's driver might clear it.
543 		 */
544 		vlan_dev = bond->vlgrp->vlan_devices[vlan->vlan_id];
545 		slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
546 		bond->vlgrp->vlan_devices[vlan->vlan_id] = vlan_dev;
547 	}
548 
549 unreg:
550 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
551 	    slave_dev->vlan_rx_register) {
552 		slave_dev->vlan_rx_register(slave_dev, NULL);
553 	}
554 
555 out:
556 	write_unlock_bh(&bond->lock);
557 }
558 
559 /*------------------------------- Link status -------------------------------*/
560 
561 /*
562  * Set the carrier state for the master according to the state of its
563  * slaves.  If any slaves are up, the master is up.  In 802.3ad mode,
564  * do special 802.3ad magic.
565  *
566  * Returns zero if carrier state does not change, nonzero if it does.
567  */
568 static int bond_set_carrier(struct bonding *bond)
569 {
570 	struct slave *slave;
571 	int i;
572 
573 	if (bond->slave_cnt == 0)
574 		goto down;
575 
576 	if (bond->params.mode == BOND_MODE_8023AD)
577 		return bond_3ad_set_carrier(bond);
578 
579 	bond_for_each_slave(bond, slave, i) {
580 		if (slave->link == BOND_LINK_UP) {
581 			if (!netif_carrier_ok(bond->dev)) {
582 				netif_carrier_on(bond->dev);
583 				return 1;
584 			}
585 			return 0;
586 		}
587 	}
588 
589 down:
590 	if (netif_carrier_ok(bond->dev)) {
591 		netif_carrier_off(bond->dev);
592 		return 1;
593 	}
594 	return 0;
595 }
596 
597 /*
598  * Get link speed and duplex from the slave's base driver
599  * using ethtool. If for some reason the call fails or the
600  * values are invalid, fake speed and duplex to 100/Full
601  * and return error.
602  */
603 static int bond_update_speed_duplex(struct slave *slave)
604 {
605 	struct net_device *slave_dev = slave->dev;
606 	static int (* ioctl)(struct net_device *, struct ifreq *, int);
607 	struct ifreq ifr;
608 	struct ethtool_cmd etool;
609 
610 	/* Fake speed and duplex */
611 	slave->speed = SPEED_100;
612 	slave->duplex = DUPLEX_FULL;
613 
614 	if (slave_dev->ethtool_ops) {
615 		int res;
616 
617 		if (!slave_dev->ethtool_ops->get_settings) {
618 			return -1;
619 		}
620 
621 		res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
622 		if (res < 0) {
623 			return -1;
624 		}
625 
626 		goto verify;
627 	}
628 
629 	ioctl = slave_dev->do_ioctl;
630 	strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
631 	etool.cmd = ETHTOOL_GSET;
632 	ifr.ifr_data = (char*)&etool;
633 	if (!ioctl || (IOCTL(slave_dev, &ifr, SIOCETHTOOL) < 0)) {
634 		return -1;
635 	}
636 
637 verify:
638 	switch (etool.speed) {
639 	case SPEED_10:
640 	case SPEED_100:
641 	case SPEED_1000:
642 		break;
643 	default:
644 		return -1;
645 	}
646 
647 	switch (etool.duplex) {
648 	case DUPLEX_FULL:
649 	case DUPLEX_HALF:
650 		break;
651 	default:
652 		return -1;
653 	}
654 
655 	slave->speed = etool.speed;
656 	slave->duplex = etool.duplex;
657 
658 	return 0;
659 }
660 
661 /*
662  * if <dev> supports MII link status reporting, check its link status.
663  *
664  * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
665  * depening upon the setting of the use_carrier parameter.
666  *
667  * Return either BMSR_LSTATUS, meaning that the link is up (or we
668  * can't tell and just pretend it is), or 0, meaning that the link is
669  * down.
670  *
671  * If reporting is non-zero, instead of faking link up, return -1 if
672  * both ETHTOOL and MII ioctls fail (meaning the device does not
673  * support them).  If use_carrier is set, return whatever it says.
674  * It'd be nice if there was a good way to tell if a driver supports
675  * netif_carrier, but there really isn't.
676  */
677 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
678 {
679 	static int (* ioctl)(struct net_device *, struct ifreq *, int);
680 	struct ifreq ifr;
681 	struct mii_ioctl_data *mii;
682 	struct ethtool_value etool;
683 
684 	if (bond->params.use_carrier) {
685 		return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
686 	}
687 
688 	ioctl = slave_dev->do_ioctl;
689 	if (ioctl) {
690 		/* TODO: set pointer to correct ioctl on a per team member */
691 		/*       bases to make this more efficient. that is, once  */
692 		/*       we determine the correct ioctl, we will always    */
693 		/*       call it and not the others for that team          */
694 		/*       member.                                           */
695 
696 		/*
697 		 * We cannot assume that SIOCGMIIPHY will also read a
698 		 * register; not all network drivers (e.g., e100)
699 		 * support that.
700 		 */
701 
702 		/* Yes, the mii is overlaid on the ifreq.ifr_ifru */
703 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
704 		mii = if_mii(&ifr);
705 		if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
706 			mii->reg_num = MII_BMSR;
707 			if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
708 				return (mii->val_out & BMSR_LSTATUS);
709 			}
710 		}
711 	}
712 
713 	/* try SIOCETHTOOL ioctl, some drivers cache ETHTOOL_GLINK */
714 	/* for a period of time so we attempt to get link status   */
715 	/* from it last if the above MII ioctls fail...            */
716 	if (slave_dev->ethtool_ops) {
717 		if (slave_dev->ethtool_ops->get_link) {
718 			u32 link;
719 
720 			link = slave_dev->ethtool_ops->get_link(slave_dev);
721 
722 			return link ? BMSR_LSTATUS : 0;
723 		}
724 	}
725 
726 	if (ioctl) {
727 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
728 		etool.cmd = ETHTOOL_GLINK;
729 		ifr.ifr_data = (char*)&etool;
730 		if (IOCTL(slave_dev, &ifr, SIOCETHTOOL) == 0) {
731 			if (etool.data == 1) {
732 				return BMSR_LSTATUS;
733 			} else {
734 				dprintk("SIOCETHTOOL shows link down\n");
735 				return 0;
736 			}
737 		}
738 	}
739 
740 	/*
741 	 * If reporting, report that either there's no dev->do_ioctl,
742 	 * or both SIOCGMIIREG and SIOCETHTOOL failed (meaning that we
743 	 * cannot report link status).  If not reporting, pretend
744 	 * we're ok.
745 	 */
746 	return (reporting ? -1 : BMSR_LSTATUS);
747 }
748 
749 /*----------------------------- Multicast list ------------------------------*/
750 
751 /*
752  * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
753  */
754 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
755 {
756 	return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
757 			dmi1->dmi_addrlen == dmi2->dmi_addrlen;
758 }
759 
760 /*
761  * returns dmi entry if found, NULL otherwise
762  */
763 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
764 {
765 	struct dev_mc_list *idmi;
766 
767 	for (idmi = mc_list; idmi; idmi = idmi->next) {
768 		if (bond_is_dmi_same(dmi, idmi)) {
769 			return idmi;
770 		}
771 	}
772 
773 	return NULL;
774 }
775 
776 /*
777  * Push the promiscuity flag down to appropriate slaves
778  */
779 static void bond_set_promiscuity(struct bonding *bond, int inc)
780 {
781 	if (USES_PRIMARY(bond->params.mode)) {
782 		/* write lock already acquired */
783 		if (bond->curr_active_slave) {
784 			dev_set_promiscuity(bond->curr_active_slave->dev, inc);
785 		}
786 	} else {
787 		struct slave *slave;
788 		int i;
789 		bond_for_each_slave(bond, slave, i) {
790 			dev_set_promiscuity(slave->dev, inc);
791 		}
792 	}
793 }
794 
795 /*
796  * Push the allmulti flag down to all slaves
797  */
798 static void bond_set_allmulti(struct bonding *bond, int inc)
799 {
800 	if (USES_PRIMARY(bond->params.mode)) {
801 		/* write lock already acquired */
802 		if (bond->curr_active_slave) {
803 			dev_set_allmulti(bond->curr_active_slave->dev, inc);
804 		}
805 	} else {
806 		struct slave *slave;
807 		int i;
808 		bond_for_each_slave(bond, slave, i) {
809 			dev_set_allmulti(slave->dev, inc);
810 		}
811 	}
812 }
813 
814 /*
815  * Add a Multicast address to slaves
816  * according to mode
817  */
818 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
819 {
820 	if (USES_PRIMARY(bond->params.mode)) {
821 		/* write lock already acquired */
822 		if (bond->curr_active_slave) {
823 			dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
824 		}
825 	} else {
826 		struct slave *slave;
827 		int i;
828 		bond_for_each_slave(bond, slave, i) {
829 			dev_mc_add(slave->dev, addr, alen, 0);
830 		}
831 	}
832 }
833 
834 /*
835  * Remove a multicast address from slave
836  * according to mode
837  */
838 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
839 {
840 	if (USES_PRIMARY(bond->params.mode)) {
841 		/* write lock already acquired */
842 		if (bond->curr_active_slave) {
843 			dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
844 		}
845 	} else {
846 		struct slave *slave;
847 		int i;
848 		bond_for_each_slave(bond, slave, i) {
849 			dev_mc_delete(slave->dev, addr, alen, 0);
850 		}
851 	}
852 }
853 
854 /*
855  * Totally destroys the mc_list in bond
856  */
857 static void bond_mc_list_destroy(struct bonding *bond)
858 {
859 	struct dev_mc_list *dmi;
860 
861 	dmi = bond->mc_list;
862 	while (dmi) {
863 		bond->mc_list = dmi->next;
864 		kfree(dmi);
865 		dmi = bond->mc_list;
866 	}
867 }
868 
869 /*
870  * Copy all the Multicast addresses from src to the bonding device dst
871  */
872 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
873 			     gfp_t gfp_flag)
874 {
875 	struct dev_mc_list *dmi, *new_dmi;
876 
877 	for (dmi = mc_list; dmi; dmi = dmi->next) {
878 		new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
879 
880 		if (!new_dmi) {
881 			/* FIXME: Potential memory leak !!! */
882 			return -ENOMEM;
883 		}
884 
885 		new_dmi->next = bond->mc_list;
886 		bond->mc_list = new_dmi;
887 		new_dmi->dmi_addrlen = dmi->dmi_addrlen;
888 		memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
889 		new_dmi->dmi_users = dmi->dmi_users;
890 		new_dmi->dmi_gusers = dmi->dmi_gusers;
891 	}
892 
893 	return 0;
894 }
895 
896 /*
897  * flush all members of flush->mc_list from device dev->mc_list
898  */
899 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
900 {
901 	struct bonding *bond = bond_dev->priv;
902 	struct dev_mc_list *dmi;
903 
904 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
905 		dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
906 	}
907 
908 	if (bond->params.mode == BOND_MODE_8023AD) {
909 		/* del lacpdu mc addr from mc list */
910 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
911 
912 		dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
913 	}
914 }
915 
916 /*--------------------------- Active slave change ---------------------------*/
917 
918 /*
919  * Update the mc list and multicast-related flags for the new and
920  * old active slaves (if any) according to the multicast mode, and
921  * promiscuous flags unconditionally.
922  */
923 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
924 {
925 	struct dev_mc_list *dmi;
926 
927 	if (!USES_PRIMARY(bond->params.mode)) {
928 		/* nothing to do -  mc list is already up-to-date on
929 		 * all slaves
930 		 */
931 		return;
932 	}
933 
934 	if (old_active) {
935 		if (bond->dev->flags & IFF_PROMISC) {
936 			dev_set_promiscuity(old_active->dev, -1);
937 		}
938 
939 		if (bond->dev->flags & IFF_ALLMULTI) {
940 			dev_set_allmulti(old_active->dev, -1);
941 		}
942 
943 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
944 			dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
945 		}
946 	}
947 
948 	if (new_active) {
949 		if (bond->dev->flags & IFF_PROMISC) {
950 			dev_set_promiscuity(new_active->dev, 1);
951 		}
952 
953 		if (bond->dev->flags & IFF_ALLMULTI) {
954 			dev_set_allmulti(new_active->dev, 1);
955 		}
956 
957 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
958 			dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
959 		}
960 	}
961 }
962 
963 /**
964  * find_best_interface - select the best available slave to be the active one
965  * @bond: our bonding struct
966  *
967  * Warning: Caller must hold curr_slave_lock for writing.
968  */
969 static struct slave *bond_find_best_slave(struct bonding *bond)
970 {
971 	struct slave *new_active, *old_active;
972 	struct slave *bestslave = NULL;
973 	int mintime = bond->params.updelay;
974 	int i;
975 
976 	new_active = old_active = bond->curr_active_slave;
977 
978 	if (!new_active) { /* there were no active slaves left */
979 		if (bond->slave_cnt > 0) {  /* found one slave */
980 			new_active = bond->first_slave;
981 		} else {
982 			return NULL; /* still no slave, return NULL */
983 		}
984 	}
985 
986 	/* first try the primary link; if arping, a link must tx/rx traffic
987 	 * before it can be considered the curr_active_slave - also, we would skip
988 	 * slaves between the curr_active_slave and primary_slave that may be up
989 	 * and able to arp
990 	 */
991 	if ((bond->primary_slave) &&
992 	    (!bond->params.arp_interval) &&
993 	    (IS_UP(bond->primary_slave->dev))) {
994 		new_active = bond->primary_slave;
995 	}
996 
997 	/* remember where to stop iterating over the slaves */
998 	old_active = new_active;
999 
1000 	bond_for_each_slave_from(bond, new_active, i, old_active) {
1001 		if (IS_UP(new_active->dev)) {
1002 			if (new_active->link == BOND_LINK_UP) {
1003 				return new_active;
1004 			} else if (new_active->link == BOND_LINK_BACK) {
1005 				/* link up, but waiting for stabilization */
1006 				if (new_active->delay < mintime) {
1007 					mintime = new_active->delay;
1008 					bestslave = new_active;
1009 				}
1010 			}
1011 		}
1012 	}
1013 
1014 	return bestslave;
1015 }
1016 
1017 /**
1018  * change_active_interface - change the active slave into the specified one
1019  * @bond: our bonding struct
1020  * @new: the new slave to make the active one
1021  *
1022  * Set the new slave to the bond's settings and unset them on the old
1023  * curr_active_slave.
1024  * Setting include flags, mc-list, promiscuity, allmulti, etc.
1025  *
1026  * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1027  * because it is apparently the best available slave we have, even though its
1028  * updelay hasn't timed out yet.
1029  *
1030  * Warning: Caller must hold curr_slave_lock for writing.
1031  */
1032 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1033 {
1034 	struct slave *old_active = bond->curr_active_slave;
1035 
1036 	if (old_active == new_active) {
1037 		return;
1038 	}
1039 
1040 	if (new_active) {
1041 		if (new_active->link == BOND_LINK_BACK) {
1042 			if (USES_PRIMARY(bond->params.mode)) {
1043 				printk(KERN_INFO DRV_NAME
1044 				       ": %s: making interface %s the new "
1045 				       "active one %d ms earlier.\n",
1046 				       bond->dev->name, new_active->dev->name,
1047 				       (bond->params.updelay - new_active->delay) * bond->params.miimon);
1048 			}
1049 
1050 			new_active->delay = 0;
1051 			new_active->link = BOND_LINK_UP;
1052 			new_active->jiffies = jiffies;
1053 
1054 			if (bond->params.mode == BOND_MODE_8023AD) {
1055 				bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1056 			}
1057 
1058 			if ((bond->params.mode == BOND_MODE_TLB) ||
1059 			    (bond->params.mode == BOND_MODE_ALB)) {
1060 				bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1061 			}
1062 		} else {
1063 			if (USES_PRIMARY(bond->params.mode)) {
1064 				printk(KERN_INFO DRV_NAME
1065 				       ": %s: making interface %s the new "
1066 				       "active one.\n",
1067 				       bond->dev->name, new_active->dev->name);
1068 			}
1069 		}
1070 	}
1071 
1072 	if (USES_PRIMARY(bond->params.mode)) {
1073 		bond_mc_swap(bond, new_active, old_active);
1074 	}
1075 
1076 	if ((bond->params.mode == BOND_MODE_TLB) ||
1077 	    (bond->params.mode == BOND_MODE_ALB)) {
1078 		bond_alb_handle_active_change(bond, new_active);
1079 		if (old_active)
1080 			bond_set_slave_inactive_flags(old_active);
1081 		if (new_active)
1082 			bond_set_slave_active_flags(new_active);
1083 	} else {
1084 		bond->curr_active_slave = new_active;
1085 	}
1086 
1087 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1088 		if (old_active) {
1089 			bond_set_slave_inactive_flags(old_active);
1090 		}
1091 
1092 		if (new_active) {
1093 			bond_set_slave_active_flags(new_active);
1094 		}
1095 		bond_send_gratuitous_arp(bond);
1096 	}
1097 }
1098 
1099 /**
1100  * bond_select_active_slave - select a new active slave, if needed
1101  * @bond: our bonding struct
1102  *
1103  * This functions shoud be called when one of the following occurs:
1104  * - The old curr_active_slave has been released or lost its link.
1105  * - The primary_slave has got its link back.
1106  * - A slave has got its link back and there's no old curr_active_slave.
1107  *
1108  * Warning: Caller must hold curr_slave_lock for writing.
1109  */
1110 void bond_select_active_slave(struct bonding *bond)
1111 {
1112 	struct slave *best_slave;
1113 	int rv;
1114 
1115 	best_slave = bond_find_best_slave(bond);
1116 	if (best_slave != bond->curr_active_slave) {
1117 		bond_change_active_slave(bond, best_slave);
1118 		rv = bond_set_carrier(bond);
1119 		if (!rv)
1120 			return;
1121 
1122 		if (netif_carrier_ok(bond->dev)) {
1123 			printk(KERN_INFO DRV_NAME
1124 			       ": %s: first active interface up!\n",
1125 			       bond->dev->name);
1126 		} else {
1127 			printk(KERN_INFO DRV_NAME ": %s: "
1128 			       "now running without any active interface !\n",
1129 			       bond->dev->name);
1130 		}
1131 	}
1132 }
1133 
1134 /*--------------------------- slave list handling ---------------------------*/
1135 
1136 /*
1137  * This function attaches the slave to the end of list.
