1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/types.h> 37 #include <linux/fcntl.h> 38 #include <linux/interrupt.h> 39 #include <linux/ptrace.h> 40 #include <linux/ioport.h> 41 #include <linux/in.h> 42 #include <net/ip.h> 43 #include <linux/ip.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/slab.h> 47 #include <linux/string.h> 48 #include <linux/init.h> 49 #include <linux/timer.h> 50 #include <linux/socket.h> 51 #include <linux/ctype.h> 52 #include <linux/inet.h> 53 #include <linux/bitops.h> 54 #include <asm/system.h> 55 #include <asm/io.h> 56 #include <asm/dma.h> 57 #include <asm/uaccess.h> 58 #include <linux/errno.h> 59 #include <linux/netdevice.h> 60 #include <linux/inetdevice.h> 61 #include <linux/igmp.h> 62 #include <linux/etherdevice.h> 63 #include <linux/skbuff.h> 64 #include <net/sock.h> 65 #include <linux/rtnetlink.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/smp.h> 69 #include <linux/if_ether.h> 70 #include <net/arp.h> 71 #include <linux/mii.h> 72 #include <linux/ethtool.h> 73 #include <linux/if_vlan.h> 74 #include <linux/if_bonding.h> 75 #include <linux/jiffies.h> 76 #include <net/route.h> 77 #include <net/net_namespace.h> 78 #include "bonding.h" 79 #include "bond_3ad.h" 80 #include "bond_alb.h" 81 82 /*---------------------------- Module parameters ----------------------------*/ 83 84 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 85 #define BOND_LINK_MON_INTERV 0 86 #define BOND_LINK_ARP_INTERV 0 87 88 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 89 static int num_grat_arp = 1; 90 static int num_unsol_na = 1; 91 static int miimon = BOND_LINK_MON_INTERV; 92 static int updelay = 0; 93 static int downdelay = 0; 94 static int use_carrier = 1; 95 static char *mode = NULL; 96 static char *primary = NULL; 97 static char *lacp_rate = NULL; 98 static char *ad_select = NULL; 99 static char *xmit_hash_policy = NULL; 100 static int arp_interval = BOND_LINK_ARP_INTERV; 101 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, }; 102 static char *arp_validate = NULL; 103 static char *fail_over_mac = NULL; 104 struct bond_params bonding_defaults; 105 106 module_param(max_bonds, int, 0); 107 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 108 module_param(num_grat_arp, int, 0644); 109 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event"); 110 module_param(num_unsol_na, int, 0644); 111 MODULE_PARM_DESC(num_unsol_na, "Number of unsolicited IPv6 Neighbor Advertisements packets to send on failover event"); 112 module_param(miimon, int, 0); 113 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 114 module_param(updelay, int, 0); 115 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 116 module_param(downdelay, int, 0); 117 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 118 "in milliseconds"); 119 module_param(use_carrier, int, 0); 120 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 121 "0 for off, 1 for on (default)"); 122 module_param(mode, charp, 0); 123 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, " 124 "1 for active-backup, 2 for balance-xor, " 125 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 126 "6 for balance-alb"); 127 module_param(primary, charp, 0); 128 MODULE_PARM_DESC(primary, "Primary network device to use"); 129 module_param(lacp_rate, charp, 0); 130 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner " 131 "(slow/fast)"); 132 module_param(ad_select, charp, 0); 133 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic: stable (0, default), bandwidth (1), count (2)"); 134 module_param(xmit_hash_policy, charp, 0); 135 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)" 136 ", 1 for layer 3+4"); 137 module_param(arp_interval, int, 0); 138 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 139 module_param_array(arp_ip_target, charp, NULL, 0); 140 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 141 module_param(arp_validate, charp, 0); 142 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all"); 143 module_param(fail_over_mac, charp, 0); 144 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. none (default), active or follow"); 145 146 /*----------------------------- Global variables ----------------------------*/ 147 148 static const char * const version = 149 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n"; 150 151 LIST_HEAD(bond_dev_list); 152 153 #ifdef CONFIG_PROC_FS 154 static struct proc_dir_entry *bond_proc_dir = NULL; 155 #endif 156 157 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ; 158 static int arp_ip_count = 0; 159 static int bond_mode = BOND_MODE_ROUNDROBIN; 160 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2; 161 static int lacp_fast = 0; 162 163 164 const struct bond_parm_tbl bond_lacp_tbl[] = { 165 { "slow", AD_LACP_SLOW}, 166 { "fast", AD_LACP_FAST}, 167 { NULL, -1}, 168 }; 169 170 const struct bond_parm_tbl bond_mode_tbl[] = { 171 { "balance-rr", BOND_MODE_ROUNDROBIN}, 172 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 173 { "balance-xor", BOND_MODE_XOR}, 174 { "broadcast", BOND_MODE_BROADCAST}, 175 { "802.3ad", BOND_MODE_8023AD}, 176 { "balance-tlb", BOND_MODE_TLB}, 177 { "balance-alb", BOND_MODE_ALB}, 178 { NULL, -1}, 179 }; 180 181 const struct bond_parm_tbl xmit_hashtype_tbl[] = { 182 { "layer2", BOND_XMIT_POLICY_LAYER2}, 183 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 184 { "layer2+3", BOND_XMIT_POLICY_LAYER23}, 185 { NULL, -1}, 186 }; 187 188 const struct bond_parm_tbl arp_validate_tbl[] = { 189 { "none", BOND_ARP_VALIDATE_NONE}, 190 { "active", BOND_ARP_VALIDATE_ACTIVE}, 191 { "backup", BOND_ARP_VALIDATE_BACKUP}, 192 { "all", BOND_ARP_VALIDATE_ALL}, 193 { NULL, -1}, 194 }; 195 196 const struct bond_parm_tbl fail_over_mac_tbl[] = { 197 { "none", BOND_FOM_NONE}, 198 { "active", BOND_FOM_ACTIVE}, 199 { "follow", BOND_FOM_FOLLOW}, 200 { NULL, -1}, 201 }; 202 203 struct bond_parm_tbl ad_select_tbl[] = { 204 { "stable", BOND_AD_STABLE}, 205 { "bandwidth", BOND_AD_BANDWIDTH}, 206 { "count", BOND_AD_COUNT}, 207 { NULL, -1}, 208 }; 209 210 /*-------------------------- Forward declarations ---------------------------*/ 211 212 static void bond_send_gratuitous_arp(struct bonding *bond); 213 static void bond_deinit(struct net_device *bond_dev); 214 215 /*---------------------------- General routines -----------------------------*/ 216 217 static const char *bond_mode_name(int mode) 218 { 219 static const char *names[] = { 220 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)", 221 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)", 222 [BOND_MODE_XOR] = "load balancing (xor)", 223 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)", 224 [BOND_MODE_8023AD]= "IEEE 802.3ad Dynamic link aggregation", 225 [BOND_MODE_TLB] = "transmit load balancing", 226 [BOND_MODE_ALB] = "adaptive load balancing", 227 }; 228 229 if (mode < 0 || mode > BOND_MODE_ALB) 230 return "unknown"; 231 232 return names[mode]; 233 } 234 235 /*---------------------------------- VLAN -----------------------------------*/ 236 237 /** 238 * bond_add_vlan - add a new vlan id on bond 239 * @bond: bond that got the notification 240 * @vlan_id: the vlan id to add 241 * 242 * Returns -ENOMEM if allocation failed. 243 */ 244 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 245 { 246 struct vlan_entry *vlan; 247 248 pr_debug("bond: %s, vlan id %d\n", 249 (bond ? bond->dev->name: "None"), vlan_id); 250 251 vlan = kzalloc(sizeof(struct vlan_entry), GFP_KERNEL); 252 if (!vlan) { 253 return -ENOMEM; 254 } 255 256 INIT_LIST_HEAD(&vlan->vlan_list); 257 vlan->vlan_id = vlan_id; 258 259 write_lock_bh(&bond->lock); 260 261 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 262 263 write_unlock_bh(&bond->lock); 264 265 pr_debug("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 266 267 return 0; 268 } 269 270 /** 271 * bond_del_vlan - delete a vlan id from bond 272 * @bond: bond that got the notification 273 * @vlan_id: the vlan id to delete 274 * 275 * returns -ENODEV if @vlan_id was not found in @bond. 276 */ 277 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 278 { 279 struct vlan_entry *vlan; 280 int res = -ENODEV; 281 282 pr_debug("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 283 284 write_lock_bh(&bond->lock); 285 286 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 287 if (vlan->vlan_id == vlan_id) { 288 list_del(&vlan->vlan_list); 289 290 if (bond_is_lb(bond)) 291 bond_alb_clear_vlan(bond, vlan_id); 292 293 pr_debug("removed VLAN ID %d from bond %s\n", vlan_id, 294 bond->dev->name); 295 296 kfree(vlan); 297 298 if (list_empty(&bond->vlan_list) && 299 (bond->slave_cnt == 0)) { 300 /* Last VLAN removed and no slaves, so 301 * restore block on adding VLANs. This will 302 * be removed once new slaves that are not 303 * VLAN challenged will be added. 304 */ 305 bond->dev->features |= NETIF_F_VLAN_CHALLENGED; 306 } 307 308 res = 0; 309 goto out; 310 } 311 } 312 313 pr_debug("couldn't find VLAN ID %d in bond %s\n", vlan_id, 314 bond->dev->name); 315 316 out: 317 write_unlock_bh(&bond->lock); 318 return res; 319 } 320 321 /** 322 * bond_has_challenged_slaves 323 * @bond: the bond we're working on 324 * 325 * Searches the slave list. Returns 1 if a vlan challenged slave 326 * was found, 0 otherwise. 327 * 328 * Assumes bond->lock is held. 329 */ 330 static int bond_has_challenged_slaves(struct bonding *bond) 331 { 332 struct slave *slave; 333 int i; 334 335 bond_for_each_slave(bond, slave, i) { 336 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) { 337 pr_debug("found VLAN challenged slave - %s\n", 338 slave->dev->name); 339 return 1; 340 } 341 } 342 343 pr_debug("no VLAN challenged slaves found\n"); 344 return 0; 345 } 346 347 /** 348 * bond_next_vlan - safely skip to the next item in the vlans list. 349 * @bond: the bond we're working on 350 * @curr: item we're advancing from 351 * 352 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 353 * or @curr->next otherwise (even if it is @curr itself again). 354 * 355 * Caller must hold bond->lock 356 */ 357 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 358 { 359 struct vlan_entry *next, *last; 360 361 if (list_empty(&bond->vlan_list)) { 362 return NULL; 363 } 364 365 if (!curr) { 366 next = list_entry(bond->vlan_list.next, 367 struct vlan_entry, vlan_list); 368 } else { 369 last = list_entry(bond->vlan_list.prev, 370 struct vlan_entry, vlan_list); 371 if (last == curr) { 372 next = list_entry(bond->vlan_list.next, 373 struct vlan_entry, vlan_list); 374 } else { 375 next = list_entry(curr->vlan_list.next, 376 struct vlan_entry, vlan_list); 377 } 378 } 379 380 return next; 381 } 382 383 /** 384 * bond_dev_queue_xmit - Prepare skb for xmit. 385 * 386 * @bond: bond device that got this skb for tx. 387 * @skb: hw accel VLAN tagged skb to transmit 388 * @slave_dev: slave that is supposed to xmit this skbuff 389 * 390 * When the bond gets an skb to transmit that is 391 * already hardware accelerated VLAN tagged, and it 392 * needs to relay this skb to a slave that is not 393 * hw accel capable, the skb needs to be "unaccelerated", 394 * i.e. strip the hwaccel tag and re-insert it as part 395 * of the payload. 396 */ 397 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev) 398 { 399 unsigned short uninitialized_var(vlan_id); 400 401 if (!list_empty(&bond->vlan_list) && 402 !(slave_dev->features & NETIF_F_HW_VLAN_TX) && 403 vlan_get_tag(skb, &vlan_id) == 0) { 404 skb->dev = slave_dev; 405 skb = vlan_put_tag(skb, vlan_id); 406 if (!skb) { 407 /* vlan_put_tag() frees the skb in case of error, 408 * so return success here so the calling functions 409 * won't attempt to free is again. 410 */ 411 return 0; 412 } 413 } else { 414 skb->dev = slave_dev; 415 } 416 417 skb->priority = 1; 418 dev_queue_xmit(skb); 419 420 return 0; 421 } 422 423 /* 424 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid 425 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a 426 * lock because: 427 * a. This operation is performed in IOCTL context, 428 * b. The operation is protected by the RTNL semaphore in the 8021q code, 429 * c. Holding a lock with BH disabled while directly calling a base driver 430 * entry point is generally a BAD idea. 431 * 432 * The design of synchronization/protection for this operation in the 8021q 433 * module is good for one or more VLAN devices over a single physical device 434 * and cannot be extended for a teaming solution like bonding, so there is a 435 * potential race condition here where a net device from the vlan group might 436 * be referenced (either by a base driver or the 8021q code) while it is being 437 * removed from the system. However, it turns out we're not making matters 438 * worse, and if it works for regular VLAN usage it will work here too. 439 */ 440 441 /** 442 * bond_vlan_rx_register - Propagates registration to slaves 443 * @bond_dev: bonding net device that got called 444 * @grp: vlan group being registered 445 */ 446 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp) 447 { 448 struct bonding *bond = netdev_priv(bond_dev); 449 struct slave *slave; 450 int i; 451 452 bond->vlgrp = grp; 453 454 bond_for_each_slave(bond, slave, i) { 455 struct net_device *slave_dev = slave->dev; 456 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 457 458 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 459 slave_ops->ndo_vlan_rx_register) { 460 slave_ops->ndo_vlan_rx_register(slave_dev, grp); 461 } 462 } 463 } 464 465 /** 466 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 467 * @bond_dev: bonding net device that got called 468 * @vid: vlan id being added 469 */ 470 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid) 471 { 472 struct bonding *bond = netdev_priv(bond_dev); 473 struct slave *slave; 474 int i, res; 475 476 bond_for_each_slave(bond, slave, i) { 477 struct net_device *slave_dev = slave->dev; 478 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 479 480 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 481 slave_ops->ndo_vlan_rx_add_vid) { 482 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vid); 483 } 484 } 485 486 res = bond_add_vlan(bond, vid); 487 if (res) { 488 printk(KERN_ERR DRV_NAME 489 ": %s: Error: Failed to add vlan id %d\n", 490 bond_dev->name, vid); 491 } 492 } 493 494 /** 495 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 496 * @bond_dev: bonding net device that got called 497 * @vid: vlan id being removed 498 */ 499 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid) 500 { 501 struct bonding *bond = netdev_priv(bond_dev); 502 struct slave *slave; 503 struct net_device *vlan_dev; 504 int i, res; 505 506 bond_for_each_slave(bond, slave, i) { 507 struct net_device *slave_dev = slave->dev; 508 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 509 510 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 511 slave_ops->ndo_vlan_rx_kill_vid) { 512 /* Save and then restore vlan_dev in the grp array, 513 * since the slave's driver might clear it. 514 */ 515 vlan_dev = vlan_group_get_device(bond->vlgrp, vid); 516 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vid); 517 vlan_group_set_device(bond->vlgrp, vid, vlan_dev); 518 } 519 } 520 521 res = bond_del_vlan(bond, vid); 522 if (res) { 523 printk(KERN_ERR DRV_NAME 524 ": %s: Error: Failed to remove vlan id %d\n", 525 bond_dev->name, vid); 526 } 527 } 528 529 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 530 { 531 struct vlan_entry *vlan; 532 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 533 534 write_lock_bh(&bond->lock); 535 536 if (list_empty(&bond->vlan_list)) 537 goto out; 538 539 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 540 slave_ops->ndo_vlan_rx_register) 541 slave_ops->ndo_vlan_rx_register(slave_dev, bond->vlgrp); 542 543 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 544 !(slave_ops->ndo_vlan_rx_add_vid)) 545 goto out; 546 547 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) 548 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vlan->vlan_id); 549 550 out: 551 write_unlock_bh(&bond->lock); 552 } 553 554 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev) 555 { 556 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 557 struct vlan_entry *vlan; 558 struct net_device *vlan_dev; 559 560 write_lock_bh(&bond->lock); 561 562 if (list_empty(&bond->vlan_list)) 563 goto out; 564 565 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 566 !(slave_ops->ndo_vlan_rx_kill_vid)) 567 goto unreg; 568 569 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 570 /* Save and then restore vlan_dev in the grp array, 571 * since the slave's driver might clear it. 572 */ 573 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 574 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vlan->vlan_id); 575 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev); 576 } 577 578 unreg: 579 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 580 slave_ops->ndo_vlan_rx_register) 581 slave_ops->ndo_vlan_rx_register(slave_dev, NULL); 582 583 out: 584 write_unlock_bh(&bond->lock); 585 } 586 587 /*------------------------------- Link status -------------------------------*/ 588 589 /* 590 * Set the carrier state for the master according to the state of its 591 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 592 * do special 802.3ad magic. 593 * 594 * Returns zero if carrier state does not change, nonzero if it does. 595 */ 596 static int bond_set_carrier(struct bonding *bond) 597 { 598 struct slave *slave; 599 int i; 600 601 if (bond->slave_cnt == 0) 602 goto down; 603 604 if (bond->params.mode == BOND_MODE_8023AD) 605 return bond_3ad_set_carrier(bond); 606 607 bond_for_each_slave(bond, slave, i) { 608 if (slave->link == BOND_LINK_UP) { 609 if (!netif_carrier_ok(bond->dev)) { 610 netif_carrier_on(bond->dev); 611 return 1; 612 } 613 return 0; 614 } 615 } 616 617 down: 618 if (netif_carrier_ok(bond->dev)) { 619 netif_carrier_off(bond->dev); 620 return 1; 621 } 622 return 0; 623 } 624 625 /* 626 * Get link speed and duplex from the slave's base driver 627 * using ethtool. If for some reason the call fails or the 628 * values are invalid, fake speed and duplex to 100/Full 629 * and return error. 630 */ 631 static int bond_update_speed_duplex(struct slave *slave) 632 { 633 struct net_device *slave_dev = slave->dev; 634 struct ethtool_cmd etool; 635 int res; 636 637 /* Fake speed and duplex */ 638 slave->speed = SPEED_100; 639 slave->duplex = DUPLEX_FULL; 640 641 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings) 642 return -1; 643 644 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool); 645 if (res < 0) 646 return -1; 647 648 switch (etool.speed) { 649 case SPEED_10: 650 case SPEED_100: 651 case SPEED_1000: 652 case SPEED_10000: 653 break; 654 default: 655 return -1; 656 } 657 658 switch (etool.duplex) { 659 case DUPLEX_FULL: 660 case DUPLEX_HALF: 661 break; 662 default: 663 return -1; 664 } 665 666 slave->speed = etool.speed; 667 slave->duplex = etool.duplex; 668 669 return 0; 670 } 671 672 /* 673 * if <dev> supports MII link status reporting, check its link status. 