1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 //#define BONDING_DEBUG 1 35 36 #include <linux/kernel.h> 37 #include <linux/module.h> 38 #include <linux/sched.h> 39 #include <linux/types.h> 40 #include <linux/fcntl.h> 41 #include <linux/interrupt.h> 42 #include <linux/ptrace.h> 43 #include <linux/ioport.h> 44 #include <linux/in.h> 45 #include <net/ip.h> 46 #include <linux/ip.h> 47 #include <linux/tcp.h> 48 #include <linux/udp.h> 49 #include <linux/slab.h> 50 #include <linux/string.h> 51 #include <linux/init.h> 52 #include <linux/timer.h> 53 #include <linux/socket.h> 54 #include <linux/ctype.h> 55 #include <linux/inet.h> 56 #include <linux/bitops.h> 57 #include <asm/system.h> 58 #include <asm/io.h> 59 #include <asm/dma.h> 60 #include <asm/uaccess.h> 61 #include <linux/errno.h> 62 #include <linux/netdevice.h> 63 #include <linux/inetdevice.h> 64 #include <linux/etherdevice.h> 65 #include <linux/skbuff.h> 66 #include <net/sock.h> 67 #include <linux/rtnetlink.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/smp.h> 71 #include <linux/if_ether.h> 72 #include <net/arp.h> 73 #include <linux/mii.h> 74 #include <linux/ethtool.h> 75 #include <linux/if_vlan.h> 76 #include <linux/if_bonding.h> 77 #include <net/route.h> 78 #include "bonding.h" 79 #include "bond_3ad.h" 80 #include "bond_alb.h" 81 82 /*---------------------------- Module parameters ----------------------------*/ 83 84 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 85 #define BOND_LINK_MON_INTERV 0 86 #define BOND_LINK_ARP_INTERV 0 87 88 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 89 static int miimon = BOND_LINK_MON_INTERV; 90 static int updelay = 0; 91 static int downdelay = 0; 92 static int use_carrier = 1; 93 static char *mode = NULL; 94 static char *primary = NULL; 95 static char *lacp_rate = NULL; 96 static char *xmit_hash_policy = NULL; 97 static int arp_interval = BOND_LINK_ARP_INTERV; 98 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, }; 99 static char *arp_validate = NULL; 100 struct bond_params bonding_defaults; 101 102 module_param(max_bonds, int, 0); 103 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 104 module_param(miimon, int, 0); 105 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 106 module_param(updelay, int, 0); 107 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 108 module_param(downdelay, int, 0); 109 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 110 "in milliseconds"); 111 module_param(use_carrier, int, 0); 112 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 113 "0 for off, 1 for on (default)"); 114 module_param(mode, charp, 0); 115 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, " 116 "1 for active-backup, 2 for balance-xor, " 117 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 118 "6 for balance-alb"); 119 module_param(primary, charp, 0); 120 MODULE_PARM_DESC(primary, "Primary network device to use"); 121 module_param(lacp_rate, charp, 0); 122 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner " 123 "(slow/fast)"); 124 module_param(xmit_hash_policy, charp, 0); 125 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)" 126 ", 1 for layer 3+4"); 127 module_param(arp_interval, int, 0); 128 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 129 module_param_array(arp_ip_target, charp, NULL, 0); 130 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 131 module_param(arp_validate, charp, 0); 132 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all"); 133 134 /*----------------------------- Global variables ----------------------------*/ 135 136 static const char * const version = 137 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n"; 138 139 LIST_HEAD(bond_dev_list); 140 141 #ifdef CONFIG_PROC_FS 142 static struct proc_dir_entry *bond_proc_dir = NULL; 143 #endif 144 145 extern struct rw_semaphore bonding_rwsem; 146 static u32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ; 147 static int arp_ip_count = 0; 148 static int bond_mode = BOND_MODE_ROUNDROBIN; 149 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2; 150 static int lacp_fast = 0; 151 152 153 struct bond_parm_tbl bond_lacp_tbl[] = { 154 { "slow", AD_LACP_SLOW}, 155 { "fast", AD_LACP_FAST}, 156 { NULL, -1}, 157 }; 158 159 struct bond_parm_tbl bond_mode_tbl[] = { 160 { "balance-rr", BOND_MODE_ROUNDROBIN}, 161 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 162 { "balance-xor", BOND_MODE_XOR}, 163 { "broadcast", BOND_MODE_BROADCAST}, 164 { "802.3ad", BOND_MODE_8023AD}, 165 { "balance-tlb", BOND_MODE_TLB}, 166 { "balance-alb", BOND_MODE_ALB}, 167 { NULL, -1}, 168 }; 169 170 struct bond_parm_tbl xmit_hashtype_tbl[] = { 171 { "layer2", BOND_XMIT_POLICY_LAYER2}, 172 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 173 { NULL, -1}, 174 }; 175 176 struct bond_parm_tbl arp_validate_tbl[] = { 177 { "none", BOND_ARP_VALIDATE_NONE}, 178 { "active", BOND_ARP_VALIDATE_ACTIVE}, 179 { "backup", BOND_ARP_VALIDATE_BACKUP}, 180 { "all", BOND_ARP_VALIDATE_ALL}, 181 { NULL, -1}, 182 }; 183 184 /*-------------------------- Forward declarations ---------------------------*/ 185 186 static void bond_send_gratuitous_arp(struct bonding *bond); 187 188 /*---------------------------- General routines -----------------------------*/ 189 190 const char *bond_mode_name(int mode) 191 { 192 switch (mode) { 193 case BOND_MODE_ROUNDROBIN : 194 return "load balancing (round-robin)"; 195 case BOND_MODE_ACTIVEBACKUP : 196 return "fault-tolerance (active-backup)"; 197 case BOND_MODE_XOR : 198 return "load balancing (xor)"; 199 case BOND_MODE_BROADCAST : 200 return "fault-tolerance (broadcast)"; 201 case BOND_MODE_8023AD: 202 return "IEEE 802.3ad Dynamic link aggregation"; 203 case BOND_MODE_TLB: 204 return "transmit load balancing"; 205 case BOND_MODE_ALB: 206 return "adaptive load balancing"; 207 default: 208 return "unknown"; 209 } 210 } 211 212 /*---------------------------------- VLAN -----------------------------------*/ 213 214 /** 215 * bond_add_vlan - add a new vlan id on bond 216 * @bond: bond that got the notification 217 * @vlan_id: the vlan id to add 218 * 219 * Returns -ENOMEM if allocation failed. 220 */ 221 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 222 { 223 struct vlan_entry *vlan; 224 225 dprintk("bond: %s, vlan id %d\n", 226 (bond ? bond->dev->name: "None"), vlan_id); 227 228 vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL); 229 if (!vlan) { 230 return -ENOMEM; 231 } 232 233 INIT_LIST_HEAD(&vlan->vlan_list); 234 vlan->vlan_id = vlan_id; 235 vlan->vlan_ip = 0; 236 237 write_lock_bh(&bond->lock); 238 239 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 240 241 write_unlock_bh(&bond->lock); 242 243 dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 244 245 return 0; 246 } 247 248 /** 249 * bond_del_vlan - delete a vlan id from bond 250 * @bond: bond that got the notification 251 * @vlan_id: the vlan id to delete 252 * 253 * returns -ENODEV if @vlan_id was not found in @bond. 254 */ 255 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 256 { 257 struct vlan_entry *vlan, *next; 258 int res = -ENODEV; 259 260 dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 261 262 write_lock_bh(&bond->lock); 263 264 list_for_each_entry_safe(vlan, next, &bond->vlan_list, vlan_list) { 265 if (vlan->vlan_id == vlan_id) { 266 list_del(&vlan->vlan_list); 267 268 if ((bond->params.mode == BOND_MODE_TLB) || 269 (bond->params.mode == BOND_MODE_ALB)) { 270 bond_alb_clear_vlan(bond, vlan_id); 271 } 272 273 dprintk("removed VLAN ID %d from bond %s\n", vlan_id, 274 bond->dev->name); 275 276 kfree(vlan); 277 278 if (list_empty(&bond->vlan_list) && 279 (bond->slave_cnt == 0)) { 280 /* Last VLAN removed and no slaves, so 281 * restore block on adding VLANs. This will 282 * be removed once new slaves that are not 283 * VLAN challenged will be added. 284 */ 285 bond->dev->features |= NETIF_F_VLAN_CHALLENGED; 286 } 287 288 res = 0; 289 goto out; 290 } 291 } 292 293 dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id, 294 bond->dev->name); 295 296 out: 297 write_unlock_bh(&bond->lock); 298 return res; 299 } 300 301 /** 302 * bond_has_challenged_slaves 303 * @bond: the bond we're working on 304 * 305 * Searches the slave list. Returns 1 if a vlan challenged slave 306 * was found, 0 otherwise. 307 * 308 * Assumes bond->lock is held. 309 */ 310 static int bond_has_challenged_slaves(struct bonding *bond) 311 { 312 struct slave *slave; 313 int i; 314 315 bond_for_each_slave(bond, slave, i) { 316 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) { 317 dprintk("found VLAN challenged slave - %s\n", 318 slave->dev->name); 319 return 1; 320 } 321 } 322 323 dprintk("no VLAN challenged slaves found\n"); 324 return 0; 325 } 326 327 /** 328 * bond_next_vlan - safely skip to the next item in the vlans list. 329 * @bond: the bond we're working on 330 * @curr: item we're advancing from 331 * 332 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 333 * or @curr->next otherwise (even if it is @curr itself again). 334 * 335 * Caller must hold bond->lock 336 */ 337 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 338 { 339 struct vlan_entry *next, *last; 340 341 if (list_empty(&bond->vlan_list)) { 342 return NULL; 343 } 344 345 if (!curr) { 346 next = list_entry(bond->vlan_list.next, 347 struct vlan_entry, vlan_list); 348 } else { 349 last = list_entry(bond->vlan_list.prev, 350 struct vlan_entry, vlan_list); 351 if (last == curr) { 352 next = list_entry(bond->vlan_list.next, 353 struct vlan_entry, vlan_list); 354 } else { 355 next = list_entry(curr->vlan_list.next, 356 struct vlan_entry, vlan_list); 357 } 358 } 359 360 return next; 361 } 362 363 /** 364 * bond_dev_queue_xmit - Prepare skb for xmit. 365 * 366 * @bond: bond device that got this skb for tx. 367 * @skb: hw accel VLAN tagged skb to transmit 368 * @slave_dev: slave that is supposed to xmit this skbuff 369 * 370 * When the bond gets an skb to transmit that is 371 * already hardware accelerated VLAN tagged, and it 372 * needs to relay this skb to a slave that is not 373 * hw accel capable, the skb needs to be "unaccelerated", 374 * i.e. strip the hwaccel tag and re-insert it as part 375 * of the payload. 376 */ 377 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev) 378 { 379 unsigned short vlan_id; 380 381 if (!list_empty(&bond->vlan_list) && 382 !(slave_dev->features & NETIF_F_HW_VLAN_TX) && 383 vlan_get_tag(skb, &vlan_id) == 0) { 384 skb->dev = slave_dev; 385 skb = vlan_put_tag(skb, vlan_id); 386 if (!skb) { 387 /* vlan_put_tag() frees the skb in case of error, 388 * so return success here so the calling functions 389 * won't attempt to free is again. 