xref: /linux/drivers/net/bonding/bond_main.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * originally based on the dummy device.
3  *
4  * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5  * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6  *
7  * bonding.c: an Ethernet Bonding driver
8  *
9  * This is useful to talk to a Cisco EtherChannel compatible equipment:
10  *	Cisco 5500
11  *	Sun Trunking (Solaris)
12  *	Alteon AceDirector Trunks
13  *	Linux Bonding
14  *	and probably many L2 switches ...
15  *
16  * How it works:
17  *    ifconfig bond0 ipaddress netmask up
18  *      will setup a network device, with an ip address.  No mac address
19  *	will be assigned at this time.  The hw mac address will come from
20  *	the first slave bonded to the channel.  All slaves will then use
21  *	this hw mac address.
22  *
23  *    ifconfig bond0 down
24  *         will release all slaves, marking them as down.
25  *
26  *    ifenslave bond0 eth0
27  *	will attach eth0 to bond0 as a slave.  eth0 hw mac address will either
28  *	a: be used as initial mac address
29  *	b: if a hw mac address already is there, eth0's hw mac address
30  *	   will then be set from bond0.
31  *
32  */
33 
34 //#define BONDING_DEBUG 1
35 
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <asm/system.h>
57 #include <asm/io.h>
58 #include <asm/dma.h>
59 #include <asm/uaccess.h>
60 #include <linux/errno.h>
61 #include <linux/netdevice.h>
62 #include <linux/inetdevice.h>
63 #include <linux/igmp.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <net/sock.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/smp.h>
71 #include <linux/if_ether.h>
72 #include <net/arp.h>
73 #include <linux/mii.h>
74 #include <linux/ethtool.h>
75 #include <linux/if_vlan.h>
76 #include <linux/if_bonding.h>
77 #include <net/route.h>
78 #include "bonding.h"
79 #include "bond_3ad.h"
80 #include "bond_alb.h"
81 
82 /*---------------------------- Module parameters ----------------------------*/
83 
84 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
85 #define BOND_LINK_MON_INTERV	0
86 #define BOND_LINK_ARP_INTERV	0
87 
88 static int max_bonds	= BOND_DEFAULT_MAX_BONDS;
89 static int miimon	= BOND_LINK_MON_INTERV;
90 static int updelay	= 0;
91 static int downdelay	= 0;
92 static int use_carrier	= 1;
93 static char *mode	= NULL;
94 static char *primary	= NULL;
95 static char *lacp_rate	= NULL;
96 static char *xmit_hash_policy = NULL;
97 static int arp_interval = BOND_LINK_ARP_INTERV;
98 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
99 static char *arp_validate = NULL;
100 struct bond_params bonding_defaults;
101 
102 module_param(max_bonds, int, 0);
103 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
104 module_param(miimon, int, 0);
105 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
106 module_param(updelay, int, 0);
107 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
108 module_param(downdelay, int, 0);
109 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
110 			    "in milliseconds");
111 module_param(use_carrier, int, 0);
112 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
113 			      "0 for off, 1 for on (default)");
114 module_param(mode, charp, 0);
115 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
116 		       "1 for active-backup, 2 for balance-xor, "
117 		       "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
118 		       "6 for balance-alb");
119 module_param(primary, charp, 0);
120 MODULE_PARM_DESC(primary, "Primary network device to use");
121 module_param(lacp_rate, charp, 0);
122 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
123 			    "(slow/fast)");
124 module_param(xmit_hash_policy, charp, 0);
125 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
126 				   ", 1 for layer 3+4");
127 module_param(arp_interval, int, 0);
128 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
129 module_param_array(arp_ip_target, charp, NULL, 0);
130 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
131 module_param(arp_validate, charp, 0);
132 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all");
133 
134 /*----------------------------- Global variables ----------------------------*/
135 
136 static const char * const version =
137 	DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
138 
139 LIST_HEAD(bond_dev_list);
140 
141 #ifdef CONFIG_PROC_FS
142 static struct proc_dir_entry *bond_proc_dir = NULL;
143 #endif
144 
145 extern struct rw_semaphore bonding_rwsem;
146 static u32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
147 static int arp_ip_count	= 0;
148 static int bond_mode	= BOND_MODE_ROUNDROBIN;
149 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
150 static int lacp_fast	= 0;
151 
152 
153 struct bond_parm_tbl bond_lacp_tbl[] = {
154 {	"slow",		AD_LACP_SLOW},
155 {	"fast",		AD_LACP_FAST},
156 {	NULL,		-1},
157 };
158 
159 struct bond_parm_tbl bond_mode_tbl[] = {
160 {	"balance-rr",		BOND_MODE_ROUNDROBIN},
161 {	"active-backup",	BOND_MODE_ACTIVEBACKUP},
162 {	"balance-xor",		BOND_MODE_XOR},
163 {	"broadcast",		BOND_MODE_BROADCAST},
164 {	"802.3ad",		BOND_MODE_8023AD},
165 {	"balance-tlb",		BOND_MODE_TLB},
166 {	"balance-alb",		BOND_MODE_ALB},
167 {	NULL,			-1},
168 };
169 
170 struct bond_parm_tbl xmit_hashtype_tbl[] = {
171 {	"layer2",		BOND_XMIT_POLICY_LAYER2},
172 {	"layer3+4",		BOND_XMIT_POLICY_LAYER34},
173 {	NULL,			-1},
174 };
175 
176 struct bond_parm_tbl arp_validate_tbl[] = {
177 {	"none",			BOND_ARP_VALIDATE_NONE},
178 {	"active",		BOND_ARP_VALIDATE_ACTIVE},
179 {	"backup",		BOND_ARP_VALIDATE_BACKUP},
180 {	"all",			BOND_ARP_VALIDATE_ALL},
181 {	NULL,			-1},
182 };
183 
184 /*-------------------------- Forward declarations ---------------------------*/
185 
186 static void bond_send_gratuitous_arp(struct bonding *bond);
187 
188 /*---------------------------- General routines -----------------------------*/
189 
190 const char *bond_mode_name(int mode)
191 {
192 	switch (mode) {
193 	case BOND_MODE_ROUNDROBIN :
194 		return "load balancing (round-robin)";
195 	case BOND_MODE_ACTIVEBACKUP :
196 		return "fault-tolerance (active-backup)";
197 	case BOND_MODE_XOR :
198 		return "load balancing (xor)";
199 	case BOND_MODE_BROADCAST :
200 		return "fault-tolerance (broadcast)";
201 	case BOND_MODE_8023AD:
202 		return "IEEE 802.3ad Dynamic link aggregation";
203 	case BOND_MODE_TLB:
204 		return "transmit load balancing";
205 	case BOND_MODE_ALB:
206 		return "adaptive load balancing";
207 	default:
208 		return "unknown";
209 	}
210 }
211 
212 /*---------------------------------- VLAN -----------------------------------*/
213 
214 /**
215  * bond_add_vlan - add a new vlan id on bond
216  * @bond: bond that got the notification
217  * @vlan_id: the vlan id to add
218  *
219  * Returns -ENOMEM if allocation failed.
220  */
221 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
222 {
223 	struct vlan_entry *vlan;
224 
225 	dprintk("bond: %s, vlan id %d\n",
226 		(bond ? bond->dev->name: "None"), vlan_id);
227 
228 	vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL);
229 	if (!vlan) {
230 		return -ENOMEM;
231 	}
232 
233 	INIT_LIST_HEAD(&vlan->vlan_list);
234 	vlan->vlan_id = vlan_id;
235 	vlan->vlan_ip = 0;
236 
237 	write_lock_bh(&bond->lock);
238 
239 	list_add_tail(&vlan->vlan_list, &bond->vlan_list);
240 
241 	write_unlock_bh(&bond->lock);
242 
243 	dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
244 
245 	return 0;
246 }
247 
248 /**
249  * bond_del_vlan - delete a vlan id from bond
250  * @bond: bond that got the notification
251  * @vlan_id: the vlan id to delete
252  *
253  * returns -ENODEV if @vlan_id was not found in @bond.
254  */
255 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
256 {
257 	struct vlan_entry *vlan, *next;
258 	int res = -ENODEV;
259 
260 	dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
261 
262 	write_lock_bh(&bond->lock);
263 
264 	list_for_each_entry_safe(vlan, next, &bond->vlan_list, vlan_list) {
265 		if (vlan->vlan_id == vlan_id) {
266 			list_del(&vlan->vlan_list);
267 
268 			if ((bond->params.mode == BOND_MODE_TLB) ||
269 			    (bond->params.mode == BOND_MODE_ALB)) {
270 				bond_alb_clear_vlan(bond, vlan_id);
271 			}
272 
273 			dprintk("removed VLAN ID %d from bond %s\n", vlan_id,
274 				bond->dev->name);
275 
276 			kfree(vlan);
277 
278 			if (list_empty(&bond->vlan_list) &&
279 			    (bond->slave_cnt == 0)) {
280 				/* Last VLAN removed and no slaves, so
281 				 * restore block on adding VLANs. This will
282 				 * be removed once new slaves that are not
283 				 * VLAN challenged will be added.
284 				 */
285 				bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
286 			}
287 
288 			res = 0;
289 			goto out;
290 		}
291 	}
292 
293 	dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id,
294 		bond->dev->name);
295 
296 out:
297 	write_unlock_bh(&bond->lock);
298 	return res;
299 }
300 
301 /**
302  * bond_has_challenged_slaves
303  * @bond: the bond we're working on
304  *
305  * Searches the slave list. Returns 1 if a vlan challenged slave
306  * was found, 0 otherwise.
307  *
308  * Assumes bond->lock is held.
309  */
310 static int bond_has_challenged_slaves(struct bonding *bond)
311 {
312 	struct slave *slave;
313 	int i;
314 
315 	bond_for_each_slave(bond, slave, i) {
316 		if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
317 			dprintk("found VLAN challenged slave - %s\n",
318 				slave->dev->name);
319 			return 1;
320 		}
321 	}
322 
323 	dprintk("no VLAN challenged slaves found\n");
324 	return 0;
325 }
326 
327 /**
328  * bond_next_vlan - safely skip to the next item in the vlans list.
329  * @bond: the bond we're working on
330  * @curr: item we're advancing from
331  *
332  * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
333  * or @curr->next otherwise (even if it is @curr itself again).
334  *
335  * Caller must hold bond->lock
336  */
337 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
338 {
339 	struct vlan_entry *next, *last;
340 
341 	if (list_empty(&bond->vlan_list)) {
342 		return NULL;
343 	}
344 
345 	if (!curr) {
346 		next = list_entry(bond->vlan_list.next,
347 				  struct vlan_entry, vlan_list);
348 	} else {
349 		last = list_entry(bond->vlan_list.prev,
350 				  struct vlan_entry, vlan_list);
351 		if (last == curr) {
352 			next = list_entry(bond->vlan_list.next,
353 					  struct vlan_entry, vlan_list);
354 		} else {
355 			next = list_entry(curr->vlan_list.next,
356 					  struct vlan_entry, vlan_list);
357 		}
358 	}
359 
360 	return next;
361 }
362 
363 /**
364  * bond_dev_queue_xmit - Prepare skb for xmit.
365  *
366  * @bond: bond device that got this skb for tx.
367  * @skb: hw accel VLAN tagged skb to transmit
368  * @slave_dev: slave that is supposed to xmit this skbuff
369  *
370  * When the bond gets an skb to transmit that is
371  * already hardware accelerated VLAN tagged, and it
372  * needs to relay this skb to a slave that is not
373  * hw accel capable, the skb needs to be "unaccelerated",
374  * i.e. strip the hwaccel tag and re-insert it as part
375  * of the payload.
376  */
377 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
378 {
379 	unsigned short vlan_id;
380 
381 	if (!list_empty(&bond->vlan_list) &&
382 	    !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
383 	    vlan_get_tag(skb, &vlan_id) == 0) {
384 		skb->dev = slave_dev;
385 		skb = vlan_put_tag(skb, vlan_id);
386 		if (!skb) {
387 			/* vlan_put_tag() frees the skb in case of error,
388 			 * so return success here so the calling functions
389 			 * won't attempt to free is again.
390 			 */
391 			return 0;
392 		}
393 	} else {
394 		skb->dev = slave_dev;
395 	}
396 
397 	skb->priority = 1;
398 	dev_queue_xmit(skb);
399 
400 	return 0;
401 }
402 
403 /*
404  * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
405  * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
406  * lock because:
407  * a. This operation is performed in IOCTL context,
408  * b. The operation is protected by the RTNL semaphore in the 8021q code,
409  * c. Holding a lock with BH disabled while directly calling a base driver
410  *    entry point is generally a BAD idea.
411  *
412  * The design of synchronization/protection for this operation in the 8021q
413  * module is good for one or more VLAN devices over a single physical device
414  * and cannot be extended for a teaming solution like bonding, so there is a
415  * potential race condition here where a net device from the vlan group might
416  * be referenced (either by a base driver or the 8021q code) while it is being
417  * removed from the system. However, it turns out we're not making matters
418  * worse, and if it works for regular VLAN usage it will work here too.
419 */
420 
421 /**
422  * bond_vlan_rx_register - Propagates registration to slaves
423  * @bond_dev: bonding net device that got called
424  * @grp: vlan group being registered
425  */
426 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
427 {
428 	struct bonding *bond = bond_dev->priv;
429 	struct slave *slave;
430 	int i;
431 
432 	bond->vlgrp = grp;
433 
434 	bond_for_each_slave(bond, slave, i) {
435 		struct net_device *slave_dev = slave->dev;
436 
437 		if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
438 		    slave_dev->vlan_rx_register) {
439 			slave_dev->vlan_rx_register(slave_dev, grp);
440 		}
441 	}
442 }
443 
444 /**
445  * bond_vlan_rx_add_vid - Propagates adding an id to slaves
446  * @bond_dev: bonding net device that got called
447  * @vid: vlan id being added
448  */
449 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
450 {
451 	struct bonding *bond = bond_dev->priv;
452 	struct slave *slave;
453 	int i, res;
454 
455 	bond_for_each_slave(bond, slave, i) {
456 		struct net_device *slave_dev = slave->dev;
457 
458 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
459 		    slave_dev->vlan_rx_add_vid) {
460 			slave_dev->vlan_rx_add_vid(slave_dev, vid);
461 		}
462 	}
463 
464 	res = bond_add_vlan(bond, vid);
465 	if (res) {
466 		printk(KERN_ERR DRV_NAME
467 		       ": %s: Error: Failed to add vlan id %d\n",
468 		       bond_dev->name, vid);
469 	}
470 }
471 
472 /**
473  * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
474  * @bond_dev: bonding net device that got called
475  * @vid: vlan id being removed
476  */
477 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
478 {
479 	struct bonding *bond = bond_dev->priv;
480 	struct slave *slave;
481 	struct net_device *vlan_dev;
482 	int i, res;
483 
484 	bond_for_each_slave(bond, slave, i) {
485 		struct net_device *slave_dev = slave->dev;
486 
487 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
488 		    slave_dev->vlan_rx_kill_vid) {
489 			/* Save and then restore vlan_dev in the grp array,
490 			 * since the slave's driver might clear it.
491 			 */
492 			vlan_dev = vlan_group_get_device(bond->vlgrp, vid);
493 			slave_dev->vlan_rx_kill_vid(slave_dev, vid);
494 			vlan_group_set_device(bond->vlgrp, vid, vlan_dev);
495 		}
496 	}
497 
498 	res = bond_del_vlan(bond, vid);
499 	if (res) {
500 		printk(KERN_ERR DRV_NAME
501 		       ": %s: Error: Failed to remove vlan id %d\n",
502 		       bond_dev->name, vid);
503 	}
504 }
505 
506 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
507 {
508 	struct vlan_entry *vlan;
509 
510 	write_lock_bh(&bond->lock);
511 
512 	if (list_empty(&bond->vlan_list)) {
513 		goto out;
514 	}
515 
516 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
517 	    slave_dev->vlan_rx_register) {
518 		slave_dev->vlan_rx_register(slave_dev, bond->vlgrp);
519 	}
520 
521 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
522 	    !(slave_dev->vlan_rx_add_vid)) {
523 		goto out;
524 	}
525 
526 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
527 		slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id);
528 	}
529 
530 out:
531 	write_unlock_bh(&bond->lock);
532 }
533 
534 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
535 {
536 	struct vlan_entry *vlan;
537 	struct net_device *vlan_dev;
538 
539 	write_lock_bh(&bond->lock);
540 
541 	if (list_empty(&bond->vlan_list)) {
542 		goto out;
543 	}
544 
545 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
546 	    !(slave_dev->vlan_rx_kill_vid)) {
547 		goto unreg;
548 	}
549 
550 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
551 		/* Save and then restore vlan_dev in the grp array,
552 		 * since the slave's driver might clear it.
553 		 */
554 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
555 		slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
556 		vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev);
557 	}
558 
559 unreg:
560 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
561 	    slave_dev->vlan_rx_register) {
562 		slave_dev->vlan_rx_register(slave_dev, NULL);
563 	}
564 
565 out:
566 	write_unlock_bh(&bond->lock);
567 }
568 
569 /*------------------------------- Link status -------------------------------*/
570 
571 /*
572  * Set the carrier state for the master according to the state of its
573  * slaves.  If any slaves are up, the master is up.  In 802.3ad mode,
574  * do special 802.3ad magic.
575  *
576  * Returns zero if carrier state does not change, nonzero if it does.
577  */
578 static int bond_set_carrier(struct bonding *bond)
579 {
580 	struct slave *slave;
581 	int i;
582 
583 	if (bond->slave_cnt == 0)
584 		goto down;
585 
586 	if (bond->params.mode == BOND_MODE_8023AD)
587 		return bond_3ad_set_carrier(bond);
588 
589 	bond_for_each_slave(bond, slave, i) {
590 		if (slave->link == BOND_LINK_UP) {
591 			if (!netif_carrier_ok(bond->dev)) {
592 				netif_carrier_on(bond->dev);
593 				return 1;
594 			}
595 			return 0;
596 		}
597 	}
598 
599 down:
600 	if (netif_carrier_ok(bond->dev)) {
601 		netif_carrier_off(bond->dev);
602 		return 1;
603 	}
604 	return 0;
605 }
606 
607 /*
608  * Get link speed and duplex from the slave's base driver
609  * using ethtool. If for some reason the call fails or the
610  * values are invalid, fake speed and duplex to 100/Full
611  * and return error.
612  */
613 static int bond_update_speed_duplex(struct slave *slave)
614 {
615 	struct net_device *slave_dev = slave->dev;
616 	static int (* ioctl)(struct net_device *, struct ifreq *, int);
617 	struct ifreq ifr;
618 	struct ethtool_cmd etool;
619 
620 	/* Fake speed and duplex */
621 	slave->speed = SPEED_100;
622 	slave->duplex = DUPLEX_FULL;
623 
624 	if (slave_dev->ethtool_ops) {
625 		int res;
626 
627 		if (!slave_dev->ethtool_ops->get_settings) {
628 			return -1;
629 		}
630 
631 		res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
632 		if (res < 0) {
633 			return -1;
634 		}
635 
636 		goto verify;
637 	}
638 
639 	ioctl = slave_dev->do_ioctl;
640 	strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
641 	etool.cmd = ETHTOOL_GSET;
642 	ifr.ifr_data = (char*)&etool;
643 	if (!ioctl || (IOCTL(slave_dev, &ifr, SIOCETHTOOL) < 0)) {
644 		return -1;
645 	}
646 
647 verify:
648 	switch (etool.speed) {
649 	case SPEED_10:
650 	case SPEED_100:
651 	case SPEED_1000:
652 	case SPEED_10000:
653 		break;
654 	default:
655 		return -1;
656 	}
657 
658 	switch (etool.duplex) {
659 	case DUPLEX_FULL:
660 	case DUPLEX_HALF:
661 		break;
662 	default:
663 		return -1;
664 	}
665 
666 	slave->speed = etool.speed;
667 	slave->duplex = etool.duplex;
668 
669 	return 0;
670 }
671 
672 /*
673  * if <dev> supports MII link status reporting, check its link status.
674  *
675  * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
676  * depening upon the setting of the use_carrier parameter.
677  *
678  * Return either BMSR_LSTATUS, meaning that the link is up (or we
679  * can't tell and just pretend it is), or 0, meaning that the link is
680  * down.
681  *
682  * If reporting is non-zero, instead of faking link up, return -1 if
683  * both ETHTOOL and MII ioctls fail (meaning the device does not
684  * support them).  If use_carrier is set, return whatever it says.
685  * It'd be nice if there was a good way to tell if a driver supports
686  * netif_carrier, but there really isn't.