1138  *
1139  * bond->lock held for writing by caller.
1140  */
1141 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1142 {
1143 	if (bond->first_slave == NULL) { /* attaching the first slave */
1144 		new_slave->next = new_slave;
1145 		new_slave->prev = new_slave;
1146 		bond->first_slave = new_slave;
1147 	} else {
1148 		new_slave->next = bond->first_slave;
1149 		new_slave->prev = bond->first_slave->prev;
1150 		new_slave->next->prev = new_slave;
1151 		new_slave->prev->next = new_slave;
1152 	}
1153 
1154 	bond->slave_cnt++;
1155 }
1156 
1157 /*
1158  * This function detaches the slave from the list.
1159  * WARNING: no check is made to verify if the slave effectively
1160  * belongs to <bond>.
1161  * Nothing is freed on return, structures are just unchained.
1162  * If any slave pointer in bond was pointing to <slave>,
1163  * it should be changed by the calling function.
1164  *
1165  * bond->lock held for writing by caller.
1166  */
1167 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1168 {
1169 	if (slave->next) {
1170 		slave->next->prev = slave->prev;
1171 	}
1172 
1173 	if (slave->prev) {
1174 		slave->prev->next = slave->next;
1175 	}
1176 
1177 	if (bond->first_slave == slave) { /* slave is the first slave */
1178 		if (bond->slave_cnt > 1) { /* there are more slave */
1179 			bond->first_slave = slave->next;
1180 		} else {
1181 			bond->first_slave = NULL; /* slave was the last one */
1182 		}
1183 	}
1184 
1185 	slave->next = NULL;
1186 	slave->prev = NULL;
1187 	bond->slave_cnt--;
1188 }
1189 
1190 /*---------------------------------- IOCTL ----------------------------------*/
1191 
1192 int bond_sethwaddr(struct net_device *bond_dev, struct net_device *slave_dev)
1193 {
1194 	dprintk("bond_dev=%p\n", bond_dev);
1195 	dprintk("slave_dev=%p\n", slave_dev);
1196 	dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1197 	memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1198 	return 0;
1199 }
1200 
1201 #define BOND_INTERSECT_FEATURES \
1202 	(NETIF_F_SG|NETIF_F_IP_CSUM|NETIF_F_NO_CSUM|NETIF_F_HW_CSUM|\
1203 	NETIF_F_TSO|NETIF_F_UFO)
1204 
1205 /*
1206  * Compute the common dev->feature set available to all slaves.  Some
1207  * feature bits are managed elsewhere, so preserve feature bits set on
1208  * master device that are not part of the examined set.
1209  */
1210 static int bond_compute_features(struct bonding *bond)
1211 {
1212 	unsigned long features = BOND_INTERSECT_FEATURES;
1213 	struct slave *slave;
1214 	struct net_device *bond_dev = bond->dev;
1215 	int i;
1216 
1217 	bond_for_each_slave(bond, slave, i)
1218 		features &= (slave->dev->features & BOND_INTERSECT_FEATURES);
1219 
1220 	if ((features & NETIF_F_SG) &&
1221 	    !(features & (NETIF_F_IP_CSUM |
1222 			  NETIF_F_NO_CSUM |
1223 			  NETIF_F_HW_CSUM)))
1224 		features &= ~NETIF_F_SG;
1225 
1226 	/*
1227 	 * features will include NETIF_F_TSO (NETIF_F_UFO) iff all
1228 	 * slave devices support NETIF_F_TSO (NETIF_F_UFO), which
1229 	 * implies that all slaves also support scatter-gather
1230 	 * (NETIF_F_SG), which implies that features also includes
1231 	 * NETIF_F_SG. So no need to check whether we have an
1232 	 * illegal combination of NETIF_F_{TSO,UFO} and
1233 	 * !NETIF_F_SG
1234 	 */
1235 
1236 	features |= (bond_dev->features & ~BOND_INTERSECT_FEATURES);
1237 	bond_dev->features = features;
1238 
1239 	return 0;
1240 }
1241 
1242 /* enslave device <slave> to bond device <master> */
1243 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1244 {
1245 	struct bonding *bond = bond_dev->priv;
1246 	struct slave *new_slave = NULL;
1247 	struct dev_mc_list *dmi;
1248 	struct sockaddr addr;
1249 	int link_reporting;
1250 	int old_features = bond_dev->features;
1251 	int res = 0;
1252 
1253 	if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1254 		slave_dev->do_ioctl == NULL) {
1255 		printk(KERN_WARNING DRV_NAME
1256 		       ": %s: Warning: no link monitoring support for %s\n",
1257 		       bond_dev->name, slave_dev->name);
1258 	}
1259 
1260 	/* bond must be initialized by bond_open() before enslaving */
1261 	if (!(bond_dev->flags & IFF_UP)) {
1262 		dprintk("Error, master_dev is not up\n");
1263 		return -EPERM;
1264 	}
1265 
1266 	/* already enslaved */
1267 	if (slave_dev->flags & IFF_SLAVE) {
1268 		dprintk("Error, Device was already enslaved\n");
1269 		return -EBUSY;
1270 	}
1271 
1272 	/* vlan challenged mutual exclusion */
1273 	/* no need to lock since we're protected by rtnl_lock */
1274 	if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1275 		dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1276 		if (!list_empty(&bond->vlan_list)) {
1277 			printk(KERN_ERR DRV_NAME
1278 			       ": %s: Error: cannot enslave VLAN "
1279 			       "challenged slave %s on VLAN enabled "
1280 			       "bond %s\n", bond_dev->name, slave_dev->name,
1281 			       bond_dev->name);
1282 			return -EPERM;
1283 		} else {
1284 			printk(KERN_WARNING DRV_NAME
1285 			       ": %s: Warning: enslaved VLAN challenged "
1286 			       "slave %s. Adding VLANs will be blocked as "
1287 			       "long as %s is part of bond %s\n",
1288 			       bond_dev->name, slave_dev->name, slave_dev->name,
1289 			       bond_dev->name);
1290 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1291 		}
1292 	} else {
1293 		dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1294 		if (bond->slave_cnt == 0) {
1295 			/* First slave, and it is not VLAN challenged,
1296 			 * so remove the block of adding VLANs over the bond.
1297 			 */
1298 			bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1299 		}
1300 	}
1301 
1302 	/*
1303 	 * Old ifenslave binaries are no longer supported.  These can
1304 	 * be identified with moderate accurary by the state of the slave:
1305 	 * the current ifenslave will set the interface down prior to
1306 	 * enslaving it; the old ifenslave will not.
1307 	 */
1308 	if ((slave_dev->flags & IFF_UP)) {
1309 		printk(KERN_ERR DRV_NAME ": %s is up. "
1310 		       "This may be due to an out of date ifenslave.\n",
1311 		       slave_dev->name);
1312 		res = -EPERM;
1313 		goto err_undo_flags;
1314 	}
1315 
1316 	if (slave_dev->set_mac_address == NULL) {
1317 		printk(KERN_ERR DRV_NAME
1318 			": %s: Error: The slave device you specified does "
1319 			"not support setting the MAC address. "
1320 			"Your kernel likely does not support slave "
1321 			"devices.\n", bond_dev->name);
1322   		res = -EOPNOTSUPP;
1323 		goto err_undo_flags;
1324 	}
1325 
1326 	new_slave = kmalloc(sizeof(struct slave), GFP_KERNEL);
1327 	if (!new_slave) {
1328 		res = -ENOMEM;
1329 		goto err_undo_flags;
1330 	}
1331 
1332 	memset(new_slave, 0, sizeof(struct slave));
1333 
1334 	/* save slave's original flags before calling
1335 	 * netdev_set_master and dev_open
1336 	 */
1337 	new_slave->original_flags = slave_dev->flags;
1338 
1339 	/*
1340 	 * Save slave's original ("permanent") mac address for modes
1341 	 * that need it, and for restoring it upon release, and then
1342 	 * set it to the master's address
1343 	 */
1344 	memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1345 
1346 	/*
1347 	 * Set slave to master's mac address.  The application already
1348 	 * set the master's mac address to that of the first slave
1349 	 */
1350 	memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1351 	addr.sa_family = slave_dev->type;
1352 	res = dev_set_mac_address(slave_dev, &addr);
1353 	if (res) {
1354 		dprintk("Error %d calling set_mac_address\n", res);
1355 		goto err_free;
1356 	}
1357 
1358 	/* open the slave since the application closed it */
1359 	res = dev_open(slave_dev);
1360 	if (res) {
1361 		dprintk("Openning slave %s failed\n", slave_dev->name);
1362 		goto err_restore_mac;
1363 	}
1364 
1365 	res = netdev_set_master(slave_dev, bond_dev);
1366 	if (res) {
1367 		dprintk("Error %d calling netdev_set_master\n", res);
1368 		goto err_close;
1369 	}
1370 
1371 	new_slave->dev = slave_dev;
1372 
1373 	if ((bond->params.mode == BOND_MODE_TLB) ||
1374 	    (bond->params.mode == BOND_MODE_ALB)) {
1375 		/* bond_alb_init_slave() must be called before all other stages since
1376 		 * it might fail and we do not want to have to undo everything
1377 		 */
1378 		res = bond_alb_init_slave(bond, new_slave);
1379 		if (res) {
1380 			goto err_unset_master;
1381 		}
1382 	}
1383 
1384 	/* If the mode USES_PRIMARY, then the new slave gets the
1385 	 * master's promisc (and mc) settings only if it becomes the
1386 	 * curr_active_slave, and that is taken care of later when calling
1387 	 * bond_change_active()
1388 	 */
1389 	if (!USES_PRIMARY(bond->params.mode)) {
1390 		/* set promiscuity level to new slave */
1391 		if (bond_dev->flags & IFF_PROMISC) {
1392 			dev_set_promiscuity(slave_dev, 1);
1393 		}
1394 
1395 		/* set allmulti level to new slave */
1396 		if (bond_dev->flags & IFF_ALLMULTI) {
1397 			dev_set_allmulti(slave_dev, 1);
1398 		}
1399 
1400 		/* upload master's mc_list to new slave */
1401 		for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1402 			dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1403 		}
1404 	}
1405 
1406 	if (bond->params.mode == BOND_MODE_8023AD) {
1407 		/* add lacpdu mc addr to mc list */
1408 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1409 
1410 		dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1411 	}
1412 
1413 	bond_add_vlans_on_slave(bond, slave_dev);
1414 
1415 	write_lock_bh(&bond->lock);
1416 
1417 	bond_attach_slave(bond, new_slave);
1418 
1419 	new_slave->delay = 0;
1420 	new_slave->link_failure_count = 0;
1421 
1422 	bond_compute_features(bond);
1423 
1424 	if (bond->params.miimon && !bond->params.use_carrier) {
1425 		link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1426 
1427 		if ((link_reporting == -1) && !bond->params.arp_interval) {
1428 			/*
1429 			 * miimon is set but a bonded network driver
1430 			 * does not support ETHTOOL/MII and
1431 			 * arp_interval is not set.  Note: if
1432 			 * use_carrier is enabled, we will never go
1433 			 * here (because netif_carrier is always
1434 			 * supported); thus, we don't need to change
1435 			 * the messages for netif_carrier.
1436 			 */
1437 			printk(KERN_WARNING DRV_NAME
1438 			       ": %s: Warning: MII and ETHTOOL support not "
1439 			       "available for interface %s, and "
1440 			       "arp_interval/arp_ip_target module parameters "
1441 			       "not specified, thus bonding will not detect "
1442 			       "link failures! see bonding.txt for details.\n",
1443 			       bond_dev->name, slave_dev->name);
1444 		} else if (link_reporting == -1) {
1445 			/* unable get link status using mii/ethtool */
1446 			printk(KERN_WARNING DRV_NAME
1447 			       ": %s: Warning: can't get link status from "
1448 			       "interface %s; the network driver associated "
1449 			       "with this interface does not support MII or "
1450 			       "ETHTOOL link status reporting, thus miimon "
1451 			       "has no effect on this interface.\n",
1452 			       bond_dev->name, slave_dev->name);
1453 		}
1454 	}
1455 
1456 	/* check for initial state */
1457 	if (!bond->params.miimon ||
1458 	    (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1459 		if (bond->params.updelay) {
1460 			dprintk("Initial state of slave_dev is "
1461 				"BOND_LINK_BACK\n");
1462 			new_slave->link  = BOND_LINK_BACK;
1463 			new_slave->delay = bond->params.updelay;
1464 		} else {
1465 			dprintk("Initial state of slave_dev is "
1466 				"BOND_LINK_UP\n");
1467 			new_slave->link  = BOND_LINK_UP;
1468 		}
1469 		new_slave->jiffies = jiffies;
1470 	} else {
1471 		dprintk("Initial state of slave_dev is "
1472 			"BOND_LINK_DOWN\n");
1473 		new_slave->link  = BOND_LINK_DOWN;
1474 	}
1475 
1476 	if (bond_update_speed_duplex(new_slave) &&
1477 	    (new_slave->link != BOND_LINK_DOWN)) {
1478 		printk(KERN_WARNING DRV_NAME
1479 		       ": %s: Warning: failed to get speed and duplex from %s, "
1480 		       "assumed to be 100Mb/sec and Full.\n",
1481 		       bond_dev->name, new_slave->dev->name);
1482 
1483 		if (bond->params.mode == BOND_MODE_8023AD) {
1484 			printk(KERN_WARNING DRV_NAME
1485 			       ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1486 			       "support in base driver for proper aggregator "
1487 			       "selection.\n", bond_dev->name);
1488 		}
1489 	}
1490 
1491 	if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1492 		/* if there is a primary slave, remember it */
1493 		if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1494 			bond->primary_slave = new_slave;
1495 		}
1496 	}
1497 
1498 	switch (bond->params.mode) {
1499 	case BOND_MODE_ACTIVEBACKUP:
1500 		/* if we're in active-backup mode, we need one and
1501 		 * only one active interface. The backup interfaces
1502 		 * will have their SLAVE_INACTIVE flag set because we
1503 		 * need them to be drop all packets. Thus, since we
1504 		 * guarantee that curr_active_slave always point to
1505 		 * the last usable interface, we just have to verify
1506 		 * this interface's flag.
1507 		 */
1508 		if (((!bond->curr_active_slave) ||
1509 		     (bond->curr_active_slave->dev->priv_flags & IFF_SLAVE_INACTIVE)) &&
1510 		    (new_slave->link != BOND_LINK_DOWN)) {
1511 			/* first slave or no active slave yet, and this link
1512 			   is OK, so make this interface the active one */
1513 			bond_change_active_slave(bond, new_slave);
1514 			printk(KERN_INFO DRV_NAME
1515 			       ": %s: first active interface up!\n",
1516 			       bond->dev->name);
1517 			netif_carrier_on(bond->dev);
1518 
1519 		} else {
1520 			dprintk("This is just a backup slave\n");
1521 			bond_set_slave_inactive_flags(new_slave);
1522 		}
1523 		break;
1524 	case BOND_MODE_8023AD:
1525 		/* in 802.3ad mode, the internal mechanism
1526 		 * will activate the slaves in the selected
1527 		 * aggregator
1528 		 */
1529 		bond_set_slave_inactive_flags(new_slave);
1530 		/* if this is the first slave */
1531 		if (bond->slave_cnt == 1) {
1532 			SLAVE_AD_INFO(new_slave).id = 1;
1533 			/* Initialize AD with the number of times that the AD timer is called in 1 second
1534 			 * can be called only after the mac address of the bond is set
1535 			 */
1536 			bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1537 					    bond->params.lacp_fast);
1538 		} else {
1539 			SLAVE_AD_INFO(new_slave).id =
1540 				SLAVE_AD_INFO(new_slave->prev).id + 1;
1541 		}
1542 
1543 		bond_3ad_bind_slave(new_slave);
1544 		break;
1545 	case BOND_MODE_TLB:
1546 	case BOND_MODE_ALB:
1547 		new_slave->state = BOND_STATE_ACTIVE;
1548 		if ((!bond->curr_active_slave) &&
1549 		    (new_slave->link != BOND_LINK_DOWN)) {
1550 			/* first slave or no active slave yet, and this link
1551 			 * is OK, so make this interface the active one
1552 			 */
1553 			bond_change_active_slave(bond, new_slave);
1554 		} else {
1555 			bond_set_slave_inactive_flags(new_slave);
1556 		}
1557 		break;
1558 	default:
1559 		dprintk("This slave is always active in trunk mode\n");
1560 
1561 		/* always active in trunk mode */
1562 		new_slave->state = BOND_STATE_ACTIVE;
1563 
1564 		/* In trunking mode there is little meaning to curr_active_slave
1565 		 * anyway (it holds no special properties of the bond device),
1566 		 * so we can change it without calling change_active_interface()
1567 		 */
1568 		if (!bond->curr_active_slave) {
1569 			bond->curr_active_slave = new_slave;
1570 		}
1571 		break;
1572 	} /* switch(bond_mode) */
1573 
1574 	bond_set_carrier(bond);
1575 
1576 	write_unlock_bh(&bond->lock);
1577 
1578 	res = bond_create_slave_symlinks(bond_dev, slave_dev);
1579 	if (res)
1580 		goto err_unset_master;
1581 
1582 	printk(KERN_INFO DRV_NAME
1583 	       ": %s: enslaving %s as a%s interface with a%s link.\n",
1584 	       bond_dev->name, slave_dev->name,
1585 	       new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1586 	       new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1587 
1588 	/* enslave is successful */
1589 	return 0;
1590 
1591 /* Undo stages on error */
1592 err_unset_master:
1593 	netdev_set_master(slave_dev, NULL);
1594 
1595 err_close:
1596 	dev_close(slave_dev);
1597 
1598 err_restore_mac:
1599 	memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1600 	addr.sa_family = slave_dev->type;
1601 	dev_set_mac_address(slave_dev, &addr);
1602 
1603 err_free:
1604 	kfree(new_slave);
1605 
1606 err_undo_flags:
1607 	bond_dev->features = old_features;
1608 
1609 	return res;
1610 }
1611 
1612 /*
1613  * Try to release the slave device <slave> from the bond device <master>
1614  * It is legal to access curr_active_slave without a lock because all the function
1615  * is write-locked.