390 */ 391 return 0; 392 } 393 } else { 394 skb->dev = slave_dev; 395 } 396 397 skb->priority = 1; 398 dev_queue_xmit(skb); 399 400 return 0; 401 } 402 403 /* 404 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid 405 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a 406 * lock because: 407 * a. This operation is performed in IOCTL context, 408 * b. The operation is protected by the RTNL semaphore in the 8021q code, 409 * c. Holding a lock with BH disabled while directly calling a base driver 410 * entry point is generally a BAD idea. 411 * 412 * The design of synchronization/protection for this operation in the 8021q 413 * module is good for one or more VLAN devices over a single physical device 414 * and cannot be extended for a teaming solution like bonding, so there is a 415 * potential race condition here where a net device from the vlan group might 416 * be referenced (either by a base driver or the 8021q code) while it is being 417 * removed from the system. However, it turns out we're not making matters 418 * worse, and if it works for regular VLAN usage it will work here too. 419 */ 420 421 /** 422 * bond_vlan_rx_register - Propagates registration to slaves 423 * @bond_dev: bonding net device that got called 424 * @grp: vlan group being registered 425 */ 426 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp) 427 { 428 struct bonding *bond = bond_dev->priv; 429 struct slave *slave; 430 int i; 431 432 bond->vlgrp = grp; 433 434 bond_for_each_slave(bond, slave, i) { 435 struct net_device *slave_dev = slave->dev; 436 437 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 438 slave_dev->vlan_rx_register) { 439 slave_dev->vlan_rx_register(slave_dev, grp); 440 } 441 } 442 } 443 444 /** 445 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 446 * @bond_dev: bonding net device that got called 447 * @vid: vlan id being added 448 */ 449 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid) 450 { 451 struct bonding *bond = bond_dev->priv; 452 struct slave *slave; 453 int i, res; 454 455 bond_for_each_slave(bond, slave, i) { 456 struct net_device *slave_dev = slave->dev; 457 458 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 459 slave_dev->vlan_rx_add_vid) { 460 slave_dev->vlan_rx_add_vid(slave_dev, vid); 461 } 462 } 463 464 res = bond_add_vlan(bond, vid); 465 if (res) { 466 printk(KERN_ERR DRV_NAME 467 ": %s: Error: Failed to add vlan id %d\n", 468 bond_dev->name, vid); 469 } 470 } 471 472 /** 473 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 474 * @bond_dev: bonding net device that got called 475 * @vid: vlan id being removed 476 */ 477 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid) 478 { 479 struct bonding *bond = bond_dev->priv; 480 struct slave *slave; 481 struct net_device *vlan_dev; 482 int i, res; 483 484 bond_for_each_slave(bond, slave, i) { 485 struct net_device *slave_dev = slave->dev; 486 487 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 488 slave_dev->vlan_rx_kill_vid) { 489 /* Save and then restore vlan_dev in the grp array, 490 * since the slave's driver might clear it. 491 */ 492 vlan_dev = bond->vlgrp->vlan_devices[vid]; 493 slave_dev->vlan_rx_kill_vid(slave_dev, vid); 494 bond->vlgrp->vlan_devices[vid] = vlan_dev; 495 } 496 } 497 498 res = bond_del_vlan(bond, vid); 499 if (res) { 500 printk(KERN_ERR DRV_NAME 501 ": %s: Error: Failed to remove vlan id %d\n", 502 bond_dev->name, vid); 503 } 504 } 505 506 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 507 { 508 struct vlan_entry *vlan; 509 510 write_lock_bh(&bond->lock); 511 512 if (list_empty(&bond->vlan_list)) { 513 goto out; 514 } 515 516 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 517 slave_dev->vlan_rx_register) { 518 slave_dev->vlan_rx_register(slave_dev, bond->vlgrp); 519 } 520 521 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 522 !(slave_dev->vlan_rx_add_vid)) { 523 goto out; 524 } 525 526 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 527 slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id); 528 } 529 530 out: 531 write_unlock_bh(&bond->lock); 532 } 533 534 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev) 535 { 536 struct vlan_entry *vlan; 537 struct net_device *vlan_dev; 538 539 write_lock_bh(&bond->lock); 540 541 if (list_empty(&bond->vlan_list)) { 542 goto out; 543 } 544 545 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 546 !(slave_dev->vlan_rx_kill_vid)) { 547 goto unreg; 548 } 549 550 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 551 /* Save and then restore vlan_dev in the grp array, 552 * since the slave's driver might clear it. 553 */ 554 vlan_dev = bond->vlgrp->vlan_devices[vlan->vlan_id]; 555 slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id); 556 bond->vlgrp->vlan_devices[vlan->vlan_id] = vlan_dev; 557 } 558 559 unreg: 560 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 561 slave_dev->vlan_rx_register) { 562 slave_dev->vlan_rx_register(slave_dev, NULL); 563 } 564 565 out: 566 write_unlock_bh(&bond->lock); 567 } 568 569 /*------------------------------- Link status -------------------------------*/ 570 571 /* 572 * Set the carrier state for the master according to the state of its 573 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 574 * do special 802.3ad magic. 575 * 576 * Returns zero if carrier state does not change, nonzero if it does. 577 */ 578 static int bond_set_carrier(struct bonding *bond) 579 { 580 struct slave *slave; 581 int i; 582 583 if (bond->slave_cnt == 0) 584 goto down; 585 586 if (bond->params.mode == BOND_MODE_8023AD) 587 return bond_3ad_set_carrier(bond); 588 589 bond_for_each_slave(bond, slave, i) { 590 if (slave->link == BOND_LINK_UP) { 591 if (!netif_carrier_ok(bond->dev)) { 592 netif_carrier_on(bond->dev); 593 return 1; 594 } 595 return 0; 596 } 597 } 598 599 down: 600 if (netif_carrier_ok(bond->dev)) { 601 netif_carrier_off(bond->dev); 602 return 1; 603 } 604 return 0; 605 } 606 607 /* 608 * Get link speed and duplex from the slave's base driver 609 * using ethtool. If for some reason the call fails or the 610 * values are invalid, fake speed and duplex to 100/Full 611 * and return error. 612 */ 613 static int bond_update_speed_duplex(struct slave *slave) 614 { 615 struct net_device *slave_dev = slave->dev; 616 static int (* ioctl)(struct net_device *, struct ifreq *, int); 617 struct ifreq ifr; 618 struct ethtool_cmd etool; 619 620 /* Fake speed and duplex */ 621 slave->speed = SPEED_100; 622 slave->duplex = DUPLEX_FULL; 623 624 if (slave_dev->ethtool_ops) { 625 int res; 626 627 if (!slave_dev->ethtool_ops->get_settings) { 628 return -1; 629 } 630 631 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool); 632 if (res < 0) { 633 return -1; 634 } 635 636 goto verify; 637 } 638 639 ioctl = slave_dev->do_ioctl; 640 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 641 etool.cmd = ETHTOOL_GSET; 642 ifr.ifr_data = (char*)&etool; 643 if (!ioctl || (IOCTL(slave_dev, &ifr, SIOCETHTOOL) < 0)) { 644 return -1; 645 } 646 647 verify: 648 switch (etool.speed) { 649 case SPEED_10: 650 case SPEED_100: 651 case SPEED_1000: 652 case SPEED_10000: 653 break; 654 default: 655 return -1; 656 } 657 658 switch (etool.duplex) { 659 case DUPLEX_FULL: 660 case DUPLEX_HALF: 661 break; 662 default: 663 return -1; 664 } 665 666 slave->speed = etool.speed; 667 slave->duplex = etool.duplex; 668 669 return 0; 670 } 671 672 /* 673 * if <dev> supports MII link status reporting, check its link status. 674 * 675 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 676 * depening upon the setting of the use_carrier parameter. 677 * 678 * Return either BMSR_LSTATUS, meaning that the link is up (or we 679 * can't tell and just pretend it is), or 0, meaning that the link is 680 * down. 681 * 682 * If reporting is non-zero, instead of faking link up, return -1 if 683 * both ETHTOOL and MII ioctls fail (meaning the device does not 684 * support them). If use_carrier is set, return whatever it says. 685 * It'd be nice if there was a good way to tell if a driver supports 686 * netif_carrier, but there really isn't. 687 */ 688 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting) 689 { 690 static int (* ioctl)(struct net_device *, struct ifreq *, int); 691 struct ifreq ifr; 692 struct mii_ioctl_data *mii; 693 struct ethtool_value etool; 694 695 if (bond->params.use_carrier) { 696 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 697 } 698 699 ioctl = slave_dev->do_ioctl; 700 if (ioctl) { 701 /* TODO: set pointer to correct ioctl on a per team member */ 702 /* bases to make this more efficient. that is, once */ 703 /* we determine the correct ioctl, we will always */ 704 /* call it and not the others for that team */ 705 /* member. */ 706 707 /* 708 * We cannot assume that SIOCGMIIPHY will also read a 709 * register; not all network drivers (e.g., e100) 710 * support that. 711 */ 712 713 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 714 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 715 mii = if_mii(&ifr); 716 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 717 mii->reg_num = MII_BMSR; 718 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) { 719 return (mii->val_out & BMSR_LSTATUS); 720 } 721 } 722 } 723 724 /* try SIOCETHTOOL ioctl, some drivers cache ETHTOOL_GLINK */ 725 /* for a period of time so we attempt to get link status */ 726 /* from it last if the above MII ioctls fail... */ 727 if (slave_dev->ethtool_ops) { 728 if (slave_dev->ethtool_ops->get_link) { 729 u32 link; 730 731 link = slave_dev->ethtool_ops->get_link(slave_dev); 732 733 return link ? BMSR_LSTATUS : 0; 734 } 735 } 736 737 if (ioctl) { 738 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 739 etool.cmd = ETHTOOL_GLINK; 740 ifr.ifr_data = (char*)&etool; 741 if (IOCTL(slave_dev, &ifr, SIOCETHTOOL) == 0) { 742 if (etool.data == 1) { 743 return BMSR_LSTATUS; 744 } else { 745 dprintk("SIOCETHTOOL shows link down\n"); 746 return 0; 747 } 748 } 749 } 750 751 /* 752 * If reporting, report that either there's no dev->do_ioctl, 753 * or both SIOCGMIIREG and SIOCETHTOOL failed (meaning that we 754 * cannot report link status). If not reporting, pretend 755 * we're ok. 756 */ 757 return (reporting ? -1 : BMSR_LSTATUS); 758 } 759 760 /*----------------------------- Multicast list ------------------------------*/ 761 762 /* 763 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise 764 */ 765 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2) 766 { 767 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 && 768 dmi1->dmi_addrlen == dmi2->dmi_addrlen; 769 } 770 771 /* 772 * returns dmi entry if found, NULL otherwise 773 */ 774 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) 775 { 776 struct dev_mc_list *idmi; 777 778 for (idmi = mc_list; idmi; idmi = idmi->next) { 779 if (bond_is_dmi_same(dmi, idmi)) { 780 return idmi; 781 } 782 } 783 784 return NULL; 785 } 786 787 /* 788 * Push the promiscuity flag down to appropriate slaves 789 */ 790 static void bond_set_promiscuity(struct bonding *bond, int inc) 791 { 792 if (USES_PRIMARY(bond->params.mode)) { 793 /* write lock already acquired */ 794 if (bond->curr_active_slave) { 795 dev_set_promiscuity(bond->curr_active_slave->dev, inc); 796 } 797 } else { 798 struct slave *slave; 799 int i; 800 bond_for_each_slave(bond, slave, i) { 801 dev_set_promiscuity(slave->dev, inc); 802 } 803 } 804 } 805 806 /* 807 * Push the allmulti flag down to all slaves 808 */ 809 static void bond_set_allmulti(struct bonding *bond, int inc) 810 { 811 if (USES_PRIMARY(bond->params.mode)) { 812 /* write lock already acquired */ 813 if (bond->curr_active_slave) { 814 dev_set_allmulti(bond->curr_active_slave->dev, inc); 815 } 816 } else { 817 struct slave *slave; 818 int i; 819 bond_for_each_slave(bond, slave, i) { 820 dev_set_allmulti(slave->dev, inc); 821 } 822 } 823 } 824 825 /* 826 * Add a Multicast address to slaves 827 * according to mode 828 */ 829 static void bond_mc_add(struct bonding *bond, void *addr, int alen) 830 { 831 if (USES_PRIMARY(bond->params.mode)) { 832 /* write lock already acquired */ 833 if (bond->curr_active_slave) { 834 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0); 835 } 836 } else { 837 struct slave *slave; 838 int i; 839 bond_for_each_slave(bond, slave, i) { 840 dev_mc_add(slave->dev, addr, alen, 0); 841 } 842 } 843 } 844 845 /* 846 * Remove a multicast address from slave 847 * according to mode 848 */ 