687  */
688 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
689 {
690 	static int (* ioctl)(struct net_device *, struct ifreq *, int);
691 	struct ifreq ifr;
692 	struct mii_ioctl_data *mii;
693 	struct ethtool_value etool;
694 
695 	if (bond->params.use_carrier) {
696 		return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
697 	}
698 
699 	ioctl = slave_dev->do_ioctl;
700 	if (ioctl) {
701 		/* TODO: set pointer to correct ioctl on a per team member */
702 		/*       bases to make this more efficient. that is, once  */
703 		/*       we determine the correct ioctl, we will always    */
704 		/*       call it and not the others for that team          */
705 		/*       member.                                           */
706 
707 		/*
708 		 * We cannot assume that SIOCGMIIPHY will also read a
709 		 * register; not all network drivers (e.g., e100)
710 		 * support that.
711 		 */
712 
713 		/* Yes, the mii is overlaid on the ifreq.ifr_ifru */
714 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
715 		mii = if_mii(&ifr);
716 		if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
717 			mii->reg_num = MII_BMSR;
718 			if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
719 				return (mii->val_out & BMSR_LSTATUS);
720 			}
721 		}
722 	}
723 
724 	/* try SIOCETHTOOL ioctl, some drivers cache ETHTOOL_GLINK */
725 	/* for a period of time so we attempt to get link status   */
726 	/* from it last if the above MII ioctls fail...            */
727 	if (slave_dev->ethtool_ops) {
728 		if (slave_dev->ethtool_ops->get_link) {
729 			u32 link;
730 
731 			link = slave_dev->ethtool_ops->get_link(slave_dev);
732 
733 			return link ? BMSR_LSTATUS : 0;
734 		}
735 	}
736 
737 	if (ioctl) {
738 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
739 		etool.cmd = ETHTOOL_GLINK;
740 		ifr.ifr_data = (char*)&etool;
741 		if (IOCTL(slave_dev, &ifr, SIOCETHTOOL) == 0) {
742 			if (etool.data == 1) {
743 				return BMSR_LSTATUS;
744 			} else {
745 				dprintk("SIOCETHTOOL shows link down\n");
746 				return 0;
747 			}
748 		}
749 	}
750 
751 	/*
752 	 * If reporting, report that either there's no dev->do_ioctl,
753 	 * or both SIOCGMIIREG and SIOCETHTOOL failed (meaning that we
754 	 * cannot report link status).  If not reporting, pretend
755 	 * we're ok.
756 	 */
757 	return (reporting ? -1 : BMSR_LSTATUS);
758 }
759 
760 /*----------------------------- Multicast list ------------------------------*/
761 
762 /*
763  * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
764  */
765 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
766 {
767 	return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
768 			dmi1->dmi_addrlen == dmi2->dmi_addrlen;
769 }
770 
771 /*
772  * returns dmi entry if found, NULL otherwise
773  */
774 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
775 {
776 	struct dev_mc_list *idmi;
777 
778 	for (idmi = mc_list; idmi; idmi = idmi->next) {
779 		if (bond_is_dmi_same(dmi, idmi)) {
780 			return idmi;
781 		}
782 	}
783 
784 	return NULL;
785 }
786 
787 /*
788  * Push the promiscuity flag down to appropriate slaves
789  */
790 static void bond_set_promiscuity(struct bonding *bond, int inc)
791 {
792 	if (USES_PRIMARY(bond->params.mode)) {
793 		/* write lock already acquired */
794 		if (bond->curr_active_slave) {
795 			dev_set_promiscuity(bond->curr_active_slave->dev, inc);
796 		}
797 	} else {
798 		struct slave *slave;
799 		int i;
800 		bond_for_each_slave(bond, slave, i) {
801 			dev_set_promiscuity(slave->dev, inc);
802 		}
803 	}
804 }
805 
806 /*
807  * Push the allmulti flag down to all slaves
808  */
809 static void bond_set_allmulti(struct bonding *bond, int inc)
810 {
811 	if (USES_PRIMARY(bond->params.mode)) {
812 		/* write lock already acquired */
813 		if (bond->curr_active_slave) {
814 			dev_set_allmulti(bond->curr_active_slave->dev, inc);
815 		}
816 	} else {
817 		struct slave *slave;
818 		int i;
819 		bond_for_each_slave(bond, slave, i) {
820 			dev_set_allmulti(slave->dev, inc);
821 		}
822 	}
823 }
824 
825 /*
826  * Add a Multicast address to slaves
827  * according to mode
828  */
829 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
830 {
831 	if (USES_PRIMARY(bond->params.mode)) {
832 		/* write lock already acquired */
833 		if (bond->curr_active_slave) {
834 			dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
835 		}
836 	} else {
837 		struct slave *slave;
838 		int i;
839 		bond_for_each_slave(bond, slave, i) {
840 			dev_mc_add(slave->dev, addr, alen, 0);
841 		}
842 	}
843 }
844 
845 /*
846  * Remove a multicast address from slave
847  * according to mode
848  */
849 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
850 {
851 	if (USES_PRIMARY(bond->params.mode)) {
852 		/* write lock already acquired */
853 		if (bond->curr_active_slave) {
854 			dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
855 		}
856 	} else {
857 		struct slave *slave;
858 		int i;
859 		bond_for_each_slave(bond, slave, i) {
860 			dev_mc_delete(slave->dev, addr, alen, 0);
861 		}
862 	}
863 }
864 
865 
866 /*
867  * Retrieve the list of registered multicast addresses for the bonding
868  * device and retransmit an IGMP JOIN request to the current active
869  * slave.
870  */
871 static void bond_resend_igmp_join_requests(struct bonding *bond)
872 {
873 	struct in_device *in_dev;
874 	struct ip_mc_list *im;
875 
876 	rcu_read_lock();
877 	in_dev = __in_dev_get_rcu(bond->dev);
878 	if (in_dev) {
879 		for (im = in_dev->mc_list; im; im = im->next) {
880 			ip_mc_rejoin_group(im);
881 		}
882 	}
883 
884 	rcu_read_unlock();
885 }
886 
887 /*
888  * Totally destroys the mc_list in bond
889  */
890 static void bond_mc_list_destroy(struct bonding *bond)
891 {
892 	struct dev_mc_list *dmi;
893 
894 	dmi = bond->mc_list;
895 	while (dmi) {
896 		bond->mc_list = dmi->next;
897 		kfree(dmi);
898 		dmi = bond->mc_list;
899 	}
900         bond->mc_list = NULL;
901 }
902 
903 /*
904  * Copy all the Multicast addresses from src to the bonding device dst
905  */
906 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
907 			     gfp_t gfp_flag)
908 {
909 	struct dev_mc_list *dmi, *new_dmi;
910 
911 	for (dmi = mc_list; dmi; dmi = dmi->next) {
912 		new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
913 
914 		if (!new_dmi) {
915 			/* FIXME: Potential memory leak !!! */
916 			return -ENOMEM;
917 		}
918 
919 		new_dmi->next = bond->mc_list;
920 		bond->mc_list = new_dmi;
921 		new_dmi->dmi_addrlen = dmi->dmi_addrlen;
922 		memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
923 		new_dmi->dmi_users = dmi->dmi_users;
924 		new_dmi->dmi_gusers = dmi->dmi_gusers;
925 	}
926 
927 	return 0;
928 }
929 
930 /*
931  * flush all members of flush->mc_list from device dev->mc_list
932  */
933 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
934 {
935 	struct bonding *bond = bond_dev->priv;
936 	struct dev_mc_list *dmi;
937 
938 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
939 		dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
940 	}
941 
942 	if (bond->params.mode == BOND_MODE_8023AD) {
943 		/* del lacpdu mc addr from mc list */
944 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
945 
946 		dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
947 	}
948 }
949 
950 /*--------------------------- Active slave change ---------------------------*/
951 
952 /*
953  * Update the mc list and multicast-related flags for the new and
954  * old active slaves (if any) according to the multicast mode, and
955  * promiscuous flags unconditionally.
956  */
957 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
958 {
959 	struct dev_mc_list *dmi;
960 
961 	if (!USES_PRIMARY(bond->params.mode)) {
962 		/* nothing to do -  mc list is already up-to-date on
963 		 * all slaves
964 		 */
965 		return;
966 	}
967 
968 	if (old_active) {
969 		if (bond->dev->flags & IFF_PROMISC) {
970 			dev_set_promiscuity(old_active->dev, -1);
971 		}
972 
973 		if (bond->dev->flags & IFF_ALLMULTI) {
974 			dev_set_allmulti(old_active->dev, -1);
975 		}
976 
977 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
978 			dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
979 		}
980 	}
981 
982 	if (new_active) {
983 		if (bond->dev->flags & IFF_PROMISC) {
984 			dev_set_promiscuity(new_active->dev, 1);
985 		}
986 
987 		if (bond->dev->flags & IFF_ALLMULTI) {
988 			dev_set_allmulti(new_active->dev, 1);
989 		}
990 
991 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
992 			dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
993 		}
994 		bond_resend_igmp_join_requests(bond);
995 	}
996 }
997 
998 /**
999  * find_best_interface - select the best available slave to be the active one
1000  * @bond: our bonding struct
1001  *
1002  * Warning: Caller must hold curr_slave_lock for writing.
1003  */
1004 static struct slave *bond_find_best_slave(struct bonding *bond)
1005 {
1006 	struct slave *new_active, *old_active;
1007 	struct slave *bestslave = NULL;
1008 	int mintime = bond->params.updelay;
1009 	int i;
1010 
1011 	new_active = old_active = bond->curr_active_slave;
1012 
1013 	if (!new_active) { /* there were no active slaves left */
1014 		if (bond->slave_cnt > 0) {  /* found one slave */
1015 			new_active = bond->first_slave;
1016 		} else {
1017 			return NULL; /* still no slave, return NULL */
1018 		}
1019 	}
1020 
1021 	/* first try the primary link; if arping, a link must tx/rx traffic
1022 	 * before it can be considered the curr_active_slave - also, we would skip
1023 	 * slaves between the curr_active_slave and primary_slave that may be up
1024 	 * and able to arp
1025 	 */
1026 	if ((bond->primary_slave) &&
1027 	    (!bond->params.arp_interval) &&
1028 	    (IS_UP(bond->primary_slave->dev))) {
1029 		new_active = bond->primary_slave;
1030 	}
1031 
1032 	/* remember where to stop iterating over the slaves */
1033 	old_active = new_active;
1034 
1035 	bond_for_each_slave_from(bond, new_active, i, old_active) {
1036 		if (IS_UP(new_active->dev)) {
1037 			if (new_active->link == BOND_LINK_UP) {
1038 				return new_active;
1039 			} else if (new_active->link == BOND_LINK_BACK) {
1040 				/* link up, but waiting for stabilization */
1041 				if (new_active->delay < mintime) {
1042 					mintime = new_active->delay;
1043 					bestslave = new_active;
1044 				}
1045 			}
1046 		}
1047 	}
1048 
1049 	return bestslave;
1050 }
1051 
1052 /**
1053  * change_active_interface - change the active slave into the specified one
1054  * @bond: our bonding struct
1055  * @new: the new slave to make the active one
1056  *
1057  * Set the new slave to the bond's settings and unset them on the old
1058  * curr_active_slave.
1059  * Setting include flags, mc-list, promiscuity, allmulti, etc.
1060  *
1061  * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1062  * because it is apparently the best available slave we have, even though its
1063  * updelay hasn't timed out yet.
1064  *
1065  * Warning: Caller must hold curr_slave_lock for writing.
1066  */
1067 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1068 {
1069 	struct slave *old_active = bond->curr_active_slave;
1070 
1071 	if (old_active == new_active) {
1072 		return;
1073 	}
1074 
1075 	if (new_active) {
1076 		if (new_active->link == BOND_LINK_BACK) {
1077 			if (USES_PRIMARY(bond->params.mode)) {
1078 				printk(KERN_INFO DRV_NAME
1079 				       ": %s: making interface %s the new "
1080 				       "active one %d ms earlier.\n",
1081 				       bond->dev->name, new_active->dev->name,
1082 				       (bond->params.updelay - new_active->delay) * bond->params.miimon);
1083 			}
1084 
1085 			new_active->delay = 0;
1086 			new_active->link = BOND_LINK_UP;
1087 			new_active->jiffies = jiffies;
1088 
1089 			if (bond->params.mode == BOND_MODE_8023AD) {
1090 				bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1091 			}
1092 
1093 			if ((bond->params.mode == BOND_MODE_TLB) ||
1094 			    (bond->params.mode == BOND_MODE_ALB)) {
1095 				bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1096 			}
1097 		} else {
1098 			if (USES_PRIMARY(bond->params.mode)) {
1099 				printk(KERN_INFO DRV_NAME
1100 				       ": %s: making interface %s the new "
1101 				       "active one.\n",
1102 				       bond->dev->name, new_active->dev->name);
1103 			}
1104 		}
1105 	}
1106 
1107 	if (USES_PRIMARY(bond->params.mode)) {
1108 		bond_mc_swap(bond, new_active, old_active);
1109 	}
1110 
1111 	if ((bond->params.mode == BOND_MODE_TLB) ||
1112 	    (bond->params.mode == BOND_MODE_ALB)) {
1113 		bond_alb_handle_active_change(bond, new_active);
1114 		if (old_active)
1115 			bond_set_slave_inactive_flags(old_active);
1116 		if (new_active)
1117 			bond_set_slave_active_flags(new_active);
1118 	} else {
1119 		bond->curr_active_slave = new_active;
1120 	}
1121 
1122 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1123 		if (old_active) {
1124 			bond_set_slave_inactive_flags(old_active);
1125 		}
1126 
1127 		if (new_active) {
1128 			bond_set_slave_active_flags(new_active);
1129 		}
1130 		bond_send_gratuitous_arp(bond);
1131 	}
1132 }
1133 
1134 /**
1135  * bond_select_active_slave - select a new active slave, if needed
1136  * @bond: our bonding struct
1137  *
1138  * This functions shoud be called when one of the following occurs:
1139  * - The old curr_active_slave has been released or lost its link.
1140  * - The primary_slave has got its link back.
1141  * - A slave has got its link back and there's no old curr_active_slave.
1142  *
1143  * Warning: Caller must hold curr_slave_lock for writing.
1144  */
1145 void bond_select_active_slave(struct bonding *bond)
1146 {
1147 	struct slave *best_slave;
1148 	int rv;
1149 
1150 	best_slave = bond_find_best_slave(bond);
1151 	if (best_slave != bond->curr_active_slave) {
1152 		bond_change_active_slave(bond, best_slave);
1153 		rv = bond_set_carrier(bond);
1154 		if (!rv)
1155 			return;
1156 
1157 		if (netif_carrier_ok(bond->dev)) {
1158 			printk(KERN_INFO DRV_NAME
1159 			       ": %s: first active interface up!\n",
1160 			       bond->dev->name);
1161 		} else {
1162 			printk(KERN_INFO DRV_NAME ": %s: "
1163 			       "now running without any active interface !\n",
1164 			       bond->dev->name);
1165 		}
1166 	}
1167 }
1168 
1169 /*--------------------------- slave list handling ---------------------------*/
1170 
1171 /*
1172  * This function attaches the slave to the end of list.
1173  *
1174  * bond->lock held for writing by caller.
1175  */
1176 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1177 {
1178 	if (bond->first_slave == NULL) { /* attaching the first slave */
1179 		new_slave->next = new_slave;
1180 		new_slave->prev = new_slave;
1181 		bond->first_slave = new_slave;
1182 	} else {
1183 		new_slave->next = bond->first_slave;
1184 		new_slave->prev = bond->first_slave->prev;
1185 		new_slave->next->prev = new_slave;
1186 		new_slave->prev->next = new_slave;
1187 	}
1188 
1189 	bond->slave_cnt++;
1190 }
1191 
1192 /*
1193  * This function detaches the slave from the list.
1194  * WARNING: no check is made to verify if the slave effectively
1195  * belongs to <bond>.
1196  * Nothing is freed on return, structures are just unchained.
1197  * If any slave pointer in bond was pointing to <slave>,
1198  * it should be changed by the calling function.
1199  *
1200  * bond->lock held for writing by caller.
1201  */
1202 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1203 {
1204 	if (slave->next) {
1205 		slave->next->prev = slave->prev;
1206 	}
1207 
1208 	if (slave->prev) {
1209 		slave->prev->next = slave->next;
1210 	}
1211 
1212 	if (bond->first_slave == slave) { /* slave is the first slave */
1213 		if (bond->slave_cnt > 1) { /* there are more slave */
1214 			bond->first_slave = slave->next;
1215 		} else {
1216 			bond->first_slave = NULL; /* slave was the last one */
1217 		}
1218 	}
1219 
1220 	slave->next = NULL;
1221 	slave->prev = NULL;
1222 	bond->slave_cnt--;
1223 }
1224 
1225 /*---------------------------------- IOCTL ----------------------------------*/
1226 
1227 int bond_sethwaddr(struct net_device *bond_dev, struct net_device *slave_dev)
1228 {
1229 	dprintk("bond_dev=%p\n", bond_dev);
1230 	dprintk("slave_dev=%p\n", slave_dev);
1231 	dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1232 	memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1233 	return 0;
1234 }
1235 
1236 #define BOND_INTERSECT_FEATURES \
1237 	(NETIF_F_SG | NETIF_F_ALL_CSUM | NETIF_F_TSO | NETIF_F_UFO)
1238 
1239 /*
1240  * Compute the common dev->feature set available to all slaves.  Some
1241  * feature bits are managed elsewhere, so preserve feature bits set on
1242  * master device that are not part of the examined set.
1243  */
1244 static int bond_compute_features(struct bonding *bond)
1245 {
1246 	unsigned long features = BOND_INTERSECT_FEATURES;
1247 	struct slave *slave;
1248 	struct net_device *bond_dev = bond->dev;
1249 	unsigned short max_hard_header_len = ETH_HLEN;
1250 	int i;
1251 
1252 	bond_for_each_slave(bond, slave, i) {
1253 		features &= (slave->dev->features & BOND_INTERSECT_FEATURES);
1254 		if (slave->dev->hard_header_len > max_hard_header_len)
1255 			max_hard_header_len = slave->dev->hard_header_len;
1256 	}
1257 
1258 	if ((features & NETIF_F_SG) &&
1259 	    !(features & NETIF_F_ALL_CSUM))
1260 		features &= ~NETIF_F_SG;
1261 
1262 	/*
1263 	 * features will include NETIF_F_TSO (NETIF_F_UFO) iff all
1264 	 * slave devices support NETIF_F_TSO (NETIF_F_UFO), which
1265 	 * implies that all slaves also support scatter-gather
1266 	 * (NETIF_F_SG), which implies that features also includes
1267 	 * NETIF_F_SG. So no need to check whether we have an
1268 	 * illegal combination of NETIF_F_{TSO,UFO} and
1269 	 * !NETIF_F_SG
1270 	 */
1271 
1272 	features |= (bond_dev->features & ~BOND_INTERSECT_FEATURES);
1273 	bond_dev->features = features;
1274 	bond_dev->hard_header_len = max_hard_header_len;
1275 
1276 	return 0;
1277 }
1278 
1279 /* enslave device <slave> to bond device <master> */
1280 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1281 {
1282 	struct bonding *bond = bond_dev->priv;
1283 	struct slave *new_slave = NULL;
1284 	struct dev_mc_list *dmi;
1285 	struct sockaddr addr;
1286 	int link_reporting;
1287 	int old_features = bond_dev->features;
1288 	int res = 0;
1289 
1290 	if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1291 		slave_dev->do_ioctl == NULL) {
1292 		printk(KERN_WARNING DRV_NAME
1293 		       ": %s: Warning: no link monitoring support for %s\n",
1294 		       bond_dev->name, slave_dev->name);
1295 	}
1296 
1297 	/* bond must be initialized by bond_open() before enslaving */
1298 	if (!(bond_dev->flags & IFF_UP)) {
1299 		dprintk("Error, master_dev is not up\n");
1300 		return -EPERM;
1301 	}
1302 
1303 	/* already enslaved */
1304 	if (slave_dev->flags & IFF_SLAVE) {
1305 		dprintk("Error, Device was already enslaved\n");
1306 		return -EBUSY;
1307 	}
1308 
1309 	/* vlan challenged mutual exclusion */
1310 	/* no need to lock since we're protected by rtnl_lock */
1311 	if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1312 		dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1313 		if (!list_empty(&bond->vlan_list)) {
1314 			printk(KERN_ERR DRV_NAME
1315 			       ": %s: Error: cannot enslave VLAN "
1316 			       "challenged slave %s on VLAN enabled "
1317 			       "bond %s\n", bond_dev->name, slave_dev->name,
1318 			       bond_dev->name);
1319 			return -EPERM;
1320 		} else {
1321 			printk(KERN_WARNING DRV_NAME
1322 			       ": %s: Warning: enslaved VLAN challenged "
1323 			       "slave %s. Adding VLANs will be blocked as "
1324 			       "long as %s is part of bond %s\n",
1325 			       bond_dev->name, slave_dev->name, slave_dev->name,
1326 			       bond_dev->name);
1327 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1328 		}
1329 	} else {
1330 		dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1331 		if (bond->slave_cnt == 0) {
1332 			/* First slave, and it is not VLAN challenged,
1333 			 * so remove the block of adding VLANs over the bond.
