1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 //#define BONDING_DEBUG 1 35 36 #include <linux/kernel.h> 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/fcntl.h> 40 #include <linux/interrupt.h> 41 #include <linux/ptrace.h> 42 #include <linux/ioport.h> 43 #include <linux/in.h> 44 #include <net/ip.h> 45 #include <linux/ip.h> 46 #include <linux/tcp.h> 47 #include <linux/udp.h> 48 #include <linux/slab.h> 49 #include <linux/string.h> 50 #include <linux/init.h> 51 #include <linux/timer.h> 52 #include <linux/socket.h> 53 #include <linux/ctype.h> 54 #include <linux/inet.h> 55 #include <linux/bitops.h> 56 #include <asm/system.h> 57 #include <asm/io.h> 58 #include <asm/dma.h> 59 #include <asm/uaccess.h> 60 #include <linux/errno.h> 61 #include <linux/netdevice.h> 62 #include <linux/inetdevice.h> 63 #include <linux/igmp.h> 64 #include <linux/etherdevice.h> 65 #include <linux/skbuff.h> 66 #include <net/sock.h> 67 #include <linux/rtnetlink.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/smp.h> 71 #include <linux/if_ether.h> 72 #include <net/arp.h> 73 #include <linux/mii.h> 74 #include <linux/ethtool.h> 75 #include <linux/if_vlan.h> 76 #include <linux/if_bonding.h> 77 #include <net/route.h> 78 #include "bonding.h" 79 #include "bond_3ad.h" 80 #include "bond_alb.h" 81 82 /*---------------------------- Module parameters ----------------------------*/ 83 84 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 85 #define BOND_LINK_MON_INTERV 0 86 #define BOND_LINK_ARP_INTERV 0 87 88 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 89 static int miimon = BOND_LINK_MON_INTERV; 90 static int updelay = 0; 91 static int downdelay = 0; 92 static int use_carrier = 1; 93 static char *mode = NULL; 94 static char *primary = NULL; 95 static char *lacp_rate = NULL; 96 static char *xmit_hash_policy = NULL; 97 static int arp_interval = BOND_LINK_ARP_INTERV; 98 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, }; 99 static char *arp_validate = NULL; 100 struct bond_params bonding_defaults; 101 102 module_param(max_bonds, int, 0); 103 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 104 module_param(miimon, int, 0); 105 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 106 module_param(updelay, int, 0); 107 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 108 module_param(downdelay, int, 0); 109 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 110 "in milliseconds"); 111 module_param(use_carrier, int, 0); 112 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 113 "0 for off, 1 for on (default)"); 114 module_param(mode, charp, 0); 115 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, " 116 "1 for active-backup, 2 for balance-xor, " 117 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 118 "6 for balance-alb"); 119 module_param(primary, charp, 0); 120 MODULE_PARM_DESC(primary, "Primary network device to use"); 121 module_param(lacp_rate, charp, 0); 122 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner " 123 "(slow/fast)"); 124 module_param(xmit_hash_policy, charp, 0); 125 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)" 126 ", 1 for layer 3+4"); 127 module_param(arp_interval, int, 0); 128 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 129 module_param_array(arp_ip_target, charp, NULL, 0); 130 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 131 module_param(arp_validate, charp, 0); 132 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all"); 133 134 /*----------------------------- Global variables ----------------------------*/ 135 136 static const char * const version = 137 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n"; 138 139 LIST_HEAD(bond_dev_list); 140 141 #ifdef CONFIG_PROC_FS 142 static struct proc_dir_entry *bond_proc_dir = NULL; 143 #endif 144 145 extern struct rw_semaphore bonding_rwsem; 146 static u32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ; 147 static int arp_ip_count = 0; 148 static int bond_mode = BOND_MODE_ROUNDROBIN; 149 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2; 150 static int lacp_fast = 0; 151 152 153 struct bond_parm_tbl bond_lacp_tbl[] = { 154 { "slow", AD_LACP_SLOW}, 155 { "fast", AD_LACP_FAST}, 156 { NULL, -1}, 157 }; 158 159 struct bond_parm_tbl bond_mode_tbl[] = { 160 { "balance-rr", BOND_MODE_ROUNDROBIN}, 161 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 162 { "balance-xor", BOND_MODE_XOR}, 163 { "broadcast", BOND_MODE_BROADCAST}, 164 { "802.3ad", BOND_MODE_8023AD}, 165 { "balance-tlb", BOND_MODE_TLB}, 166 { "balance-alb", BOND_MODE_ALB}, 167 { NULL, -1}, 168 }; 169 170 struct bond_parm_tbl xmit_hashtype_tbl[] = { 171 { "layer2", BOND_XMIT_POLICY_LAYER2}, 172 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 173 { NULL, -1}, 174 }; 175 176 struct bond_parm_tbl arp_validate_tbl[] = { 177 { "none", BOND_ARP_VALIDATE_NONE}, 178 { "active", BOND_ARP_VALIDATE_ACTIVE}, 179 { "backup", BOND_ARP_VALIDATE_BACKUP}, 180 { "all", BOND_ARP_VALIDATE_ALL}, 181 { NULL, -1}, 182 }; 183 184 /*-------------------------- Forward declarations ---------------------------*/ 185 186 static void bond_send_gratuitous_arp(struct bonding *bond); 187 188 /*---------------------------- General routines -----------------------------*/ 189 190 const char *bond_mode_name(int mode) 191 { 192 switch (mode) { 193 case BOND_MODE_ROUNDROBIN : 194 return "load balancing (round-robin)"; 195 case BOND_MODE_ACTIVEBACKUP : 196 return "fault-tolerance (active-backup)"; 197 case BOND_MODE_XOR : 198 return "load balancing (xor)"; 199 case BOND_MODE_BROADCAST : 200 return "fault-tolerance (broadcast)"; 201 case BOND_MODE_8023AD: 202 return "IEEE 802.3ad Dynamic link aggregation"; 203 case BOND_MODE_TLB: 204 return "transmit load balancing"; 205 case BOND_MODE_ALB: 206 return "adaptive load balancing"; 207 default: 208 return "unknown"; 209 } 210 } 211 212 /*---------------------------------- VLAN -----------------------------------*/ 213 214 /** 215 * bond_add_vlan - add a new vlan id on bond 216 * @bond: bond that got the notification 217 * @vlan_id: the vlan id to add 218 * 219 * Returns -ENOMEM if allocation failed. 220 */ 221 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 222 { 223 struct vlan_entry *vlan; 224 225 dprintk("bond: %s, vlan id %d\n", 226 (bond ? bond->dev->name: "None"), vlan_id); 227 228 vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL); 229 if (!vlan) { 230 return -ENOMEM; 231 } 232 233 INIT_LIST_HEAD(&vlan->vlan_list); 234 vlan->vlan_id = vlan_id; 235 vlan->vlan_ip = 0; 236 237 write_lock_bh(&bond->lock); 238 239 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 240 241 write_unlock_bh(&bond->lock); 242 243 dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 244 245 return 0; 246 } 247 248 /** 249 * bond_del_vlan - delete a vlan id from bond 250 * @bond: bond that got the notification 251 * @vlan_id: the vlan id to delete 252 * 253 * returns -ENODEV if @vlan_id was not found in @bond. 254 */ 255 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 256 { 257 struct vlan_entry *vlan, *next; 258 int res = -ENODEV; 259 260 dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 261 262 write_lock_bh(&bond->lock); 263 264 list_for_each_entry_safe(vlan, next, &bond->vlan_list, vlan_list) { 265 if (vlan->vlan_id == vlan_id) { 266 list_del(&vlan->vlan_list); 267 268 if ((bond->params.mode == BOND_MODE_TLB) || 269 (bond->params.mode == BOND_MODE_ALB)) { 270 bond_alb_clear_vlan(bond, vlan_id); 271 } 272 273 dprintk("removed VLAN ID %d from bond %s\n", vlan_id, 274 bond->dev->name); 275 276 kfree(vlan); 277 278 if (list_empty(&bond->vlan_list) && 279 (bond->slave_cnt == 0)) { 280 /* Last VLAN removed and no slaves, so 281 * restore block on adding VLANs. This will 282 * be removed once new slaves that are not 283 * VLAN challenged will be added. 284 */ 285 bond->dev->features |= NETIF_F_VLAN_CHALLENGED; 286 } 287 288 res = 0; 289 goto out; 290 } 291 } 292 293 dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id, 294 bond->dev->name); 295 296 out: 297 write_unlock_bh(&bond->lock); 298 return res; 299 } 300 301 /** 302 * bond_has_challenged_slaves 303 * @bond: the bond we're working on 304 * 305 * Searches the slave list. Returns 1 if a vlan challenged slave 306 * was found, 0 otherwise. 307 * 308 * Assumes bond->lock is held. 309 */ 310 static int bond_has_challenged_slaves(struct bonding *bond) 311 { 312 struct slave *slave; 313 int i; 314 315 bond_for_each_slave(bond, slave, i) { 316 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) { 317 dprintk("found VLAN challenged slave - %s\n", 318 slave->dev->name); 319 return 1; 320 } 321 } 322 323 dprintk("no VLAN challenged slaves found\n"); 324 return 0; 325 } 326 327 /** 328 * bond_next_vlan - safely skip to the next item in the vlans list. 329 * @bond: the bond we're working on 330 * @curr: item we're advancing from 331 * 332 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 333 * or @curr->next otherwise (even if it is @curr itself again). 334 * 335 * Caller must hold bond->lock 336 */ 337 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 338 { 339 struct vlan_entry *next, *last; 340 341 if (list_empty(&bond->vlan_list)) { 342 return NULL; 343 } 344 345 if (!curr) { 346 next = list_entry(bond->vlan_list.next, 347 struct vlan_entry, vlan_list); 348 } else { 349 last = list_entry(bond->vlan_list.prev, 350 struct vlan_entry, vlan_list); 351 if (last == curr) { 352 next = list_entry(bond->vlan_list.next, 353 struct vlan_entry, vlan_list); 354 } else { 355 next = list_entry(curr->vlan_list.next, 356 struct vlan_entry, vlan_list); 357 } 358 } 359 360 return next; 361 } 362 363 /** 364 * bond_dev_queue_xmit - Prepare skb for xmit. 365 * 366 * @bond: bond device that got this skb for tx. 367 * @skb: hw accel VLAN tagged skb to transmit 368 * @slave_dev: slave that is supposed to xmit this skbuff 369 * 370 * When the bond gets an skb to transmit that is 371 * already hardware accelerated VLAN tagged, and it 372 * needs to relay this skb to a slave that is not 373 * hw accel capable, the skb needs to be "unaccelerated", 374 * i.e. strip the hwaccel tag and re-insert it as part 375 * of the payload. 376 */ 377 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev) 378 { 379 unsigned short vlan_id; 380 381 if (!list_empty(&bond->vlan_list) && 382 !(slave_dev->features & NETIF_F_HW_VLAN_TX) && 383 vlan_get_tag(skb, &vlan_id) == 0) { 384 skb->dev = slave_dev; 385 skb = vlan_put_tag(skb, vlan_id); 386 if (!skb) { 387 /* vlan_put_tag() frees the skb in case of error, 388 * so return success here so the calling functions 389 * won't attempt to free is again. 390 */ 391 return 0; 392 } 393 } else { 394 skb->dev = slave_dev; 395 } 396 397 skb->priority = 1; 398 dev_queue_xmit(skb); 399 400 return 0; 401 } 402 403 /* 404 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid 405 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a 406 * lock because: 407 * a. This operation is performed in IOCTL context, 408 * b. The operation is protected by the RTNL semaphore in the 8021q code, 409 * c. Holding a lock with BH disabled while directly calling a base driver 410 * entry point is generally a BAD idea. 411 * 412 * The design of synchronization/protection for this operation in the 8021q 413 * module is good for one or more VLAN devices over a single physical device 414 * and cannot be extended for a teaming solution like bonding, so there is a 415 * potential race condition here where a net device from the vlan group might 416 * be referenced (either by a base driver or the 8021q code) while it is being 417 * removed from the system. However, it turns out we're not making matters 418 * worse, and if it works for regular VLAN usage it will work here too. 419 */ 420 421 /** 422 * bond_vlan_rx_register - Propagates registration to slaves 423 * @bond_dev: bonding net device that got called 424 * @grp: vlan group being registered 425 */ 426 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp) 427 { 428 struct bonding *bond = bond_dev->priv; 429 struct slave *slave; 430 int i; 431 432 bond->vlgrp = grp; 433 434 bond_for_each_slave(bond, slave, i) { 435 struct net_device *slave_dev = slave->dev; 436 437 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 438 slave_dev->vlan_rx_register) { 439 slave_dev->vlan_rx_register(slave_dev, grp); 440 } 441 } 442 } 443 444 /** 445 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 446 * @bond_dev: bonding net device that got called 447 * @vid: vlan id being added 448 */ 449 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid) 450 { 451 struct bonding *bond = bond_dev->priv; 452 struct slave *slave; 453 int i, res; 454 455 bond_for_each_slave(bond, slave, i) { 456 struct net_device *slave_dev = slave->dev; 457 458 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 459 slave_dev->vlan_rx_add_vid) { 460 slave_dev->vlan_rx_add_vid(slave_dev, vid); 461 } 462 } 463 464 res = bond_add_vlan(bond, vid); 465 if (res) { 466 printk(KERN_ERR DRV_NAME 467 ": %s: Error: Failed to add vlan id %d\n", 468 bond_dev->name, vid); 469 } 470 } 471 472 /** 473 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 474 * @bond_dev: bonding net device that got called 475 * @vid: vlan id being removed 476 */ 477 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid) 478 { 479 struct bonding *bond = bond_dev->priv; 480 struct slave *slave; 481 struct net_device *vlan_dev; 482 int i, res; 483 484 bond_for_each_slave(bond, slave, i) { 485 struct net_device *slave_dev = slave->dev; 486 487 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 488 slave_dev->vlan_rx_kill_vid) { 489 /* Save and then restore vlan_dev in the grp array, 490 * since the slave's driver might clear it. 491 */ 492 vlan_dev = vlan_group_get_device(bond->vlgrp, vid); 493 slave_dev->vlan_rx_kill_vid(slave_dev, vid); 494 vlan_group_set_device(bond->vlgrp, vid, vlan_dev); 495 } 496 } 497 498 res = bond_del_vlan(bond, vid); 499 if (res) { 500 printk(KERN_ERR DRV_NAME 501 ": %s: Error: Failed to remove vlan id %d\n", 502 bond_dev->name, vid); 503 } 504 } 505 506 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 507 { 508 struct vlan_entry *vlan; 509 510 write_lock_bh(&bond->lock); 511 512 if (list_empty(&bond->vlan_list)) { 513 goto out; 514 } 515 516 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 517 slave_dev->vlan_rx_register) { 518 slave_dev->vlan_rx_register(slave_dev, bond->vlgrp); 519 } 520 521 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 522 !(slave_dev->vlan_rx_add_vid)) { 523 goto out; 524 } 525 526 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 527 slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id); 528 } 529 530 out: 531 write_unlock_bh(&bond->lock); 532 } 533 534 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev) 535 { 536 struct vlan_entry *vlan; 537 struct net_device *vlan_dev; 538 539 write_lock_bh(&bond->lock); 540 541 if (list_empty(&bond->vlan_list)) { 542 goto out; 543 } 544 545 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 546 !(slave_dev->vlan_rx_kill_vid)) { 547 goto unreg; 548 } 549 550 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 551 /* Save and then restore vlan_dev in the grp array, 552 * since the slave's driver might clear it. 553 */ 554 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 555 slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id); 556 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev); 557 } 558 559 unreg: 560 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 561 slave_dev->vlan_rx_register) { 562 slave_dev->vlan_rx_register(slave_dev, NULL); 563 } 564 565 out: 566 write_unlock_bh(&bond->lock); 567 } 568 569 /*------------------------------- Link status -------------------------------*/ 570 571 /* 572 * Set the carrier state for the master according to the state of its 573 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 574 * do special 802.3ad magic. 575 * 576 * Returns zero if carrier state does not change, nonzero if it does. 577 */ 578 static int bond_set_carrier(struct bonding *bond) 579 { 580 struct slave *slave; 581 int i; 582 583 if (bond->slave_cnt == 0) 584 goto down; 585 586 if (bond->params.mode == BOND_MODE_8023AD) 587 return bond_3ad_set_carrier(bond); 588 589 bond_for_each_slave(bond, slave, i) { 590 if (slave->link == BOND_LINK_UP) { 591 if (!netif_carrier_ok(bond->dev)) { 592 netif_carrier_on(bond->dev); 593 return 1; 594 } 595 return 0; 596 } 597 } 598 599 down: 600 if (netif_carrier_ok(bond->dev)) { 601 netif_carrier_off(bond->dev); 602 return 1; 603 } 604 return 0; 605 } 606 607 /* 608 * Get link speed and duplex from the slave's base driver 609 * using ethtool. If for some reason the call fails or the 610 * values are invalid, fake speed and duplex to 100/Full 611 * and return error. 