674 * 675 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 676 * depening upon the setting of the use_carrier parameter. 677 * 678 * Return either BMSR_LSTATUS, meaning that the link is up (or we 679 * can't tell and just pretend it is), or 0, meaning that the link is 680 * down. 681 * 682 * If reporting is non-zero, instead of faking link up, return -1 if 683 * both ETHTOOL and MII ioctls fail (meaning the device does not 684 * support them). If use_carrier is set, return whatever it says. 685 * It'd be nice if there was a good way to tell if a driver supports 686 * netif_carrier, but there really isn't. 687 */ 688 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting) 689 { 690 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 691 static int (* ioctl)(struct net_device *, struct ifreq *, int); 692 struct ifreq ifr; 693 struct mii_ioctl_data *mii; 694 695 if (bond->params.use_carrier) 696 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 697 698 ioctl = slave_ops->ndo_do_ioctl; 699 if (ioctl) { 700 /* TODO: set pointer to correct ioctl on a per team member */ 701 /* bases to make this more efficient. that is, once */ 702 /* we determine the correct ioctl, we will always */ 703 /* call it and not the others for that team */ 704 /* member. */ 705 706 /* 707 * We cannot assume that SIOCGMIIPHY will also read a 708 * register; not all network drivers (e.g., e100) 709 * support that. 710 */ 711 712 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 713 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 714 mii = if_mii(&ifr); 715 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 716 mii->reg_num = MII_BMSR; 717 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) { 718 return (mii->val_out & BMSR_LSTATUS); 719 } 720 } 721 } 722 723 /* 724 * Some drivers cache ETHTOOL_GLINK for a period of time so we only 725 * attempt to get link status from it if the above MII ioctls fail. 726 */ 727 if (slave_dev->ethtool_ops) { 728 if (slave_dev->ethtool_ops->get_link) { 729 u32 link; 730 731 link = slave_dev->ethtool_ops->get_link(slave_dev); 732 733 return link ? BMSR_LSTATUS : 0; 734 } 735 } 736 737 /* 738 * If reporting, report that either there's no dev->do_ioctl, 739 * or both SIOCGMIIREG and get_link failed (meaning that we 740 * cannot report link status). If not reporting, pretend 741 * we're ok. 742 */ 743 return (reporting ? -1 : BMSR_LSTATUS); 744 } 745 746 /*----------------------------- Multicast list ------------------------------*/ 747 748 /* 749 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise 750 */ 751 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2) 752 { 753 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 && 754 dmi1->dmi_addrlen == dmi2->dmi_addrlen; 755 } 756 757 /* 758 * returns dmi entry if found, NULL otherwise 759 */ 760 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) 761 { 762 struct dev_mc_list *idmi; 763 764 for (idmi = mc_list; idmi; idmi = idmi->next) { 765 if (bond_is_dmi_same(dmi, idmi)) { 766 return idmi; 767 } 768 } 769 770 return NULL; 771 } 772 773 /* 774 * Push the promiscuity flag down to appropriate slaves 775 */ 776 static int bond_set_promiscuity(struct bonding *bond, int inc) 777 { 778 int err = 0; 779 if (USES_PRIMARY(bond->params.mode)) { 780 /* write lock already acquired */ 781 if (bond->curr_active_slave) { 782 err = dev_set_promiscuity(bond->curr_active_slave->dev, 783 inc); 784 } 785 } else { 786 struct slave *slave; 787 int i; 788 bond_for_each_slave(bond, slave, i) { 789 err = dev_set_promiscuity(slave->dev, inc); 790 if (err) 791 return err; 792 } 793 } 794 return err; 795 } 796 797 /* 798 * Push the allmulti flag down to all slaves 799 */ 800 static int bond_set_allmulti(struct bonding *bond, int inc) 801 { 802 int err = 0; 803 if (USES_PRIMARY(bond->params.mode)) { 804 /* write lock already acquired */ 805 if (bond->curr_active_slave) { 806 err = dev_set_allmulti(bond->curr_active_slave->dev, 807 inc); 808 } 809 } else { 810 struct slave *slave; 811 int i; 812 bond_for_each_slave(bond, slave, i) { 813 err = dev_set_allmulti(slave->dev, inc); 814 if (err) 815 return err; 816 } 817 } 818 return err; 819 } 820 821 /* 822 * Add a Multicast address to slaves 823 * according to mode 824 */ 825 static void bond_mc_add(struct bonding *bond, void *addr, int alen) 826 { 827 if (USES_PRIMARY(bond->params.mode)) { 828 /* write lock already acquired */ 829 if (bond->curr_active_slave) { 830 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0); 831 } 832 } else { 833 struct slave *slave; 834 int i; 835 bond_for_each_slave(bond, slave, i) { 836 dev_mc_add(slave->dev, addr, alen, 0); 837 } 838 } 839 } 840 841 /* 842 * Remove a multicast address from slave 843 * according to mode 844 */ 845 static void bond_mc_delete(struct bonding *bond, void *addr, int alen) 846 { 847 if (USES_PRIMARY(bond->params.mode)) { 848 /* write lock already acquired */ 849 if (bond->curr_active_slave) { 850 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0); 851 } 852 } else { 853 struct slave *slave; 854 int i; 855 bond_for_each_slave(bond, slave, i) { 856 dev_mc_delete(slave->dev, addr, alen, 0); 857 } 858 } 859 } 860 861 862 /* 863 * Retrieve the list of registered multicast addresses for the bonding 864 * device and retransmit an IGMP JOIN request to the current active 865 * slave. 866 */ 867 static void bond_resend_igmp_join_requests(struct bonding *bond) 868 { 869 struct in_device *in_dev; 870 struct ip_mc_list *im; 871 872 rcu_read_lock(); 873 in_dev = __in_dev_get_rcu(bond->dev); 874 if (in_dev) { 875 for (im = in_dev->mc_list; im; im = im->next) { 876 ip_mc_rejoin_group(im); 877 } 878 } 879 880 rcu_read_unlock(); 881 } 882 883 /* 884 * Totally destroys the mc_list in bond 885 */ 886 static void bond_mc_list_destroy(struct bonding *bond) 887 { 888 struct dev_mc_list *dmi; 889 890 dmi = bond->mc_list; 891 while (dmi) { 892 bond->mc_list = dmi->next; 893 kfree(dmi); 894 dmi = bond->mc_list; 895 } 896 bond->mc_list = NULL; 897 } 898 899 /* 900 * Copy all the Multicast addresses from src to the bonding device dst 901 */ 902 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond, 903 gfp_t gfp_flag) 904 { 905 struct dev_mc_list *dmi, *new_dmi; 906 907 for (dmi = mc_list; dmi; dmi = dmi->next) { 908 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag); 909 910 if (!new_dmi) { 911 /* FIXME: Potential memory leak !!! */ 912 return -ENOMEM; 913 } 914 915 new_dmi->next = bond->mc_list; 916 bond->mc_list = new_dmi; 917 new_dmi->dmi_addrlen = dmi->dmi_addrlen; 918 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen); 919 new_dmi->dmi_users = dmi->dmi_users; 920 new_dmi->dmi_gusers = dmi->dmi_gusers; 921 } 922 923 return 0; 924 } 925 926 /* 927 * flush all members of flush->mc_list from device dev->mc_list 928 */ 929 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev) 930 { 931 struct bonding *bond = netdev_priv(bond_dev); 932 struct dev_mc_list *dmi; 933 934 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 935 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 936 } 937 938 if (bond->params.mode == BOND_MODE_8023AD) { 939 /* del lacpdu mc addr from mc list */ 940 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 941 942 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 943 } 944 } 945 946 /*--------------------------- Active slave change ---------------------------*/ 947 948 /* 949 * Update the mc list and multicast-related flags for the new and 950 * old active slaves (if any) according to the multicast mode, and 951 * promiscuous flags unconditionally. 952 */ 953 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active) 954 { 955 struct dev_mc_list *dmi; 956 957 if (!USES_PRIMARY(bond->params.mode)) { 958 /* nothing to do - mc list is already up-to-date on 959 * all slaves 960 */ 961 return; 962 } 963 964 if (old_active) { 965 if (bond->dev->flags & IFF_PROMISC) { 966 dev_set_promiscuity(old_active->dev, -1); 967 } 968 969 if (bond->dev->flags & IFF_ALLMULTI) { 970 dev_set_allmulti(old_active->dev, -1); 971 } 972 973 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 974 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 975 } 976 } 977 978 if (new_active) { 979 /* FIXME: Signal errors upstream. */ 980 if (bond->dev->flags & IFF_PROMISC) { 981 dev_set_promiscuity(new_active->dev, 1); 982 } 983 984 if (bond->dev->flags & IFF_ALLMULTI) { 985 dev_set_allmulti(new_active->dev, 1); 986 } 987 988 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 989 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 990 } 991 bond_resend_igmp_join_requests(bond); 992 } 993 } 994 995 /* 996 * bond_do_fail_over_mac 997 * 998 * Perform special MAC address swapping for fail_over_mac settings 999 * 1000 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh. 1001 */ 1002 static void bond_do_fail_over_mac(struct bonding *bond, 1003 struct slave *new_active, 1004 struct slave *old_active) 1005 { 1006 u8 tmp_mac[ETH_ALEN]; 1007 struct sockaddr saddr; 1008 int rv; 1009 1010 switch (bond->params.fail_over_mac) { 1011 case BOND_FOM_ACTIVE: 1012 if (new_active) 1013 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr, 1014 new_active->dev->addr_len); 1015 break; 1016 case BOND_FOM_FOLLOW: 1017 /* 1018 * if new_active && old_active, swap them 1019 * if just old_active, do nothing (going to no active slave) 1020 * if just new_active, set new_active to bond's MAC 1021 */ 1022 if (!new_active) 1023 return; 1024 1025 write_unlock_bh(&bond->curr_slave_lock); 1026 read_unlock(&bond->lock); 1027 1028 if (old_active) { 1029 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN); 1030 memcpy(saddr.sa_data, old_active->dev->dev_addr, 1031 ETH_ALEN); 1032 saddr.sa_family = new_active->dev->type; 1033 } else { 1034 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN); 1035 saddr.sa_family = bond->dev->type; 1036 } 1037 1038 rv = dev_set_mac_address(new_active->dev, &saddr); 1039 if (rv) { 1040 printk(KERN_ERR DRV_NAME 1041 ": %s: Error %d setting MAC of slave %s\n", 1042 bond->dev->name, -rv, new_active->dev->name); 1043 goto out; 1044 } 1045 1046 if (!old_active) 1047 goto out; 1048 1049 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN); 1050 saddr.sa_family = old_active->dev->type; 1051 1052 rv = dev_set_mac_address(old_active->dev, &saddr); 1053 if (rv) 1054 printk(KERN_ERR DRV_NAME 1055 ": %s: Error %d setting MAC of slave %s\n", 1056 bond->dev->name, -rv, new_active->dev->name); 1057 out: 1058 read_lock(&bond->lock); 1059 write_lock_bh(&bond->curr_slave_lock); 1060 break; 1061 default: 1062 printk(KERN_ERR DRV_NAME 1063 ": %s: bond_do_fail_over_mac impossible: bad policy %d\n", 1064 bond->dev->name, bond->params.fail_over_mac); 1065 break; 1066 } 1067 1068 } 1069 1070 1071 /** 1072 * find_best_interface - select the best available slave to be the active one 1073 * @bond: our bonding struct 1074 * 1075 * Warning: Caller must hold curr_slave_lock for writing. 1076 */ 1077 static struct slave *bond_find_best_slave(struct bonding *bond) 1078 { 1079 struct slave *new_active, *old_active; 1080 struct slave *bestslave = NULL; 1081 int mintime = bond->params.updelay; 1082 int i; 1083 1084 new_active = old_active = bond->curr_active_slave; 1085 1086 if (!new_active) { /* there were no active slaves left */ 1087 if (bond->slave_cnt > 0) { /* found one slave */ 1088 new_active = bond->first_slave; 1089 } else { 1090 return NULL; /* still no slave, return NULL */ 1091 } 1092 } 1093 1094 /* first try the primary link; if arping, a link must tx/rx traffic 1095 * before it can be considered the curr_active_slave - also, we would skip 1096 * slaves between the curr_active_slave and primary_slave that may be up 1097 * and able to arp 1098 */ 1099 if ((bond->primary_slave) && 1100 (!bond->params.arp_interval) && 1101 (IS_UP(bond->primary_slave->dev))) { 1102 new_active = bond->primary_slave; 1103 } 1104 1105 /* remember where to stop iterating over the slaves */ 1106 old_active = new_active; 1107 1108 bond_for_each_slave_from(bond, new_active, i, old_active) { 1109 if (IS_UP(new_active->dev)) { 1110 if (new_active->link == BOND_LINK_UP) { 1111 return new_active; 1112 } else if (new_active->link == BOND_LINK_BACK) { 1113 /* link up, but waiting for stabilization */ 1114 if (new_active->delay < mintime) { 1115 mintime = new_active->delay; 1116 bestslave = new_active; 1117 } 1118 } 1119 } 1120 } 1121 1122 return bestslave; 1123 } 1124 1125 /** 1126 * change_active_interface - change the active slave into the specified one 1127 * @bond: our bonding struct 1128 * @new: the new slave to make the active one 1129 * 1130 * Set the new slave to the bond's settings and unset them on the old 1131 * curr_active_slave. 1132 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1133 * 1134 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1135 * because it is apparently the best available slave we have, even though its 1136 * updelay hasn't timed out yet. 1137 * 1138 * If new_active is not NULL, caller must hold bond->lock for read and 1139 * curr_slave_lock for write_bh. 1140 */ 1141 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1142 { 1143 struct slave *old_active = bond->curr_active_slave; 1144 1145 if (old_active == new_active) { 1146 return; 1147 } 1148 1149 if (new_active) { 1150 new_active->jiffies = jiffies; 1151 1152 if (new_active->link == BOND_LINK_BACK) { 1153 if (USES_PRIMARY(bond->params.mode)) { 1154 printk(KERN_INFO DRV_NAME 1155 ": %s: making interface %s the new " 1156 "active one %d ms earlier.\n", 1157 bond->dev->name, new_active->dev->name, 1158 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1159 } 1160 1161 new_active->delay = 0; 1162 new_active->link = BOND_LINK_UP; 1163 1164 if (bond->params.mode == BOND_MODE_8023AD) { 1165 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1166 } 1167 1168 if (bond_is_lb(bond)) 1169 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1170 } else { 1171 if (USES_PRIMARY(bond->params.mode)) { 1172 printk(KERN_INFO DRV_NAME 1173 ": %s: making interface %s the new " 1174 "active one.\n", 1175 bond->dev->name, new_active->dev->name); 1176 } 1177 } 1178 } 1179 1180 if (USES_PRIMARY(bond->params.mode)) { 1181 bond_mc_swap(bond, new_active, old_active); 1182 } 1183 1184 if (bond_is_lb(bond)) { 1185 bond_alb_handle_active_change(bond, new_active); 1186 if (old_active) 1187 bond_set_slave_inactive_flags(old_active); 1188 if (new_active) 1189 bond_set_slave_active_flags(new_active); 1190 } else { 1191 bond->curr_active_slave = new_active; 1192 } 1193 1194 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1195 if (old_active) { 1196 bond_set_slave_inactive_flags(old_active); 1197 } 1198 1199 if (new_active) { 1200 bond_set_slave_active_flags(new_active); 1201 1202 if (bond->params.fail_over_mac) 1203 bond_do_fail_over_mac(bond, new_active, 1204 old_active); 1205 1206 bond->send_grat_arp = bond->params.num_grat_arp; 1207 bond_send_gratuitous_arp(bond); 1208 1209 bond->send_unsol_na = bond->params.num_unsol_na; 1210 bond_send_unsolicited_na(bond); 1211 1212 write_unlock_bh(&bond->curr_slave_lock); 1213 read_unlock(&bond->lock); 1214 1215 netdev_bonding_change(bond->dev); 1216 1217 read_lock(&bond->lock); 1218 write_lock_bh(&bond->curr_slave_lock); 1219 } 1220 } 1221 } 1222 1223 /** 1224 * bond_select_active_slave - select a new active slave, if needed 1225 * @bond: our bonding struct 1226 * 1227 * This functions shoud be called when one of the following occurs: 1228 * - The old curr_active_slave has been released or lost its link. 1229 * - The primary_slave has got its link back. 1230 * - A slave has got its link back and there's no old curr_active_slave. 1231 * 1232 * Caller must hold bond->lock for read and curr_slave_lock for write_bh. 1233 */ 1234 void bond_select_active_slave(struct bonding *bond) 1235 { 1236 struct slave *best_slave; 1237 int rv; 1238 1239 best_slave = bond_find_best_slave(bond); 1240 if (best_slave != bond->curr_active_slave) { 1241 bond_change_active_slave(bond, best_slave); 1242 rv = bond_set_carrier(bond); 1243 if (!rv) 1244 return; 1245 1246 if (netif_carrier_ok(bond->dev)) { 1247 printk(KERN_INFO DRV_NAME 1248 ": %s: first active interface up!\n", 1249 bond->dev->name); 1250 } else { 1251 printk(KERN_INFO DRV_NAME ": %s: " 1252 "now running without any active interface !\n", 1253 bond->dev->name); 1254 } 1255 } 1256 } 1257 1258 /*--------------------------- slave list handling ---------------------------*/ 1259 1260 /* 1261 * This function attaches the slave to the end of list. 1262 * 1263 * bond->lock held for writing by caller. 1264 */ 1265 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1266 { 1267 if (bond->first_slave == NULL) { /* attaching the first slave */ 1268 new_slave->next = new_slave; 1269 new_slave->prev = new_slave; 1270 bond->first_slave = new_slave; 1271 } else { 1272 new_slave->next = bond->first_slave; 1273 new_slave->prev = bond->first_slave->prev; 1274 new_slave->next->prev = new_slave; 1275 new_slave->prev->next = new_slave; 1276 } 1277 1278 bond->slave_cnt++; 1279 } 1280 1281 /* 1282 * This function detaches the slave from the list. 1283 * WARNING: no check is made to verify if the slave effectively 1284 * belongs to <bond>. 1285 * Nothing is freed on return, structures are just unchained. 1286 * If any slave pointer in bond was pointing to <slave>, 1287 * it should be changed by the calling function. 1288 * 1289 * bond->lock held for writing by caller. 1290 */ 1291 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1292 { 1293 if (slave->next) { 1294 slave->next->prev = slave->prev; 1295 } 1296 1297 if (slave->prev) { 1298 slave->prev->next = slave->next; 1299 } 1300 1301 if (bond->first_slave == slave) { /* slave is the first slave */ 1302 if (bond->slave_cnt > 1) { /* there are more slave */ 1303 bond->first_slave = slave->next; 1304 } else { 1305 bond->first_slave = NULL; /* slave was the last one */ 1306 } 1307 } 1308 1309 slave->next = NULL; 1310 slave->prev = NULL; 1311 bond->slave_cnt--; 1312 } 1313 1314 /*---------------------------------- IOCTL ----------------------------------*/ 1315 1316 static int bond_sethwaddr(struct net_device *bond_dev, 1317 struct net_device *slave_dev) 1318 { 1319 pr_debug("bond_dev=%p\n", bond_dev); 1320 pr_debug("slave_dev=%p\n", slave_dev); 1321 pr_debug("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1322 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1323 return 0; 1324 } 1325 1326 #define BOND_VLAN_FEATURES \ 1327 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \ 1328 NETIF_F_HW_VLAN_FILTER) 1329 1330 /* 1331 * Compute the common dev->feature set available to all slaves. Some 1332 * feature bits are managed elsewhere, so preserve those feature bits 1333 * on the master device. 