1616  *
1617  * The rules for slave state should be:
1618  *   for Active/Backup:
1619  *     Active stays on all backups go down
1620  *   for Bonded connections:
1621  *     The first up interface should be left on and all others downed.
1622  */
1623 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1624 {
1625 	struct bonding *bond = bond_dev->priv;
1626 	struct slave *slave, *oldcurrent;
1627 	struct sockaddr addr;
1628 	int mac_addr_differ;
1629 
1630 	/* slave is not a slave or master is not master of this slave */
1631 	if (!(slave_dev->flags & IFF_SLAVE) ||
1632 	    (slave_dev->master != bond_dev)) {
1633 		printk(KERN_ERR DRV_NAME
1634 		       ": %s: Error: cannot release %s.\n",
1635 		       bond_dev->name, slave_dev->name);
1636 		return -EINVAL;
1637 	}
1638 
1639 	write_lock_bh(&bond->lock);
1640 
1641 	slave = bond_get_slave_by_dev(bond, slave_dev);
1642 	if (!slave) {
1643 		/* not a slave of this bond */
1644 		printk(KERN_INFO DRV_NAME
1645 		       ": %s: %s not enslaved\n",
1646 		       bond_dev->name, slave_dev->name);
1647 		write_unlock_bh(&bond->lock);
1648 		return -EINVAL;
1649 	}
1650 
1651 	mac_addr_differ = memcmp(bond_dev->dev_addr,
1652 				 slave->perm_hwaddr,
1653 				 ETH_ALEN);
1654 	if (!mac_addr_differ && (bond->slave_cnt > 1)) {
1655 		printk(KERN_WARNING DRV_NAME
1656 		       ": %s: Warning: the permanent HWaddr of %s "
1657 		       "- %02X:%02X:%02X:%02X:%02X:%02X - is "
1658 		       "still in use by %s. Set the HWaddr of "
1659 		       "%s to a different address to avoid "
1660 		       "conflicts.\n",
1661 		       bond_dev->name,
1662 		       slave_dev->name,
1663 		       slave->perm_hwaddr[0],
1664 		       slave->perm_hwaddr[1],
1665 		       slave->perm_hwaddr[2],
1666 		       slave->perm_hwaddr[3],
1667 		       slave->perm_hwaddr[4],
1668 		       slave->perm_hwaddr[5],
1669 		       bond_dev->name,
1670 		       slave_dev->name);
1671 	}
1672 
1673 	/* Inform AD package of unbinding of slave. */
1674 	if (bond->params.mode == BOND_MODE_8023AD) {
1675 		/* must be called before the slave is
1676 		 * detached from the list
1677 		 */
1678 		bond_3ad_unbind_slave(slave);
1679 	}
1680 
1681 	printk(KERN_INFO DRV_NAME
1682 	       ": %s: releasing %s interface %s\n",
1683 	       bond_dev->name,
1684 	       (slave->state == BOND_STATE_ACTIVE)
1685 	       ? "active" : "backup",
1686 	       slave_dev->name);
1687 
1688 	oldcurrent = bond->curr_active_slave;
1689 
1690 	bond->current_arp_slave = NULL;
1691 
1692 	/* release the slave from its bond */
1693 	bond_detach_slave(bond, slave);
1694 
1695 	bond_compute_features(bond);
1696 
1697 	if (bond->primary_slave == slave) {
1698 		bond->primary_slave = NULL;
1699 	}
1700 
1701 	if (oldcurrent == slave) {
1702 		bond_change_active_slave(bond, NULL);
1703 	}
1704 
1705 	if ((bond->params.mode == BOND_MODE_TLB) ||
1706 	    (bond->params.mode == BOND_MODE_ALB)) {
1707 		/* Must be called only after the slave has been
1708 		 * detached from the list and the curr_active_slave
1709 		 * has been cleared (if our_slave == old_current),
1710 		 * but before a new active slave is selected.
1711 		 */
1712 		bond_alb_deinit_slave(bond, slave);
1713 	}
1714 
1715 	if (oldcurrent == slave)
1716 		bond_select_active_slave(bond);
1717 
1718 	if (bond->slave_cnt == 0) {
1719 		bond_set_carrier(bond);
1720 
1721 		/* if the last slave was removed, zero the mac address
1722 		 * of the master so it will be set by the application
1723 		 * to the mac address of the first slave
1724 		 */
1725 		memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1726 
1727 		if (list_empty(&bond->vlan_list)) {
1728 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1729 		} else {
1730 			printk(KERN_WARNING DRV_NAME
1731 			       ": %s: Warning: clearing HW address of %s while it "
1732 			       "still has VLANs.\n",
1733 			       bond_dev->name, bond_dev->name);
1734 			printk(KERN_WARNING DRV_NAME
1735 			       ": %s: When re-adding slaves, make sure the bond's "
1736 			       "HW address matches its VLANs'.\n",
1737 			       bond_dev->name);
1738 		}
1739 	} else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1740 		   !bond_has_challenged_slaves(bond)) {
1741 		printk(KERN_INFO DRV_NAME
1742 		       ": %s: last VLAN challenged slave %s "
1743 		       "left bond %s. VLAN blocking is removed\n",
1744 		       bond_dev->name, slave_dev->name, bond_dev->name);
1745 		bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1746 	}
1747 
1748 	write_unlock_bh(&bond->lock);
1749 
1750 	/* must do this from outside any spinlocks */
1751 	bond_destroy_slave_symlinks(bond_dev, slave_dev);
1752 
1753 	bond_del_vlans_from_slave(bond, slave_dev);
1754 
1755 	/* If the mode USES_PRIMARY, then we should only remove its
1756 	 * promisc and mc settings if it was the curr_active_slave, but that was
1757 	 * already taken care of above when we detached the slave
1758 	 */
1759 	if (!USES_PRIMARY(bond->params.mode)) {
1760 		/* unset promiscuity level from slave */
1761 		if (bond_dev->flags & IFF_PROMISC) {
1762 			dev_set_promiscuity(slave_dev, -1);
1763 		}
1764 
1765 		/* unset allmulti level from slave */
1766 		if (bond_dev->flags & IFF_ALLMULTI) {
1767 			dev_set_allmulti(slave_dev, -1);
1768 		}
1769 
1770 		/* flush master's mc_list from slave */
1771 		bond_mc_list_flush(bond_dev, slave_dev);
1772 	}
1773 
1774 	netdev_set_master(slave_dev, NULL);
1775 
1776 	/* close slave before restoring its mac address */
1777 	dev_close(slave_dev);
1778 
1779 	/* restore original ("permanent") mac address */
1780 	memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1781 	addr.sa_family = slave_dev->type;
1782 	dev_set_mac_address(slave_dev, &addr);
1783 
1784 	slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1785 				   IFF_SLAVE_INACTIVE);
1786 
1787 	kfree(slave);
1788 
1789 	return 0;  /* deletion OK */
1790 }
1791 
1792 /*
1793  * This function releases all slaves.
1794  */
1795 static int bond_release_all(struct net_device *bond_dev)
1796 {
1797 	struct bonding *bond = bond_dev->priv;
1798 	struct slave *slave;
1799 	struct net_device *slave_dev;
1800 	struct sockaddr addr;
1801 
1802 	write_lock_bh(&bond->lock);
1803 
1804 	netif_carrier_off(bond_dev);
1805 
1806 	if (bond->slave_cnt == 0) {
1807 		goto out;
1808 	}
1809 
1810 	bond->current_arp_slave = NULL;
1811 	bond->primary_slave = NULL;
1812 	bond_change_active_slave(bond, NULL);
1813 
1814 	while ((slave = bond->first_slave) != NULL) {
1815 		/* Inform AD package of unbinding of slave
1816 		 * before slave is detached from the list.
1817 		 */
1818 		if (bond->params.mode == BOND_MODE_8023AD) {
1819 			bond_3ad_unbind_slave(slave);
1820 		}
1821 
1822 		slave_dev = slave->dev;
1823 		bond_detach_slave(bond, slave);
1824 
1825 		if ((bond->params.mode == BOND_MODE_TLB) ||
1826 		    (bond->params.mode == BOND_MODE_ALB)) {
1827 			/* must be called only after the slave
1828 			 * has been detached from the list
1829 			 */
1830 			bond_alb_deinit_slave(bond, slave);
1831 		}
1832 
1833 		bond_compute_features(bond);
1834 
1835 		/* now that the slave is detached, unlock and perform
1836 		 * all the undo steps that should not be called from
1837 		 * within a lock.
1838 		 */
1839 		write_unlock_bh(&bond->lock);
1840 
1841 		bond_destroy_slave_symlinks(bond_dev, slave_dev);
1842 		bond_del_vlans_from_slave(bond, slave_dev);
1843 
1844 		/* If the mode USES_PRIMARY, then we should only remove its
1845 		 * promisc and mc settings if it was the curr_active_slave, but that was
1846 		 * already taken care of above when we detached the slave
1847 		 */
1848 		if (!USES_PRIMARY(bond->params.mode)) {
1849 			/* unset promiscuity level from slave */
1850 			if (bond_dev->flags & IFF_PROMISC) {
1851 				dev_set_promiscuity(slave_dev, -1);
1852 			}
1853 
1854 			/* unset allmulti level from slave */
1855 			if (bond_dev->flags & IFF_ALLMULTI) {
1856 				dev_set_allmulti(slave_dev, -1);
1857 			}
1858 
1859 			/* flush master's mc_list from slave */
1860 			bond_mc_list_flush(bond_dev, slave_dev);
1861 		}
1862 
1863 		netdev_set_master(slave_dev, NULL);
1864 
1865 		/* close slave before restoring its mac address */
1866 		dev_close(slave_dev);
1867 
1868 		/* restore original ("permanent") mac address*/
1869 		memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1870 		addr.sa_family = slave_dev->type;
1871 		dev_set_mac_address(slave_dev, &addr);
1872 
1873 		slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1874 					   IFF_SLAVE_INACTIVE);
1875 
1876 		kfree(slave);
1877 
1878 		/* re-acquire the lock before getting the next slave */
1879 		write_lock_bh(&bond->lock);
1880 	}
1881 
1882 	/* zero the mac address of the master so it will be
1883 	 * set by the application to the mac address of the
1884 	 * first slave
1885 	 */
1886 	memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1887 
1888 	if (list_empty(&bond->vlan_list)) {
1889 		bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1890 	} else {
1891 		printk(KERN_WARNING DRV_NAME
1892 		       ": %s: Warning: clearing HW address of %s while it "
1893 		       "still has VLANs.\n",
1894 		       bond_dev->name, bond_dev->name);
1895 		printk(KERN_WARNING DRV_NAME
1896 		       ": %s: When re-adding slaves, make sure the bond's "
1897 		       "HW address matches its VLANs'.\n",
1898 		       bond_dev->name);
1899 	}
1900 
1901 	printk(KERN_INFO DRV_NAME
1902 	       ": %s: released all slaves\n",
1903 	       bond_dev->name);
1904 
1905 out:
1906 	write_unlock_bh(&bond->lock);
1907 
1908 	return 0;
1909 }
1910 
1911 /*
1912  * This function changes the active slave to slave <slave_dev>.
1913  * It returns -EINVAL in the following cases.
1914  *  - <slave_dev> is not found in the list.
1915  *  - There is not active slave now.
1916  *  - <slave_dev> is already active.
1917  *  - The link state of <slave_dev> is not BOND_LINK_UP.
1918  *  - <slave_dev> is not running.
1919  * In these cases, this fuction does nothing.
1920  * In the other cases, currnt_slave pointer is changed and 0 is returned.
1921  */
1922 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
1923 {
1924 	struct bonding *bond = bond_dev->priv;
1925 	struct slave *old_active = NULL;
1926 	struct slave *new_active = NULL;
1927 	int res = 0;
1928 
1929 	if (!USES_PRIMARY(bond->params.mode)) {
1930 		return -EINVAL;
1931 	}
1932 
1933 	/* Verify that master_dev is indeed the master of slave_dev */
1934 	if (!(slave_dev->flags & IFF_SLAVE) ||
1935 	    (slave_dev->master != bond_dev)) {
1936 		return -EINVAL;
1937 	}
1938 
1939 	write_lock_bh(&bond->lock);
1940 
1941 	old_active = bond->curr_active_slave;
1942 	new_active = bond_get_slave_by_dev(bond, slave_dev);
1943 
1944 	/*
1945 	 * Changing to the current active: do nothing; return success.
1946 	 */
1947 	if (new_active && (new_active == old_active)) {
1948 		write_unlock_bh(&bond->lock);
1949 		return 0;
1950 	}
1951 
1952 	if ((new_active) &&
1953 	    (old_active) &&
1954 	    (new_active->link == BOND_LINK_UP) &&
1955 	    IS_UP(new_active->dev)) {
1956 		bond_change_active_slave(bond, new_active);
1957 	} else {
1958 		res = -EINVAL;
1959 	}
1960 
1961 	write_unlock_bh(&bond->lock);
1962 
1963 	return res;
1964 }
1965 
1966 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
1967 {
1968 	struct bonding *bond = bond_dev->priv;
1969 
1970 	info->bond_mode = bond->params.mode;
1971 	info->miimon = bond->params.miimon;
1972 
1973 	read_lock_bh(&bond->lock);
1974 	info->num_slaves = bond->slave_cnt;
1975 	read_unlock_bh(&bond->lock);
1976 
1977 	return 0;
1978 }
1979 
1980 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
1981 {
1982 	struct bonding *bond = bond_dev->priv;
1983 	struct slave *slave;
1984 	int i, found = 0;
1985 
1986 	if (info->slave_id < 0) {
1987 		return -ENODEV;
1988 	}
1989 
1990 	read_lock_bh(&bond->lock);
1991 
1992 	bond_for_each_slave(bond, slave, i) {
1993 		if (i == (int)info->slave_id) {
1994 			found = 1;
1995 			break;
1996 		}
1997 	}
1998 
1999 	read_unlock_bh(&bond->lock);
2000 
2001 	if (found) {
2002 		strcpy(info->slave_name, slave->dev->name);
2003 		info->link = slave->link;
2004 		info->state = slave->state;
2005 		info->link_failure_count = slave->link_failure_count;
2006 	} else {
2007 		return -ENODEV;
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 /*-------------------------------- Monitoring -------------------------------*/
2014 
2015 /* this function is called regularly to monitor each slave's link. */
2016 void bond_mii_monitor(struct net_device *bond_dev)
2017 {
2018 	struct bonding *bond = bond_dev->priv;
2019 	struct slave *slave, *oldcurrent;
2020 	int do_failover = 0;
2021 	int delta_in_ticks;
2022 	int i;
2023 
2024 	read_lock(&bond->lock);
2025 
2026 	delta_in_ticks = (bond->params.miimon * HZ) / 1000;
2027 
2028 	if (bond->kill_timers) {
2029 		goto out;
2030 	}
2031 
2032 	if (bond->slave_cnt == 0) {
2033 		goto re_arm;
2034 	}
2035 
2036 	/* we will try to read the link status of each of our slaves, and
2037 	 * set their IFF_RUNNING flag appropriately. For each slave not
2038 	 * supporting MII status, we won't do anything so that a user-space
2039 	 * program could monitor the link itself if needed.
2040 	 */
2041 
2042 	read_lock(&bond->curr_slave_lock);
2043 	oldcurrent = bond->curr_active_slave;
2044 	read_unlock(&bond->curr_slave_lock);
2045 
2046 	bond_for_each_slave(bond, slave, i) {
2047 		struct net_device *slave_dev = slave->dev;
2048 		int link_state;
2049 		u16 old_speed = slave->speed;
2050 		u8 old_duplex = slave->duplex;
2051 
2052 		link_state = bond_check_dev_link(bond, slave_dev, 0);
2053 
2054 		switch (slave->link) {
2055 		case BOND_LINK_UP:	/* the link was up */
2056 			if (link_state == BMSR_LSTATUS) {
2057 				/* link stays up, nothing more to do */
2058 				break;
2059 			} else { /* link going down */
2060 				slave->link  = BOND_LINK_FAIL;
2061 				slave->delay = bond->params.downdelay;
2062 
2063 				if (slave->link_failure_count < UINT_MAX) {
2064 					slave->link_failure_count++;
2065 				}
2066 
2067 				if (bond->params.downdelay) {
2068 					printk(KERN_INFO DRV_NAME
2069 					       ": %s: link status down for %s "
2070 					       "interface %s, disabling it in "
2071 					       "%d ms.\n",
2072 					       bond_dev->name,
2073 					       IS_UP(slave_dev)
2074 					       ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP)
2075 						  ? ((slave == oldcurrent)
2076 						     ? "active " : "backup ")
2077 						  : "")
2078 					       : "idle ",
2079 					       slave_dev->name,
2080 					       bond->params.downdelay * bond->params.miimon);
2081 				}
2082 			}
2083 			/* no break ! fall through the BOND_LINK_FAIL test to
2084 			   ensure proper action to be taken
2085 			*/
2086 		case BOND_LINK_FAIL:	/* the link has just gone down */
2087 			if (link_state != BMSR_LSTATUS) {
2088 				/* link stays down */
2089 				if (slave->delay <= 0) {
2090 					/* link down for too long time */
2091 					slave->link = BOND_LINK_DOWN;
2092 
2093 					/* in active/backup mode, we must
2094 					 * completely disable this interface
2095 					 */
2096 					if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) ||
2097 					    (bond->params.mode == BOND_MODE_8023AD)) {
2098 						bond_set_slave_inactive_flags(slave);
2099 					}
2100 
2101 					printk(KERN_INFO DRV_NAME
2102 					       ": %s: link status definitely "
2103 					       "down for interface %s, "
2104 					       "disabling it\n",
2105 					       bond_dev->name,
2106 					       slave_dev->name);
2107 
2108 					/* notify ad that the link status has changed */
2109 					if (bond->params.mode == BOND_MODE_8023AD) {
2110 						bond_3ad_handle_link_change(slave, BOND_LINK_DOWN);
2111 					}
2112 
2113 					if ((bond->params.mode == BOND_MODE_TLB) ||
2114 					    (bond->params.mode == BOND_MODE_ALB)) {
2115 						bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN);
2116 					}
2117 
2118 					if (slave == oldcurrent) {
2119 						do_failover = 1;
2120 					}
2121 				} else {
2122 					slave->delay--;
2123 				}
2124 			} else {
2125 				/* link up again */
2126 				slave->link  = BOND_LINK_UP;
2127 				slave->jiffies = jiffies;
2128 				printk(KERN_INFO DRV_NAME
2129 				       ": %s: link status up again after %d "
2130 				       "ms for interface %s.\n",
2131 				       bond_dev->name,
2132 				       (bond->params.downdelay - slave->delay) * bond->params.miimon,
2133 				       slave_dev->name);
2134 			}
2135 			break;
2136 		case BOND_LINK_DOWN:	/* the link was down */
2137 			if (link_state != BMSR_LSTATUS) {
2138 				/* the link stays down, nothing more to do */
2139 				break;
2140 			} else {	/* link going up */
2141 				slave->link  = BOND_LINK_BACK;
2142 				slave->delay = bond->params.updelay;
2143 
2144 				if (bond->params.updelay) {
2145 					/* if updelay == 0, no need to
2146 					   advertise about a 0 ms delay */
2147 					printk(KERN_INFO DRV_NAME
2148 					       ": %s: link status up for "
2149 					       "interface %s, enabling it "
2150 					       "in %d ms.\n",
2151 					       bond_dev->name,
2152 					       slave_dev->name,
2153 					       bond->params.updelay * bond->params.miimon);
2154 				}
2155 			}
2156 			/* no break ! fall through the BOND_LINK_BACK state in
2157 			   case there's something to do.