612 */ 613 static int bond_update_speed_duplex(struct slave *slave) 614 { 615 struct net_device *slave_dev = slave->dev; 616 static int (* ioctl)(struct net_device *, struct ifreq *, int); 617 struct ifreq ifr; 618 struct ethtool_cmd etool; 619 620 /* Fake speed and duplex */ 621 slave->speed = SPEED_100; 622 slave->duplex = DUPLEX_FULL; 623 624 if (slave_dev->ethtool_ops) { 625 int res; 626 627 if (!slave_dev->ethtool_ops->get_settings) { 628 return -1; 629 } 630 631 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool); 632 if (res < 0) { 633 return -1; 634 } 635 636 goto verify; 637 } 638 639 ioctl = slave_dev->do_ioctl; 640 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 641 etool.cmd = ETHTOOL_GSET; 642 ifr.ifr_data = (char*)&etool; 643 if (!ioctl || (IOCTL(slave_dev, &ifr, SIOCETHTOOL) < 0)) { 644 return -1; 645 } 646 647 verify: 648 switch (etool.speed) { 649 case SPEED_10: 650 case SPEED_100: 651 case SPEED_1000: 652 case SPEED_10000: 653 break; 654 default: 655 return -1; 656 } 657 658 switch (etool.duplex) { 659 case DUPLEX_FULL: 660 case DUPLEX_HALF: 661 break; 662 default: 663 return -1; 664 } 665 666 slave->speed = etool.speed; 667 slave->duplex = etool.duplex; 668 669 return 0; 670 } 671 672 /* 673 * if <dev> supports MII link status reporting, check its link status. 674 * 675 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 676 * depening upon the setting of the use_carrier parameter. 677 * 678 * Return either BMSR_LSTATUS, meaning that the link is up (or we 679 * can't tell and just pretend it is), or 0, meaning that the link is 680 * down. 681 * 682 * If reporting is non-zero, instead of faking link up, return -1 if 683 * both ETHTOOL and MII ioctls fail (meaning the device does not 684 * support them). If use_carrier is set, return whatever it says. 685 * It'd be nice if there was a good way to tell if a driver supports 686 * netif_carrier, but there really isn't. 687 */ 688 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting) 689 { 690 static int (* ioctl)(struct net_device *, struct ifreq *, int); 691 struct ifreq ifr; 692 struct mii_ioctl_data *mii; 693 struct ethtool_value etool; 694 695 if (bond->params.use_carrier) { 696 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 697 } 698 699 ioctl = slave_dev->do_ioctl; 700 if (ioctl) { 701 /* TODO: set pointer to correct ioctl on a per team member */ 702 /* bases to make this more efficient. that is, once */ 703 /* we determine the correct ioctl, we will always */ 704 /* call it and not the others for that team */ 705 /* member. */ 706 707 /* 708 * We cannot assume that SIOCGMIIPHY will also read a 709 * register; not all network drivers (e.g., e100) 710 * support that. 711 */ 712 713 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 714 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 715 mii = if_mii(&ifr); 716 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 717 mii->reg_num = MII_BMSR; 718 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) { 719 return (mii->val_out & BMSR_LSTATUS); 720 } 721 } 722 } 723 724 /* try SIOCETHTOOL ioctl, some drivers cache ETHTOOL_GLINK */ 725 /* for a period of time so we attempt to get link status */ 726 /* from it last if the above MII ioctls fail... */ 727 if (slave_dev->ethtool_ops) { 728 if (slave_dev->ethtool_ops->get_link) { 729 u32 link; 730 731 link = slave_dev->ethtool_ops->get_link(slave_dev); 732 733 return link ? BMSR_LSTATUS : 0; 734 } 735 } 736 737 if (ioctl) { 738 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 739 etool.cmd = ETHTOOL_GLINK; 740 ifr.ifr_data = (char*)&etool; 741 if (IOCTL(slave_dev, &ifr, SIOCETHTOOL) == 0) { 742 if (etool.data == 1) { 743 return BMSR_LSTATUS; 744 } else { 745 dprintk("SIOCETHTOOL shows link down\n"); 746 return 0; 747 } 748 } 749 } 750 751 /* 752 * If reporting, report that either there's no dev->do_ioctl, 753 * or both SIOCGMIIREG and SIOCETHTOOL failed (meaning that we 754 * cannot report link status). If not reporting, pretend 755 * we're ok. 756 */ 757 return (reporting ? -1 : BMSR_LSTATUS); 758 } 759 760 /*----------------------------- Multicast list ------------------------------*/ 761 762 /* 763 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise 764 */ 765 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2) 766 { 767 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 && 768 dmi1->dmi_addrlen == dmi2->dmi_addrlen; 769 } 770 771 /* 772 * returns dmi entry if found, NULL otherwise 773 */ 774 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) 775 { 776 struct dev_mc_list *idmi; 777 778 for (idmi = mc_list; idmi; idmi = idmi->next) { 779 if (bond_is_dmi_same(dmi, idmi)) { 780 return idmi; 781 } 782 } 783 784 return NULL; 785 } 786 787 /* 788 * Push the promiscuity flag down to appropriate slaves 789 */ 790 static void bond_set_promiscuity(struct bonding *bond, int inc) 791 { 792 if (USES_PRIMARY(bond->params.mode)) { 793 /* write lock already acquired */ 794 if (bond->curr_active_slave) { 795 dev_set_promiscuity(bond->curr_active_slave->dev, inc); 796 } 797 } else { 798 struct slave *slave; 799 int i; 800 bond_for_each_slave(bond, slave, i) { 801 dev_set_promiscuity(slave->dev, inc); 802 } 803 } 804 } 805 806 /* 807 * Push the allmulti flag down to all slaves 808 */ 809 static void bond_set_allmulti(struct bonding *bond, int inc) 810 { 811 if (USES_PRIMARY(bond->params.mode)) { 812 /* write lock already acquired */ 813 if (bond->curr_active_slave) { 814 dev_set_allmulti(bond->curr_active_slave->dev, inc); 815 } 816 } else { 817 struct slave *slave; 818 int i; 819 bond_for_each_slave(bond, slave, i) { 820 dev_set_allmulti(slave->dev, inc); 821 } 822 } 823 } 824 825 /* 826 * Add a Multicast address to slaves 827 * according to mode 828 */ 829 static void bond_mc_add(struct bonding *bond, void *addr, int alen) 830 { 831 if (USES_PRIMARY(bond->params.mode)) { 832 /* write lock already acquired */ 833 if (bond->curr_active_slave) { 834 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0); 835 } 836 } else { 837 struct slave *slave; 838 int i; 839 bond_for_each_slave(bond, slave, i) { 840 dev_mc_add(slave->dev, addr, alen, 0); 841 } 842 } 843 } 844 845 /* 846 * Remove a multicast address from slave 847 * according to mode 848 */ 849 static void bond_mc_delete(struct bonding *bond, void *addr, int alen) 850 { 851 if (USES_PRIMARY(bond->params.mode)) { 852 /* write lock already acquired */ 853 if (bond->curr_active_slave) { 854 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0); 855 } 856 } else { 857 struct slave *slave; 858 int i; 859 bond_for_each_slave(bond, slave, i) { 860 dev_mc_delete(slave->dev, addr, alen, 0); 861 } 862 } 863 } 864 865 866 /* 867 * Retrieve the list of registered multicast addresses for the bonding 868 * device and retransmit an IGMP JOIN request to the current active 869 * slave. 870 */ 871 static void bond_resend_igmp_join_requests(struct bonding *bond) 872 { 873 struct in_device *in_dev; 874 struct ip_mc_list *im; 875 876 rcu_read_lock(); 877 in_dev = __in_dev_get_rcu(bond->dev); 878 if (in_dev) { 879 for (im = in_dev->mc_list; im; im = im->next) { 880 ip_mc_rejoin_group(im); 881 } 882 } 883 884 rcu_read_unlock(); 885 } 886 887 /* 888 * Totally destroys the mc_list in bond 889 */ 890 static void bond_mc_list_destroy(struct bonding *bond) 891 { 892 struct dev_mc_list *dmi; 893 894 dmi = bond->mc_list; 895 while (dmi) { 896 bond->mc_list = dmi->next; 897 kfree(dmi); 898 dmi = bond->mc_list; 899 } 900 bond->mc_list = NULL; 901 } 902 903 /* 904 * Copy all the Multicast addresses from src to the bonding device dst 905 */ 906 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond, 907 gfp_t gfp_flag) 908 { 909 struct dev_mc_list *dmi, *new_dmi; 910 911 for (dmi = mc_list; dmi; dmi = dmi->next) { 912 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag); 913 914 if (!new_dmi) { 915 /* FIXME: Potential memory leak !!! */ 916 return -ENOMEM; 917 } 918 919 new_dmi->next = bond->mc_list; 920 bond->mc_list = new_dmi; 921 new_dmi->dmi_addrlen = dmi->dmi_addrlen; 922 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen); 923 new_dmi->dmi_users = dmi->dmi_users; 924 new_dmi->dmi_gusers = dmi->dmi_gusers; 925 } 926 927 return 0; 928 } 929 930 /* 931 * flush all members of flush->mc_list from device dev->mc_list 932 */ 933 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev) 934 { 935 struct bonding *bond = bond_dev->priv; 936 struct dev_mc_list *dmi; 937 938 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 939 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 940 } 941 942 if (bond->params.mode == BOND_MODE_8023AD) { 943 /* del lacpdu mc addr from mc list */ 944 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 945 946 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 947 } 948 } 949 950 /*--------------------------- Active slave change ---------------------------*/ 951 952 /* 953 * Update the mc list and multicast-related flags for the new and 954 * old active slaves (if any) according to the multicast mode, and 955 * promiscuous flags unconditionally. 956 */ 957 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active) 958 { 959 struct dev_mc_list *dmi; 960 961 if (!USES_PRIMARY(bond->params.mode)) { 962 /* nothing to do - mc list is already up-to-date on 963 * all slaves 964 */ 965 return; 966 } 967 968 if (old_active) { 969 if (bond->dev->flags & IFF_PROMISC) { 970 dev_set_promiscuity(old_active->dev, -1); 971 } 972 973 if (bond->dev->flags & IFF_ALLMULTI) { 974 dev_set_allmulti(old_active->dev, -1); 975 } 976 977 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 978 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 979 } 980 } 981 982 if (new_active) { 983 if (bond->dev->flags & IFF_PROMISC) { 984 dev_set_promiscuity(new_active->dev, 1); 985 } 986 987 if (bond->dev->flags & IFF_ALLMULTI) { 988 dev_set_allmulti(new_active->dev, 1); 989 } 990 991 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 992 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 993 } 994 bond_resend_igmp_join_requests(bond); 995 } 996 } 997 998 /** 999 * find_best_interface - select the best available slave to be the active one 1000 * @bond: our bonding struct 1001 * 1002 * Warning: Caller must hold curr_slave_lock for writing. 1003 */ 1004 static struct slave *bond_find_best_slave(struct bonding *bond) 1005 { 1006 struct slave *new_active, *old_active; 1007 struct slave *bestslave = NULL; 1008 int mintime = bond->params.updelay; 1009 int i; 1010 1011 new_active = old_active = bond->curr_active_slave; 1012 1013 if (!new_active) { /* there were no active slaves left */ 1014 if (bond->slave_cnt > 0) { /* found one slave */ 1015 new_active = bond->first_slave; 1016 } else { 1017 return NULL; /* still no slave, return NULL */ 1018 } 1019 } 1020 1021 /* first try the primary link; if arping, a link must tx/rx traffic 1022 * before it can be considered the curr_active_slave - also, we would skip 1023 * slaves between the curr_active_slave and primary_slave that may be up 1024 * and able to arp 1025 */ 1026 if ((bond->primary_slave) && 1027 (!bond->params.arp_interval) && 1028 (IS_UP(bond->primary_slave->dev))) { 1029 new_active = bond->primary_slave; 1030 } 1031 1032 /* remember where to stop iterating over the slaves */ 1033 old_active = new_active; 1034 1035 bond_for_each_slave_from(bond, new_active, i, old_active) { 1036 if (IS_UP(new_active->dev)) { 1037 if (new_active->link == BOND_LINK_UP) { 1038 return new_active; 1039 } else if (new_active->link == BOND_LINK_BACK) { 1040 /* link up, but waiting for stabilization */ 1041 if (new_active->delay < mintime) { 1042 mintime = new_active->delay; 1043 bestslave = new_active; 1044 } 1045 } 1046 } 1047 } 1048 1049 return bestslave; 1050 } 1051 1052 /** 1053 * change_active_interface - change the active slave into the specified one 1054 * @bond: our bonding struct 1055 * @new: the new slave to make the active one 1056 * 1057 * Set the new slave to the bond's settings and unset them on the old 1058 * curr_active_slave. 1059 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1060 * 1061 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1062 * because it is apparently the best available slave we have, even though its 1063 * updelay hasn't timed out yet. 1064 * 1065 * Warning: Caller must hold curr_slave_lock for writing. 1066 */ 1067 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1068 { 1069 struct slave *old_active = bond->curr_active_slave; 1070 1071 if (old_active == new_active) { 1072 return; 1073 } 1074 1075 if (new_active) { 1076 if (new_active->link == BOND_LINK_BACK) { 1077 if (USES_PRIMARY(bond->params.mode)) { 1078 printk(KERN_INFO DRV_NAME 1079 ": %s: making interface %s the new " 1080 "active one %d ms earlier.\n", 1081 bond->dev->name, new_active->dev->name, 1082 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1083 } 1084 1085 new_active->delay = 0; 1086 new_active->link = BOND_LINK_UP; 1087 new_active->jiffies = jiffies; 1088 1089 if (bond->params.mode == BOND_MODE_8023AD) { 1090 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1091 } 1092 1093 if ((bond->params.mode == BOND_MODE_TLB) || 1094 (bond->params.mode == BOND_MODE_ALB)) { 1095 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1096 } 1097 } else { 1098 if (USES_PRIMARY(bond->params.mode)) { 1099 printk(KERN_INFO DRV_NAME 1100 ": %s: making interface %s the new " 1101 "active one.\n", 1102 bond->dev->name, new_active->dev->name); 1103 } 1104 } 1105 } 1106 1107 if (USES_PRIMARY(bond->params.mode)) { 1108 bond_mc_swap(bond, new_active, old_active); 1109 } 1110 1111 if ((bond->params.mode == BOND_MODE_TLB) || 1112 (bond->params.mode == BOND_MODE_ALB)) { 1113 bond_alb_handle_active_change(bond, new_active); 1114 if (old_active) 1115 bond_set_slave_inactive_flags(old_active); 1116 if (new_active) 1117 bond_set_slave_active_flags(new_active); 1118 } else { 1119 bond->curr_active_slave = new_active; 1120 } 1121 1122 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1123 if (old_active) { 1124 bond_set_slave_inactive_flags(old_active); 1125 } 1126 1127 if (new_active) { 1128 bond_set_slave_active_flags(new_active); 1129 } 1130 bond_send_gratuitous_arp(bond); 1131 } 1132 } 1133 1134 /** 1135 * bond_select_active_slave - select a new active slave, if needed 1136 * @bond: our bonding struct 1137 * 1138 * This functions shoud be called when one of the following occurs: 1139 * - The old curr_active_slave has been released or lost its link. 1140 * - The primary_slave has got its link back. 1141 * - A slave has got its link back and there's no old curr_active_slave. 1142 * 1143 * Warning: Caller must hold curr_slave_lock for writing. 1144 */ 1145 void bond_select_active_slave(struct bonding *bond) 1146 { 1147 struct slave *best_slave; 1148 int rv; 1149 1150 best_slave = bond_find_best_slave(bond); 1151 if (best_slave != bond->curr_active_slave) { 1152 bond_change_active_slave(bond, best_slave); 1153 rv = bond_set_carrier(bond); 1154 if (!rv) 1155 return; 1156 1157 if (netif_carrier_ok(bond->dev)) { 1158 printk(KERN_INFO DRV_NAME 1159 ": %s: first active interface up!\n", 1160 bond->dev->name); 1161 } else { 1162 printk(KERN_INFO DRV_NAME ": %s: " 1163 "now running without any active interface !\n", 1164 bond->dev->name); 1165 } 1166 } 1167 } 1168 1169 /*--------------------------- slave list handling ---------------------------*/ 1170 1171 /* 1172 * This function attaches the slave to the end of list. 1173 * 1174 * bond->lock held for writing by caller. 1175 */ 1176 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1177 { 1178 if (bond->first_slave == NULL) { /* attaching the first slave */ 1179 new_slave->next = new_slave; 1180 new_slave->prev = new_slave; 1181 bond->first_slave = new_slave; 1182 } else { 1183 new_slave->next = bond->first_slave; 1184 new_slave->prev = bond->first_slave->prev; 1185 new_slave->next->prev = new_slave; 1186 new_slave->prev->next = new_slave; 1187 } 1188 1189 bond->slave_cnt++; 1190 } 1191 1192 /* 1193 * This function detaches the slave from the list. 1194 * WARNING: no check is made to verify if the slave effectively 1195 * belongs to <bond>. 1196 * Nothing is freed on return, structures are just unchained. 1197 * If any slave pointer in bond was pointing to <slave>, 1198 * it should be changed by the calling function. 1199 * 1200 * bond->lock held for writing by caller. 1201 */ 1202 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1203 { 1204 if (slave->next) { 1205 slave->next->prev = slave->prev; 1206 } 1207 1208 if (slave->prev) { 1209 slave->prev->next = slave->next; 1210 } 1211 1212 if (bond->first_slave == slave) { /* slave is the first slave */ 1213 if (bond->slave_cnt > 1) { /* there are more slave */ 1214 bond->first_slave = slave->next; 1215 } else { 1216 bond->first_slave = NULL; /* slave was the last one */ 1217 } 1218 } 1219 1220 slave->next = NULL; 1221 slave->prev = NULL; 1222 bond->slave_cnt--; 1223 } 1224 1225 /*---------------------------------- IOCTL ----------------------------------*/ 1226 1227 int bond_sethwaddr(struct net_device *bond_dev, struct net_device *slave_dev) 1228 { 1229 dprintk("bond_dev=%p\n", bond_dev); 1230 dprintk("slave_dev=%p\n", slave_dev); 1231 dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1232 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1233 return 0; 1234 } 1235 1236 #define BOND_INTERSECT_FEATURES \ 1237 (NETIF_F_SG | NETIF_F_ALL_CSUM | NETIF_F_TSO | NETIF_F_UFO) 1238 1239 /* 1240 * Compute the common dev->feature set available to all slaves. Some 1241 * feature bits are managed elsewhere, so preserve feature bits set on 1242 * master device that are not part of the examined set. 1243 */ 1244 static int bond_compute_features(struct bonding *bond) 1245 { 1246 unsigned long features = BOND_INTERSECT_FEATURES; 1247 struct slave *slave; 1248 struct net_device *bond_dev = bond->dev; 1249 unsigned short max_hard_header_len = ETH_HLEN; 1250 int i; 1251 1252 bond_for_each_slave(bond, slave, i) { 1253 features &= (slave->dev->features & BOND_INTERSECT_FEATURES); 1254 if (slave->dev->hard_header_len > max_hard_header_len) 1255 max_hard_header_len = slave->dev->hard_header_len; 1256 } 1257 1258 if ((features & NETIF_F_SG) && 1259 !