849 static void bond_mc_delete(struct bonding *bond, void *addr, int alen) 850 { 851 if (USES_PRIMARY(bond->params.mode)) { 852 /* write lock already acquired */ 853 if (bond->curr_active_slave) { 854 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0); 855 } 856 } else { 857 struct slave *slave; 858 int i; 859 bond_for_each_slave(bond, slave, i) { 860 dev_mc_delete(slave->dev, addr, alen, 0); 861 } 862 } 863 } 864 865 /* 866 * Totally destroys the mc_list in bond 867 */ 868 static void bond_mc_list_destroy(struct bonding *bond) 869 { 870 struct dev_mc_list *dmi; 871 872 dmi = bond->mc_list; 873 while (dmi) { 874 bond->mc_list = dmi->next; 875 kfree(dmi); 876 dmi = bond->mc_list; 877 } 878 } 879 880 /* 881 * Copy all the Multicast addresses from src to the bonding device dst 882 */ 883 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond, 884 gfp_t gfp_flag) 885 { 886 struct dev_mc_list *dmi, *new_dmi; 887 888 for (dmi = mc_list; dmi; dmi = dmi->next) { 889 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag); 890 891 if (!new_dmi) { 892 /* FIXME: Potential memory leak !!! */ 893 return -ENOMEM; 894 } 895 896 new_dmi->next = bond->mc_list; 897 bond->mc_list = new_dmi; 898 new_dmi->dmi_addrlen = dmi->dmi_addrlen; 899 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen); 900 new_dmi->dmi_users = dmi->dmi_users; 901 new_dmi->dmi_gusers = dmi->dmi_gusers; 902 } 903 904 return 0; 905 } 906 907 /* 908 * flush all members of flush->mc_list from device dev->mc_list 909 */ 910 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev) 911 { 912 struct bonding *bond = bond_dev->priv; 913 struct dev_mc_list *dmi; 914 915 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 916 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 917 } 918 919 if (bond->params.mode == BOND_MODE_8023AD) { 920 /* del lacpdu mc addr from mc list */ 921 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 922 923 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 924 } 925 } 926 927 /*--------------------------- Active slave change ---------------------------*/ 928 929 /* 930 * Update the mc list and multicast-related flags for the new and 931 * old active slaves (if any) according to the multicast mode, and 932 * promiscuous flags unconditionally. 933 */ 934 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active) 935 { 936 struct dev_mc_list *dmi; 937 938 if (!USES_PRIMARY(bond->params.mode)) { 939 /* nothing to do - mc list is already up-to-date on 940 * all slaves 941 */ 942 return; 943 } 944 945 if (old_active) { 946 if (bond->dev->flags & IFF_PROMISC) { 947 dev_set_promiscuity(old_active->dev, -1); 948 } 949 950 if (bond->dev->flags & IFF_ALLMULTI) { 951 dev_set_allmulti(old_active->dev, -1); 952 } 953 954 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 955 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 956 } 957 } 958 959 if (new_active) { 960 if (bond->dev->flags & IFF_PROMISC) { 961 dev_set_promiscuity(new_active->dev, 1); 962 } 963 964 if (bond->dev->flags & IFF_ALLMULTI) { 965 dev_set_allmulti(new_active->dev, 1); 966 } 967 968 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 969 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 970 } 971 } 972 } 973 974 /** 975 * find_best_interface - select the best available slave to be the active one 976 * @bond: our bonding struct 977 * 978 * Warning: Caller must hold curr_slave_lock for writing. 979 */ 980 static struct slave *bond_find_best_slave(struct bonding *bond) 981 { 982 struct slave *new_active, *old_active; 983 struct slave *bestslave = NULL; 984 int mintime = bond->params.updelay; 985 int i; 986 987 new_active = old_active = bond->curr_active_slave; 988 989 if (!new_active) { /* there were no active slaves left */ 990 if (bond->slave_cnt > 0) { /* found one slave */ 991 new_active = bond->first_slave; 992 } else { 993 return NULL; /* still no slave, return NULL */ 994 } 995 } 996 997 /* first try the primary link; if arping, a link must tx/rx traffic 998 * before it can be considered the curr_active_slave - also, we would skip 999 * slaves between the curr_active_slave and primary_slave that may be up 1000 * and able to arp 1001 */ 1002 if ((bond->primary_slave) && 1003 (!bond->params.arp_interval) && 1004 (IS_UP(bond->primary_slave->dev))) { 1005 new_active = bond->primary_slave; 1006 } 1007 1008 /* remember where to stop iterating over the slaves */ 1009 old_active = new_active; 1010 1011 bond_for_each_slave_from(bond, new_active, i, old_active) { 1012 if (IS_UP(new_active->dev)) { 1013 if (new_active->link == BOND_LINK_UP) { 1014 return new_active; 1015 } else if (new_active->link == BOND_LINK_BACK) { 1016 /* link up, but waiting for stabilization */ 1017 if (new_active->delay < mintime) { 1018 mintime = new_active->delay; 1019 bestslave = new_active; 1020 } 1021 } 1022 } 1023 } 1024 1025 return bestslave; 1026 } 1027 1028 /** 1029 * change_active_interface - change the active slave into the specified one 1030 * @bond: our bonding struct 1031 * @new: the new slave to make the active one 1032 * 1033 * Set the new slave to the bond's settings and unset them on the old 1034 * curr_active_slave. 1035 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1036 * 1037 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1038 * because it is apparently the best available slave we have, even though its 1039 * updelay hasn't timed out yet. 1040 * 1041 * Warning: Caller must hold curr_slave_lock for writing. 1042 */ 1043 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1044 { 1045 struct slave *old_active = bond->curr_active_slave; 1046 1047 if (old_active == new_active) { 1048 return; 1049 } 1050 1051 if (new_active) { 1052 if (new_active->link == BOND_LINK_BACK) { 1053 if (USES_PRIMARY(bond->params.mode)) { 1054 printk(KERN_INFO DRV_NAME 1055 ": %s: making interface %s the new " 1056 "active one %d ms earlier.\n", 1057 bond->dev->name, new_active->dev->name, 1058 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1059 } 1060 1061 new_active->delay = 0; 1062 new_active->link = BOND_LINK_UP; 1063 new_active->jiffies = jiffies; 1064 1065 if (bond->params.mode == BOND_MODE_8023AD) { 1066 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1067 } 1068 1069 if ((bond->params.mode == BOND_MODE_TLB) || 1070 (bond->params.mode == BOND_MODE_ALB)) { 1071 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1072 } 1073 } else { 1074 if (USES_PRIMARY(bond->params.mode)) { 1075 printk(KERN_INFO DRV_NAME 1076 ": %s: making interface %s the new " 1077 "active one.\n", 1078 bond->dev->name, new_active->dev->name); 1079 } 1080 } 1081 } 1082 1083 if (USES_PRIMARY(bond->params.mode)) { 1084 bond_mc_swap(bond, new_active, old_active); 1085 } 1086 1087 if ((bond->params.mode == BOND_MODE_TLB) || 1088 (bond->params.mode == BOND_MODE_ALB)) { 1089 bond_alb_handle_active_change(bond, new_active); 1090 if (old_active) 1091 bond_set_slave_inactive_flags(old_active); 1092 if (new_active) 1093 bond_set_slave_active_flags(new_active); 1094 } else { 1095 bond->curr_active_slave = new_active; 1096 } 1097 1098 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1099 if (old_active) { 1100 bond_set_slave_inactive_flags(old_active); 1101 } 1102 1103 if (new_active) { 1104 bond_set_slave_active_flags(new_active); 1105 } 1106 bond_send_gratuitous_arp(bond); 1107 } 1108 } 1109 1110 /** 1111 * bond_select_active_slave - select a new active slave, if needed 1112 * @bond: our bonding struct 1113 * 1114 * This functions shoud be called when one of the following occurs: 1115 * - The old curr_active_slave has been released or lost its link. 1116 * - The primary_slave has got its link back. 1117 * - A slave has got its link back and there's no old curr_active_slave. 1118 * 1119 * Warning: Caller must hold curr_slave_lock for writing. 1120 */ 1121 void bond_select_active_slave(struct bonding *bond) 1122 { 1123 struct slave *best_slave; 1124 int rv; 1125 1126 best_slave = bond_find_best_slave(bond); 1127 if (best_slave != bond->curr_active_slave) { 1128 bond_change_active_slave(bond, best_slave); 1129 rv = bond_set_carrier(bond); 1130 if (!rv) 1131 return; 1132 1133 if (netif_carrier_ok(bond->dev)) { 1134 printk(KERN_INFO DRV_NAME 1135 ": %s: first active interface up!\n", 1136 bond->dev->name); 1137 } else { 1138 printk(KERN_INFO DRV_NAME ": %s: " 1139 "now running without any active interface !\n", 1140 bond->dev->name); 1141 } 1142 } 1143 } 1144 1145 /*--------------------------- slave list handling ---------------------------*/ 1146 1147 /* 1148 * This function attaches the slave to the end of list. 1149 * 1150 * bond->lock held for writing by caller. 1151 */ 1152 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1153 { 1154 if (bond->first_slave == NULL) { /* attaching the first slave */ 1155 new_slave->next = new_slave; 1156 new_slave->prev = new_slave; 1157 bond->first_slave = new_slave; 1158 } else { 1159 new_slave->next = bond->first_slave; 1160 new_slave->prev = bond->first_slave->prev; 1161 new_slave->next->prev = new_slave; 1162 new_slave->prev->next = new_slave; 1163 } 1164 1165 bond->slave_cnt++; 1166 } 1167 1168 /* 1169 * This function detaches the slave from the list. 1170 * WARNING: no check is made to verify if the slave effectively 1171 * belongs to <bond>. 1172 * Nothing is freed on return, structures are just unchained. 1173 * If any slave pointer in bond was pointing to <slave>, 1174 * it should be changed by the calling function. 1175 * 1176 * bond->lock held for writing by caller. 1177 */ 1178 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1179 { 1180 if (slave->next) { 1181 slave->next->prev = slave->prev; 1182 } 1183 1184 if (slave->prev) { 1185 slave->prev->next = slave->next; 1186 } 1187 1188 if (bond->first_slave == slave) { /* slave is the first slave */ 1189 if (bond->slave_cnt > 1) { /* there are more slave */ 1190 bond->first_slave = slave->next; 1191 } else { 1192 bond->first_slave = NULL; /* slave was the last one */ 1193 } 1194 } 1195 1196 slave->next = NULL; 1197 slave->prev = NULL; 1198 bond->slave_cnt--; 1199 } 1200 1201 /*---------------------------------- IOCTL ----------------------------------*/ 1202 1203 int bond_sethwaddr(struct net_device *bond_dev, struct net_device *slave_dev) 1204 { 1205 dprintk("bond_dev=%p\n", bond_dev); 1206 dprintk("slave_dev=%p\n", slave_dev); 1207 dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1208 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1209 return 0; 1210 } 1211 1212 #define BOND_INTERSECT_FEATURES \ 1213 (NETIF_F_SG | NETIF_F_ALL_CSUM | NETIF_F_TSO | NETIF_F_UFO) 1214 1215 /* 1216 * Compute the common dev->feature set available to all slaves. Some 1217 * feature bits are managed elsewhere, so preserve feature bits set on 1218 * master device that are not part of the examined set. 1219 */ 1220 static int bond_compute_features(struct bonding *bond) 1221 { 1222 unsigned long features = BOND_INTERSECT_FEATURES; 1223 struct slave *slave; 1224 struct net_device *bond_dev = bond->dev; 1225 unsigned short max_hard_header_len = ETH_HLEN; 1226 int i; 1227 1228 bond_for_each_slave(bond, slave, i) { 1229 features &= (slave->dev->features & BOND_INTERSECT_FEATURES); 1230 if (slave->dev->hard_header_len > max_hard_header_len) 1231 max_hard_header_len = slave->dev->hard_header_len; 1232 } 1233 1234 if ((features & NETIF_F_SG) && 1235 !