2158 			*/
2159 		case BOND_LINK_BACK:	/* the link has just come back */
2160 			if (link_state != BMSR_LSTATUS) {
2161 				/* link down again */
2162 				slave->link  = BOND_LINK_DOWN;
2163 
2164 				printk(KERN_INFO DRV_NAME
2165 				       ": %s: link status down again after %d "
2166 				       "ms for interface %s.\n",
2167 				       bond_dev->name,
2168 				       (bond->params.updelay - slave->delay) * bond->params.miimon,
2169 				       slave_dev->name);
2170 			} else {
2171 				/* link stays up */
2172 				if (slave->delay == 0) {
2173 					/* now the link has been up for long time enough */
2174 					slave->link = BOND_LINK_UP;
2175 					slave->jiffies = jiffies;
2176 
2177 					if (bond->params.mode == BOND_MODE_8023AD) {
2178 						/* prevent it from being the active one */
2179 						slave->state = BOND_STATE_BACKUP;
2180 					} else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2181 						/* make it immediately active */
2182 						slave->state = BOND_STATE_ACTIVE;
2183 					} else if (slave != bond->primary_slave) {
2184 						/* prevent it from being the active one */
2185 						slave->state = BOND_STATE_BACKUP;
2186 					}
2187 
2188 					printk(KERN_INFO DRV_NAME
2189 					       ": %s: link status definitely "
2190 					       "up for interface %s.\n",
2191 					       bond_dev->name,
2192 					       slave_dev->name);
2193 
2194 					/* notify ad that the link status has changed */
2195 					if (bond->params.mode == BOND_MODE_8023AD) {
2196 						bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2197 					}
2198 
2199 					if ((bond->params.mode == BOND_MODE_TLB) ||
2200 					    (bond->params.mode == BOND_MODE_ALB)) {
2201 						bond_alb_handle_link_change(bond, slave, BOND_LINK_UP);
2202 					}
2203 
2204 					if ((!oldcurrent) ||
2205 					    (slave == bond->primary_slave)) {
2206 						do_failover = 1;
2207 					}
2208 				} else {
2209 					slave->delay--;
2210 				}
2211 			}
2212 			break;
2213 		default:
2214 			/* Should not happen */
2215 			printk(KERN_ERR DRV_NAME
2216 			       ": %s: Error: %s Illegal value (link=%d)\n",
2217 			       bond_dev->name,
2218 			       slave->dev->name,
2219 			       slave->link);
2220 			goto out;
2221 		} /* end of switch (slave->link) */
2222 
2223 		bond_update_speed_duplex(slave);
2224 
2225 		if (bond->params.mode == BOND_MODE_8023AD) {
2226 			if (old_speed != slave->speed) {
2227 				bond_3ad_adapter_speed_changed(slave);
2228 			}
2229 
2230 			if (old_duplex != slave->duplex) {
2231 				bond_3ad_adapter_duplex_changed(slave);
2232 			}
2233 		}
2234 
2235 	} /* end of for */
2236 
2237 	if (do_failover) {
2238 		write_lock(&bond->curr_slave_lock);
2239 
2240 		bond_select_active_slave(bond);
2241 
2242 		write_unlock(&bond->curr_slave_lock);
2243 	} else
2244 		bond_set_carrier(bond);
2245 
2246 re_arm:
2247 	if (bond->params.miimon) {
2248 		mod_timer(&bond->mii_timer, jiffies + delta_in_ticks);
2249 	}
2250 out:
2251 	read_unlock(&bond->lock);
2252 }
2253 
2254 
2255 static u32 bond_glean_dev_ip(struct net_device *dev)
2256 {
2257 	struct in_device *idev;
2258 	struct in_ifaddr *ifa;
2259 	u32 addr = 0;
2260 
2261 	if (!dev)
2262 		return 0;
2263 
2264 	rcu_read_lock();
2265 	idev = __in_dev_get_rcu(dev);
2266 	if (!idev)
2267 		goto out;
2268 
2269 	ifa = idev->ifa_list;
2270 	if (!ifa)
2271 		goto out;
2272 
2273 	addr = ifa->ifa_local;
2274 out:
2275 	rcu_read_unlock();
2276 	return addr;
2277 }
2278 
2279 static int bond_has_ip(struct bonding *bond)
2280 {
2281 	struct vlan_entry *vlan, *vlan_next;
2282 
2283 	if (bond->master_ip)
2284 		return 1;
2285 
2286 	if (list_empty(&bond->vlan_list))
2287 		return 0;
2288 
2289 	list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2290 				 vlan_list) {
2291 		if (vlan->vlan_ip)
2292 			return 1;
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 /*
2299  * We go to the (large) trouble of VLAN tagging ARP frames because
2300  * switches in VLAN mode (especially if ports are configured as
2301  * "native" to a VLAN) might not pass non-tagged frames.
2302  */
2303 static void bond_arp_send(struct net_device *slave_dev, int arp_op, u32 dest_ip, u32 src_ip, unsigned short vlan_id)
2304 {
2305 	struct sk_buff *skb;
2306 
2307 	dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2308 	       slave_dev->name, dest_ip, src_ip, vlan_id);
2309 
2310 	skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2311 			 NULL, slave_dev->dev_addr, NULL);
2312 
2313 	if (!skb) {
2314 		printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2315 		return;
2316 	}
2317 	if (vlan_id) {
2318 		skb = vlan_put_tag(skb, vlan_id);
2319 		if (!skb) {
2320 			printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2321 			return;
2322 		}
2323 	}
2324 	arp_xmit(skb);
2325 }
2326 
2327 
2328 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2329 {
2330 	int i, vlan_id, rv;
2331 	u32 *targets = bond->params.arp_targets;
2332 	struct vlan_entry *vlan, *vlan_next;
2333 	struct net_device *vlan_dev;
2334 	struct flowi fl;
2335 	struct rtable *rt;
2336 
2337 	for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2338 		if (!targets[i])
2339 			continue;
2340 		dprintk("basa: target %x\n", targets[i]);
2341 		if (list_empty(&bond->vlan_list)) {
2342 			dprintk("basa: empty vlan: arp_send\n");
2343 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2344 				      bond->master_ip, 0);
2345 			continue;
2346 		}
2347 
2348 		/*
2349 		 * If VLANs are configured, we do a route lookup to
2350 		 * determine which VLAN interface would be used, so we
2351 		 * can tag the ARP with the proper VLAN tag.
2352 		 */
2353 		memset(&fl, 0, sizeof(fl));
2354 		fl.fl4_dst = targets[i];
2355 		fl.fl4_tos = RTO_ONLINK;
2356 
2357 		rv = ip_route_output_key(&rt, &fl);
2358 		if (rv) {
2359 			if (net_ratelimit()) {
2360 				printk(KERN_WARNING DRV_NAME
2361 			     ": %s: no route to arp_ip_target %u.%u.%u.%u\n",
2362 				       bond->dev->name, NIPQUAD(fl.fl4_dst));
2363 			}
2364 			continue;
2365 		}
2366 
2367 		/*
2368 		 * This target is not on a VLAN
2369 		 */
2370 		if (rt->u.dst.dev == bond->dev) {
2371 			ip_rt_put(rt);
2372 			dprintk("basa: rtdev == bond->dev: arp_send\n");
2373 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2374 				      bond->master_ip, 0);
2375 			continue;
2376 		}
2377 
2378 		vlan_id = 0;
2379 		list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2380 					 vlan_list) {
2381 			vlan_dev = bond->vlgrp->vlan_devices[vlan->vlan_id];
2382 			if (vlan_dev == rt->u.dst.dev) {
2383 				vlan_id = vlan->vlan_id;
2384 				dprintk("basa: vlan match on %s %d\n",
2385 				       vlan_dev->name, vlan_id);
2386 				break;
2387 			}
2388 		}
2389 
2390 		if (vlan_id) {
2391 			ip_rt_put(rt);
2392 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2393 				      vlan->vlan_ip, vlan_id);
2394 			continue;
2395 		}
2396 
2397 		if (net_ratelimit()) {
2398 			printk(KERN_WARNING DRV_NAME
2399 	       ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n",
2400 			       bond->dev->name, NIPQUAD(fl.fl4_dst),
2401 			       rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2402 		}
2403 		ip_rt_put(rt);
2404 	}
2405 }
2406 
2407 /*
2408  * Kick out a gratuitous ARP for an IP on the bonding master plus one
2409  * for each VLAN above us.
2410  */
2411 static void bond_send_gratuitous_arp(struct bonding *bond)
2412 {
2413 	struct slave *slave = bond->curr_active_slave;
2414 	struct vlan_entry *vlan;
2415 	struct net_device *vlan_dev;
2416 
2417 	dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2418 				slave ? slave->dev->name : "NULL");
2419 	if (!slave)
2420 		return;
2421 
2422 	if (bond->master_ip) {
2423 		bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2424 				  bond->master_ip, 0);
2425 	}
2426 
2427 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2428 		vlan_dev = bond->vlgrp->vlan_devices[vlan->vlan_id];
2429 		if (vlan->vlan_ip) {
2430 			bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2431 				      vlan->vlan_ip, vlan->vlan_id);
2432 		}
2433 	}
2434 }
2435 
2436 /*
2437  * this function is called regularly to monitor each slave's link
2438  * ensuring that traffic is being sent and received when arp monitoring
2439  * is used in load-balancing mode. if the adapter has been dormant, then an
2440  * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2441  * arp monitoring in active backup mode.
2442  */
2443 void bond_loadbalance_arp_mon(struct net_device *bond_dev)
2444 {
2445 	struct bonding *bond = bond_dev->priv;
2446 	struct slave *slave, *oldcurrent;
2447 	int do_failover = 0;
2448 	int delta_in_ticks;
2449 	int i;
2450 
2451 	read_lock(&bond->lock);
2452 
2453 	delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2454 
2455 	if (bond->kill_timers) {
2456 		goto out;
2457 	}
2458 
2459 	if (bond->slave_cnt == 0) {
2460 		goto re_arm;
2461 	}
2462 
2463 	read_lock(&bond->curr_slave_lock);
2464 	oldcurrent = bond->curr_active_slave;
2465 	read_unlock(&bond->curr_slave_lock);
2466 
2467 	/* see if any of the previous devices are up now (i.e. they have
2468 	 * xmt and rcv traffic). the curr_active_slave does not come into
2469 	 * the picture unless it is null. also, slave->jiffies is not needed
2470 	 * here because we send an arp on each slave and give a slave as
2471 	 * long as it needs to get the tx/rx within the delta.
2472 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2473 	 *       so it can wait
2474 	 */
2475 	bond_for_each_slave(bond, slave, i) {
2476 		if (slave->link != BOND_LINK_UP) {
2477 			if (((jiffies - slave->dev->trans_start) <= delta_in_ticks) &&
2478 			    ((jiffies - slave->dev->last_rx) <= delta_in_ticks)) {
2479 
2480 				slave->link  = BOND_LINK_UP;
2481 				slave->state = BOND_STATE_ACTIVE;
2482 
2483 				/* primary_slave has no meaning in round-robin
2484 				 * mode. the window of a slave being up and
2485 				 * curr_active_slave being null after enslaving
2486 				 * is closed.
2487 				 */
2488 				if (!oldcurrent) {
2489 					printk(KERN_INFO DRV_NAME
2490 					       ": %s: link status definitely "
2491 					       "up for interface %s, ",
2492 					       bond_dev->name,
2493 					       slave->dev->name);
2494 					do_failover = 1;
2495 				} else {
2496 					printk(KERN_INFO DRV_NAME
2497 					       ": %s: interface %s is now up\n",
2498 					       bond_dev->name,
2499 					       slave->dev->name);
2500 				}
2501 			}
2502 		} else {
2503 			/* slave->link == BOND_LINK_UP */
2504 
2505 			/* not all switches will respond to an arp request
2506 			 * when the source ip is 0, so don't take the link down
2507 			 * if we don't know our ip yet
2508 			 */
2509 			if (((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) ||
2510 			    (((jiffies - slave->dev->last_rx) >= (2*delta_in_ticks)) &&
2511 			     bond_has_ip(bond))) {
2512 
2513 				slave->link  = BOND_LINK_DOWN;
2514 				slave->state = BOND_STATE_BACKUP;
2515 
2516 				if (slave->link_failure_count < UINT_MAX) {
2517 					slave->link_failure_count++;
2518 				}
2519 
2520 				printk(KERN_INFO DRV_NAME
2521 				       ": %s: interface %s is now down.\n",
2522 				       bond_dev->name,
2523 				       slave->dev->name);
2524 
2525 				if (slave == oldcurrent) {
2526 					do_failover = 1;
2527 				}
2528 			}
2529 		}
2530 
2531 		/* note: if switch is in round-robin mode, all links
2532 		 * must tx arp to ensure all links rx an arp - otherwise
2533 		 * links may oscillate or not come up at all; if switch is
2534 		 * in something like xor mode, there is nothing we can
2535 		 * do - all replies will be rx'ed on same link causing slaves
2536 		 * to be unstable during low/no traffic periods
2537 		 */
2538 		if (IS_UP(slave->dev)) {
2539 			bond_arp_send_all(bond, slave);
2540 		}
2541 	}
2542 
2543 	if (do_failover) {
2544 		write_lock(&bond->curr_slave_lock);
2545 
2546 		bond_select_active_slave(bond);
2547 
2548 		write_unlock(&bond->curr_slave_lock);
2549 	}
2550 
2551 re_arm:
2552 	if (bond->params.arp_interval) {
2553 		mod_timer(&bond->arp_timer, jiffies + delta_in_ticks);
2554 	}
2555 out:
2556 	read_unlock(&bond->lock);
2557 }
2558 
2559 /*
2560  * When using arp monitoring in active-backup mode, this function is
2561  * called to determine if any backup slaves have went down or a new
2562  * current slave needs to be found.
2563  * The backup slaves never generate traffic, they are considered up by merely
2564  * receiving traffic. If the current slave goes down, each backup slave will
2565  * be given the opportunity to tx/rx an arp before being taken down - this
2566  * prevents all slaves from being taken down due to the current slave not
2567  * sending any traffic for the backups to receive. The arps are not necessarily
2568  * necessary, any tx and rx traffic will keep the current slave up. While any
2569  * rx traffic will keep the backup slaves up, the current slave is responsible
2570  * for generating traffic to keep them up regardless of any other traffic they
2571  * may have received.
2572  * see loadbalance_arp_monitor for arp monitoring in load balancing mode
2573  */
2574 void bond_activebackup_arp_mon(struct net_device *bond_dev)
2575 {
2576 	struct bonding *bond = bond_dev->priv;
2577 	struct slave *slave;
2578 	int delta_in_ticks;
2579 	int i;
2580 
2581 	read_lock(&bond->lock);
2582 
2583 	delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2584 
2585 	if (bond->kill_timers) {
2586 		goto out;
2587 	}
2588 
2589 	if (bond->slave_cnt == 0) {
2590 		goto re_arm;
2591 	}
2592 
2593 	/* determine if any slave has come up or any backup slave has
2594 	 * gone down
2595 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2596 	 *       so it can wait
2597 	 */
2598 	bond_for_each_slave(bond, slave, i) {
2599 		if (slave->link != BOND_LINK_UP) {
2600 			if ((jiffies - slave->dev->last_rx) <= delta_in_ticks) {
2601 
2602 				slave->link = BOND_LINK_UP;
2603 
2604 				write_lock(&bond->curr_slave_lock);
2605 
2606 				if ((!bond->curr_active_slave) &&
2607 				    ((jiffies - slave->dev->trans_start) <= delta_in_ticks)) {
2608 					bond_change_active_slave(bond, slave);
2609 					bond->current_arp_slave = NULL;
2610 				} else if (bond->curr_active_slave != slave) {
2611 					/* this slave has just come up but we
2612 					 * already have a current slave; this
2613 					 * can also happen if bond_enslave adds
2614 					 * a new slave that is up while we are
2615 					 * searching for a new slave
2616 					 */
2617 					bond_set_slave_inactive_flags(slave);
2618 					bond->current_arp_slave = NULL;
2619 				}
2620 
2621 				bond_set_carrier(bond);
2622 
2623 				if (slave == bond->curr_active_slave) {
2624 					printk(KERN_INFO DRV_NAME
2625 					       ": %s: %s is up and now the "
2626 					       "active interface\n",
2627 					       bond_dev->name,
2628 					       slave->dev->name);
2629 					netif_carrier_on(bond->dev);
2630 				} else {
2631 					printk(KERN_INFO DRV_NAME
2632 					       ": %s: backup interface %s is "
2633 					       "now up\n",
2634 					       bond_dev->name,
2635 					       slave->dev->name);
2636 				}
2637 
2638 				write_unlock(&bond->curr_slave_lock);
2639 			}
2640 		} else {
2641 			read_lock(&bond->curr_slave_lock);
2642 
2643 			if ((slave != bond->curr_active_slave) &&
2644 			    (!bond->current_arp_slave) &&
2645 			    (((jiffies - slave->dev->last_rx) >= 3*delta_in_ticks) &&
2646 			     bond_has_ip(bond))) {
2647 				/* a backup slave has gone down; three times
2648 				 * the delta allows the current slave to be
2649 				 * taken out before the backup slave.