(features & NETIF_F_ALL_CSUM)) 1260 features &= ~NETIF_F_SG; 1261 1262 /* 1263 * features will include NETIF_F_TSO (NETIF_F_UFO) iff all 1264 * slave devices support NETIF_F_TSO (NETIF_F_UFO), which 1265 * implies that all slaves also support scatter-gather 1266 * (NETIF_F_SG), which implies that features also includes 1267 * NETIF_F_SG. So no need to check whether we have an 1268 * illegal combination of NETIF_F_{TSO,UFO} and 1269 * !NETIF_F_SG 1270 */ 1271 1272 features |= (bond_dev->features & ~BOND_INTERSECT_FEATURES); 1273 bond_dev->features = features; 1274 bond_dev->hard_header_len = max_hard_header_len; 1275 1276 return 0; 1277 } 1278 1279 /* enslave device <slave> to bond device <master> */ 1280 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1281 { 1282 struct bonding *bond = bond_dev->priv; 1283 struct slave *new_slave = NULL; 1284 struct dev_mc_list *dmi; 1285 struct sockaddr addr; 1286 int link_reporting; 1287 int old_features = bond_dev->features; 1288 int res = 0; 1289 1290 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL && 1291 slave_dev->do_ioctl == NULL) { 1292 printk(KERN_WARNING DRV_NAME 1293 ": %s: Warning: no link monitoring support for %s\n", 1294 bond_dev->name, slave_dev->name); 1295 } 1296 1297 /* bond must be initialized by bond_open() before enslaving */ 1298 if (!(bond_dev->flags & IFF_UP)) { 1299 dprintk("Error, master_dev is not up\n"); 1300 return -EPERM; 1301 } 1302 1303 /* already enslaved */ 1304 if (slave_dev->flags & IFF_SLAVE) { 1305 dprintk("Error, Device was already enslaved\n"); 1306 return -EBUSY; 1307 } 1308 1309 /* vlan challenged mutual exclusion */ 1310 /* no need to lock since we're protected by rtnl_lock */ 1311 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1312 dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1313 if (!list_empty(&bond->vlan_list)) { 1314 printk(KERN_ERR DRV_NAME 1315 ": %s: Error: cannot enslave VLAN " 1316 "challenged slave %s on VLAN enabled " 1317 "bond %s\n", bond_dev->name, slave_dev->name, 1318 bond_dev->name); 1319 return -EPERM; 1320 } else { 1321 printk(KERN_WARNING DRV_NAME 1322 ": %s: Warning: enslaved VLAN challenged " 1323 "slave %s. Adding VLANs will be blocked as " 1324 "long as %s is part of bond %s\n", 1325 bond_dev->name, slave_dev->name, slave_dev->name, 1326 bond_dev->name); 1327 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1328 } 1329 } else { 1330 dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1331 if (bond->slave_cnt == 0) { 1332 /* First slave, and it is not VLAN challenged, 1333 * so remove the block of adding VLANs over the bond. 1334 */ 1335 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1336 } 1337 } 1338 1339 /* 1340 * Old ifenslave binaries are no longer supported. These can 1341 * be identified with moderate accurary by the state of the slave: 1342 * the current ifenslave will set the interface down prior to 1343 * enslaving it; the old ifenslave will not. 1344 */ 1345 if ((slave_dev->flags & IFF_UP)) { 1346 printk(KERN_ERR DRV_NAME ": %s is up. " 1347 "This may be due to an out of date ifenslave.\n", 1348 slave_dev->name); 1349 res = -EPERM; 1350 goto err_undo_flags; 1351 } 1352 1353 if (slave_dev->set_mac_address == NULL) { 1354 printk(KERN_ERR DRV_NAME 1355 ": %s: Error: The slave device you specified does " 1356 "not support setting the MAC address. " 1357 "Your kernel likely does not support slave " 1358 "devices.\n", bond_dev->name); 1359 res = -EOPNOTSUPP; 1360 goto err_undo_flags; 1361 } 1362 1363 if (slave_dev->get_stats == NULL) { 1364 printk(KERN_NOTICE DRV_NAME 1365 ": %s: the driver for slave device %s does not provide " 1366 "get_stats function, network statistics will be " 1367 "inaccurate.\n", bond_dev->name, slave_dev->name); 1368 } 1369 1370 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1371 if (!new_slave) { 1372 res = -ENOMEM; 1373 goto err_undo_flags; 1374 } 1375 1376 /* save slave's original flags before calling 1377 * netdev_set_master and dev_open 1378 */ 1379 new_slave->original_flags = slave_dev->flags; 1380 1381 /* 1382 * Save slave's original ("permanent") mac address for modes 1383 * that need it, and for restoring it upon release, and then 1384 * set it to the master's address 1385 */ 1386 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1387 1388 /* 1389 * Set slave to master's mac address. The application already 1390 * set the master's mac address to that of the first slave 1391 */ 1392 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1393 addr.sa_family = slave_dev->type; 1394 res = dev_set_mac_address(slave_dev, &addr); 1395 if (res) { 1396 dprintk("Error %d calling set_mac_address\n", res); 1397 goto err_free; 1398 } 1399 1400 /* open the slave since the application closed it */ 1401 res = dev_open(slave_dev); 1402 if (res) { 1403 dprintk("Openning slave %s failed\n", slave_dev->name); 1404 goto err_restore_mac; 1405 } 1406 1407 res = netdev_set_master(slave_dev, bond_dev); 1408 if (res) { 1409 dprintk("Error %d calling netdev_set_master\n", res); 1410 goto err_close; 1411 } 1412 1413 new_slave->dev = slave_dev; 1414 slave_dev->priv_flags |= IFF_BONDING; 1415 1416 if ((bond->params.mode == BOND_MODE_TLB) || 1417 (bond->params.mode == BOND_MODE_ALB)) { 1418 /* bond_alb_init_slave() must be called before all other stages since 1419 * it might fail and we do not want to have to undo everything 1420 */ 1421 res = bond_alb_init_slave(bond, new_slave); 1422 if (res) { 1423 goto err_unset_master; 1424 } 1425 } 1426 1427 /* If the mode USES_PRIMARY, then the new slave gets the 1428 * master's promisc (and mc) settings only if it becomes the 1429 * curr_active_slave, and that is taken care of later when calling 1430 * bond_change_active() 1431 */ 1432 if (!USES_PRIMARY(bond->params.mode)) { 1433 /* set promiscuity level to new slave */ 1434 if (bond_dev->flags & IFF_PROMISC) { 1435 dev_set_promiscuity(slave_dev, 1); 1436 } 1437 1438 /* set allmulti level to new slave */ 1439 if (bond_dev->flags & IFF_ALLMULTI) { 1440 dev_set_allmulti(slave_dev, 1); 1441 } 1442 1443 /* upload master's mc_list to new slave */ 1444 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 1445 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 1446 } 1447 } 1448 1449 if (bond->params.mode == BOND_MODE_8023AD) { 1450 /* add lacpdu mc addr to mc list */ 1451 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1452 1453 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 1454 } 1455 1456 bond_add_vlans_on_slave(bond, slave_dev); 1457 1458 write_lock_bh(&bond->lock); 1459 1460 bond_attach_slave(bond, new_slave); 1461 1462 new_slave->delay = 0; 1463 new_slave->link_failure_count = 0; 1464 1465 bond_compute_features(bond); 1466 1467 new_slave->last_arp_rx = jiffies; 1468 1469 if (bond->params.miimon && !bond->params.use_carrier) { 1470 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1471 1472 if ((link_reporting == -1) && !bond->params.arp_interval) { 1473 /* 1474 * miimon is set but a bonded network driver 1475 * does not support ETHTOOL/MII and 1476 * arp_interval is not set. Note: if 1477 * use_carrier is enabled, we will never go 1478 * here (because netif_carrier is always 1479 * supported); thus, we don't need to change 1480 * the messages for netif_carrier. 1481 */ 1482 printk(KERN_WARNING DRV_NAME 1483 ": %s: Warning: MII and ETHTOOL support not " 1484 "available for interface %s, and " 1485 "arp_interval/arp_ip_target module parameters " 1486 "not specified, thus bonding will not detect " 1487 "link failures! see bonding.txt for details.\n", 1488 bond_dev->name, slave_dev->name); 1489 } else if (link_reporting == -1) { 1490 /* unable get link status using mii/ethtool */ 1491 printk(KERN_WARNING DRV_NAME 1492 ": %s: Warning: can't get link status from " 1493 "interface %s; the network driver associated " 1494 "with this interface does not support MII or " 1495 "ETHTOOL link status reporting, thus miimon " 1496 "has no effect on this interface.\n", 1497 bond_dev->name, slave_dev->name); 1498 } 1499 } 1500 1501 /* check for initial state */ 1502 if (!bond->params.miimon || 1503 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) { 1504 if (bond->params.updelay) { 1505 dprintk("Initial state of slave_dev is " 1506 "BOND_LINK_BACK\n"); 1507 new_slave->link = BOND_LINK_BACK; 1508 new_slave->delay = bond->params.updelay; 1509 } else { 1510 dprintk("Initial state of slave_dev is " 1511 "BOND_LINK_UP\n"); 1512 new_slave->link = BOND_LINK_UP; 1513 } 1514 new_slave->jiffies = jiffies; 1515 } else { 1516 dprintk("Initial state of slave_dev is " 1517 "BOND_LINK_DOWN\n"); 1518 new_slave->link = BOND_LINK_DOWN; 1519 } 1520 1521 if (bond_update_speed_duplex(new_slave) && 1522 (new_slave->link != BOND_LINK_DOWN)) { 1523 printk(KERN_WARNING DRV_NAME 1524 ": %s: Warning: failed to get speed and duplex from %s, " 1525 "assumed to be 100Mb/sec and Full.\n", 1526 bond_dev->name, new_slave->dev->name); 1527 1528 if (bond->params.mode == BOND_MODE_8023AD) { 1529 printk(KERN_WARNING DRV_NAME 1530 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL " 1531 "support in base driver for proper aggregator " 1532 "selection.\n", bond_dev->name); 1533 } 1534 } 1535 1536 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1537 /* if there is a primary slave, remember it */ 1538 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1539 bond->primary_slave = new_slave; 1540 } 1541 } 1542 1543 switch (bond->params.mode) { 1544 case BOND_MODE_ACTIVEBACKUP: 1545 bond_set_slave_inactive_flags(new_slave); 1546 bond_select_active_slave(bond); 1547 break; 1548 case BOND_MODE_8023AD: 1549 /* in 802.3ad mode, the internal mechanism 1550 * will activate the slaves in the selected 1551 * aggregator 1552 */ 1553 bond_set_slave_inactive_flags(new_slave); 1554 /* if this is the first slave */ 1555 if (bond->slave_cnt == 1) { 1556 SLAVE_AD_INFO(new_slave).id = 1; 1557 /* Initialize AD with the number of times that the AD timer is called in 1 second 1558 * can be called only after the mac address of the bond is set 1559 */ 1560 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL, 1561 bond->params.lacp_fast); 1562 } else { 1563 SLAVE_AD_INFO(new_slave).id = 1564 SLAVE_AD_INFO(new_slave->prev).id + 1; 1565 } 1566 1567 bond_3ad_bind_slave(new_slave); 1568 break; 1569 case BOND_MODE_TLB: 1570 case BOND_MODE_ALB: 1571 new_slave->state = BOND_STATE_ACTIVE; 1572 if ((!bond->curr_active_slave) && 1573 (new_slave->link != BOND_LINK_DOWN)) { 1574 /* first slave or no active slave yet, and this link 1575 * is OK, so make this interface the active one 1576 */ 1577 bond_change_active_slave(bond, new_slave); 1578 } else { 1579 bond_set_slave_inactive_flags(new_slave); 1580 } 1581 break; 1582 default: 1583 dprintk("This slave is always active in trunk mode\n"); 1584 1585 /* always active in trunk mode */ 1586 new_slave->state = BOND_STATE_ACTIVE; 1587 1588 /* In trunking mode there is little meaning to curr_active_slave 1589 * anyway (it holds no special properties of the bond device), 1590 * so we can change it without calling change_active_interface() 1591 */ 1592 if (!bond->curr_active_slave) { 1593 bond->curr_active_slave = new_slave; 1594 } 1595 break; 1596 } /* switch(bond_mode) */ 1597 1598 bond_set_carrier(bond); 1599 1600 write_unlock_bh(&bond->lock); 1601 1602 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1603 if (res) 1604 goto err_unset_master; 1605 1606 printk(KERN_INFO DRV_NAME 1607 ": %s: enslaving %s as a%s interface with a%s link.\n", 1608 bond_dev->name, slave_dev->name, 1609 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup", 1610 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1611 1612 /* enslave is successful */ 1613 return 0; 1614 1615 /* Undo stages on error */ 1616 err_unset_master: 1617 netdev_set_master(slave_dev, NULL); 1618 1619 err_close: 1620 dev_close(slave_dev); 1621 1622 err_restore_mac: 1623 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1624 addr.sa_family = slave_dev->type; 1625 dev_set_mac_address(slave_dev, &addr); 1626 1627 err_free: 1628 kfree(new_slave); 1629 1630 err_undo_flags: 1631 bond_dev->features = old_features; 1632 1633 return res; 1634 } 1635 1636 /* 1637 * Try to release the slave device <slave> from the bond device <master> 1638 * It is legal to access curr_active_slave without a lock because all the function 1639 * is write-locked. 1640 * 1641 * The rules for slave state should be: 1642 * for Active/Backup: 1643 * Active stays on all backups go down 1644 * for Bonded connections: 1645 * The first up interface should be left on and all others downed. 1646 */ 1647 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 1648 { 1649 struct bonding *bond = bond_dev->priv; 1650 struct slave *slave, *oldcurrent; 1651 struct sockaddr addr; 1652 int mac_addr_differ; 1653 1654 /* slave is not a slave or master is not master of this slave */ 1655 if (!(slave_dev->flags & IFF_SLAVE) || 1656 (slave_dev->master != bond_dev)) { 1657 printk(KERN_ERR DRV_NAME 1658 ": %s: Error: cannot release %s.\n", 1659 bond_dev->name, slave_dev->name); 1660 return -EINVAL; 1661 } 1662 1663 write_lock_bh(&bond->lock); 1664 1665 slave = bond_get_slave_by_dev(bond, slave_dev); 1666 if (!slave) { 1667 /* not a slave of this bond */ 1668 printk(KERN_INFO DRV_NAME 1669 ": %s: %s not enslaved\n", 1670 bond_dev->name, slave_dev->name); 1671 write_unlock_bh(&bond->lock); 1672 return -EINVAL; 1673 } 1674 1675 mac_addr_differ = memcmp(bond_dev->dev_addr, 1676 slave->perm_hwaddr, 1677 ETH_ALEN); 1678 if (!mac_addr_differ && (bond->slave_cnt > 1)) { 1679 printk(KERN_WARNING DRV_NAME 1680 ": %s: Warning: the permanent HWaddr of %s " 1681 "- %02X:%02X:%02X:%02X:%02X:%02X - is " 1682 "still in use by %s. Set the HWaddr of " 1683 "%s to a different address to avoid " 1684 "conflicts.\n", 1685 bond_dev->name, 1686 slave_dev->name, 1687 slave->perm_hwaddr[0], 1688 slave->perm_hwaddr[1], 1689 slave->perm_hwaddr[2], 1690 slave->perm_hwaddr[3], 1691 slave->perm_hwaddr[4], 1692 slave->perm_hwaddr[5], 1693 bond_dev->name, 1694 slave_dev->name); 1695 } 1696 1697 /* Inform AD package of unbinding of slave. */ 1698 if (bond->params.mode == BOND_MODE_8023AD) { 1699 /* must be called before the slave is 1700 * detached from the list 1701 */ 1702 bond_3ad_unbind_slave(slave); 1703 } 1704 1705 printk(KERN_INFO DRV_NAME 1706 ": %s: releasing %s interface %s\n", 1707 bond_dev->name, 1708 (slave->state == BOND_STATE_ACTIVE) 1709 ? "active" : "backup", 1710 slave_dev->name); 1711 1712 oldcurrent = bond->curr_active_slave; 1713 1714 bond->current_arp_slave = NULL; 1715 1716 /* release the slave from its bond */ 1717 bond_detach_slave(bond, slave); 1718 1719 bond_compute_features(bond); 1720 1721 if (bond->primary_slave == slave) { 1722 bond->primary_slave = NULL; 1723 } 1724 1725 if (oldcurrent == slave) { 1726 bond_change_active_slave(bond, NULL); 1727 } 1728 1729 if ((bond->params.mode == BOND_MODE_TLB) || 1730 (bond->params.mode == BOND_MODE_ALB)) { 1731 /* Must be called only after the slave has been 1732 * detached from the list and the curr_active_slave 1733 * has been cleared (if our_slave == old_current), 1734 * but before a new active slave is selected. 1735 */ 1736 bond_alb_deinit_slave(bond, slave); 1737 } 1738 1739 if (oldcurrent == slave) 1740 bond_select_active_slave(bond); 1741 1742 if (bond->slave_cnt == 0) { 1743 bond_set_carrier(bond); 1744 1745 /* if the last slave was removed, zero the mac address 1746 * of the master so it will be set by the application 1747 * to the mac address of the first slave 1748 */ 1749 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 1750 1751 if (list_empty(&bond->vlan_list)) { 1752 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1753 } else { 1754 printk(KERN_WARNING DRV_NAME 1755 ": %s: Warning: clearing HW address of %s while it " 1756 "still has VLANs.\n", 1757 bond_dev->name, bond_dev->name); 1758 printk(KERN_WARNING DRV_NAME 1759 ": %s: When re-adding slaves, make sure the bond's " 1760 "HW address matches its VLANs'.