(features & NETIF_F_ALL_CSUM)) 1236 features &= ~NETIF_F_SG; 1237 1238 /* 1239 * features will include NETIF_F_TSO (NETIF_F_UFO) iff all 1240 * slave devices support NETIF_F_TSO (NETIF_F_UFO), which 1241 * implies that all slaves also support scatter-gather 1242 * (NETIF_F_SG), which implies that features also includes 1243 * NETIF_F_SG. So no need to check whether we have an 1244 * illegal combination of NETIF_F_{TSO,UFO} and 1245 * !NETIF_F_SG 1246 */ 1247 1248 features |= (bond_dev->features & ~BOND_INTERSECT_FEATURES); 1249 bond_dev->features = features; 1250 bond_dev->hard_header_len = max_hard_header_len; 1251 1252 return 0; 1253 } 1254 1255 /* enslave device <slave> to bond device <master> */ 1256 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1257 { 1258 struct bonding *bond = bond_dev->priv; 1259 struct slave *new_slave = NULL; 1260 struct dev_mc_list *dmi; 1261 struct sockaddr addr; 1262 int link_reporting; 1263 int old_features = bond_dev->features; 1264 int res = 0; 1265 1266 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL && 1267 slave_dev->do_ioctl == NULL) { 1268 printk(KERN_WARNING DRV_NAME 1269 ": %s: Warning: no link monitoring support for %s\n", 1270 bond_dev->name, slave_dev->name); 1271 } 1272 1273 /* bond must be initialized by bond_open() before enslaving */ 1274 if (!(bond_dev->flags & IFF_UP)) { 1275 dprintk("Error, master_dev is not up\n"); 1276 return -EPERM; 1277 } 1278 1279 /* already enslaved */ 1280 if (slave_dev->flags & IFF_SLAVE) { 1281 dprintk("Error, Device was already enslaved\n"); 1282 return -EBUSY; 1283 } 1284 1285 /* vlan challenged mutual exclusion */ 1286 /* no need to lock since we're protected by rtnl_lock */ 1287 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1288 dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1289 if (!list_empty(&bond->vlan_list)) { 1290 printk(KERN_ERR DRV_NAME 1291 ": %s: Error: cannot enslave VLAN " 1292 "challenged slave %s on VLAN enabled " 1293 "bond %s\n", bond_dev->name, slave_dev->name, 1294 bond_dev->name); 1295 return -EPERM; 1296 } else { 1297 printk(KERN_WARNING DRV_NAME 1298 ": %s: Warning: enslaved VLAN challenged " 1299 "slave %s. Adding VLANs will be blocked as " 1300 "long as %s is part of bond %s\n", 1301 bond_dev->name, slave_dev->name, slave_dev->name, 1302 bond_dev->name); 1303 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1304 } 1305 } else { 1306 dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1307 if (bond->slave_cnt == 0) { 1308 /* First slave, and it is not VLAN challenged, 1309 * so remove the block of adding VLANs over the bond. 1310 */ 1311 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1312 } 1313 } 1314 1315 /* 1316 * Old ifenslave binaries are no longer supported. These can 1317 * be identified with moderate accurary by the state of the slave: 1318 * the current ifenslave will set the interface down prior to 1319 * enslaving it; the old ifenslave will not. 1320 */ 1321 if ((slave_dev->flags & IFF_UP)) { 1322 printk(KERN_ERR DRV_NAME ": %s is up. " 1323 "This may be due to an out of date ifenslave.\n", 1324 slave_dev->name); 1325 res = -EPERM; 1326 goto err_undo_flags; 1327 } 1328 1329 if (slave_dev->set_mac_address == NULL) { 1330 printk(KERN_ERR DRV_NAME 1331 ": %s: Error: The slave device you specified does " 1332 "not support setting the MAC address. " 1333 "Your kernel likely does not support slave " 1334 "devices.\n", bond_dev->name); 1335 res = -EOPNOTSUPP; 1336 goto err_undo_flags; 1337 } 1338 1339 if (slave_dev->get_stats == NULL) { 1340 printk(KERN_NOTICE DRV_NAME 1341 ": %s: the driver for slave device %s does not provide " 1342 "get_stats function, network statistics will be " 1343 "inaccurate.\n", bond_dev->name, slave_dev->name); 1344 } 1345 1346 new_slave = kmalloc(sizeof(struct slave), GFP_KERNEL); 1347 if (!new_slave) { 1348 res = -ENOMEM; 1349 goto err_undo_flags; 1350 } 1351 1352 memset(new_slave, 0, sizeof(struct slave)); 1353 1354 /* save slave's original flags before calling 1355 * netdev_set_master and dev_open 1356 */ 1357 new_slave->original_flags = slave_dev->flags; 1358 1359 /* 1360 * Save slave's original ("permanent") mac address for modes 1361 * that need it, and for restoring it upon release, and then 1362 * set it to the master's address 1363 */ 1364 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1365 1366 /* 1367 * Set slave to master's mac address. The application already 1368 * set the master's mac address to that of the first slave 1369 */ 1370 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1371 addr.sa_family = slave_dev->type; 1372 res = dev_set_mac_address(slave_dev, &addr); 1373 if (res) { 1374 dprintk("Error %d calling set_mac_address\n", res); 1375 goto err_free; 1376 } 1377 1378 /* open the slave since the application closed it */ 1379 res = dev_open(slave_dev); 1380 if (res) { 1381 dprintk("Openning slave %s failed\n", slave_dev->name); 1382 goto err_restore_mac; 1383 } 1384 1385 res = netdev_set_master(slave_dev, bond_dev); 1386 if (res) { 1387 dprintk("Error %d calling netdev_set_master\n", res); 1388 goto err_close; 1389 } 1390 1391 new_slave->dev = slave_dev; 1392 slave_dev->priv_flags |= IFF_BONDING; 1393 1394 if ((bond->params.mode == BOND_MODE_TLB) || 1395 (bond->params.mode == BOND_MODE_ALB)) { 1396 /* bond_alb_init_slave() must be called before all other stages since 1397 * it might fail and we do not want to have to undo everything 1398 */ 1399 res = bond_alb_init_slave(bond, new_slave); 1400 if (res) { 1401 goto err_unset_master; 1402 } 1403 } 1404 1405 /* If the mode USES_PRIMARY, then the new slave gets the 1406 * master's promisc (and mc) settings only if it becomes the 1407 * curr_active_slave, and that is taken care of later when calling 1408 * bond_change_active() 1409 */ 1410 if (!USES_PRIMARY(bond->params.mode)) { 1411 /* set promiscuity level to new slave */ 1412 if (bond_dev->flags & IFF_PROMISC) { 1413 dev_set_promiscuity(slave_dev, 1); 1414 } 1415 1416 /* set allmulti level to new slave */ 1417 if (bond_dev->flags & IFF_ALLMULTI) { 1418 dev_set_allmulti(slave_dev, 1); 1419 } 1420 1421 /* upload master's mc_list to new slave */ 1422 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 1423 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 1424 } 1425 } 1426 1427 if (bond->params.mode == BOND_MODE_8023AD) { 1428 /* add lacpdu mc addr to mc list */ 1429 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1430 1431 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 1432 } 1433 1434 bond_add_vlans_on_slave(bond, slave_dev); 1435 1436 write_lock_bh(&bond->lock); 1437 1438 bond_attach_slave(bond, new_slave); 1439 1440 new_slave->delay = 0; 1441 new_slave->link_failure_count = 0; 1442 1443 bond_compute_features(bond); 1444 1445 new_slave->last_arp_rx = jiffies; 1446 1447 if (bond->params.miimon && !bond->params.use_carrier) { 1448 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1449 1450 if ((link_reporting == -1) && !bond->params.arp_interval) { 1451 /* 1452 * miimon is set but a bonded network driver 1453 * does not support ETHTOOL/MII and 1454 * arp_interval is not set. Note: if 1455 * use_carrier is enabled, we will never go 1456 * here (because netif_carrier is always 1457 * supported); thus, we don't need to change 1458 * the messages for netif_carrier. 1459 */ 1460 printk(KERN_WARNING DRV_NAME 1461 ": %s: Warning: MII and ETHTOOL support not " 1462 "available for interface %s, and " 1463 "arp_interval/arp_ip_target module parameters " 1464 "not specified, thus bonding will not detect " 1465 "link failures! see bonding.txt for details.\n", 1466 bond_dev->name, slave_dev->name); 1467 } else if (link_reporting == -1) { 1468 /* unable get link status using mii/ethtool */ 1469 printk(KERN_WARNING DRV_NAME 1470 ": %s: Warning: can't get link status from " 1471 "interface %s; the network driver associated " 1472 "with this interface does not support MII or " 1473 "ETHTOOL link status reporting, thus miimon " 1474 "has no effect on this interface.\n", 1475 bond_dev->name, slave_dev->name); 1476 } 1477 } 1478 1479 /* check for initial state */ 1480 if (!bond->params.miimon || 1481 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) { 1482 if (bond->params.updelay) { 1483 dprintk("Initial state of slave_dev is " 1484 "BOND_LINK_BACK\n"); 1485 new_slave->link = BOND_LINK_BACK; 1486 new_slave->delay = bond->params.updelay; 1487 } else { 1488 dprintk("Initial state of slave_dev is " 1489 "BOND_LINK_UP\n"); 1490 new_slave->link = BOND_LINK_UP; 1491 } 1492 new_slave->jiffies = jiffies; 1493 } else { 1494 dprintk("Initial state of slave_dev is " 1495 "BOND_LINK_DOWN\n"); 1496 new_slave->link = BOND_LINK_DOWN; 1497 } 1498 1499 if (bond_update_speed_duplex(new_slave) && 1500 (new_slave->link != BOND_LINK_DOWN)) { 1501 printk(KERN_WARNING DRV_NAME 1502 ": %s: Warning: failed to get speed and duplex from %s, " 1503 "assumed to be 100Mb/sec and Full.\n", 1504 bond_dev->name, new_slave->dev->name); 1505 1506 if (bond->params.mode == BOND_MODE_8023AD) { 1507 printk(KERN_WARNING DRV_NAME 1508 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL " 1509 "support in base driver for proper aggregator " 1510 "selection.\n", bond_dev->name); 1511 } 1512 } 1513 1514 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1515 /* if there is a primary slave, remember it */ 1516 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1517 bond->primary_slave = new_slave; 1518 } 1519 } 1520 1521 switch (bond->params.mode) { 1522 case BOND_MODE_ACTIVEBACKUP: 1523 bond_set_slave_inactive_flags(new_slave); 1524 bond_select_active_slave(bond); 1525 break; 1526 case BOND_MODE_8023AD: 1527 /* in 802.3ad mode, the internal mechanism 1528 * will activate the slaves in the selected 1529 * aggregator 1530 */ 1531 bond_set_slave_inactive_flags(new_slave); 1532 /* if this is the first slave */ 1533 if (bond->slave_cnt == 1) { 1534 SLAVE_AD_INFO(new_slave).id = 1; 1535 /* Initialize AD with the number of times that the AD timer is called in 1 second 1536 * can be called only after the mac address of the bond is set 1537 */ 1538 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL, 1539 bond->params.lacp_fast); 1540 } else { 1541 SLAVE_AD_INFO(new_slave).id = 1542 SLAVE_AD_INFO(new_slave->prev).id + 1; 1543 } 1544 1545 bond_3ad_bind_slave(new_slave); 1546 break; 1547 case BOND_MODE_TLB: 1548 case BOND_MODE_ALB: 1549 new_slave->state = BOND_STATE_ACTIVE; 1550 if ((!bond->curr_active_slave) && 1551 (new_slave->link != BOND_LINK_DOWN)) { 1552 /* first slave or no active slave yet, and this link 1553 * is OK, so make this interface the active one 1554 */ 1555 bond_change_active_slave(bond, new_slave); 1556 } else { 1557 bond_set_slave_inactive_flags(new_slave); 1558 } 1559 break; 1560 default: 1561 dprintk("This slave is always active in trunk mode\n"); 1562 1563 /* always active in trunk mode */ 1564 new_slave->state = BOND_STATE_ACTIVE; 1565 1566 /* In trunking mode there is little meaning to curr_active_slave 1567 * anyway (it holds no special properties of the bond device), 1568 * so we can change it without calling change_active_interface() 1569 */ 1570 if (!bond->curr_active_slave) { 1571 bond->curr_active_slave = new_slave; 1572 } 1573 break; 1574 } /* switch(bond_mode) */ 1575 1576 bond_set_carrier(bond); 1577 1578 write_unlock_bh(&bond->lock); 1579 1580 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1581 if (res) 1582 goto err_unset_master; 1583 1584 printk(KERN_INFO DRV_NAME 1585 ": %s: enslaving %s as a%s interface with a%s link.