2650 				 * note: a non-null current_arp_slave indicates
2651 				 * the curr_active_slave went down and we are
2652 				 * searching for a new one; under this
2653 				 * condition we only take the curr_active_slave
2654 				 * down - this gives each slave a chance to
2655 				 * tx/rx traffic before being taken out
2656 				 */
2657 
2658 				read_unlock(&bond->curr_slave_lock);
2659 
2660 				slave->link  = BOND_LINK_DOWN;
2661 
2662 				if (slave->link_failure_count < UINT_MAX) {
2663 					slave->link_failure_count++;
2664 				}
2665 
2666 				bond_set_slave_inactive_flags(slave);
2667 
2668 				printk(KERN_INFO DRV_NAME
2669 				       ": %s: backup interface %s is now down\n",
2670 				       bond_dev->name,
2671 				       slave->dev->name);
2672 			} else {
2673 				read_unlock(&bond->curr_slave_lock);
2674 			}
2675 		}
2676 	}
2677 
2678 	read_lock(&bond->curr_slave_lock);
2679 	slave = bond->curr_active_slave;
2680 	read_unlock(&bond->curr_slave_lock);
2681 
2682 	if (slave) {
2683 		/* if we have sent traffic in the past 2*arp_intervals but
2684 		 * haven't xmit and rx traffic in that time interval, select
2685 		 * a different slave. slave->jiffies is only updated when
2686 		 * a slave first becomes the curr_active_slave - not necessarily
2687 		 * after every arp; this ensures the slave has a full 2*delta
2688 		 * before being taken out. if a primary is being used, check
2689 		 * if it is up and needs to take over as the curr_active_slave
2690 		 */
2691 		if ((((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) ||
2692 	    (((jiffies - slave->dev->last_rx) >= (2*delta_in_ticks)) &&
2693 	     bond_has_ip(bond))) &&
2694 		    ((jiffies - slave->jiffies) >= 2*delta_in_ticks)) {
2695 
2696 			slave->link  = BOND_LINK_DOWN;
2697 
2698 			if (slave->link_failure_count < UINT_MAX) {
2699 				slave->link_failure_count++;
2700 			}
2701 
2702 			printk(KERN_INFO DRV_NAME
2703 			       ": %s: link status down for active interface "
2704 			       "%s, disabling it\n",
2705 			       bond_dev->name,
2706 			       slave->dev->name);
2707 
2708 			write_lock(&bond->curr_slave_lock);
2709 
2710 			bond_select_active_slave(bond);
2711 			slave = bond->curr_active_slave;
2712 
2713 			write_unlock(&bond->curr_slave_lock);
2714 
2715 			bond->current_arp_slave = slave;
2716 
2717 			if (slave) {
2718 				slave->jiffies = jiffies;
2719 			}
2720 		} else if ((bond->primary_slave) &&
2721 			   (bond->primary_slave != slave) &&
2722 			   (bond->primary_slave->link == BOND_LINK_UP)) {
2723 			/* at this point, slave is the curr_active_slave */
2724 			printk(KERN_INFO DRV_NAME
2725 			       ": %s: changing from interface %s to primary "
2726 			       "interface %s\n",
2727 			       bond_dev->name,
2728 			       slave->dev->name,
2729 			       bond->primary_slave->dev->name);
2730 
2731 			/* primary is up so switch to it */
2732 			write_lock(&bond->curr_slave_lock);
2733 			bond_change_active_slave(bond, bond->primary_slave);
2734 			write_unlock(&bond->curr_slave_lock);
2735 
2736 			slave = bond->primary_slave;
2737 			slave->jiffies = jiffies;
2738 		} else {
2739 			bond->current_arp_slave = NULL;
2740 		}
2741 
2742 		/* the current slave must tx an arp to ensure backup slaves
2743 		 * rx traffic
2744 		 */
2745 		if (slave && bond_has_ip(bond)) {
2746 			bond_arp_send_all(bond, slave);
2747 		}
2748 	}
2749 
2750 	/* if we don't have a curr_active_slave, search for the next available
2751 	 * backup slave from the current_arp_slave and make it the candidate
2752 	 * for becoming the curr_active_slave
2753 	 */
2754 	if (!slave) {
2755 		if (!bond->current_arp_slave) {
2756 			bond->current_arp_slave = bond->first_slave;
2757 		}
2758 
2759 		if (bond->current_arp_slave) {
2760 			bond_set_slave_inactive_flags(bond->current_arp_slave);
2761 
2762 			/* search for next candidate */
2763 			bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
2764 				if (IS_UP(slave->dev)) {
2765 					slave->link = BOND_LINK_BACK;
2766 					bond_set_slave_active_flags(slave);
2767 					bond_arp_send_all(bond, slave);
2768 					slave->jiffies = jiffies;
2769 					bond->current_arp_slave = slave;
2770 					break;
2771 				}
2772 
2773 				/* if the link state is up at this point, we
2774 				 * mark it down - this can happen if we have
2775 				 * simultaneous link failures and
2776 				 * reselect_active_interface doesn't make this
2777 				 * one the current slave so it is still marked
2778 				 * up when it is actually down
2779 				 */
2780 				if (slave->link == BOND_LINK_UP) {
2781 					slave->link  = BOND_LINK_DOWN;
2782 					if (slave->link_failure_count < UINT_MAX) {
2783 						slave->link_failure_count++;
2784 					}
2785 
2786 					bond_set_slave_inactive_flags(slave);
2787 
2788 					printk(KERN_INFO DRV_NAME
2789 					       ": %s: backup interface %s is "
2790 					       "now down.\n",
2791 					       bond_dev->name,
2792 					       slave->dev->name);
2793 				}
2794 			}
2795 		}
2796 	}
2797 
2798 re_arm:
2799 	if (bond->params.arp_interval) {
2800 		mod_timer(&bond->arp_timer, jiffies + delta_in_ticks);
2801 	}
2802 out:
2803 	read_unlock(&bond->lock);
2804 }
2805 
2806 /*------------------------------ proc/seq_file-------------------------------*/
2807 
2808 #ifdef CONFIG_PROC_FS
2809 
2810 #define SEQ_START_TOKEN ((void *)1)
2811 
2812 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
2813 {
2814 	struct bonding *bond = seq->private;
2815 	loff_t off = 0;
2816 	struct slave *slave;
2817 	int i;
2818 
2819 	/* make sure the bond won't be taken away */
2820 	read_lock(&dev_base_lock);
2821 	read_lock_bh(&bond->lock);
2822 
2823 	if (*pos == 0) {
2824 		return SEQ_START_TOKEN;
2825 	}
2826 
2827 	bond_for_each_slave(bond, slave, i) {
2828 		if (++off == *pos) {
2829 			return slave;
2830 		}
2831 	}
2832 
2833 	return NULL;
2834 }
2835 
2836 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2837 {
2838 	struct bonding *bond = seq->private;
2839 	struct slave *slave = v;
2840 
2841 	++*pos;
2842 	if (v == SEQ_START_TOKEN) {
2843 		return bond->first_slave;
2844 	}
2845 
2846 	slave = slave->next;
2847 
2848 	return (slave == bond->first_slave) ? NULL : slave;
2849 }
2850 
2851 static void bond_info_seq_stop(struct seq_file *seq, void *v)
2852 {
2853 	struct bonding *bond = seq->private;
2854 
2855 	read_unlock_bh(&bond->lock);
2856 	read_unlock(&dev_base_lock);
2857 }
2858 
2859 static void bond_info_show_master(struct seq_file *seq)
2860 {
2861 	struct bonding *bond = seq->private;
2862 	struct slave *curr;
2863 	int i;
2864 	u32 target;
2865 
2866 	read_lock(&bond->curr_slave_lock);
2867 	curr = bond->curr_active_slave;
2868 	read_unlock(&bond->curr_slave_lock);
2869 
2870 	seq_printf(seq, "Bonding Mode: %s\n",
2871 		   bond_mode_name(bond->params.mode));
2872 
2873 	if (bond->params.mode == BOND_MODE_XOR ||
2874 		bond->params.mode == BOND_MODE_8023AD) {
2875 		seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
2876 			xmit_hashtype_tbl[bond->params.xmit_policy].modename,
2877 			bond->params.xmit_policy);
2878 	}
2879 
2880 	if (USES_PRIMARY(bond->params.mode)) {
2881 		seq_printf(seq, "Primary Slave: %s\n",
2882 			   (bond->primary_slave) ?
2883 			   bond->primary_slave->dev->name : "None");
2884 
2885 		seq_printf(seq, "Currently Active Slave: %s\n",
2886 			   (curr) ? curr->dev->name : "None");
2887 	}
2888 
2889 	seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
2890 		   "up" : "down");
2891 	seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
2892 	seq_printf(seq, "Up Delay (ms): %d\n",
2893 		   bond->params.updelay * bond->params.miimon);
2894 	seq_printf(seq, "Down Delay (ms): %d\n",
2895 		   bond->params.downdelay * bond->params.miimon);
2896 
2897 
2898 	/* ARP information */
2899 	if(bond->params.arp_interval > 0) {
2900 		int printed=0;
2901 		seq_printf(seq, "ARP Polling Interval (ms): %d\n",
2902 				bond->params.arp_interval);
2903 
2904 		seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
2905 
2906 		for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
2907 			if (!bond->params.arp_targets[i])
2908 				continue;
2909 			if (printed)
2910 				seq_printf(seq, ",");
2911 			target = ntohl(bond->params.arp_targets[i]);
2912 			seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target));
2913 			printed = 1;
2914 		}
2915 		seq_printf(seq, "\n");
2916 	}
2917 
2918 	if (bond->params.mode == BOND_MODE_8023AD) {
2919 		struct ad_info ad_info;
2920 
2921 		seq_puts(seq, "\n802.3ad info\n");
2922 		seq_printf(seq, "LACP rate: %s\n",
2923 			   (bond->params.lacp_fast) ? "fast" : "slow");
2924 
2925 		if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
2926 			seq_printf(seq, "bond %s has no active aggregator\n",
2927 				   bond->dev->name);
2928 		} else {
2929 			seq_printf(seq, "Active Aggregator Info:\n");
2930 
2931 			seq_printf(seq, "\tAggregator ID: %d\n",
2932 				   ad_info.aggregator_id);
2933 			seq_printf(seq, "\tNumber of ports: %d\n",
2934 				   ad_info.ports);
2935 			seq_printf(seq, "\tActor Key: %d\n",
2936 				   ad_info.actor_key);
2937 			seq_printf(seq, "\tPartner Key: %d\n",
2938 				   ad_info.partner_key);
2939 			seq_printf(seq, "\tPartner Mac Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
2940 				   ad_info.partner_system[0],
2941 				   ad_info.partner_system[1],
2942 				   ad_info.partner_system[2],
2943 				   ad_info.partner_system[3],
2944 				   ad_info.partner_system[4],
2945 				   ad_info.partner_system[5]);
2946 		}
2947 	}
2948 }
2949 
2950 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
2951 {
2952 	struct bonding *bond = seq->private;
2953 
2954 	seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
2955 	seq_printf(seq, "MII Status: %s\n",
2956 		   (slave->link == BOND_LINK_UP) ?  "up" : "down");
2957 	seq_printf(seq, "Link Failure Count: %d\n",
2958 		   slave->link_failure_count);
2959 
2960 	seq_printf(seq,
2961 		   "Permanent HW addr: %02x:%02x:%02x:%02x:%02x:%02x\n",
2962 		   slave->perm_hwaddr[0], slave->perm_hwaddr[1],
2963 		   slave->perm_hwaddr[2], slave->perm_hwaddr[3],
2964 		   slave->perm_hwaddr[4], slave->perm_hwaddr[5]);
2965 
2966 	if (bond->params.mode == BOND_MODE_8023AD) {
2967 		const struct aggregator *agg
2968 			= SLAVE_AD_INFO(slave).port.aggregator;
2969 
2970 		if (agg) {
2971 			seq_printf(seq, "Aggregator ID: %d\n",
2972 				   agg->aggregator_identifier);
2973 		} else {
2974 			seq_puts(seq, "Aggregator ID: N/A\n");
2975 		}
2976 	}
2977 }
2978 
2979 static int bond_info_seq_show(struct seq_file *seq, void *v)
2980 {
2981 	if (v == SEQ_START_TOKEN) {
2982 		seq_printf(seq, "%s\n", version);
2983 		bond_info_show_master(seq);
2984 	} else {
2985 		bond_info_show_slave(seq, v);
2986 	}
2987 
2988 	return 0;
2989 }
2990 
2991 static struct seq_operations bond_info_seq_ops = {
2992 	.start = bond_info_seq_start,
2993 	.next  = bond_info_seq_next,
2994 	.stop  = bond_info_seq_stop,
2995 	.show  = bond_info_seq_show,
2996 };
2997 
2998 static int bond_info_open(struct inode *inode, struct file *file)
2999 {
3000 	struct seq_file *seq;
3001 	struct proc_dir_entry *proc;
3002 	int res;
3003 
3004 	res = seq_open(file, &bond_info_seq_ops);
3005 	if (!res) {
3006 		/* recover the pointer buried in proc_dir_entry data */
3007 		seq = file->private_data;
3008 		proc = PDE(inode);
3009 		seq->private = proc->data;
3010 	}
3011 
3012 	return res;
3013 }
3014 
3015 static struct file_operations bond_info_fops = {
3016 	.owner   = THIS_MODULE,
3017 	.open    = bond_info_open,
3018 	.read    = seq_read,
3019 	.llseek  = seq_lseek,
3020 	.release = seq_release,
3021 };
3022 
3023 static int bond_create_proc_entry(struct bonding *bond)
3024 {
3025 	struct net_device *bond_dev = bond->dev;
3026 
3027 	if (bond_proc_dir) {
3028 		bond->proc_entry = create_proc_entry(bond_dev->name,
3029 						     S_IRUGO,
3030 						     bond_proc_dir);
3031 		if (bond->proc_entry == NULL) {
3032 			printk(KERN_WARNING DRV_NAME
3033 			       ": Warning: Cannot create /proc/net/%s/%s\n",
3034 			       DRV_NAME, bond_dev->name);
3035 		} else {
3036 			bond->proc_entry->data = bond;
3037 			bond->proc_entry->proc_fops = &bond_info_fops;
3038 			bond->proc_entry->owner = THIS_MODULE;
3039 			memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3040 		}
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 static void bond_remove_proc_entry(struct bonding *bond)
3047 {
3048 	if (bond_proc_dir && bond->proc_entry) {
3049 		remove_proc_entry(bond->proc_file_name, bond_proc_dir);
3050 		memset(bond->proc_file_name, 0, IFNAMSIZ);
3051 		bond->proc_entry = NULL;
3052 	}
3053 }
3054 
3055 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3056  * Caller must hold rtnl_lock.
3057  */
3058 static void bond_create_proc_dir(void)
3059 {
3060 	int len = strlen(DRV_NAME);
3061 
3062 	for (bond_proc_dir = proc_net->subdir; bond_proc_dir;
3063 	     bond_proc_dir = bond_proc_dir->next) {
3064 		if ((bond_proc_dir->namelen == len) &&
3065 		    !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3066 			break;
3067 		}
3068 	}
3069 
3070 	if (!bond_proc_dir) {
3071 		bond_proc_dir = proc_mkdir(DRV_NAME, proc_net);
3072 		if (bond_proc_dir) {
3073 			bond_proc_dir->owner = THIS_MODULE;
3074 		} else {
3075 			printk(KERN_WARNING DRV_NAME
3076 				": Warning: cannot create /proc/net/%s\n",
3077 				DRV_NAME);
3078 		}
3079 	}
3080 }
3081 
3082 /* Destroy the bonding directory under /proc/net, if empty.
3083  * Caller must hold rtnl_lock.
3084  */
3085 static void bond_destroy_proc_dir(void)
3086 {
3087 	struct proc_dir_entry *de;
3088 
3089 	if (!bond_proc_dir) {
3090 		return;
3091 	}
3092 
3093 	/* verify that the /proc dir is empty */
3094 	for (de = bond_proc_dir->subdir; de; de = de->next) {
3095 		/* ignore . and .. */
3096 		if (*(de->name) != '.') {
3097 			break;
3098 		}
3099 	}
3100 
3101 	if (de) {
3102 		if (bond_proc_dir->owner == THIS_MODULE) {
3103 			bond_proc_dir->owner = NULL;
3104 		}
3105 	} else {
3106 		remove_proc_entry(DRV_NAME, proc_net);
3107 		bond_proc_dir = NULL;
3108 	}
3109 }
3110 #endif /* CONFIG_PROC_FS */
3111 
3112 /*-------------------------- netdev event handling --------------------------*/
3113 
3114 /*
3115  * Change device name
3116  */
3117 static int bond_event_changename(struct bonding *bond)
3118 {
3119 #ifdef CONFIG_PROC_FS
3120 	bond_remove_proc_entry(bond);
3121 	bond_create_proc_entry(bond);
3122 #endif
3123 	down_write(&(bonding_rwsem));
3124         bond_destroy_sysfs_entry(bond);
3125         bond_create_sysfs_entry(bond);
3126 	up_write(&(bonding_rwsem));
3127 	return NOTIFY_DONE;
3128 }
3129 
3130 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3131 {
3132 	struct bonding *event_bond = bond_dev->priv;
3133 
3134 	switch (event) {
3135 	case NETDEV_CHANGENAME:
3136 		return bond_event_changename(event_bond);
3137 	case NETDEV_UNREGISTER:
3138 		/*
3139 		 * TODO: remove a bond from the list?