1334 			 */
1335 			bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1336 		}
1337 	}
1338 
1339 	/*
1340 	 * Old ifenslave binaries are no longer supported.  These can
1341 	 * be identified with moderate accurary by the state of the slave:
1342 	 * the current ifenslave will set the interface down prior to
1343 	 * enslaving it; the old ifenslave will not.
1344 	 */
1345 	if ((slave_dev->flags & IFF_UP)) {
1346 		printk(KERN_ERR DRV_NAME ": %s is up. "
1347 		       "This may be due to an out of date ifenslave.\n",
1348 		       slave_dev->name);
1349 		res = -EPERM;
1350 		goto err_undo_flags;
1351 	}
1352 
1353 	if (slave_dev->set_mac_address == NULL) {
1354 		printk(KERN_ERR DRV_NAME
1355 			": %s: Error: The slave device you specified does "
1356 			"not support setting the MAC address. "
1357 			"Your kernel likely does not support slave "
1358 			"devices.\n", bond_dev->name);
1359   		res = -EOPNOTSUPP;
1360 		goto err_undo_flags;
1361 	}
1362 
1363 	if (slave_dev->get_stats == NULL) {
1364 		printk(KERN_NOTICE DRV_NAME
1365 			": %s: the driver for slave device %s does not provide "
1366 			"get_stats function, network statistics will be "
1367 			"inaccurate.\n", bond_dev->name, slave_dev->name);
1368 	}
1369 
1370 	new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1371 	if (!new_slave) {
1372 		res = -ENOMEM;
1373 		goto err_undo_flags;
1374 	}
1375 
1376 	/* save slave's original flags before calling
1377 	 * netdev_set_master and dev_open
1378 	 */
1379 	new_slave->original_flags = slave_dev->flags;
1380 
1381 	/*
1382 	 * Save slave's original ("permanent") mac address for modes
1383 	 * that need it, and for restoring it upon release, and then
1384 	 * set it to the master's address
1385 	 */
1386 	memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1387 
1388 	/*
1389 	 * Set slave to master's mac address.  The application already
1390 	 * set the master's mac address to that of the first slave
1391 	 */
1392 	memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1393 	addr.sa_family = slave_dev->type;
1394 	res = dev_set_mac_address(slave_dev, &addr);
1395 	if (res) {
1396 		dprintk("Error %d calling set_mac_address\n", res);
1397 		goto err_free;
1398 	}
1399 
1400 	/* open the slave since the application closed it */
1401 	res = dev_open(slave_dev);
1402 	if (res) {
1403 		dprintk("Openning slave %s failed\n", slave_dev->name);
1404 		goto err_restore_mac;
1405 	}
1406 
1407 	res = netdev_set_master(slave_dev, bond_dev);
1408 	if (res) {
1409 		dprintk("Error %d calling netdev_set_master\n", res);
1410 		goto err_close;
1411 	}
1412 
1413 	new_slave->dev = slave_dev;
1414 	slave_dev->priv_flags |= IFF_BONDING;
1415 
1416 	if ((bond->params.mode == BOND_MODE_TLB) ||
1417 	    (bond->params.mode == BOND_MODE_ALB)) {
1418 		/* bond_alb_init_slave() must be called before all other stages since
1419 		 * it might fail and we do not want to have to undo everything
1420 		 */
1421 		res = bond_alb_init_slave(bond, new_slave);
1422 		if (res) {
1423 			goto err_unset_master;
1424 		}
1425 	}
1426 
1427 	/* If the mode USES_PRIMARY, then the new slave gets the
1428 	 * master's promisc (and mc) settings only if it becomes the
1429 	 * curr_active_slave, and that is taken care of later when calling
1430 	 * bond_change_active()
1431 	 */
1432 	if (!USES_PRIMARY(bond->params.mode)) {
1433 		/* set promiscuity level to new slave */
1434 		if (bond_dev->flags & IFF_PROMISC) {
1435 			dev_set_promiscuity(slave_dev, 1);
1436 		}
1437 
1438 		/* set allmulti level to new slave */
1439 		if (bond_dev->flags & IFF_ALLMULTI) {
1440 			dev_set_allmulti(slave_dev, 1);
1441 		}
1442 
1443 		/* upload master's mc_list to new slave */
1444 		for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1445 			dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1446 		}
1447 	}
1448 
1449 	if (bond->params.mode == BOND_MODE_8023AD) {
1450 		/* add lacpdu mc addr to mc list */
1451 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1452 
1453 		dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1454 	}
1455 
1456 	bond_add_vlans_on_slave(bond, slave_dev);
1457 
1458 	write_lock_bh(&bond->lock);
1459 
1460 	bond_attach_slave(bond, new_slave);
1461 
1462 	new_slave->delay = 0;
1463 	new_slave->link_failure_count = 0;
1464 
1465 	bond_compute_features(bond);
1466 
1467 	new_slave->last_arp_rx = jiffies;
1468 
1469 	if (bond->params.miimon && !bond->params.use_carrier) {
1470 		link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1471 
1472 		if ((link_reporting == -1) && !bond->params.arp_interval) {
1473 			/*
1474 			 * miimon is set but a bonded network driver
1475 			 * does not support ETHTOOL/MII and
1476 			 * arp_interval is not set.  Note: if
1477 			 * use_carrier is enabled, we will never go
1478 			 * here (because netif_carrier is always
1479 			 * supported); thus, we don't need to change
1480 			 * the messages for netif_carrier.
1481 			 */
1482 			printk(KERN_WARNING DRV_NAME
1483 			       ": %s: Warning: MII and ETHTOOL support not "
1484 			       "available for interface %s, and "
1485 			       "arp_interval/arp_ip_target module parameters "
1486 			       "not specified, thus bonding will not detect "
1487 			       "link failures! see bonding.txt for details.\n",
1488 			       bond_dev->name, slave_dev->name);
1489 		} else if (link_reporting == -1) {
1490 			/* unable get link status using mii/ethtool */
1491 			printk(KERN_WARNING DRV_NAME
1492 			       ": %s: Warning: can't get link status from "
1493 			       "interface %s; the network driver associated "
1494 			       "with this interface does not support MII or "
1495 			       "ETHTOOL link status reporting, thus miimon "
1496 			       "has no effect on this interface.\n",
1497 			       bond_dev->name, slave_dev->name);
1498 		}
1499 	}
1500 
1501 	/* check for initial state */
1502 	if (!bond->params.miimon ||
1503 	    (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1504 		if (bond->params.updelay) {
1505 			dprintk("Initial state of slave_dev is "
1506 				"BOND_LINK_BACK\n");
1507 			new_slave->link  = BOND_LINK_BACK;
1508 			new_slave->delay = bond->params.updelay;
1509 		} else {
1510 			dprintk("Initial state of slave_dev is "
1511 				"BOND_LINK_UP\n");
1512 			new_slave->link  = BOND_LINK_UP;
1513 		}
1514 		new_slave->jiffies = jiffies;
1515 	} else {
1516 		dprintk("Initial state of slave_dev is "
1517 			"BOND_LINK_DOWN\n");
1518 		new_slave->link  = BOND_LINK_DOWN;
1519 	}
1520 
1521 	if (bond_update_speed_duplex(new_slave) &&
1522 	    (new_slave->link != BOND_LINK_DOWN)) {
1523 		printk(KERN_WARNING DRV_NAME
1524 		       ": %s: Warning: failed to get speed and duplex from %s, "
1525 		       "assumed to be 100Mb/sec and Full.\n",
1526 		       bond_dev->name, new_slave->dev->name);
1527 
1528 		if (bond->params.mode == BOND_MODE_8023AD) {
1529 			printk(KERN_WARNING DRV_NAME
1530 			       ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1531 			       "support in base driver for proper aggregator "
1532 			       "selection.\n", bond_dev->name);
1533 		}
1534 	}
1535 
1536 	if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1537 		/* if there is a primary slave, remember it */
1538 		if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1539 			bond->primary_slave = new_slave;
1540 		}
1541 	}
1542 
1543 	switch (bond->params.mode) {
1544 	case BOND_MODE_ACTIVEBACKUP:
1545 		bond_set_slave_inactive_flags(new_slave);
1546 		bond_select_active_slave(bond);
1547 		break;
1548 	case BOND_MODE_8023AD:
1549 		/* in 802.3ad mode, the internal mechanism
1550 		 * will activate the slaves in the selected
1551 		 * aggregator
1552 		 */
1553 		bond_set_slave_inactive_flags(new_slave);
1554 		/* if this is the first slave */
1555 		if (bond->slave_cnt == 1) {
1556 			SLAVE_AD_INFO(new_slave).id = 1;
1557 			/* Initialize AD with the number of times that the AD timer is called in 1 second
1558 			 * can be called only after the mac address of the bond is set
1559 			 */
1560 			bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1561 					    bond->params.lacp_fast);
1562 		} else {
1563 			SLAVE_AD_INFO(new_slave).id =
1564 				SLAVE_AD_INFO(new_slave->prev).id + 1;
1565 		}
1566 
1567 		bond_3ad_bind_slave(new_slave);
1568 		break;
1569 	case BOND_MODE_TLB:
1570 	case BOND_MODE_ALB:
1571 		new_slave->state = BOND_STATE_ACTIVE;
1572 		if ((!bond->curr_active_slave) &&
1573 		    (new_slave->link != BOND_LINK_DOWN)) {
1574 			/* first slave or no active slave yet, and this link
1575 			 * is OK, so make this interface the active one
1576 			 */
1577 			bond_change_active_slave(bond, new_slave);
1578 		} else {
1579 			bond_set_slave_inactive_flags(new_slave);
1580 		}
1581 		break;
1582 	default:
1583 		dprintk("This slave is always active in trunk mode\n");
1584 
1585 		/* always active in trunk mode */
1586 		new_slave->state = BOND_STATE_ACTIVE;
1587 
1588 		/* In trunking mode there is little meaning to curr_active_slave
1589 		 * anyway (it holds no special properties of the bond device),
1590 		 * so we can change it without calling change_active_interface()
1591 		 */
1592 		if (!bond->curr_active_slave) {
1593 			bond->curr_active_slave = new_slave;
1594 		}
1595 		break;
1596 	} /* switch(bond_mode) */
1597 
1598 	bond_set_carrier(bond);
1599 
1600 	write_unlock_bh(&bond->lock);
1601 
1602 	res = bond_create_slave_symlinks(bond_dev, slave_dev);
1603 	if (res)
1604 		goto err_unset_master;
1605 
1606 	printk(KERN_INFO DRV_NAME
1607 	       ": %s: enslaving %s as a%s interface with a%s link.\n",
1608 	       bond_dev->name, slave_dev->name,
1609 	       new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1610 	       new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1611 
1612 	/* enslave is successful */
1613 	return 0;
1614 
1615 /* Undo stages on error */
1616 err_unset_master:
1617 	netdev_set_master(slave_dev, NULL);
1618 
1619 err_close:
1620 	dev_close(slave_dev);
1621 
1622 err_restore_mac:
1623 	memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1624 	addr.sa_family = slave_dev->type;
1625 	dev_set_mac_address(slave_dev, &addr);
1626 
1627 err_free:
1628 	kfree(new_slave);
1629 
1630 err_undo_flags:
1631 	bond_dev->features = old_features;
1632 
1633 	return res;
1634 }
1635 
1636 /*
1637  * Try to release the slave device <slave> from the bond device <master>
1638  * It is legal to access curr_active_slave without a lock because all the function
1639  * is write-locked.
1640  *
1641  * The rules for slave state should be:
1642  *   for Active/Backup:
1643  *     Active stays on all backups go down
1644  *   for Bonded connections:
1645  *     The first up interface should be left on and all others downed.
1646  */
1647 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1648 {
1649 	struct bonding *bond = bond_dev->priv;
1650 	struct slave *slave, *oldcurrent;
1651 	struct sockaddr addr;
1652 	int mac_addr_differ;
1653 
1654 	/* slave is not a slave or master is not master of this slave */
1655 	if (!(slave_dev->flags & IFF_SLAVE) ||
1656 	    (slave_dev->master != bond_dev)) {
1657 		printk(KERN_ERR DRV_NAME
1658 		       ": %s: Error: cannot release %s.\n",
1659 		       bond_dev->name, slave_dev->name);
1660 		return -EINVAL;
1661 	}
1662 
1663 	write_lock_bh(&bond->lock);
1664 
1665 	slave = bond_get_slave_by_dev(bond, slave_dev);
1666 	if (!slave) {
1667 		/* not a slave of this bond */
1668 		printk(KERN_INFO DRV_NAME
1669 		       ": %s: %s not enslaved\n",
1670 		       bond_dev->name, slave_dev->name);
1671 		write_unlock_bh(&bond->lock);
1672 		return -EINVAL;
1673 	}
1674 
1675 	mac_addr_differ = memcmp(bond_dev->dev_addr,
1676 				 slave->perm_hwaddr,
1677 				 ETH_ALEN);
1678 	if (!mac_addr_differ && (bond->slave_cnt > 1)) {
1679 		printk(KERN_WARNING DRV_NAME
1680 		       ": %s: Warning: the permanent HWaddr of %s "
1681 		       "- %02X:%02X:%02X:%02X:%02X:%02X - is "
1682 		       "still in use by %s. Set the HWaddr of "
1683 		       "%s to a different address to avoid "
1684 		       "conflicts.\n",
1685 		       bond_dev->name,
1686 		       slave_dev->name,
1687 		       slave->perm_hwaddr[0],
1688 		       slave->perm_hwaddr[1],
1689 		       slave->perm_hwaddr[2],
1690 		       slave->perm_hwaddr[3],
1691 		       slave->perm_hwaddr[4],
1692 		       slave->perm_hwaddr[5],
1693 		       bond_dev->name,
1694 		       slave_dev->name);
1695 	}
1696 
1697 	/* Inform AD package of unbinding of slave. */
1698 	if (bond->params.mode == BOND_MODE_8023AD) {
1699 		/* must be called before the slave is
1700 		 * detached from the list
1701 		 */
1702 		bond_3ad_unbind_slave(slave);
1703 	}
1704 
1705 	printk(KERN_INFO DRV_NAME
1706 	       ": %s: releasing %s interface %s\n",
1707 	       bond_dev->name,
1708 	       (slave->state == BOND_STATE_ACTIVE)
1709 	       ? "active" : "backup",
1710 	       slave_dev->name);
1711 
1712 	oldcurrent = bond->curr_active_slave;
1713 
1714 	bond->current_arp_slave = NULL;
1715 
1716 	/* release the slave from its bond */
1717 	bond_detach_slave(bond, slave);
1718 
1719 	bond_compute_features(bond);
1720 
1721 	if (bond->primary_slave == slave) {
1722 		bond->primary_slave = NULL;
1723 	}
1724 
1725 	if (oldcurrent == slave) {
1726 		bond_change_active_slave(bond, NULL);
1727 	}
1728 
1729 	if ((bond->params.mode == BOND_MODE_TLB) ||
1730 	    (bond->params.mode == BOND_MODE_ALB)) {
1731 		/* Must be called only after the slave has been
1732 		 * detached from the list and the curr_active_slave
1733 		 * has been cleared (if our_slave == old_current),
1734 		 * but before a new active slave is selected.
1735 		 */
1736 		bond_alb_deinit_slave(bond, slave);
1737 	}
1738 
1739 	if (oldcurrent == slave)
1740 		bond_select_active_slave(bond);
1741 
1742 	if (bond->slave_cnt == 0) {
1743 		bond_set_carrier(bond);
1744 
1745 		/* if the last slave was removed, zero the mac address
1746 		 * of the master so it will be set by the application
1747 		 * to the mac address of the first slave
1748 		 */
1749 		memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1750 
1751 		if (list_empty(&bond->vlan_list)) {
1752 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1753 		} else {
1754 			printk(KERN_WARNING DRV_NAME
1755 			       ": %s: Warning: clearing HW address of %s while it "
1756 			       "still has VLANs.\n",
1757 			       bond_dev->name, bond_dev->name);
1758 			printk(KERN_WARNING DRV_NAME
1759 			       ": %s: When re-adding slaves, make sure the bond's "
1760 			       "HW address matches its VLANs'.\n",
1761 			       bond_dev->name);
1762 		}
1763 	} else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1764 		   !bond_has_challenged_slaves(bond)) {
1765 		printk(KERN_INFO DRV_NAME
1766 		       ": %s: last VLAN challenged slave %s "
1767 		       "left bond %s. VLAN blocking is removed\n",
1768 		       bond_dev->name, slave_dev->name, bond_dev->name);
1769 		bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1770 	}
1771 
1772 	write_unlock_bh(&bond->lock);
1773 
1774 	/* must do this from outside any spinlocks */
1775 	bond_destroy_slave_symlinks(bond_dev, slave_dev);
1776 
1777 	bond_del_vlans_from_slave(bond, slave_dev);
1778 
1779 	/* If the mode USES_PRIMARY, then we should only remove its
1780 	 * promisc and mc settings if it was the curr_active_slave, but that was
1781 	 * already taken care of above when we detached the slave
1782 	 */
1783 	if (!USES_PRIMARY(bond->params.mode)) {
1784 		/* unset promiscuity level from slave */
1785 		if (bond_dev->flags & IFF_PROMISC) {
1786 			dev_set_promiscuity(slave_dev, -1);
1787 		}
1788 
1789 		/* unset allmulti level from slave */
1790 		if (bond_dev->flags & IFF_ALLMULTI) {
1791 			dev_set_allmulti(slave_dev, -1);
1792 		}
1793 
1794 		/* flush master's mc_list from slave */
1795 		bond_mc_list_flush(bond_dev, slave_dev);
1796 	}
1797 
1798 	netdev_set_master(slave_dev, NULL);
1799 
1800 	/* close slave before restoring its mac address */
1801 	dev_close(slave_dev);
1802 
1803 	/* restore original ("permanent") mac address */
1804 	memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1805 	addr.sa_family = slave_dev->type;
1806 	dev_set_mac_address(slave_dev, &addr);
1807 
1808 	slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1809 				   IFF_SLAVE_INACTIVE | IFF_BONDING |
1810 				   IFF_SLAVE_NEEDARP);
1811 
1812 	kfree(slave);
1813 
1814 	return 0;  /* deletion OK */
1815 }
1816 
1817 /*
1818  * This function releases all slaves.
1819  */
1820 static int bond_release_all(struct net_device *bond_dev)
1821 {
1822 	struct bonding *bond = bond_dev->priv;
1823 	struct slave *slave;
1824 	struct net_device *slave_dev;
1825 	struct sockaddr addr;
1826 
1827 	write_lock_bh(&bond->lock);
1828 
1829 	netif_carrier_off(bond_dev);
1830 
1831 	if (bond->slave_cnt == 0) {
1832 		goto out;
1833 	}
1834 
1835 	bond->current_arp_slave = NULL;
1836 	bond->primary_slave = NULL;
1837 	bond_change_active_slave(bond, NULL);
1838 
1839 	while ((slave = bond->first_slave) != NULL) {
1840 		/* Inform AD package of unbinding of slave
1841 		 * before slave is detached from the list.
1842 		 */
1843 		if (bond->params.mode == BOND_MODE_8023AD) {
1844 			bond_3ad_unbind_slave(slave);
1845 		}
1846 
1847 		slave_dev = slave->dev;
1848 		bond_detach_slave(bond, slave);
1849 
1850 		if ((bond->params.mode == BOND_MODE_TLB) ||
1851 		    (bond->params.mode == BOND_MODE_ALB)) {
1852 			/* must be called only after the slave
1853 			 * has been detached from the list
1854 			 */
1855 			bond_alb_deinit_slave(bond, slave);
1856 		}
1857 
1858 		bond_compute_features(bond);
1859 
1860 		/* now that the slave is detached, unlock and perform
1861 		 * all the undo steps that should not be called from
1862 		 * within a lock.