\n", 1761 bond_dev->name); 1762 } 1763 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 1764 !bond_has_challenged_slaves(bond)) { 1765 printk(KERN_INFO DRV_NAME 1766 ": %s: last VLAN challenged slave %s " 1767 "left bond %s. VLAN blocking is removed\n", 1768 bond_dev->name, slave_dev->name, bond_dev->name); 1769 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1770 } 1771 1772 write_unlock_bh(&bond->lock); 1773 1774 /* must do this from outside any spinlocks */ 1775 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1776 1777 bond_del_vlans_from_slave(bond, slave_dev); 1778 1779 /* If the mode USES_PRIMARY, then we should only remove its 1780 * promisc and mc settings if it was the curr_active_slave, but that was 1781 * already taken care of above when we detached the slave 1782 */ 1783 if (!USES_PRIMARY(bond->params.mode)) { 1784 /* unset promiscuity level from slave */ 1785 if (bond_dev->flags & IFF_PROMISC) { 1786 dev_set_promiscuity(slave_dev, -1); 1787 } 1788 1789 /* unset allmulti level from slave */ 1790 if (bond_dev->flags & IFF_ALLMULTI) { 1791 dev_set_allmulti(slave_dev, -1); 1792 } 1793 1794 /* flush master's mc_list from slave */ 1795 bond_mc_list_flush(bond_dev, slave_dev); 1796 } 1797 1798 netdev_set_master(slave_dev, NULL); 1799 1800 /* close slave before restoring its mac address */ 1801 dev_close(slave_dev); 1802 1803 /* restore original ("permanent") mac address */ 1804 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 1805 addr.sa_family = slave_dev->type; 1806 dev_set_mac_address(slave_dev, &addr); 1807 1808 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 1809 IFF_SLAVE_INACTIVE | IFF_BONDING | 1810 IFF_SLAVE_NEEDARP); 1811 1812 kfree(slave); 1813 1814 return 0; /* deletion OK */ 1815 } 1816 1817 /* 1818 * This function releases all slaves. 1819 */ 1820 static int bond_release_all(struct net_device *bond_dev) 1821 { 1822 struct bonding *bond = bond_dev->priv; 1823 struct slave *slave; 1824 struct net_device *slave_dev; 1825 struct sockaddr addr; 1826 1827 write_lock_bh(&bond->lock); 1828 1829 netif_carrier_off(bond_dev); 1830 1831 if (bond->slave_cnt == 0) { 1832 goto out; 1833 } 1834 1835 bond->current_arp_slave = NULL; 1836 bond->primary_slave = NULL; 1837 bond_change_active_slave(bond, NULL); 1838 1839 while ((slave = bond->first_slave) != NULL) { 1840 /* Inform AD package of unbinding of slave 1841 * before slave is detached from the list. 1842 */ 1843 if (bond->params.mode == BOND_MODE_8023AD) { 1844 bond_3ad_unbind_slave(slave); 1845 } 1846 1847 slave_dev = slave->dev; 1848 bond_detach_slave(bond, slave); 1849 1850 if ((bond->params.mode == BOND_MODE_TLB) || 1851 (bond->params.mode == BOND_MODE_ALB)) { 1852 /* must be called only after the slave 1853 * has been detached from the list 1854 */ 1855 bond_alb_deinit_slave(bond, slave); 1856 } 1857 1858 bond_compute_features(bond); 1859 1860 /* now that the slave is detached, unlock and perform 1861 * all the undo steps that should not be called from 1862 * within a lock. 1863 */ 1864 write_unlock_bh(&bond->lock); 1865 1866 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1867 bond_del_vlans_from_slave(bond, slave_dev); 1868 1869 /* If the mode USES_PRIMARY, then we should only remove its 1870 * promisc and mc settings if it was the curr_active_slave, but that was 1871 * already taken care of above when we detached the slave 1872 */ 1873 if (!USES_PRIMARY(bond->params.mode)) { 1874 /* unset promiscuity level from slave */ 1875 if (bond_dev->flags & IFF_PROMISC) { 1876 dev_set_promiscuity(slave_dev, -1); 1877 } 1878 1879 /* unset allmulti level from slave */ 1880 if (bond_dev->flags & IFF_ALLMULTI) { 1881 dev_set_allmulti(slave_dev, -1); 1882 } 1883 1884 /* flush master's mc_list from slave */ 1885 bond_mc_list_flush(bond_dev, slave_dev); 1886 } 1887 1888 netdev_set_master(slave_dev, NULL); 1889 1890 /* close slave before restoring its mac address */ 1891 dev_close(slave_dev); 1892 1893 /* restore original ("permanent") mac address*/ 1894 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 1895 addr.sa_family = slave_dev->type; 1896 dev_set_mac_address(slave_dev, &addr); 1897 1898 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 1899 IFF_SLAVE_INACTIVE); 1900 1901 kfree(slave); 1902 1903 /* re-acquire the lock before getting the next slave */ 1904 write_lock_bh(&bond->lock); 1905 } 1906 1907 /* zero the mac address of the master so it will be 1908 * set by the application to the mac address of the 1909 * first slave 1910 */ 1911 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 1912 1913 if (list_empty(&bond->vlan_list)) { 1914 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1915 } else { 1916 printk(KERN_WARNING DRV_NAME 1917 ": %s: Warning: clearing HW address of %s while it " 1918 "still has VLANs.\n", 1919 bond_dev->name, bond_dev->name); 1920 printk(KERN_WARNING DRV_NAME 1921 ": %s: When re-adding slaves, make sure the bond's " 1922 "HW address matches its VLANs'.\n", 1923 bond_dev->name); 1924 } 1925 1926 printk(KERN_INFO DRV_NAME 1927 ": %s: released all slaves\n", 1928 bond_dev->name); 1929 1930 out: 1931 write_unlock_bh(&bond->lock); 1932 1933 return 0; 1934 } 1935 1936 /* 1937 * This function changes the active slave to slave <slave_dev>. 1938 * It returns -EINVAL in the following cases. 1939 * - <slave_dev> is not found in the list. 1940 * - There is not active slave now. 1941 * - <slave_dev> is already active. 1942 * - The link state of <slave_dev> is not BOND_LINK_UP. 1943 * - <slave_dev> is not running. 1944 * In these cases, this fuction does nothing. 1945 * In the other cases, currnt_slave pointer is changed and 0 is returned. 1946 */ 1947 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 1948 { 1949 struct bonding *bond = bond_dev->priv; 1950 struct slave *old_active = NULL; 1951 struct slave *new_active = NULL; 1952 int res = 0; 1953 1954 if (!USES_PRIMARY(bond->params.mode)) { 1955 return -EINVAL; 1956 } 1957 1958 /* Verify that master_dev is indeed the master of slave_dev */ 1959 if (!(slave_dev->flags & IFF_SLAVE) || 1960 (slave_dev->master != bond_dev)) { 1961 return -EINVAL; 1962 } 1963 1964 write_lock_bh(&bond->lock); 1965 1966 old_active = bond->curr_active_slave; 1967 new_active = bond_get_slave_by_dev(bond, slave_dev); 1968 1969 /* 1970 * Changing to the current active: do nothing; return success. 1971 */ 1972 if (new_active && (new_active == old_active)) { 1973 write_unlock_bh(&bond->lock); 1974 return 0; 1975 } 1976 1977 if ((new_active) && 1978 (old_active) && 1979 (new_active->link == BOND_LINK_UP) && 1980 IS_UP(new_active->dev)) { 1981 bond_change_active_slave(bond, new_active); 1982 } else { 1983 res = -EINVAL; 1984 } 1985 1986 write_unlock_bh(&bond->lock); 1987 1988 return res; 1989 } 1990 1991 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 1992 { 1993 struct bonding *bond = bond_dev->priv; 1994 1995 info->bond_mode = bond->params.mode; 1996 info->miimon = bond->params.miimon; 1997 1998 read_lock_bh(&bond->lock); 1999 info->num_slaves = bond->slave_cnt; 2000 read_unlock_bh(&bond->lock); 2001 2002 return 0; 2003 } 2004 2005 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 2006 { 2007 struct bonding *bond = bond_dev->priv; 2008 struct slave *slave; 2009 int i, found = 0; 2010 2011 if (info->slave_id < 0) { 2012 return -ENODEV; 2013 } 2014 2015 read_lock_bh(&bond->lock); 2016 2017 bond_for_each_slave(bond, slave, i) { 2018 if (i == (int)info->slave_id) { 2019 found = 1; 2020 break; 2021 } 2022 } 2023 2024 read_unlock_bh(&bond->lock); 2025 2026 if (found) { 2027 strcpy(info->slave_name, slave->dev->name); 2028 info->link = slave->link; 2029 info->state = slave->state; 2030 info->link_failure_count = slave->link_failure_count; 2031 } else { 2032 return -ENODEV; 2033 } 2034 2035 return 0; 2036 } 2037 2038 /*-------------------------------- Monitoring -------------------------------*/ 2039 2040 /* this function is called regularly to monitor each slave's link. */ 2041 void bond_mii_monitor(struct net_device *bond_dev) 2042 { 2043 struct bonding *bond = bond_dev->priv; 2044 struct slave *slave, *oldcurrent; 2045 int do_failover = 0; 2046 int delta_in_ticks; 2047 int i; 2048 2049 read_lock(&bond->lock); 2050 2051 delta_in_ticks = (bond->params.miimon * HZ) / 1000; 2052 2053 if (bond->kill_timers) { 2054 goto out; 2055 } 2056 2057 if (bond->slave_cnt == 0) { 2058 goto re_arm; 2059 } 2060 2061 /* we will try to read the link status of each of our slaves, and 2062 * set their IFF_RUNNING flag appropriately. For each slave not 2063 * supporting MII status, we won't do anything so that a user-space 2064 * program could monitor the link itself if needed. 2065 */ 2066 2067 read_lock(&bond->curr_slave_lock); 2068 oldcurrent = bond->curr_active_slave; 2069 read_unlock(&bond->curr_slave_lock); 2070 2071 bond_for_each_slave(bond, slave, i) { 2072 struct net_device *slave_dev = slave->dev; 2073 int link_state; 2074 u16 old_speed = slave->speed; 2075 u8 old_duplex = slave->duplex; 2076 2077 link_state = bond_check_dev_link(bond, slave_dev, 0); 2078 2079 switch (slave->link) { 2080 case BOND_LINK_UP: /* the link was up */ 2081 if (link_state == BMSR_LSTATUS) { 2082 /* link stays up, nothing more to do */ 2083 break; 2084 } else { /* link going down */ 2085 slave->link = BOND_LINK_FAIL; 2086 slave->delay = bond->params.downdelay; 2087 2088 if (slave->link_failure_count < UINT_MAX) { 2089 slave->link_failure_count++; 2090 } 2091 2092 if (bond->params.downdelay) { 2093 printk(KERN_INFO DRV_NAME 2094 ": %s: link status down for %s " 2095 "interface %s, disabling it in " 2096 "%d ms.\n", 2097 bond_dev->name, 2098 IS_UP(slave_dev) 2099 ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) 2100 ? ((slave == oldcurrent) 2101 ? "active " : "backup ") 2102 : "") 2103 : "idle ", 2104 slave_dev->name, 2105 bond->params.downdelay * bond->params.miimon); 2106 } 2107 } 2108 /* no break ! fall through the BOND_LINK_FAIL test to 2109 ensure proper action to be taken 2110 */ 2111 case BOND_LINK_FAIL: /* the link has just gone down */ 2112 if (link_state != BMSR_LSTATUS) { 2113 /* link stays down */ 2114 if (slave->delay <= 0) { 2115 /* link down for too long time */ 2116 slave->link = BOND_LINK_DOWN; 2117 2118 /* in active/backup mode, we must 2119 * completely disable this interface 2120 */ 2121 if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) || 2122 (bond->params.mode == BOND_MODE_8023AD)) { 2123 bond_set_slave_inactive_flags(slave); 2124 } 2125 2126 printk(KERN_INFO DRV_NAME 2127 ": %s: link status definitely " 2128 "down for interface %s, " 2129 "disabling it\n", 2130 bond_dev->name, 2131 slave_dev->name); 2132 2133 /* notify ad that the link status has changed */ 2134 if (bond->params.mode == BOND_MODE_8023AD) { 2135 bond_3ad_handle_link_change(slave, BOND_LINK_DOWN); 2136 } 2137 2138 if ((bond->params.mode == BOND_MODE_TLB) || 2139 (bond->params.mode == BOND_MODE_ALB)) { 2140 bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN); 2141 } 2142 2143 if (slave == oldcurrent) { 2144 do_failover = 1; 2145 } 2146 } else { 2147 slave->delay--; 2148 } 2149 } else { 2150 /* link up again */ 2151 slave->link = BOND_LINK_UP; 2152 slave->jiffies = jiffies; 2153 printk(KERN_INFO DRV_NAME 2154 ": %s: link status up again after %d " 2155 "ms for interface %s.\n", 2156 bond_dev->name, 2157 (bond->params.downdelay - slave->delay) * bond->params.miimon, 2158 slave_dev->name); 2159 } 2160 break; 2161 case BOND_LINK_DOWN: /* the link was down */ 2162 if (link_state != BMSR_LSTATUS) { 2163 /* the link stays down, nothing more to do */ 2164 break; 2165 } else { /* link going up */ 2166 slave->link = BOND_LINK_BACK; 2167 slave->delay = bond->params.updelay; 2168 2169 if (bond->params.updelay) { 2170 /* if updelay == 0, no need to 2171 advertise about a 0 ms delay */ 2172 printk(KERN_INFO DRV_NAME 2173 ": %s: link status up for " 2174 "interface %s, enabling it " 2175 "in %d ms.\n", 2176 bond_dev->name, 2177 slave_dev->name, 2178 bond->params.updelay * bond->params.miimon); 2179 } 2180 } 2181 /* no break ! fall through the BOND_LINK_BACK state in 2182 case there's something to do. 2183 */ 2184 case BOND_LINK_BACK: /* the link has just come back */ 2185 if (link_state != BMSR_LSTATUS) { 2186 /* link down again */ 2187 slave->link = BOND_LINK_DOWN; 2188 2189 printk(KERN_INFO DRV_NAME 2190 ": %s: link status down again after %d " 2191 "ms for interface %s.\n", 2192 bond_dev->name, 2193 (bond->params.updelay - slave->delay) * bond->params.miimon, 2194 slave_dev->name); 2195 } else { 2196 /* link stays up */ 2197 if (slave->delay == 0) { 2198 /* now the link has been up for long time enough */ 2199 slave->link = BOND_LINK_UP; 2200 slave->jiffies = jiffies; 2201 2202 if (bond->params.mode == BOND_MODE_8023AD) { 2203 /* prevent it from being the active one */ 2204 slave->state = BOND_STATE_BACKUP; 2205 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2206 /* make it immediately active */ 2207 slave->state = BOND_STATE_ACTIVE; 2208 } else if (slave != bond->primary_slave) { 2209 /* prevent it from being the active one */ 2210 slave->state = BOND_STATE_BACKUP; 2211 } 2212 2213 printk(KERN_INFO DRV_NAME 2214 ": %s: link status definitely " 2215 "up for interface %s.\n", 2216 bond_dev->name, 2217 slave_dev->name); 2218 2219 /* notify ad that the link status has changed */ 2220 if (bond->params.mode == BOND_MODE_8023AD) { 2221 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2222 } 2223 2224 if ((bond->params.mode == BOND_MODE_TLB) || 2225 (bond->params.mode == BOND_MODE_ALB)) { 2226 bond_alb_handle_link_change(bond, slave, BOND_LINK_UP); 2227 } 2228 2229 if ((!oldcurrent) || 2230 (slave == bond->primary_slave)) { 2231 do_failover = 1; 2232 } 2233 } else { 2234 slave->delay--; 2235 } 2236 } 2237 break; 2238 default: 2239 /* Should not happen */ 2240 printk(KERN_ERR DRV_NAME 2241 ": %s: Error: %s Illegal value (link=%d)\n", 2242 bond_dev->name, 2243 slave->dev->name, 2244 slave->link); 2245 goto out; 2246 } /* end of switch (slave->link) */ 2247 2248 bond_update_speed_duplex(slave); 2249 2250 if (bond->params.mode == BOND_MODE_8023AD) { 2251 if (old_speed != slave->speed) { 2252 bond_3ad_adapter_speed_changed(slave); 2253 } 2254 2255 if (old_duplex != slave->duplex) { 2256 bond_3ad_adapter_duplex_changed(slave); 2257 } 2258 } 2259 2260 } /* end of for */ 2261 2262 if (do_failover) { 2263 write_lock(&bond->curr_slave_lock); 2264 2265 bond_select_active_slave(bond); 2266 2267 write_unlock(&bond->curr_slave_lock); 2268 } else 2269 bond_set_carrier(bond); 2270 2271 re_arm: 2272 if (bond->params.miimon) { 2273 mod_timer(&bond->mii_timer, jiffies + delta_in_ticks); 2274 } 2275 out: 2276 read_unlock(&bond->lock); 2277 } 2278 2279 2280 static u32 bond_glean_dev_ip(struct net_device *dev) 2281 { 2282 struct in_device *idev; 2283 struct in_ifaddr *ifa; 2284 __be32 addr = 0; 2285 2286 if (!dev) 2287 return 0; 2288 2289 rcu_read_lock(); 2290 idev = __in_dev_get_rcu(dev); 2291 if (!idev) 2292 goto out; 2293 2294 ifa = idev->ifa_list; 2295 if (!ifa) 2296 goto out; 2297 2298 addr = ifa->ifa_local; 2299 out: 2300 rcu_read_unlock(); 2301 return addr; 2302 } 2303 2304 static int bond_has_ip(struct bonding *bond) 2305 { 2306 struct vlan_entry *vlan, *vlan_next; 2307 2308 if (bond->master_ip) 2309 return 1; 2310 2311 if (list_empty(&bond->vlan_list)) 2312 return 0; 2313 2314 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list, 2315 vlan_list) { 2316 if (vlan->vlan_ip) 2317 return 1; 2318 } 2319 2320 return 0; 2321 } 2322 2323 static int bond_has_this_ip(struct bonding *bond, u32 ip) 2324 { 2325 struct vlan_entry *vlan, *vlan_next; 2326 2327 if (ip == bond->master_ip) 2328 return 1; 2329 2330 if (list_empty(&bond->vlan_list)) 2331 return 0; 2332 2333 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list, 2334 vlan_list) { 2335 if (ip == vlan->vlan_ip) 2336 return 1; 2337 } 2338 2339 return 0; 2340 } 2341 2342 /* 2343 * We go to the (large) trouble of VLAN tagging ARP frames because 2344 * switches in VLAN mode (especially if ports are configured as 2345 * "native" to a VLAN) might not pass non-tagged frames. 2346 */ 2347 static void bond_arp_send(struct net_device *slave_dev, int arp_op, u32 dest_ip, u32 src_ip, unsigned short vlan_id) 2348 { 2349 struct sk_buff *skb; 2350 2351 dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, 2352 slave_dev->name, dest_ip, src_ip, vlan_id); 2353 2354 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2355 NULL, slave_dev->dev_addr, NULL); 2356 2357 if (!skb) { 2358 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n"); 2359 return; 2360 } 2361 if (vlan_id) { 2362 skb = vlan_put_tag(skb, vlan_id); 2363 if (!skb) { 2364 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n"); 2365 return; 2366 } 2367 } 2368 arp_xmit(skb); 2369 } 2370 2371 2372 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2373 { 2374 int i, vlan_id, rv; 2375 u32 *targets = bond->params.arp_targets; 2376 struct vlan_entry *vlan, *vlan_next; 2377 struct net_device *vlan_dev; 2378 struct flowi fl; 2379 struct rtable *rt; 2380 2381 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2382 if (!targets[i]) 2383 continue; 2384 dprintk("basa: target %x\n", targets[i]); 2385 if (list_empty(&bond->vlan_list)) { 2386 dprintk("basa: empty vlan: arp_send\n"); 2387 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2388 bond->master_ip, 0); 2389 continue; 2390 } 2391 2392 /* 2393 * If VLANs are configured, we do a route lookup to 2394 * determine which VLAN interface would be used, so we 2395 * can tag the ARP with the proper VLAN tag. 2396 */ 2397 memset(&fl, 0, sizeof(fl)); 2398 fl.fl4_dst = targets[i]; 2399 fl.fl4_tos = RTO_ONLINK; 2400 2401 rv = ip_route_output_key(&rt, &fl); 2402 if (rv) { 2403 if (net_ratelimit()) { 2404 printk(KERN_WARNING DRV_NAME 2405 ": %s: no route to arp_ip_target %u.