3140 		 */
3141 		break;
3142 	default:
3143 		break;
3144 	}
3145 
3146 	return NOTIFY_DONE;
3147 }
3148 
3149 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3150 {
3151 	struct net_device *bond_dev = slave_dev->master;
3152 	struct bonding *bond = bond_dev->priv;
3153 
3154 	switch (event) {
3155 	case NETDEV_UNREGISTER:
3156 		if (bond_dev) {
3157 			bond_release(bond_dev, slave_dev);
3158 		}
3159 		break;
3160 	case NETDEV_CHANGE:
3161 		/*
3162 		 * TODO: is this what we get if somebody
3163 		 * sets up a hierarchical bond, then rmmod's
3164 		 * one of the slave bonding devices?
3165 		 */
3166 		break;
3167 	case NETDEV_DOWN:
3168 		/*
3169 		 * ... Or is it this?
3170 		 */
3171 		break;
3172 	case NETDEV_CHANGEMTU:
3173 		/*
3174 		 * TODO: Should slaves be allowed to
3175 		 * independently alter their MTU?  For
3176 		 * an active-backup bond, slaves need
3177 		 * not be the same type of device, so
3178 		 * MTUs may vary.  For other modes,
3179 		 * slaves arguably should have the
3180 		 * same MTUs. To do this, we'd need to
3181 		 * take over the slave's change_mtu
3182 		 * function for the duration of their
3183 		 * servitude.
3184 		 */
3185 		break;
3186 	case NETDEV_CHANGENAME:
3187 		/*
3188 		 * TODO: handle changing the primary's name
3189 		 */
3190 		break;
3191 	case NETDEV_FEAT_CHANGE:
3192 		bond_compute_features(bond);
3193 		break;
3194 	default:
3195 		break;
3196 	}
3197 
3198 	return NOTIFY_DONE;
3199 }
3200 
3201 /*
3202  * bond_netdev_event: handle netdev notifier chain events.
3203  *
3204  * This function receives events for the netdev chain.  The caller (an
3205  * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3206  * locks for us to safely manipulate the slave devices (RTNL lock,
3207  * dev_probe_lock).
3208  */
3209 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3210 {
3211 	struct net_device *event_dev = (struct net_device *)ptr;
3212 
3213 	dprintk("event_dev: %s, event: %lx\n",
3214 		(event_dev ? event_dev->name : "None"),
3215 		event);
3216 
3217 	if (event_dev->flags & IFF_MASTER) {
3218 		dprintk("IFF_MASTER\n");
3219 		return bond_master_netdev_event(event, event_dev);
3220 	}
3221 
3222 	if (event_dev->flags & IFF_SLAVE) {
3223 		dprintk("IFF_SLAVE\n");
3224 		return bond_slave_netdev_event(event, event_dev);
3225 	}
3226 
3227 	return NOTIFY_DONE;
3228 }
3229 
3230 /*
3231  * bond_inetaddr_event: handle inetaddr notifier chain events.
3232  *
3233  * We keep track of device IPs primarily to use as source addresses in
3234  * ARP monitor probes (rather than spewing out broadcasts all the time).
3235  *
3236  * We track one IP for the main device (if it has one), plus one per VLAN.
3237  */
3238 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3239 {
3240 	struct in_ifaddr *ifa = ptr;
3241 	struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3242 	struct bonding *bond, *bond_next;
3243 	struct vlan_entry *vlan, *vlan_next;
3244 
3245 	list_for_each_entry_safe(bond, bond_next, &bond_dev_list, bond_list) {
3246 		if (bond->dev == event_dev) {
3247 			switch (event) {
3248 			case NETDEV_UP:
3249 				bond->master_ip = ifa->ifa_local;
3250 				return NOTIFY_OK;
3251 			case NETDEV_DOWN:
3252 				bond->master_ip = bond_glean_dev_ip(bond->dev);
3253 				return NOTIFY_OK;
3254 			default:
3255 				return NOTIFY_DONE;
3256 			}
3257 		}
3258 
3259 		if (list_empty(&bond->vlan_list))
3260 			continue;
3261 
3262 		list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
3263 					 vlan_list) {
3264 			vlan_dev = bond->vlgrp->vlan_devices[vlan->vlan_id];
3265 			if (vlan_dev == event_dev) {
3266 				switch (event) {
3267 				case NETDEV_UP:
3268 					vlan->vlan_ip = ifa->ifa_local;
3269 					return NOTIFY_OK;
3270 				case NETDEV_DOWN:
3271 					vlan->vlan_ip =
3272 						bond_glean_dev_ip(vlan_dev);
3273 					return NOTIFY_OK;
3274 				default:
3275 					return NOTIFY_DONE;
3276 				}
3277 			}
3278 		}
3279 	}
3280 	return NOTIFY_DONE;
3281 }
3282 
3283 static struct notifier_block bond_netdev_notifier = {
3284 	.notifier_call = bond_netdev_event,
3285 };
3286 
3287 static struct notifier_block bond_inetaddr_notifier = {
3288 	.notifier_call = bond_inetaddr_event,
3289 };
3290 
3291 /*-------------------------- Packet type handling ---------------------------*/
3292 
3293 /* register to receive lacpdus on a bond */
3294 static void bond_register_lacpdu(struct bonding *bond)
3295 {
3296 	struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3297 
3298 	/* initialize packet type */
3299 	pk_type->type = PKT_TYPE_LACPDU;
3300 	pk_type->dev = bond->dev;
3301 	pk_type->func = bond_3ad_lacpdu_recv;
3302 
3303 	dev_add_pack(pk_type);
3304 }
3305 
3306 /* unregister to receive lacpdus on a bond */
3307 static void bond_unregister_lacpdu(struct bonding *bond)
3308 {
3309 	dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3310 }
3311 
3312 /*---------------------------- Hashing Policies -----------------------------*/
3313 
3314 /*
3315  * Hash for the the output device based upon layer 3 and layer 4 data. If
3316  * the packet is a frag or not TCP or UDP, just use layer 3 data.  If it is
3317  * altogether not IP, mimic bond_xmit_hash_policy_l2()
3318  */
3319 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3320 				    struct net_device *bond_dev, int count)
3321 {
3322 	struct ethhdr *data = (struct ethhdr *)skb->data;
3323 	struct iphdr *iph = skb->nh.iph;
3324 	u16 *layer4hdr = (u16 *)((u32 *)iph + iph->ihl);
3325 	int layer4_xor = 0;
3326 
3327 	if (skb->protocol == __constant_htons(ETH_P_IP)) {
3328 		if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) &&
3329 		    (iph->protocol == IPPROTO_TCP ||
3330 		     iph->protocol == IPPROTO_UDP)) {
3331 			layer4_xor = htons((*layer4hdr ^ *(layer4hdr + 1)));
3332 		}
3333 		return (layer4_xor ^
3334 			((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3335 
3336 	}
3337 
3338 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3339 }
3340 
3341 /*
3342  * Hash for the output device based upon layer 2 data
3343  */
3344 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3345 				   struct net_device *bond_dev, int count)
3346 {
3347 	struct ethhdr *data = (struct ethhdr *)skb->data;
3348 
3349 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3350 }
3351 
3352 /*-------------------------- Device entry points ----------------------------*/
3353 
3354 static int bond_open(struct net_device *bond_dev)
3355 {
3356 	struct bonding *bond = bond_dev->priv;
3357 	struct timer_list *mii_timer = &bond->mii_timer;
3358 	struct timer_list *arp_timer = &bond->arp_timer;
3359 
3360 	bond->kill_timers = 0;
3361 
3362 	if ((bond->params.mode == BOND_MODE_TLB) ||
3363 	    (bond->params.mode == BOND_MODE_ALB)) {
3364 		struct timer_list *alb_timer = &(BOND_ALB_INFO(bond).alb_timer);
3365 
3366 		/* bond_alb_initialize must be called before the timer
3367 		 * is started.
3368 		 */
3369 		if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3370 			/* something went wrong - fail the open operation */
3371 			return -1;
3372 		}
3373 
3374 		init_timer(alb_timer);
3375 		alb_timer->expires  = jiffies + 1;
3376 		alb_timer->data     = (unsigned long)bond;
3377 		alb_timer->function = (void *)&bond_alb_monitor;
3378 		add_timer(alb_timer);
3379 	}
3380 
3381 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3382 		init_timer(mii_timer);
3383 		mii_timer->expires  = jiffies + 1;
3384 		mii_timer->data     = (unsigned long)bond_dev;
3385 		mii_timer->function = (void *)&bond_mii_monitor;
3386 		add_timer(mii_timer);
3387 	}
3388 
3389 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3390 		init_timer(arp_timer);
3391 		arp_timer->expires  = jiffies + 1;
3392 		arp_timer->data     = (unsigned long)bond_dev;
3393 		if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
3394 			arp_timer->function = (void *)&bond_activebackup_arp_mon;
3395 		} else {
3396 			arp_timer->function = (void *)&bond_loadbalance_arp_mon;
3397 		}
3398 		add_timer(arp_timer);
3399 	}
3400 
3401 	if (bond->params.mode == BOND_MODE_8023AD) {
3402 		struct timer_list *ad_timer = &(BOND_AD_INFO(bond).ad_timer);
3403 		init_timer(ad_timer);
3404 		ad_timer->expires  = jiffies + 1;
3405 		ad_timer->data     = (unsigned long)bond;
3406 		ad_timer->function = (void *)&bond_3ad_state_machine_handler;
3407 		add_timer(ad_timer);
3408 
3409 		/* register to receive LACPDUs */
3410 		bond_register_lacpdu(bond);
3411 	}
3412 
3413 	return 0;
3414 }
3415 
3416 static int bond_close(struct net_device *bond_dev)
3417 {
3418 	struct bonding *bond = bond_dev->priv;
3419 
3420 	if (bond->params.mode == BOND_MODE_8023AD) {
3421 		/* Unregister the receive of LACPDUs */
3422 		bond_unregister_lacpdu(bond);
3423 	}
3424 
3425 	write_lock_bh(&bond->lock);
3426 
3427 	bond_mc_list_destroy(bond);
3428 
3429 	/* signal timers not to re-arm */
3430 	bond->kill_timers = 1;
3431 
3432 	write_unlock_bh(&bond->lock);
3433 
3434 	/* del_timer_sync must run without holding the bond->lock
3435 	 * because a running timer might be trying to hold it too
3436 	 */
3437 
3438 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3439 		del_timer_sync(&bond->mii_timer);
3440 	}
3441 
3442 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3443 		del_timer_sync(&bond->arp_timer);
3444 	}
3445 
3446 	switch (bond->params.mode) {
3447 	case BOND_MODE_8023AD:
3448 		del_timer_sync(&(BOND_AD_INFO(bond).ad_timer));
3449 		break;
3450 	case BOND_MODE_TLB:
3451 	case BOND_MODE_ALB:
3452 		del_timer_sync(&(BOND_ALB_INFO(bond).alb_timer));
3453 		break;
3454 	default:
3455 		break;
3456 	}
3457 
3458 	/* Release the bonded slaves */
3459 	bond_release_all(bond_dev);
3460 
3461 	if ((bond->params.mode == BOND_MODE_TLB) ||
3462 	    (bond->params.mode == BOND_MODE_ALB)) {
3463 		/* Must be called only after all
3464 		 * slaves have been released
3465 		 */
3466 		bond_alb_deinitialize(bond);
3467 	}
3468 
3469 	return 0;
3470 }
3471 
3472 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3473 {
3474 	struct bonding *bond = bond_dev->priv;
3475 	struct net_device_stats *stats = &(bond->stats), *sstats;
3476 	struct slave *slave;
3477 	int i;
3478 
3479 	memset(stats, 0, sizeof(struct net_device_stats));
3480 
3481 	read_lock_bh(&bond->lock);
3482 
3483 	bond_for_each_slave(bond, slave, i) {
3484 		sstats = slave->dev->get_stats(slave->dev);
3485 
3486 		stats->rx_packets += sstats->rx_packets;
3487 		stats->rx_bytes += sstats->rx_bytes;
3488 		stats->rx_errors += sstats->rx_errors;
3489 		stats->rx_dropped += sstats->rx_dropped;
3490 
3491 		stats->tx_packets += sstats->tx_packets;
3492 		stats->tx_bytes += sstats->tx_bytes;
3493 		stats->tx_errors += sstats->tx_errors;
3494 		stats->tx_dropped += sstats->tx_dropped;
3495 
3496 		stats->multicast += sstats->multicast;
3497 		stats->collisions += sstats->collisions;
3498 
3499 		stats->rx_length_errors += sstats->rx_length_errors;
3500 		stats->rx_over_errors += sstats->rx_over_errors;
3501 		stats->rx_crc_errors += sstats->rx_crc_errors;
3502 		stats->rx_frame_errors += sstats->rx_frame_errors;
3503 		stats->rx_fifo_errors += sstats->rx_fifo_errors;
3504 		stats->rx_missed_errors += sstats->rx_missed_errors;
3505 
3506 		stats->tx_aborted_errors += sstats->tx_aborted_errors;
3507 		stats->tx_carrier_errors += sstats->tx_carrier_errors;
3508 		stats->tx_fifo_errors += sstats->tx_fifo_errors;
3509 		stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3510 		stats->tx_window_errors += sstats->tx_window_errors;
3511 	}
3512 
3513 	read_unlock_bh(&bond->lock);
3514 
3515 	return stats;
3516 }
3517 
3518 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3519 {
3520 	struct net_device *slave_dev = NULL;
3521 	struct ifbond k_binfo;
3522 	struct ifbond __user *u_binfo = NULL;
3523 	struct ifslave k_sinfo;
3524 	struct ifslave __user *u_sinfo = NULL;
3525 	struct mii_ioctl_data *mii = NULL;
3526 	int res = 0;
3527 
3528 	dprintk("bond_ioctl: master=%s, cmd=%d\n",
3529 		bond_dev->name, cmd);
3530 
3531 	switch (cmd) {
3532 	case SIOCGMIIPHY:
3533 		mii = if_mii(ifr);
3534 		if (!mii) {
3535 			return -EINVAL;
3536 		}
3537 		mii->phy_id = 0;
3538 		/* Fall Through */
3539 	case SIOCGMIIREG:
3540 		/*
3541 		 * We do this again just in case we were called by SIOCGMIIREG
3542 		 * instead of SIOCGMIIPHY.
3543 		 */
3544 		mii = if_mii(ifr);
3545 		if (!mii) {
3546 			return -EINVAL;
3547 		}
3548 
3549 		if (mii->reg_num == 1) {
3550 			struct bonding *bond = bond_dev->priv;
3551 			mii->val_out = 0;
3552 			read_lock_bh(&bond->lock);
3553 			read_lock(&bond->curr_slave_lock);
3554 			if (bond->curr_active_slave) {
3555 				mii->val_out = BMSR_LSTATUS;
3556 			}
3557 			read_unlock(&bond->curr_slave_lock);
3558 			read_unlock_bh(&bond->lock);
3559 		}
3560 
3561 		return 0;
3562 	case BOND_INFO_QUERY_OLD:
3563 	case SIOCBONDINFOQUERY:
3564 		u_binfo = (struct ifbond __user *)ifr->ifr_data;
3565 
3566 		if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
3567 			return -EFAULT;
3568 		}
3569 
3570 		res = bond_info_query(bond_dev, &k_binfo);
3571 		if (res == 0) {
3572 			if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
3573 				return -EFAULT;
3574 			}
3575 		}
3576 
3577 		return res;
3578 	case BOND_SLAVE_INFO_QUERY_OLD:
3579 	case SIOCBONDSLAVEINFOQUERY:
3580 		u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3581 
3582 		if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
3583 			return -EFAULT;
3584 		}
3585 
3586 		res = bond_slave_info_query(bond_dev, &k_sinfo);
3587 		if (res == 0) {
3588 			if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
3589 				return -EFAULT;
3590 			}
3591 		}
3592 
3593 		return res;
3594 	default:
3595 		/* Go on */
3596 		break;
3597 	}
3598 
3599 	if (!capable(CAP_NET_ADMIN)) {
3600 		return -EPERM;
3601 	}
3602 
3603 	down_write(&(bonding_rwsem));
3604 	slave_dev = dev_get_by_name(ifr->ifr_slave);
3605 
3606 	dprintk("slave_dev=%p: \n", slave_dev);
3607 
3608 	if (!slave_dev) {
3609 		res = -ENODEV;
3610 	} else {
3611 		dprintk("slave_dev->name=%s: \n", slave_dev->name);
3612 		switch (cmd) {
3613 		case BOND_ENSLAVE_OLD:
3614 		case SIOCBONDENSLAVE:
3615 			res = bond_enslave(bond_dev, slave_dev);
3616 			break;
3617 		case BOND_RELEASE_OLD:
3618 		case SIOCBONDRELEASE:
3619 			res = bond_release(bond_dev, slave_dev);
3620 			break;
3621 		case BOND_SETHWADDR_OLD:
3622 		case SIOCBONDSETHWADDR:
3623 			res = bond_sethwaddr(bond_dev, slave_dev);
3624 			break;
3625 		case BOND_CHANGE_ACTIVE_OLD:
3626 		case SIOCBONDCHANGEACTIVE:
3627 			res = bond_ioctl_change_active(bond_dev, slave_dev);
3628 			break;
3629 		default:
3630 			res = -EOPNOTSUPP;
3631 		}
3632 
3633 		dev_put(slave_dev);
3634 	}
3635 
3636 	up_write(&(bonding_rwsem));
3637 	return res;
3638 }
3639 
3640 static void bond_set_multicast_list(struct net_device *bond_dev)
3641 {
3642 	struct bonding *bond = bond_dev->priv;
3643 	struct dev_mc_list *dmi;
3644 
3645 	write_lock_bh(&bond->lock);
3646 
3647 	/*
3648 	 * Do promisc before checking multicast_mode
3649 	 */
3650 	if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
3651 		bond_set_promiscuity(bond, 1);
3652 	}
3653 
3654 	if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
3655 		bond_set_promiscuity(bond, -1);
3656 	}
3657 
3658 	/* set allmulti flag to slaves */
3659 	if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
3660 		bond_set_allmulti(bond, 1);
3661 	}
3662 
3663 	if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
3664 		bond_set_allmulti(bond, -1);
3665 	}
3666 
3667 	bond->flags = bond_dev->flags;
3668 
3669 	/* looking for addresses to add to slaves' mc list */
3670 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
3671 		if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
3672 			bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3673 		}
3674 	}
3675 
3676 	/* looking for addresses to delete from slaves' list */
3677 	for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
3678 		if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
3679 			bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3680 		}
3681 	}
3682 
3683 	/* save master's multicast list */
3684 	bond_mc_list_destroy(bond);
3685 	bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
3686 
3687 	write_unlock_bh(&bond->lock);
3688 }
3689 
3690 /*
3691  * Change the MTU of all of a master's slaves to match the master
3692  */
3693 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
3694 {
3695 	struct bonding *bond = bond_dev->priv;
3696 	struct slave *slave, *stop_at;
3697 	int res = 0;
3698 	int i;
3699 
3700 	dprintk("bond=%p, name=%s, new_mtu=%d\n", bond,
3701 		(bond_dev ? bond_dev->name : "None"), new_mtu);
3702 
3703 	/* Can't hold bond->lock with bh disabled here since
3704 	 * some base drivers panic. On the other hand we can't
3705 	 * hold bond->lock without bh disabled because we'll
3706 	 * deadlock. The only solution is to rely on the fact
3707 	 * that we're under rtnl_lock here, and the slaves
3708 	 * list won't change. This doesn't solve the problem
3709 	 * of setting the slave's MTU while it is
3710 	 * transmitting, but the assumption is that the base
3711 	 * driver can handle that.