1334 */ 1335 static int bond_compute_features(struct bonding *bond) 1336 { 1337 struct slave *slave; 1338 struct net_device *bond_dev = bond->dev; 1339 unsigned long features = bond_dev->features; 1340 unsigned short max_hard_header_len = max((u16)ETH_HLEN, 1341 bond_dev->hard_header_len); 1342 int i; 1343 1344 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES); 1345 features |= NETIF_F_GSO_MASK | NETIF_F_NO_CSUM; 1346 1347 if (!bond->first_slave) 1348 goto done; 1349 1350 features &= ~NETIF_F_ONE_FOR_ALL; 1351 1352 bond_for_each_slave(bond, slave, i) { 1353 features = netdev_increment_features(features, 1354 slave->dev->features, 1355 NETIF_F_ONE_FOR_ALL); 1356 if (slave->dev->hard_header_len > max_hard_header_len) 1357 max_hard_header_len = slave->dev->hard_header_len; 1358 } 1359 1360 done: 1361 features |= (bond_dev->features & BOND_VLAN_FEATURES); 1362 bond_dev->features = netdev_fix_features(features, NULL); 1363 bond_dev->hard_header_len = max_hard_header_len; 1364 1365 return 0; 1366 } 1367 1368 static void bond_setup_by_slave(struct net_device *bond_dev, 1369 struct net_device *slave_dev) 1370 { 1371 struct bonding *bond = netdev_priv(bond_dev); 1372 1373 bond_dev->header_ops = slave_dev->header_ops; 1374 1375 bond_dev->type = slave_dev->type; 1376 bond_dev->hard_header_len = slave_dev->hard_header_len; 1377 bond_dev->addr_len = slave_dev->addr_len; 1378 1379 memcpy(bond_dev->broadcast, slave_dev->broadcast, 1380 slave_dev->addr_len); 1381 bond->setup_by_slave = 1; 1382 } 1383 1384 /* enslave device <slave> to bond device <master> */ 1385 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1386 { 1387 struct bonding *bond = netdev_priv(bond_dev); 1388 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 1389 struct slave *new_slave = NULL; 1390 struct dev_mc_list *dmi; 1391 struct sockaddr addr; 1392 int link_reporting; 1393 int old_features = bond_dev->features; 1394 int res = 0; 1395 1396 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL && 1397 slave_ops->ndo_do_ioctl == NULL) { 1398 printk(KERN_WARNING DRV_NAME 1399 ": %s: Warning: no link monitoring support for %s\n", 1400 bond_dev->name, slave_dev->name); 1401 } 1402 1403 /* bond must be initialized by bond_open() before enslaving */ 1404 if (!(bond_dev->flags & IFF_UP)) { 1405 printk(KERN_WARNING DRV_NAME 1406 " %s: master_dev is not up in bond_enslave\n", 1407 bond_dev->name); 1408 } 1409 1410 /* already enslaved */ 1411 if (slave_dev->flags & IFF_SLAVE) { 1412 pr_debug("Error, Device was already enslaved\n"); 1413 return -EBUSY; 1414 } 1415 1416 /* vlan challenged mutual exclusion */ 1417 /* no need to lock since we're protected by rtnl_lock */ 1418 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1419 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1420 if (!list_empty(&bond->vlan_list)) { 1421 printk(KERN_ERR DRV_NAME 1422 ": %s: Error: cannot enslave VLAN " 1423 "challenged slave %s on VLAN enabled " 1424 "bond %s\n", bond_dev->name, slave_dev->name, 1425 bond_dev->name); 1426 return -EPERM; 1427 } else { 1428 printk(KERN_WARNING DRV_NAME 1429 ": %s: Warning: enslaved VLAN challenged " 1430 "slave %s. Adding VLANs will be blocked as " 1431 "long as %s is part of bond %s\n", 1432 bond_dev->name, slave_dev->name, slave_dev->name, 1433 bond_dev->name); 1434 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1435 } 1436 } else { 1437 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1438 if (bond->slave_cnt == 0) { 1439 /* First slave, and it is not VLAN challenged, 1440 * so remove the block of adding VLANs over the bond. 1441 */ 1442 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1443 } 1444 } 1445 1446 /* 1447 * Old ifenslave binaries are no longer supported. These can 1448 * be identified with moderate accurary by the state of the slave: 1449 * the current ifenslave will set the interface down prior to 1450 * enslaving it; the old ifenslave will not. 1451 */ 1452 if ((slave_dev->flags & IFF_UP)) { 1453 printk(KERN_ERR DRV_NAME ": %s is up. " 1454 "This may be due to an out of date ifenslave.\n", 1455 slave_dev->name); 1456 res = -EPERM; 1457 goto err_undo_flags; 1458 } 1459 1460 /* set bonding device ether type by slave - bonding netdevices are 1461 * created with ether_setup, so when the slave type is not ARPHRD_ETHER 1462 * there is a need to override some of the type dependent attribs/funcs. 1463 * 1464 * bond ether type mutual exclusion - don't allow slaves of dissimilar 1465 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond 1466 */ 1467 if (bond->slave_cnt == 0) { 1468 if (slave_dev->type != ARPHRD_ETHER) 1469 bond_setup_by_slave(bond_dev, slave_dev); 1470 } else if (bond_dev->type != slave_dev->type) { 1471 printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different " 1472 "from other slaves (%d), can not enslave it.\n", 1473 slave_dev->name, 1474 slave_dev->type, bond_dev->type); 1475 res = -EINVAL; 1476 goto err_undo_flags; 1477 } 1478 1479 if (slave_ops->ndo_set_mac_address == NULL) { 1480 if (bond->slave_cnt == 0) { 1481 printk(KERN_WARNING DRV_NAME 1482 ": %s: Warning: The first slave device " 1483 "specified does not support setting the MAC " 1484 "address. Setting fail_over_mac to active.", 1485 bond_dev->name); 1486 bond->params.fail_over_mac = BOND_FOM_ACTIVE; 1487 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1488 printk(KERN_ERR DRV_NAME 1489 ": %s: Error: The slave device specified " 1490 "does not support setting the MAC address, " 1491 "but fail_over_mac is not set to active.\n" 1492 , bond_dev->name); 1493 res = -EOPNOTSUPP; 1494 goto err_undo_flags; 1495 } 1496 } 1497 1498 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1499 if (!new_slave) { 1500 res = -ENOMEM; 1501 goto err_undo_flags; 1502 } 1503 1504 /* save slave's original flags before calling 1505 * netdev_set_master and dev_open 1506 */ 1507 new_slave->original_flags = slave_dev->flags; 1508 1509 /* 1510 * Save slave's original ("permanent") mac address for modes 1511 * that need it, and for restoring it upon release, and then 1512 * set it to the master's address 1513 */ 1514 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1515 1516 if (!bond->params.fail_over_mac) { 1517 /* 1518 * Set slave to master's mac address. The application already 1519 * set the master's mac address to that of the first slave 1520 */ 1521 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1522 addr.sa_family = slave_dev->type; 1523 res = dev_set_mac_address(slave_dev, &addr); 1524 if (res) { 1525 pr_debug("Error %d calling set_mac_address\n", res); 1526 goto err_free; 1527 } 1528 } 1529 1530 res = netdev_set_master(slave_dev, bond_dev); 1531 if (res) { 1532 pr_debug("Error %d calling netdev_set_master\n", res); 1533 goto err_restore_mac; 1534 } 1535 /* open the slave since the application closed it */ 1536 res = dev_open(slave_dev); 1537 if (res) { 1538 pr_debug("Openning slave %s failed\n", slave_dev->name); 1539 goto err_unset_master; 1540 } 1541 1542 new_slave->dev = slave_dev; 1543 slave_dev->priv_flags |= IFF_BONDING; 1544 1545 if (bond_is_lb(bond)) { 1546 /* bond_alb_init_slave() must be called before all other stages since 1547 * it might fail and we do not want to have to undo everything 1548 */ 1549 res = bond_alb_init_slave(bond, new_slave); 1550 if (res) { 1551 goto err_close; 1552 } 1553 } 1554 1555 /* If the mode USES_PRIMARY, then the new slave gets the 1556 * master's promisc (and mc) settings only if it becomes the 1557 * curr_active_slave, and that is taken care of later when calling 1558 * bond_change_active() 1559 */ 1560 if (!USES_PRIMARY(bond->params.mode)) { 1561 /* set promiscuity level to new slave */ 1562 if (bond_dev->flags & IFF_PROMISC) { 1563 res = dev_set_promiscuity(slave_dev, 1); 1564 if (res) 1565 goto err_close; 1566 } 1567 1568 /* set allmulti level to new slave */ 1569 if (bond_dev->flags & IFF_ALLMULTI) { 1570 res = dev_set_allmulti(slave_dev, 1); 1571 if (res) 1572 goto err_close; 1573 } 1574 1575 netif_addr_lock_bh(bond_dev); 1576 /* upload master's mc_list to new slave */ 1577 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 1578 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 1579 } 1580 netif_addr_unlock_bh(bond_dev); 1581 } 1582 1583 if (bond->params.mode == BOND_MODE_8023AD) { 1584 /* add lacpdu mc addr to mc list */ 1585 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1586 1587 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 1588 } 1589 1590 bond_add_vlans_on_slave(bond, slave_dev); 1591 1592 write_lock_bh(&bond->lock); 1593 1594 bond_attach_slave(bond, new_slave); 1595 1596 new_slave->delay = 0; 1597 new_slave->link_failure_count = 0; 1598 1599 bond_compute_features(bond); 1600 1601 write_unlock_bh(&bond->lock); 1602 1603 read_lock(&bond->lock); 1604 1605 new_slave->last_arp_rx = jiffies; 1606 1607 if (bond->params.miimon && !bond->params.use_carrier) { 1608 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1609 1610 if ((link_reporting == -1) && !bond->params.arp_interval) { 1611 /* 1612 * miimon is set but a bonded network driver 1613 * does not support ETHTOOL/MII and 1614 * arp_interval is not set. Note: if 1615 * use_carrier is enabled, we will never go 1616 * here (because netif_carrier is always 1617 * supported); thus, we don't need to change 1618 * the messages for netif_carrier. 1619 */ 1620 printk(KERN_WARNING DRV_NAME 1621 ": %s: Warning: MII and ETHTOOL support not " 1622 "available for interface %s, and " 1623 "arp_interval/arp_ip_target module parameters " 1624 "not specified, thus bonding will not detect " 1625 "link failures! see bonding.txt for details.\n", 1626 bond_dev->name, slave_dev->name); 1627 } else if (link_reporting == -1) { 1628 /* unable get link status using mii/ethtool */ 1629 printk(KERN_WARNING DRV_NAME 1630 ": %s: Warning: can't get link status from " 1631 "interface %s; the network driver associated " 1632 "with this interface does not support MII or " 1633 "ETHTOOL link status reporting, thus miimon " 1634 "has no effect on this interface.\n", 1635 bond_dev->name, slave_dev->name); 1636 } 1637 } 1638 1639 /* check for initial state */ 1640 if (!bond->params.miimon || 1641 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) { 1642 if (bond->params.updelay) { 1643 pr_debug("Initial state of slave_dev is " 1644 "BOND_LINK_BACK\n"); 1645 new_slave->link = BOND_LINK_BACK; 1646 new_slave->delay = bond->params.updelay; 1647 } else { 1648 pr_debug("Initial state of slave_dev is " 1649 "BOND_LINK_UP\n"); 1650 new_slave->link = BOND_LINK_UP; 1651 } 1652 new_slave->jiffies = jiffies; 1653 } else { 1654 pr_debug("Initial state of slave_dev is " 1655 "BOND_LINK_DOWN\n"); 1656 new_slave->link = BOND_LINK_DOWN; 1657 } 1658 1659 if (bond_update_speed_duplex(new_slave) && 1660 (new_slave->link != BOND_LINK_DOWN)) { 1661 printk(KERN_WARNING DRV_NAME 1662 ": %s: Warning: failed to get speed and duplex from %s, " 1663 "assumed to be 100Mb/sec and Full.\n", 1664 bond_dev->name, new_slave->dev->name); 1665 1666 if (bond->params.mode == BOND_MODE_8023AD) { 1667 printk(KERN_WARNING DRV_NAME 1668 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL " 1669 "support in base driver for proper aggregator " 1670 "selection.\n", bond_dev->name); 1671 } 1672 } 1673 1674 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1675 /* if there is a primary slave, remember it */ 1676 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1677 bond->primary_slave = new_slave; 1678 } 1679 } 1680 1681 write_lock_bh(&bond->curr_slave_lock); 1682 1683 switch (bond->params.mode) { 1684 case BOND_MODE_ACTIVEBACKUP: 1685 bond_set_slave_inactive_flags(new_slave); 1686 bond_select_active_slave(bond); 1687 break; 1688 case BOND_MODE_8023AD: 1689 /* in 802.3ad mode, the internal mechanism 1690 * will activate the slaves in the selected 1691 * aggregator 1692 */ 1693 bond_set_slave_inactive_flags(new_slave); 1694 /* if this is the first slave */ 1695 if (bond->slave_cnt == 1) { 1696 SLAVE_AD_INFO(new_slave).id = 1; 1697 /* Initialize AD with the number of times that the AD timer is called in 1 second 1698 * can be called only after the mac address of the bond is set 1699 */ 1700 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL, 1701 bond->params.lacp_fast); 1702 } else { 1703 SLAVE_AD_INFO(new_slave).id = 1704 SLAVE_AD_INFO(new_slave->prev).id + 1; 1705 } 1706 1707 bond_3ad_bind_slave(new_slave); 1708 break; 1709 case BOND_MODE_TLB: 1710 case BOND_MODE_ALB: 1711 new_slave->state = BOND_STATE_ACTIVE; 1712 bond_set_slave_inactive_flags(new_slave); 1713 break; 1714 default: 1715 pr_debug("This slave is always active in trunk mode\n"); 1716 1717 /* always active in trunk mode */ 1718 new_slave->state = BOND_STATE_ACTIVE; 1719 1720 /* In trunking mode there is little meaning to curr_active_slave 1721 * anyway (it holds no special properties of the bond device), 1722 * so we can change it without calling change_active_interface() 1723 */ 1724 if (!bond->curr_active_slave) { 1725 bond->curr_active_slave = new_slave; 1726 } 1727 break; 1728 } /* switch(bond_mode) */ 1729 1730 write_unlock_bh(&bond->curr_slave_lock); 1731 1732 bond_set_carrier(bond); 1733 1734 read_unlock(&bond->lock); 1735 1736 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1737 if (res) 1738 goto err_close; 1739 1740 printk(KERN_INFO DRV_NAME 1741 ": %s: enslaving %s as a%s interface with a%s link.\n", 1742 bond_dev->name, slave_dev->name, 1743 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup", 1744 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1745 1746 /* enslave is successful */ 1747 return 0; 1748 1749 /* Undo stages on error */ 1750 err_close: 1751 dev_close(slave_dev); 1752 1753 err_unset_master: 1754 netdev_set_master(slave_dev, NULL); 1755 1756 err_restore_mac: 1757 if (!bond->params.fail_over_mac) { 1758 /* XXX TODO - fom follow mode needs to change master's 1759 * MAC if this slave's MAC is in use by the bond, or at 1760 * least print a warning. 1761 */ 1762 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1763 addr.sa_family = slave_dev->type; 1764 dev_set_mac_address(slave_dev, &addr); 1765 } 1766 1767 err_free: 1768 kfree(new_slave); 1769 1770 err_undo_flags: 1771 bond_dev->features = old_features; 1772 1773 return res; 1774 } 1775 1776 /* 1777 * Try to release the slave device <slave> from the bond device <master> 1778 * It is legal to access curr_active_slave without a lock because all the function 1779 * is write-locked. 1780 * 1781 * The rules for slave state should be: 1782 * for Active/Backup: 1783 * Active stays on all backups go down 1784 * for Bonded connections: 1785 * The first up interface should be left on and all others downed. 1786 */ 1787 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 1788 { 1789 struct bonding *bond = netdev_priv(bond_dev); 1790 struct slave *slave, *oldcurrent; 1791 struct sockaddr addr; 1792 int mac_addr_differ; 1793 1794 /* slave is not a slave or master is not master of this slave */ 1795 if (!(slave_dev->flags & IFF_SLAVE) || 1796 (slave_dev->master != bond_dev)) { 1797 printk(KERN_ERR DRV_NAME 1798 ": %s: Error: cannot release %s.\n", 1799 bond_dev->name, slave_dev->name); 1800 return -EINVAL; 1801 } 1802 1803 write_lock_bh(&bond->lock); 1804 1805 slave = bond_get_slave_by_dev(bond, slave_dev); 1806 if (!slave) { 1807 /* not a slave of this bond */ 1808 printk(KERN_INFO DRV_NAME 1809 ": %s: %s not enslaved\n", 1810 bond_dev->name, slave_dev->name); 1811 write_unlock_bh(&bond->lock); 1812 return -EINVAL; 1813 } 1814 1815 if (!bond->params.fail_over_mac) { 1816 mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr, 1817 ETH_ALEN); 1818 if (!mac_addr_differ && (bond->slave_cnt > 1)) 1819 printk(KERN_WARNING DRV_NAME 1820 ": %s: Warning: the permanent HWaddr of %s - " 1821 "%pM - is still in use by %s. " 1822 "Set the HWaddr of %s to a different address " 1823 "to avoid conflicts.\n", 1824 bond_dev->name, slave_dev->name, 1825 slave->perm_hwaddr, 1826 bond_dev->name, slave_dev->name); 1827 } 1828 1829 /* Inform AD package of unbinding of slave. */ 1830 if (bond->params.mode == BOND_MODE_8023AD) { 1831 /* must be called before the slave is 1832 * detached from the list 1833 */ 1834 bond_3ad_unbind_slave(slave); 1835 } 1836 1837 printk(KERN_INFO DRV_NAME 1838 ": %s: releasing %s interface %s\n", 1839 bond_dev->name, 1840 (slave->state == BOND_STATE_ACTIVE) 1841 ? "active" : "backup", 1842 slave_dev->name); 1843 1844 oldcurrent = bond->curr_active_slave; 1845 1846 bond->current_arp_slave = NULL; 1847 1848 /* release the slave from its bond */ 1849 bond_detach_slave(bond, slave); 1850 1851 bond_compute_features(bond); 1852 1853 if (bond->primary_slave == slave) { 1854 bond->primary_slave = NULL; 1855 } 1856 1857 if (oldcurrent == slave) { 1858 bond_change_active_slave(bond, NULL); 1859 } 1860 1861 if (bond_is_lb(bond)) { 1862 /* Must be called only after the slave has been 1863 * detached from the list and the curr_active_slave 1864 * has been cleared (if our_slave == old_current), 1865 * but before a new active slave is selected. 1866 */ 1867 write_unlock_bh(&bond->lock); 1868 bond_alb_deinit_slave(bond, slave); 1869 write_lock_bh(&bond->lock); 1870 } 1871 1872 if (oldcurrent == slave) { 1873 /* 1874 * Note that we hold RTNL over this sequence, so there 1875 * is no concern that another slave add/remove event 1876 * will interfere. 1877 */ 1878 write_unlock_bh(&bond->lock); 1879 read_lock(&bond->lock); 1880 write_lock_bh(&bond->curr_slave_lock); 1881 1882 bond_select_active_slave(bond); 1883 1884 write_unlock_bh(&bond->curr_slave_lock); 1885 read_unlock(&bond->lock); 1886 write_lock_bh(&bond->lock); 1887 } 1888 1889 if (bond->slave_cnt == 0) { 1890 bond_set_carrier(bond); 1891 1892 /* if the last slave was removed, zero the mac address 1893 * of the master so it will be set by the application 1894 * to the mac address of the first slave 1895 */ 1896 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 1897 1898 if (list_empty(&bond->vlan_list)) { 1899 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1900 } else { 1901 printk(KERN_WARNING DRV_NAME 1902 ": %s: Warning: clearing HW address of %s while it " 1903 "still has VLANs.\n", 1904 bond_dev->name, bond_dev->name); 1905 printk(KERN_WARNING DRV_NAME 1906 ": %s: When re-adding slaves, make sure the bond's " 1907 "HW address matches its VLANs'.