%u.%u.%u\n", 2406 bond->dev->name, NIPQUAD(fl.fl4_dst)); 2407 } 2408 continue; 2409 } 2410 2411 /* 2412 * This target is not on a VLAN 2413 */ 2414 if (rt->u.dst.dev == bond->dev) { 2415 ip_rt_put(rt); 2416 dprintk("basa: rtdev == bond->dev: arp_send\n"); 2417 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2418 bond->master_ip, 0); 2419 continue; 2420 } 2421 2422 vlan_id = 0; 2423 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list, 2424 vlan_list) { 2425 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2426 if (vlan_dev == rt->u.dst.dev) { 2427 vlan_id = vlan->vlan_id; 2428 dprintk("basa: vlan match on %s %d\n", 2429 vlan_dev->name, vlan_id); 2430 break; 2431 } 2432 } 2433 2434 if (vlan_id) { 2435 ip_rt_put(rt); 2436 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2437 vlan->vlan_ip, vlan_id); 2438 continue; 2439 } 2440 2441 if (net_ratelimit()) { 2442 printk(KERN_WARNING DRV_NAME 2443 ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n", 2444 bond->dev->name, NIPQUAD(fl.fl4_dst), 2445 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL"); 2446 } 2447 ip_rt_put(rt); 2448 } 2449 } 2450 2451 /* 2452 * Kick out a gratuitous ARP for an IP on the bonding master plus one 2453 * for each VLAN above us. 2454 */ 2455 static void bond_send_gratuitous_arp(struct bonding *bond) 2456 { 2457 struct slave *slave = bond->curr_active_slave; 2458 struct vlan_entry *vlan; 2459 struct net_device *vlan_dev; 2460 2461 dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name, 2462 slave ? slave->dev->name : "NULL"); 2463 if (!slave) 2464 return; 2465 2466 if (bond->master_ip) { 2467 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip, 2468 bond->master_ip, 0); 2469 } 2470 2471 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2472 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2473 if (vlan->vlan_ip) { 2474 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip, 2475 vlan->vlan_ip, vlan->vlan_id); 2476 } 2477 } 2478 } 2479 2480 static void bond_validate_arp(struct bonding *bond, struct slave *slave, u32 sip, u32 tip) 2481 { 2482 int i; 2483 u32 *targets = bond->params.arp_targets; 2484 2485 targets = bond->params.arp_targets; 2486 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2487 dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] " 2488 "%u.%u.%u.%u bhti(tip) %d\n", 2489 NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]), 2490 bond_has_this_ip(bond, tip)); 2491 if (sip == targets[i]) { 2492 if (bond_has_this_ip(bond, tip)) 2493 slave->last_arp_rx = jiffies; 2494 return; 2495 } 2496 } 2497 } 2498 2499 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) 2500 { 2501 struct arphdr *arp; 2502 struct slave *slave; 2503 struct bonding *bond; 2504 unsigned char *arp_ptr; 2505 u32 sip, tip; 2506 2507 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER)) 2508 goto out; 2509 2510 bond = dev->priv; 2511 read_lock(&bond->lock); 2512 2513 dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n", 2514 bond->dev->name, skb->dev ? skb->dev->name : "NULL", 2515 orig_dev ? orig_dev->name : "NULL"); 2516 2517 slave = bond_get_slave_by_dev(bond, orig_dev); 2518 if (!slave || !slave_do_arp_validate(bond, slave)) 2519 goto out_unlock; 2520 2521 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */ 2522 if (!pskb_may_pull(skb, (sizeof(struct arphdr) + 2523 (2 * dev->addr_len) + 2524 (2 * sizeof(u32))))) 2525 goto out_unlock; 2526 2527 arp = skb->nh.arph; 2528 if (arp->ar_hln != dev->addr_len || 2529 skb->pkt_type == PACKET_OTHERHOST || 2530 skb->pkt_type == PACKET_LOOPBACK || 2531 arp->ar_hrd != htons(ARPHRD_ETHER) || 2532 arp->ar_pro != htons(ETH_P_IP) || 2533 arp->ar_pln != 4) 2534 goto out_unlock; 2535 2536 arp_ptr = (unsigned char *)(arp + 1); 2537 arp_ptr += dev->addr_len; 2538 memcpy(&sip, arp_ptr, 4); 2539 arp_ptr += 4 + dev->addr_len; 2540 memcpy(&tip, arp_ptr, 4); 2541 2542 dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u" 2543 " tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name, 2544 slave->state, bond->params.arp_validate, 2545 slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip)); 2546 2547 /* 2548 * Backup slaves won't see the ARP reply, but do come through 2549 * here for each ARP probe (so we swap the sip/tip to validate 2550 * the probe). In a "redundant switch, common router" type of 2551 * configuration, the ARP probe will (hopefully) travel from 2552 * the active, through one switch, the router, then the other 2553 * switch before reaching the backup. 2554 */ 2555 if (slave->state == BOND_STATE_ACTIVE) 2556 bond_validate_arp(bond, slave, sip, tip); 2557 else 2558 bond_validate_arp(bond, slave, tip, sip); 2559 2560 out_unlock: 2561 read_unlock(&bond->lock); 2562 out: 2563 dev_kfree_skb(skb); 2564 return NET_RX_SUCCESS; 2565 } 2566 2567 /* 2568 * this function is called regularly to monitor each slave's link 2569 * ensuring that traffic is being sent and received when arp monitoring 2570 * is used in load-balancing mode. if the adapter has been dormant, then an 2571 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2572 * arp monitoring in active backup mode. 2573 */ 2574 void bond_loadbalance_arp_mon(struct net_device *bond_dev) 2575 { 2576 struct bonding *bond = bond_dev->priv; 2577 struct slave *slave, *oldcurrent; 2578 int do_failover = 0; 2579 int delta_in_ticks; 2580 int i; 2581 2582 read_lock(&bond->lock); 2583 2584 delta_in_ticks = (bond->params.arp_interval * HZ) / 1000; 2585 2586 if (bond->kill_timers) { 2587 goto out; 2588 } 2589 2590 if (bond->slave_cnt == 0) { 2591 goto re_arm; 2592 } 2593 2594 read_lock(&bond->curr_slave_lock); 2595 oldcurrent = bond->curr_active_slave; 2596 read_unlock(&bond->curr_slave_lock); 2597 2598 /* see if any of the previous devices are up now (i.e. they have 2599 * xmt and rcv traffic). the curr_active_slave does not come into 2600 * the picture unless it is null. also, slave->jiffies is not needed 2601 * here because we send an arp on each slave and give a slave as 2602 * long as it needs to get the tx/rx within the delta. 2603 * TODO: what about up/down delay in arp mode? it wasn't here before 2604 * so it can wait 2605 */ 2606 bond_for_each_slave(bond, slave, i) { 2607 if (slave->link != BOND_LINK_UP) { 2608 if (((jiffies - slave->dev->trans_start) <= delta_in_ticks) && 2609 ((jiffies - slave->dev->last_rx) <= delta_in_ticks)) { 2610 2611 slave->link = BOND_LINK_UP; 2612 slave->state = BOND_STATE_ACTIVE; 2613 2614 /* primary_slave has no meaning in round-robin 2615 * mode. the window of a slave being up and 2616 * curr_active_slave being null after enslaving 2617 * is closed. 2618 */ 2619 if (!oldcurrent) { 2620 printk(KERN_INFO DRV_NAME 2621 ": %s: link status definitely " 2622 "up for interface %s, ", 2623 bond_dev->name, 2624 slave->dev->name); 2625 do_failover = 1; 2626 } else { 2627 printk(KERN_INFO DRV_NAME 2628 ": %s: interface %s is now up\n", 2629 bond_dev->name, 2630 slave->dev->name); 2631 } 2632 } 2633 } else { 2634 /* slave->link == BOND_LINK_UP */ 2635 2636 /* not all switches will respond to an arp request 2637 * when the source ip is 0, so don't take the link down 2638 * if we don't know our ip yet 2639 */ 2640 if (((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) || 2641 (((jiffies - slave->dev->last_rx) >= (2*delta_in_ticks)) && 2642 bond_has_ip(bond))) { 2643 2644 slave->link = BOND_LINK_DOWN; 2645 slave->state = BOND_STATE_BACKUP; 2646 2647 if (slave->link_failure_count < UINT_MAX) { 2648 slave->link_failure_count++; 2649 } 2650 2651 printk(KERN_INFO DRV_NAME 2652 ": %s: interface %s is now down.\n", 2653 bond_dev->name, 2654 slave->dev->name); 2655 2656 if (slave == oldcurrent) { 2657 do_failover = 1; 2658 } 2659 } 2660 } 2661 2662 /* note: if switch is in round-robin mode, all links 2663 * must tx arp to ensure all links rx an arp - otherwise 2664 * links may oscillate or not come up at all; if switch is 2665 * in something like xor mode, there is nothing we can 2666 * do - all replies will be rx'ed on same link causing slaves 2667 * to be unstable during low/no traffic periods 2668 */ 2669 if (IS_UP(slave->dev)) { 2670 bond_arp_send_all(bond, slave); 2671 } 2672 } 2673 2674 if (do_failover) { 2675 write_lock(&bond->curr_slave_lock); 2676 2677 bond_select_active_slave(bond); 2678 2679 write_unlock(&bond->curr_slave_lock); 2680 } 2681 2682 re_arm: 2683 if (bond->params.arp_interval) { 2684 mod_timer(&bond->arp_timer, jiffies + delta_in_ticks); 2685 } 2686 out: 2687 read_unlock(&bond->lock); 2688 } 2689 2690 /* 2691 * When using arp monitoring in active-backup mode, this function is 2692 * called to determine if any backup slaves have went down or a new 2693 * current slave needs to be found. 2694 * The backup slaves never generate traffic, they are considered up by merely 2695 * receiving traffic. If the current slave goes down, each backup slave will 2696 * be given the opportunity to tx/rx an arp before being taken down - this 2697 * prevents all slaves from being taken down due to the current slave not 2698 * sending any traffic for the backups to receive. The arps are not necessarily 2699 * necessary, any tx and rx traffic will keep the current slave up. While any 2700 * rx traffic will keep the backup slaves up, the current slave is responsible 2701 * for generating traffic to keep them up regardless of any other traffic they 2702 * may have received. 2703 * see loadbalance_arp_monitor for arp monitoring in load balancing mode 2704 */ 2705 void bond_activebackup_arp_mon(struct net_device *bond_dev) 2706 { 2707 struct bonding *bond = bond_dev->priv; 2708 struct slave *slave; 2709 int delta_in_ticks; 2710 int i; 2711 2712 read_lock(&bond->lock); 2713 2714 delta_in_ticks = (bond->params.arp_interval * HZ) / 1000; 2715 2716 if (bond->kill_timers) { 2717 goto out; 2718 } 2719 2720 if (bond->slave_cnt == 0) { 2721 goto re_arm; 2722 } 2723 2724 /* determine if any slave has come up or any backup slave has 2725 * gone down 2726 * TODO: what about up/down delay in arp mode? it wasn't here before 2727 * so it can wait 2728 */ 2729 bond_for_each_slave(bond, slave, i) { 2730 if (slave->link != BOND_LINK_UP) { 2731 if ((jiffies - slave_last_rx(bond, slave)) <= 2732 delta_in_ticks) { 2733 2734 slave->link = BOND_LINK_UP; 2735 2736 write_lock(&bond->curr_slave_lock); 2737 2738 if ((!bond->curr_active_slave) && 2739 ((jiffies - slave->dev->trans_start) <= delta_in_ticks)) { 2740 bond_change_active_slave(bond, slave); 2741 bond->current_arp_slave = NULL; 2742 } else if (bond->curr_active_slave != slave) { 2743 /* this slave has just come up but we 2744 * already have a current slave; this 2745 * can also happen if bond_enslave adds 2746 * a new slave that is up while we are 2747 * searching for a new slave 2748 */ 2749 bond_set_slave_inactive_flags(slave); 2750 bond->current_arp_slave = NULL; 2751 } 2752 2753 bond_set_carrier(bond); 2754 2755 if (slave == bond->curr_active_slave) { 2756 printk(KERN_INFO DRV_NAME 2757 ": %s: %s is up and now the " 2758 "active interface\n", 2759 bond_dev->name, 2760 slave->dev->name); 2761 netif_carrier_on(bond->dev); 2762 } else { 2763 printk(KERN_INFO DRV_NAME 2764 ": %s: backup interface %s is " 2765 "now up\n", 2766 bond_dev->name, 2767 slave->dev->name); 2768 } 2769 2770 write_unlock(&bond->curr_slave_lock); 2771 } 2772 } else { 2773 read_lock(&bond->curr_slave_lock); 2774 2775 if ((slave != bond->curr_active_slave) && 2776 (!bond->current_arp_slave) && 2777 (((jiffies - slave_last_rx(bond, slave)) >= 3*delta_in_ticks) && 2778 bond_has_ip(bond))) { 2779 /* a backup slave has gone down; three times 2780 * the delta allows the current slave to be 2781 * taken out before the backup slave. 2782 * note: a non-null current_arp_slave indicates 2783 * the curr_active_slave went down and we are 2784 * searching for a new one; under this 2785 * condition we only take the curr_active_slave 2786 * down - this gives each slave a chance to 2787 * tx/rx traffic before being taken out 2788 */ 2789 2790 read_unlock(&bond->curr_slave_lock); 2791 2792 slave->link = BOND_LINK_DOWN; 2793 2794 if (slave->link_failure_count < UINT_MAX) { 2795 slave->link_failure_count++; 2796 } 2797 2798 bond_set_slave_inactive_flags(slave); 2799 2800 printk(KERN_INFO DRV_NAME 2801 ": %s: backup interface %s is now down\n", 2802 bond_dev->name, 2803 slave->dev->name); 2804 } else { 2805 read_unlock(&bond->curr_slave_lock); 2806 } 2807 } 2808 } 2809 2810 read_lock(&bond->curr_slave_lock); 2811 slave = bond->curr_active_slave; 2812 read_unlock(&bond->curr_slave_lock); 2813 2814 if (slave) { 2815 /* if we have sent traffic in the past 2*arp_intervals but 2816 * haven't xmit and rx traffic in that time interval, select 2817 * a different slave. slave->jiffies is only updated when 2818 * a slave first becomes the curr_active_slave - not necessarily 2819 * after every arp; this ensures the slave has a full 2*delta 2820 * before being taken out. if a primary is being used, check 2821 * if it is up and needs to take over as the curr_active_slave 2822 */ 2823 if ((((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) || 2824 (((jiffies - slave_last_rx(bond, slave)) >= (2*delta_in_ticks)) && 2825 bond_has_ip(bond))) && 2826 ((jiffies - slave->jiffies) >= 2*delta_in_ticks)) { 2827 2828 slave->link = BOND_LINK_DOWN; 2829 2830 if (slave->link_failure_count < UINT_MAX) { 2831 slave->link_failure_count++; 2832 } 2833 2834 printk(KERN_INFO DRV_NAME 2835 ": %s: link status down for active interface " 2836 "%s, disabling it\n", 2837 bond_dev->name, 2838 slave->dev->name); 2839 2840 write_lock(&bond->curr_slave_lock); 2841 2842 bond_select_active_slave(bond); 2843 slave = bond->curr_active_slave; 2844 2845 write_unlock(&bond->curr_slave_lock); 2846 2847 bond->current_arp_slave = slave; 2848 2849 if (slave) { 2850 slave->jiffies = jiffies; 2851 } 2852 } else if ((bond->primary_slave) && 2853 (bond->primary_slave != slave) && 2854 (bond->primary_slave->link == BOND_LINK_UP)) { 2855 /* at this point, slave is the curr_active_slave */ 2856 printk(KERN_INFO DRV_NAME 2857 ": %s: changing from interface %s to primary " 2858 "interface %s\n", 2859 bond_dev->name, 2860 slave->dev->name, 2861 bond->primary_slave->dev->name); 2862 2863 /* primary is up so switch to it */ 2864 write_lock(&bond->curr_slave_lock); 2865 bond_change_active_slave(bond, bond->primary_slave); 2866 write_unlock(&bond->curr_slave_lock); 2867 2868 slave = bond->primary_slave; 2869 slave->jiffies = jiffies; 2870 } else { 2871 bond->current_arp_slave = NULL; 2872 } 2873 2874 /* the current slave must tx an arp to ensure backup slaves 2875 * rx traffic 2876 */ 2877 if (slave && bond_has_ip(bond)) { 2878 bond_arp_send_all(bond, slave); 2879 } 2880 } 2881 2882 /* if we don't have a curr_active_slave, search for the next available 2883 * backup slave from the current_arp_slave and make it the candidate 2884 * for becoming the curr_active_slave 2885 */ 2886 if (!slave) { 2887 if (!bond->current_arp_slave) { 2888 bond->current_arp_slave = bond->first_slave; 2889 } 2890 2891 if (bond->current_arp_slave) { 2892 bond_set_slave_inactive_flags(bond->current_arp_slave); 2893 2894 /* search for next candidate */ 2895 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 2896 if (IS_UP(slave->dev)) { 2897 slave->link = BOND_LINK_BACK; 2898 bond_set_slave_active_flags(slave); 2899 bond_arp_send_all(bond, slave); 2900 slave->jiffies = jiffies; 2901 bond->current_arp_slave = slave; 2902 break; 2903 } 2904 2905 /* if the link state is up at this point, we 2906 * mark it down - this can happen if we have 2907 * simultaneous link failures and 2908 * reselect_active_interface doesn't make this 2909 * one the current slave so it is still marked 2910 * up when it is actually down 2911 */ 2912 if (slave->link == BOND_LINK_UP) { 2913 slave->link = BOND_LINK_DOWN; 2914 if (slave->link_failure_count < UINT_MAX) { 2915 slave->link_failure_count++; 2916 } 2917 2918 bond_set_slave_inactive_flags(slave); 2919 2920 printk(KERN_INFO DRV_NAME 2921 ": %s: backup interface %s is " 2922 "now down.