1863 		 */
1864 		write_unlock_bh(&bond->lock);
1865 
1866 		bond_destroy_slave_symlinks(bond_dev, slave_dev);
1867 		bond_del_vlans_from_slave(bond, slave_dev);
1868 
1869 		/* If the mode USES_PRIMARY, then we should only remove its
1870 		 * promisc and mc settings if it was the curr_active_slave, but that was
1871 		 * already taken care of above when we detached the slave
1872 		 */
1873 		if (!USES_PRIMARY(bond->params.mode)) {
1874 			/* unset promiscuity level from slave */
1875 			if (bond_dev->flags & IFF_PROMISC) {
1876 				dev_set_promiscuity(slave_dev, -1);
1877 			}
1878 
1879 			/* unset allmulti level from slave */
1880 			if (bond_dev->flags & IFF_ALLMULTI) {
1881 				dev_set_allmulti(slave_dev, -1);
1882 			}
1883 
1884 			/* flush master's mc_list from slave */
1885 			bond_mc_list_flush(bond_dev, slave_dev);
1886 		}
1887 
1888 		netdev_set_master(slave_dev, NULL);
1889 
1890 		/* close slave before restoring its mac address */
1891 		dev_close(slave_dev);
1892 
1893 		/* restore original ("permanent") mac address*/
1894 		memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1895 		addr.sa_family = slave_dev->type;
1896 		dev_set_mac_address(slave_dev, &addr);
1897 
1898 		slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1899 					   IFF_SLAVE_INACTIVE);
1900 
1901 		kfree(slave);
1902 
1903 		/* re-acquire the lock before getting the next slave */
1904 		write_lock_bh(&bond->lock);
1905 	}
1906 
1907 	/* zero the mac address of the master so it will be
1908 	 * set by the application to the mac address of the
1909 	 * first slave
1910 	 */
1911 	memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1912 
1913 	if (list_empty(&bond->vlan_list)) {
1914 		bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1915 	} else {
1916 		printk(KERN_WARNING DRV_NAME
1917 		       ": %s: Warning: clearing HW address of %s while it "
1918 		       "still has VLANs.\n",
1919 		       bond_dev->name, bond_dev->name);
1920 		printk(KERN_WARNING DRV_NAME
1921 		       ": %s: When re-adding slaves, make sure the bond's "
1922 		       "HW address matches its VLANs'.\n",
1923 		       bond_dev->name);
1924 	}
1925 
1926 	printk(KERN_INFO DRV_NAME
1927 	       ": %s: released all slaves\n",
1928 	       bond_dev->name);
1929 
1930 out:
1931 	write_unlock_bh(&bond->lock);
1932 
1933 	return 0;
1934 }
1935 
1936 /*
1937  * This function changes the active slave to slave <slave_dev>.
1938  * It returns -EINVAL in the following cases.
1939  *  - <slave_dev> is not found in the list.
1940  *  - There is not active slave now.
1941  *  - <slave_dev> is already active.
1942  *  - The link state of <slave_dev> is not BOND_LINK_UP.
1943  *  - <slave_dev> is not running.
1944  * In these cases, this fuction does nothing.
1945  * In the other cases, currnt_slave pointer is changed and 0 is returned.
1946  */
1947 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
1948 {
1949 	struct bonding *bond = bond_dev->priv;
1950 	struct slave *old_active = NULL;
1951 	struct slave *new_active = NULL;
1952 	int res = 0;
1953 
1954 	if (!USES_PRIMARY(bond->params.mode)) {
1955 		return -EINVAL;
1956 	}
1957 
1958 	/* Verify that master_dev is indeed the master of slave_dev */
1959 	if (!(slave_dev->flags & IFF_SLAVE) ||
1960 	    (slave_dev->master != bond_dev)) {
1961 		return -EINVAL;
1962 	}
1963 
1964 	write_lock_bh(&bond->lock);
1965 
1966 	old_active = bond->curr_active_slave;
1967 	new_active = bond_get_slave_by_dev(bond, slave_dev);
1968 
1969 	/*
1970 	 * Changing to the current active: do nothing; return success.
1971 	 */
1972 	if (new_active && (new_active == old_active)) {
1973 		write_unlock_bh(&bond->lock);
1974 		return 0;
1975 	}
1976 
1977 	if ((new_active) &&
1978 	    (old_active) &&
1979 	    (new_active->link == BOND_LINK_UP) &&
1980 	    IS_UP(new_active->dev)) {
1981 		bond_change_active_slave(bond, new_active);
1982 	} else {
1983 		res = -EINVAL;
1984 	}
1985 
1986 	write_unlock_bh(&bond->lock);
1987 
1988 	return res;
1989 }
1990 
1991 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
1992 {
1993 	struct bonding *bond = bond_dev->priv;
1994 
1995 	info->bond_mode = bond->params.mode;
1996 	info->miimon = bond->params.miimon;
1997 
1998 	read_lock_bh(&bond->lock);
1999 	info->num_slaves = bond->slave_cnt;
2000 	read_unlock_bh(&bond->lock);
2001 
2002 	return 0;
2003 }
2004 
2005 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
2006 {
2007 	struct bonding *bond = bond_dev->priv;
2008 	struct slave *slave;
2009 	int i, found = 0;
2010 
2011 	if (info->slave_id < 0) {
2012 		return -ENODEV;
2013 	}
2014 
2015 	read_lock_bh(&bond->lock);
2016 
2017 	bond_for_each_slave(bond, slave, i) {
2018 		if (i == (int)info->slave_id) {
2019 			found = 1;
2020 			break;
2021 		}
2022 	}
2023 
2024 	read_unlock_bh(&bond->lock);
2025 
2026 	if (found) {
2027 		strcpy(info->slave_name, slave->dev->name);
2028 		info->link = slave->link;
2029 		info->state = slave->state;
2030 		info->link_failure_count = slave->link_failure_count;
2031 	} else {
2032 		return -ENODEV;
2033 	}
2034 
2035 	return 0;
2036 }
2037 
2038 /*-------------------------------- Monitoring -------------------------------*/
2039 
2040 /* this function is called regularly to monitor each slave's link. */
2041 void bond_mii_monitor(struct net_device *bond_dev)
2042 {
2043 	struct bonding *bond = bond_dev->priv;
2044 	struct slave *slave, *oldcurrent;
2045 	int do_failover = 0;
2046 	int delta_in_ticks;
2047 	int i;
2048 
2049 	read_lock(&bond->lock);
2050 
2051 	delta_in_ticks = (bond->params.miimon * HZ) / 1000;
2052 
2053 	if (bond->kill_timers) {
2054 		goto out;
2055 	}
2056 
2057 	if (bond->slave_cnt == 0) {
2058 		goto re_arm;
2059 	}
2060 
2061 	/* we will try to read the link status of each of our slaves, and
2062 	 * set their IFF_RUNNING flag appropriately. For each slave not
2063 	 * supporting MII status, we won't do anything so that a user-space
2064 	 * program could monitor the link itself if needed.
2065 	 */
2066 
2067 	read_lock(&bond->curr_slave_lock);
2068 	oldcurrent = bond->curr_active_slave;
2069 	read_unlock(&bond->curr_slave_lock);
2070 
2071 	bond_for_each_slave(bond, slave, i) {
2072 		struct net_device *slave_dev = slave->dev;
2073 		int link_state;
2074 		u16 old_speed = slave->speed;
2075 		u8 old_duplex = slave->duplex;
2076 
2077 		link_state = bond_check_dev_link(bond, slave_dev, 0);
2078 
2079 		switch (slave->link) {
2080 		case BOND_LINK_UP:	/* the link was up */
2081 			if (link_state == BMSR_LSTATUS) {
2082 				/* link stays up, nothing more to do */
2083 				break;
2084 			} else { /* link going down */
2085 				slave->link  = BOND_LINK_FAIL;
2086 				slave->delay = bond->params.downdelay;
2087 
2088 				if (slave->link_failure_count < UINT_MAX) {
2089 					slave->link_failure_count++;
2090 				}
2091 
2092 				if (bond->params.downdelay) {
2093 					printk(KERN_INFO DRV_NAME
2094 					       ": %s: link status down for %s "
2095 					       "interface %s, disabling it in "
2096 					       "%d ms.\n",
2097 					       bond_dev->name,
2098 					       IS_UP(slave_dev)
2099 					       ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP)
2100 						  ? ((slave == oldcurrent)
2101 						     ? "active " : "backup ")
2102 						  : "")
2103 					       : "idle ",
2104 					       slave_dev->name,
2105 					       bond->params.downdelay * bond->params.miimon);
2106 				}
2107 			}
2108 			/* no break ! fall through the BOND_LINK_FAIL test to
2109 			   ensure proper action to be taken
2110 			*/
2111 		case BOND_LINK_FAIL:	/* the link has just gone down */
2112 			if (link_state != BMSR_LSTATUS) {
2113 				/* link stays down */
2114 				if (slave->delay <= 0) {
2115 					/* link down for too long time */
2116 					slave->link = BOND_LINK_DOWN;
2117 
2118 					/* in active/backup mode, we must
2119 					 * completely disable this interface
2120 					 */
2121 					if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) ||
2122 					    (bond->params.mode == BOND_MODE_8023AD)) {
2123 						bond_set_slave_inactive_flags(slave);
2124 					}
2125 
2126 					printk(KERN_INFO DRV_NAME
2127 					       ": %s: link status definitely "
2128 					       "down for interface %s, "
2129 					       "disabling it\n",
2130 					       bond_dev->name,
2131 					       slave_dev->name);
2132 
2133 					/* notify ad that the link status has changed */
2134 					if (bond->params.mode == BOND_MODE_8023AD) {
2135 						bond_3ad_handle_link_change(slave, BOND_LINK_DOWN);
2136 					}
2137 
2138 					if ((bond->params.mode == BOND_MODE_TLB) ||
2139 					    (bond->params.mode == BOND_MODE_ALB)) {
2140 						bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN);
2141 					}
2142 
2143 					if (slave == oldcurrent) {
2144 						do_failover = 1;
2145 					}
2146 				} else {
2147 					slave->delay--;
2148 				}
2149 			} else {
2150 				/* link up again */
2151 				slave->link  = BOND_LINK_UP;
2152 				slave->jiffies = jiffies;
2153 				printk(KERN_INFO DRV_NAME
2154 				       ": %s: link status up again after %d "
2155 				       "ms for interface %s.\n",
2156 				       bond_dev->name,
2157 				       (bond->params.downdelay - slave->delay) * bond->params.miimon,
2158 				       slave_dev->name);
2159 			}
2160 			break;
2161 		case BOND_LINK_DOWN:	/* the link was down */
2162 			if (link_state != BMSR_LSTATUS) {
2163 				/* the link stays down, nothing more to do */
2164 				break;
2165 			} else {	/* link going up */
2166 				slave->link  = BOND_LINK_BACK;
2167 				slave->delay = bond->params.updelay;
2168 
2169 				if (bond->params.updelay) {
2170 					/* if updelay == 0, no need to
2171 					   advertise about a 0 ms delay */
2172 					printk(KERN_INFO DRV_NAME
2173 					       ": %s: link status up for "
2174 					       "interface %s, enabling it "
2175 					       "in %d ms.\n",
2176 					       bond_dev->name,
2177 					       slave_dev->name,
2178 					       bond->params.updelay * bond->params.miimon);
2179 				}
2180 			}
2181 			/* no break ! fall through the BOND_LINK_BACK state in
2182 			   case there's something to do.
2183 			*/
2184 		case BOND_LINK_BACK:	/* the link has just come back */
2185 			if (link_state != BMSR_LSTATUS) {
2186 				/* link down again */
2187 				slave->link  = BOND_LINK_DOWN;
2188 
2189 				printk(KERN_INFO DRV_NAME
2190 				       ": %s: link status down again after %d "
2191 				       "ms for interface %s.\n",
2192 				       bond_dev->name,
2193 				       (bond->params.updelay - slave->delay) * bond->params.miimon,
2194 				       slave_dev->name);
2195 			} else {
2196 				/* link stays up */
2197 				if (slave->delay == 0) {
2198 					/* now the link has been up for long time enough */
2199 					slave->link = BOND_LINK_UP;
2200 					slave->jiffies = jiffies;
2201 
2202 					if (bond->params.mode == BOND_MODE_8023AD) {
2203 						/* prevent it from being the active one */
2204 						slave->state = BOND_STATE_BACKUP;
2205 					} else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2206 						/* make it immediately active */
2207 						slave->state = BOND_STATE_ACTIVE;
2208 					} else if (slave != bond->primary_slave) {
2209 						/* prevent it from being the active one */
2210 						slave->state = BOND_STATE_BACKUP;
2211 					}
2212 
2213 					printk(KERN_INFO DRV_NAME
2214 					       ": %s: link status definitely "
2215 					       "up for interface %s.\n",
2216 					       bond_dev->name,
2217 					       slave_dev->name);
2218 
2219 					/* notify ad that the link status has changed */
2220 					if (bond->params.mode == BOND_MODE_8023AD) {
2221 						bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2222 					}
2223 
2224 					if ((bond->params.mode == BOND_MODE_TLB) ||
2225 					    (bond->params.mode == BOND_MODE_ALB)) {
2226 						bond_alb_handle_link_change(bond, slave, BOND_LINK_UP);
2227 					}
2228 
2229 					if ((!oldcurrent) ||
2230 					    (slave == bond->primary_slave)) {
2231 						do_failover = 1;
2232 					}
2233 				} else {
2234 					slave->delay--;
2235 				}
2236 			}
2237 			break;
2238 		default:
2239 			/* Should not happen */
2240 			printk(KERN_ERR DRV_NAME
2241 			       ": %s: Error: %s Illegal value (link=%d)\n",
2242 			       bond_dev->name,
2243 			       slave->dev->name,
2244 			       slave->link);
2245 			goto out;
2246 		} /* end of switch (slave->link) */
2247 
2248 		bond_update_speed_duplex(slave);
2249 
2250 		if (bond->params.mode == BOND_MODE_8023AD) {
2251 			if (old_speed != slave->speed) {
2252 				bond_3ad_adapter_speed_changed(slave);
2253 			}
2254 
2255 			if (old_duplex != slave->duplex) {
2256 				bond_3ad_adapter_duplex_changed(slave);
2257 			}
2258 		}
2259 
2260 	} /* end of for */
2261 
2262 	if (do_failover) {
2263 		write_lock(&bond->curr_slave_lock);
2264 
2265 		bond_select_active_slave(bond);
2266 
2267 		write_unlock(&bond->curr_slave_lock);
2268 	} else
2269 		bond_set_carrier(bond);
2270 
2271 re_arm:
2272 	if (bond->params.miimon) {
2273 		mod_timer(&bond->mii_timer, jiffies + delta_in_ticks);
2274 	}
2275 out:
2276 	read_unlock(&bond->lock);
2277 }
2278 
2279 
2280 static u32 bond_glean_dev_ip(struct net_device *dev)
2281 {
2282 	struct in_device *idev;
2283 	struct in_ifaddr *ifa;
2284 	__be32 addr = 0;
2285 
2286 	if (!dev)
2287 		return 0;
2288 
2289 	rcu_read_lock();
2290 	idev = __in_dev_get_rcu(dev);
2291 	if (!idev)
2292 		goto out;
2293 
2294 	ifa = idev->ifa_list;
2295 	if (!ifa)
2296 		goto out;
2297 
2298 	addr = ifa->ifa_local;
2299 out:
2300 	rcu_read_unlock();
2301 	return addr;
2302 }
2303 
2304 static int bond_has_ip(struct bonding *bond)
2305 {
2306 	struct vlan_entry *vlan, *vlan_next;
2307 
2308 	if (bond->master_ip)
2309 		return 1;
2310 
2311 	if (list_empty(&bond->vlan_list))
2312 		return 0;
2313 
2314 	list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2315 				 vlan_list) {
2316 		if (vlan->vlan_ip)
2317 			return 1;
2318 	}
2319 
2320 	return 0;
2321 }
2322 
2323 static int bond_has_this_ip(struct bonding *bond, u32 ip)
2324 {
2325 	struct vlan_entry *vlan, *vlan_next;
2326 
2327 	if (ip == bond->master_ip)
2328 		return 1;
2329 
2330 	if (list_empty(&bond->vlan_list))
2331 		return 0;
2332 
2333 	list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2334 				 vlan_list) {
2335 		if (ip == vlan->vlan_ip)
2336 			return 1;
2337 	}
2338 
2339 	return 0;
2340 }
2341 
2342 /*
2343  * We go to the (large) trouble of VLAN tagging ARP frames because
2344  * switches in VLAN mode (especially if ports are configured as
2345  * "native" to a VLAN) might not pass non-tagged frames.
2346  */
2347 static void bond_arp_send(struct net_device *slave_dev, int arp_op, u32 dest_ip, u32 src_ip, unsigned short vlan_id)
2348 {
2349 	struct sk_buff *skb;
2350 
2351 	dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2352 	       slave_dev->name, dest_ip, src_ip, vlan_id);
2353 
2354 	skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2355 			 NULL, slave_dev->dev_addr, NULL);
2356 
2357 	if (!skb) {
2358 		printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2359 		return;
2360 	}
2361 	if (vlan_id) {
2362 		skb = vlan_put_tag(skb, vlan_id);
2363 		if (!skb) {
2364 			printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2365 			return;
2366 		}
2367 	}
2368 	arp_xmit(skb);
2369 }
2370 
2371 
2372 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2373 {
2374 	int i, vlan_id, rv;
2375 	u32 *targets = bond->params.arp_targets;
2376 	struct vlan_entry *vlan, *vlan_next;
2377 	struct net_device *vlan_dev;
2378 	struct flowi fl;
2379 	struct rtable *rt;
2380 
2381 	for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2382 		if (!targets[i])
2383 			continue;
2384 		dprintk("basa: target %x\n", targets[i]);
2385 		if (list_empty(&bond->vlan_list)) {
2386 			dprintk("basa: empty vlan: arp_send\n");
2387 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2388 				      bond->master_ip, 0);
2389 			continue;
2390 		}
2391 
2392 		/*
2393 		 * If VLANs are configured, we do a route lookup to
2394 		 * determine which VLAN interface would be used, so we
2395 		 * can tag the ARP with the proper VLAN tag.
2396 		 */
2397 		memset(&fl, 0, sizeof(fl));
2398 		fl.fl4_dst = targets[i];
2399 		fl.fl4_tos = RTO_ONLINK;
2400 
2401 		rv = ip_route_output_key(&rt, &fl);
2402 		if (rv) {
2403 			if (net_ratelimit()) {
2404 				printk(KERN_WARNING DRV_NAME
2405 			     ": %s: no route to arp_ip_target %u.%u.%u.%u\n",
2406 				       bond->dev->name, NIPQUAD(fl.fl4_dst));
2407 			}
2408 			continue;
2409 		}
2410 
2411 		/*
2412 		 * This target is not on a VLAN
2413 		 */
2414 		if (rt->u.dst.dev == bond->dev) {
2415 			ip_rt_put(rt);
2416 			dprintk("basa: rtdev == bond->dev: arp_send\n");
2417 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2418 				      bond->master_ip, 0);
2419 			continue;
2420 		}
2421 
2422 		vlan_id = 0;
2423 		list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2424 					 vlan_list) {
2425 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2426 			if (vlan_dev == rt->u.dst.dev) {
2427 				vlan_id = vlan->vlan_id;
2428 				dprintk("basa: vlan match on %s %d\n",
2429 				       vlan_dev->name, vlan_id);
2430 				break;
2431 			}
2432 		}
2433 
2434 		if (vlan_id) {
2435 			ip_rt_put(rt);
2436 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2437 				      vlan->vlan_ip, vlan_id);
2438 			continue;
2439 		}
2440 
2441 		if (net_ratelimit()) {
2442 			printk(KERN_WARNING DRV_NAME
2443 	       ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n",
2444 			       bond->dev->name, NIPQUAD(fl.fl4_dst),
2445 			       rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2446 		}
2447 		ip_rt_put(rt);
2448 	}
2449 }
2450 
2451 /*
2452  * Kick out a gratuitous ARP for an IP on the bonding master plus one
2453  * for each VLAN above us.