\n", 1586 bond_dev->name, slave_dev->name, 1587 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup", 1588 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1589 1590 /* enslave is successful */ 1591 return 0; 1592 1593 /* Undo stages on error */ 1594 err_unset_master: 1595 netdev_set_master(slave_dev, NULL); 1596 1597 err_close: 1598 dev_close(slave_dev); 1599 1600 err_restore_mac: 1601 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1602 addr.sa_family = slave_dev->type; 1603 dev_set_mac_address(slave_dev, &addr); 1604 1605 err_free: 1606 kfree(new_slave); 1607 1608 err_undo_flags: 1609 bond_dev->features = old_features; 1610 1611 return res; 1612 } 1613 1614 /* 1615 * Try to release the slave device <slave> from the bond device <master> 1616 * It is legal to access curr_active_slave without a lock because all the function 1617 * is write-locked. 1618 * 1619 * The rules for slave state should be: 1620 * for Active/Backup: 1621 * Active stays on all backups go down 1622 * for Bonded connections: 1623 * The first up interface should be left on and all others downed. 1624 */ 1625 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 1626 { 1627 struct bonding *bond = bond_dev->priv; 1628 struct slave *slave, *oldcurrent; 1629 struct sockaddr addr; 1630 int mac_addr_differ; 1631 1632 /* slave is not a slave or master is not master of this slave */ 1633 if (!(slave_dev->flags & IFF_SLAVE) || 1634 (slave_dev->master != bond_dev)) { 1635 printk(KERN_ERR DRV_NAME 1636 ": %s: Error: cannot release %s.\n", 1637 bond_dev->name, slave_dev->name); 1638 return -EINVAL; 1639 } 1640 1641 write_lock_bh(&bond->lock); 1642 1643 slave = bond_get_slave_by_dev(bond, slave_dev); 1644 if (!slave) { 1645 /* not a slave of this bond */ 1646 printk(KERN_INFO DRV_NAME 1647 ": %s: %s not enslaved\n", 1648 bond_dev->name, slave_dev->name); 1649 write_unlock_bh(&bond->lock); 1650 return -EINVAL; 1651 } 1652 1653 mac_addr_differ = memcmp(bond_dev->dev_addr, 1654 slave->perm_hwaddr, 1655 ETH_ALEN); 1656 if (!mac_addr_differ && (bond->slave_cnt > 1)) { 1657 printk(KERN_WARNING DRV_NAME 1658 ": %s: Warning: the permanent HWaddr of %s " 1659 "- %02X:%02X:%02X:%02X:%02X:%02X - is " 1660 "still in use by %s. Set the HWaddr of " 1661 "%s to a different address to avoid " 1662 "conflicts.\n", 1663 bond_dev->name, 1664 slave_dev->name, 1665 slave->perm_hwaddr[0], 1666 slave->perm_hwaddr[1], 1667 slave->perm_hwaddr[2], 1668 slave->perm_hwaddr[3], 1669 slave->perm_hwaddr[4], 1670 slave->perm_hwaddr[5], 1671 bond_dev->name, 1672 slave_dev->name); 1673 } 1674 1675 /* Inform AD package of unbinding of slave. */ 1676 if (bond->params.mode == BOND_MODE_8023AD) { 1677 /* must be called before the slave is 1678 * detached from the list 1679 */ 1680 bond_3ad_unbind_slave(slave); 1681 } 1682 1683 printk(KERN_INFO DRV_NAME 1684 ": %s: releasing %s interface %s\n", 1685 bond_dev->name, 1686 (slave->state == BOND_STATE_ACTIVE) 1687 ? "active" : "backup", 1688 slave_dev->name); 1689 1690 oldcurrent = bond->curr_active_slave; 1691 1692 bond->current_arp_slave = NULL; 1693 1694 /* release the slave from its bond */ 1695 bond_detach_slave(bond, slave); 1696 1697 bond_compute_features(bond); 1698 1699 if (bond->primary_slave == slave) { 1700 bond->primary_slave = NULL; 1701 } 1702 1703 if (oldcurrent == slave) { 1704 bond_change_active_slave(bond, NULL); 1705 } 1706 1707 if ((bond->params.mode == BOND_MODE_TLB) || 1708 (bond->params.mode == BOND_MODE_ALB)) { 1709 /* Must be called only after the slave has been 1710 * detached from the list and the curr_active_slave 1711 * has been cleared (if our_slave == old_current), 1712 * but before a new active slave is selected. 1713 */ 1714 bond_alb_deinit_slave(bond, slave); 1715 } 1716 1717 if (oldcurrent == slave) 1718 bond_select_active_slave(bond); 1719 1720 if (bond->slave_cnt == 0) { 1721 bond_set_carrier(bond); 1722 1723 /* if the last slave was removed, zero the mac address 1724 * of the master so it will be set by the application 1725 * to the mac address of the first slave 1726 */ 1727 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 1728 1729 if (list_empty(&bond->vlan_list)) { 1730 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1731 } else { 1732 printk(KERN_WARNING DRV_NAME 1733 ": %s: Warning: clearing HW address of %s while it " 1734 "still has VLANs.\n", 1735 bond_dev->name, bond_dev->name); 1736 printk(KERN_WARNING DRV_NAME 1737 ": %s: When re-adding slaves, make sure the bond's " 1738 "HW address matches its VLANs'.\n", 1739 bond_dev->name); 1740 } 1741 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 1742 !bond_has_challenged_slaves(bond)) { 1743 printk(KERN_INFO DRV_NAME 1744 ": %s: last VLAN challenged slave %s " 1745 "left bond %s. VLAN blocking is removed\n", 1746 bond_dev->name, slave_dev->name, bond_dev->name); 1747 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1748 } 1749 1750 write_unlock_bh(&bond->lock); 1751 1752 /* must do this from outside any spinlocks */ 1753 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1754 1755 bond_del_vlans_from_slave(bond, slave_dev); 1756 1757 /* If the mode USES_PRIMARY, then we should only remove its 1758 * promisc and mc settings if it was the curr_active_slave, but that was 1759 * already taken care of above when we detached the slave 1760 */ 1761 if (!USES_PRIMARY(bond->params.mode)) { 1762 /* unset promiscuity level from slave */ 1763 if (bond_dev->flags & IFF_PROMISC) { 1764 dev_set_promiscuity(slave_dev, -1); 1765 } 1766 1767 /* unset allmulti level from slave */ 1768 if (bond_dev->flags & IFF_ALLMULTI) { 1769 dev_set_allmulti(slave_dev, -1); 1770 } 1771 1772 /* flush master's mc_list from slave */ 1773 bond_mc_list_flush(bond_dev, slave_dev); 1774 } 1775 1776 netdev_set_master(slave_dev, NULL); 1777 1778 /* close slave before restoring its mac address */ 1779 dev_close(slave_dev); 1780 1781 /* restore original ("permanent") mac address */ 1782 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 1783 addr.sa_family = slave_dev->type; 1784 dev_set_mac_address(slave_dev, &addr); 1785 1786 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 1787 IFF_SLAVE_INACTIVE | IFF_BONDING | 1788 IFF_SLAVE_NEEDARP); 1789 1790 kfree(slave); 1791 1792 return 0; /* deletion OK */ 1793 } 1794 1795 /* 1796 * This function releases all slaves. 1797 */ 1798 static int bond_release_all(struct net_device *bond_dev) 1799 { 1800 struct bonding *bond = bond_dev->priv; 1801 struct slave *slave; 1802 struct net_device *slave_dev; 1803 struct sockaddr addr; 1804 1805 write_lock_bh(&bond->lock); 1806 1807 netif_carrier_off(bond_dev); 1808 1809 if (bond->slave_cnt == 0) { 1810 goto out; 1811 } 1812 1813 bond->current_arp_slave = NULL; 1814 bond->primary_slave = NULL; 1815 bond_change_active_slave(bond, NULL); 1816 1817 while ((slave = bond->first_slave) != NULL) { 1818 /* Inform AD package of unbinding of slave 1819 * before slave is detached from the list. 1820 */ 1821 if (bond->params.mode == BOND_MODE_8023AD) { 1822 bond_3ad_unbind_slave(slave); 1823 } 1824 1825 slave_dev = slave->dev; 1826 bond_detach_slave(bond, slave); 1827 1828 if ((bond->params.mode == BOND_MODE_TLB) || 1829 (bond->params.mode == BOND_MODE_ALB)) { 1830 /* must be called only after the slave 1831 * has been detached from the list 1832 */ 1833 bond_alb_deinit_slave(bond, slave); 1834 } 1835 1836 bond_compute_features(bond); 1837 1838 /* now that the slave is detached, unlock and perform 1839 * all the undo steps that should not be called from 1840 * within a lock. 1841 */ 1842 write_unlock_bh(&bond->lock); 1843 1844 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1845 bond_del_vlans_from_slave(bond, slave_dev); 1846 1847 /* If the mode USES_PRIMARY, then we should only remove its 1848 * promisc and mc settings if it was the curr_active_slave, but that was 1849 * already taken care of above when we detached the slave 1850 */ 1851 if (!USES_PRIMARY(bond->params.mode)) { 1852 /* unset promiscuity level from slave */ 1853 if (bond_dev->flags & IFF_PROMISC) { 1854 dev_set_promiscuity(slave_dev, -1); 1855 } 1856 1857 /* unset allmulti level from slave */ 1858 if (bond_dev->flags & IFF_ALLMULTI) { 1859 dev_set_allmulti(slave_dev, -1); 1860 } 1861 1862 /* flush master's mc_list from slave */ 1863 bond_mc_list_flush(bond_dev, slave_dev); 1864 } 1865 1866 netdev_set_master(slave_dev, NULL); 1867 1868 /* close slave before restoring its mac address */ 1869 dev_close(slave_dev); 1870 1871 /* restore original ("permanent") mac address*/ 1872 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 1873 addr.sa_family = slave_dev->type; 1874 dev_set_mac_address(slave_dev, &addr); 1875 1876 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 1877 IFF_SLAVE_INACTIVE); 1878 1879 kfree(slave); 1880 1881 /* re-acquire the lock before getting the next slave */ 1882 write_lock_bh(&bond->lock); 1883 } 1884 1885 /* zero the mac address of the master so it will be 1886 * set by the application to the mac address of the 1887 * first slave 1888 */ 1889 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 1890 1891 if (list_empty(&bond->vlan_list)) { 1892 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1893 } else { 1894 printk(KERN_WARNING DRV_NAME 1895 ": %s: Warning: clearing HW address of %s while it " 1896 "still has VLANs.\n", 1897 bond_dev->name, bond_dev->name); 1898 printk(KERN_WARNING DRV_NAME 1899 ": %s: When re-adding slaves, make sure the bond's " 1900 "HW address matches its VLANs'.\n", 1901 bond_dev->name); 1902 } 1903 1904 printk(KERN_INFO DRV_NAME 1905 ": %s: released all slaves\n", 1906 bond_dev->name); 1907 1908 out: 1909 write_unlock_bh(&bond->lock); 1910 1911 return 0; 1912 } 1913 1914 /* 1915 * This function changes the active slave to slave <slave_dev>. 1916 * It returns -EINVAL in the following cases. 1917 * - <slave_dev> is not found in the list. 1918 * - There is not active slave now. 1919 * - <slave_dev> is already active. 1920 * - The link state of <slave_dev> is not BOND_LINK_UP. 1921 * - <slave_dev> is not running. 1922 * In these cases, this fuction does nothing. 1923 * In the other cases, currnt_slave pointer is changed and 0 is returned. 1924 */ 1925 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 1926 { 1927 struct bonding *bond = bond_dev->priv; 1928 struct slave *old_active = NULL; 1929 struct slave *new_active = NULL; 1930 int res = 0; 1931 1932 if (!USES_PRIMARY(bond->params.mode)) { 1933 return -EINVAL; 1934 } 1935 1936 /* Verify that master_dev is indeed the master of slave_dev */ 1937 if (!(slave_dev->flags & IFF_SLAVE) || 1938 (slave_dev->master != bond_dev)) { 1939 return -EINVAL; 1940 } 1941 1942 write_lock_bh(&bond->lock); 1943 1944 old_active = bond->curr_active_slave; 1945 new_active = bond_get_slave_by_dev(bond, slave_dev); 1946 1947 /* 1948 * Changing to the current active: do nothing; return success. 