\n", 2923 bond_dev->name, 2924 slave->dev->name); 2925 } 2926 } 2927 } 2928 } 2929 2930 re_arm: 2931 if (bond->params.arp_interval) { 2932 mod_timer(&bond->arp_timer, jiffies + delta_in_ticks); 2933 } 2934 out: 2935 read_unlock(&bond->lock); 2936 } 2937 2938 /*------------------------------ proc/seq_file-------------------------------*/ 2939 2940 #ifdef CONFIG_PROC_FS 2941 2942 #define SEQ_START_TOKEN ((void *)1) 2943 2944 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos) 2945 { 2946 struct bonding *bond = seq->private; 2947 loff_t off = 0; 2948 struct slave *slave; 2949 int i; 2950 2951 /* make sure the bond won't be taken away */ 2952 read_lock(&dev_base_lock); 2953 read_lock_bh(&bond->lock); 2954 2955 if (*pos == 0) { 2956 return SEQ_START_TOKEN; 2957 } 2958 2959 bond_for_each_slave(bond, slave, i) { 2960 if (++off == *pos) { 2961 return slave; 2962 } 2963 } 2964 2965 return NULL; 2966 } 2967 2968 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2969 { 2970 struct bonding *bond = seq->private; 2971 struct slave *slave = v; 2972 2973 ++*pos; 2974 if (v == SEQ_START_TOKEN) { 2975 return bond->first_slave; 2976 } 2977 2978 slave = slave->next; 2979 2980 return (slave == bond->first_slave) ? NULL : slave; 2981 } 2982 2983 static void bond_info_seq_stop(struct seq_file *seq, void *v) 2984 { 2985 struct bonding *bond = seq->private; 2986 2987 read_unlock_bh(&bond->lock); 2988 read_unlock(&dev_base_lock); 2989 } 2990 2991 static void bond_info_show_master(struct seq_file *seq) 2992 { 2993 struct bonding *bond = seq->private; 2994 struct slave *curr; 2995 int i; 2996 u32 target; 2997 2998 read_lock(&bond->curr_slave_lock); 2999 curr = bond->curr_active_slave; 3000 read_unlock(&bond->curr_slave_lock); 3001 3002 seq_printf(seq, "Bonding Mode: %s\n", 3003 bond_mode_name(bond->params.mode)); 3004 3005 if (bond->params.mode == BOND_MODE_XOR || 3006 bond->params.mode == BOND_MODE_8023AD) { 3007 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n", 3008 xmit_hashtype_tbl[bond->params.xmit_policy].modename, 3009 bond->params.xmit_policy); 3010 } 3011 3012 if (USES_PRIMARY(bond->params.mode)) { 3013 seq_printf(seq, "Primary Slave: %s\n", 3014 (bond->primary_slave) ? 3015 bond->primary_slave->dev->name : "None"); 3016 3017 seq_printf(seq, "Currently Active Slave: %s\n", 3018 (curr) ? curr->dev->name : "None"); 3019 } 3020 3021 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ? 3022 "up" : "down"); 3023 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon); 3024 seq_printf(seq, "Up Delay (ms): %d\n", 3025 bond->params.updelay * bond->params.miimon); 3026 seq_printf(seq, "Down Delay (ms): %d\n", 3027 bond->params.downdelay * bond->params.miimon); 3028 3029 3030 /* ARP information */ 3031 if(bond->params.arp_interval > 0) { 3032 int printed=0; 3033 seq_printf(seq, "ARP Polling Interval (ms): %d\n", 3034 bond->params.arp_interval); 3035 3036 seq_printf(seq, "ARP IP target/s (n.n.n.n form):"); 3037 3038 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) { 3039 if (!bond->params.arp_targets[i]) 3040 continue; 3041 if (printed) 3042 seq_printf(seq, ","); 3043 target = ntohl(bond->params.arp_targets[i]); 3044 seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target)); 3045 printed = 1; 3046 } 3047 seq_printf(seq, "\n"); 3048 } 3049 3050 if (bond->params.mode == BOND_MODE_8023AD) { 3051 struct ad_info ad_info; 3052 3053 seq_puts(seq, "\n802.3ad info\n"); 3054 seq_printf(seq, "LACP rate: %s\n", 3055 (bond->params.lacp_fast) ? "fast" : "slow"); 3056 3057 if (bond_3ad_get_active_agg_info(bond, &ad_info)) { 3058 seq_printf(seq, "bond %s has no active aggregator\n", 3059 bond->dev->name); 3060 } else { 3061 seq_printf(seq, "Active Aggregator Info:\n"); 3062 3063 seq_printf(seq, "\tAggregator ID: %d\n", 3064 ad_info.aggregator_id); 3065 seq_printf(seq, "\tNumber of ports: %d\n", 3066 ad_info.ports); 3067 seq_printf(seq, "\tActor Key: %d\n", 3068 ad_info.actor_key); 3069 seq_printf(seq, "\tPartner Key: %d\n", 3070 ad_info.partner_key); 3071 seq_printf(seq, "\tPartner Mac Address: %02x:%02x:%02x:%02x:%02x:%02x\n", 3072 ad_info.partner_system[0], 3073 ad_info.partner_system[1], 3074 ad_info.partner_system[2], 3075 ad_info.partner_system[3], 3076 ad_info.partner_system[4], 3077 ad_info.partner_system[5]); 3078 } 3079 } 3080 } 3081 3082 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave) 3083 { 3084 struct bonding *bond = seq->private; 3085 3086 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name); 3087 seq_printf(seq, "MII Status: %s\n", 3088 (slave->link == BOND_LINK_UP) ? "up" : "down"); 3089 seq_printf(seq, "Link Failure Count: %u\n", 3090 slave->link_failure_count); 3091 3092 seq_printf(seq, 3093 "Permanent HW addr: %02x:%02x:%02x:%02x:%02x:%02x\n", 3094 slave->perm_hwaddr[0], slave->perm_hwaddr[1], 3095 slave->perm_hwaddr[2], slave->perm_hwaddr[3], 3096 slave->perm_hwaddr[4], slave->perm_hwaddr[5]); 3097 3098 if (bond->params.mode == BOND_MODE_8023AD) { 3099 const struct aggregator *agg 3100 = SLAVE_AD_INFO(slave).port.aggregator; 3101 3102 if (agg) { 3103 seq_printf(seq, "Aggregator ID: %d\n", 3104 agg->aggregator_identifier); 3105 } else { 3106 seq_puts(seq, "Aggregator ID: N/A\n"); 3107 } 3108 } 3109 } 3110 3111 static int bond_info_seq_show(struct seq_file *seq, void *v) 3112 { 3113 if (v == SEQ_START_TOKEN) { 3114 seq_printf(seq, "%s\n", version); 3115 bond_info_show_master(seq); 3116 } else { 3117 bond_info_show_slave(seq, v); 3118 } 3119 3120 return 0; 3121 } 3122 3123 static struct seq_operations bond_info_seq_ops = { 3124 .start = bond_info_seq_start, 3125 .next = bond_info_seq_next, 3126 .stop = bond_info_seq_stop, 3127 .show = bond_info_seq_show, 3128 }; 3129 3130 static int bond_info_open(struct inode *inode, struct file *file) 3131 { 3132 struct seq_file *seq; 3133 struct proc_dir_entry *proc; 3134 int res; 3135 3136 res = seq_open(file, &bond_info_seq_ops); 3137 if (!res) { 3138 /* recover the pointer buried in proc_dir_entry data */ 3139 seq = file->private_data; 3140 proc = PDE(inode); 3141 seq->private = proc->data; 3142 } 3143 3144 return res; 3145 } 3146 3147 static const struct file_operations bond_info_fops = { 3148 .owner = THIS_MODULE, 3149 .open = bond_info_open, 3150 .read = seq_read, 3151 .llseek = seq_lseek, 3152 .release = seq_release, 3153 }; 3154 3155 static int bond_create_proc_entry(struct bonding *bond) 3156 { 3157 struct net_device *bond_dev = bond->dev; 3158 3159 if (bond_proc_dir) { 3160 bond->proc_entry = create_proc_entry(bond_dev->name, 3161 S_IRUGO, 3162 bond_proc_dir); 3163 if (bond->proc_entry == NULL) { 3164 printk(KERN_WARNING DRV_NAME 3165 ": Warning: Cannot create /proc/net/%s/%s\n", 3166 DRV_NAME, bond_dev->name); 3167 } else { 3168 bond->proc_entry->data = bond; 3169 bond->proc_entry->proc_fops = &bond_info_fops; 3170 bond->proc_entry->owner = THIS_MODULE; 3171 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ); 3172 } 3173 } 3174 3175 return 0; 3176 } 3177 3178 static void bond_remove_proc_entry(struct bonding *bond) 3179 { 3180 if (bond_proc_dir && bond->proc_entry) { 3181 remove_proc_entry(bond->proc_file_name, bond_proc_dir); 3182 memset(bond->proc_file_name, 0, IFNAMSIZ); 3183 bond->proc_entry = NULL; 3184 } 3185 } 3186 3187 /* Create the bonding directory under /proc/net, if doesn't exist yet. 3188 * Caller must hold rtnl_lock. 3189 */ 3190 static void bond_create_proc_dir(void) 3191 { 3192 int len = strlen(DRV_NAME); 3193 3194 for (bond_proc_dir = proc_net->subdir; bond_proc_dir; 3195 bond_proc_dir = bond_proc_dir->next) { 3196 if ((bond_proc_dir->namelen == len) && 3197 !memcmp(bond_proc_dir->name, DRV_NAME, len)) { 3198 break; 3199 } 3200 } 3201 3202 if (!bond_proc_dir) { 3203 bond_proc_dir = proc_mkdir(DRV_NAME, proc_net); 3204 if (bond_proc_dir) { 3205 bond_proc_dir->owner = THIS_MODULE; 3206 } else { 3207 printk(KERN_WARNING DRV_NAME 3208 ": Warning: cannot create /proc/net/%s\n", 3209 DRV_NAME); 3210 } 3211 } 3212 } 3213 3214 /* Destroy the bonding directory under /proc/net, if empty. 3215 * Caller must hold rtnl_lock. 3216 */ 3217 static void bond_destroy_proc_dir(void) 3218 { 3219 struct proc_dir_entry *de; 3220 3221 if (!bond_proc_dir) { 3222 return; 3223 } 3224 3225 /* verify that the /proc dir is empty */ 3226 for (de = bond_proc_dir->subdir; de; de = de->next) { 3227 /* ignore . and .. */ 3228 if (*(de->name) != '.') { 3229 break; 3230 } 3231 } 3232 3233 if (de) { 3234 if (bond_proc_dir->owner == THIS_MODULE) { 3235 bond_proc_dir->owner = NULL; 3236 } 3237 } else { 3238 remove_proc_entry(DRV_NAME, proc_net); 3239 bond_proc_dir = NULL; 3240 } 3241 } 3242 #endif /* CONFIG_PROC_FS */ 3243 3244 /*-------------------------- netdev event handling --------------------------*/ 3245 3246 /* 3247 * Change device name 3248 */ 3249 static int bond_event_changename(struct bonding *bond) 3250 { 3251 #ifdef CONFIG_PROC_FS 3252 bond_remove_proc_entry(bond); 3253 bond_create_proc_entry(bond); 3254 #endif 3255 down_write(&(bonding_rwsem)); 3256 bond_destroy_sysfs_entry(bond); 3257 bond_create_sysfs_entry(bond); 3258 up_write(&(bonding_rwsem)); 3259 return NOTIFY_DONE; 3260 } 3261 3262 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev) 3263 { 3264 struct bonding *event_bond = bond_dev->priv; 3265 3266 switch (event) { 3267 case NETDEV_CHANGENAME: 3268 return bond_event_changename(event_bond); 3269 case NETDEV_UNREGISTER: 3270 /* 3271 * TODO: remove a bond from the list? 3272 */ 3273 break; 3274 default: 3275 break; 3276 } 3277 3278 return NOTIFY_DONE; 3279 } 3280 3281 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev) 3282 { 3283 struct net_device *bond_dev = slave_dev->master; 3284 struct bonding *bond = bond_dev->priv; 3285 3286 switch (event) { 3287 case NETDEV_UNREGISTER: 3288 if (bond_dev) { 3289 bond_release(bond_dev, slave_dev); 3290 } 3291 break; 3292 case NETDEV_CHANGE: 3293 /* 3294 * TODO: is this what we get if somebody 3295 * sets up a hierarchical bond, then rmmod's 3296 * one of the slave bonding devices? 3297 */ 3298 break; 3299 case NETDEV_DOWN: 3300 /* 3301 * ... Or is it this? 3302 */ 3303 break; 3304 case NETDEV_CHANGEMTU: 3305 /* 3306 * TODO: Should slaves be allowed to 3307 * independently alter their MTU? For 3308 * an active-backup bond, slaves need 3309 * not be the same type of device, so 3310 * MTUs may vary. For other modes, 3311 * slaves arguably should have the 3312 * same MTUs. To do this, we'd need to 3313 * take over the slave's change_mtu 3314 * function for the duration of their 3315 * servitude. 3316 */ 3317 break; 3318 case NETDEV_CHANGENAME: 3319 /* 3320 * TODO: handle changing the primary's name 3321 */ 3322 break; 3323 case NETDEV_FEAT_CHANGE: 3324 bond_compute_features(bond); 3325 break; 3326 default: 3327 break; 3328 } 3329 3330 return NOTIFY_DONE; 3331 } 3332 3333 /* 3334 * bond_netdev_event: handle netdev notifier chain events. 3335 * 3336 * This function receives events for the netdev chain. The caller (an 3337 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3338 * locks for us to safely manipulate the slave devices (RTNL lock, 3339 * dev_probe_lock). 3340 */ 3341 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) 3342 { 3343 struct net_device *event_dev = (struct net_device *)ptr; 3344 3345 dprintk("event_dev: %s, event: %lx\n", 3346 (event_dev ? event_dev->name : "None"), 3347 event); 3348 3349 if (!(event_dev->priv_flags & IFF_BONDING)) 3350 return NOTIFY_DONE; 3351 3352 if (event_dev->flags & IFF_MASTER) { 3353 dprintk("IFF_MASTER\n"); 3354 return bond_master_netdev_event(event, event_dev); 3355 } 3356 3357 if (event_dev->flags & IFF_SLAVE) { 3358 dprintk("IFF_SLAVE\n"); 3359 return bond_slave_netdev_event(event, event_dev); 3360 } 3361 3362 return NOTIFY_DONE; 3363 } 3364 3365 /* 3366 * bond_inetaddr_event: handle inetaddr notifier chain events. 3367 * 3368 * We keep track of device IPs primarily to use as source addresses in 3369 * ARP monitor probes (rather than spewing out broadcasts all the time). 3370 * 3371 * We track one IP for the main device (if it has one), plus one per VLAN. 3372 */ 3373 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) 3374 { 3375 struct in_ifaddr *ifa = ptr; 3376 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev; 3377 struct bonding *bond, *bond_next; 3378 struct vlan_entry *vlan, *vlan_next; 3379 3380 list_for_each_entry_safe(bond, bond_next, &bond_dev_list, bond_list) { 3381 if (bond->dev == event_dev) { 3382 switch (event) { 3383 case NETDEV_UP: 3384 bond->master_ip = ifa->ifa_local; 3385 return NOTIFY_OK; 3386 case NETDEV_DOWN: 3387 bond->master_ip = bond_glean_dev_ip(bond->dev); 3388 return NOTIFY_OK; 3389 default: 3390 return NOTIFY_DONE; 3391 } 3392 } 3393 3394 if (list_empty(&bond->vlan_list)) 3395 continue; 3396 3397 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list, 3398 vlan_list) { 3399 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 3400 if (vlan_dev == event_dev) { 3401 switch (event) { 3402 case NETDEV_UP: 3403 vlan->vlan_ip = ifa->ifa_local; 3404 return NOTIFY_OK; 3405 case NETDEV_DOWN: 3406 vlan->vlan_ip = 3407 bond_glean_dev_ip(vlan_dev); 3408 return NOTIFY_OK; 3409 default: 3410 return NOTIFY_DONE; 3411 } 3412 } 3413 } 3414 } 3415 return NOTIFY_DONE; 3416 } 3417 3418 static struct notifier_block bond_netdev_notifier = { 3419 .notifier_call = bond_netdev_event, 3420 }; 3421 3422 static struct notifier_block bond_inetaddr_notifier = { 3423 .notifier_call = bond_inetaddr_event, 3424 }; 3425 3426 /*-------------------------- Packet type handling ---------------------------*/ 3427 3428 /* register to receive lacpdus on a bond */ 3429 static void bond_register_lacpdu(struct bonding *bond) 3430 { 3431 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type); 3432 3433 /* initialize packet type */ 3434 pk_type->type = PKT_TYPE_LACPDU; 3435 pk_type->dev = bond->dev; 3436 pk_type->func = bond_3ad_lacpdu_recv; 3437 3438 dev_add_pack(pk_type); 3439 } 3440 3441 /* unregister to receive lacpdus on a bond */ 3442 static void bond_unregister_lacpdu(struct bonding *bond) 3443 { 3444 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type)); 3445 } 3446 3447 void bond_register_arp(struct bonding *bond) 3448 { 3449 struct packet_type *pt = &bond->arp_mon_pt; 3450 3451 if (pt->type) 3452 return; 3453 3454 pt->type = htons(ETH_P_ARP); 3455 pt->dev = bond->dev; 3456 pt->func = bond_arp_rcv; 3457 dev_add_pack(pt); 3458 } 3459 3460 void bond_unregister_arp(struct bonding *bond) 3461 { 3462 struct packet_type *pt = &bond->arp_mon_pt; 3463 3464 dev_remove_pack(pt); 3465 pt->type = 0; 3466 } 3467 3468 /*---------------------------- Hashing Policies -----------------------------*/ 3469 3470 /* 3471 * Hash for the the output device based upon layer 3 and layer 4 data. If 3472 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3473 * altogether not IP, mimic bond_xmit_hash_policy_l2() 3474 */ 3475 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, 3476 struct net_device *bond_dev, int count) 3477 { 3478 struct ethhdr *data = (struct ethhdr *)skb->data; 3479 struct iphdr *iph = skb->nh.iph; 3480 u16 *layer4hdr = (u16 *)((u32 *)iph + iph->ihl); 3481 int layer4_xor = 0; 3482 3483 if (skb->protocol == __constant_htons(ETH_P_IP)) { 3484 if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) && 3485 (iph->protocol == IPPROTO_TCP || 3486 iph->protocol == IPPROTO_UDP)) { 3487 layer4_xor = htons((*layer4hdr ^ *(layer4hdr + 1))); 3488 } 3489 return (layer4_xor ^ 3490 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3491 3492 } 3493 3494 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3495 } 3496 3497 /* 3498 * Hash for the output device based upon layer 2 data 3499 */ 3500 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, 3501 struct net_device *bond_dev, int count) 3502 { 3503 struct ethhdr *data = (struct ethhdr *)skb->data; 3504 3505 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3506 } 3507 3508 /*-------------------------- Device entry points ----------------------------*/ 3509 3510 static int bond_open(struct net_device *bond_dev) 3511 { 3512 struct bonding *bond = bond_dev->priv; 3513 struct timer_list *mii_timer = &bond->mii_timer; 3514 struct timer_list *arp_timer = &bond->arp_timer; 3515 3516 bond->kill_timers = 0; 3517 3518 if ((bond->params.mode == BOND_MODE_TLB) || 3519 (bond->params.mode == BOND_MODE_ALB)) { 3520 struct timer_list *alb_timer = &(BOND_ALB_INFO(bond).alb_timer); 3521 3522 /* bond_alb_initialize must be called before the timer 3523 * is started. 