2454  */
2455 static void bond_send_gratuitous_arp(struct bonding *bond)
2456 {
2457 	struct slave *slave = bond->curr_active_slave;
2458 	struct vlan_entry *vlan;
2459 	struct net_device *vlan_dev;
2460 
2461 	dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2462 				slave ? slave->dev->name : "NULL");
2463 	if (!slave)
2464 		return;
2465 
2466 	if (bond->master_ip) {
2467 		bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2468 				  bond->master_ip, 0);
2469 	}
2470 
2471 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2472 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2473 		if (vlan->vlan_ip) {
2474 			bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2475 				      vlan->vlan_ip, vlan->vlan_id);
2476 		}
2477 	}
2478 }
2479 
2480 static void bond_validate_arp(struct bonding *bond, struct slave *slave, u32 sip, u32 tip)
2481 {
2482 	int i;
2483 	u32 *targets = bond->params.arp_targets;
2484 
2485 	targets = bond->params.arp_targets;
2486 	for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2487 		dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] "
2488 			"%u.%u.%u.%u bhti(tip) %d\n",
2489 		       NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]),
2490 		       bond_has_this_ip(bond, tip));
2491 		if (sip == targets[i]) {
2492 			if (bond_has_this_ip(bond, tip))
2493 				slave->last_arp_rx = jiffies;
2494 			return;
2495 		}
2496 	}
2497 }
2498 
2499 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
2500 {
2501 	struct arphdr *arp;
2502 	struct slave *slave;
2503 	struct bonding *bond;
2504 	unsigned char *arp_ptr;
2505 	u32 sip, tip;
2506 
2507 	if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER))
2508 		goto out;
2509 
2510 	bond = dev->priv;
2511 	read_lock(&bond->lock);
2512 
2513 	dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n",
2514 		bond->dev->name, skb->dev ? skb->dev->name : "NULL",
2515 		orig_dev ? orig_dev->name : "NULL");
2516 
2517 	slave = bond_get_slave_by_dev(bond, orig_dev);
2518 	if (!slave || !slave_do_arp_validate(bond, slave))
2519 		goto out_unlock;
2520 
2521 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
2522 	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
2523 				 (2 * dev->addr_len) +
2524 				 (2 * sizeof(u32)))))
2525 		goto out_unlock;
2526 
2527 	arp = skb->nh.arph;
2528 	if (arp->ar_hln != dev->addr_len ||
2529 	    skb->pkt_type == PACKET_OTHERHOST ||
2530 	    skb->pkt_type == PACKET_LOOPBACK ||
2531 	    arp->ar_hrd != htons(ARPHRD_ETHER) ||
2532 	    arp->ar_pro != htons(ETH_P_IP) ||
2533 	    arp->ar_pln != 4)
2534 		goto out_unlock;
2535 
2536 	arp_ptr = (unsigned char *)(arp + 1);
2537 	arp_ptr += dev->addr_len;
2538 	memcpy(&sip, arp_ptr, 4);
2539 	arp_ptr += 4 + dev->addr_len;
2540 	memcpy(&tip, arp_ptr, 4);
2541 
2542 	dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u"
2543 		" tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name,
2544 		slave->state, bond->params.arp_validate,
2545 		slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip));
2546 
2547 	/*
2548 	 * Backup slaves won't see the ARP reply, but do come through
2549 	 * here for each ARP probe (so we swap the sip/tip to validate
2550 	 * the probe).  In a "redundant switch, common router" type of
2551 	 * configuration, the ARP probe will (hopefully) travel from
2552 	 * the active, through one switch, the router, then the other
2553 	 * switch before reaching the backup.
2554 	 */
2555 	if (slave->state == BOND_STATE_ACTIVE)
2556 		bond_validate_arp(bond, slave, sip, tip);
2557 	else
2558 		bond_validate_arp(bond, slave, tip, sip);
2559 
2560 out_unlock:
2561 	read_unlock(&bond->lock);
2562 out:
2563 	dev_kfree_skb(skb);
2564 	return NET_RX_SUCCESS;
2565 }
2566 
2567 /*
2568  * this function is called regularly to monitor each slave's link
2569  * ensuring that traffic is being sent and received when arp monitoring
2570  * is used in load-balancing mode. if the adapter has been dormant, then an
2571  * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2572  * arp monitoring in active backup mode.
2573  */
2574 void bond_loadbalance_arp_mon(struct net_device *bond_dev)
2575 {
2576 	struct bonding *bond = bond_dev->priv;
2577 	struct slave *slave, *oldcurrent;
2578 	int do_failover = 0;
2579 	int delta_in_ticks;
2580 	int i;
2581 
2582 	read_lock(&bond->lock);
2583 
2584 	delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2585 
2586 	if (bond->kill_timers) {
2587 		goto out;
2588 	}
2589 
2590 	if (bond->slave_cnt == 0) {
2591 		goto re_arm;
2592 	}
2593 
2594 	read_lock(&bond->curr_slave_lock);
2595 	oldcurrent = bond->curr_active_slave;
2596 	read_unlock(&bond->curr_slave_lock);
2597 
2598 	/* see if any of the previous devices are up now (i.e. they have
2599 	 * xmt and rcv traffic). the curr_active_slave does not come into
2600 	 * the picture unless it is null. also, slave->jiffies is not needed
2601 	 * here because we send an arp on each slave and give a slave as
2602 	 * long as it needs to get the tx/rx within the delta.
2603 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2604 	 *       so it can wait
2605 	 */
2606 	bond_for_each_slave(bond, slave, i) {
2607 		if (slave->link != BOND_LINK_UP) {
2608 			if (((jiffies - slave->dev->trans_start) <= delta_in_ticks) &&
2609 			    ((jiffies - slave->dev->last_rx) <= delta_in_ticks)) {
2610 
2611 				slave->link  = BOND_LINK_UP;
2612 				slave->state = BOND_STATE_ACTIVE;
2613 
2614 				/* primary_slave has no meaning in round-robin
2615 				 * mode. the window of a slave being up and
2616 				 * curr_active_slave being null after enslaving
2617 				 * is closed.
2618 				 */
2619 				if (!oldcurrent) {
2620 					printk(KERN_INFO DRV_NAME
2621 					       ": %s: link status definitely "
2622 					       "up for interface %s, ",
2623 					       bond_dev->name,
2624 					       slave->dev->name);
2625 					do_failover = 1;
2626 				} else {
2627 					printk(KERN_INFO DRV_NAME
2628 					       ": %s: interface %s is now up\n",
2629 					       bond_dev->name,
2630 					       slave->dev->name);
2631 				}
2632 			}
2633 		} else {
2634 			/* slave->link == BOND_LINK_UP */
2635 
2636 			/* not all switches will respond to an arp request
2637 			 * when the source ip is 0, so don't take the link down
2638 			 * if we don't know our ip yet
2639 			 */
2640 			if (((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) ||
2641 			    (((jiffies - slave->dev->last_rx) >= (2*delta_in_ticks)) &&
2642 			     bond_has_ip(bond))) {
2643 
2644 				slave->link  = BOND_LINK_DOWN;
2645 				slave->state = BOND_STATE_BACKUP;
2646 
2647 				if (slave->link_failure_count < UINT_MAX) {
2648 					slave->link_failure_count++;
2649 				}
2650 
2651 				printk(KERN_INFO DRV_NAME
2652 				       ": %s: interface %s is now down.\n",
2653 				       bond_dev->name,
2654 				       slave->dev->name);
2655 
2656 				if (slave == oldcurrent) {
2657 					do_failover = 1;
2658 				}
2659 			}
2660 		}
2661 
2662 		/* note: if switch is in round-robin mode, all links
2663 		 * must tx arp to ensure all links rx an arp - otherwise
2664 		 * links may oscillate or not come up at all; if switch is
2665 		 * in something like xor mode, there is nothing we can
2666 		 * do - all replies will be rx'ed on same link causing slaves
2667 		 * to be unstable during low/no traffic periods
2668 		 */
2669 		if (IS_UP(slave->dev)) {
2670 			bond_arp_send_all(bond, slave);
2671 		}
2672 	}
2673 
2674 	if (do_failover) {
2675 		write_lock(&bond->curr_slave_lock);
2676 
2677 		bond_select_active_slave(bond);
2678 
2679 		write_unlock(&bond->curr_slave_lock);
2680 	}
2681 
2682 re_arm:
2683 	if (bond->params.arp_interval) {
2684 		mod_timer(&bond->arp_timer, jiffies + delta_in_ticks);
2685 	}
2686 out:
2687 	read_unlock(&bond->lock);
2688 }
2689 
2690 /*
2691  * When using arp monitoring in active-backup mode, this function is
2692  * called to determine if any backup slaves have went down or a new
2693  * current slave needs to be found.
2694  * The backup slaves never generate traffic, they are considered up by merely
2695  * receiving traffic. If the current slave goes down, each backup slave will
2696  * be given the opportunity to tx/rx an arp before being taken down - this
2697  * prevents all slaves from being taken down due to the current slave not
2698  * sending any traffic for the backups to receive. The arps are not necessarily
2699  * necessary, any tx and rx traffic will keep the current slave up. While any
2700  * rx traffic will keep the backup slaves up, the current slave is responsible
2701  * for generating traffic to keep them up regardless of any other traffic they
2702  * may have received.
2703  * see loadbalance_arp_monitor for arp monitoring in load balancing mode
2704  */
2705 void bond_activebackup_arp_mon(struct net_device *bond_dev)
2706 {
2707 	struct bonding *bond = bond_dev->priv;
2708 	struct slave *slave;
2709 	int delta_in_ticks;
2710 	int i;
2711 
2712 	read_lock(&bond->lock);
2713 
2714 	delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2715 
2716 	if (bond->kill_timers) {
2717 		goto out;
2718 	}
2719 
2720 	if (bond->slave_cnt == 0) {
2721 		goto re_arm;
2722 	}
2723 
2724 	/* determine if any slave has come up or any backup slave has
2725 	 * gone down
2726 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2727 	 *       so it can wait
2728 	 */
2729 	bond_for_each_slave(bond, slave, i) {
2730 		if (slave->link != BOND_LINK_UP) {
2731 			if ((jiffies - slave_last_rx(bond, slave)) <=
2732 			     delta_in_ticks) {
2733 
2734 				slave->link = BOND_LINK_UP;
2735 
2736 				write_lock(&bond->curr_slave_lock);
2737 
2738 				if ((!bond->curr_active_slave) &&
2739 				    ((jiffies - slave->dev->trans_start) <= delta_in_ticks)) {
2740 					bond_change_active_slave(bond, slave);
2741 					bond->current_arp_slave = NULL;
2742 				} else if (bond->curr_active_slave != slave) {
2743 					/* this slave has just come up but we
2744 					 * already have a current slave; this
2745 					 * can also happen if bond_enslave adds
2746 					 * a new slave that is up while we are
2747 					 * searching for a new slave
2748 					 */
2749 					bond_set_slave_inactive_flags(slave);
2750 					bond->current_arp_slave = NULL;
2751 				}
2752 
2753 				bond_set_carrier(bond);
2754 
2755 				if (slave == bond->curr_active_slave) {
2756 					printk(KERN_INFO DRV_NAME
2757 					       ": %s: %s is up and now the "
2758 					       "active interface\n",
2759 					       bond_dev->name,
2760 					       slave->dev->name);
2761 					netif_carrier_on(bond->dev);
2762 				} else {
2763 					printk(KERN_INFO DRV_NAME
2764 					       ": %s: backup interface %s is "
2765 					       "now up\n",
2766 					       bond_dev->name,
2767 					       slave->dev->name);
2768 				}
2769 
2770 				write_unlock(&bond->curr_slave_lock);
2771 			}
2772 		} else {
2773 			read_lock(&bond->curr_slave_lock);
2774 
2775 			if ((slave != bond->curr_active_slave) &&
2776 			    (!bond->current_arp_slave) &&
2777 			    (((jiffies - slave_last_rx(bond, slave)) >= 3*delta_in_ticks) &&
2778 			     bond_has_ip(bond))) {
2779 				/* a backup slave has gone down; three times
2780 				 * the delta allows the current slave to be
2781 				 * taken out before the backup slave.
2782 				 * note: a non-null current_arp_slave indicates
2783 				 * the curr_active_slave went down and we are
2784 				 * searching for a new one; under this
2785 				 * condition we only take the curr_active_slave
2786 				 * down - this gives each slave a chance to
2787 				 * tx/rx traffic before being taken out
2788 				 */
2789 
2790 				read_unlock(&bond->curr_slave_lock);
2791 
2792 				slave->link  = BOND_LINK_DOWN;
2793 
2794 				if (slave->link_failure_count < UINT_MAX) {
2795 					slave->link_failure_count++;
2796 				}
2797 
2798 				bond_set_slave_inactive_flags(slave);
2799 
2800 				printk(KERN_INFO DRV_NAME
2801 				       ": %s: backup interface %s is now down\n",
2802 				       bond_dev->name,
2803 				       slave->dev->name);
2804 			} else {
2805 				read_unlock(&bond->curr_slave_lock);
2806 			}
2807 		}
2808 	}
2809 
2810 	read_lock(&bond->curr_slave_lock);
2811 	slave = bond->curr_active_slave;
2812 	read_unlock(&bond->curr_slave_lock);
2813 
2814 	if (slave) {
2815 		/* if we have sent traffic in the past 2*arp_intervals but
2816 		 * haven't xmit and rx traffic in that time interval, select
2817 		 * a different slave. slave->jiffies is only updated when
2818 		 * a slave first becomes the curr_active_slave - not necessarily
2819 		 * after every arp; this ensures the slave has a full 2*delta
2820 		 * before being taken out. if a primary is being used, check
2821 		 * if it is up and needs to take over as the curr_active_slave
2822 		 */
2823 		if ((((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) ||
2824 	    (((jiffies - slave_last_rx(bond, slave)) >= (2*delta_in_ticks)) &&
2825 	     bond_has_ip(bond))) &&
2826 		    ((jiffies - slave->jiffies) >= 2*delta_in_ticks)) {
2827 
2828 			slave->link  = BOND_LINK_DOWN;
2829 
2830 			if (slave->link_failure_count < UINT_MAX) {
2831 				slave->link_failure_count++;
2832 			}
2833 
2834 			printk(KERN_INFO DRV_NAME
2835 			       ": %s: link status down for active interface "
2836 			       "%s, disabling it\n",
2837 			       bond_dev->name,
2838 			       slave->dev->name);
2839 
2840 			write_lock(&bond->curr_slave_lock);
2841 
2842 			bond_select_active_slave(bond);
2843 			slave = bond->curr_active_slave;
2844 
2845 			write_unlock(&bond->curr_slave_lock);
2846 
2847 			bond->current_arp_slave = slave;
2848 
2849 			if (slave) {
2850 				slave->jiffies = jiffies;
2851 			}
2852 		} else if ((bond->primary_slave) &&
2853 			   (bond->primary_slave != slave) &&
2854 			   (bond->primary_slave->link == BOND_LINK_UP)) {
2855 			/* at this point, slave is the curr_active_slave */
2856 			printk(KERN_INFO DRV_NAME
2857 			       ": %s: changing from interface %s to primary "
2858 			       "interface %s\n",
2859 			       bond_dev->name,
2860 			       slave->dev->name,
2861 			       bond->primary_slave->dev->name);
2862 
2863 			/* primary is up so switch to it */
2864 			write_lock(&bond->curr_slave_lock);
2865 			bond_change_active_slave(bond, bond->primary_slave);
2866 			write_unlock(&bond->curr_slave_lock);
2867 
2868 			slave = bond->primary_slave;
2869 			slave->jiffies = jiffies;
2870 		} else {
2871 			bond->current_arp_slave = NULL;
2872 		}
2873 
2874 		/* the current slave must tx an arp to ensure backup slaves
2875 		 * rx traffic
2876 		 */
2877 		if (slave && bond_has_ip(bond)) {
2878 			bond_arp_send_all(bond, slave);
2879 		}
2880 	}
2881 
2882 	/* if we don't have a curr_active_slave, search for the next available
2883 	 * backup slave from the current_arp_slave and make it the candidate
2884 	 * for becoming the curr_active_slave
2885 	 */
2886 	if (!slave) {
2887 		if (!bond->current_arp_slave) {
2888 			bond->current_arp_slave = bond->first_slave;
2889 		}
2890 
2891 		if (bond->current_arp_slave) {
2892 			bond_set_slave_inactive_flags(bond->current_arp_slave);
2893 
2894 			/* search for next candidate */
2895 			bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
2896 				if (IS_UP(slave->dev)) {
2897 					slave->link = BOND_LINK_BACK;
2898 					bond_set_slave_active_flags(slave);
2899 					bond_arp_send_all(bond, slave);
2900 					slave->jiffies = jiffies;
2901 					bond->current_arp_slave = slave;
2902 					break;
2903 				}
2904 
2905 				/* if the link state is up at this point, we
2906 				 * mark it down - this can happen if we have
2907 				 * simultaneous link failures and
2908 				 * reselect_active_interface doesn't make this
2909 				 * one the current slave so it is still marked
2910 				 * up when it is actually down
2911 				 */
2912 				if (slave->link == BOND_LINK_UP) {
2913 					slave->link  = BOND_LINK_DOWN;
2914 					if (slave->link_failure_count < UINT_MAX) {
2915 						slave->link_failure_count++;
2916 					}
2917 
2918 					bond_set_slave_inactive_flags(slave);
2919 
2920 					printk(KERN_INFO DRV_NAME
2921 					       ": %s: backup interface %s is "
2922 					       "now down.\n",
2923 					       bond_dev->name,
2924 					       slave->dev->name);
2925 				}
2926 			}
2927 		}
2928 	}
2929 
2930 re_arm:
2931 	if (bond->params.arp_interval) {
2932 		mod_timer(&bond->arp_timer, jiffies + delta_in_ticks);
2933 	}
2934 out:
2935 	read_unlock(&bond->lock);
2936 }
2937 
2938 /*------------------------------ proc/seq_file-------------------------------*/
2939 
2940 #ifdef CONFIG_PROC_FS
2941 
2942 #define SEQ_START_TOKEN ((void *)1)
2943 
2944 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
2945 {
2946 	struct bonding *bond = seq->private;
2947 	loff_t off = 0;
2948 	struct slave *slave;
2949 	int i;
2950 
2951 	/* make sure the bond won't be taken away */
2952 	read_lock(&dev_base_lock);
2953 	read_lock_bh(&bond->lock);
2954 
2955 	if (*pos == 0) {
2956 		return SEQ_START_TOKEN;
2957 	}
2958 
2959 	bond_for_each_slave(bond, slave, i) {
2960 		if (++off == *pos) {
2961 			return slave;
2962 		}
2963 	}
2964 
2965 	return NULL;
2966 }
2967 
2968 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2969 {
2970 	struct bonding *bond = seq->private;
2971 	struct slave *slave = v;
2972 
2973 	++*pos;
2974 	if (v == SEQ_START_TOKEN) {
2975 		return bond->first_slave;
2976 	}
2977 
2978 	slave = slave->next;
2979 
2980 	return (slave == bond->first_slave) ? NULL : slave;
2981 }
2982 
2983 static void bond_info_seq_stop(struct seq_file *seq, void *v)
2984 {
2985 	struct bonding *bond = seq->private;
2986 
2987 	read_unlock_bh(&bond->lock);
2988 	read_unlock(&dev_base_lock);
2989 }
2990 
2991 static void bond_info_show_master(struct seq_file *seq)
2992 {
2993 	struct bonding *bond = seq->private;
2994 	struct slave *curr;
2995 	int i;
2996 	u32 target;
2997 
2998 	read_lock(&bond->curr_slave_lock);
2999 	curr = bond->curr_active_slave;
3000 	read_unlock(&bond->curr_slave_lock);
3001 
3002 	seq_printf(seq, "Bonding Mode: %s\n",
3003 		   bond_mode_name(bond->params.mode));
3004 
3005 	if (bond->params.mode == BOND_MODE_XOR ||
3006 		bond->params.mode == BOND_MODE_8023AD) {
3007 		seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
3008 			xmit_hashtype_tbl[bond->params.xmit_policy].modename,
3009 			bond->params.xmit_policy);
3010 	}
3011 
3012 	if (USES_PRIMARY(bond->params.mode)) {
3013 		seq_printf(seq, "Primary Slave: %s\n",
3014 			   (bond->primary_slave) ?