1949 */ 1950 if (new_active && (new_active == old_active)) { 1951 write_unlock_bh(&bond->lock); 1952 return 0; 1953 } 1954 1955 if ((new_active) && 1956 (old_active) && 1957 (new_active->link == BOND_LINK_UP) && 1958 IS_UP(new_active->dev)) { 1959 bond_change_active_slave(bond, new_active); 1960 } else { 1961 res = -EINVAL; 1962 } 1963 1964 write_unlock_bh(&bond->lock); 1965 1966 return res; 1967 } 1968 1969 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 1970 { 1971 struct bonding *bond = bond_dev->priv; 1972 1973 info->bond_mode = bond->params.mode; 1974 info->miimon = bond->params.miimon; 1975 1976 read_lock_bh(&bond->lock); 1977 info->num_slaves = bond->slave_cnt; 1978 read_unlock_bh(&bond->lock); 1979 1980 return 0; 1981 } 1982 1983 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 1984 { 1985 struct bonding *bond = bond_dev->priv; 1986 struct slave *slave; 1987 int i, found = 0; 1988 1989 if (info->slave_id < 0) { 1990 return -ENODEV; 1991 } 1992 1993 read_lock_bh(&bond->lock); 1994 1995 bond_for_each_slave(bond, slave, i) { 1996 if (i == (int)info->slave_id) { 1997 found = 1; 1998 break; 1999 } 2000 } 2001 2002 read_unlock_bh(&bond->lock); 2003 2004 if (found) { 2005 strcpy(info->slave_name, slave->dev->name); 2006 info->link = slave->link; 2007 info->state = slave->state; 2008 info->link_failure_count = slave->link_failure_count; 2009 } else { 2010 return -ENODEV; 2011 } 2012 2013 return 0; 2014 } 2015 2016 /*-------------------------------- Monitoring -------------------------------*/ 2017 2018 /* this function is called regularly to monitor each slave's link. */ 2019 void bond_mii_monitor(struct net_device *bond_dev) 2020 { 2021 struct bonding *bond = bond_dev->priv; 2022 struct slave *slave, *oldcurrent; 2023 int do_failover = 0; 2024 int delta_in_ticks; 2025 int i; 2026 2027 read_lock(&bond->lock); 2028 2029 delta_in_ticks = (bond->params.miimon * HZ) / 1000; 2030 2031 if (bond->kill_timers) { 2032 goto out; 2033 } 2034 2035 if (bond->slave_cnt == 0) { 2036 goto re_arm; 2037 } 2038 2039 /* we will try to read the link status of each of our slaves, and 2040 * set their IFF_RUNNING flag appropriately. For each slave not 2041 * supporting MII status, we won't do anything so that a user-space 2042 * program could monitor the link itself if needed. 2043 */ 2044 2045 read_lock(&bond->curr_slave_lock); 2046 oldcurrent = bond->curr_active_slave; 2047 read_unlock(&bond->curr_slave_lock); 2048 2049 bond_for_each_slave(bond, slave, i) { 2050 struct net_device *slave_dev = slave->dev; 2051 int link_state; 2052 u16 old_speed = slave->speed; 2053 u8 old_duplex = slave->duplex; 2054 2055 link_state = bond_check_dev_link(bond, slave_dev, 0); 2056 2057 switch (slave->link) { 2058 case BOND_LINK_UP: /* the link was up */ 2059 if (link_state == BMSR_LSTATUS) { 2060 /* link stays up, nothing more to do */ 2061 break; 2062 } else { /* link going down */ 2063 slave->link = BOND_LINK_FAIL; 2064 slave->delay = bond->params.downdelay; 2065 2066 if (slave->link_failure_count < UINT_MAX) { 2067 slave->link_failure_count++; 2068 } 2069 2070 if (bond->params.downdelay) { 2071 printk(KERN_INFO DRV_NAME 2072 ": %s: link status down for %s " 2073 "interface %s, disabling it in " 2074 "%d ms.\n", 2075 bond_dev->name, 2076 IS_UP(slave_dev) 2077 ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) 2078 ? ((slave == oldcurrent) 2079 ? "active " : "backup ") 2080 : "") 2081 : "idle ", 2082 slave_dev->name, 2083 bond->params.downdelay * bond->params.miimon); 2084 } 2085 } 2086 /* no break ! fall through the BOND_LINK_FAIL test to 2087 ensure proper action to be taken 2088 */ 2089 case BOND_LINK_FAIL: /* the link has just gone down */ 2090 if (link_state != BMSR_LSTATUS) { 2091 /* link stays down */ 2092 if (slave->delay <= 0) { 2093 /* link down for too long time */ 2094 slave->link = BOND_LINK_DOWN; 2095 2096 /* in active/backup mode, we must 2097 * completely disable this interface 2098 */ 2099 if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) || 2100 (bond->params.mode == BOND_MODE_8023AD)) { 2101 bond_set_slave_inactive_flags(slave); 2102 } 2103 2104 printk(KERN_INFO DRV_NAME 2105 ": %s: link status definitely " 2106 "down for interface %s, " 2107 "disabling it\n", 2108 bond_dev->name, 2109 slave_dev->name); 2110 2111 /* notify ad that the link status has changed */ 2112 if (bond->params.mode == BOND_MODE_8023AD) { 2113 bond_3ad_handle_link_change(slave, BOND_LINK_DOWN); 2114 } 2115 2116 if ((bond->params.mode == BOND_MODE_TLB) || 2117 (bond->params.mode == BOND_MODE_ALB)) { 2118 bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN); 2119 } 2120 2121 if (slave == oldcurrent) { 2122 do_failover = 1; 2123 } 2124 } else { 2125 slave->delay--; 2126 } 2127 } else { 2128 /* link up again */ 2129 slave->link = BOND_LINK_UP; 2130 slave->jiffies = jiffies; 2131 printk(KERN_INFO DRV_NAME 2132 ": %s: link status up again after %d " 2133 "ms for interface %s.\n", 2134 bond_dev->name, 2135 (bond->params.downdelay - slave->delay) * bond->params.miimon, 2136 slave_dev->name); 2137 } 2138 break; 2139 case BOND_LINK_DOWN: /* the link was down */ 2140 if (link_state != BMSR_LSTATUS) { 2141 /* the link stays down, nothing more to do */ 2142 break; 2143 } else { /* link going up */ 2144 slave->link = BOND_LINK_BACK; 2145 slave->delay = bond->params.updelay; 2146 2147 if (bond->params.updelay) { 2148 /* if updelay == 0, no need to 2149 advertise about a 0 ms delay */ 2150 printk(KERN_INFO DRV_NAME 2151 ": %s: link status up for " 2152 "interface %s, enabling it " 2153 "in %d ms.\n", 2154 bond_dev->name, 2155 slave_dev->name, 2156 bond->params.updelay * bond->params.miimon); 2157 } 2158 } 2159 /* no break ! fall through the BOND_LINK_BACK state in 2160 case there's something to do. 2161 */ 2162 case BOND_LINK_BACK: /* the link has just come back */ 2163 if (link_state != BMSR_LSTATUS) { 2164 /* link down again */ 2165 slave->link = BOND_LINK_DOWN; 2166 2167 printk(KERN_INFO DRV_NAME 2168 ": %s: link status down again after %d " 2169 "ms for interface %s.\n", 2170 bond_dev->name, 2171 (bond->params.updelay - slave->delay) * bond->params.miimon, 2172 slave_dev->name); 2173 } else { 2174 /* link stays up */ 2175 if (slave->delay == 0) { 2176 /* now the link has been up for long time enough */ 2177 slave->link = BOND_LINK_UP; 2178 slave->jiffies = jiffies; 2179 2180 if (bond->params.mode == BOND_MODE_8023AD) { 2181 /* prevent it from being the active one */ 2182 slave->state = BOND_STATE_BACKUP; 2183 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2184 /* make it immediately active */ 2185 slave->state = BOND_STATE_ACTIVE; 2186 } else if (slave != bond->primary_slave) { 2187 /* prevent it from being the active one */ 2188 slave->state = BOND_STATE_BACKUP; 2189 } 2190 2191 printk(KERN_INFO DRV_NAME 2192 ": %s: link status definitely " 2193 "up for interface %s.\n", 2194 bond_dev->name, 2195 slave_dev->name); 2196 2197 /* notify ad that the link status has changed */ 2198 if (bond->params.mode == BOND_MODE_8023AD) { 2199 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2200 } 2201 2202 if ((bond->params.mode == BOND_MODE_TLB) || 2203 (bond->params.mode == BOND_MODE_ALB)) { 2204 bond_alb_handle_link_change(bond, slave, BOND_LINK_UP); 2205 } 2206 2207 if ((!oldcurrent) || 2208 (slave == bond->primary_slave)) { 2209 do_failover = 1; 2210 } 2211 } else { 2212 slave->delay--; 2213 } 2214 } 2215 break; 2216 default: 2217 /* Should not happen */ 2218 printk(KERN_ERR DRV_NAME 2219 ": %s: Error: %s Illegal value (link=%d)\n", 2220 bond_dev->name, 2221 slave->dev->name, 2222 slave->link); 2223 goto out; 2224 } /* end of switch (slave->link) */ 2225 2226 bond_update_speed_duplex(slave); 2227 2228 if (bond->params.mode == BOND_MODE_8023AD) { 2229 if (old_speed != slave->speed) { 2230 bond_3ad_adapter_speed_changed(slave); 2231 } 2232 2233 if (old_duplex != slave->duplex) { 2234 bond_3ad_adapter_duplex_changed(slave); 2235 } 2236 } 2237 2238 } /* end of for */ 2239 2240 if (do_failover) { 2241 write_lock(&bond->curr_slave_lock); 2242 2243 bond_select_active_slave(bond); 2244 2245 write_unlock(&bond->curr_slave_lock); 2246 } else 2247 bond_set_carrier(bond); 2248 2249 re_arm: 2250 if (bond->params.miimon) { 2251 mod_timer(&bond->mii_timer, jiffies + delta_in_ticks); 2252 } 2253 out: 2254 read_unlock(&bond->lock); 2255 } 2256 2257 2258 static u32 bond_glean_dev_ip(struct net_device *dev) 2259 { 2260 struct in_device *idev; 2261 struct in_ifaddr *ifa; 2262 __be32 addr = 0; 2263 2264 if (!dev) 2265 return 0; 2266 2267 rcu_read_lock(); 2268 idev = __in_dev_get_rcu(dev); 2269 if (!idev) 2270 goto out; 2271 2272 ifa = idev->ifa_list; 2273 if (!ifa) 2274 goto out; 2275 2276 addr = ifa->ifa_local; 2277 out: 2278 rcu_read_unlock(); 2279 return addr; 2280 } 2281 2282 static int bond_has_ip(struct bonding *bond) 2283 { 2284 struct vlan_entry *vlan, *vlan_next; 2285 2286 if (bond->master_ip) 2287 return 1; 2288 2289 if (list_empty(&bond->vlan_list)) 2290 return 0; 2291 2292 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list, 2293 vlan_list) { 2294 if (vlan->vlan_ip) 2295 return 1; 2296 } 2297 2298 return 0; 2299 } 2300 2301 static int bond_has_this_ip(struct bonding *bond, u32 ip) 2302 { 2303 struct vlan_entry *vlan, *vlan_next; 2304 2305 if (ip == bond->master_ip) 2306 return 1; 2307 2308 if (list_empty(&bond->vlan_list)) 2309 return 0; 2310 2311 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list, 2312 vlan_list) { 2313 if (ip == vlan->vlan_ip) 2314 return 1; 2315 } 2316 2317 return 0; 2318 } 2319 2320 /* 2321 * We go to the (large) trouble of VLAN tagging ARP frames because 2322 * switches in VLAN mode (especially if ports are configured as 2323 * "native" to a VLAN) might not pass non-tagged frames. 2324 */ 2325 static void bond_arp_send(struct net_device *slave_dev, int arp_op, u32 dest_ip, u32 src_ip, unsigned short vlan_id) 2326 { 2327 struct sk_buff *skb; 2328 2329 dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, 2330 slave_dev->name, dest_ip, src_ip, vlan_id); 2331 2332 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2333 NULL, slave_dev->dev_addr, NULL); 2334 2335 if (!skb) { 2336 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n"); 2337 return; 2338 } 2339 if (vlan_id) { 2340 skb = vlan_put_tag(skb, vlan_id); 2341 if (!skb) { 2342 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n"); 2343 return; 2344 } 2345 } 2346 arp_xmit(skb); 2347 } 2348 2349 2350 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2351 { 2352 int i, vlan_id, rv; 2353 u32 *targets = bond->params.arp_targets; 2354 struct vlan_entry *vlan, *vlan_next; 2355 struct net_device *vlan_dev; 2356 struct flowi fl; 2357 struct rtable *rt; 2358 2359 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2360 if (!targets[i]) 2361 continue; 2362 dprintk("basa: target %x\n", targets[i]); 2363 if (list_empty(&bond->vlan_list)) { 2364 dprintk("basa: empty vlan: arp_send\n"); 2365 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2366 bond->master_ip, 0); 2367 continue; 2368 } 2369 2370 /* 2371 * If VLANs are configured, we do a route lookup to 2372 * determine which VLAN interface would be used, so we 2373 * can tag the ARP with the proper VLAN tag. 2374 */ 2375 memset(&fl, 0, sizeof(fl)); 2376 fl.fl4_dst = targets[i]; 2377 fl.fl4_tos = RTO_ONLINK; 2378 2379 rv = ip_route_output_key(&rt, &fl); 2380 if (rv) { 2381 if (net_ratelimit()) { 2382 printk(KERN_WARNING DRV_NAME 2383 ": %s: no route to arp_ip_target %u.%u.%u.