\n", 1908 bond_dev->name); 1909 } 1910 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 1911 !bond_has_challenged_slaves(bond)) { 1912 printk(KERN_INFO DRV_NAME 1913 ": %s: last VLAN challenged slave %s " 1914 "left bond %s. VLAN blocking is removed\n", 1915 bond_dev->name, slave_dev->name, bond_dev->name); 1916 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1917 } 1918 1919 write_unlock_bh(&bond->lock); 1920 1921 /* must do this from outside any spinlocks */ 1922 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1923 1924 bond_del_vlans_from_slave(bond, slave_dev); 1925 1926 /* If the mode USES_PRIMARY, then we should only remove its 1927 * promisc and mc settings if it was the curr_active_slave, but that was 1928 * already taken care of above when we detached the slave 1929 */ 1930 if (!USES_PRIMARY(bond->params.mode)) { 1931 /* unset promiscuity level from slave */ 1932 if (bond_dev->flags & IFF_PROMISC) { 1933 dev_set_promiscuity(slave_dev, -1); 1934 } 1935 1936 /* unset allmulti level from slave */ 1937 if (bond_dev->flags & IFF_ALLMULTI) { 1938 dev_set_allmulti(slave_dev, -1); 1939 } 1940 1941 /* flush master's mc_list from slave */ 1942 netif_addr_lock_bh(bond_dev); 1943 bond_mc_list_flush(bond_dev, slave_dev); 1944 netif_addr_unlock_bh(bond_dev); 1945 } 1946 1947 netdev_set_master(slave_dev, NULL); 1948 1949 /* close slave before restoring its mac address */ 1950 dev_close(slave_dev); 1951 1952 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1953 /* restore original ("permanent") mac address */ 1954 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 1955 addr.sa_family = slave_dev->type; 1956 dev_set_mac_address(slave_dev, &addr); 1957 } 1958 1959 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 1960 IFF_SLAVE_INACTIVE | IFF_BONDING | 1961 IFF_SLAVE_NEEDARP); 1962 1963 kfree(slave); 1964 1965 return 0; /* deletion OK */ 1966 } 1967 1968 /* 1969 * Destroy a bonding device. 1970 * Must be under rtnl_lock when this function is called. 1971 */ 1972 void bond_destroy(struct bonding *bond) 1973 { 1974 bond_deinit(bond->dev); 1975 bond_destroy_sysfs_entry(bond); 1976 unregister_netdevice(bond->dev); 1977 } 1978 1979 static void bond_destructor(struct net_device *bond_dev) 1980 { 1981 struct bonding *bond = netdev_priv(bond_dev); 1982 1983 if (bond->wq) 1984 destroy_workqueue(bond->wq); 1985 1986 netif_addr_lock_bh(bond_dev); 1987 bond_mc_list_destroy(bond); 1988 netif_addr_unlock_bh(bond_dev); 1989 1990 free_netdev(bond_dev); 1991 } 1992 1993 /* 1994 * First release a slave and than destroy the bond if no more slaves iare left. 1995 * Must be under rtnl_lock when this function is called. 1996 */ 1997 int bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev) 1998 { 1999 struct bonding *bond = netdev_priv(bond_dev); 2000 int ret; 2001 2002 ret = bond_release(bond_dev, slave_dev); 2003 if ((ret == 0) && (bond->slave_cnt == 0)) { 2004 printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n", 2005 bond_dev->name, bond_dev->name); 2006 bond_destroy(bond); 2007 } 2008 return ret; 2009 } 2010 2011 /* 2012 * This function releases all slaves. 2013 */ 2014 static int bond_release_all(struct net_device *bond_dev) 2015 { 2016 struct bonding *bond = netdev_priv(bond_dev); 2017 struct slave *slave; 2018 struct net_device *slave_dev; 2019 struct sockaddr addr; 2020 2021 write_lock_bh(&bond->lock); 2022 2023 netif_carrier_off(bond_dev); 2024 2025 if (bond->slave_cnt == 0) { 2026 goto out; 2027 } 2028 2029 bond->current_arp_slave = NULL; 2030 bond->primary_slave = NULL; 2031 bond_change_active_slave(bond, NULL); 2032 2033 while ((slave = bond->first_slave) != NULL) { 2034 /* Inform AD package of unbinding of slave 2035 * before slave is detached from the list. 2036 */ 2037 if (bond->params.mode == BOND_MODE_8023AD) { 2038 bond_3ad_unbind_slave(slave); 2039 } 2040 2041 slave_dev = slave->dev; 2042 bond_detach_slave(bond, slave); 2043 2044 /* now that the slave is detached, unlock and perform 2045 * all the undo steps that should not be called from 2046 * within a lock. 2047 */ 2048 write_unlock_bh(&bond->lock); 2049 2050 if (bond_is_lb(bond)) { 2051 /* must be called only after the slave 2052 * has been detached from the list 2053 */ 2054 bond_alb_deinit_slave(bond, slave); 2055 } 2056 2057 bond_compute_features(bond); 2058 2059 bond_destroy_slave_symlinks(bond_dev, slave_dev); 2060 bond_del_vlans_from_slave(bond, slave_dev); 2061 2062 /* If the mode USES_PRIMARY, then we should only remove its 2063 * promisc and mc settings if it was the curr_active_slave, but that was 2064 * already taken care of above when we detached the slave 2065 */ 2066 if (!USES_PRIMARY(bond->params.mode)) { 2067 /* unset promiscuity level from slave */ 2068 if (bond_dev->flags & IFF_PROMISC) { 2069 dev_set_promiscuity(slave_dev, -1); 2070 } 2071 2072 /* unset allmulti level from slave */ 2073 if (bond_dev->flags & IFF_ALLMULTI) { 2074 dev_set_allmulti(slave_dev, -1); 2075 } 2076 2077 /* flush master's mc_list from slave */ 2078 netif_addr_lock_bh(bond_dev); 2079 bond_mc_list_flush(bond_dev, slave_dev); 2080 netif_addr_unlock_bh(bond_dev); 2081 } 2082 2083 netdev_set_master(slave_dev, NULL); 2084 2085 /* close slave before restoring its mac address */ 2086 dev_close(slave_dev); 2087 2088 if (!bond->params.fail_over_mac) { 2089 /* restore original ("permanent") mac address*/ 2090 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2091 addr.sa_family = slave_dev->type; 2092 dev_set_mac_address(slave_dev, &addr); 2093 } 2094 2095 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 2096 IFF_SLAVE_INACTIVE); 2097 2098 kfree(slave); 2099 2100 /* re-acquire the lock before getting the next slave */ 2101 write_lock_bh(&bond->lock); 2102 } 2103 2104 /* zero the mac address of the master so it will be 2105 * set by the application to the mac address of the 2106 * first slave 2107 */ 2108 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 2109 2110 if (list_empty(&bond->vlan_list)) { 2111 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 2112 } else { 2113 printk(KERN_WARNING DRV_NAME 2114 ": %s: Warning: clearing HW address of %s while it " 2115 "still has VLANs.\n", 2116 bond_dev->name, bond_dev->name); 2117 printk(KERN_WARNING DRV_NAME 2118 ": %s: When re-adding slaves, make sure the bond's " 2119 "HW address matches its VLANs'.\n", 2120 bond_dev->name); 2121 } 2122 2123 printk(KERN_INFO DRV_NAME 2124 ": %s: released all slaves\n", 2125 bond_dev->name); 2126 2127 out: 2128 write_unlock_bh(&bond->lock); 2129 2130 return 0; 2131 } 2132 2133 /* 2134 * This function changes the active slave to slave <slave_dev>. 2135 * It returns -EINVAL in the following cases. 2136 * - <slave_dev> is not found in the list. 2137 * - There is not active slave now. 2138 * - <slave_dev> is already active. 2139 * - The link state of <slave_dev> is not BOND_LINK_UP. 2140 * - <slave_dev> is not running. 2141 * In these cases, this fuction does nothing. 2142 * In the other cases, currnt_slave pointer is changed and 0 is returned. 2143 */ 2144 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 2145 { 2146 struct bonding *bond = netdev_priv(bond_dev); 2147 struct slave *old_active = NULL; 2148 struct slave *new_active = NULL; 2149 int res = 0; 2150 2151 if (!USES_PRIMARY(bond->params.mode)) { 2152 return -EINVAL; 2153 } 2154 2155 /* Verify that master_dev is indeed the master of slave_dev */ 2156 if (!(slave_dev->flags & IFF_SLAVE) || 2157 (slave_dev->master != bond_dev)) { 2158 return -EINVAL; 2159 } 2160 2161 read_lock(&bond->lock); 2162 2163 read_lock(&bond->curr_slave_lock); 2164 old_active = bond->curr_active_slave; 2165 read_unlock(&bond->curr_slave_lock); 2166 2167 new_active = bond_get_slave_by_dev(bond, slave_dev); 2168 2169 /* 2170 * Changing to the current active: do nothing; return success. 2171 */ 2172 if (new_active && (new_active == old_active)) { 2173 read_unlock(&bond->lock); 2174 return 0; 2175 } 2176 2177 if ((new_active) && 2178 (old_active) && 2179 (new_active->link == BOND_LINK_UP) && 2180 IS_UP(new_active->dev)) { 2181 write_lock_bh(&bond->curr_slave_lock); 2182 bond_change_active_slave(bond, new_active); 2183 write_unlock_bh(&bond->curr_slave_lock); 2184 } else { 2185 res = -EINVAL; 2186 } 2187 2188 read_unlock(&bond->lock); 2189 2190 return res; 2191 } 2192 2193 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 2194 { 2195 struct bonding *bond = netdev_priv(bond_dev); 2196 2197 info->bond_mode = bond->params.mode; 2198 info->miimon = bond->params.miimon; 2199 2200 read_lock(&bond->lock); 2201 info->num_slaves = bond->slave_cnt; 2202 read_unlock(&bond->lock); 2203 2204 return 0; 2205 } 2206 2207 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 2208 { 2209 struct bonding *bond = netdev_priv(bond_dev); 2210 struct slave *slave; 2211 int i, found = 0; 2212 2213 if (info->slave_id < 0) { 2214 return -ENODEV; 2215 } 2216 2217 read_lock(&bond->lock); 2218 2219 bond_for_each_slave(bond, slave, i) { 2220 if (i == (int)info->slave_id) { 2221 found = 1; 2222 break; 2223 } 2224 } 2225 2226 read_unlock(&bond->lock); 2227 2228 if (found) { 2229 strcpy(info->slave_name, slave->dev->name); 2230 info->link = slave->link; 2231 info->state = slave->state; 2232 info->link_failure_count = slave->link_failure_count; 2233 } else { 2234 return -ENODEV; 2235 } 2236 2237 return 0; 2238 } 2239 2240 /*-------------------------------- Monitoring -------------------------------*/ 2241 2242 2243 static int bond_miimon_inspect(struct bonding *bond) 2244 { 2245 struct slave *slave; 2246 int i, link_state, commit = 0; 2247 2248 bond_for_each_slave(bond, slave, i) { 2249 slave->new_link = BOND_LINK_NOCHANGE; 2250 2251 link_state = bond_check_dev_link(bond, slave->dev, 0); 2252 2253 switch (slave->link) { 2254 case BOND_LINK_UP: 2255 if (link_state) 2256 continue; 2257 2258 slave->link = BOND_LINK_FAIL; 2259 slave->delay = bond->params.downdelay; 2260 if (slave->delay) { 2261 printk(KERN_INFO DRV_NAME 2262 ": %s: link status down for %s" 2263 "interface %s, disabling it in %d ms.\n", 2264 bond->dev->name, 2265 (bond->params.mode == 2266 BOND_MODE_ACTIVEBACKUP) ? 2267 ((slave->state == BOND_STATE_ACTIVE) ? 2268 "active " : "backup ") : "", 2269 slave->dev->name, 2270 bond->params.downdelay * bond->params.miimon); 2271 } 2272 /*FALLTHRU*/ 2273 case BOND_LINK_FAIL: 2274 if (link_state) { 2275 /* 2276 * recovered before downdelay expired 2277 */ 2278 slave->link = BOND_LINK_UP; 2279 slave->jiffies = jiffies; 2280 printk(KERN_INFO DRV_NAME 2281 ": %s: link status up again after %d " 2282 "ms for interface %s.\n", 2283 bond->dev->name, 2284 (bond->params.downdelay - slave->delay) * 2285 bond->params.miimon, 2286 slave->dev->name); 2287 continue; 2288 } 2289 2290 if (slave->delay <= 0) { 2291 slave->new_link = BOND_LINK_DOWN; 2292 commit++; 2293 continue; 2294 } 2295 2296 slave->delay--; 2297 break; 2298 2299 case BOND_LINK_DOWN: 2300 if (!link_state) 2301 continue; 2302 2303 slave->link = BOND_LINK_BACK; 2304 slave->delay = bond->params.updelay; 2305 2306 if (slave->delay) { 2307 printk(KERN_INFO DRV_NAME 2308 ": %s: link status up for " 2309 "interface %s, enabling it in %d ms.\n", 2310 bond->dev->name, slave->dev->name, 2311 bond->params.updelay * 2312 bond->params.miimon); 2313 } 2314 /*FALLTHRU*/ 2315 case BOND_LINK_BACK: 2316 if (!link_state) { 2317 slave->link = BOND_LINK_DOWN; 2318 printk(KERN_INFO DRV_NAME 2319 ": %s: link status down again after %d " 2320 "ms for interface %s.\n", 2321 bond->dev->name, 2322 (bond->params.updelay - slave->delay) * 2323 bond->params.miimon, 2324 slave->dev->name); 2325 2326 continue; 2327 } 2328 2329 if (slave->delay <= 0) { 2330 slave->new_link = BOND_LINK_UP; 2331 commit++; 2332 continue; 2333 } 2334 2335 slave->delay--; 2336 break; 2337 } 2338 } 2339 2340 return commit; 2341 } 2342 2343 static void bond_miimon_commit(struct bonding *bond) 2344 { 2345 struct slave *slave; 2346 int i; 2347 2348 bond_for_each_slave(bond, slave, i) { 2349 switch (slave->new_link) { 2350 case BOND_LINK_NOCHANGE: 2351 continue; 2352 2353 case BOND_LINK_UP: 2354 slave->link = BOND_LINK_UP; 2355 slave->jiffies = jiffies; 2356 2357 if (bond->params.mode == BOND_MODE_8023AD) { 2358 /* prevent it from being the active one */ 2359 slave->state = BOND_STATE_BACKUP; 2360 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2361 /* make it immediately active */ 2362 slave->state = BOND_STATE_ACTIVE; 2363 } else if (slave != bond->primary_slave) { 2364 /* prevent it from being the active one */ 2365 slave->state = BOND_STATE_BACKUP; 2366 } 2367 2368 printk(KERN_INFO DRV_NAME 2369 ": %s: link status definitely " 2370 "up for interface %s.\n", 2371 bond->dev->name, slave->dev->name); 2372 2373 /* notify ad that the link status has changed */ 2374 if (bond->params.mode == BOND_MODE_8023AD) 2375 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2376 2377 if (bond_is_lb(bond)) 2378 bond_alb_handle_link_change(bond, slave, 2379 BOND_LINK_UP); 2380 2381 if (!bond->curr_active_slave || 2382 (slave == bond->primary_slave)) 2383 goto do_failover; 2384 2385 continue; 2386 2387 case BOND_LINK_DOWN: 2388 if (slave->link_failure_count < UINT_MAX) 2389 slave->link_failure_count++; 2390 2391 slave->link = BOND_LINK_DOWN; 2392 2393 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP || 2394 bond->params.mode == BOND_MODE_8023AD) 2395 bond_set_slave_inactive_flags(slave); 2396 2397 printk(KERN_INFO DRV_NAME 2398 ": %s: link status definitely down for " 2399 "interface %s, disabling it\n", 2400 bond->dev->name, slave->dev->name); 2401 2402 if (bond->params.mode == BOND_MODE_8023AD) 2403 bond_3ad_handle_link_change(slave, 2404 BOND_LINK_DOWN); 2405 2406 if (bond->params.mode == BOND_MODE_TLB || 2407 bond->params.mode == BOND_MODE_ALB) 2408 bond_alb_handle_link_change(bond, slave, 2409 BOND_LINK_DOWN); 2410 2411 if (slave == bond->curr_active_slave) 2412 goto do_failover; 2413 2414 continue; 2415 2416 default: 2417 printk(KERN_ERR DRV_NAME 2418 ": %s: invalid new link %d on slave %s\n", 2419 bond->dev->name, slave->new_link, 2420 slave->dev->name); 2421 slave->new_link = BOND_LINK_NOCHANGE; 2422 2423 continue; 2424 } 2425 2426 do_failover: 2427 ASSERT_RTNL(); 2428 write_lock_bh(&bond->curr_slave_lock); 2429 bond_select_active_slave(bond); 2430 write_unlock_bh(&bond->curr_slave_lock); 2431 } 2432 2433 bond_set_carrier(bond); 2434 } 2435 2436 /* 2437 * bond_mii_monitor 2438 * 2439 * Really a wrapper that splits the mii monitor into two phases: an 2440 * inspection, then (if inspection indicates something needs to be done) 2441 * an acquisition of appropriate locks followed by a commit phase to 2442 * implement whatever link state changes are indicated. 2443 */ 2444 void bond_mii_monitor(struct work_struct *work) 2445 { 2446 struct bonding *bond = container_of(work, struct bonding, 2447 mii_work.work); 2448 2449 read_lock(&bond->lock); 2450 if (bond->kill_timers) 2451 goto out; 2452 2453 if (bond->slave_cnt == 0) 2454 goto re_arm; 2455 2456 if (bond->send_grat_arp) { 2457 read_lock(&bond->curr_slave_lock); 2458 bond_send_gratuitous_arp(bond); 2459 read_unlock(&bond->curr_slave_lock); 2460 } 2461 2462 if (bond->send_unsol_na) { 2463 read_lock(&bond->curr_slave_lock); 2464 bond_send_unsolicited_na(bond); 2465 read_unlock(&bond->curr_slave_lock); 2466 } 2467 2468 if (bond_miimon_inspect(bond)) { 2469 read_unlock(&bond->lock); 2470 rtnl_lock(); 2471 read_lock(&bond->lock); 2472 2473 bond_miimon_commit(bond); 2474 2475 read_unlock(&bond->lock); 2476 rtnl_unlock(); /* might sleep, hold no other locks */ 2477 read_lock(&bond->lock); 2478 } 2479 2480 re_arm: 2481 if (bond->params.miimon) 2482 queue_delayed_work(bond->wq, &bond->mii_work, 2483 msecs_to_jiffies(bond->params.miimon)); 2484 out: 2485 read_unlock(&bond->lock); 2486 } 2487 2488 static __be32 bond_glean_dev_ip(struct net_device *dev) 2489 { 2490 struct in_device *idev; 2491 struct in_ifaddr *ifa; 2492 __be32 addr = 0; 2493 2494 if (!dev) 2495 return 0; 2496 2497 rcu_read_lock(); 2498 idev = __in_dev_get_rcu(dev); 2499 if (!idev) 2500 goto out; 2501 2502 ifa = idev->ifa_list; 2503 if (!ifa) 2504 goto out; 2505 2506 addr = ifa->ifa_local; 2507 out: 2508 rcu_read_unlock(); 2509 return addr; 2510 } 2511 2512 static int bond_has_this_ip(struct bonding *bond, __be32 ip) 2513 { 2514 struct vlan_entry *vlan; 2515 2516 if (ip == bond->master_ip) 2517 return 1; 2518 2519 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2520 if (ip == vlan->vlan_ip) 2521 return 1; 2522 } 2523 2524 return 0; 2525 } 2526 2527 /* 2528 * We go to the (large) trouble of VLAN tagging ARP frames because 2529 * switches in VLAN mode (especially if ports are configured as 2530 * "native" to a VLAN) might not pass non-tagged frames. 