3015 			   bond->primary_slave->dev->name : "None");
3016 
3017 		seq_printf(seq, "Currently Active Slave: %s\n",
3018 			   (curr) ? curr->dev->name : "None");
3019 	}
3020 
3021 	seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
3022 		   "up" : "down");
3023 	seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
3024 	seq_printf(seq, "Up Delay (ms): %d\n",
3025 		   bond->params.updelay * bond->params.miimon);
3026 	seq_printf(seq, "Down Delay (ms): %d\n",
3027 		   bond->params.downdelay * bond->params.miimon);
3028 
3029 
3030 	/* ARP information */
3031 	if(bond->params.arp_interval > 0) {
3032 		int printed=0;
3033 		seq_printf(seq, "ARP Polling Interval (ms): %d\n",
3034 				bond->params.arp_interval);
3035 
3036 		seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
3037 
3038 		for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
3039 			if (!bond->params.arp_targets[i])
3040 				continue;
3041 			if (printed)
3042 				seq_printf(seq, ",");
3043 			target = ntohl(bond->params.arp_targets[i]);
3044 			seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target));
3045 			printed = 1;
3046 		}
3047 		seq_printf(seq, "\n");
3048 	}
3049 
3050 	if (bond->params.mode == BOND_MODE_8023AD) {
3051 		struct ad_info ad_info;
3052 
3053 		seq_puts(seq, "\n802.3ad info\n");
3054 		seq_printf(seq, "LACP rate: %s\n",
3055 			   (bond->params.lacp_fast) ? "fast" : "slow");
3056 
3057 		if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
3058 			seq_printf(seq, "bond %s has no active aggregator\n",
3059 				   bond->dev->name);
3060 		} else {
3061 			seq_printf(seq, "Active Aggregator Info:\n");
3062 
3063 			seq_printf(seq, "\tAggregator ID: %d\n",
3064 				   ad_info.aggregator_id);
3065 			seq_printf(seq, "\tNumber of ports: %d\n",
3066 				   ad_info.ports);
3067 			seq_printf(seq, "\tActor Key: %d\n",
3068 				   ad_info.actor_key);
3069 			seq_printf(seq, "\tPartner Key: %d\n",
3070 				   ad_info.partner_key);
3071 			seq_printf(seq, "\tPartner Mac Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
3072 				   ad_info.partner_system[0],
3073 				   ad_info.partner_system[1],
3074 				   ad_info.partner_system[2],
3075 				   ad_info.partner_system[3],
3076 				   ad_info.partner_system[4],
3077 				   ad_info.partner_system[5]);
3078 		}
3079 	}
3080 }
3081 
3082 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
3083 {
3084 	struct bonding *bond = seq->private;
3085 
3086 	seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
3087 	seq_printf(seq, "MII Status: %s\n",
3088 		   (slave->link == BOND_LINK_UP) ?  "up" : "down");
3089 	seq_printf(seq, "Link Failure Count: %u\n",
3090 		   slave->link_failure_count);
3091 
3092 	seq_printf(seq,
3093 		   "Permanent HW addr: %02x:%02x:%02x:%02x:%02x:%02x\n",
3094 		   slave->perm_hwaddr[0], slave->perm_hwaddr[1],
3095 		   slave->perm_hwaddr[2], slave->perm_hwaddr[3],
3096 		   slave->perm_hwaddr[4], slave->perm_hwaddr[5]);
3097 
3098 	if (bond->params.mode == BOND_MODE_8023AD) {
3099 		const struct aggregator *agg
3100 			= SLAVE_AD_INFO(slave).port.aggregator;
3101 
3102 		if (agg) {
3103 			seq_printf(seq, "Aggregator ID: %d\n",
3104 				   agg->aggregator_identifier);
3105 		} else {
3106 			seq_puts(seq, "Aggregator ID: N/A\n");
3107 		}
3108 	}
3109 }
3110 
3111 static int bond_info_seq_show(struct seq_file *seq, void *v)
3112 {
3113 	if (v == SEQ_START_TOKEN) {
3114 		seq_printf(seq, "%s\n", version);
3115 		bond_info_show_master(seq);
3116 	} else {
3117 		bond_info_show_slave(seq, v);
3118 	}
3119 
3120 	return 0;
3121 }
3122 
3123 static struct seq_operations bond_info_seq_ops = {
3124 	.start = bond_info_seq_start,
3125 	.next  = bond_info_seq_next,
3126 	.stop  = bond_info_seq_stop,
3127 	.show  = bond_info_seq_show,
3128 };
3129 
3130 static int bond_info_open(struct inode *inode, struct file *file)
3131 {
3132 	struct seq_file *seq;
3133 	struct proc_dir_entry *proc;
3134 	int res;
3135 
3136 	res = seq_open(file, &bond_info_seq_ops);
3137 	if (!res) {
3138 		/* recover the pointer buried in proc_dir_entry data */
3139 		seq = file->private_data;
3140 		proc = PDE(inode);
3141 		seq->private = proc->data;
3142 	}
3143 
3144 	return res;
3145 }
3146 
3147 static const struct file_operations bond_info_fops = {
3148 	.owner   = THIS_MODULE,
3149 	.open    = bond_info_open,
3150 	.read    = seq_read,
3151 	.llseek  = seq_lseek,
3152 	.release = seq_release,
3153 };
3154 
3155 static int bond_create_proc_entry(struct bonding *bond)
3156 {
3157 	struct net_device *bond_dev = bond->dev;
3158 
3159 	if (bond_proc_dir) {
3160 		bond->proc_entry = create_proc_entry(bond_dev->name,
3161 						     S_IRUGO,
3162 						     bond_proc_dir);
3163 		if (bond->proc_entry == NULL) {
3164 			printk(KERN_WARNING DRV_NAME
3165 			       ": Warning: Cannot create /proc/net/%s/%s\n",
3166 			       DRV_NAME, bond_dev->name);
3167 		} else {
3168 			bond->proc_entry->data = bond;
3169 			bond->proc_entry->proc_fops = &bond_info_fops;
3170 			bond->proc_entry->owner = THIS_MODULE;
3171 			memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3172 		}
3173 	}
3174 
3175 	return 0;
3176 }
3177 
3178 static void bond_remove_proc_entry(struct bonding *bond)
3179 {
3180 	if (bond_proc_dir && bond->proc_entry) {
3181 		remove_proc_entry(bond->proc_file_name, bond_proc_dir);
3182 		memset(bond->proc_file_name, 0, IFNAMSIZ);
3183 		bond->proc_entry = NULL;
3184 	}
3185 }
3186 
3187 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3188  * Caller must hold rtnl_lock.
3189  */
3190 static void bond_create_proc_dir(void)
3191 {
3192 	int len = strlen(DRV_NAME);
3193 
3194 	for (bond_proc_dir = proc_net->subdir; bond_proc_dir;
3195 	     bond_proc_dir = bond_proc_dir->next) {
3196 		if ((bond_proc_dir->namelen == len) &&
3197 		    !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3198 			break;
3199 		}
3200 	}
3201 
3202 	if (!bond_proc_dir) {
3203 		bond_proc_dir = proc_mkdir(DRV_NAME, proc_net);
3204 		if (bond_proc_dir) {
3205 			bond_proc_dir->owner = THIS_MODULE;
3206 		} else {
3207 			printk(KERN_WARNING DRV_NAME
3208 				": Warning: cannot create /proc/net/%s\n",
3209 				DRV_NAME);
3210 		}
3211 	}
3212 }
3213 
3214 /* Destroy the bonding directory under /proc/net, if empty.
3215  * Caller must hold rtnl_lock.
3216  */
3217 static void bond_destroy_proc_dir(void)
3218 {
3219 	struct proc_dir_entry *de;
3220 
3221 	if (!bond_proc_dir) {
3222 		return;
3223 	}
3224 
3225 	/* verify that the /proc dir is empty */
3226 	for (de = bond_proc_dir->subdir; de; de = de->next) {
3227 		/* ignore . and .. */
3228 		if (*(de->name) != '.') {
3229 			break;
3230 		}
3231 	}
3232 
3233 	if (de) {
3234 		if (bond_proc_dir->owner == THIS_MODULE) {
3235 			bond_proc_dir->owner = NULL;
3236 		}
3237 	} else {
3238 		remove_proc_entry(DRV_NAME, proc_net);
3239 		bond_proc_dir = NULL;
3240 	}
3241 }
3242 #endif /* CONFIG_PROC_FS */
3243 
3244 /*-------------------------- netdev event handling --------------------------*/
3245 
3246 /*
3247  * Change device name
3248  */
3249 static int bond_event_changename(struct bonding *bond)
3250 {
3251 #ifdef CONFIG_PROC_FS
3252 	bond_remove_proc_entry(bond);
3253 	bond_create_proc_entry(bond);
3254 #endif
3255 	down_write(&(bonding_rwsem));
3256         bond_destroy_sysfs_entry(bond);
3257         bond_create_sysfs_entry(bond);
3258 	up_write(&(bonding_rwsem));
3259 	return NOTIFY_DONE;
3260 }
3261 
3262 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3263 {
3264 	struct bonding *event_bond = bond_dev->priv;
3265 
3266 	switch (event) {
3267 	case NETDEV_CHANGENAME:
3268 		return bond_event_changename(event_bond);
3269 	case NETDEV_UNREGISTER:
3270 		/*
3271 		 * TODO: remove a bond from the list?
3272 		 */
3273 		break;
3274 	default:
3275 		break;
3276 	}
3277 
3278 	return NOTIFY_DONE;
3279 }
3280 
3281 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3282 {
3283 	struct net_device *bond_dev = slave_dev->master;
3284 	struct bonding *bond = bond_dev->priv;
3285 
3286 	switch (event) {
3287 	case NETDEV_UNREGISTER:
3288 		if (bond_dev) {
3289 			bond_release(bond_dev, slave_dev);
3290 		}
3291 		break;
3292 	case NETDEV_CHANGE:
3293 		/*
3294 		 * TODO: is this what we get if somebody
3295 		 * sets up a hierarchical bond, then rmmod's
3296 		 * one of the slave bonding devices?
3297 		 */
3298 		break;
3299 	case NETDEV_DOWN:
3300 		/*
3301 		 * ... Or is it this?
3302 		 */
3303 		break;
3304 	case NETDEV_CHANGEMTU:
3305 		/*
3306 		 * TODO: Should slaves be allowed to
3307 		 * independently alter their MTU?  For
3308 		 * an active-backup bond, slaves need
3309 		 * not be the same type of device, so
3310 		 * MTUs may vary.  For other modes,
3311 		 * slaves arguably should have the
3312 		 * same MTUs. To do this, we'd need to
3313 		 * take over the slave's change_mtu
3314 		 * function for the duration of their
3315 		 * servitude.
3316 		 */
3317 		break;
3318 	case NETDEV_CHANGENAME:
3319 		/*
3320 		 * TODO: handle changing the primary's name
3321 		 */
3322 		break;
3323 	case NETDEV_FEAT_CHANGE:
3324 		bond_compute_features(bond);
3325 		break;
3326 	default:
3327 		break;
3328 	}
3329 
3330 	return NOTIFY_DONE;
3331 }
3332 
3333 /*
3334  * bond_netdev_event: handle netdev notifier chain events.
3335  *
3336  * This function receives events for the netdev chain.  The caller (an
3337  * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3338  * locks for us to safely manipulate the slave devices (RTNL lock,
3339  * dev_probe_lock).
3340  */
3341 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3342 {
3343 	struct net_device *event_dev = (struct net_device *)ptr;
3344 
3345 	dprintk("event_dev: %s, event: %lx\n",
3346 		(event_dev ? event_dev->name : "None"),
3347 		event);
3348 
3349 	if (!(event_dev->priv_flags & IFF_BONDING))
3350 		return NOTIFY_DONE;
3351 
3352 	if (event_dev->flags & IFF_MASTER) {
3353 		dprintk("IFF_MASTER\n");
3354 		return bond_master_netdev_event(event, event_dev);
3355 	}
3356 
3357 	if (event_dev->flags & IFF_SLAVE) {
3358 		dprintk("IFF_SLAVE\n");
3359 		return bond_slave_netdev_event(event, event_dev);
3360 	}
3361 
3362 	return NOTIFY_DONE;
3363 }
3364 
3365 /*
3366  * bond_inetaddr_event: handle inetaddr notifier chain events.
3367  *
3368  * We keep track of device IPs primarily to use as source addresses in
3369  * ARP monitor probes (rather than spewing out broadcasts all the time).
3370  *
3371  * We track one IP for the main device (if it has one), plus one per VLAN.
3372  */
3373 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3374 {
3375 	struct in_ifaddr *ifa = ptr;
3376 	struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3377 	struct bonding *bond, *bond_next;
3378 	struct vlan_entry *vlan, *vlan_next;
3379 
3380 	list_for_each_entry_safe(bond, bond_next, &bond_dev_list, bond_list) {
3381 		if (bond->dev == event_dev) {
3382 			switch (event) {
3383 			case NETDEV_UP:
3384 				bond->master_ip = ifa->ifa_local;
3385 				return NOTIFY_OK;
3386 			case NETDEV_DOWN:
3387 				bond->master_ip = bond_glean_dev_ip(bond->dev);
3388 				return NOTIFY_OK;
3389 			default:
3390 				return NOTIFY_DONE;
3391 			}
3392 		}
3393 
3394 		if (list_empty(&bond->vlan_list))
3395 			continue;
3396 
3397 		list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
3398 					 vlan_list) {
3399 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
3400 			if (vlan_dev == event_dev) {
3401 				switch (event) {
3402 				case NETDEV_UP:
3403 					vlan->vlan_ip = ifa->ifa_local;
3404 					return NOTIFY_OK;
3405 				case NETDEV_DOWN:
3406 					vlan->vlan_ip =
3407 						bond_glean_dev_ip(vlan_dev);
3408 					return NOTIFY_OK;
3409 				default:
3410 					return NOTIFY_DONE;
3411 				}
3412 			}
3413 		}
3414 	}
3415 	return NOTIFY_DONE;
3416 }
3417 
3418 static struct notifier_block bond_netdev_notifier = {
3419 	.notifier_call = bond_netdev_event,
3420 };
3421 
3422 static struct notifier_block bond_inetaddr_notifier = {
3423 	.notifier_call = bond_inetaddr_event,
3424 };
3425 
3426 /*-------------------------- Packet type handling ---------------------------*/
3427 
3428 /* register to receive lacpdus on a bond */
3429 static void bond_register_lacpdu(struct bonding *bond)
3430 {
3431 	struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3432 
3433 	/* initialize packet type */
3434 	pk_type->type = PKT_TYPE_LACPDU;
3435 	pk_type->dev = bond->dev;
3436 	pk_type->func = bond_3ad_lacpdu_recv;
3437 
3438 	dev_add_pack(pk_type);
3439 }
3440 
3441 /* unregister to receive lacpdus on a bond */
3442 static void bond_unregister_lacpdu(struct bonding *bond)
3443 {
3444 	dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3445 }
3446 
3447 void bond_register_arp(struct bonding *bond)
3448 {
3449 	struct packet_type *pt = &bond->arp_mon_pt;
3450 
3451 	if (pt->type)
3452 		return;
3453 
3454 	pt->type = htons(ETH_P_ARP);
3455 	pt->dev = bond->dev;
3456 	pt->func = bond_arp_rcv;
3457 	dev_add_pack(pt);
3458 }
3459 
3460 void bond_unregister_arp(struct bonding *bond)
3461 {
3462 	struct packet_type *pt = &bond->arp_mon_pt;
3463 
3464 	dev_remove_pack(pt);
3465 	pt->type = 0;
3466 }
3467 
3468 /*---------------------------- Hashing Policies -----------------------------*/
3469 
3470 /*
3471  * Hash for the the output device based upon layer 3 and layer 4 data. If
3472  * the packet is a frag or not TCP or UDP, just use layer 3 data.  If it is
3473  * altogether not IP, mimic bond_xmit_hash_policy_l2()
3474  */
3475 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3476 				    struct net_device *bond_dev, int count)
3477 {
3478 	struct ethhdr *data = (struct ethhdr *)skb->data;
3479 	struct iphdr *iph = skb->nh.iph;
3480 	u16 *layer4hdr = (u16 *)((u32 *)iph + iph->ihl);
3481 	int layer4_xor = 0;
3482 
3483 	if (skb->protocol == __constant_htons(ETH_P_IP)) {
3484 		if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) &&
3485 		    (iph->protocol == IPPROTO_TCP ||
3486 		     iph->protocol == IPPROTO_UDP)) {
3487 			layer4_xor = htons((*layer4hdr ^ *(layer4hdr + 1)));
3488 		}
3489 		return (layer4_xor ^
3490 			((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3491 
3492 	}
3493 
3494 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3495 }
3496 
3497 /*
3498  * Hash for the output device based upon layer 2 data
3499  */
3500 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3501 				   struct net_device *bond_dev, int count)
3502 {
3503 	struct ethhdr *data = (struct ethhdr *)skb->data;
3504 
3505 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3506 }
3507 
3508 /*-------------------------- Device entry points ----------------------------*/
3509 
3510 static int bond_open(struct net_device *bond_dev)
3511 {
3512 	struct bonding *bond = bond_dev->priv;
3513 	struct timer_list *mii_timer = &bond->mii_timer;
3514 	struct timer_list *arp_timer = &bond->arp_timer;
3515 
3516 	bond->kill_timers = 0;
3517 
3518 	if ((bond->params.mode == BOND_MODE_TLB) ||
3519 	    (bond->params.mode == BOND_MODE_ALB)) {
3520 		struct timer_list *alb_timer = &(BOND_ALB_INFO(bond).alb_timer);
3521 
3522 		/* bond_alb_initialize must be called before the timer
3523 		 * is started.
3524 		 */
3525 		if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3526 			/* something went wrong - fail the open operation */
3527 			return -1;
3528 		}
3529 
3530 		init_timer(alb_timer);
3531 		alb_timer->expires  = jiffies + 1;
3532 		alb_timer->data     = (unsigned long)bond;
3533 		alb_timer->function = (void *)&bond_alb_monitor;
3534 		add_timer(alb_timer);
3535 	}
3536 
3537 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3538 		init_timer(mii_timer);
3539 		mii_timer->expires  = jiffies + 1;
3540 		mii_timer->data     = (unsigned long)bond_dev;
3541 		mii_timer->function = (void *)&bond_mii_monitor;
3542 		add_timer(mii_timer);
3543 	}
3544 
3545 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3546 		init_timer(arp_timer);
3547 		arp_timer->expires  = jiffies + 1;
3548 		arp_timer->data     = (unsigned long)bond_dev;
3549 		if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
3550 			arp_timer->function = (void *)&bond_activebackup_arp_mon;
3551 		} else {
3552 			arp_timer->function = (void *)&bond_loadbalance_arp_mon;
3553 		}
3554 		if (bond->params.arp_validate)
3555 			bond_register_arp(bond);
3556 
3557 		add_timer(arp_timer);
3558 	}
3559 
3560 	if (bond->params.mode == BOND_MODE_8023AD) {
3561 		struct timer_list *ad_timer = &(BOND_AD_INFO(bond).ad_timer);
3562 		init_timer(ad_timer);
3563 		ad_timer->expires  = jiffies + 1;
3564 		ad_timer->data     = (unsigned long)bond;
3565 		ad_timer->function = (void *)&bond_3ad_state_machine_handler;
3566 		add_timer(ad_timer);
3567 
3568 		/* register to receive LACPDUs */
3569 		bond_register_lacpdu(bond);
3570 	}
3571 
3572 	return 0;
3573 }
3574 
3575 static int bond_close(struct net_device *bond_dev)
3576 {
3577 	struct bonding *bond = bond_dev->priv;
3578 
3579 	if (bond->params.mode == BOND_MODE_8023AD) {
3580 		/* Unregister the receive of LACPDUs */
3581 		bond_unregister_lacpdu(bond);
3582 	}
3583 
3584 	if (bond->params.arp_validate)
3585 		bond_unregister_arp(bond);
3586 
3587 	write_lock_bh(&bond->lock);
3588 
3589 
3590 	/* signal timers not to re-arm */
3591 	bond->kill_timers = 1;
3592 
3593 	write_unlock_bh(&bond->lock);
3594 
3595 	/* del_timer_sync must run without holding the bond->lock
3596 	 * because a running timer might be trying to hold it too
3597 	 */
3598 
3599 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3600 		del_timer_sync(&bond->mii_timer);
3601 	}
3602 
3603 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3604 		del_timer_sync(&bond->arp_timer);
3605 	}
3606 
3607 	switch (bond->params.mode) {
3608 	case BOND_MODE_8023AD:
3609 		del_timer_sync(&(BOND_AD_INFO(bond).ad_timer));
3610 		break;
3611 	case BOND_MODE_TLB:
3612 	case BOND_MODE_ALB:
3613 		del_timer_sync(&(BOND_ALB_INFO(bond).alb_timer));
3614 		break;
3615 	default:
3616 		break;
3617 	}
3618 
3619 
3620 	if ((bond->params.mode == BOND_MODE_TLB) ||
3621 	    (bond->params.mode == BOND_MODE_ALB)) {
3622 		/* Must be called only after all
3623 		 * slaves have been released
3624 		 */
3625 		bond_alb_deinitialize(bond);
3626 	}
3627 
3628 	return 0;
3629 }
3630 
3631 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3632 {
3633 	struct bonding *bond = bond_dev->priv;
3634 	struct net_device_stats *stats = &(bond->stats), *sstats;
3635 	struct slave *slave;
3636 	int i;
3637 
3638 	memset(stats, 0, sizeof(struct net_device_stats));
3639 
3640 	read_lock_bh(&bond->lock);
3641 
3642 	bond_for_each_slave(bond, slave, i) {
3643 		if (slave->dev->get_stats) {
3644 			sstats = slave->dev->get_stats(slave->dev);
3645 
3646 			stats->rx_packets += sstats->rx_packets;
3647 			stats->rx_bytes += sstats->rx_bytes;
3648 			stats->rx_errors += sstats->rx_errors;
3649 			stats->rx_dropped += sstats->rx_dropped;
3650 
3651 			stats->tx_packets += sstats->tx_packets;
3652 			stats->tx_bytes += sstats->tx_bytes;
3653 			stats->tx_errors += sstats->tx_errors;
3654 			stats->tx_dropped += sstats->tx_dropped;
3655 
3656 			stats->multicast += sstats->multicast;
3657 			stats->collisions += sstats->collisions;
3658 
3659 			stats->rx_length_errors += sstats->rx_length_errors;
3660 			stats->rx_over_errors += sstats->rx_over_errors;
3661 			stats->rx_crc_errors += sstats->rx_crc_errors;
3662 			stats->rx_frame_errors += sstats->rx_frame_errors;
3663 			stats->rx_fifo_errors += sstats->rx_fifo_errors;
3664 			stats->rx_missed_errors += sstats->rx_missed_errors;
3665 
3666 			stats->tx_aborted_errors += sstats->tx_aborted_errors;
3667 			stats->tx_carrier_errors += sstats->tx_carrier_errors;
3668 			stats->tx_fifo_errors += sstats->tx_fifo_errors;
3669 			stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3670 			stats->tx_window_errors += sstats->tx_window_errors;
3671 		}
3672 	}
3673 
3674 	read_unlock_bh(&bond->lock);
3675 
3676 	return stats;
3677 }
3678 
3679 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3680 {
3681 	struct net_device *slave_dev = NULL;
3682 	struct ifbond k_binfo;
3683 	struct ifbond __user *u_binfo = NULL;
3684 	struct ifslave k_sinfo;
3685 	struct ifslave __user *u_sinfo = NULL;
3686 	struct mii_ioctl_data *mii = NULL;
3687 	int res = 0;
3688 
3689 	dprintk("bond_ioctl: master=%s, cmd=%d\n",
3690 		bond_dev->name, cmd);
3691 
3692 	switch (cmd) {
3693 	case SIOCGMIIPHY:
3694 		mii = if_mii(ifr);
3695 		if (!mii) {
3696 			return -EINVAL;
3697 		}
3698 		mii->phy_id = 0;
3699 		/* Fall Through */
3700 	case SIOCGMIIREG:
3701 		/*
3702 		 * We do this again just in case we were called by SIOCGMIIREG
3703 		 * instead of SIOCGMIIPHY.