%u\n", 2384 bond->dev->name, NIPQUAD(fl.fl4_dst)); 2385 } 2386 continue; 2387 } 2388 2389 /* 2390 * This target is not on a VLAN 2391 */ 2392 if (rt->u.dst.dev == bond->dev) { 2393 ip_rt_put(rt); 2394 dprintk("basa: rtdev == bond->dev: arp_send\n"); 2395 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2396 bond->master_ip, 0); 2397 continue; 2398 } 2399 2400 vlan_id = 0; 2401 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list, 2402 vlan_list) { 2403 vlan_dev = bond->vlgrp->vlan_devices[vlan->vlan_id]; 2404 if (vlan_dev == rt->u.dst.dev) { 2405 vlan_id = vlan->vlan_id; 2406 dprintk("basa: vlan match on %s %d\n", 2407 vlan_dev->name, vlan_id); 2408 break; 2409 } 2410 } 2411 2412 if (vlan_id) { 2413 ip_rt_put(rt); 2414 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2415 vlan->vlan_ip, vlan_id); 2416 continue; 2417 } 2418 2419 if (net_ratelimit()) { 2420 printk(KERN_WARNING DRV_NAME 2421 ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n", 2422 bond->dev->name, NIPQUAD(fl.fl4_dst), 2423 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL"); 2424 } 2425 ip_rt_put(rt); 2426 } 2427 } 2428 2429 /* 2430 * Kick out a gratuitous ARP for an IP on the bonding master plus one 2431 * for each VLAN above us. 2432 */ 2433 static void bond_send_gratuitous_arp(struct bonding *bond) 2434 { 2435 struct slave *slave = bond->curr_active_slave; 2436 struct vlan_entry *vlan; 2437 struct net_device *vlan_dev; 2438 2439 dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name, 2440 slave ? slave->dev->name : "NULL"); 2441 if (!slave) 2442 return; 2443 2444 if (bond->master_ip) { 2445 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip, 2446 bond->master_ip, 0); 2447 } 2448 2449 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2450 vlan_dev = bond->vlgrp->vlan_devices[vlan->vlan_id]; 2451 if (vlan->vlan_ip) { 2452 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip, 2453 vlan->vlan_ip, vlan->vlan_id); 2454 } 2455 } 2456 } 2457 2458 static void bond_validate_arp(struct bonding *bond, struct slave *slave, u32 sip, u32 tip) 2459 { 2460 int i; 2461 u32 *targets = bond->params.arp_targets; 2462 2463 targets = bond->params.arp_targets; 2464 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2465 dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] " 2466 "%u.%u.%u.%u bhti(tip) %d\n", 2467 NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]), 2468 bond_has_this_ip(bond, tip)); 2469 if (sip == targets[i]) { 2470 if (bond_has_this_ip(bond, tip)) 2471 slave->last_arp_rx = jiffies; 2472 return; 2473 } 2474 } 2475 } 2476 2477 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) 2478 { 2479 struct arphdr *arp; 2480 struct slave *slave; 2481 struct bonding *bond; 2482 unsigned char *arp_ptr; 2483 u32 sip, tip; 2484 2485 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER)) 2486 goto out; 2487 2488 bond = dev->priv; 2489 read_lock(&bond->lock); 2490 2491 dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n", 2492 bond->dev->name, skb->dev ? skb->dev->name : "NULL", 2493 orig_dev ? orig_dev->name : "NULL"); 2494 2495 slave = bond_get_slave_by_dev(bond, orig_dev); 2496 if (!slave || !slave_do_arp_validate(bond, slave)) 2497 goto out_unlock; 2498 2499 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */ 2500 if (!pskb_may_pull(skb, (sizeof(struct arphdr) + 2501 (2 * dev->addr_len) + 2502 (2 * sizeof(u32))))) 2503 goto out_unlock; 2504 2505 arp = skb->nh.arph; 2506 if (arp->ar_hln != dev->addr_len || 2507 skb->pkt_type == PACKET_OTHERHOST || 2508 skb->pkt_type == PACKET_LOOPBACK || 2509 arp->ar_hrd != htons(ARPHRD_ETHER) || 2510 arp->ar_pro != htons(ETH_P_IP) || 2511 arp->ar_pln != 4) 2512 goto out_unlock; 2513 2514 arp_ptr = (unsigned char *)(arp + 1); 2515 arp_ptr += dev->addr_len; 2516 memcpy(&sip, arp_ptr, 4); 2517 arp_ptr += 4 + dev->addr_len; 2518 memcpy(&tip, arp_ptr, 4); 2519 2520 dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u" 2521 " tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name, 2522 slave->state, bond->params.arp_validate, 2523 slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip)); 2524 2525 /* 2526 * Backup slaves won't see the ARP reply, but do come through 2527 * here for each ARP probe (so we swap the sip/tip to validate 2528 * the probe). In a "redundant switch, common router" type of 2529 * configuration, the ARP probe will (hopefully) travel from 2530 * the active, through one switch, the router, then the other 2531 * switch before reaching the backup. 2532 */ 2533 if (slave->state == BOND_STATE_ACTIVE) 2534 bond_validate_arp(bond, slave, sip, tip); 2535 else 2536 bond_validate_arp(bond, slave, tip, sip); 2537 2538 out_unlock: 2539 read_unlock(&bond->lock); 2540 out: 2541 dev_kfree_skb(skb); 2542 return NET_RX_SUCCESS; 2543 } 2544 2545 /* 2546 * this function is called regularly to monitor each slave's link 2547 * ensuring that traffic is being sent and received when arp monitoring 2548 * is used in load-balancing mode. if the adapter has been dormant, then an 2549 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2550 * arp monitoring in active backup mode. 2551 */ 2552 void bond_loadbalance_arp_mon(struct net_device *bond_dev) 2553 { 2554 struct bonding *bond = bond_dev->priv; 2555 struct slave *slave, *oldcurrent; 2556 int do_failover = 0; 2557 int delta_in_ticks; 2558 int i; 2559 2560 read_lock(&bond->lock); 2561 2562 delta_in_ticks = (bond->params.arp_interval * HZ) / 1000; 2563 2564 if (bond->kill_timers) { 2565 goto out; 2566 } 2567 2568 if (bond->slave_cnt == 0) { 2569 goto re_arm; 2570 } 2571 2572 read_lock(&bond->curr_slave_lock); 2573 oldcurrent = bond->curr_active_slave; 2574 read_unlock(&bond->curr_slave_lock); 2575 2576 /* see if any of the previous devices are up now (i.e. they have 2577 * xmt and rcv traffic). the curr_active_slave does not come into 2578 * the picture unless it is null. also, slave->jiffies is not needed 2579 * here because we send an arp on each slave and give a slave as 2580 * long as it needs to get the tx/rx within the delta. 2581 * TODO: what about up/down delay in arp mode? it wasn't here before 2582 * so it can wait 2583 */ 2584 bond_for_each_slave(bond, slave, i) { 2585 if (slave->link != BOND_LINK_UP) { 2586 if (((jiffies - slave->dev->trans_start) <= delta_in_ticks) && 2587 ((jiffies - slave->dev->last_rx) <= delta_in_ticks)) { 2588 2589 slave->link = BOND_LINK_UP; 2590 slave->state = BOND_STATE_ACTIVE; 2591 2592 /* primary_slave has no meaning in round-robin 2593 * mode. the window of a slave being up and 2594 * curr_active_slave being null after enslaving 2595 * is closed. 2596 */ 2597 if (!oldcurrent) { 2598 printk(KERN_INFO DRV_NAME 2599 ": %s: link status definitely " 2600 "up for interface %s, ", 2601 bond_dev->name, 2602 slave->dev->name); 2603 do_failover = 1; 2604 } else { 2605 printk(KERN_INFO DRV_NAME 2606 ": %s: interface %s is now up\n", 2607 bond_dev->name, 2608 slave->dev->name); 2609 } 2610 } 2611 } else { 2612 /* slave->link == BOND_LINK_UP */ 2613 2614 /* not all switches will respond to an arp request 2615 * when the source ip is 0, so don't take the link down 2616 * if we don't know our ip yet 2617 */ 2618 if (((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) || 2619 (((jiffies - slave->dev->last_rx) >= (2*delta_in_ticks)) && 2620 bond_has_ip(bond))) { 2621 2622 slave->link = BOND_LINK_DOWN; 2623 slave->state = BOND_STATE_BACKUP; 2624 2625 if (slave->link_failure_count < UINT_MAX) { 2626 slave->link_failure_count++; 2627 } 2628 2629 printk(KERN_INFO DRV_NAME 2630 ": %s: interface %s is now down.\n", 2631 bond_dev->name, 2632 slave->dev->name); 2633 2634 if (slave == oldcurrent) { 2635 do_failover = 1; 2636 } 2637 } 2638 } 2639 2640 /* note: if switch is in round-robin mode, all links 2641 * must tx arp to ensure all links rx an arp - otherwise 2642 * links may oscillate or not come up at all; if switch is 2643 * in something like xor mode, there is nothing we can 2644 * do - all replies will be rx'ed on same link causing slaves 2645 * to be unstable during low/no traffic periods 2646 */ 2647 if (IS_UP(slave->dev)) { 2648 bond_arp_send_all(bond, slave); 2649 } 2650 } 2651 2652 if (do_failover) { 2653 write_lock(&bond->curr_slave_lock); 2654 2655 bond_select_active_slave(bond); 2656 2657 write_unlock(&bond->curr_slave_lock); 2658 } 2659 2660 re_arm: 2661 if (bond->params.arp_interval) { 2662 mod_timer(&bond->arp_timer, jiffies + delta_in_ticks); 2663 } 2664 out: 2665 read_unlock(&bond->lock); 2666 } 2667 2668 /* 2669 * When using arp monitoring in active-backup mode, this function is 2670 * called to determine if any backup slaves have went down or a new 2671 * current slave needs to be found. 2672 * The backup slaves never generate traffic, they are considered up by merely 2673 * receiving traffic. If the current slave goes down, each backup slave will 2674 * be given the opportunity to tx/rx an arp before being taken down - this 2675 * prevents all slaves from being taken down due to the current slave not 2676 * sending any traffic for the backups to receive. The arps are not necessarily 2677 * necessary, any tx and rx traffic will keep the current slave up. While any 2678 * rx traffic will keep the backup slaves up, the current slave is responsible 2679 * for generating traffic to keep them up regardless of any other traffic they 2680 * may have received. 2681 * see loadbalance_arp_monitor for arp monitoring in load balancing mode 2682 */ 2683 void bond_activebackup_arp_mon(struct net_device *bond_dev) 2684 { 2685 struct bonding *bond = bond_dev->priv; 2686 struct slave *slave; 2687 int delta_in_ticks; 2688 int i; 2689 2690 read_lock(&bond->lock); 2691 2692 delta_in_ticks = (bond->params.arp_interval * HZ) / 1000; 2693 2694 if (bond->kill_timers) { 2695 goto out; 2696 } 2697 2698 if (bond->slave_cnt == 0) { 2699 goto re_arm; 2700 } 2701 2702 /* determine if any slave has come up or any backup slave has 2703 * gone down 2704 * TODO: what about up/down delay in arp mode? it wasn't here before 2705 * so it can wait 2706 */ 2707 bond_for_each_slave(bond, slave, i) { 2708 if (slave->link != BOND_LINK_UP) { 2709 if ((jiffies - slave_last_rx(bond, slave)) <= 2710 delta_in_ticks) { 2711 2712 slave->link = BOND_LINK_UP; 2713 2714 write_lock(&bond->curr_slave_lock); 2715 2716 if ((!bond->curr_active_slave) && 2717 ((jiffies - slave->dev->trans_start) <= delta_in_ticks)) { 2718 bond_change_active_slave(bond, slave); 2719 bond->current_arp_slave = NULL; 2720 } else if (bond->curr_active_slave != slave) { 2721 /* this slave has just come up but we 2722 * already have a current slave; this 2723 * can also happen if bond_enslave adds 2724 * a new slave that is up while we are 2725 * searching for a new slave 2726 */ 2727 bond_set_slave_inactive_flags(slave); 2728 bond->current_arp_slave = NULL; 2729 } 2730 2731 bond_set_carrier(bond); 2732 2733 if (slave == bond->curr_active_slave) { 2734 printk(KERN_INFO DRV_NAME 2735 ": %s: %s is up and now the " 2736 "active interface\n", 2737 bond_dev->name, 2738 slave->dev->name); 2739 netif_carrier_on(bond->dev); 2740 } else { 2741 printk(KERN_INFO DRV_NAME 2742 ": %s: backup interface %s is " 2743 "now up\n", 2744 bond_dev->name, 2745 slave->dev->name); 2746 } 2747 2748 write_unlock(&bond->curr_slave_lock); 2749 } 2750 } else { 2751 read_lock(&bond->curr_slave_lock); 2752 2753 if ((slave != bond->curr_active_slave) && 2754 (!bond->current_arp_slave) && 2755 (((jiffies - slave_last_rx(bond, slave)) >= 3*delta_in_ticks) && 2756 bond_has_ip(bond))) { 2757 /* a backup slave has gone down; three times 2758 * the delta allows the current slave to be 2759 * taken out before the backup slave. 