2531 */ 2532 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) 2533 { 2534 struct sk_buff *skb; 2535 2536 pr_debug("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, 2537 slave_dev->name, dest_ip, src_ip, vlan_id); 2538 2539 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2540 NULL, slave_dev->dev_addr, NULL); 2541 2542 if (!skb) { 2543 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n"); 2544 return; 2545 } 2546 if (vlan_id) { 2547 skb = vlan_put_tag(skb, vlan_id); 2548 if (!skb) { 2549 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n"); 2550 return; 2551 } 2552 } 2553 arp_xmit(skb); 2554 } 2555 2556 2557 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2558 { 2559 int i, vlan_id, rv; 2560 __be32 *targets = bond->params.arp_targets; 2561 struct vlan_entry *vlan; 2562 struct net_device *vlan_dev; 2563 struct flowi fl; 2564 struct rtable *rt; 2565 2566 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2567 if (!targets[i]) 2568 continue; 2569 pr_debug("basa: target %x\n", targets[i]); 2570 if (list_empty(&bond->vlan_list)) { 2571 pr_debug("basa: empty vlan: arp_send\n"); 2572 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2573 bond->master_ip, 0); 2574 continue; 2575 } 2576 2577 /* 2578 * If VLANs are configured, we do a route lookup to 2579 * determine which VLAN interface would be used, so we 2580 * can tag the ARP with the proper VLAN tag. 2581 */ 2582 memset(&fl, 0, sizeof(fl)); 2583 fl.fl4_dst = targets[i]; 2584 fl.fl4_tos = RTO_ONLINK; 2585 2586 rv = ip_route_output_key(&init_net, &rt, &fl); 2587 if (rv) { 2588 if (net_ratelimit()) { 2589 printk(KERN_WARNING DRV_NAME 2590 ": %s: no route to arp_ip_target %pI4\n", 2591 bond->dev->name, &fl.fl4_dst); 2592 } 2593 continue; 2594 } 2595 2596 /* 2597 * This target is not on a VLAN 2598 */ 2599 if (rt->u.dst.dev == bond->dev) { 2600 ip_rt_put(rt); 2601 pr_debug("basa: rtdev == bond->dev: arp_send\n"); 2602 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2603 bond->master_ip, 0); 2604 continue; 2605 } 2606 2607 vlan_id = 0; 2608 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2609 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2610 if (vlan_dev == rt->u.dst.dev) { 2611 vlan_id = vlan->vlan_id; 2612 pr_debug("basa: vlan match on %s %d\n", 2613 vlan_dev->name, vlan_id); 2614 break; 2615 } 2616 } 2617 2618 if (vlan_id) { 2619 ip_rt_put(rt); 2620 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2621 vlan->vlan_ip, vlan_id); 2622 continue; 2623 } 2624 2625 if (net_ratelimit()) { 2626 printk(KERN_WARNING DRV_NAME 2627 ": %s: no path to arp_ip_target %pI4 via rt.dev %s\n", 2628 bond->dev->name, &fl.fl4_dst, 2629 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL"); 2630 } 2631 ip_rt_put(rt); 2632 } 2633 } 2634 2635 /* 2636 * Kick out a gratuitous ARP for an IP on the bonding master plus one 2637 * for each VLAN above us. 2638 * 2639 * Caller must hold curr_slave_lock for read or better 2640 */ 2641 static void bond_send_gratuitous_arp(struct bonding *bond) 2642 { 2643 struct slave *slave = bond->curr_active_slave; 2644 struct vlan_entry *vlan; 2645 struct net_device *vlan_dev; 2646 2647 pr_debug("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name, 2648 slave ? slave->dev->name : "NULL"); 2649 2650 if (!slave || !bond->send_grat_arp || 2651 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state)) 2652 return; 2653 2654 bond->send_grat_arp--; 2655 2656 if (bond->master_ip) { 2657 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip, 2658 bond->master_ip, 0); 2659 } 2660 2661 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2662 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2663 if (vlan->vlan_ip) { 2664 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip, 2665 vlan->vlan_ip, vlan->vlan_id); 2666 } 2667 } 2668 } 2669 2670 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) 2671 { 2672 int i; 2673 __be32 *targets = bond->params.arp_targets; 2674 2675 targets = bond->params.arp_targets; 2676 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2677 pr_debug("bva: sip %pI4 tip %pI4 t[%d] %pI4 bhti(tip) %d\n", 2678 &sip, &tip, i, &targets[i], bond_has_this_ip(bond, tip)); 2679 if (sip == targets[i]) { 2680 if (bond_has_this_ip(bond, tip)) 2681 slave->last_arp_rx = jiffies; 2682 return; 2683 } 2684 } 2685 } 2686 2687 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) 2688 { 2689 struct arphdr *arp; 2690 struct slave *slave; 2691 struct bonding *bond; 2692 unsigned char *arp_ptr; 2693 __be32 sip, tip; 2694 2695 if (dev_net(dev) != &init_net) 2696 goto out; 2697 2698 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER)) 2699 goto out; 2700 2701 bond = netdev_priv(dev); 2702 read_lock(&bond->lock); 2703 2704 pr_debug("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n", 2705 bond->dev->name, skb->dev ? skb->dev->name : "NULL", 2706 orig_dev ? orig_dev->name : "NULL"); 2707 2708 slave = bond_get_slave_by_dev(bond, orig_dev); 2709 if (!slave || !slave_do_arp_validate(bond, slave)) 2710 goto out_unlock; 2711 2712 if (!pskb_may_pull(skb, arp_hdr_len(dev))) 2713 goto out_unlock; 2714 2715 arp = arp_hdr(skb); 2716 if (arp->ar_hln != dev->addr_len || 2717 skb->pkt_type == PACKET_OTHERHOST || 2718 skb->pkt_type == PACKET_LOOPBACK || 2719 arp->ar_hrd != htons(ARPHRD_ETHER) || 2720 arp->ar_pro != htons(ETH_P_IP) || 2721 arp->ar_pln != 4) 2722 goto out_unlock; 2723 2724 arp_ptr = (unsigned char *)(arp + 1); 2725 arp_ptr += dev->addr_len; 2726 memcpy(&sip, arp_ptr, 4); 2727 arp_ptr += 4 + dev->addr_len; 2728 memcpy(&tip, arp_ptr, 4); 2729 2730 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n", 2731 bond->dev->name, slave->dev->name, slave->state, 2732 bond->params.arp_validate, slave_do_arp_validate(bond, slave), 2733 &sip, &tip); 2734 2735 /* 2736 * Backup slaves won't see the ARP reply, but do come through 2737 * here for each ARP probe (so we swap the sip/tip to validate 2738 * the probe). In a "redundant switch, common router" type of 2739 * configuration, the ARP probe will (hopefully) travel from 2740 * the active, through one switch, the router, then the other 2741 * switch before reaching the backup. 2742 */ 2743 if (slave->state == BOND_STATE_ACTIVE) 2744 bond_validate_arp(bond, slave, sip, tip); 2745 else 2746 bond_validate_arp(bond, slave, tip, sip); 2747 2748 out_unlock: 2749 read_unlock(&bond->lock); 2750 out: 2751 dev_kfree_skb(skb); 2752 return NET_RX_SUCCESS; 2753 } 2754 2755 /* 2756 * this function is called regularly to monitor each slave's link 2757 * ensuring that traffic is being sent and received when arp monitoring 2758 * is used in load-balancing mode. if the adapter has been dormant, then an 2759 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2760 * arp monitoring in active backup mode. 2761 */ 2762 void bond_loadbalance_arp_mon(struct work_struct *work) 2763 { 2764 struct bonding *bond = container_of(work, struct bonding, 2765 arp_work.work); 2766 struct slave *slave, *oldcurrent; 2767 int do_failover = 0; 2768 int delta_in_ticks; 2769 int i; 2770 2771 read_lock(&bond->lock); 2772 2773 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2774 2775 if (bond->kill_timers) { 2776 goto out; 2777 } 2778 2779 if (bond->slave_cnt == 0) { 2780 goto re_arm; 2781 } 2782 2783 read_lock(&bond->curr_slave_lock); 2784 oldcurrent = bond->curr_active_slave; 2785 read_unlock(&bond->curr_slave_lock); 2786 2787 /* see if any of the previous devices are up now (i.e. they have 2788 * xmt and rcv traffic). the curr_active_slave does not come into 2789 * the picture unless it is null. also, slave->jiffies is not needed 2790 * here because we send an arp on each slave and give a slave as 2791 * long as it needs to get the tx/rx within the delta. 2792 * TODO: what about up/down delay in arp mode? it wasn't here before 2793 * so it can wait 2794 */ 2795 bond_for_each_slave(bond, slave, i) { 2796 if (slave->link != BOND_LINK_UP) { 2797 if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) && 2798 time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) { 2799 2800 slave->link = BOND_LINK_UP; 2801 slave->state = BOND_STATE_ACTIVE; 2802 2803 /* primary_slave has no meaning in round-robin 2804 * mode. the window of a slave being up and 2805 * curr_active_slave being null after enslaving 2806 * is closed. 2807 */ 2808 if (!oldcurrent) { 2809 printk(KERN_INFO DRV_NAME 2810 ": %s: link status definitely " 2811 "up for interface %s, ", 2812 bond->dev->name, 2813 slave->dev->name); 2814 do_failover = 1; 2815 } else { 2816 printk(KERN_INFO DRV_NAME 2817 ": %s: interface %s is now up\n", 2818 bond->dev->name, 2819 slave->dev->name); 2820 } 2821 } 2822 } else { 2823 /* slave->link == BOND_LINK_UP */ 2824 2825 /* not all switches will respond to an arp request 2826 * when the source ip is 0, so don't take the link down 2827 * if we don't know our ip yet 2828 */ 2829 if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) || 2830 (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) { 2831 2832 slave->link = BOND_LINK_DOWN; 2833 slave->state = BOND_STATE_BACKUP; 2834 2835 if (slave->link_failure_count < UINT_MAX) { 2836 slave->link_failure_count++; 2837 } 2838 2839 printk(KERN_INFO DRV_NAME 2840 ": %s: interface %s is now down.\n", 2841 bond->dev->name, 2842 slave->dev->name); 2843 2844 if (slave == oldcurrent) { 2845 do_failover = 1; 2846 } 2847 } 2848 } 2849 2850 /* note: if switch is in round-robin mode, all links 2851 * must tx arp to ensure all links rx an arp - otherwise 2852 * links may oscillate or not come up at all; if switch is 2853 * in something like xor mode, there is nothing we can 2854 * do - all replies will be rx'ed on same link causing slaves 2855 * to be unstable during low/no traffic periods 2856 */ 2857 if (IS_UP(slave->dev)) { 2858 bond_arp_send_all(bond, slave); 2859 } 2860 } 2861 2862 if (do_failover) { 2863 write_lock_bh(&bond->curr_slave_lock); 2864 2865 bond_select_active_slave(bond); 2866 2867 write_unlock_bh(&bond->curr_slave_lock); 2868 } 2869 2870 re_arm: 2871 if (bond->params.arp_interval) 2872 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 2873 out: 2874 read_unlock(&bond->lock); 2875 } 2876 2877 /* 2878 * Called to inspect slaves for active-backup mode ARP monitor link state 2879 * changes. Sets new_link in slaves to specify what action should take 2880 * place for the slave. Returns 0 if no changes are found, >0 if changes 2881 * to link states must be committed. 2882 * 2883 * Called with bond->lock held for read. 2884 */ 2885 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks) 2886 { 2887 struct slave *slave; 2888 int i, commit = 0; 2889 2890 bond_for_each_slave(bond, slave, i) { 2891 slave->new_link = BOND_LINK_NOCHANGE; 2892 2893 if (slave->link != BOND_LINK_UP) { 2894 if (time_before_eq(jiffies, slave_last_rx(bond, slave) + 2895 delta_in_ticks)) { 2896 slave->new_link = BOND_LINK_UP; 2897 commit++; 2898 } 2899 2900 continue; 2901 } 2902 2903 /* 2904 * Give slaves 2*delta after being enslaved or made 2905 * active. This avoids bouncing, as the last receive 2906 * times need a full ARP monitor cycle to be updated. 2907 */ 2908 if (!time_after_eq(jiffies, slave->jiffies + 2909 2 * delta_in_ticks)) 2910 continue; 2911 2912 /* 2913 * Backup slave is down if: 2914 * - No current_arp_slave AND 2915 * - more than 3*delta since last receive AND 2916 * - the bond has an IP address 2917 * 2918 * Note: a non-null current_arp_slave indicates 2919 * the curr_active_slave went down and we are 2920 * searching for a new one; under this condition 2921 * we only take the curr_active_slave down - this 2922 * gives each slave a chance to tx/rx traffic 2923 * before being taken out 2924 */ 2925 if (slave->state == BOND_STATE_BACKUP && 2926 !bond->current_arp_slave && 2927 time_after(jiffies, slave_last_rx(bond, slave) + 2928 3 * delta_in_ticks)) { 2929 slave->new_link = BOND_LINK_DOWN; 2930 commit++; 2931 } 2932 2933 /* 2934 * Active slave is down if: 2935 * - more than 2*delta since transmitting OR 2936 * - (more than 2*delta since receive AND 2937 * the bond has an IP address) 2938 */ 2939 if ((slave->state == BOND_STATE_ACTIVE) && 2940 (time_after_eq(jiffies, slave->dev->trans_start + 2941 2 * delta_in_ticks) || 2942 (time_after_eq(jiffies, slave_last_rx(bond, slave) 2943 + 2 * delta_in_ticks)))) { 2944 slave->new_link = BOND_LINK_DOWN; 2945 commit++; 2946 } 2947 } 2948 2949 read_lock(&bond->curr_slave_lock); 2950 2951 /* 2952 * Trigger a commit if the primary option setting has changed. 2953 */ 2954 if (bond->primary_slave && 2955 (bond->primary_slave != bond->curr_active_slave) && 2956 (bond->primary_slave->link == BOND_LINK_UP)) 2957 commit++; 2958 2959 read_unlock(&bond->curr_slave_lock); 2960 2961 return commit; 2962 } 2963 2964 /* 2965 * Called to commit link state changes noted by inspection step of 2966 * active-backup mode ARP monitor. 2967 * 2968 * Called with RTNL and bond->lock for read. 2969 */ 2970 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks) 2971 { 2972 struct slave *slave; 2973 int i; 2974 2975 bond_for_each_slave(bond, slave, i) { 2976 switch (slave->new_link) { 2977 case BOND_LINK_NOCHANGE: 2978 continue; 2979 2980 case BOND_LINK_UP: 2981 write_lock_bh(&bond->curr_slave_lock); 2982 2983 if (!bond->curr_active_slave && 2984 time_before_eq(jiffies, slave->dev->trans_start + 2985 delta_in_ticks)) { 2986 slave->link = BOND_LINK_UP; 2987 bond_change_active_slave(bond, slave); 2988 bond->current_arp_slave = NULL; 2989 2990 printk(KERN_INFO DRV_NAME 2991 ": %s: %s is up and now the " 2992 "active interface\n", 2993 bond->dev->name, slave->dev->name); 2994 2995 } else if (bond->curr_active_slave != slave) { 2996 /* this slave has just come up but we 2997 * already have a current slave; this can 2998 * also happen if bond_enslave adds a new 2999 * slave that is up while we are searching 3000 * for a new slave 3001 */ 3002 slave->link = BOND_LINK_UP; 3003 bond_set_slave_inactive_flags(slave); 3004 bond->current_arp_slave = NULL; 3005 3006 printk(KERN_INFO DRV_NAME 3007 ": %s: backup interface %s is now up\n", 3008 bond->dev->name, slave->dev->name); 3009 } 3010 3011 write_unlock_bh(&bond->curr_slave_lock); 3012 3013 break; 3014 3015 case BOND_LINK_DOWN: 3016 if (slave->link_failure_count < UINT_MAX) 3017 slave->link_failure_count++; 3018 3019 slave->link = BOND_LINK_DOWN; 3020 3021 if (slave == bond->curr_active_slave) { 3022 printk(KERN_INFO DRV_NAME 3023 ": %s: link status down for active " 3024 "interface %s, disabling it\n", 3025 bond->dev->name, slave->dev->name); 3026 3027 bond_set_slave_inactive_flags(slave); 3028 3029 write_lock_bh(&bond->curr_slave_lock); 3030 3031 bond_select_active_slave(bond); 3032 if (bond->curr_active_slave) 3033 bond->curr_active_slave->jiffies = 3034 jiffies; 3035 3036 write_unlock_bh(&bond->curr_slave_lock); 3037 3038 bond->current_arp_slave = NULL; 3039 3040 } else if (slave->state == BOND_STATE_BACKUP) { 3041 printk(KERN_INFO DRV_NAME 3042 ": %s: backup interface %s is now down\n", 3043 bond->dev->name, slave->dev->name); 3044 3045 bond_set_slave_inactive_flags(slave); 3046 } 3047 break; 3048 3049 default: 3050 printk(KERN_ERR DRV_NAME 3051 ": %s: impossible: new_link %d on slave %s\n", 3052 bond->dev->name, slave->new_link, 3053 slave->dev->name); 3054 } 3055 } 3056 3057 /* 3058 * No race with changes to primary via sysfs, as we hold rtnl. 3059 */ 3060 if (bond->primary_slave && 3061 (bond->primary_slave != bond->curr_active_slave) && 3062 (bond->primary_slave->link == BOND_LINK_UP)) { 3063 write_lock_bh(&bond->curr_slave_lock); 3064 bond_change_active_slave(bond, bond->primary_slave); 3065 write_unlock_bh(&bond->curr_slave_lock); 3066 } 3067 3068 bond_set_carrier(bond); 3069 } 3070 3071 /* 3072 * Send ARP probes for active-backup mode ARP monitor. 3073 * 3074 * Called with bond->lock held for read. 3075 */ 3076 static void bond_ab_arp_probe(struct bonding *bond) 3077 { 3078 struct slave *slave; 3079 int i; 3080 3081 read_lock(&bond->curr_slave_lock); 3082 3083 if (bond->current_arp_slave && bond->curr_active_slave) 3084 printk("PROBE: c_arp %s && cas %s BAD\n", 3085 bond->current_arp_slave->dev->name, 3086 bond->curr_active_slave->dev->name); 3087 3088 if (bond->curr_active_slave) { 3089 bond_arp_send_all(bond, bond->curr_active_slave); 3090 read_unlock(&bond->curr_slave_lock); 3091 return; 3092 } 3093 3094 read_unlock(&bond->curr_slave_lock); 3095 3096 /* if we don't have a curr_active_slave, search for the next available 3097 * backup slave from the current_arp_slave and make it the candidate 3098 * for becoming the curr_active_slave 3099 */ 3100 3101 if (!bond->current_arp_slave) { 3102 bond->current_arp_slave = bond->first_slave; 3103 if (!bond->current_arp_slave) 3104 return; 3105 } 3106 3107 bond_set_slave_inactive_flags(bond->current_arp_slave); 3108 3109 /* search for next candidate */ 3110 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 3111 if (IS_UP(slave->dev)) { 3112 slave->link = BOND_LINK_BACK; 3113 bond_set_slave_active_flags(slave); 3114 bond_arp_send_all(bond, slave); 3115 slave->jiffies = jiffies; 3116 bond->current_arp_slave = slave; 3117 break; 3118 } 3119 3120 /* if the link state is up at this point, we 3121 * mark it down - this can happen if we have 3122 * simultaneous link failures and 3123 * reselect_active_interface doesn't make this 3124 * one the current slave so it is still marked 3125 * up when it is actually down 3126 */ 3127 if (slave->link == BOND_LINK_UP) { 3128 slave->link = BOND_LINK_DOWN; 3129 if (slave->link_failure_count < UINT_MAX) 3130 slave->link_failure_count++; 3131 3132 bond_set_slave_inactive_flags(slave); 3133 3134 printk(KERN_INFO DRV_NAME 3135 ": %s: backup interface %s is now down.\n", 3136 bond->dev->name, slave->dev->name); 3137 } 3138 } 3139 } 3140 3141 void bond_activebackup_arp_mon(struct work_struct *work) 3142 { 3143 struct bonding *bond = container_of(work, struct bonding, 3144 arp_work.work); 3145 int delta_in_ticks; 3146 3147 read_lock(&bond->lock); 3148 3149 if (bond->kill_timers) 3150 goto out; 3151 3152 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 3153 3154 if (bond->slave_cnt == 0) 3155 goto re_arm; 3156 3157 if (bond->send_grat_arp) { 3158 read_lock(&bond->curr_slave_lock); 3159 bond_send_gratuitous_arp(bond); 3160 read_unlock(&bond->curr_slave_lock); 3161 } 3162 3163 if (bond->send_unsol_na) { 3164 read_lock(&bond->curr_slave_lock); 3165 bond_send_unsolicited_na(bond); 3166 read_unlock(&bond->curr_slave_lock); 3167 } 3168 3169 if (bond_ab_arp_inspect(bond, delta_in_ticks)) { 3170 read_unlock(&bond->lock); 3171 rtnl_lock(); 3172 read_lock(&bond->lock); 3173 3174 bond_ab_arp_commit(bond, delta_in_ticks); 3175 3176 read_unlock(&bond->lock); 3177 rtnl_unlock(); 3178 read_lock(&bond->lock); 3179 } 3180 3181 bond_ab_arp_probe(bond); 3182 3183 re_arm: 3184 if (bond->params.arp_interval) { 3185 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 3186 } 3187 out: 3188 read_unlock(&bond->lock); 3189 } 3190 3191 /*------------------------------ proc/seq_file-------------------------------*/ 3192 3193 #ifdef CONFIG_PROC_FS 3194 3195 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos) 3196 { 3197 struct bonding *bond = seq->private; 3198 loff_t off = 0; 3199 struct slave *slave; 3200 int i; 3201 3202 /* make sure the bond won't be taken away */ 3203 read_lock(&dev_base_lock); 3204 read_lock(&bond->lock); 3205 3206 if (*pos == 0) { 3207 return SEQ_START_TOKEN; 3208 } 3209 3210 bond_for_each_slave(bond, slave, i) { 3211 if (++off == *pos) { 3212 return slave; 3213 } 3214 } 3215 3216 return NULL; 3217 } 3218 3219 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3220 { 3221 struct bonding *bond = seq->private; 3222 struct slave *slave = v; 3223 3224 ++*pos; 3225 if (v == SEQ_START_TOKEN) { 3226 return bond->first_slave; 3227 } 3228 3229 slave = slave->next; 3230 3231 return (slave == bond->first_slave) ? NULL : slave; 3232 } 3233 3234 static void bond_info_seq_stop(struct seq_file *seq, void *v) 3235 { 3236 struct bonding *bond = seq->private; 3237 3238 read_unlock(&bond->lock); 3239 read_unlock(&dev_base_lock); 3240 } 3241 3242 static void bond_info_show_master(struct seq_file *seq) 3243 { 3244 struct bonding *bond = seq->private; 3245 struct slave *curr; 3246 int i; 3247 3248 read_lock(&bond->curr_slave_lock); 3249 curr = bond->curr_active_slave; 3250 read_unlock(&bond->curr_slave_lock); 3251 3252 seq_printf(seq, "Bonding Mode: %s", 3253 bond_mode_name(bond->params.mode)); 3254 3255 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP && 3256 bond->params.fail_over_mac) 3257 seq_printf(seq, " (fail_over_mac %s)", 3258 fail_over_mac_tbl[bond->params.fail_over_mac].modename); 3259 3260 seq_printf(seq, "\n"); 3261 3262 if (bond->params.mode == BOND_MODE_XOR || 3263 bond->params.mode == BOND_MODE_8023AD) { 3264 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n", 3265 xmit_hashtype_tbl[bond->params.xmit_policy].modename, 3266 bond->params.xmit_policy); 3267 } 3268 3269 if (USES_PRIMARY(bond->params.mode)) { 3270 seq_printf(seq, "Primary Slave: %s\n", 3271 (bond->primary_slave) ? 