3524 */ 3525 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) { 3526 /* something went wrong - fail the open operation */ 3527 return -1; 3528 } 3529 3530 init_timer(alb_timer); 3531 alb_timer->expires = jiffies + 1; 3532 alb_timer->data = (unsigned long)bond; 3533 alb_timer->function = (void *)&bond_alb_monitor; 3534 add_timer(alb_timer); 3535 } 3536 3537 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3538 init_timer(mii_timer); 3539 mii_timer->expires = jiffies + 1; 3540 mii_timer->data = (unsigned long)bond_dev; 3541 mii_timer->function = (void *)&bond_mii_monitor; 3542 add_timer(mii_timer); 3543 } 3544 3545 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3546 init_timer(arp_timer); 3547 arp_timer->expires = jiffies + 1; 3548 arp_timer->data = (unsigned long)bond_dev; 3549 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 3550 arp_timer->function = (void *)&bond_activebackup_arp_mon; 3551 } else { 3552 arp_timer->function = (void *)&bond_loadbalance_arp_mon; 3553 } 3554 if (bond->params.arp_validate) 3555 bond_register_arp(bond); 3556 3557 add_timer(arp_timer); 3558 } 3559 3560 if (bond->params.mode == BOND_MODE_8023AD) { 3561 struct timer_list *ad_timer = &(BOND_AD_INFO(bond).ad_timer); 3562 init_timer(ad_timer); 3563 ad_timer->expires = jiffies + 1; 3564 ad_timer->data = (unsigned long)bond; 3565 ad_timer->function = (void *)&bond_3ad_state_machine_handler; 3566 add_timer(ad_timer); 3567 3568 /* register to receive LACPDUs */ 3569 bond_register_lacpdu(bond); 3570 } 3571 3572 return 0; 3573 } 3574 3575 static int bond_close(struct net_device *bond_dev) 3576 { 3577 struct bonding *bond = bond_dev->priv; 3578 3579 if (bond->params.mode == BOND_MODE_8023AD) { 3580 /* Unregister the receive of LACPDUs */ 3581 bond_unregister_lacpdu(bond); 3582 } 3583 3584 if (bond->params.arp_validate) 3585 bond_unregister_arp(bond); 3586 3587 write_lock_bh(&bond->lock); 3588 3589 3590 /* signal timers not to re-arm */ 3591 bond->kill_timers = 1; 3592 3593 write_unlock_bh(&bond->lock); 3594 3595 /* del_timer_sync must run without holding the bond->lock 3596 * because a running timer might be trying to hold it too 3597 */ 3598 3599 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3600 del_timer_sync(&bond->mii_timer); 3601 } 3602 3603 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3604 del_timer_sync(&bond->arp_timer); 3605 } 3606 3607 switch (bond->params.mode) { 3608 case BOND_MODE_8023AD: 3609 del_timer_sync(&(BOND_AD_INFO(bond).ad_timer)); 3610 break; 3611 case BOND_MODE_TLB: 3612 case BOND_MODE_ALB: 3613 del_timer_sync(&(BOND_ALB_INFO(bond).alb_timer)); 3614 break; 3615 default: 3616 break; 3617 } 3618 3619 3620 if ((bond->params.mode == BOND_MODE_TLB) || 3621 (bond->params.mode == BOND_MODE_ALB)) { 3622 /* Must be called only after all 3623 * slaves have been released 3624 */ 3625 bond_alb_deinitialize(bond); 3626 } 3627 3628 return 0; 3629 } 3630 3631 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev) 3632 { 3633 struct bonding *bond = bond_dev->priv; 3634 struct net_device_stats *stats = &(bond->stats), *sstats; 3635 struct slave *slave; 3636 int i; 3637 3638 memset(stats, 0, sizeof(struct net_device_stats)); 3639 3640 read_lock_bh(&bond->lock); 3641 3642 bond_for_each_slave(bond, slave, i) { 3643 if (slave->dev->get_stats) { 3644 sstats = slave->dev->get_stats(slave->dev); 3645 3646 stats->rx_packets += sstats->rx_packets; 3647 stats->rx_bytes += sstats->rx_bytes; 3648 stats->rx_errors += sstats->rx_errors; 3649 stats->rx_dropped += sstats->rx_dropped; 3650 3651 stats->tx_packets += sstats->tx_packets; 3652 stats->tx_bytes += sstats->tx_bytes; 3653 stats->tx_errors += sstats->tx_errors; 3654 stats->tx_dropped += sstats->tx_dropped; 3655 3656 stats->multicast += sstats->multicast; 3657 stats->collisions += sstats->collisions; 3658 3659 stats->rx_length_errors += sstats->rx_length_errors; 3660 stats->rx_over_errors += sstats->rx_over_errors; 3661 stats->rx_crc_errors += sstats->rx_crc_errors; 3662 stats->rx_frame_errors += sstats->rx_frame_errors; 3663 stats->rx_fifo_errors += sstats->rx_fifo_errors; 3664 stats->rx_missed_errors += sstats->rx_missed_errors; 3665 3666 stats->tx_aborted_errors += sstats->tx_aborted_errors; 3667 stats->tx_carrier_errors += sstats->tx_carrier_errors; 3668 stats->tx_fifo_errors += sstats->tx_fifo_errors; 3669 stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3670 stats->tx_window_errors += sstats->tx_window_errors; 3671 } 3672 } 3673 3674 read_unlock_bh(&bond->lock); 3675 3676 return stats; 3677 } 3678 3679 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3680 { 3681 struct net_device *slave_dev = NULL; 3682 struct ifbond k_binfo; 3683 struct ifbond __user *u_binfo = NULL; 3684 struct ifslave k_sinfo; 3685 struct ifslave __user *u_sinfo = NULL; 3686 struct mii_ioctl_data *mii = NULL; 3687 int res = 0; 3688 3689 dprintk("bond_ioctl: master=%s, cmd=%d\n", 3690 bond_dev->name, cmd); 3691 3692 switch (cmd) { 3693 case SIOCGMIIPHY: 3694 mii = if_mii(ifr); 3695 if (!mii) { 3696 return -EINVAL; 3697 } 3698 mii->phy_id = 0; 3699 /* Fall Through */ 3700 case SIOCGMIIREG: 3701 /* 3702 * We do this again just in case we were called by SIOCGMIIREG 3703 * instead of SIOCGMIIPHY. 3704 */ 3705 mii = if_mii(ifr); 3706 if (!mii) { 3707 return -EINVAL; 3708 } 3709 3710 if (mii->reg_num == 1) { 3711 struct bonding *bond = bond_dev->priv; 3712 mii->val_out = 0; 3713 read_lock_bh(&bond->lock); 3714 read_lock(&bond->curr_slave_lock); 3715 if (netif_carrier_ok(bond->dev)) { 3716 mii->val_out = BMSR_LSTATUS; 3717 } 3718 read_unlock(&bond->curr_slave_lock); 3719 read_unlock_bh(&bond->lock); 3720 } 3721 3722 return 0; 3723 case BOND_INFO_QUERY_OLD: 3724 case SIOCBONDINFOQUERY: 3725 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3726 3727 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) { 3728 return -EFAULT; 3729 } 3730 3731 res = bond_info_query(bond_dev, &k_binfo); 3732 if (res == 0) { 3733 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) { 3734 return -EFAULT; 3735 } 3736 } 3737 3738 return res; 3739 case BOND_SLAVE_INFO_QUERY_OLD: 3740 case SIOCBONDSLAVEINFOQUERY: 3741 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 3742 3743 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) { 3744 return -EFAULT; 3745 } 3746 3747 res = bond_slave_info_query(bond_dev, &k_sinfo); 3748 if (res == 0) { 3749 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) { 3750 return -EFAULT; 3751 } 3752 } 3753 3754 return res; 3755 default: 3756 /* Go on */ 3757 break; 3758 } 3759 3760 if (!capable(CAP_NET_ADMIN)) { 3761 return -EPERM; 3762 } 3763 3764 down_write(&(bonding_rwsem)); 3765 slave_dev = dev_get_by_name(ifr->ifr_slave); 3766 3767 dprintk("slave_dev=%p: \n", slave_dev); 3768 3769 if (!slave_dev) { 3770 res = -ENODEV; 3771 } else { 3772 dprintk("slave_dev->name=%s: \n", slave_dev->name); 3773 switch (cmd) { 3774 case BOND_ENSLAVE_OLD: 3775 case SIOCBONDENSLAVE: 3776 res = bond_enslave(bond_dev, slave_dev); 3777 break; 3778 case BOND_RELEASE_OLD: 3779 case SIOCBONDRELEASE: 3780 res = bond_release(bond_dev, slave_dev); 3781 break; 3782 case BOND_SETHWADDR_OLD: 3783 case SIOCBONDSETHWADDR: 3784 res = bond_sethwaddr(bond_dev, slave_dev); 3785 break; 3786 case BOND_CHANGE_ACTIVE_OLD: 3787 case SIOCBONDCHANGEACTIVE: 3788 res = bond_ioctl_change_active(bond_dev, slave_dev); 3789 break; 3790 default: 3791 res = -EOPNOTSUPP; 3792 } 3793 3794 dev_put(slave_dev); 3795 } 3796 3797 up_write(&(bonding_rwsem)); 3798 return res; 3799 } 3800 3801 static void bond_set_multicast_list(struct net_device *bond_dev) 3802 { 3803 struct bonding *bond = bond_dev->priv; 3804 struct dev_mc_list *dmi; 3805 3806 write_lock_bh(&bond->lock); 3807 3808 /* 3809 * Do promisc before checking multicast_mode 3810 */ 3811 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) { 3812 bond_set_promiscuity(bond, 1); 3813 } 3814 3815 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) { 3816 bond_set_promiscuity(bond, -1); 3817 } 3818 3819 /* set allmulti flag to slaves */ 3820 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) { 3821 bond_set_allmulti(bond, 1); 3822 } 3823 3824 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) { 3825 bond_set_allmulti(bond, -1); 3826 } 3827 3828 bond->flags = bond_dev->flags; 3829 3830 /* looking for addresses to add to slaves' mc list */ 3831 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 3832 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) { 3833 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen); 3834 } 3835 } 3836 3837 /* looking for addresses to delete from slaves' list */ 3838 for (dmi = bond->mc_list; dmi; dmi = dmi->next) { 3839 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) { 3840 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen); 3841 } 3842 } 3843 3844 /* save master's multicast list */ 3845 bond_mc_list_destroy(bond); 3846 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC); 3847 3848 write_unlock_bh(&bond->lock); 3849 } 3850 3851 /* 3852 * Change the MTU of all of a master's slaves to match the master 3853 */ 3854 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 3855 { 3856 struct bonding *bond = bond_dev->priv; 3857 struct slave *slave, *stop_at; 3858 int res = 0; 3859 int i; 3860 3861 dprintk("bond=%p, name=%s, new_mtu=%d\n", bond, 3862 (bond_dev ? bond_dev->name : "None"), new_mtu); 3863 3864 /* Can't hold bond->lock with bh disabled here since 3865 * some base drivers panic. On the other hand we can't 3866 * hold bond->lock without bh disabled because we'll 3867 * deadlock. The only solution is to rely on the fact 3868 * that we're under rtnl_lock here, and the slaves 3869 * list won't change. This doesn't solve the problem 3870 * of setting the slave's MTU while it is 3871 * transmitting, but the assumption is that the base 3872 * driver can handle that. 3873 * 3874 * TODO: figure out a way to safely iterate the slaves 3875 * list, but without holding a lock around the actual 3876 * call to the base driver. 3877 */ 3878 3879 bond_for_each_slave(bond, slave, i) { 3880 dprintk("s %p s->p %p c_m %p\n", slave, 3881 slave->prev, slave->dev->change_mtu); 3882 3883 res = dev_set_mtu(slave->dev, new_mtu); 3884 3885 if (res) { 3886 /* If we failed to set the slave's mtu to the new value 3887 * we must abort the operation even in ACTIVE_BACKUP 3888 * mode, because if we allow the backup slaves to have 3889 * different mtu values than the active slave we'll 3890 * need to change their mtu when doing a failover. That 3891 * means changing their mtu from timer context, which 3892 * is probably not a good idea. 3893 */ 3894 dprintk("err %d %s\n", res, slave->dev->name); 3895 goto unwind; 3896 } 3897 } 3898 3899 bond_dev->mtu = new_mtu; 3900 3901 return 0; 3902 3903 unwind: 3904 /* unwind from head to the slave that failed */ 3905 stop_at = slave; 3906 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 3907 int tmp_res; 3908 3909 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 3910 if (tmp_res) { 3911 dprintk("unwind err %d dev %s\n", tmp_res, 3912 slave->dev->name); 3913 } 3914 } 3915 3916 return res; 3917 } 3918 3919 /* 3920 * Change HW address 3921 * 3922 * Note that many devices must be down to change the HW address, and 3923 * downing the master releases all slaves. We can make bonds full of 3924 * bonding devices to test this, however. 3925 */ 3926 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 3927 { 3928 struct bonding *bond = bond_dev->priv; 3929 struct sockaddr *sa = addr, tmp_sa; 3930 struct slave *slave, *stop_at; 3931 int res = 0; 3932 int i; 3933 3934 dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None")); 3935 3936 if (!is_valid_ether_addr(sa->sa_data)) { 3937 return -EADDRNOTAVAIL; 3938 } 3939 3940 /* Can't hold bond->lock with bh disabled here since 3941 * some base drivers panic. On the other hand we can't 3942 * hold bond->lock without bh disabled because we'll 3943 * deadlock. The only solution is to rely on the fact 3944 * that we're under rtnl_lock here, and the slaves 3945 * list won't change. This doesn't solve the problem 3946 * of setting the slave's hw address while it is 3947 * transmitting, but the assumption is that the base 3948 * driver can handle that. 3949 * 3950 * TODO: figure out a way to safely iterate the slaves 3951 * list, but without holding a lock around the actual 3952 * call to the base driver. 3953 */ 3954 3955 bond_for_each_slave(bond, slave, i) { 3956 dprintk("slave %p %s\n", slave, slave->dev->name); 3957 3958 if (slave->dev->set_mac_address == NULL) { 3959 res = -EOPNOTSUPP; 3960 dprintk("EOPNOTSUPP %s\n", slave->dev->name); 3961 goto unwind; 3962 } 3963 3964 res = dev_set_mac_address(slave->dev, addr); 3965 if (res) { 3966 /* TODO: consider downing the slave 3967 * and retry ? 3968 * User should expect communications 3969 * breakage anyway until ARP finish 3970 * updating, so... 3971 */ 3972 dprintk("err %d %s\n", res, slave->dev->name); 3973 goto unwind; 3974 } 3975 } 3976 3977 /* success */ 3978 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 3979 return 0; 3980 3981 unwind: 3982 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 3983 tmp_sa.sa_family = bond_dev->type; 3984 3985 /* unwind from head to the slave that failed */ 3986 stop_at = slave; 3987 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 3988 int tmp_res; 3989 3990 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 3991 if (tmp_res) { 3992 dprintk("unwind err %d dev %s\n", tmp_res, 3993 slave->dev->name); 3994 } 3995 } 3996 3997 return res; 3998 } 3999 4000 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 4001 { 4002 struct bonding *bond = bond_dev->priv; 4003 struct slave *slave, *start_at; 4004 int i; 4005 int res = 1; 4006 4007 read_lock(&bond->lock); 4008 4009 if (!BOND_IS_OK(bond)) { 4010 goto out; 4011 } 4012 4013 read_lock(&bond->curr_slave_lock); 4014 slave = start_at = bond->curr_active_slave; 4015 read_unlock(&bond->curr_slave_lock); 4016 4017 if (!slave) { 4018 goto out; 4019 } 4020 4021 bond_for_each_slave_from(bond, slave, i, start_at) { 4022 if (IS_UP(slave->dev) && 4023 (slave->link == BOND_LINK_UP) && 4024 (slave->state == BOND_STATE_ACTIVE)) { 4025 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4026 4027 write_lock(&bond->curr_slave_lock); 4028 bond->curr_active_slave = slave->next; 4029 write_unlock(&bond->curr_slave_lock); 4030 4031 break; 4032 } 4033 } 4034 4035 4036 out: 4037 if (res) { 4038 /* no suitable interface, frame not sent */ 4039 dev_kfree_skb(skb); 4040 } 4041 read_unlock(&bond->lock); 4042 return 0; 4043 } 4044 4045 4046 /* 4047 * in active-backup mode, we know that bond->curr_active_slave is always valid if 4048 * the bond has a usable interface. 4049 */ 4050 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 4051 { 4052 struct bonding *bond = bond_dev->priv; 4053 int res = 1; 4054 4055 read_lock(&bond->lock); 4056 read_lock(&bond->curr_slave_lock); 4057 4058 if (!BOND_IS_OK(bond)) { 4059 goto out; 4060 } 4061 4062 if (!bond->curr_active_slave) 4063 goto out; 4064 4065 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev); 4066 4067 out: 4068 if (res) { 4069 /* no suitable interface, frame not sent */ 4070 dev_kfree_skb(skb); 4071 } 4072 read_unlock(&bond->curr_slave_lock); 4073 read_unlock(&bond->lock); 4074 return 0; 4075 } 4076 4077 /* 4078 * In bond_xmit_xor() , we determine the output device by using a pre- 4079 * determined xmit_hash_policy(), If the selected device is not enabled, 4080 * find the next active slave. 4081 */ 4082 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4083 { 4084 struct bonding *bond = bond_dev->priv; 4085 struct slave *slave, *start_at; 4086 int slave_no; 4087 int i; 4088 int res = 1; 4089 4090 read_lock(&bond->lock); 4091 4092 if (!BOND_IS_OK(bond)) { 4093 goto out; 4094 } 4095 4096 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt); 4097 4098 bond_for_each_slave(bond, slave, i) { 4099 slave_no--; 4100 if (slave_no < 0) { 4101 break; 4102 } 4103 } 4104 4105 start_at = slave; 4106 4107 bond_for_each_slave_from(bond, slave, i, start_at) { 4108 if (IS_UP(slave->dev) && 4109 (slave->link == BOND_LINK_UP) && 4110 (slave->state == BOND_STATE_ACTIVE)) { 4111 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4112 break; 4113 } 4114 } 4115 4116 out: 4117 if (res) { 4118 /* no suitable interface, frame not sent */ 4119 dev_kfree_skb(skb); 4120 } 4121 read_unlock(&bond->lock); 4122 return 0; 4123 } 4124 4125 /* 4126 * in broadcast mode, we send everything to all usable interfaces. 4127 */ 4128 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4129 { 4130 struct bonding *bond = bond_dev->priv; 4131 struct slave *slave, *start_at; 4132 struct net_device *tx_dev = NULL; 4133 int i; 4134 int res = 1; 4135 4136 read_lock(&bond->lock); 4137 4138 if (!BOND_IS_OK(bond)) { 4139 goto out; 4140 } 4141 4142 read_lock(&bond->curr_slave_lock); 4143 start_at = bond->curr_active_slave; 4144 read_unlock(&bond->curr_slave_lock); 4145 4146 if (!start_at) { 4147 goto out; 4148 } 4149 4150 bond_for_each_slave_from(bond, slave, i, start_at) { 4151 if (IS_UP(slave->dev) && 4152 (slave->link == BOND_LINK_UP) && 4153 (slave->state == BOND_STATE_ACTIVE)) { 4154 if (tx_dev) { 4155 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4156 if (!skb2) { 4157 printk(KERN_ERR DRV_NAME 4158 ": %s: Error: bond_xmit_broadcast(): " 4159 "skb_clone() failed\n", 4160 bond_dev->name); 4161 continue; 4162 } 4163 4164 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4165 if (res) { 4166 dev_kfree_skb(skb2); 4167 continue; 4168 } 4169 } 4170 tx_dev = slave->dev; 4171 } 4172 } 4173 4174 if (tx_dev) { 4175 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4176 } 4177 4178 out: 4179 if (res) { 4180 /* no suitable interface, frame not sent */ 4181 dev_kfree_skb(skb); 4182 } 4183 /* frame sent to all suitable interfaces */ 4184 read_unlock(&bond->lock); 4185 return 0; 4186 } 4187 4188 /*------------------------- Device initialization ---------------------------*/ 4189 4190 /* 4191 * set bond mode specific net device operations 4192 */ 4193 void bond_set_mode_ops(struct bonding *bond, int mode) 4194 { 4195 struct net_device *bond_dev = bond->dev; 4196 4197 switch (mode) { 4198 case BOND_MODE_ROUNDROBIN: 4199 bond_dev->hard_start_xmit = bond_xmit_roundrobin; 4200 break; 4201 case BOND_MODE_ACTIVEBACKUP: 4202 bond_dev->hard_start_xmit = bond_xmit_activebackup; 4203 break; 4204 case BOND_MODE_XOR: 4205 bond_dev->hard_start_xmit = bond_xmit_xor; 4206 if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34) 4207 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4208 else 4209 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4210 break; 4211 case BOND_MODE_BROADCAST: 4212 bond_dev->hard_start_xmit = bond_xmit_broadcast; 4213 break; 4214 case BOND_MODE_8023AD: 4215 bond_set_master_3ad_flags(bond); 4216 bond_dev->hard_start_xmit = bond_3ad_xmit_xor; 4217 if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34) 4218 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4219 else 4220 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4221 break; 4222 case BOND_MODE_ALB: 4223 bond_set_master_alb_flags(bond); 4224 /* FALLTHRU */ 4225 case BOND_MODE_TLB: 4226 bond_dev->hard_start_xmit = bond_alb_xmit; 4227 bond_dev->set_mac_address = bond_alb_set_mac_address; 4228 break; 4229 default: 4230 /* Should never happen, mode already checked */ 4231 printk(KERN_ERR DRV_NAME 4232 ": %s: Error: Unknown bonding mode %d\n", 4233 bond_dev->name, 4234 mode); 4235 break; 4236 } 4237 } 4238 4239 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4240 struct ethtool_drvinfo *drvinfo) 4241 { 4242 strncpy(drvinfo->driver, DRV_NAME, 32); 4243 strncpy(drvinfo->version, DRV_VERSION, 32); 4244 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION); 4245 } 4246 4247 static const struct ethtool_ops bond_ethtool_ops = { 4248 .get_tx_csum = ethtool_op_get_tx_csum, 4249 .get_tso = ethtool_op_get_tso, 4250 .get_ufo = ethtool_op_get_ufo, 4251 .get_sg = ethtool_op_get_sg, 4252 .get_drvinfo = bond_ethtool_get_drvinfo, 4253 }; 4254 4255 /* 4256 * Does not allocate but creates a /proc entry. 