3704 		 */
3705 		mii = if_mii(ifr);
3706 		if (!mii) {
3707 			return -EINVAL;
3708 		}
3709 
3710 		if (mii->reg_num == 1) {
3711 			struct bonding *bond = bond_dev->priv;
3712 			mii->val_out = 0;
3713 			read_lock_bh(&bond->lock);
3714 			read_lock(&bond->curr_slave_lock);
3715 			if (netif_carrier_ok(bond->dev)) {
3716 				mii->val_out = BMSR_LSTATUS;
3717 			}
3718 			read_unlock(&bond->curr_slave_lock);
3719 			read_unlock_bh(&bond->lock);
3720 		}
3721 
3722 		return 0;
3723 	case BOND_INFO_QUERY_OLD:
3724 	case SIOCBONDINFOQUERY:
3725 		u_binfo = (struct ifbond __user *)ifr->ifr_data;
3726 
3727 		if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
3728 			return -EFAULT;
3729 		}
3730 
3731 		res = bond_info_query(bond_dev, &k_binfo);
3732 		if (res == 0) {
3733 			if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
3734 				return -EFAULT;
3735 			}
3736 		}
3737 
3738 		return res;
3739 	case BOND_SLAVE_INFO_QUERY_OLD:
3740 	case SIOCBONDSLAVEINFOQUERY:
3741 		u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3742 
3743 		if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
3744 			return -EFAULT;
3745 		}
3746 
3747 		res = bond_slave_info_query(bond_dev, &k_sinfo);
3748 		if (res == 0) {
3749 			if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
3750 				return -EFAULT;
3751 			}
3752 		}
3753 
3754 		return res;
3755 	default:
3756 		/* Go on */
3757 		break;
3758 	}
3759 
3760 	if (!capable(CAP_NET_ADMIN)) {
3761 		return -EPERM;
3762 	}
3763 
3764 	down_write(&(bonding_rwsem));
3765 	slave_dev = dev_get_by_name(ifr->ifr_slave);
3766 
3767 	dprintk("slave_dev=%p: \n", slave_dev);
3768 
3769 	if (!slave_dev) {
3770 		res = -ENODEV;
3771 	} else {
3772 		dprintk("slave_dev->name=%s: \n", slave_dev->name);
3773 		switch (cmd) {
3774 		case BOND_ENSLAVE_OLD:
3775 		case SIOCBONDENSLAVE:
3776 			res = bond_enslave(bond_dev, slave_dev);
3777 			break;
3778 		case BOND_RELEASE_OLD:
3779 		case SIOCBONDRELEASE:
3780 			res = bond_release(bond_dev, slave_dev);
3781 			break;
3782 		case BOND_SETHWADDR_OLD:
3783 		case SIOCBONDSETHWADDR:
3784 			res = bond_sethwaddr(bond_dev, slave_dev);
3785 			break;
3786 		case BOND_CHANGE_ACTIVE_OLD:
3787 		case SIOCBONDCHANGEACTIVE:
3788 			res = bond_ioctl_change_active(bond_dev, slave_dev);
3789 			break;
3790 		default:
3791 			res = -EOPNOTSUPP;
3792 		}
3793 
3794 		dev_put(slave_dev);
3795 	}
3796 
3797 	up_write(&(bonding_rwsem));
3798 	return res;
3799 }
3800 
3801 static void bond_set_multicast_list(struct net_device *bond_dev)
3802 {
3803 	struct bonding *bond = bond_dev->priv;
3804 	struct dev_mc_list *dmi;
3805 
3806 	write_lock_bh(&bond->lock);
3807 
3808 	/*
3809 	 * Do promisc before checking multicast_mode
3810 	 */
3811 	if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
3812 		bond_set_promiscuity(bond, 1);
3813 	}
3814 
3815 	if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
3816 		bond_set_promiscuity(bond, -1);
3817 	}
3818 
3819 	/* set allmulti flag to slaves */
3820 	if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
3821 		bond_set_allmulti(bond, 1);
3822 	}
3823 
3824 	if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
3825 		bond_set_allmulti(bond, -1);
3826 	}
3827 
3828 	bond->flags = bond_dev->flags;
3829 
3830 	/* looking for addresses to add to slaves' mc list */
3831 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
3832 		if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
3833 			bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3834 		}
3835 	}
3836 
3837 	/* looking for addresses to delete from slaves' list */
3838 	for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
3839 		if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
3840 			bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3841 		}
3842 	}
3843 
3844 	/* save master's multicast list */
3845 	bond_mc_list_destroy(bond);
3846 	bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
3847 
3848 	write_unlock_bh(&bond->lock);
3849 }
3850 
3851 /*
3852  * Change the MTU of all of a master's slaves to match the master
3853  */
3854 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
3855 {
3856 	struct bonding *bond = bond_dev->priv;
3857 	struct slave *slave, *stop_at;
3858 	int res = 0;
3859 	int i;
3860 
3861 	dprintk("bond=%p, name=%s, new_mtu=%d\n", bond,
3862 		(bond_dev ? bond_dev->name : "None"), new_mtu);
3863 
3864 	/* Can't hold bond->lock with bh disabled here since
3865 	 * some base drivers panic. On the other hand we can't
3866 	 * hold bond->lock without bh disabled because we'll
3867 	 * deadlock. The only solution is to rely on the fact
3868 	 * that we're under rtnl_lock here, and the slaves
3869 	 * list won't change. This doesn't solve the problem
3870 	 * of setting the slave's MTU while it is
3871 	 * transmitting, but the assumption is that the base
3872 	 * driver can handle that.
3873 	 *
3874 	 * TODO: figure out a way to safely iterate the slaves
3875 	 * list, but without holding a lock around the actual
3876 	 * call to the base driver.
3877 	 */
3878 
3879 	bond_for_each_slave(bond, slave, i) {
3880 		dprintk("s %p s->p %p c_m %p\n", slave,
3881 			slave->prev, slave->dev->change_mtu);
3882 
3883 		res = dev_set_mtu(slave->dev, new_mtu);
3884 
3885 		if (res) {
3886 			/* If we failed to set the slave's mtu to the new value
3887 			 * we must abort the operation even in ACTIVE_BACKUP
3888 			 * mode, because if we allow the backup slaves to have
3889 			 * different mtu values than the active slave we'll
3890 			 * need to change their mtu when doing a failover. That
3891 			 * means changing their mtu from timer context, which
3892 			 * is probably not a good idea.
3893 			 */
3894 			dprintk("err %d %s\n", res, slave->dev->name);
3895 			goto unwind;
3896 		}
3897 	}
3898 
3899 	bond_dev->mtu = new_mtu;
3900 
3901 	return 0;
3902 
3903 unwind:
3904 	/* unwind from head to the slave that failed */
3905 	stop_at = slave;
3906 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
3907 		int tmp_res;
3908 
3909 		tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
3910 		if (tmp_res) {
3911 			dprintk("unwind err %d dev %s\n", tmp_res,
3912 				slave->dev->name);
3913 		}
3914 	}
3915 
3916 	return res;
3917 }
3918 
3919 /*
3920  * Change HW address
3921  *
3922  * Note that many devices must be down to change the HW address, and
3923  * downing the master releases all slaves.  We can make bonds full of
3924  * bonding devices to test this, however.
3925  */
3926 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
3927 {
3928 	struct bonding *bond = bond_dev->priv;
3929 	struct sockaddr *sa = addr, tmp_sa;
3930 	struct slave *slave, *stop_at;
3931 	int res = 0;
3932 	int i;
3933 
3934 	dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
3935 
3936 	if (!is_valid_ether_addr(sa->sa_data)) {
3937 		return -EADDRNOTAVAIL;
3938 	}
3939 
3940 	/* Can't hold bond->lock with bh disabled here since
3941 	 * some base drivers panic. On the other hand we can't
3942 	 * hold bond->lock without bh disabled because we'll
3943 	 * deadlock. The only solution is to rely on the fact
3944 	 * that we're under rtnl_lock here, and the slaves
3945 	 * list won't change. This doesn't solve the problem
3946 	 * of setting the slave's hw address while it is
3947 	 * transmitting, but the assumption is that the base
3948 	 * driver can handle that.
3949 	 *
3950 	 * TODO: figure out a way to safely iterate the slaves
3951 	 * list, but without holding a lock around the actual
3952 	 * call to the base driver.
3953 	 */
3954 
3955 	bond_for_each_slave(bond, slave, i) {
3956 		dprintk("slave %p %s\n", slave, slave->dev->name);
3957 
3958 		if (slave->dev->set_mac_address == NULL) {
3959 			res = -EOPNOTSUPP;
3960 			dprintk("EOPNOTSUPP %s\n", slave->dev->name);
3961 			goto unwind;
3962 		}
3963 
3964 		res = dev_set_mac_address(slave->dev, addr);
3965 		if (res) {
3966 			/* TODO: consider downing the slave
3967 			 * and retry ?
3968 			 * User should expect communications
3969 			 * breakage anyway until ARP finish
3970 			 * updating, so...
3971 			 */
3972 			dprintk("err %d %s\n", res, slave->dev->name);
3973 			goto unwind;
3974 		}
3975 	}
3976 
3977 	/* success */
3978 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
3979 	return 0;
3980 
3981 unwind:
3982 	memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
3983 	tmp_sa.sa_family = bond_dev->type;
3984 
3985 	/* unwind from head to the slave that failed */
3986 	stop_at = slave;
3987 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
3988 		int tmp_res;
3989 
3990 		tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
3991 		if (tmp_res) {
3992 			dprintk("unwind err %d dev %s\n", tmp_res,
3993 				slave->dev->name);
3994 		}
3995 	}
3996 
3997 	return res;
3998 }
3999 
4000 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
4001 {
4002 	struct bonding *bond = bond_dev->priv;
4003 	struct slave *slave, *start_at;
4004 	int i;
4005 	int res = 1;
4006 
4007 	read_lock(&bond->lock);
4008 
4009 	if (!BOND_IS_OK(bond)) {
4010 		goto out;
4011 	}
4012 
4013 	read_lock(&bond->curr_slave_lock);
4014 	slave = start_at = bond->curr_active_slave;
4015 	read_unlock(&bond->curr_slave_lock);
4016 
4017 	if (!slave) {
4018 		goto out;
4019 	}
4020 
4021 	bond_for_each_slave_from(bond, slave, i, start_at) {
4022 		if (IS_UP(slave->dev) &&
4023 		    (slave->link == BOND_LINK_UP) &&
4024 		    (slave->state == BOND_STATE_ACTIVE)) {
4025 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4026 
4027 			write_lock(&bond->curr_slave_lock);
4028 			bond->curr_active_slave = slave->next;
4029 			write_unlock(&bond->curr_slave_lock);
4030 
4031 			break;
4032 		}
4033 	}
4034 
4035 
4036 out:
4037 	if (res) {
4038 		/* no suitable interface, frame not sent */
4039 		dev_kfree_skb(skb);
4040 	}
4041 	read_unlock(&bond->lock);
4042 	return 0;
4043 }
4044 
4045 
4046 /*
4047  * in active-backup mode, we know that bond->curr_active_slave is always valid if
4048  * the bond has a usable interface.
4049  */
4050 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
4051 {
4052 	struct bonding *bond = bond_dev->priv;
4053 	int res = 1;
4054 
4055 	read_lock(&bond->lock);
4056 	read_lock(&bond->curr_slave_lock);
4057 
4058 	if (!BOND_IS_OK(bond)) {
4059 		goto out;
4060 	}
4061 
4062 	if (!bond->curr_active_slave)
4063 		goto out;
4064 
4065 	res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
4066 
4067 out:
4068 	if (res) {
4069 		/* no suitable interface, frame not sent */
4070 		dev_kfree_skb(skb);
4071 	}
4072 	read_unlock(&bond->curr_slave_lock);
4073 	read_unlock(&bond->lock);
4074 	return 0;
4075 }
4076 
4077 /*
4078  * In bond_xmit_xor() , we determine the output device by using a pre-
4079  * determined xmit_hash_policy(), If the selected device is not enabled,
4080  * find the next active slave.
4081  */
4082 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
4083 {
4084 	struct bonding *bond = bond_dev->priv;
4085 	struct slave *slave, *start_at;
4086 	int slave_no;
4087 	int i;
4088 	int res = 1;
4089 
4090 	read_lock(&bond->lock);
4091 
4092 	if (!BOND_IS_OK(bond)) {
4093 		goto out;
4094 	}
4095 
4096 	slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
4097 
4098 	bond_for_each_slave(bond, slave, i) {
4099 		slave_no--;
4100 		if (slave_no < 0) {
4101 			break;
4102 		}
4103 	}
4104 
4105 	start_at = slave;
4106 
4107 	bond_for_each_slave_from(bond, slave, i, start_at) {
4108 		if (IS_UP(slave->dev) &&
4109 		    (slave->link == BOND_LINK_UP) &&
4110 		    (slave->state == BOND_STATE_ACTIVE)) {
4111 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4112 			break;
4113 		}
4114 	}
4115 
4116 out:
4117 	if (res) {
4118 		/* no suitable interface, frame not sent */
4119 		dev_kfree_skb(skb);
4120 	}
4121 	read_unlock(&bond->lock);
4122 	return 0;
4123 }
4124 
4125 /*
4126  * in broadcast mode, we send everything to all usable interfaces.
4127  */
4128 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4129 {
4130 	struct bonding *bond = bond_dev->priv;
4131 	struct slave *slave, *start_at;
4132 	struct net_device *tx_dev = NULL;
4133 	int i;
4134 	int res = 1;
4135 
4136 	read_lock(&bond->lock);
4137 
4138 	if (!BOND_IS_OK(bond)) {
4139 		goto out;
4140 	}
4141 
4142 	read_lock(&bond->curr_slave_lock);
4143 	start_at = bond->curr_active_slave;
4144 	read_unlock(&bond->curr_slave_lock);
4145 
4146 	if (!start_at) {
4147 		goto out;
4148 	}
4149 
4150 	bond_for_each_slave_from(bond, slave, i, start_at) {
4151 		if (IS_UP(slave->dev) &&
4152 		    (slave->link == BOND_LINK_UP) &&
4153 		    (slave->state == BOND_STATE_ACTIVE)) {
4154 			if (tx_dev) {
4155 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4156 				if (!skb2) {
4157 					printk(KERN_ERR DRV_NAME
4158 					       ": %s: Error: bond_xmit_broadcast(): "
4159 					       "skb_clone() failed\n",
4160 					       bond_dev->name);
4161 					continue;
4162 				}
4163 
4164 				res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4165 				if (res) {
4166 					dev_kfree_skb(skb2);
4167 					continue;
4168 				}
4169 			}
4170 			tx_dev = slave->dev;
4171 		}
4172 	}
4173 
4174 	if (tx_dev) {
4175 		res = bond_dev_queue_xmit(bond, skb, tx_dev);
4176 	}
4177 
4178 out:
4179 	if (res) {
4180 		/* no suitable interface, frame not sent */
4181 		dev_kfree_skb(skb);
4182 	}
4183 	/* frame sent to all suitable interfaces */
4184 	read_unlock(&bond->lock);
4185 	return 0;
4186 }
4187 
4188 /*------------------------- Device initialization ---------------------------*/
4189 
4190 /*
4191  * set bond mode specific net device operations
4192  */
4193 void bond_set_mode_ops(struct bonding *bond, int mode)
4194 {
4195 	struct net_device *bond_dev = bond->dev;
4196 
4197 	switch (mode) {
4198 	case BOND_MODE_ROUNDROBIN:
4199 		bond_dev->hard_start_xmit = bond_xmit_roundrobin;
4200 		break;
4201 	case BOND_MODE_ACTIVEBACKUP:
4202 		bond_dev->hard_start_xmit = bond_xmit_activebackup;
4203 		break;
4204 	case BOND_MODE_XOR:
4205 		bond_dev->hard_start_xmit = bond_xmit_xor;
4206 		if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34)
4207 			bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4208 		else
4209 			bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4210 		break;
4211 	case BOND_MODE_BROADCAST:
4212 		bond_dev->hard_start_xmit = bond_xmit_broadcast;
4213 		break;
4214 	case BOND_MODE_8023AD:
4215 		bond_set_master_3ad_flags(bond);
4216 		bond_dev->hard_start_xmit = bond_3ad_xmit_xor;
4217 		if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34)
4218 			bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4219 		else
4220 			bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4221 		break;
4222 	case BOND_MODE_ALB:
4223 		bond_set_master_alb_flags(bond);
4224 		/* FALLTHRU */
4225 	case BOND_MODE_TLB:
4226 		bond_dev->hard_start_xmit = bond_alb_xmit;
4227 		bond_dev->set_mac_address = bond_alb_set_mac_address;
4228 		break;
4229 	default:
4230 		/* Should never happen, mode already checked */
4231 		printk(KERN_ERR DRV_NAME
4232 		       ": %s: Error: Unknown bonding mode %d\n",
4233 		       bond_dev->name,
4234 		       mode);
4235 		break;
4236 	}
4237 }
4238 
4239 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4240 				    struct ethtool_drvinfo *drvinfo)
4241 {
4242 	strncpy(drvinfo->driver, DRV_NAME, 32);
4243 	strncpy(drvinfo->version, DRV_VERSION, 32);
4244 	snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4245 }
4246 
4247 static const struct ethtool_ops bond_ethtool_ops = {
4248 	.get_tx_csum		= ethtool_op_get_tx_csum,
4249 	.get_tso		= ethtool_op_get_tso,
4250 	.get_ufo		= ethtool_op_get_ufo,
4251 	.get_sg			= ethtool_op_get_sg,
4252 	.get_drvinfo		= bond_ethtool_get_drvinfo,
4253 };
4254 
4255 /*
4256  * Does not allocate but creates a /proc entry.