3272 bond->primary_slave->dev->name : "None"); 3273 3274 seq_printf(seq, "Currently Active Slave: %s\n", 3275 (curr) ? curr->dev->name : "None"); 3276 } 3277 3278 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ? 3279 "up" : "down"); 3280 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon); 3281 seq_printf(seq, "Up Delay (ms): %d\n", 3282 bond->params.updelay * bond->params.miimon); 3283 seq_printf(seq, "Down Delay (ms): %d\n", 3284 bond->params.downdelay * bond->params.miimon); 3285 3286 3287 /* ARP information */ 3288 if(bond->params.arp_interval > 0) { 3289 int printed=0; 3290 seq_printf(seq, "ARP Polling Interval (ms): %d\n", 3291 bond->params.arp_interval); 3292 3293 seq_printf(seq, "ARP IP target/s (n.n.n.n form):"); 3294 3295 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) { 3296 if (!bond->params.arp_targets[i]) 3297 continue; 3298 if (printed) 3299 seq_printf(seq, ","); 3300 seq_printf(seq, " %pI4", &bond->params.arp_targets[i]); 3301 printed = 1; 3302 } 3303 seq_printf(seq, "\n"); 3304 } 3305 3306 if (bond->params.mode == BOND_MODE_8023AD) { 3307 struct ad_info ad_info; 3308 3309 seq_puts(seq, "\n802.3ad info\n"); 3310 seq_printf(seq, "LACP rate: %s\n", 3311 (bond->params.lacp_fast) ? "fast" : "slow"); 3312 seq_printf(seq, "Aggregator selection policy (ad_select): %s\n", 3313 ad_select_tbl[bond->params.ad_select].modename); 3314 3315 if (bond_3ad_get_active_agg_info(bond, &ad_info)) { 3316 seq_printf(seq, "bond %s has no active aggregator\n", 3317 bond->dev->name); 3318 } else { 3319 seq_printf(seq, "Active Aggregator Info:\n"); 3320 3321 seq_printf(seq, "\tAggregator ID: %d\n", 3322 ad_info.aggregator_id); 3323 seq_printf(seq, "\tNumber of ports: %d\n", 3324 ad_info.ports); 3325 seq_printf(seq, "\tActor Key: %d\n", 3326 ad_info.actor_key); 3327 seq_printf(seq, "\tPartner Key: %d\n", 3328 ad_info.partner_key); 3329 seq_printf(seq, "\tPartner Mac Address: %pM\n", 3330 ad_info.partner_system); 3331 } 3332 } 3333 } 3334 3335 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave) 3336 { 3337 struct bonding *bond = seq->private; 3338 3339 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name); 3340 seq_printf(seq, "MII Status: %s\n", 3341 (slave->link == BOND_LINK_UP) ? "up" : "down"); 3342 seq_printf(seq, "Link Failure Count: %u\n", 3343 slave->link_failure_count); 3344 3345 seq_printf(seq, "Permanent HW addr: %pM\n", slave->perm_hwaddr); 3346 3347 if (bond->params.mode == BOND_MODE_8023AD) { 3348 const struct aggregator *agg 3349 = SLAVE_AD_INFO(slave).port.aggregator; 3350 3351 if (agg) { 3352 seq_printf(seq, "Aggregator ID: %d\n", 3353 agg->aggregator_identifier); 3354 } else { 3355 seq_puts(seq, "Aggregator ID: N/A\n"); 3356 } 3357 } 3358 } 3359 3360 static int bond_info_seq_show(struct seq_file *seq, void *v) 3361 { 3362 if (v == SEQ_START_TOKEN) { 3363 seq_printf(seq, "%s\n", version); 3364 bond_info_show_master(seq); 3365 } else { 3366 bond_info_show_slave(seq, v); 3367 } 3368 3369 return 0; 3370 } 3371 3372 static struct seq_operations bond_info_seq_ops = { 3373 .start = bond_info_seq_start, 3374 .next = bond_info_seq_next, 3375 .stop = bond_info_seq_stop, 3376 .show = bond_info_seq_show, 3377 }; 3378 3379 static int bond_info_open(struct inode *inode, struct file *file) 3380 { 3381 struct seq_file *seq; 3382 struct proc_dir_entry *proc; 3383 int res; 3384 3385 res = seq_open(file, &bond_info_seq_ops); 3386 if (!res) { 3387 /* recover the pointer buried in proc_dir_entry data */ 3388 seq = file->private_data; 3389 proc = PDE(inode); 3390 seq->private = proc->data; 3391 } 3392 3393 return res; 3394 } 3395 3396 static const struct file_operations bond_info_fops = { 3397 .owner = THIS_MODULE, 3398 .open = bond_info_open, 3399 .read = seq_read, 3400 .llseek = seq_lseek, 3401 .release = seq_release, 3402 }; 3403 3404 static int bond_create_proc_entry(struct bonding *bond) 3405 { 3406 struct net_device *bond_dev = bond->dev; 3407 3408 if (bond_proc_dir) { 3409 bond->proc_entry = proc_create_data(bond_dev->name, 3410 S_IRUGO, bond_proc_dir, 3411 &bond_info_fops, bond); 3412 if (bond->proc_entry == NULL) { 3413 printk(KERN_WARNING DRV_NAME 3414 ": Warning: Cannot create /proc/net/%s/%s\n", 3415 DRV_NAME, bond_dev->name); 3416 } else { 3417 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ); 3418 } 3419 } 3420 3421 return 0; 3422 } 3423 3424 static void bond_remove_proc_entry(struct bonding *bond) 3425 { 3426 if (bond_proc_dir && bond->proc_entry) { 3427 remove_proc_entry(bond->proc_file_name, bond_proc_dir); 3428 memset(bond->proc_file_name, 0, IFNAMSIZ); 3429 bond->proc_entry = NULL; 3430 } 3431 } 3432 3433 /* Create the bonding directory under /proc/net, if doesn't exist yet. 3434 * Caller must hold rtnl_lock. 3435 */ 3436 static void bond_create_proc_dir(void) 3437 { 3438 int len = strlen(DRV_NAME); 3439 3440 for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir; 3441 bond_proc_dir = bond_proc_dir->next) { 3442 if ((bond_proc_dir->namelen == len) && 3443 !memcmp(bond_proc_dir->name, DRV_NAME, len)) { 3444 break; 3445 } 3446 } 3447 3448 if (!bond_proc_dir) { 3449 bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net); 3450 if (bond_proc_dir) { 3451 bond_proc_dir->owner = THIS_MODULE; 3452 } else { 3453 printk(KERN_WARNING DRV_NAME 3454 ": Warning: cannot create /proc/net/%s\n", 3455 DRV_NAME); 3456 } 3457 } 3458 } 3459 3460 /* Destroy the bonding directory under /proc/net, if empty. 3461 * Caller must hold rtnl_lock. 3462 */ 3463 static void bond_destroy_proc_dir(void) 3464 { 3465 struct proc_dir_entry *de; 3466 3467 if (!bond_proc_dir) { 3468 return; 3469 } 3470 3471 /* verify that the /proc dir is empty */ 3472 for (de = bond_proc_dir->subdir; de; de = de->next) { 3473 /* ignore . and .. */ 3474 if (*(de->name) != '.') { 3475 break; 3476 } 3477 } 3478 3479 if (de) { 3480 if (bond_proc_dir->owner == THIS_MODULE) { 3481 bond_proc_dir->owner = NULL; 3482 } 3483 } else { 3484 remove_proc_entry(DRV_NAME, init_net.proc_net); 3485 bond_proc_dir = NULL; 3486 } 3487 } 3488 #endif /* CONFIG_PROC_FS */ 3489 3490 /*-------------------------- netdev event handling --------------------------*/ 3491 3492 /* 3493 * Change device name 3494 */ 3495 static int bond_event_changename(struct bonding *bond) 3496 { 3497 #ifdef CONFIG_PROC_FS 3498 bond_remove_proc_entry(bond); 3499 bond_create_proc_entry(bond); 3500 #endif 3501 down_write(&(bonding_rwsem)); 3502 bond_destroy_sysfs_entry(bond); 3503 bond_create_sysfs_entry(bond); 3504 up_write(&(bonding_rwsem)); 3505 return NOTIFY_DONE; 3506 } 3507 3508 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev) 3509 { 3510 struct bonding *event_bond = netdev_priv(bond_dev); 3511 3512 switch (event) { 3513 case NETDEV_CHANGENAME: 3514 return bond_event_changename(event_bond); 3515 case NETDEV_UNREGISTER: 3516 bond_release_all(event_bond->dev); 3517 break; 3518 default: 3519 break; 3520 } 3521 3522 return NOTIFY_DONE; 3523 } 3524 3525 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev) 3526 { 3527 struct net_device *bond_dev = slave_dev->master; 3528 struct bonding *bond = netdev_priv(bond_dev); 3529 3530 switch (event) { 3531 case NETDEV_UNREGISTER: 3532 if (bond_dev) { 3533 if (bond->setup_by_slave) 3534 bond_release_and_destroy(bond_dev, slave_dev); 3535 else 3536 bond_release(bond_dev, slave_dev); 3537 } 3538 break; 3539 case NETDEV_CHANGE: 3540 /* 3541 * TODO: is this what we get if somebody 3542 * sets up a hierarchical bond, then rmmod's 3543 * one of the slave bonding devices? 3544 */ 3545 break; 3546 case NETDEV_DOWN: 3547 /* 3548 * ... Or is it this? 3549 */ 3550 break; 3551 case NETDEV_CHANGEMTU: 3552 /* 3553 * TODO: Should slaves be allowed to 3554 * independently alter their MTU? For 3555 * an active-backup bond, slaves need 3556 * not be the same type of device, so 3557 * MTUs may vary. For other modes, 3558 * slaves arguably should have the 3559 * same MTUs. To do this, we'd need to 3560 * take over the slave's change_mtu 3561 * function for the duration of their 3562 * servitude. 3563 */ 3564 break; 3565 case NETDEV_CHANGENAME: 3566 /* 3567 * TODO: handle changing the primary's name 3568 */ 3569 break; 3570 case NETDEV_FEAT_CHANGE: 3571 bond_compute_features(bond); 3572 break; 3573 default: 3574 break; 3575 } 3576 3577 return NOTIFY_DONE; 3578 } 3579 3580 /* 3581 * bond_netdev_event: handle netdev notifier chain events. 3582 * 3583 * This function receives events for the netdev chain. The caller (an 3584 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3585 * locks for us to safely manipulate the slave devices (RTNL lock, 3586 * dev_probe_lock). 3587 */ 3588 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) 3589 { 3590 struct net_device *event_dev = (struct net_device *)ptr; 3591 3592 if (dev_net(event_dev) != &init_net) 3593 return NOTIFY_DONE; 3594 3595 pr_debug("event_dev: %s, event: %lx\n", 3596 (event_dev ? event_dev->name : "None"), 3597 event); 3598 3599 if (!(event_dev->priv_flags & IFF_BONDING)) 3600 return NOTIFY_DONE; 3601 3602 if (event_dev->flags & IFF_MASTER) { 3603 pr_debug("IFF_MASTER\n"); 3604 return bond_master_netdev_event(event, event_dev); 3605 } 3606 3607 if (event_dev->flags & IFF_SLAVE) { 3608 pr_debug("IFF_SLAVE\n"); 3609 return bond_slave_netdev_event(event, event_dev); 3610 } 3611 3612 return NOTIFY_DONE; 3613 } 3614 3615 /* 3616 * bond_inetaddr_event: handle inetaddr notifier chain events. 3617 * 3618 * We keep track of device IPs primarily to use as source addresses in 3619 * ARP monitor probes (rather than spewing out broadcasts all the time). 3620 * 3621 * We track one IP for the main device (if it has one), plus one per VLAN. 3622 */ 3623 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) 3624 { 3625 struct in_ifaddr *ifa = ptr; 3626 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev; 3627 struct bonding *bond; 3628 struct vlan_entry *vlan; 3629 3630 if (dev_net(ifa->ifa_dev->dev) != &init_net) 3631 return NOTIFY_DONE; 3632 3633 list_for_each_entry(bond, &bond_dev_list, bond_list) { 3634 if (bond->dev == event_dev) { 3635 switch (event) { 3636 case NETDEV_UP: 3637 bond->master_ip = ifa->ifa_local; 3638 return NOTIFY_OK; 3639 case NETDEV_DOWN: 3640 bond->master_ip = bond_glean_dev_ip(bond->dev); 3641 return NOTIFY_OK; 3642 default: 3643 return NOTIFY_DONE; 3644 } 3645 } 3646 3647 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 3648 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 3649 if (vlan_dev == event_dev) { 3650 switch (event) { 3651 case NETDEV_UP: 3652 vlan->vlan_ip = ifa->ifa_local; 3653 return NOTIFY_OK; 3654 case NETDEV_DOWN: 3655 vlan->vlan_ip = 3656 bond_glean_dev_ip(vlan_dev); 3657 return NOTIFY_OK; 3658 default: 3659 return NOTIFY_DONE; 3660 } 3661 } 3662 } 3663 } 3664 return NOTIFY_DONE; 3665 } 3666 3667 static struct notifier_block bond_netdev_notifier = { 3668 .notifier_call = bond_netdev_event, 3669 }; 3670 3671 static struct notifier_block bond_inetaddr_notifier = { 3672 .notifier_call = bond_inetaddr_event, 3673 }; 3674 3675 /*-------------------------- Packet type handling ---------------------------*/ 3676 3677 /* register to receive lacpdus on a bond */ 3678 static void bond_register_lacpdu(struct bonding *bond) 3679 { 3680 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type); 3681 3682 /* initialize packet type */ 3683 pk_type->type = PKT_TYPE_LACPDU; 3684 pk_type->dev = bond->dev; 3685 pk_type->func = bond_3ad_lacpdu_recv; 3686 3687 dev_add_pack(pk_type); 3688 } 3689 3690 /* unregister to receive lacpdus on a bond */ 3691 static void bond_unregister_lacpdu(struct bonding *bond) 3692 { 3693 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type)); 3694 } 3695 3696 void bond_register_arp(struct bonding *bond) 3697 { 3698 struct packet_type *pt = &bond->arp_mon_pt; 3699 3700 if (pt->type) 3701 return; 3702 3703 pt->type = htons(ETH_P_ARP); 3704 pt->dev = bond->dev; 3705 pt->func = bond_arp_rcv; 3706 dev_add_pack(pt); 3707 } 3708 3709 void bond_unregister_arp(struct bonding *bond) 3710 { 3711 struct packet_type *pt = &bond->arp_mon_pt; 3712 3713 dev_remove_pack(pt); 3714 pt->type = 0; 3715 } 3716 3717 /*---------------------------- Hashing Policies -----------------------------*/ 3718 3719 /* 3720 * Hash for the output device based upon layer 2 and layer 3 data. If 3721 * the packet is not IP mimic bond_xmit_hash_policy_l2() 3722 */ 3723 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, 3724 struct net_device *bond_dev, int count) 3725 { 3726 struct ethhdr *data = (struct ethhdr *)skb->data; 3727 struct iphdr *iph = ip_hdr(skb); 3728 3729 if (skb->protocol == htons(ETH_P_IP)) { 3730 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ 3731 (data->h_dest[5] ^ bond_dev->dev_addr[5])) % count; 3732 } 3733 3734 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3735 } 3736 3737 /* 3738 * Hash for the output device based upon layer 3 and layer 4 data. If 3739 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3740 * altogether not IP, mimic bond_xmit_hash_policy_l2() 3741 */ 3742 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, 3743 struct net_device *bond_dev, int count) 3744 { 3745 struct ethhdr *data = (struct ethhdr *)skb->data; 3746 struct iphdr *iph = ip_hdr(skb); 3747 __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl); 3748 int layer4_xor = 0; 3749 3750 if (skb->protocol == htons(ETH_P_IP)) { 3751 if (!(iph->frag_off & htons(IP_MF|IP_OFFSET)) && 3752 (iph->protocol == IPPROTO_TCP || 3753 iph->protocol == IPPROTO_UDP)) { 3754 layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1))); 3755 } 3756 return (layer4_xor ^ 3757 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3758 3759 } 3760 3761 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3762 } 3763 3764 /* 3765 * Hash for the output device based upon layer 2 data 3766 */ 3767 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, 3768 struct net_device *bond_dev, int count) 3769 { 3770 struct ethhdr *data = (struct ethhdr *)skb->data; 3771 3772 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3773 } 3774 3775 /*-------------------------- Device entry points ----------------------------*/ 3776 3777 static int bond_open(struct net_device *bond_dev) 3778 { 3779 struct bonding *bond = netdev_priv(bond_dev); 3780 3781 bond->kill_timers = 0; 3782 3783 if (bond_is_lb(bond)) { 3784 /* bond_alb_initialize must be called before the timer 3785 * is started. 3786 */ 3787 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) { 3788 /* something went wrong - fail the open operation */ 3789 return -1; 3790 } 3791 3792 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); 3793 queue_delayed_work(bond->wq, &bond->alb_work, 0); 3794 } 3795 3796 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3797 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); 3798 queue_delayed_work(bond->wq, &bond->mii_work, 0); 3799 } 3800 3801 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3802 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3803 INIT_DELAYED_WORK(&bond->arp_work, 3804 bond_activebackup_arp_mon); 3805 else 3806 INIT_DELAYED_WORK(&bond->arp_work, 3807 bond_loadbalance_arp_mon); 3808 3809 queue_delayed_work(bond->wq, &bond->arp_work, 0); 3810 if (bond->params.arp_validate) 3811 bond_register_arp(bond); 3812 } 3813 3814 if (bond->params.mode == BOND_MODE_8023AD) { 3815 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); 3816 queue_delayed_work(bond->wq, &bond->ad_work, 0); 3817 /* register to receive LACPDUs */ 3818 bond_register_lacpdu(bond); 3819 bond_3ad_initiate_agg_selection(bond, 1); 3820 } 3821 3822 return 0; 3823 } 3824 3825 static int bond_close(struct net_device *bond_dev) 3826 { 3827 struct bonding *bond = netdev_priv(bond_dev); 3828 3829 if (bond->params.mode == BOND_MODE_8023AD) { 3830 /* Unregister the receive of LACPDUs */ 3831 bond_unregister_lacpdu(bond); 3832 } 3833 3834 if (bond->params.arp_validate) 3835 bond_unregister_arp(bond); 3836 3837 write_lock_bh(&bond->lock); 3838 3839 bond->send_grat_arp = 0; 3840 bond->send_unsol_na = 0; 3841 3842 /* signal timers not to re-arm */ 3843 bond->kill_timers = 1; 3844 3845 write_unlock_bh(&bond->lock); 3846 3847 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3848 cancel_delayed_work(&bond->mii_work); 3849 } 3850 3851 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3852 cancel_delayed_work(&bond->arp_work); 3853 } 3854 3855 switch (bond->params.mode) { 3856 case BOND_MODE_8023AD: 3857 cancel_delayed_work(&bond->ad_work); 3858 break; 3859 case BOND_MODE_TLB: 3860 case BOND_MODE_ALB: 3861 cancel_delayed_work(&bond->alb_work); 3862 break; 3863 default: 3864 break; 3865 } 3866 3867 3868 if (bond_is_lb(bond)) { 3869 /* Must be called only after all 3870 * slaves have been released 3871 */ 3872 bond_alb_deinitialize(bond); 3873 } 3874 3875 return 0; 3876 } 3877 3878 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev) 3879 { 3880 struct bonding *bond = netdev_priv(bond_dev); 3881 struct net_device_stats *stats = &bond->stats; 3882 struct net_device_stats local_stats; 3883 struct slave *slave; 3884 int i; 3885 3886 memset(&local_stats, 0, sizeof(struct net_device_stats)); 3887 3888 read_lock_bh(&bond->lock); 3889 3890 bond_for_each_slave(bond, slave, i) { 3891 const struct net_device_stats *sstats = dev_get_stats(slave->dev); 3892 3893 local_stats.rx_packets += sstats->rx_packets; 3894 local_stats.rx_bytes += sstats->rx_bytes; 3895 local_stats.rx_errors += sstats->rx_errors; 3896 local_stats.rx_dropped += sstats->rx_dropped; 3897 3898 local_stats.tx_packets += sstats->tx_packets; 3899 local_stats.tx_bytes += sstats->tx_bytes; 3900 local_stats.tx_errors += sstats->tx_errors; 3901 local_stats.tx_dropped += sstats->tx_dropped; 3902 3903 local_stats.multicast += sstats->multicast; 3904 local_stats.collisions += sstats->collisions; 3905 3906 local_stats.rx_length_errors += sstats->rx_length_errors; 3907 local_stats.rx_over_errors += sstats->rx_over_errors; 3908 local_stats.rx_crc_errors += sstats->rx_crc_errors; 3909 local_stats.rx_frame_errors += sstats->rx_frame_errors; 3910 local_stats.rx_fifo_errors += sstats->rx_fifo_errors; 3911 local_stats.rx_missed_errors += sstats->rx_missed_errors; 3912 3913 local_stats.tx_aborted_errors += sstats->tx_aborted_errors; 3914 local_stats.tx_carrier_errors += sstats->tx_carrier_errors; 3915 local_stats.tx_fifo_errors += sstats->tx_fifo_errors; 3916 local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3917 local_stats.tx_window_errors += sstats->tx_window_errors; 3918 } 3919 3920 memcpy(stats, &local_stats, sizeof(struct net_device_stats)); 3921 3922 read_unlock_bh(&bond->lock); 3923 3924 return stats; 3925 } 3926 3927 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3928 { 3929 struct net_device *slave_dev = NULL; 3930 struct ifbond k_binfo; 3931 struct ifbond __user *u_binfo = NULL; 3932 struct ifslave k_sinfo; 3933 struct ifslave __user *u_sinfo = NULL; 3934 struct mii_ioctl_data *mii = NULL; 3935 int res = 0; 3936 3937 pr_debug("bond_ioctl: master=%s, cmd=%d\n", 3938 bond_dev->name, cmd); 3939 3940 switch (cmd) { 3941 case SIOCGMIIPHY: 3942 mii = if_mii(ifr); 3943 if (!mii) { 3944 return -EINVAL; 3945 } 3946 mii->phy_id = 0; 3947 /* Fall Through */ 3948 case SIOCGMIIREG: 3949 /* 3950 * We do this again just in case we were called by SIOCGMIIREG 3951 * instead of SIOCGMIIPHY. 