3712 	 *
3713 	 * TODO: figure out a way to safely iterate the slaves
3714 	 * list, but without holding a lock around the actual
3715 	 * call to the base driver.
3716 	 */
3717 
3718 	bond_for_each_slave(bond, slave, i) {
3719 		dprintk("s %p s->p %p c_m %p\n", slave,
3720 			slave->prev, slave->dev->change_mtu);
3721 
3722 		res = dev_set_mtu(slave->dev, new_mtu);
3723 
3724 		if (res) {
3725 			/* If we failed to set the slave's mtu to the new value
3726 			 * we must abort the operation even in ACTIVE_BACKUP
3727 			 * mode, because if we allow the backup slaves to have
3728 			 * different mtu values than the active slave we'll
3729 			 * need to change their mtu when doing a failover. That
3730 			 * means changing their mtu from timer context, which
3731 			 * is probably not a good idea.
3732 			 */
3733 			dprintk("err %d %s\n", res, slave->dev->name);
3734 			goto unwind;
3735 		}
3736 	}
3737 
3738 	bond_dev->mtu = new_mtu;
3739 
3740 	return 0;
3741 
3742 unwind:
3743 	/* unwind from head to the slave that failed */
3744 	stop_at = slave;
3745 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
3746 		int tmp_res;
3747 
3748 		tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
3749 		if (tmp_res) {
3750 			dprintk("unwind err %d dev %s\n", tmp_res,
3751 				slave->dev->name);
3752 		}
3753 	}
3754 
3755 	return res;
3756 }
3757 
3758 /*
3759  * Change HW address
3760  *
3761  * Note that many devices must be down to change the HW address, and
3762  * downing the master releases all slaves.  We can make bonds full of
3763  * bonding devices to test this, however.
3764  */
3765 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
3766 {
3767 	struct bonding *bond = bond_dev->priv;
3768 	struct sockaddr *sa = addr, tmp_sa;
3769 	struct slave *slave, *stop_at;
3770 	int res = 0;
3771 	int i;
3772 
3773 	dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
3774 
3775 	if (!is_valid_ether_addr(sa->sa_data)) {
3776 		return -EADDRNOTAVAIL;
3777 	}
3778 
3779 	/* Can't hold bond->lock with bh disabled here since
3780 	 * some base drivers panic. On the other hand we can't
3781 	 * hold bond->lock without bh disabled because we'll
3782 	 * deadlock. The only solution is to rely on the fact
3783 	 * that we're under rtnl_lock here, and the slaves
3784 	 * list won't change. This doesn't solve the problem
3785 	 * of setting the slave's hw address while it is
3786 	 * transmitting, but the assumption is that the base
3787 	 * driver can handle that.
3788 	 *
3789 	 * TODO: figure out a way to safely iterate the slaves
3790 	 * list, but without holding a lock around the actual
3791 	 * call to the base driver.
3792 	 */
3793 
3794 	bond_for_each_slave(bond, slave, i) {
3795 		dprintk("slave %p %s\n", slave, slave->dev->name);
3796 
3797 		if (slave->dev->set_mac_address == NULL) {
3798 			res = -EOPNOTSUPP;
3799 			dprintk("EOPNOTSUPP %s\n", slave->dev->name);
3800 			goto unwind;
3801 		}
3802 
3803 		res = dev_set_mac_address(slave->dev, addr);
3804 		if (res) {
3805 			/* TODO: consider downing the slave
3806 			 * and retry ?
3807 			 * User should expect communications
3808 			 * breakage anyway until ARP finish
3809 			 * updating, so...
3810 			 */
3811 			dprintk("err %d %s\n", res, slave->dev->name);
3812 			goto unwind;
3813 		}
3814 	}
3815 
3816 	/* success */
3817 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
3818 	return 0;
3819 
3820 unwind:
3821 	memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
3822 	tmp_sa.sa_family = bond_dev->type;
3823 
3824 	/* unwind from head to the slave that failed */
3825 	stop_at = slave;
3826 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
3827 		int tmp_res;
3828 
3829 		tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
3830 		if (tmp_res) {
3831 			dprintk("unwind err %d dev %s\n", tmp_res,
3832 				slave->dev->name);
3833 		}
3834 	}
3835 
3836 	return res;
3837 }
3838 
3839 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
3840 {
3841 	struct bonding *bond = bond_dev->priv;
3842 	struct slave *slave, *start_at;
3843 	int i;
3844 	int res = 1;
3845 
3846 	read_lock(&bond->lock);
3847 
3848 	if (!BOND_IS_OK(bond)) {
3849 		goto out;
3850 	}
3851 
3852 	read_lock(&bond->curr_slave_lock);
3853 	slave = start_at = bond->curr_active_slave;
3854 	read_unlock(&bond->curr_slave_lock);
3855 
3856 	if (!slave) {
3857 		goto out;
3858 	}
3859 
3860 	bond_for_each_slave_from(bond, slave, i, start_at) {
3861 		if (IS_UP(slave->dev) &&
3862 		    (slave->link == BOND_LINK_UP) &&
3863 		    (slave->state == BOND_STATE_ACTIVE)) {
3864 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
3865 
3866 			write_lock(&bond->curr_slave_lock);
3867 			bond->curr_active_slave = slave->next;
3868 			write_unlock(&bond->curr_slave_lock);
3869 
3870 			break;
3871 		}
3872 	}
3873 
3874 
3875 out:
3876 	if (res) {
3877 		/* no suitable interface, frame not sent */
3878 		dev_kfree_skb(skb);
3879 	}
3880 	read_unlock(&bond->lock);
3881 	return 0;
3882 }
3883 
3884 static void bond_activebackup_xmit_copy(struct sk_buff *skb,
3885                                         struct bonding *bond,
3886                                         struct slave *slave)
3887 {
3888 	struct sk_buff *skb2 = skb_copy(skb, GFP_ATOMIC);
3889 	struct ethhdr *eth_data;
3890 	u8 *hwaddr;
3891 	int res;
3892 
3893 	if (!skb2) {
3894 		printk(KERN_ERR DRV_NAME ": Error: "
3895 		       "bond_activebackup_xmit_copy(): skb_copy() failed\n");
3896 		return;
3897 	}
3898 
3899 	skb2->mac.raw = (unsigned char *)skb2->data;
3900 	eth_data = eth_hdr(skb2);
3901 
3902 	/* Pick an appropriate source MAC address
3903 	 *	-- use slave's perm MAC addr, unless used by bond
3904 	 *	-- otherwise, borrow active slave's perm MAC addr
3905 	 *	   since that will not be used
3906 	 */
3907 	hwaddr = slave->perm_hwaddr;
3908 	if (!memcmp(eth_data->h_source, hwaddr, ETH_ALEN))
3909 		hwaddr = bond->curr_active_slave->perm_hwaddr;
3910 
3911 	/* Set source MAC address appropriately */
3912 	memcpy(eth_data->h_source, hwaddr, ETH_ALEN);
3913 
3914 	res = bond_dev_queue_xmit(bond, skb2, slave->dev);
3915 	if (res)
3916 		dev_kfree_skb(skb2);
3917 
3918 	return;
3919 }
3920 
3921 /*
3922  * in active-backup mode, we know that bond->curr_active_slave is always valid if
3923  * the bond has a usable interface.
3924  */
3925 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
3926 {
3927 	struct bonding *bond = bond_dev->priv;
3928 	int res = 1;
3929 
3930 	read_lock(&bond->lock);
3931 	read_lock(&bond->curr_slave_lock);
3932 
3933 	if (!BOND_IS_OK(bond)) {
3934 		goto out;
3935 	}
3936 
3937 	if (!bond->curr_active_slave)
3938 		goto out;
3939 
3940 	/* Xmit IGMP frames on all slaves to ensure rapid fail-over
3941 	   for multicast traffic on snooping switches */
3942 	if (skb->protocol == __constant_htons(ETH_P_IP) &&
3943 	    skb->nh.iph->protocol == IPPROTO_IGMP) {
3944 		struct slave *slave, *active_slave;
3945 		int i;
3946 
3947 		active_slave = bond->curr_active_slave;
3948 		bond_for_each_slave_from_to(bond, slave, i, active_slave->next,
3949 		                            active_slave->prev)
3950 			if (IS_UP(slave->dev) &&
3951 			    (slave->link == BOND_LINK_UP))
3952 				bond_activebackup_xmit_copy(skb, bond, slave);
3953 	}
3954 
3955 	res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
3956 
3957 out:
3958 	if (res) {
3959 		/* no suitable interface, frame not sent */
3960 		dev_kfree_skb(skb);
3961 	}
3962 	read_unlock(&bond->curr_slave_lock);
3963 	read_unlock(&bond->lock);
3964 	return 0;
3965 }
3966 
3967 /*
3968  * In bond_xmit_xor() , we determine the output device by using a pre-
3969  * determined xmit_hash_policy(), If the selected device is not enabled,
3970  * find the next active slave.
3971  */
3972 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
3973 {
3974 	struct bonding *bond = bond_dev->priv;
3975 	struct slave *slave, *start_at;
3976 	int slave_no;
3977 	int i;
3978 	int res = 1;
3979 
3980 	read_lock(&bond->lock);
3981 
3982 	if (!BOND_IS_OK(bond)) {
3983 		goto out;
3984 	}
3985 
3986 	slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
3987 
3988 	bond_for_each_slave(bond, slave, i) {
3989 		slave_no--;
3990 		if (slave_no < 0) {
3991 			break;
3992 		}
3993 	}
3994 
3995 	start_at = slave;
3996 
3997 	bond_for_each_slave_from(bond, slave, i, start_at) {
3998 		if (IS_UP(slave->dev) &&
3999 		    (slave->link == BOND_LINK_UP) &&
4000 		    (slave->state == BOND_STATE_ACTIVE)) {
4001 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4002 			break;
4003 		}
4004 	}
4005 
4006 out:
4007 	if (res) {
4008 		/* no suitable interface, frame not sent */
4009 		dev_kfree_skb(skb);
4010 	}
4011 	read_unlock(&bond->lock);
4012 	return 0;
4013 }
4014 
4015 /*
4016  * in broadcast mode, we send everything to all usable interfaces.
4017  */
4018 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4019 {
4020 	struct bonding *bond = bond_dev->priv;
4021 	struct slave *slave, *start_at;
4022 	struct net_device *tx_dev = NULL;
4023 	int i;
4024 	int res = 1;
4025 
4026 	read_lock(&bond->lock);
4027 
4028 	if (!BOND_IS_OK(bond)) {
4029 		goto out;
4030 	}
4031 
4032 	read_lock(&bond->curr_slave_lock);
4033 	start_at = bond->curr_active_slave;
4034 	read_unlock(&bond->curr_slave_lock);
4035 
4036 	if (!start_at) {
4037 		goto out;
4038 	}
4039 
4040 	bond_for_each_slave_from(bond, slave, i, start_at) {
4041 		if (IS_UP(slave->dev) &&
4042 		    (slave->link == BOND_LINK_UP) &&
4043 		    (slave->state == BOND_STATE_ACTIVE)) {
4044 			if (tx_dev) {
4045 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4046 				if (!skb2) {
4047 					printk(KERN_ERR DRV_NAME
4048 					       ": %s: Error: bond_xmit_broadcast(): "
4049 					       "skb_clone() failed\n",
4050 					       bond_dev->name);
4051 					continue;
4052 				}
4053 
4054 				res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4055 				if (res) {
4056 					dev_kfree_skb(skb2);
4057 					continue;
4058 				}
4059 			}
4060 			tx_dev = slave->dev;
4061 		}
4062 	}
4063 
4064 	if (tx_dev) {
4065 		res = bond_dev_queue_xmit(bond, skb, tx_dev);
4066 	}
4067 
4068 out:
4069 	if (res) {
4070 		/* no suitable interface, frame not sent */
4071 		dev_kfree_skb(skb);
4072 	}
4073 	/* frame sent to all suitable interfaces */
4074 	read_unlock(&bond->lock);
4075 	return 0;
4076 }
4077 
4078 /*------------------------- Device initialization ---------------------------*/
4079 
4080 /*
4081  * set bond mode specific net device operations
4082  */
4083 void bond_set_mode_ops(struct bonding *bond, int mode)
4084 {
4085 	struct net_device *bond_dev = bond->dev;
4086 
4087 	switch (mode) {
4088 	case BOND_MODE_ROUNDROBIN:
4089 		bond_dev->hard_start_xmit = bond_xmit_roundrobin;
4090 		break;
4091 	case BOND_MODE_ACTIVEBACKUP:
4092 		bond_dev->hard_start_xmit = bond_xmit_activebackup;
4093 		break;
4094 	case BOND_MODE_XOR:
4095 		bond_dev->hard_start_xmit = bond_xmit_xor;
4096 		if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34)
4097 			bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4098 		else
4099 			bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4100 		break;
4101 	case BOND_MODE_BROADCAST:
4102 		bond_dev->hard_start_xmit = bond_xmit_broadcast;
4103 		break;
4104 	case BOND_MODE_8023AD:
4105 		bond_set_master_3ad_flags(bond);
4106 		bond_dev->hard_start_xmit = bond_3ad_xmit_xor;
4107 		if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34)
4108 			bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4109 		else
4110 			bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4111 		break;
4112 	case BOND_MODE_ALB:
4113 		bond_set_master_alb_flags(bond);
4114 		/* FALLTHRU */
4115 	case BOND_MODE_TLB:
4116 		bond_dev->hard_start_xmit = bond_alb_xmit;
4117 		bond_dev->set_mac_address = bond_alb_set_mac_address;
4118 		break;
4119 	default:
4120 		/* Should never happen, mode already checked */
4121 		printk(KERN_ERR DRV_NAME
4122 		       ": %s: Error: Unknown bonding mode %d\n",
4123 		       bond_dev->name,
4124 		       mode);
4125 		break;
4126 	}
4127 }
4128 
4129 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4130 				    struct ethtool_drvinfo *drvinfo)
4131 {
4132 	strncpy(drvinfo->driver, DRV_NAME, 32);
4133 	strncpy(drvinfo->version, DRV_VERSION, 32);
4134 	snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4135 }
4136 
4137 static struct ethtool_ops bond_ethtool_ops = {
4138 	.get_tx_csum		= ethtool_op_get_tx_csum,
4139 	.get_tso		= ethtool_op_get_tso,
4140 	.get_ufo		= ethtool_op_get_ufo,
4141 	.get_sg			= ethtool_op_get_sg,
4142 	.get_drvinfo		= bond_ethtool_get_drvinfo,
4143 };
4144 
4145 /*
4146  * Does not allocate but creates a /proc entry.
4147  * Allowed to fail.