4257  * Allowed to fail.
4258  */
4259 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4260 {
4261 	struct bonding *bond = bond_dev->priv;
4262 
4263 	dprintk("Begin bond_init for %s\n", bond_dev->name);
4264 
4265 	/* initialize rwlocks */
4266 	rwlock_init(&bond->lock);
4267 	rwlock_init(&bond->curr_slave_lock);
4268 
4269 	bond->params = *params; /* copy params struct */
4270 
4271 	/* Initialize pointers */
4272 	bond->first_slave = NULL;
4273 	bond->curr_active_slave = NULL;
4274 	bond->current_arp_slave = NULL;
4275 	bond->primary_slave = NULL;
4276 	bond->dev = bond_dev;
4277 	INIT_LIST_HEAD(&bond->vlan_list);
4278 
4279 	/* Initialize the device entry points */
4280 	bond_dev->open = bond_open;
4281 	bond_dev->stop = bond_close;
4282 	bond_dev->get_stats = bond_get_stats;
4283 	bond_dev->do_ioctl = bond_do_ioctl;
4284 	bond_dev->ethtool_ops = &bond_ethtool_ops;
4285 	bond_dev->set_multicast_list = bond_set_multicast_list;
4286 	bond_dev->change_mtu = bond_change_mtu;
4287 	bond_dev->set_mac_address = bond_set_mac_address;
4288 
4289 	bond_set_mode_ops(bond, bond->params.mode);
4290 
4291 	bond_dev->destructor = free_netdev;
4292 
4293 	/* Initialize the device options */
4294 	bond_dev->tx_queue_len = 0;
4295 	bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4296 	bond_dev->priv_flags |= IFF_BONDING;
4297 
4298 	/* At first, we block adding VLANs. That's the only way to
4299 	 * prevent problems that occur when adding VLANs over an
4300 	 * empty bond. The block will be removed once non-challenged
4301 	 * slaves are enslaved.
4302 	 */
4303 	bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4304 
4305 	/* don't acquire bond device's netif_tx_lock when
4306 	 * transmitting */
4307 	bond_dev->features |= NETIF_F_LLTX;
4308 
4309 	/* By default, we declare the bond to be fully
4310 	 * VLAN hardware accelerated capable. Special
4311 	 * care is taken in the various xmit functions
4312 	 * when there are slaves that are not hw accel
4313 	 * capable
4314 	 */
4315 	bond_dev->vlan_rx_register = bond_vlan_rx_register;
4316 	bond_dev->vlan_rx_add_vid  = bond_vlan_rx_add_vid;
4317 	bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid;
4318 	bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4319 			       NETIF_F_HW_VLAN_RX |
4320 			       NETIF_F_HW_VLAN_FILTER);
4321 
4322 #ifdef CONFIG_PROC_FS
4323 	bond_create_proc_entry(bond);
4324 #endif
4325 
4326 	list_add_tail(&bond->bond_list, &bond_dev_list);
4327 
4328 	return 0;
4329 }
4330 
4331 /* De-initialize device specific data.
4332  * Caller must hold rtnl_lock.
4333  */
4334 void bond_deinit(struct net_device *bond_dev)
4335 {
4336 	struct bonding *bond = bond_dev->priv;
4337 
4338 	list_del(&bond->bond_list);
4339 
4340 #ifdef CONFIG_PROC_FS
4341 	bond_remove_proc_entry(bond);
4342 #endif
4343 }
4344 
4345 /* Unregister and free all bond devices.
4346  * Caller must hold rtnl_lock.
4347  */
4348 static void bond_free_all(void)
4349 {
4350 	struct bonding *bond, *nxt;
4351 
4352 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4353 		struct net_device *bond_dev = bond->dev;
4354 
4355 		bond_mc_list_destroy(bond);
4356 		/* Release the bonded slaves */
4357 		bond_release_all(bond_dev);
4358 		unregister_netdevice(bond_dev);
4359 		bond_deinit(bond_dev);
4360 	}
4361 
4362 #ifdef CONFIG_PROC_FS
4363 	bond_destroy_proc_dir();
4364 #endif
4365 }
4366 
4367 /*------------------------- Module initialization ---------------------------*/
4368 
4369 /*
4370  * Convert string input module parms.  Accept either the
4371  * number of the mode or its string name.
4372  */
4373 int bond_parse_parm(char *mode_arg, struct bond_parm_tbl *tbl)
4374 {
4375 	int i;
4376 
4377 	for (i = 0; tbl[i].modename; i++) {
4378 		if ((isdigit(*mode_arg) &&
4379 		     tbl[i].mode == simple_strtol(mode_arg, NULL, 0)) ||
4380 		    (strncmp(mode_arg, tbl[i].modename,
4381 			     strlen(tbl[i].modename)) == 0)) {
4382 			return tbl[i].mode;
4383 		}
4384 	}
4385 
4386 	return -1;
4387 }
4388 
4389 static int bond_check_params(struct bond_params *params)
4390 {
4391 	int arp_validate_value;
4392 
4393 	/*
4394 	 * Convert string parameters.
4395 	 */
4396 	if (mode) {
4397 		bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4398 		if (bond_mode == -1) {
4399 			printk(KERN_ERR DRV_NAME
4400 			       ": Error: Invalid bonding mode \"%s\"\n",
4401 			       mode == NULL ? "NULL" : mode);
4402 			return -EINVAL;
4403 		}
4404 	}
4405 
4406 	if (xmit_hash_policy) {
4407 		if ((bond_mode != BOND_MODE_XOR) &&
4408 		    (bond_mode != BOND_MODE_8023AD)) {
4409 			printk(KERN_INFO DRV_NAME
4410 			       ": xor_mode param is irrelevant in mode %s\n",
4411 			       bond_mode_name(bond_mode));
4412 		} else {
4413 			xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4414 							xmit_hashtype_tbl);
4415 			if (xmit_hashtype == -1) {
4416 				printk(KERN_ERR DRV_NAME
4417 			       	": Error: Invalid xmit_hash_policy \"%s\"\n",
4418 			       	xmit_hash_policy == NULL ? "NULL" :
4419 				       xmit_hash_policy);
4420 				return -EINVAL;
4421 			}
4422 		}
4423 	}
4424 
4425 	if (lacp_rate) {
4426 		if (bond_mode != BOND_MODE_8023AD) {
4427 			printk(KERN_INFO DRV_NAME
4428 			       ": lacp_rate param is irrelevant in mode %s\n",
4429 			       bond_mode_name(bond_mode));
4430 		} else {
4431 			lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4432 			if (lacp_fast == -1) {
4433 				printk(KERN_ERR DRV_NAME
4434 				       ": Error: Invalid lacp rate \"%s\"\n",
4435 				       lacp_rate == NULL ? "NULL" : lacp_rate);
4436 				return -EINVAL;
4437 			}
4438 		}
4439 	}
4440 
4441 	if (max_bonds < 1 || max_bonds > INT_MAX) {
4442 		printk(KERN_WARNING DRV_NAME
4443 		       ": Warning: max_bonds (%d) not in range %d-%d, so it "
4444 		       "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4445 		       max_bonds, 1, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4446 		max_bonds = BOND_DEFAULT_MAX_BONDS;
4447 	}
4448 
4449 	if (miimon < 0) {
4450 		printk(KERN_WARNING DRV_NAME
4451 		       ": Warning: miimon module parameter (%d), "
4452 		       "not in range 0-%d, so it was reset to %d\n",
4453 		       miimon, INT_MAX, BOND_LINK_MON_INTERV);
4454 		miimon = BOND_LINK_MON_INTERV;
4455 	}
4456 
4457 	if (updelay < 0) {
4458 		printk(KERN_WARNING DRV_NAME
4459 		       ": Warning: updelay module parameter (%d), "
4460 		       "not in range 0-%d, so it was reset to 0\n",
4461 		       updelay, INT_MAX);
4462 		updelay = 0;
4463 	}
4464 
4465 	if (downdelay < 0) {
4466 		printk(KERN_WARNING DRV_NAME
4467 		       ": Warning: downdelay module parameter (%d), "
4468 		       "not in range 0-%d, so it was reset to 0\n",
4469 		       downdelay, INT_MAX);
4470 		downdelay = 0;
4471 	}
4472 
4473 	if ((use_carrier != 0) && (use_carrier != 1)) {
4474 		printk(KERN_WARNING DRV_NAME
4475 		       ": Warning: use_carrier module parameter (%d), "
4476 		       "not of valid value (0/1), so it was set to 1\n",
4477 		       use_carrier);
4478 		use_carrier = 1;
4479 	}
4480 
4481 	/* reset values for 802.3ad */
4482 	if (bond_mode == BOND_MODE_8023AD) {
4483 		if (!miimon) {
4484 			printk(KERN_WARNING DRV_NAME
4485 			       ": Warning: miimon must be specified, "
4486 			       "otherwise bonding will not detect link "
4487 			       "failure, speed and duplex which are "
4488 			       "essential for 802.3ad operation\n");
4489 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4490 			miimon = 100;
4491 		}
4492 	}
4493 
4494 	/* reset values for TLB/ALB */
4495 	if ((bond_mode == BOND_MODE_TLB) ||
4496 	    (bond_mode == BOND_MODE_ALB)) {
4497 		if (!miimon) {
4498 			printk(KERN_WARNING DRV_NAME
4499 			       ": Warning: miimon must be specified, "
4500 			       "otherwise bonding will not detect link "
4501 			       "failure and link speed which are essential "
4502 			       "for TLB/ALB load balancing\n");
4503 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4504 			miimon = 100;
4505 		}
4506 	}
4507 
4508 	if (bond_mode == BOND_MODE_ALB) {
4509 		printk(KERN_NOTICE DRV_NAME
4510 		       ": In ALB mode you might experience client "
4511 		       "disconnections upon reconnection of a link if the "
4512 		       "bonding module updelay parameter (%d msec) is "
4513 		       "incompatible with the forwarding delay time of the "
4514 		       "switch\n",
4515 		       updelay);
4516 	}
4517 
4518 	if (!miimon) {
4519 		if (updelay || downdelay) {
4520 			/* just warn the user the up/down delay will have
4521 			 * no effect since miimon is zero...
4522 			 */
4523 			printk(KERN_WARNING DRV_NAME
4524 			       ": Warning: miimon module parameter not set "
4525 			       "and updelay (%d) or downdelay (%d) module "
4526 			       "parameter is set; updelay and downdelay have "
4527 			       "no effect unless miimon is set\n",
4528 			       updelay, downdelay);
4529 		}
4530 	} else {
4531 		/* don't allow arp monitoring */
4532 		if (arp_interval) {
4533 			printk(KERN_WARNING DRV_NAME
4534 			       ": Warning: miimon (%d) and arp_interval (%d) "
4535 			       "can't be used simultaneously, disabling ARP "
4536 			       "monitoring\n",
4537 			       miimon, arp_interval);
4538 			arp_interval = 0;
4539 		}
4540 
4541 		if ((updelay % miimon) != 0) {
4542 			printk(KERN_WARNING DRV_NAME
4543 			       ": Warning: updelay (%d) is not a multiple "
4544 			       "of miimon (%d), updelay rounded to %d ms\n",
4545 			       updelay, miimon, (updelay / miimon) * miimon);
4546 		}
4547 
4548 		updelay /= miimon;
4549 
4550 		if ((downdelay % miimon) != 0) {
4551 			printk(KERN_WARNING DRV_NAME
4552 			       ": Warning: downdelay (%d) is not a multiple "
4553 			       "of miimon (%d), downdelay rounded to %d ms\n",
4554 			       downdelay, miimon,
4555 			       (downdelay / miimon) * miimon);
4556 		}
4557 
4558 		downdelay /= miimon;
4559 	}
4560 
4561 	if (arp_interval < 0) {
4562 		printk(KERN_WARNING DRV_NAME
4563 		       ": Warning: arp_interval module parameter (%d) "
4564 		       ", not in range 0-%d, so it was reset to %d\n",
4565 		       arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4566 		arp_interval = BOND_LINK_ARP_INTERV;
4567 	}
4568 
4569 	for (arp_ip_count = 0;
4570 	     (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4571 	     arp_ip_count++) {
4572 		/* not complete check, but should be good enough to
4573 		   catch mistakes */
4574 		if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4575 			printk(KERN_WARNING DRV_NAME
4576 			       ": Warning: bad arp_ip_target module parameter "
4577 			       "(%s), ARP monitoring will not be performed\n",
4578 			       arp_ip_target[arp_ip_count]);
4579 			arp_interval = 0;
4580 		} else {
4581 			u32 ip = in_aton(arp_ip_target[arp_ip_count]);
4582 			arp_target[arp_ip_count] = ip;
4583 		}
4584 	}
4585 
4586 	if (arp_interval && !arp_ip_count) {
4587 		/* don't allow arping if no arp_ip_target given... */
4588 		printk(KERN_WARNING DRV_NAME
4589 		       ": Warning: arp_interval module parameter (%d) "
4590 		       "specified without providing an arp_ip_target "
4591 		       "parameter, arp_interval was reset to 0\n",
4592 		       arp_interval);
4593 		arp_interval = 0;
4594 	}
4595 
4596 	if (arp_validate) {
4597 		if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4598 			printk(KERN_ERR DRV_NAME
4599 	       ": arp_validate only supported in active-backup mode\n");
4600 			return -EINVAL;
4601 		}
4602 		if (!arp_interval) {
4603 			printk(KERN_ERR DRV_NAME
4604 			       ": arp_validate requires arp_interval\n");
4605 			return -EINVAL;
4606 		}
4607 
4608 		arp_validate_value = bond_parse_parm(arp_validate,
4609 						     arp_validate_tbl);
4610 		if (arp_validate_value == -1) {
4611 			printk(KERN_ERR DRV_NAME
4612 			       ": Error: invalid arp_validate \"%s\"\n",
4613 			       arp_validate == NULL ? "NULL" : arp_validate);
4614 			return -EINVAL;
4615 		}
4616 	} else
4617 		arp_validate_value = 0;
4618 
4619 	if (miimon) {
4620 		printk(KERN_INFO DRV_NAME
4621 		       ": MII link monitoring set to %d ms\n",
4622 		       miimon);
4623 	} else if (arp_interval) {
4624 		int i;
4625 
4626 		printk(KERN_INFO DRV_NAME
4627 		       ": ARP monitoring set to %d ms, validate %s, with %d target(s):",
4628 		       arp_interval,
4629 		       arp_validate_tbl[arp_validate_value].modename,
4630 		       arp_ip_count);
4631 
4632 		for (i = 0; i < arp_ip_count; i++)
4633 			printk (" %s", arp_ip_target[i]);
4634 
4635 		printk("\n");
4636 
4637 	} else {
4638 		/* miimon and arp_interval not set, we need one so things
4639 		 * work as expected, see bonding.txt for details
4640 		 */
4641 		printk(KERN_WARNING DRV_NAME
4642 		       ": Warning: either miimon or arp_interval and "
4643 		       "arp_ip_target module parameters must be specified, "
4644 		       "otherwise bonding will not detect link failures! see "
4645 		       "bonding.txt for details.\n");
4646 	}
4647 
4648 	if (primary && !USES_PRIMARY(bond_mode)) {
4649 		/* currently, using a primary only makes sense
4650 		 * in active backup, TLB or ALB modes
4651 		 */
4652 		printk(KERN_WARNING DRV_NAME
4653 		       ": Warning: %s primary device specified but has no "
4654 		       "effect in %s mode\n",
4655 		       primary, bond_mode_name(bond_mode));
4656 		primary = NULL;
4657 	}
4658 
4659 	/* fill params struct with the proper values */
4660 	params->mode = bond_mode;
4661 	params->xmit_policy = xmit_hashtype;
4662 	params->miimon = miimon;
4663 	params->arp_interval = arp_interval;
4664 	params->arp_validate = arp_validate_value;
4665 	params->updelay = updelay;
4666 	params->downdelay = downdelay;
4667 	params->use_carrier = use_carrier;
4668 	params->lacp_fast = lacp_fast;
4669 	params->primary[0] = 0;
4670 
4671 	if (primary) {
4672 		strncpy(params->primary, primary, IFNAMSIZ);
4673 		params->primary[IFNAMSIZ - 1] = 0;
4674 	}
4675 
4676 	memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4677 
4678 	return 0;
4679 }
4680 
4681 static struct lock_class_key bonding_netdev_xmit_lock_key;
4682 
4683 /* Create a new bond based on the specified name and bonding parameters.
4684  * If name is NULL, obtain a suitable "bond%d" name for us.
4685  * Caller must NOT hold rtnl_lock; we need to release it here before we
4686  * set up our sysfs entries.
4687  */
4688 int bond_create(char *name, struct bond_params *params, struct bonding **newbond)
4689 {
4690 	struct net_device *bond_dev;
4691 	int res;
4692 
4693 	rtnl_lock();
4694 	bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "",
4695 				ether_setup);
4696 	if (!bond_dev) {
4697 		printk(KERN_ERR DRV_NAME
4698 		       ": %s: eek! can't alloc netdev!\n",
4699 		       name);
4700 		res = -ENOMEM;
4701 		goto out_rtnl;
4702 	}
4703 
4704 	if (!name) {
4705 		res = dev_alloc_name(bond_dev, "bond%d");
4706 		if (res < 0)
4707 			goto out_netdev;
4708 	}
4709 
4710 	/* bond_init() must be called after dev_alloc_name() (for the
4711 	 * /proc files), but before register_netdevice(), because we
4712 	 * need to set function pointers.
4713 	 */
4714 
4715 	res = bond_init(bond_dev, params);
4716 	if (res < 0) {
4717 		goto out_netdev;
4718 	}
4719 
4720 	SET_MODULE_OWNER(bond_dev);
4721 
4722 	res = register_netdevice(bond_dev);
4723 	if (res < 0) {
4724 		goto out_bond;
4725 	}
4726 
4727 	lockdep_set_class(&bond_dev->_xmit_lock, &bonding_netdev_xmit_lock_key);
4728 
4729 	if (newbond)
4730 		*newbond = bond_dev->priv;
4731 
4732 	netif_carrier_off(bond_dev);
4733 
4734 	rtnl_unlock(); /* allows sysfs registration of net device */
4735 	res = bond_create_sysfs_entry(bond_dev->priv);
4736 	if (res < 0) {
4737 		rtnl_lock();
4738 		goto out_bond;
4739 	}
4740 
4741 	return 0;
4742 
4743 out_bond:
4744 	bond_deinit(bond_dev);
4745 out_netdev:
4746 	free_netdev(bond_dev);
4747 out_rtnl:
4748 	rtnl_unlock();
4749 	return res;
4750 }
4751 
4752 static int __init bonding_init(void)
4753 {
4754 	int i;
4755 	int res;
4756 
4757 	printk(KERN_INFO "%s", version);
4758 
4759 	res = bond_check_params(&bonding_defaults);
4760 	if (res) {
4761 		goto out;
4762 	}
4763 
4764 #ifdef CONFIG_PROC_FS
4765 	bond_create_proc_dir();
4766 #endif
4767 	for (i = 0; i < max_bonds; i++) {
4768 		res = bond_create(NULL, &bonding_defaults, NULL);
4769 		if (res)
4770 			goto err;
4771 	}
4772 
4773 	res = bond_create_sysfs();
4774 	if (res)
4775 		goto err;
4776 
4777 	register_netdevice_notifier(&bond_netdev_notifier);
4778 	register_inetaddr_notifier(&bond_inetaddr_notifier);
4779 
4780 	goto out;
4781 err:
4782 	rtnl_lock();
4783 	bond_free_all();
4784 	bond_destroy_sysfs();
4785 	rtnl_unlock();
4786 out:
4787 	return res;
4788 
4789 }
4790 
4791 static void __exit bonding_exit(void)
4792 {
4793 	unregister_netdevice_notifier(&bond_netdev_notifier);
4794 	unregister_inetaddr_notifier(&bond_inetaddr_notifier);
4795 
4796 	rtnl_lock();
4797 	bond_free_all();
4798 	bond_destroy_sysfs();
4799 	rtnl_unlock();
4800 }
4801 
4802 module_init(bonding_init);
4803 module_exit(bonding_exit);
4804 MODULE_LICENSE("GPL");
4805 MODULE_VERSION(DRV_VERSION);
4806 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
4807 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
4808 MODULE_SUPPORTED_DEVICE("most ethernet devices");
4809 
4810 /*
4811  * Local variables:
4812  *  c-indent-level: 8
4813  *  c-basic-offset: 8
4814  *  tab-width: 8
4815  * End:
4816  */
4817 
4818