3952 */ 3953 mii = if_mii(ifr); 3954 if (!mii) { 3955 return -EINVAL; 3956 } 3957 3958 if (mii->reg_num == 1) { 3959 struct bonding *bond = netdev_priv(bond_dev); 3960 mii->val_out = 0; 3961 read_lock(&bond->lock); 3962 read_lock(&bond->curr_slave_lock); 3963 if (netif_carrier_ok(bond->dev)) { 3964 mii->val_out = BMSR_LSTATUS; 3965 } 3966 read_unlock(&bond->curr_slave_lock); 3967 read_unlock(&bond->lock); 3968 } 3969 3970 return 0; 3971 case BOND_INFO_QUERY_OLD: 3972 case SIOCBONDINFOQUERY: 3973 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3974 3975 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) { 3976 return -EFAULT; 3977 } 3978 3979 res = bond_info_query(bond_dev, &k_binfo); 3980 if (res == 0) { 3981 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) { 3982 return -EFAULT; 3983 } 3984 } 3985 3986 return res; 3987 case BOND_SLAVE_INFO_QUERY_OLD: 3988 case SIOCBONDSLAVEINFOQUERY: 3989 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 3990 3991 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) { 3992 return -EFAULT; 3993 } 3994 3995 res = bond_slave_info_query(bond_dev, &k_sinfo); 3996 if (res == 0) { 3997 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) { 3998 return -EFAULT; 3999 } 4000 } 4001 4002 return res; 4003 default: 4004 /* Go on */ 4005 break; 4006 } 4007 4008 if (!capable(CAP_NET_ADMIN)) { 4009 return -EPERM; 4010 } 4011 4012 down_write(&(bonding_rwsem)); 4013 slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave); 4014 4015 pr_debug("slave_dev=%p: \n", slave_dev); 4016 4017 if (!slave_dev) { 4018 res = -ENODEV; 4019 } else { 4020 pr_debug("slave_dev->name=%s: \n", slave_dev->name); 4021 switch (cmd) { 4022 case BOND_ENSLAVE_OLD: 4023 case SIOCBONDENSLAVE: 4024 res = bond_enslave(bond_dev, slave_dev); 4025 break; 4026 case BOND_RELEASE_OLD: 4027 case SIOCBONDRELEASE: 4028 res = bond_release(bond_dev, slave_dev); 4029 break; 4030 case BOND_SETHWADDR_OLD: 4031 case SIOCBONDSETHWADDR: 4032 res = bond_sethwaddr(bond_dev, slave_dev); 4033 break; 4034 case BOND_CHANGE_ACTIVE_OLD: 4035 case SIOCBONDCHANGEACTIVE: 4036 res = bond_ioctl_change_active(bond_dev, slave_dev); 4037 break; 4038 default: 4039 res = -EOPNOTSUPP; 4040 } 4041 4042 dev_put(slave_dev); 4043 } 4044 4045 up_write(&(bonding_rwsem)); 4046 return res; 4047 } 4048 4049 static void bond_set_multicast_list(struct net_device *bond_dev) 4050 { 4051 struct bonding *bond = netdev_priv(bond_dev); 4052 struct dev_mc_list *dmi; 4053 4054 /* 4055 * Do promisc before checking multicast_mode 4056 */ 4057 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) { 4058 /* 4059 * FIXME: Need to handle the error when one of the multi-slaves 4060 * encounters error. 4061 */ 4062 bond_set_promiscuity(bond, 1); 4063 } 4064 4065 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) { 4066 bond_set_promiscuity(bond, -1); 4067 } 4068 4069 /* set allmulti flag to slaves */ 4070 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) { 4071 /* 4072 * FIXME: Need to handle the error when one of the multi-slaves 4073 * encounters error. 4074 */ 4075 bond_set_allmulti(bond, 1); 4076 } 4077 4078 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) { 4079 bond_set_allmulti(bond, -1); 4080 } 4081 4082 read_lock(&bond->lock); 4083 4084 bond->flags = bond_dev->flags; 4085 4086 /* looking for addresses to add to slaves' mc list */ 4087 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 4088 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) { 4089 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4090 } 4091 } 4092 4093 /* looking for addresses to delete from slaves' list */ 4094 for (dmi = bond->mc_list; dmi; dmi = dmi->next) { 4095 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) { 4096 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4097 } 4098 } 4099 4100 /* save master's multicast list */ 4101 bond_mc_list_destroy(bond); 4102 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC); 4103 4104 read_unlock(&bond->lock); 4105 } 4106 4107 static int bond_neigh_setup(struct net_device *dev, struct neigh_parms *parms) 4108 { 4109 struct bonding *bond = netdev_priv(dev); 4110 struct slave *slave = bond->first_slave; 4111 4112 if (slave) { 4113 const struct net_device_ops *slave_ops 4114 = slave->dev->netdev_ops; 4115 if (slave_ops->ndo_neigh_setup) 4116 return slave_ops->ndo_neigh_setup(dev, parms); 4117 } 4118 return 0; 4119 } 4120 4121 /* 4122 * Change the MTU of all of a master's slaves to match the master 4123 */ 4124 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 4125 { 4126 struct bonding *bond = netdev_priv(bond_dev); 4127 struct slave *slave, *stop_at; 4128 int res = 0; 4129 int i; 4130 4131 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond, 4132 (bond_dev ? bond_dev->name : "None"), new_mtu); 4133 4134 /* Can't hold bond->lock with bh disabled here since 4135 * some base drivers panic. On the other hand we can't 4136 * hold bond->lock without bh disabled because we'll 4137 * deadlock. The only solution is to rely on the fact 4138 * that we're under rtnl_lock here, and the slaves 4139 * list won't change. This doesn't solve the problem 4140 * of setting the slave's MTU while it is 4141 * transmitting, but the assumption is that the base 4142 * driver can handle that. 4143 * 4144 * TODO: figure out a way to safely iterate the slaves 4145 * list, but without holding a lock around the actual 4146 * call to the base driver. 4147 */ 4148 4149 bond_for_each_slave(bond, slave, i) { 4150 pr_debug("s %p s->p %p c_m %p\n", slave, 4151 slave->prev, slave->dev->netdev_ops->ndo_change_mtu); 4152 4153 res = dev_set_mtu(slave->dev, new_mtu); 4154 4155 if (res) { 4156 /* If we failed to set the slave's mtu to the new value 4157 * we must abort the operation even in ACTIVE_BACKUP 4158 * mode, because if we allow the backup slaves to have 4159 * different mtu values than the active slave we'll 4160 * need to change their mtu when doing a failover. That 4161 * means changing their mtu from timer context, which 4162 * is probably not a good idea. 4163 */ 4164 pr_debug("err %d %s\n", res, slave->dev->name); 4165 goto unwind; 4166 } 4167 } 4168 4169 bond_dev->mtu = new_mtu; 4170 4171 return 0; 4172 4173 unwind: 4174 /* unwind from head to the slave that failed */ 4175 stop_at = slave; 4176 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4177 int tmp_res; 4178 4179 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 4180 if (tmp_res) { 4181 pr_debug("unwind err %d dev %s\n", tmp_res, 4182 slave->dev->name); 4183 } 4184 } 4185 4186 return res; 4187 } 4188 4189 /* 4190 * Change HW address 4191 * 4192 * Note that many devices must be down to change the HW address, and 4193 * downing the master releases all slaves. We can make bonds full of 4194 * bonding devices to test this, however. 4195 */ 4196 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 4197 { 4198 struct bonding *bond = netdev_priv(bond_dev); 4199 struct sockaddr *sa = addr, tmp_sa; 4200 struct slave *slave, *stop_at; 4201 int res = 0; 4202 int i; 4203 4204 if (bond->params.mode == BOND_MODE_ALB) 4205 return bond_alb_set_mac_address(bond_dev, addr); 4206 4207 4208 pr_debug("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None")); 4209 4210 /* 4211 * If fail_over_mac is set to active, do nothing and return 4212 * success. Returning an error causes ifenslave to fail. 4213 */ 4214 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE) 4215 return 0; 4216 4217 if (!is_valid_ether_addr(sa->sa_data)) { 4218 return -EADDRNOTAVAIL; 4219 } 4220 4221 /* Can't hold bond->lock with bh disabled here since 4222 * some base drivers panic. On the other hand we can't 4223 * hold bond->lock without bh disabled because we'll 4224 * deadlock. The only solution is to rely on the fact 4225 * that we're under rtnl_lock here, and the slaves 4226 * list won't change. This doesn't solve the problem 4227 * of setting the slave's hw address while it is 4228 * transmitting, but the assumption is that the base 4229 * driver can handle that. 4230 * 4231 * TODO: figure out a way to safely iterate the slaves 4232 * list, but without holding a lock around the actual 4233 * call to the base driver. 4234 */ 4235 4236 bond_for_each_slave(bond, slave, i) { 4237 const struct net_device_ops *slave_ops = slave->dev->netdev_ops; 4238 pr_debug("slave %p %s\n", slave, slave->dev->name); 4239 4240 if (slave_ops->ndo_set_mac_address == NULL) { 4241 res = -EOPNOTSUPP; 4242 pr_debug("EOPNOTSUPP %s\n", slave->dev->name); 4243 goto unwind; 4244 } 4245 4246 res = dev_set_mac_address(slave->dev, addr); 4247 if (res) { 4248 /* TODO: consider downing the slave 4249 * and retry ? 4250 * User should expect communications 4251 * breakage anyway until ARP finish 4252 * updating, so... 4253 */ 4254 pr_debug("err %d %s\n", res, slave->dev->name); 4255 goto unwind; 4256 } 4257 } 4258 4259 /* success */ 4260 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 4261 return 0; 4262 4263 unwind: 4264 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 4265 tmp_sa.sa_family = bond_dev->type; 4266 4267 /* unwind from head to the slave that failed */ 4268 stop_at = slave; 4269 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4270 int tmp_res; 4271 4272 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 4273 if (tmp_res) { 4274 pr_debug("unwind err %d dev %s\n", tmp_res, 4275 slave->dev->name); 4276 } 4277 } 4278 4279 return res; 4280 } 4281 4282 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 4283 { 4284 struct bonding *bond = netdev_priv(bond_dev); 4285 struct slave *slave, *start_at; 4286 int i, slave_no, res = 1; 4287 4288 read_lock(&bond->lock); 4289 4290 if (!BOND_IS_OK(bond)) { 4291 goto out; 4292 } 4293 4294 /* 4295 * Concurrent TX may collide on rr_tx_counter; we accept that 4296 * as being rare enough not to justify using an atomic op here 4297 */ 4298 slave_no = bond->rr_tx_counter++ % bond->slave_cnt; 4299 4300 bond_for_each_slave(bond, slave, i) { 4301 slave_no--; 4302 if (slave_no < 0) { 4303 break; 4304 } 4305 } 4306 4307 start_at = slave; 4308 bond_for_each_slave_from(bond, slave, i, start_at) { 4309 if (IS_UP(slave->dev) && 4310 (slave->link == BOND_LINK_UP) && 4311 (slave->state == BOND_STATE_ACTIVE)) { 4312 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4313 break; 4314 } 4315 } 4316 4317 out: 4318 if (res) { 4319 /* no suitable interface, frame not sent */ 4320 dev_kfree_skb(skb); 4321 } 4322 read_unlock(&bond->lock); 4323 return 0; 4324 } 4325 4326 4327 /* 4328 * in active-backup mode, we know that bond->curr_active_slave is always valid if 4329 * the bond has a usable interface. 4330 */ 4331 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 4332 { 4333 struct bonding *bond = netdev_priv(bond_dev); 4334 int res = 1; 4335 4336 read_lock(&bond->lock); 4337 read_lock(&bond->curr_slave_lock); 4338 4339 if (!BOND_IS_OK(bond)) { 4340 goto out; 4341 } 4342 4343 if (!bond->curr_active_slave) 4344 goto out; 4345 4346 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev); 4347 4348 out: 4349 if (res) { 4350 /* no suitable interface, frame not sent */ 4351 dev_kfree_skb(skb); 4352 } 4353 read_unlock(&bond->curr_slave_lock); 4354 read_unlock(&bond->lock); 4355 return 0; 4356 } 4357 4358 /* 4359 * In bond_xmit_xor() , we determine the output device by using a pre- 4360 * determined xmit_hash_policy(), If the selected device is not enabled, 4361 * find the next active slave. 4362 */ 4363 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4364 { 4365 struct bonding *bond = netdev_priv(bond_dev); 4366 struct slave *slave, *start_at; 4367 int slave_no; 4368 int i; 4369 int res = 1; 4370 4371 read_lock(&bond->lock); 4372 4373 if (!BOND_IS_OK(bond)) { 4374 goto out; 4375 } 4376 4377 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt); 4378 4379 bond_for_each_slave(bond, slave, i) { 4380 slave_no--; 4381 if (slave_no < 0) { 4382 break; 4383 } 4384 } 4385 4386 start_at = slave; 4387 4388 bond_for_each_slave_from(bond, slave, i, start_at) { 4389 if (IS_UP(slave->dev) && 4390 (slave->link == BOND_LINK_UP) && 4391 (slave->state == BOND_STATE_ACTIVE)) { 4392 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4393 break; 4394 } 4395 } 4396 4397 out: 4398 if (res) { 4399 /* no suitable interface, frame not sent */ 4400 dev_kfree_skb(skb); 4401 } 4402 read_unlock(&bond->lock); 4403 return 0; 4404 } 4405 4406 /* 4407 * in broadcast mode, we send everything to all usable interfaces. 4408 */ 4409 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4410 { 4411 struct bonding *bond = netdev_priv(bond_dev); 4412 struct slave *slave, *start_at; 4413 struct net_device *tx_dev = NULL; 4414 int i; 4415 int res = 1; 4416 4417 read_lock(&bond->lock); 4418 4419 if (!BOND_IS_OK(bond)) { 4420 goto out; 4421 } 4422 4423 read_lock(&bond->curr_slave_lock); 4424 start_at = bond->curr_active_slave; 4425 read_unlock(&bond->curr_slave_lock); 4426 4427 if (!start_at) { 4428 goto out; 4429 } 4430 4431 bond_for_each_slave_from(bond, slave, i, start_at) { 4432 if (IS_UP(slave->dev) && 4433 (slave->link == BOND_LINK_UP) && 4434 (slave->state == BOND_STATE_ACTIVE)) { 4435 if (tx_dev) { 4436 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4437 if (!skb2) { 4438 printk(KERN_ERR DRV_NAME 4439 ": %s: Error: bond_xmit_broadcast(): " 4440 "skb_clone() failed\n", 4441 bond_dev->name); 4442 continue; 4443 } 4444 4445 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4446 if (res) { 4447 dev_kfree_skb(skb2); 4448 continue; 4449 } 4450 } 4451 tx_dev = slave->dev; 4452 } 4453 } 4454 4455 if (tx_dev) { 4456 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4457 } 4458 4459 out: 4460 if (res) { 4461 /* no suitable interface, frame not sent */ 4462 dev_kfree_skb(skb); 4463 } 4464 /* frame sent to all suitable interfaces */ 4465 read_unlock(&bond->lock); 4466 return 0; 4467 } 4468 4469 /*------------------------- Device initialization ---------------------------*/ 4470 4471 static void bond_set_xmit_hash_policy(struct bonding *bond) 4472 { 4473 switch (bond->params.xmit_policy) { 4474 case BOND_XMIT_POLICY_LAYER23: 4475 bond->xmit_hash_policy = bond_xmit_hash_policy_l23; 4476 break; 4477 case BOND_XMIT_POLICY_LAYER34: 4478 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4479 break; 4480 case BOND_XMIT_POLICY_LAYER2: 4481 default: 4482 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4483 break; 4484 } 4485 } 4486 4487 static int bond_start_xmit(struct sk_buff *skb, struct net_device *dev) 4488 { 4489 const struct bonding *bond = netdev_priv(dev); 4490 4491 switch (bond->params.mode) { 4492 case BOND_MODE_ROUNDROBIN: 4493 return bond_xmit_roundrobin(skb, dev); 4494 case BOND_MODE_ACTIVEBACKUP: 4495 return bond_xmit_activebackup(skb, dev); 4496 case BOND_MODE_XOR: 4497 return bond_xmit_xor(skb, dev); 4498 case BOND_MODE_BROADCAST: 4499 return bond_xmit_broadcast(skb, dev); 4500 case BOND_MODE_8023AD: 4501 return bond_3ad_xmit_xor(skb, dev); 4502 case BOND_MODE_ALB: 4503 case BOND_MODE_TLB: 4504 return bond_alb_xmit(skb, dev); 4505 default: 4506 /* Should never happen, mode already checked */ 4507 printk(KERN_ERR DRV_NAME ": %s: Error: Unknown bonding mode %d\n", 4508 dev->name, bond->params.mode); 4509 WARN_ON_ONCE(1); 4510 dev_kfree_skb(skb); 4511 return NETDEV_TX_OK; 4512 } 4513 } 4514 4515 4516 /* 4517 * set bond mode specific net device operations 4518 */ 4519 void bond_set_mode_ops(struct bonding *bond, int mode) 4520 { 4521 struct net_device *bond_dev = bond->dev; 4522 4523 switch (mode) { 4524 case BOND_MODE_ROUNDROBIN: 4525 break; 4526 case BOND_MODE_ACTIVEBACKUP: 4527 break; 4528 case BOND_MODE_XOR: 4529 bond_set_xmit_hash_policy(bond); 4530 break; 4531 case BOND_MODE_BROADCAST: 4532 break; 4533 case BOND_MODE_8023AD: 4534 bond_set_master_3ad_flags(bond); 4535 bond_set_xmit_hash_policy(bond); 4536 break; 4537 case BOND_MODE_ALB: 4538 bond_set_master_alb_flags(bond); 4539 /* FALLTHRU */ 4540 case BOND_MODE_TLB: 4541 break; 4542 default: 4543 /* Should never happen, mode already checked */ 4544 printk(KERN_ERR DRV_NAME 4545 ": %s: Error: Unknown bonding mode %d\n", 4546 bond_dev->name, 4547 mode); 4548 break; 4549 } 4550 } 4551 4552 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4553 struct ethtool_drvinfo *drvinfo) 4554 { 4555 strncpy(drvinfo->driver, DRV_NAME, 32); 4556 strncpy(drvinfo->version, DRV_VERSION, 32); 4557 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION); 4558 } 4559 4560 static const struct ethtool_ops bond_ethtool_ops = { 4561 .get_drvinfo = bond_ethtool_get_drvinfo, 4562 .get_link = ethtool_op_get_link, 4563 .get_tx_csum = ethtool_op_get_tx_csum, 4564 .get_sg = ethtool_op_get_sg, 4565 .get_tso = ethtool_op_get_tso, 4566 .get_ufo = ethtool_op_get_ufo, 4567 .get_flags = ethtool_op_get_flags, 4568 }; 4569 4570 static const struct net_device_ops bond_netdev_ops = { 4571 .ndo_open = bond_open, 4572 .ndo_stop = bond_close, 4573 .ndo_start_xmit = bond_start_xmit, 4574 .ndo_get_stats = bond_get_stats, 4575 .ndo_do_ioctl = bond_do_ioctl, 4576 .ndo_set_multicast_list = bond_set_multicast_list, 4577 .ndo_change_mtu = bond_change_mtu, 4578 .ndo_set_mac_address = bond_set_mac_address, 4579 .ndo_neigh_setup = bond_neigh_setup, 4580 .ndo_vlan_rx_register = bond_vlan_rx_register, 4581 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid, 4582 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid, 4583 }; 4584 4585 /* 4586 * Does not allocate but creates a /proc entry. 4587 * Allowed to fail. 4588 */ 4589 static int bond_init(struct net_device *bond_dev, struct bond_params *params) 4590 { 4591 struct bonding *bond = netdev_priv(bond_dev); 4592 4593 pr_debug("Begin bond_init for %s\n", bond_dev->name); 4594 4595 /* initialize rwlocks */ 4596 rwlock_init(&bond->lock); 4597 rwlock_init(&bond->curr_slave_lock); 4598 4599 bond->params = *params; /* copy params struct */ 4600 4601 bond->wq = create_singlethread_workqueue(bond_dev->name); 4602 if (!bond->wq) 4603 return -ENOMEM; 4604 4605 /* Initialize pointers */ 4606 bond->first_slave = NULL; 4607 bond->curr_active_slave = NULL; 4608 bond->current_arp_slave = NULL; 4609 bond->primary_slave = NULL; 4610 bond->dev = bond_dev; 4611 bond->send_grat_arp = 0; 4612 bond->send_unsol_na = 0; 4613 bond->setup_by_slave = 0; 4614 INIT_LIST_HEAD(&bond->vlan_list); 4615 4616 /* Initialize the device entry points */ 4617 bond_dev->netdev_ops = &bond_netdev_ops; 4618 bond_dev->ethtool_ops = &bond_ethtool_ops; 4619 bond_set_mode_ops(bond, bond->params.mode); 4620 4621 bond_dev->destructor = bond_destructor; 4622 4623 /* Initialize the device options */ 4624 bond_dev->tx_queue_len = 0; 4625 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4626 bond_dev->priv_flags |= IFF_BONDING; 4627 if (bond->params.arp_interval) 4628 bond_dev->priv_flags |= IFF_MASTER_ARPMON; 4629 4630 /* At first, we block adding VLANs. That's the only way to 4631 * prevent problems that occur when adding VLANs over an 4632 * empty bond. The block will be removed once non-challenged 4633 * slaves are enslaved. 