4148  */
4149 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4150 {
4151 	struct bonding *bond = bond_dev->priv;
4152 
4153 	dprintk("Begin bond_init for %s\n", bond_dev->name);
4154 
4155 	/* initialize rwlocks */
4156 	rwlock_init(&bond->lock);
4157 	rwlock_init(&bond->curr_slave_lock);
4158 
4159 	bond->params = *params; /* copy params struct */
4160 
4161 	/* Initialize pointers */
4162 	bond->first_slave = NULL;
4163 	bond->curr_active_slave = NULL;
4164 	bond->current_arp_slave = NULL;
4165 	bond->primary_slave = NULL;
4166 	bond->dev = bond_dev;
4167 	INIT_LIST_HEAD(&bond->vlan_list);
4168 
4169 	/* Initialize the device entry points */
4170 	bond_dev->open = bond_open;
4171 	bond_dev->stop = bond_close;
4172 	bond_dev->get_stats = bond_get_stats;
4173 	bond_dev->do_ioctl = bond_do_ioctl;
4174 	bond_dev->ethtool_ops = &bond_ethtool_ops;
4175 	bond_dev->set_multicast_list = bond_set_multicast_list;
4176 	bond_dev->change_mtu = bond_change_mtu;
4177 	bond_dev->set_mac_address = bond_set_mac_address;
4178 
4179 	bond_set_mode_ops(bond, bond->params.mode);
4180 
4181 	bond_dev->destructor = free_netdev;
4182 
4183 	/* Initialize the device options */
4184 	bond_dev->tx_queue_len = 0;
4185 	bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4186 
4187 	/* At first, we block adding VLANs. That's the only way to
4188 	 * prevent problems that occur when adding VLANs over an
4189 	 * empty bond. The block will be removed once non-challenged
4190 	 * slaves are enslaved.
4191 	 */
4192 	bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4193 
4194 	/* don't acquire bond device's xmit_lock when
4195 	 * transmitting */
4196 	bond_dev->features |= NETIF_F_LLTX;
4197 
4198 	/* By default, we declare the bond to be fully
4199 	 * VLAN hardware accelerated capable. Special
4200 	 * care is taken in the various xmit functions
4201 	 * when there are slaves that are not hw accel
4202 	 * capable
4203 	 */
4204 	bond_dev->vlan_rx_register = bond_vlan_rx_register;
4205 	bond_dev->vlan_rx_add_vid  = bond_vlan_rx_add_vid;
4206 	bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid;
4207 	bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4208 			       NETIF_F_HW_VLAN_RX |
4209 			       NETIF_F_HW_VLAN_FILTER);
4210 
4211 #ifdef CONFIG_PROC_FS
4212 	bond_create_proc_entry(bond);
4213 #endif
4214 
4215 	list_add_tail(&bond->bond_list, &bond_dev_list);
4216 
4217 	return 0;
4218 }
4219 
4220 /* De-initialize device specific data.
4221  * Caller must hold rtnl_lock.
4222  */
4223 void bond_deinit(struct net_device *bond_dev)
4224 {
4225 	struct bonding *bond = bond_dev->priv;
4226 
4227 	list_del(&bond->bond_list);
4228 
4229 #ifdef CONFIG_PROC_FS
4230 	bond_remove_proc_entry(bond);
4231 #endif
4232 }
4233 
4234 /* Unregister and free all bond devices.
4235  * Caller must hold rtnl_lock.
4236  */
4237 static void bond_free_all(void)
4238 {
4239 	struct bonding *bond, *nxt;
4240 
4241 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4242 		struct net_device *bond_dev = bond->dev;
4243 
4244 		unregister_netdevice(bond_dev);
4245 		bond_deinit(bond_dev);
4246 	}
4247 
4248 #ifdef CONFIG_PROC_FS
4249 	bond_destroy_proc_dir();
4250 #endif
4251 }
4252 
4253 /*------------------------- Module initialization ---------------------------*/
4254 
4255 /*
4256  * Convert string input module parms.  Accept either the
4257  * number of the mode or its string name.
4258  */
4259 int bond_parse_parm(char *mode_arg, struct bond_parm_tbl *tbl)
4260 {
4261 	int i;
4262 
4263 	for (i = 0; tbl[i].modename; i++) {
4264 		if ((isdigit(*mode_arg) &&
4265 		     tbl[i].mode == simple_strtol(mode_arg, NULL, 0)) ||
4266 		    (strncmp(mode_arg, tbl[i].modename,
4267 			     strlen(tbl[i].modename)) == 0)) {
4268 			return tbl[i].mode;
4269 		}
4270 	}
4271 
4272 	return -1;
4273 }
4274 
4275 static int bond_check_params(struct bond_params *params)
4276 {
4277 	/*
4278 	 * Convert string parameters.
4279 	 */
4280 	if (mode) {
4281 		bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4282 		if (bond_mode == -1) {
4283 			printk(KERN_ERR DRV_NAME
4284 			       ": Error: Invalid bonding mode \"%s\"\n",
4285 			       mode == NULL ? "NULL" : mode);
4286 			return -EINVAL;
4287 		}
4288 	}
4289 
4290 	if (xmit_hash_policy) {
4291 		if ((bond_mode != BOND_MODE_XOR) &&
4292 		    (bond_mode != BOND_MODE_8023AD)) {
4293 			printk(KERN_INFO DRV_NAME
4294 			       ": xor_mode param is irrelevant in mode %s\n",
4295 			       bond_mode_name(bond_mode));
4296 		} else {
4297 			xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4298 							xmit_hashtype_tbl);
4299 			if (xmit_hashtype == -1) {
4300 				printk(KERN_ERR DRV_NAME
4301 			       	": Error: Invalid xmit_hash_policy \"%s\"\n",
4302 			       	xmit_hash_policy == NULL ? "NULL" :
4303 				       xmit_hash_policy);
4304 				return -EINVAL;
4305 			}
4306 		}
4307 	}
4308 
4309 	if (lacp_rate) {
4310 		if (bond_mode != BOND_MODE_8023AD) {
4311 			printk(KERN_INFO DRV_NAME
4312 			       ": lacp_rate param is irrelevant in mode %s\n",
4313 			       bond_mode_name(bond_mode));
4314 		} else {
4315 			lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4316 			if (lacp_fast == -1) {
4317 				printk(KERN_ERR DRV_NAME
4318 				       ": Error: Invalid lacp rate \"%s\"\n",
4319 				       lacp_rate == NULL ? "NULL" : lacp_rate);
4320 				return -EINVAL;
4321 			}
4322 		}
4323 	}
4324 
4325 	if (max_bonds < 1 || max_bonds > INT_MAX) {
4326 		printk(KERN_WARNING DRV_NAME
4327 		       ": Warning: max_bonds (%d) not in range %d-%d, so it "
4328 		       "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4329 		       max_bonds, 1, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4330 		max_bonds = BOND_DEFAULT_MAX_BONDS;
4331 	}
4332 
4333 	if (miimon < 0) {
4334 		printk(KERN_WARNING DRV_NAME
4335 		       ": Warning: miimon module parameter (%d), "
4336 		       "not in range 0-%d, so it was reset to %d\n",
4337 		       miimon, INT_MAX, BOND_LINK_MON_INTERV);
4338 		miimon = BOND_LINK_MON_INTERV;
4339 	}
4340 
4341 	if (updelay < 0) {
4342 		printk(KERN_WARNING DRV_NAME
4343 		       ": Warning: updelay module parameter (%d), "
4344 		       "not in range 0-%d, so it was reset to 0\n",
4345 		       updelay, INT_MAX);
4346 		updelay = 0;
4347 	}
4348 
4349 	if (downdelay < 0) {
4350 		printk(KERN_WARNING DRV_NAME
4351 		       ": Warning: downdelay module parameter (%d), "
4352 		       "not in range 0-%d, so it was reset to 0\n",
4353 		       downdelay, INT_MAX);
4354 		downdelay = 0;
4355 	}
4356 
4357 	if ((use_carrier != 0) && (use_carrier != 1)) {
4358 		printk(KERN_WARNING DRV_NAME
4359 		       ": Warning: use_carrier module parameter (%d), "
4360 		       "not of valid value (0/1), so it was set to 1\n",
4361 		       use_carrier);
4362 		use_carrier = 1;
4363 	}
4364 
4365 	/* reset values for 802.3ad */
4366 	if (bond_mode == BOND_MODE_8023AD) {
4367 		if (!miimon) {
4368 			printk(KERN_WARNING DRV_NAME
4369 			       ": Warning: miimon must be specified, "
4370 			       "otherwise bonding will not detect link "
4371 			       "failure, speed and duplex which are "
4372 			       "essential for 802.3ad operation\n");
4373 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4374 			miimon = 100;
4375 		}
4376 	}
4377 
4378 	/* reset values for TLB/ALB */
4379 	if ((bond_mode == BOND_MODE_TLB) ||
4380 	    (bond_mode == BOND_MODE_ALB)) {
4381 		if (!miimon) {
4382 			printk(KERN_WARNING DRV_NAME
4383 			       ": Warning: miimon must be specified, "
4384 			       "otherwise bonding will not detect link "
4385 			       "failure and link speed which are essential "
4386 			       "for TLB/ALB load balancing\n");
4387 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4388 			miimon = 100;
4389 		}
4390 	}
4391 
4392 	if (bond_mode == BOND_MODE_ALB) {
4393 		printk(KERN_NOTICE DRV_NAME
4394 		       ": In ALB mode you might experience client "
4395 		       "disconnections upon reconnection of a link if the "
4396 		       "bonding module updelay parameter (%d msec) is "
4397 		       "incompatible with the forwarding delay time of the "
4398 		       "switch\n",
4399 		       updelay);
4400 	}
4401 
4402 	if (!miimon) {
4403 		if (updelay || downdelay) {
4404 			/* just warn the user the up/down delay will have
4405 			 * no effect since miimon is zero...
4406 			 */
4407 			printk(KERN_WARNING DRV_NAME
4408 			       ": Warning: miimon module parameter not set "
4409 			       "and updelay (%d) or downdelay (%d) module "
4410 			       "parameter is set; updelay and downdelay have "
4411 			       "no effect unless miimon is set\n",
4412 			       updelay, downdelay);
4413 		}
4414 	} else {
4415 		/* don't allow arp monitoring */
4416 		if (arp_interval) {
4417 			printk(KERN_WARNING DRV_NAME
4418 			       ": Warning: miimon (%d) and arp_interval (%d) "
4419 			       "can't be used simultaneously, disabling ARP "
4420 			       "monitoring\n",
4421 			       miimon, arp_interval);
4422 			arp_interval = 0;
4423 		}
4424 
4425 		if ((updelay % miimon) != 0) {
4426 			printk(KERN_WARNING DRV_NAME
4427 			       ": Warning: updelay (%d) is not a multiple "
4428 			       "of miimon (%d), updelay rounded to %d ms\n",
4429 			       updelay, miimon, (updelay / miimon) * miimon);
4430 		}
4431 
4432 		updelay /= miimon;
4433 
4434 		if ((downdelay % miimon) != 0) {
4435 			printk(KERN_WARNING DRV_NAME
4436 			       ": Warning: downdelay (%d) is not a multiple "
4437 			       "of miimon (%d), downdelay rounded to %d ms\n",
4438 			       downdelay, miimon,
4439 			       (downdelay / miimon) * miimon);
4440 		}
4441 
4442 		downdelay /= miimon;
4443 	}
4444 
4445 	if (arp_interval < 0) {
4446 		printk(KERN_WARNING DRV_NAME
4447 		       ": Warning: arp_interval module parameter (%d) "
4448 		       ", not in range 0-%d, so it was reset to %d\n",
4449 		       arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4450 		arp_interval = BOND_LINK_ARP_INTERV;
4451 	}
4452 
4453 	for (arp_ip_count = 0;
4454 	     (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4455 	     arp_ip_count++) {
4456 		/* not complete check, but should be good enough to
4457 		   catch mistakes */
4458 		if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4459 			printk(KERN_WARNING DRV_NAME
4460 			       ": Warning: bad arp_ip_target module parameter "
4461 			       "(%s), ARP monitoring will not be performed\n",
4462 			       arp_ip_target[arp_ip_count]);
4463 			arp_interval = 0;
4464 		} else {
4465 			u32 ip = in_aton(arp_ip_target[arp_ip_count]);
4466 			arp_target[arp_ip_count] = ip;
4467 		}
4468 	}
4469 
4470 	if (arp_interval && !arp_ip_count) {
4471 		/* don't allow arping if no arp_ip_target given... */
4472 		printk(KERN_WARNING DRV_NAME
4473 		       ": Warning: arp_interval module parameter (%d) "
4474 		       "specified without providing an arp_ip_target "
4475 		       "parameter, arp_interval was reset to 0\n",
4476 		       arp_interval);
4477 		arp_interval = 0;
4478 	}
4479 
4480 	if (miimon) {
4481 		printk(KERN_INFO DRV_NAME
4482 		       ": MII link monitoring set to %d ms\n",
4483 		       miimon);
4484 	} else if (arp_interval) {
4485 		int i;
4486 
4487 		printk(KERN_INFO DRV_NAME
4488 		       ": ARP monitoring set to %d ms with %d target(s):",
4489 		       arp_interval, arp_ip_count);
4490 
4491 		for (i = 0; i < arp_ip_count; i++)
4492 			printk (" %s", arp_ip_target[i]);
4493 
4494 		printk("\n");
4495 
4496 	} else {
4497 		/* miimon and arp_interval not set, we need one so things
4498 		 * work as expected, see bonding.txt for details
4499 		 */
4500 		printk(KERN_WARNING DRV_NAME
4501 		       ": Warning: either miimon or arp_interval and "
4502 		       "arp_ip_target module parameters must be specified, "
4503 		       "otherwise bonding will not detect link failures! see "
4504 		       "bonding.txt for details.\n");
4505 	}
4506 
4507 	if (primary && !USES_PRIMARY(bond_mode)) {
4508 		/* currently, using a primary only makes sense
4509 		 * in active backup, TLB or ALB modes
4510 		 */
4511 		printk(KERN_WARNING DRV_NAME
4512 		       ": Warning: %s primary device specified but has no "
4513 		       "effect in %s mode\n",
4514 		       primary, bond_mode_name(bond_mode));
4515 		primary = NULL;
4516 	}
4517 
4518 	/* fill params struct with the proper values */
4519 	params->mode = bond_mode;
4520 	params->xmit_policy = xmit_hashtype;
4521 	params->miimon = miimon;
4522 	params->arp_interval = arp_interval;
4523 	params->updelay = updelay;
4524 	params->downdelay = downdelay;
4525 	params->use_carrier = use_carrier;
4526 	params->lacp_fast = lacp_fast;
4527 	params->primary[0] = 0;
4528 
4529 	if (primary) {
4530 		strncpy(params->primary, primary, IFNAMSIZ);
4531 		params->primary[IFNAMSIZ - 1] = 0;
4532 	}
4533 
4534 	memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4535 
4536 	return 0;
4537 }
4538 
4539 /* Create a new bond based on the specified name and bonding parameters.
4540  * Caller must NOT hold rtnl_lock; we need to release it here before we
4541  * set up our sysfs entries.
4542  */
4543 int bond_create(char *name, struct bond_params *params, struct bonding **newbond)
4544 {
4545 	struct net_device *bond_dev;
4546 	int res;
4547 
4548 	rtnl_lock();
4549 	bond_dev = alloc_netdev(sizeof(struct bonding), name, ether_setup);
4550 	if (!bond_dev) {
4551 		printk(KERN_ERR DRV_NAME
4552 		       ": %s: eek! can't alloc netdev!\n",
4553 		       name);
4554 		res = -ENOMEM;
4555 		goto out_rtnl;
4556 	}
4557 
4558 	/* bond_init() must be called after dev_alloc_name() (for the
4559 	 * /proc files), but before register_netdevice(), because we
4560 	 * need to set function pointers.
4561 	 */
4562 
4563 	res = bond_init(bond_dev, params);
4564 	if (res < 0) {
4565 		goto out_netdev;
4566 	}
4567 
4568 	SET_MODULE_OWNER(bond_dev);
4569 
4570 	res = register_netdevice(bond_dev);
4571 	if (res < 0) {
4572 		goto out_bond;
4573 	}
4574 	if (newbond)
4575 		*newbond = bond_dev->priv;
4576 
4577 	netif_carrier_off(bond_dev);
4578 
4579 	rtnl_unlock(); /* allows sysfs registration of net device */
4580 	res = bond_create_sysfs_entry(bond_dev->priv);
4581 	goto done;
4582 out_bond:
4583 	bond_deinit(bond_dev);
4584 out_netdev:
4585 	free_netdev(bond_dev);
4586 out_rtnl:
4587 	rtnl_unlock();
4588 done:
4589 	return res;
4590 }
4591 
4592 static int __init bonding_init(void)
4593 {
4594 	int i;
4595 	int res;
4596 	char new_bond_name[8];  /* Enough room for 999 bonds at init. */
4597 
4598 	printk(KERN_INFO "%s", version);
4599 
4600 	res = bond_check_params(&bonding_defaults);
4601 	if (res) {
4602 		goto out;
4603 	}
4604 
4605 #ifdef CONFIG_PROC_FS
4606 	bond_create_proc_dir();
4607 #endif
4608 	for (i = 0; i < max_bonds; i++) {
4609 		sprintf(new_bond_name, "bond%d",i);
4610 		res = bond_create(new_bond_name,&bonding_defaults, NULL);
4611 		if (res)
4612 			goto err;
4613 	}
4614 
4615 	res = bond_create_sysfs();
4616 	if (res)
4617 		goto err;
4618 
4619 	register_netdevice_notifier(&bond_netdev_notifier);
4620 	register_inetaddr_notifier(&bond_inetaddr_notifier);
4621 
4622 	goto out;
4623 err:
4624 	rtnl_lock();
4625 	bond_free_all();
4626 	bond_destroy_sysfs();
4627 	rtnl_unlock();
4628 out:
4629 	return res;
4630 
4631 }
4632 
4633 static void __exit bonding_exit(void)
4634 {
4635 	unregister_netdevice_notifier(&bond_netdev_notifier);
4636 	unregister_inetaddr_notifier(&bond_inetaddr_notifier);
4637 
4638 	rtnl_lock();
4639 	bond_free_all();
4640 	bond_destroy_sysfs();
4641 	rtnl_unlock();
4642 }
4643 
4644 module_init(bonding_init);
4645 module_exit(bonding_exit);
4646 MODULE_LICENSE("GPL");
4647 MODULE_VERSION(DRV_VERSION);
4648 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
4649 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
4650 MODULE_SUPPORTED_DEVICE("most ethernet devices");
4651 
4652 /*
4653  * Local variables:
4654  *  c-indent-level: 8
4655  *  c-basic-offset: 8
4656  *  tab-width: 8
4657  * End:
4658  */
4659 
4660