4257 * Allowed to fail. 4258 */ 4259 static int bond_init(struct net_device *bond_dev, struct bond_params *params) 4260 { 4261 struct bonding *bond = bond_dev->priv; 4262 4263 dprintk("Begin bond_init for %s\n", bond_dev->name); 4264 4265 /* initialize rwlocks */ 4266 rwlock_init(&bond->lock); 4267 rwlock_init(&bond->curr_slave_lock); 4268 4269 bond->params = *params; /* copy params struct */ 4270 4271 /* Initialize pointers */ 4272 bond->first_slave = NULL; 4273 bond->curr_active_slave = NULL; 4274 bond->current_arp_slave = NULL; 4275 bond->primary_slave = NULL; 4276 bond->dev = bond_dev; 4277 INIT_LIST_HEAD(&bond->vlan_list); 4278 4279 /* Initialize the device entry points */ 4280 bond_dev->open = bond_open; 4281 bond_dev->stop = bond_close; 4282 bond_dev->get_stats = bond_get_stats; 4283 bond_dev->do_ioctl = bond_do_ioctl; 4284 bond_dev->ethtool_ops = &bond_ethtool_ops; 4285 bond_dev->set_multicast_list = bond_set_multicast_list; 4286 bond_dev->change_mtu = bond_change_mtu; 4287 bond_dev->set_mac_address = bond_set_mac_address; 4288 4289 bond_set_mode_ops(bond, bond->params.mode); 4290 4291 bond_dev->destructor = free_netdev; 4292 4293 /* Initialize the device options */ 4294 bond_dev->tx_queue_len = 0; 4295 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4296 bond_dev->priv_flags |= IFF_BONDING; 4297 4298 /* At first, we block adding VLANs. That's the only way to 4299 * prevent problems that occur when adding VLANs over an 4300 * empty bond. The block will be removed once non-challenged 4301 * slaves are enslaved. 4302 */ 4303 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4304 4305 /* don't acquire bond device's netif_tx_lock when 4306 * transmitting */ 4307 bond_dev->features |= NETIF_F_LLTX; 4308 4309 /* By default, we declare the bond to be fully 4310 * VLAN hardware accelerated capable. Special 4311 * care is taken in the various xmit functions 4312 * when there are slaves that are not hw accel 4313 * capable 4314 */ 4315 bond_dev->vlan_rx_register = bond_vlan_rx_register; 4316 bond_dev->vlan_rx_add_vid = bond_vlan_rx_add_vid; 4317 bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid; 4318 bond_dev->features |= (NETIF_F_HW_VLAN_TX | 4319 NETIF_F_HW_VLAN_RX | 4320 NETIF_F_HW_VLAN_FILTER); 4321 4322 #ifdef CONFIG_PROC_FS 4323 bond_create_proc_entry(bond); 4324 #endif 4325 4326 list_add_tail(&bond->bond_list, &bond_dev_list); 4327 4328 return 0; 4329 } 4330 4331 /* De-initialize device specific data. 4332 * Caller must hold rtnl_lock. 4333 */ 4334 void bond_deinit(struct net_device *bond_dev) 4335 { 4336 struct bonding *bond = bond_dev->priv; 4337 4338 list_del(&bond->bond_list); 4339 4340 #ifdef CONFIG_PROC_FS 4341 bond_remove_proc_entry(bond); 4342 #endif 4343 } 4344 4345 /* Unregister and free all bond devices. 4346 * Caller must hold rtnl_lock. 4347 */ 4348 static void bond_free_all(void) 4349 { 4350 struct bonding *bond, *nxt; 4351 4352 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) { 4353 struct net_device *bond_dev = bond->dev; 4354 4355 bond_mc_list_destroy(bond); 4356 /* Release the bonded slaves */ 4357 bond_release_all(bond_dev); 4358 unregister_netdevice(bond_dev); 4359 bond_deinit(bond_dev); 4360 } 4361 4362 #ifdef CONFIG_PROC_FS 4363 bond_destroy_proc_dir(); 4364 #endif 4365 } 4366 4367 /*------------------------- Module initialization ---------------------------*/ 4368 4369 /* 4370 * Convert string input module parms. Accept either the 4371 * number of the mode or its string name. 4372 */ 4373 int bond_parse_parm(char *mode_arg, struct bond_parm_tbl *tbl) 4374 { 4375 int i; 4376 4377 for (i = 0; tbl[i].modename; i++) { 4378 if ((isdigit(*mode_arg) && 4379 tbl[i].mode == simple_strtol(mode_arg, NULL, 0)) || 4380 (strncmp(mode_arg, tbl[i].modename, 4381 strlen(tbl[i].modename)) == 0)) { 4382 return tbl[i].mode; 4383 } 4384 } 4385 4386 return -1; 4387 } 4388 4389 static int bond_check_params(struct bond_params *params) 4390 { 4391 int arp_validate_value; 4392 4393 /* 4394 * Convert string parameters. 4395 */ 4396 if (mode) { 4397 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4398 if (bond_mode == -1) { 4399 printk(KERN_ERR DRV_NAME 4400 ": Error: Invalid bonding mode \"%s\"\n", 4401 mode == NULL ? "NULL" : mode); 4402 return -EINVAL; 4403 } 4404 } 4405 4406 if (xmit_hash_policy) { 4407 if ((bond_mode != BOND_MODE_XOR) && 4408 (bond_mode != BOND_MODE_8023AD)) { 4409 printk(KERN_INFO DRV_NAME 4410 ": xor_mode param is irrelevant in mode %s\n", 4411 bond_mode_name(bond_mode)); 4412 } else { 4413 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4414 xmit_hashtype_tbl); 4415 if (xmit_hashtype == -1) { 4416 printk(KERN_ERR DRV_NAME 4417 ": Error: Invalid xmit_hash_policy \"%s\"\n", 4418 xmit_hash_policy == NULL ? "NULL" : 4419 xmit_hash_policy); 4420 return -EINVAL; 4421 } 4422 } 4423 } 4424 4425 if (lacp_rate) { 4426 if (bond_mode != BOND_MODE_8023AD) { 4427 printk(KERN_INFO DRV_NAME 4428 ": lacp_rate param is irrelevant in mode %s\n", 4429 bond_mode_name(bond_mode)); 4430 } else { 4431 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4432 if (lacp_fast == -1) { 4433 printk(KERN_ERR DRV_NAME 4434 ": Error: Invalid lacp rate \"%s\"\n", 4435 lacp_rate == NULL ? "NULL" : lacp_rate); 4436 return -EINVAL; 4437 } 4438 } 4439 } 4440 4441 if (max_bonds < 1 || max_bonds > INT_MAX) { 4442 printk(KERN_WARNING DRV_NAME 4443 ": Warning: max_bonds (%d) not in range %d-%d, so it " 4444 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4445 max_bonds, 1, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4446 max_bonds = BOND_DEFAULT_MAX_BONDS; 4447 } 4448 4449 if (miimon < 0) { 4450 printk(KERN_WARNING DRV_NAME 4451 ": Warning: miimon module parameter (%d), " 4452 "not in range 0-%d, so it was reset to %d\n", 4453 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4454 miimon = BOND_LINK_MON_INTERV; 4455 } 4456 4457 if (updelay < 0) { 4458 printk(KERN_WARNING DRV_NAME 4459 ": Warning: updelay module parameter (%d), " 4460 "not in range 0-%d, so it was reset to 0\n", 4461 updelay, INT_MAX); 4462 updelay = 0; 4463 } 4464 4465 if (downdelay < 0) { 4466 printk(KERN_WARNING DRV_NAME 4467 ": Warning: downdelay module parameter (%d), " 4468 "not in range 0-%d, so it was reset to 0\n", 4469 downdelay, INT_MAX); 4470 downdelay = 0; 4471 } 4472 4473 if ((use_carrier != 0) && (use_carrier != 1)) { 4474 printk(KERN_WARNING DRV_NAME 4475 ": Warning: use_carrier module parameter (%d), " 4476 "not of valid value (0/1), so it was set to 1\n", 4477 use_carrier); 4478 use_carrier = 1; 4479 } 4480 4481 /* reset values for 802.3ad */ 4482 if (bond_mode == BOND_MODE_8023AD) { 4483 if (!miimon) { 4484 printk(KERN_WARNING DRV_NAME 4485 ": Warning: miimon must be specified, " 4486 "otherwise bonding will not detect link " 4487 "failure, speed and duplex which are " 4488 "essential for 802.3ad operation\n"); 4489 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4490 miimon = 100; 4491 } 4492 } 4493 4494 /* reset values for TLB/ALB */ 4495 if ((bond_mode == BOND_MODE_TLB) || 4496 (bond_mode == BOND_MODE_ALB)) { 4497 if (!miimon) { 4498 printk(KERN_WARNING DRV_NAME 4499 ": Warning: miimon must be specified, " 4500 "otherwise bonding will not detect link " 4501 "failure and link speed which are essential " 4502 "for TLB/ALB load balancing\n"); 4503 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4504 miimon = 100; 4505 } 4506 } 4507 4508 if (bond_mode == BOND_MODE_ALB) { 4509 printk(KERN_NOTICE DRV_NAME 4510 ": In ALB mode you might experience client " 4511 "disconnections upon reconnection of a link if the " 4512 "bonding module updelay parameter (%d msec) is " 4513 "incompatible with the forwarding delay time of the " 4514 "switch\n", 4515 updelay); 4516 } 4517 4518 if (!miimon) { 4519 if (updelay || downdelay) { 4520 /* just warn the user the up/down delay will have 4521 * no effect since miimon is zero... 4522 */ 4523 printk(KERN_WARNING DRV_NAME 4524 ": Warning: miimon module parameter not set " 4525 "and updelay (%d) or downdelay (%d) module " 4526 "parameter is set; updelay and downdelay have " 4527 "no effect unless miimon is set\n", 4528 updelay, downdelay); 4529 } 4530 } else { 4531 /* don't allow arp monitoring */ 4532 if (arp_interval) { 4533 printk(KERN_WARNING DRV_NAME 4534 ": Warning: miimon (%d) and arp_interval (%d) " 4535 "can't be used simultaneously, disabling ARP " 4536 "monitoring\n", 4537 miimon, arp_interval); 4538 arp_interval = 0; 4539 } 4540 4541 if ((updelay % miimon) != 0) { 4542 printk(KERN_WARNING DRV_NAME 4543 ": Warning: updelay (%d) is not a multiple " 4544 "of miimon (%d), updelay rounded to %d ms\n", 4545 updelay, miimon, (updelay / miimon) * miimon); 4546 } 4547 4548 updelay /= miimon; 4549 4550 if ((downdelay % miimon) != 0) { 4551 printk(KERN_WARNING DRV_NAME 4552 ": Warning: downdelay (%d) is not a multiple " 4553 "of miimon (%d), downdelay rounded to %d ms\n", 4554 downdelay, miimon, 4555 (downdelay / miimon) * miimon); 4556 } 4557 4558 downdelay /= miimon; 4559 } 4560 4561 if (arp_interval < 0) { 4562 printk(KERN_WARNING DRV_NAME 4563 ": Warning: arp_interval module parameter (%d) " 4564 ", not in range 0-%d, so it was reset to %d\n", 4565 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4566 arp_interval = BOND_LINK_ARP_INTERV; 4567 } 4568 4569 for (arp_ip_count = 0; 4570 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; 4571 arp_ip_count++) { 4572 /* not complete check, but should be good enough to 4573 catch mistakes */ 4574 if (!isdigit(arp_ip_target[arp_ip_count][0])) { 4575 printk(KERN_WARNING DRV_NAME 4576 ": Warning: bad arp_ip_target module parameter " 4577 "(%s), ARP monitoring will not be performed\n", 4578 arp_ip_target[arp_ip_count]); 4579 arp_interval = 0; 4580 } else { 4581 u32 ip = in_aton(arp_ip_target[arp_ip_count]); 4582 arp_target[arp_ip_count] = ip; 4583 } 4584 } 4585 4586 if (arp_interval && !arp_ip_count) { 4587 /* don't allow arping if no arp_ip_target given... */ 4588 printk(KERN_WARNING DRV_NAME 4589 ": Warning: arp_interval module parameter (%d) " 4590 "specified without providing an arp_ip_target " 4591 "parameter, arp_interval was reset to 0\n", 4592 arp_interval); 4593 arp_interval = 0; 4594 } 4595 4596 if (arp_validate) { 4597 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4598 printk(KERN_ERR DRV_NAME 4599 ": arp_validate only supported in active-backup mode\n"); 4600 return -EINVAL; 4601 } 4602 if (!arp_interval) { 4603 printk(KERN_ERR DRV_NAME 4604 ": arp_validate requires arp_interval\n"); 4605 return -EINVAL; 4606 } 4607 4608 arp_validate_value = bond_parse_parm(arp_validate, 4609 arp_validate_tbl); 4610 if (arp_validate_value == -1) { 4611 printk(KERN_ERR DRV_NAME 4612 ": Error: invalid arp_validate \"%s\"\n", 4613 arp_validate == NULL ? "NULL" : arp_validate); 4614 return -EINVAL; 4615 } 4616 } else 4617 arp_validate_value = 0; 4618 4619 if (miimon) { 4620 printk(KERN_INFO DRV_NAME 4621 ": MII link monitoring set to %d ms\n", 4622 miimon); 4623 } else if (arp_interval) { 4624 int i; 4625 4626 printk(KERN_INFO DRV_NAME 4627 ": ARP monitoring set to %d ms, validate %s, with %d target(s):", 4628 arp_interval, 4629 arp_validate_tbl[arp_validate_value].modename, 4630 arp_ip_count); 4631 4632 for (i = 0; i < arp_ip_count; i++) 4633 printk (" %s", arp_ip_target[i]); 4634 4635 printk("\n"); 4636 4637 } else { 4638 /* miimon and arp_interval not set, we need one so things 4639 * work as expected, see bonding.txt for details 4640 */ 4641 printk(KERN_WARNING DRV_NAME 4642 ": Warning: either miimon or arp_interval and " 4643 "arp_ip_target module parameters must be specified, " 4644 "otherwise bonding will not detect link failures! see " 4645 "bonding.txt for details.\n"); 4646 } 4647 4648 if (primary && !USES_PRIMARY(bond_mode)) { 4649 /* currently, using a primary only makes sense 4650 * in active backup, TLB or ALB modes 4651 */ 4652 printk(KERN_WARNING DRV_NAME 4653 ": Warning: %s primary device specified but has no " 4654 "effect in %s mode\n", 4655 primary, bond_mode_name(bond_mode)); 4656 primary = NULL; 4657 } 4658 4659 /* fill params struct with the proper values */ 4660 params->mode = bond_mode; 4661 params->xmit_policy = xmit_hashtype; 4662 params->miimon = miimon; 4663 params->arp_interval = arp_interval; 4664 params->arp_validate = arp_validate_value; 4665 params->updelay = updelay; 4666 params->downdelay = downdelay; 4667 params->use_carrier = use_carrier; 4668 params->lacp_fast = lacp_fast; 4669 params->primary[0] = 0; 4670 4671 if (primary) { 4672 strncpy(params->primary, primary, IFNAMSIZ); 4673 params->primary[IFNAMSIZ - 1] = 0; 4674 } 4675 4676 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 4677 4678 return 0; 4679 } 4680 4681 static struct lock_class_key bonding_netdev_xmit_lock_key; 4682 4683 /* Create a new bond based on the specified name and bonding parameters. 4684 * If name is NULL, obtain a suitable "bond%d" name for us. 4685 * Caller must NOT hold rtnl_lock; we need to release it here before we 4686 * set up our sysfs entries. 4687 */ 4688 int bond_create(char *name, struct bond_params *params, struct bonding **newbond) 4689 { 4690 struct net_device *bond_dev; 4691 int res; 4692 4693 rtnl_lock(); 4694 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "", 4695 ether_setup); 4696 if (!bond_dev) { 4697 printk(KERN_ERR DRV_NAME 4698 ": %s: eek! can't alloc netdev!\n", 4699 name); 4700 res = -ENOMEM; 4701 goto out_rtnl; 4702 } 4703 4704 if (!name) { 4705 res = dev_alloc_name(bond_dev, "bond%d"); 4706 if (res < 0) 4707 goto out_netdev; 4708 } 4709 4710 /* bond_init() must be called after dev_alloc_name() (for the 4711 * /proc files), but before register_netdevice(), because we 4712 * need to set function pointers. 4713 */ 4714 4715 res = bond_init(bond_dev, params); 4716 if (res < 0) { 4717 goto out_netdev; 4718 } 4719 4720 SET_MODULE_OWNER(bond_dev); 4721 4722 res = register_netdevice(bond_dev); 4723 if (res < 0) { 4724 goto out_bond; 4725 } 4726 4727 lockdep_set_class(&bond_dev->_xmit_lock, &bonding_netdev_xmit_lock_key); 4728 4729 if (newbond) 4730 *newbond = bond_dev->priv; 4731 4732 netif_carrier_off(bond_dev); 4733 4734 rtnl_unlock(); /* allows sysfs registration of net device */ 4735 res = bond_create_sysfs_entry(bond_dev->priv); 4736 if (res < 0) { 4737 rtnl_lock(); 4738 goto out_bond; 4739 } 4740 4741 return 0; 4742 4743 out_bond: 4744 bond_deinit(bond_dev); 4745 out_netdev: 4746 free_netdev(bond_dev); 4747 out_rtnl: 4748 rtnl_unlock(); 4749 return res; 4750 } 4751 4752 static int __init bonding_init(void) 4753 { 4754 int i; 4755 int res; 4756 4757 printk(KERN_INFO "%s", version); 4758 4759 res = bond_check_params(&bonding_defaults); 4760 if (res) { 4761 goto out; 4762 } 4763 4764 #ifdef CONFIG_PROC_FS 4765 bond_create_proc_dir(); 4766 #endif 4767 for (i = 0; i < max_bonds; i++) { 4768 res = bond_create(NULL, &bonding_defaults, NULL); 4769 if (res) 4770 goto err; 4771 } 4772 4773 res = bond_create_sysfs(); 4774 if (res) 4775 goto err; 4776 4777 register_netdevice_notifier(&bond_netdev_notifier); 4778 register_inetaddr_notifier(&bond_inetaddr_notifier); 4779 4780 goto out; 4781 err: 4782 rtnl_lock(); 4783 bond_free_all(); 4784 bond_destroy_sysfs(); 4785 rtnl_unlock(); 4786 out: 4787 return res; 4788 4789 } 4790 4791 static void __exit bonding_exit(void) 4792 { 4793 unregister_netdevice_notifier(&bond_netdev_notifier); 4794 unregister_inetaddr_notifier(&bond_inetaddr_notifier); 4795 4796 rtnl_lock(); 4797 bond_free_all(); 4798 bond_destroy_sysfs(); 4799 rtnl_unlock(); 4800 } 4801 4802 module_init(bonding_init); 4803 module_exit(bonding_exit); 4804 MODULE_LICENSE("GPL"); 4805 MODULE_VERSION(DRV_VERSION); 4806 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 4807 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 4808 MODULE_SUPPORTED_DEVICE("most ethernet devices"); 4809 4810 /* 4811 * Local variables: 4812 * c-indent-level: 8 4813 * c-basic-offset: 8 4814 * tab-width: 8 4815 * End: 4816 */ 4817 4818