4634 */ 4635 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4636 4637 /* don't acquire bond device's netif_tx_lock when 4638 * transmitting */ 4639 bond_dev->features |= NETIF_F_LLTX; 4640 4641 /* By default, we declare the bond to be fully 4642 * VLAN hardware accelerated capable. Special 4643 * care is taken in the various xmit functions 4644 * when there are slaves that are not hw accel 4645 * capable 4646 */ 4647 bond_dev->features |= (NETIF_F_HW_VLAN_TX | 4648 NETIF_F_HW_VLAN_RX | 4649 NETIF_F_HW_VLAN_FILTER); 4650 4651 #ifdef CONFIG_PROC_FS 4652 bond_create_proc_entry(bond); 4653 #endif 4654 list_add_tail(&bond->bond_list, &bond_dev_list); 4655 4656 return 0; 4657 } 4658 4659 static void bond_work_cancel_all(struct bonding *bond) 4660 { 4661 write_lock_bh(&bond->lock); 4662 bond->kill_timers = 1; 4663 write_unlock_bh(&bond->lock); 4664 4665 if (bond->params.miimon && delayed_work_pending(&bond->mii_work)) 4666 cancel_delayed_work(&bond->mii_work); 4667 4668 if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work)) 4669 cancel_delayed_work(&bond->arp_work); 4670 4671 if (bond->params.mode == BOND_MODE_ALB && 4672 delayed_work_pending(&bond->alb_work)) 4673 cancel_delayed_work(&bond->alb_work); 4674 4675 if (bond->params.mode == BOND_MODE_8023AD && 4676 delayed_work_pending(&bond->ad_work)) 4677 cancel_delayed_work(&bond->ad_work); 4678 } 4679 4680 /* De-initialize device specific data. 4681 * Caller must hold rtnl_lock. 4682 */ 4683 static void bond_deinit(struct net_device *bond_dev) 4684 { 4685 struct bonding *bond = netdev_priv(bond_dev); 4686 4687 list_del(&bond->bond_list); 4688 4689 bond_work_cancel_all(bond); 4690 4691 #ifdef CONFIG_PROC_FS 4692 bond_remove_proc_entry(bond); 4693 #endif 4694 } 4695 4696 /* Unregister and free all bond devices. 4697 * Caller must hold rtnl_lock. 4698 */ 4699 static void bond_free_all(void) 4700 { 4701 struct bonding *bond, *nxt; 4702 4703 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) { 4704 struct net_device *bond_dev = bond->dev; 4705 4706 bond_work_cancel_all(bond); 4707 /* Release the bonded slaves */ 4708 bond_release_all(bond_dev); 4709 bond_destroy(bond); 4710 } 4711 4712 #ifdef CONFIG_PROC_FS 4713 bond_destroy_proc_dir(); 4714 #endif 4715 } 4716 4717 /*------------------------- Module initialization ---------------------------*/ 4718 4719 /* 4720 * Convert string input module parms. Accept either the 4721 * number of the mode or its string name. A bit complicated because 4722 * some mode names are substrings of other names, and calls from sysfs 4723 * may have whitespace in the name (trailing newlines, for example). 4724 */ 4725 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl) 4726 { 4727 int mode = -1, i, rv; 4728 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; 4729 4730 for (p = (char *)buf; *p; p++) 4731 if (!(isdigit(*p) || isspace(*p))) 4732 break; 4733 4734 if (*p) 4735 rv = sscanf(buf, "%20s", modestr); 4736 else 4737 rv = sscanf(buf, "%d", &mode); 4738 4739 if (!rv) 4740 return -1; 4741 4742 for (i = 0; tbl[i].modename; i++) { 4743 if (mode == tbl[i].mode) 4744 return tbl[i].mode; 4745 if (strcmp(modestr, tbl[i].modename) == 0) 4746 return tbl[i].mode; 4747 } 4748 4749 return -1; 4750 } 4751 4752 static int bond_check_params(struct bond_params *params) 4753 { 4754 int arp_validate_value, fail_over_mac_value; 4755 4756 /* 4757 * Convert string parameters. 4758 */ 4759 if (mode) { 4760 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4761 if (bond_mode == -1) { 4762 printk(KERN_ERR DRV_NAME 4763 ": Error: Invalid bonding mode \"%s\"\n", 4764 mode == NULL ? "NULL" : mode); 4765 return -EINVAL; 4766 } 4767 } 4768 4769 if (xmit_hash_policy) { 4770 if ((bond_mode != BOND_MODE_XOR) && 4771 (bond_mode != BOND_MODE_8023AD)) { 4772 printk(KERN_INFO DRV_NAME 4773 ": xor_mode param is irrelevant in mode %s\n", 4774 bond_mode_name(bond_mode)); 4775 } else { 4776 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4777 xmit_hashtype_tbl); 4778 if (xmit_hashtype == -1) { 4779 printk(KERN_ERR DRV_NAME 4780 ": Error: Invalid xmit_hash_policy \"%s\"\n", 4781 xmit_hash_policy == NULL ? "NULL" : 4782 xmit_hash_policy); 4783 return -EINVAL; 4784 } 4785 } 4786 } 4787 4788 if (lacp_rate) { 4789 if (bond_mode != BOND_MODE_8023AD) { 4790 printk(KERN_INFO DRV_NAME 4791 ": lacp_rate param is irrelevant in mode %s\n", 4792 bond_mode_name(bond_mode)); 4793 } else { 4794 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4795 if (lacp_fast == -1) { 4796 printk(KERN_ERR DRV_NAME 4797 ": Error: Invalid lacp rate \"%s\"\n", 4798 lacp_rate == NULL ? "NULL" : lacp_rate); 4799 return -EINVAL; 4800 } 4801 } 4802 } 4803 4804 if (ad_select) { 4805 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl); 4806 if (params->ad_select == -1) { 4807 printk(KERN_ERR DRV_NAME 4808 ": Error: Invalid ad_select \"%s\"\n", 4809 ad_select == NULL ? "NULL" : ad_select); 4810 return -EINVAL; 4811 } 4812 4813 if (bond_mode != BOND_MODE_8023AD) { 4814 printk(KERN_WARNING DRV_NAME 4815 ": ad_select param only affects 802.3ad mode\n"); 4816 } 4817 } else { 4818 params->ad_select = BOND_AD_STABLE; 4819 } 4820 4821 if (max_bonds < 0 || max_bonds > INT_MAX) { 4822 printk(KERN_WARNING DRV_NAME 4823 ": Warning: max_bonds (%d) not in range %d-%d, so it " 4824 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4825 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4826 max_bonds = BOND_DEFAULT_MAX_BONDS; 4827 } 4828 4829 if (miimon < 0) { 4830 printk(KERN_WARNING DRV_NAME 4831 ": Warning: miimon module parameter (%d), " 4832 "not in range 0-%d, so it was reset to %d\n", 4833 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4834 miimon = BOND_LINK_MON_INTERV; 4835 } 4836 4837 if (updelay < 0) { 4838 printk(KERN_WARNING DRV_NAME 4839 ": Warning: updelay module parameter (%d), " 4840 "not in range 0-%d, so it was reset to 0\n", 4841 updelay, INT_MAX); 4842 updelay = 0; 4843 } 4844 4845 if (downdelay < 0) { 4846 printk(KERN_WARNING DRV_NAME 4847 ": Warning: downdelay module parameter (%d), " 4848 "not in range 0-%d, so it was reset to 0\n", 4849 downdelay, INT_MAX); 4850 downdelay = 0; 4851 } 4852 4853 if ((use_carrier != 0) && (use_carrier != 1)) { 4854 printk(KERN_WARNING DRV_NAME 4855 ": Warning: use_carrier module parameter (%d), " 4856 "not of valid value (0/1), so it was set to 1\n", 4857 use_carrier); 4858 use_carrier = 1; 4859 } 4860 4861 if (num_grat_arp < 0 || num_grat_arp > 255) { 4862 printk(KERN_WARNING DRV_NAME 4863 ": Warning: num_grat_arp (%d) not in range 0-255 so it " 4864 "was reset to 1 \n", num_grat_arp); 4865 num_grat_arp = 1; 4866 } 4867 4868 if (num_unsol_na < 0 || num_unsol_na > 255) { 4869 printk(KERN_WARNING DRV_NAME 4870 ": Warning: num_unsol_na (%d) not in range 0-255 so it " 4871 "was reset to 1 \n", num_unsol_na); 4872 num_unsol_na = 1; 4873 } 4874 4875 /* reset values for 802.3ad */ 4876 if (bond_mode == BOND_MODE_8023AD) { 4877 if (!miimon) { 4878 printk(KERN_WARNING DRV_NAME 4879 ": Warning: miimon must be specified, " 4880 "otherwise bonding will not detect link " 4881 "failure, speed and duplex which are " 4882 "essential for 802.3ad operation\n"); 4883 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4884 miimon = 100; 4885 } 4886 } 4887 4888 /* reset values for TLB/ALB */ 4889 if ((bond_mode == BOND_MODE_TLB) || 4890 (bond_mode == BOND_MODE_ALB)) { 4891 if (!miimon) { 4892 printk(KERN_WARNING DRV_NAME 4893 ": Warning: miimon must be specified, " 4894 "otherwise bonding will not detect link " 4895 "failure and link speed which are essential " 4896 "for TLB/ALB load balancing\n"); 4897 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4898 miimon = 100; 4899 } 4900 } 4901 4902 if (bond_mode == BOND_MODE_ALB) { 4903 printk(KERN_NOTICE DRV_NAME 4904 ": In ALB mode you might experience client " 4905 "disconnections upon reconnection of a link if the " 4906 "bonding module updelay parameter (%d msec) is " 4907 "incompatible with the forwarding delay time of the " 4908 "switch\n", 4909 updelay); 4910 } 4911 4912 if (!miimon) { 4913 if (updelay || downdelay) { 4914 /* just warn the user the up/down delay will have 4915 * no effect since miimon is zero... 4916 */ 4917 printk(KERN_WARNING DRV_NAME 4918 ": Warning: miimon module parameter not set " 4919 "and updelay (%d) or downdelay (%d) module " 4920 "parameter is set; updelay and downdelay have " 4921 "no effect unless miimon is set\n", 4922 updelay, downdelay); 4923 } 4924 } else { 4925 /* don't allow arp monitoring */ 4926 if (arp_interval) { 4927 printk(KERN_WARNING DRV_NAME 4928 ": Warning: miimon (%d) and arp_interval (%d) " 4929 "can't be used simultaneously, disabling ARP " 4930 "monitoring\n", 4931 miimon, arp_interval); 4932 arp_interval = 0; 4933 } 4934 4935 if ((updelay % miimon) != 0) { 4936 printk(KERN_WARNING DRV_NAME 4937 ": Warning: updelay (%d) is not a multiple " 4938 "of miimon (%d), updelay rounded to %d ms\n", 4939 updelay, miimon, (updelay / miimon) * miimon); 4940 } 4941 4942 updelay /= miimon; 4943 4944 if ((downdelay % miimon) != 0) { 4945 printk(KERN_WARNING DRV_NAME 4946 ": Warning: downdelay (%d) is not a multiple " 4947 "of miimon (%d), downdelay rounded to %d ms\n", 4948 downdelay, miimon, 4949 (downdelay / miimon) * miimon); 4950 } 4951 4952 downdelay /= miimon; 4953 } 4954 4955 if (arp_interval < 0) { 4956 printk(KERN_WARNING DRV_NAME 4957 ": Warning: arp_interval module parameter (%d) " 4958 ", not in range 0-%d, so it was reset to %d\n", 4959 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4960 arp_interval = BOND_LINK_ARP_INTERV; 4961 } 4962 4963 for (arp_ip_count = 0; 4964 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; 4965 arp_ip_count++) { 4966 /* not complete check, but should be good enough to 4967 catch mistakes */ 4968 if (!isdigit(arp_ip_target[arp_ip_count][0])) { 4969 printk(KERN_WARNING DRV_NAME 4970 ": Warning: bad arp_ip_target module parameter " 4971 "(%s), ARP monitoring will not be performed\n", 4972 arp_ip_target[arp_ip_count]); 4973 arp_interval = 0; 4974 } else { 4975 __be32 ip = in_aton(arp_ip_target[arp_ip_count]); 4976 arp_target[arp_ip_count] = ip; 4977 } 4978 } 4979 4980 if (arp_interval && !arp_ip_count) { 4981 /* don't allow arping if no arp_ip_target given... */ 4982 printk(KERN_WARNING DRV_NAME 4983 ": Warning: arp_interval module parameter (%d) " 4984 "specified without providing an arp_ip_target " 4985 "parameter, arp_interval was reset to 0\n", 4986 arp_interval); 4987 arp_interval = 0; 4988 } 4989 4990 if (arp_validate) { 4991 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4992 printk(KERN_ERR DRV_NAME 4993 ": arp_validate only supported in active-backup mode\n"); 4994 return -EINVAL; 4995 } 4996 if (!arp_interval) { 4997 printk(KERN_ERR DRV_NAME 4998 ": arp_validate requires arp_interval\n"); 4999 return -EINVAL; 5000 } 5001 5002 arp_validate_value = bond_parse_parm(arp_validate, 5003 arp_validate_tbl); 5004 if (arp_validate_value == -1) { 5005 printk(KERN_ERR DRV_NAME 5006 ": Error: invalid arp_validate \"%s\"\n", 5007 arp_validate == NULL ? "NULL" : arp_validate); 5008 return -EINVAL; 5009 } 5010 } else 5011 arp_validate_value = 0; 5012 5013 if (miimon) { 5014 printk(KERN_INFO DRV_NAME 5015 ": MII link monitoring set to %d ms\n", 5016 miimon); 5017 } else if (arp_interval) { 5018 int i; 5019 5020 printk(KERN_INFO DRV_NAME 5021 ": ARP monitoring set to %d ms, validate %s, with %d target(s):", 5022 arp_interval, 5023 arp_validate_tbl[arp_validate_value].modename, 5024 arp_ip_count); 5025 5026 for (i = 0; i < arp_ip_count; i++) 5027 printk (" %s", arp_ip_target[i]); 5028 5029 printk("\n"); 5030 5031 } else if (max_bonds) { 5032 /* miimon and arp_interval not set, we need one so things 5033 * work as expected, see bonding.txt for details 5034 */ 5035 printk(KERN_WARNING DRV_NAME 5036 ": Warning: either miimon or arp_interval and " 5037 "arp_ip_target module parameters must be specified, " 5038 "otherwise bonding will not detect link failures! see " 5039 "bonding.txt for details.\n"); 5040 } 5041 5042 if (primary && !USES_PRIMARY(bond_mode)) { 5043 /* currently, using a primary only makes sense 5044 * in active backup, TLB or ALB modes 5045 */ 5046 printk(KERN_WARNING DRV_NAME 5047 ": Warning: %s primary device specified but has no " 5048 "effect in %s mode\n", 5049 primary, bond_mode_name(bond_mode)); 5050 primary = NULL; 5051 } 5052 5053 if (fail_over_mac) { 5054 fail_over_mac_value = bond_parse_parm(fail_over_mac, 5055 fail_over_mac_tbl); 5056 if (fail_over_mac_value == -1) { 5057 printk(KERN_ERR DRV_NAME 5058 ": Error: invalid fail_over_mac \"%s\"\n", 5059 arp_validate == NULL ? "NULL" : arp_validate); 5060 return -EINVAL; 5061 } 5062 5063 if (bond_mode != BOND_MODE_ACTIVEBACKUP) 5064 printk(KERN_WARNING DRV_NAME 5065 ": Warning: fail_over_mac only affects " 5066 "active-backup mode.\n"); 5067 } else { 5068 fail_over_mac_value = BOND_FOM_NONE; 5069 } 5070 5071 /* fill params struct with the proper values */ 5072 params->mode = bond_mode; 5073 params->xmit_policy = xmit_hashtype; 5074 params->miimon = miimon; 5075 params->num_grat_arp = num_grat_arp; 5076 params->num_unsol_na = num_unsol_na; 5077 params->arp_interval = arp_interval; 5078 params->arp_validate = arp_validate_value; 5079 params->updelay = updelay; 5080 params->downdelay = downdelay; 5081 params->use_carrier = use_carrier; 5082 params->lacp_fast = lacp_fast; 5083 params->primary[0] = 0; 5084 params->fail_over_mac = fail_over_mac_value; 5085 5086 if (primary) { 5087 strncpy(params->primary, primary, IFNAMSIZ); 5088 params->primary[IFNAMSIZ - 1] = 0; 5089 } 5090 5091 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 5092 5093 return 0; 5094 } 5095 5096 static struct lock_class_key bonding_netdev_xmit_lock_key; 5097 static struct lock_class_key bonding_netdev_addr_lock_key; 5098 5099 static void bond_set_lockdep_class_one(struct net_device *dev, 5100 struct netdev_queue *txq, 5101 void *_unused) 5102 { 5103 lockdep_set_class(&txq->_xmit_lock, 5104 &bonding_netdev_xmit_lock_key); 5105 } 5106 5107 static void bond_set_lockdep_class(struct net_device *dev) 5108 { 5109 lockdep_set_class(&dev->addr_list_lock, 5110 &bonding_netdev_addr_lock_key); 5111 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL); 5112 } 5113 5114 /* Create a new bond based on the specified name and bonding parameters. 5115 * If name is NULL, obtain a suitable "bond%d" name for us. 5116 * Caller must NOT hold rtnl_lock; we need to release it here before we 5117 * set up our sysfs entries. 5118 */ 5119 int bond_create(char *name, struct bond_params *params) 5120 { 5121 struct net_device *bond_dev; 5122 struct bonding *bond; 5123 int res; 5124 5125 rtnl_lock(); 5126 down_write(&bonding_rwsem); 5127 5128 /* Check to see if the bond already exists. */ 5129 if (name) { 5130 list_for_each_entry(bond, &bond_dev_list, bond_list) 5131 if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) { 5132 printk(KERN_ERR DRV_NAME 5133 ": cannot add bond %s; it already exists\n", 5134 name); 5135 res = -EPERM; 5136 goto out_rtnl; 5137 } 5138 } 5139 5140 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "", 5141 ether_setup); 5142 if (!bond_dev) { 5143 printk(KERN_ERR DRV_NAME 5144 ": %s: eek! can't alloc netdev!\n", 5145 name); 5146 res = -ENOMEM; 5147 goto out_rtnl; 5148 } 5149 5150 if (!name) { 5151 res = dev_alloc_name(bond_dev, "bond%d"); 5152 if (res < 0) 5153 goto out_netdev; 5154 } 5155 5156 /* bond_init() must be called after dev_alloc_name() (for the 5157 * /proc files), but before register_netdevice(), because we 5158 * need to set function pointers. 5159 */ 5160 5161 res = bond_init(bond_dev, params); 5162 if (res < 0) { 5163 goto out_netdev; 5164 } 5165 5166 res = register_netdevice(bond_dev); 5167 if (res < 0) { 5168 goto out_bond; 5169 } 5170 5171 bond_set_lockdep_class(bond_dev); 5172 5173 netif_carrier_off(bond_dev); 5174 5175 up_write(&bonding_rwsem); 5176 rtnl_unlock(); /* allows sysfs registration of net device */ 5177 res = bond_create_sysfs_entry(netdev_priv(bond_dev)); 5178 if (res < 0) { 5179 rtnl_lock(); 5180 down_write(&bonding_rwsem); 5181 bond_deinit(bond_dev); 5182 unregister_netdevice(bond_dev); 5183 goto out_rtnl; 5184 } 5185 5186 return 0; 5187 5188 out_bond: 5189 bond_deinit(bond_dev); 5190 out_netdev: 5191 free_netdev(bond_dev); 5192 out_rtnl: 5193 up_write(&bonding_rwsem); 5194 rtnl_unlock(); 5195 return res; 5196 } 5197 5198 static int __init bonding_init(void) 5199 { 5200 int i; 5201 int res; 5202 struct bonding *bond; 5203 5204 printk(KERN_INFO "%s", version); 5205 5206 res = bond_check_params(&bonding_defaults); 5207 if (res) { 5208 goto out; 5209 } 5210 5211 #ifdef CONFIG_PROC_FS 5212 bond_create_proc_dir(); 5213 #endif 5214 5215 init_rwsem(&bonding_rwsem); 5216 5217 for (i = 0; i < max_bonds; i++) { 5218 res = bond_create(NULL, &bonding_defaults); 5219 if (res) 5220 goto err; 5221 } 5222 5223 res = bond_create_sysfs(); 5224 if (res) 5225 goto err; 5226 5227 register_netdevice_notifier(&bond_netdev_notifier); 5228 register_inetaddr_notifier(&bond_inetaddr_notifier); 5229 bond_register_ipv6_notifier(); 5230 5231 goto out; 5232 err: 5233 list_for_each_entry(bond, &bond_dev_list, bond_list) { 5234 bond_work_cancel_all(bond); 5235 destroy_workqueue(bond->wq); 5236 } 5237 5238 bond_destroy_sysfs(); 5239 5240 rtnl_lock(); 5241 bond_free_all(); 5242 rtnl_unlock(); 5243 out: 5244 return res; 5245 5246 } 5247 5248 static void __exit bonding_exit(void) 5249 { 5250 unregister_netdevice_notifier(&bond_netdev_notifier); 5251 unregister_inetaddr_notifier(&bond_inetaddr_notifier); 5252 bond_unregister_ipv6_notifier(); 5253 5254 bond_destroy_sysfs(); 5255 5256 rtnl_lock(); 5257 bond_free_all(); 5258 rtnl_unlock(); 5259 } 5260 5261 module_init(bonding_init); 5262 module_exit(bonding_exit); 5263 MODULE_LICENSE("GPL"); 5264 MODULE_VERSION(DRV_VERSION); 5265 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 5266 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 5267 MODULE_SUPPORTED_DEVICE("most ethernet devices"); 5268 5269 /* 5270 * Local variables: 5271 * c-indent-level: 8 5272 * c-basic-offset: 8 5273 * tab-width: 8 5274 * End: 5275 */ 5276 5277