2760 * note: a non-null current_arp_slave indicates 2761 * the curr_active_slave went down and we are 2762 * searching for a new one; under this 2763 * condition we only take the curr_active_slave 2764 * down - this gives each slave a chance to 2765 * tx/rx traffic before being taken out 2766 */ 2767 2768 read_unlock(&bond->curr_slave_lock); 2769 2770 slave->link = BOND_LINK_DOWN; 2771 2772 if (slave->link_failure_count < UINT_MAX) { 2773 slave->link_failure_count++; 2774 } 2775 2776 bond_set_slave_inactive_flags(slave); 2777 2778 printk(KERN_INFO DRV_NAME 2779 ": %s: backup interface %s is now down\n", 2780 bond_dev->name, 2781 slave->dev->name); 2782 } else { 2783 read_unlock(&bond->curr_slave_lock); 2784 } 2785 } 2786 } 2787 2788 read_lock(&bond->curr_slave_lock); 2789 slave = bond->curr_active_slave; 2790 read_unlock(&bond->curr_slave_lock); 2791 2792 if (slave) { 2793 /* if we have sent traffic in the past 2*arp_intervals but 2794 * haven't xmit and rx traffic in that time interval, select 2795 * a different slave. slave->jiffies is only updated when 2796 * a slave first becomes the curr_active_slave - not necessarily 2797 * after every arp; this ensures the slave has a full 2*delta 2798 * before being taken out. if a primary is being used, check 2799 * if it is up and needs to take over as the curr_active_slave 2800 */ 2801 if ((((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) || 2802 (((jiffies - slave_last_rx(bond, slave)) >= (2*delta_in_ticks)) && 2803 bond_has_ip(bond))) && 2804 ((jiffies - slave->jiffies) >= 2*delta_in_ticks)) { 2805 2806 slave->link = BOND_LINK_DOWN; 2807 2808 if (slave->link_failure_count < UINT_MAX) { 2809 slave->link_failure_count++; 2810 } 2811 2812 printk(KERN_INFO DRV_NAME 2813 ": %s: link status down for active interface " 2814 "%s, disabling it\n", 2815 bond_dev->name, 2816 slave->dev->name); 2817 2818 write_lock(&bond->curr_slave_lock); 2819 2820 bond_select_active_slave(bond); 2821 slave = bond->curr_active_slave; 2822 2823 write_unlock(&bond->curr_slave_lock); 2824 2825 bond->current_arp_slave = slave; 2826 2827 if (slave) { 2828 slave->jiffies = jiffies; 2829 } 2830 } else if ((bond->primary_slave) && 2831 (bond->primary_slave != slave) && 2832 (bond->primary_slave->link == BOND_LINK_UP)) { 2833 /* at this point, slave is the curr_active_slave */ 2834 printk(KERN_INFO DRV_NAME 2835 ": %s: changing from interface %s to primary " 2836 "interface %s\n", 2837 bond_dev->name, 2838 slave->dev->name, 2839 bond->primary_slave->dev->name); 2840 2841 /* primary is up so switch to it */ 2842 write_lock(&bond->curr_slave_lock); 2843 bond_change_active_slave(bond, bond->primary_slave); 2844 write_unlock(&bond->curr_slave_lock); 2845 2846 slave = bond->primary_slave; 2847 slave->jiffies = jiffies; 2848 } else { 2849 bond->current_arp_slave = NULL; 2850 } 2851 2852 /* the current slave must tx an arp to ensure backup slaves 2853 * rx traffic 2854 */ 2855 if (slave && bond_has_ip(bond)) { 2856 bond_arp_send_all(bond, slave); 2857 } 2858 } 2859 2860 /* if we don't have a curr_active_slave, search for the next available 2861 * backup slave from the current_arp_slave and make it the candidate 2862 * for becoming the curr_active_slave 2863 */ 2864 if (!slave) { 2865 if (!bond->current_arp_slave) { 2866 bond->current_arp_slave = bond->first_slave; 2867 } 2868 2869 if (bond->current_arp_slave) { 2870 bond_set_slave_inactive_flags(bond->current_arp_slave); 2871 2872 /* search for next candidate */ 2873 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 2874 if (IS_UP(slave->dev)) { 2875 slave->link = BOND_LINK_BACK; 2876 bond_set_slave_active_flags(slave); 2877 bond_arp_send_all(bond, slave); 2878 slave->jiffies = jiffies; 2879 bond->current_arp_slave = slave; 2880 break; 2881 } 2882 2883 /* if the link state is up at this point, we 2884 * mark it down - this can happen if we have 2885 * simultaneous link failures and 2886 * reselect_active_interface doesn't make this 2887 * one the current slave so it is still marked 2888 * up when it is actually down 2889 */ 2890 if (slave->link == BOND_LINK_UP) { 2891 slave->link = BOND_LINK_DOWN; 2892 if (slave->link_failure_count < UINT_MAX) { 2893 slave->link_failure_count++; 2894 } 2895 2896 bond_set_slave_inactive_flags(slave); 2897 2898 printk(KERN_INFO DRV_NAME 2899 ": %s: backup interface %s is " 2900 "now down.\n", 2901 bond_dev->name, 2902 slave->dev->name); 2903 } 2904 } 2905 } 2906 } 2907 2908 re_arm: 2909 if (bond->params.arp_interval) { 2910 mod_timer(&bond->arp_timer, jiffies + delta_in_ticks); 2911 } 2912 out: 2913 read_unlock(&bond->lock); 2914 } 2915 2916 /*------------------------------ proc/seq_file-------------------------------*/ 2917 2918 #ifdef CONFIG_PROC_FS 2919 2920 #define SEQ_START_TOKEN ((void *)1) 2921 2922 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos) 2923 { 2924 struct bonding *bond = seq->private; 2925 loff_t off = 0; 2926 struct slave *slave; 2927 int i; 2928 2929 /* make sure the bond won't be taken away */ 2930 read_lock(&dev_base_lock); 2931 read_lock_bh(&bond->lock); 2932 2933 if (*pos == 0) { 2934 return SEQ_START_TOKEN; 2935 } 2936 2937 bond_for_each_slave(bond, slave, i) { 2938 if (++off == *pos) { 2939 return slave; 2940 } 2941 } 2942 2943 return NULL; 2944 } 2945 2946 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2947 { 2948 struct bonding *bond = seq->private; 2949 struct slave *slave = v; 2950 2951 ++*pos; 2952 if (v == SEQ_START_TOKEN) { 2953 return bond->first_slave; 2954 } 2955 2956 slave = slave->next; 2957 2958 return (slave == bond->first_slave) ? NULL : slave; 2959 } 2960 2961 static void bond_info_seq_stop(struct seq_file *seq, void *v) 2962 { 2963 struct bonding *bond = seq->private; 2964 2965 read_unlock_bh(&bond->lock); 2966 read_unlock(&dev_base_lock); 2967 } 2968 2969 static void bond_info_show_master(struct seq_file *seq) 2970 { 2971 struct bonding *bond = seq->private; 2972 struct slave *curr; 2973 int i; 2974 u32 target; 2975 2976 read_lock(&bond->curr_slave_lock); 2977 curr = bond->curr_active_slave; 2978 read_unlock(&bond->curr_slave_lock); 2979 2980 seq_printf(seq, "Bonding Mode: %s\n", 2981 bond_mode_name(bond->params.mode)); 2982 2983 if (bond->params.mode == BOND_MODE_XOR || 2984 bond->params.mode == BOND_MODE_8023AD) { 2985 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n", 2986 xmit_hashtype_tbl[bond->params.xmit_policy].modename, 2987 bond->params.xmit_policy); 2988 } 2989 2990 if (USES_PRIMARY(bond->params.mode)) { 2991 seq_printf(seq, "Primary Slave: %s\n", 2992 (bond->primary_slave) ? 2993 bond->primary_slave->dev->name : "None"); 2994 2995 seq_printf(seq, "Currently Active Slave: %s\n", 2996 (curr) ? curr->dev->name : "None"); 2997 } 2998 2999 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ? 3000 "up" : "down"); 3001 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon); 3002 seq_printf(seq, "Up Delay (ms): %d\n", 3003 bond->params.updelay * bond->params.miimon); 3004 seq_printf(seq, "Down Delay (ms): %d\n", 3005 bond->params.downdelay * bond->params.miimon); 3006 3007 3008 /* ARP information */ 3009 if(bond->params.arp_interval > 0) { 3010 int printed=0; 3011 seq_printf(seq, "ARP Polling Interval (ms): %d\n", 3012 bond->params.arp_interval); 3013 3014 seq_printf(seq, "ARP IP target/s (n.n.n.n form):"); 3015 3016 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) { 3017 if (!bond->params.arp_targets[i]) 3018 continue; 3019 if (printed) 3020 seq_printf(seq, ","); 3021 target = ntohl(bond->params.arp_targets[i]); 3022 seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target)); 3023 printed = 1; 3024 } 3025 seq_printf(seq, "\n"); 3026 } 3027 3028 if (bond->params.mode == BOND_MODE_8023AD) { 3029 struct ad_info ad_info; 3030 3031 seq_puts(seq, "\n802.3ad info\n"); 3032 seq_printf(seq, "LACP rate: %s\n", 3033 (bond->params.lacp_fast) ? "fast" : "slow"); 3034 3035 if (bond_3ad_get_active_agg_info(bond, &ad_info)) { 3036 seq_printf(seq, "bond %s has no active aggregator\n", 3037 bond->dev->name); 3038 } else { 3039 seq_printf(seq, "Active Aggregator Info:\n"); 3040 3041 seq_printf(seq, "\tAggregator ID: %d\n", 3042 ad_info.aggregator_id); 3043 seq_printf(seq, "\tNumber of ports: %d\n", 3044 ad_info.ports); 3045 seq_printf(seq, "\tActor Key: %d\n", 3046 ad_info.actor_key); 3047 seq_printf(seq, "\tPartner Key: %d\n", 3048 ad_info.partner_key); 3049 seq_printf(seq, "\tPartner Mac Address: %02x:%02x:%02x:%02x:%02x:%02x\n", 3050 ad_info.partner_system[0], 3051 ad_info.partner_system[1], 3052 ad_info.partner_system[2], 3053 ad_info.partner_system[3], 3054 ad_info.partner_system[4], 3055 ad_info.partner_system[5]); 3056 } 3057 } 3058 } 3059 3060 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave) 3061 { 3062 struct bonding *bond = seq->private; 3063 3064 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name); 3065 seq_printf(seq, "MII Status: %s\n", 3066 (slave->link == BOND_LINK_UP) ? "up" : "down"); 3067 seq_printf(seq, "Link Failure Count: %u\n", 3068 slave->link_failure_count); 3069 3070 seq_printf(seq, 3071 "Permanent HW addr: %02x:%02x:%02x:%02x:%02x:%02x\n", 3072 slave->perm_hwaddr[0], slave->perm_hwaddr[1], 3073 slave->perm_hwaddr[2], slave->perm_hwaddr[3], 3074 slave->perm_hwaddr[4], slave->perm_hwaddr[5]); 3075 3076 if (bond->params.mode == BOND_MODE_8023AD) { 3077 const struct aggregator *agg 3078 = SLAVE_AD_INFO(slave).port.aggregator; 3079 3080 if (agg) { 3081 seq_printf(seq, "Aggregator ID: %d\n", 3082 agg->aggregator_identifier); 3083 } else { 3084 seq_puts(seq, "Aggregator ID: N/A\n"); 3085 } 3086 } 3087 } 3088 3089 static int bond_info_seq_show(struct seq_file *seq, void *v) 3090 { 3091 if (v == SEQ_START_TOKEN) { 3092 seq_printf(seq, "%s\n", version); 3093 bond_info_show_master(seq); 3094 } else { 3095 bond_info_show_slave(seq, v); 3096 } 3097 3098 return 0; 3099 } 3100 3101 static struct seq_operations bond_info_seq_ops = { 3102 .start = bond_info_seq_start, 3103 .next = bond_info_seq_next, 3104 .stop = bond_info_seq_stop, 3105 .show = bond_info_seq_show, 3106 }; 3107 3108 static int bond_info_open(struct inode *inode, struct file *file) 3109 { 3110 struct seq_file *seq; 3111 struct proc_dir_entry *proc; 3112 int res; 3113 3114 res = seq_open(file, &bond_info_seq_ops); 3115 if (!res) { 3116 /* recover the pointer buried in proc_dir_entry data */ 3117 seq = file->private_data; 3118 proc = PDE(inode); 3119 seq->private = proc->data; 3120 } 3121 3122 return res; 3123 } 3124 3125 static struct file_operations bond_info_fops = { 3126 .owner = THIS_MODULE, 3127 .open = bond_info_open, 3128 .read = seq_read, 3129 .llseek = seq_lseek, 3130 .release = seq_release, 3131 }; 3132 3133 static int bond_create_proc_entry(struct bonding *bond) 3134 { 3135 struct net_device *bond_dev = bond->dev; 3136 3137 if (bond_proc_dir) { 3138 bond->proc_entry = create_proc_entry(bond_dev->name, 3139 S_IRUGO, 3140 bond_proc_dir); 3141 if (bond->proc_entry == NULL) { 3142 printk(KERN_WARNING DRV_NAME 3143 ": Warning: Cannot create /proc/net/%s/%s\n", 3144 DRV_NAME, bond_dev->name); 3145 } else { 3146 bond->proc_entry->data = bond; 3147 bond->proc_entry->proc_fops = &bond_info_fops; 3148 bond->proc_entry->owner = THIS_MODULE; 3149 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ); 3150 } 3151 } 3152 3153 return 0; 3154 } 3155 3156 static void bond_remove_proc_entry(struct bonding *bond) 3157 { 3158 if (bond_proc_dir && bond->proc_entry) { 3159 remove_proc_entry(bond->proc_file_name, bond_proc_dir); 3160 memset(bond->proc_file_name, 0, IFNAMSIZ); 3161 bond->proc_entry = NULL; 3162 } 3163 } 3164 3165 /* Create the bonding directory under /proc/net, if doesn't exist yet. 3166 * Caller must hold rtnl_lock. 3167 */ 3168 static void bond_create_proc_dir(void) 3169 { 3170 int len = strlen(DRV_NAME); 3171 3172 for (bond_proc_dir = proc_net->subdir; bond_proc_dir; 3173 bond_proc_dir = bond_proc_dir->next) { 3174 if ((bond_proc_dir->namelen == len) && 3175 !memcmp(bond_proc_dir->name, DRV_NAME, len)) { 3176 break; 3177 } 3178 } 3179 3180 if (!bond_proc_dir) { 3181 bond_proc_dir = proc_mkdir(DRV_NAME, proc_net); 3182 if (bond_proc_dir) { 3183 bond_proc_dir->owner = THIS_MODULE; 3184 } else { 3185 printk(KERN_WARNING DRV_NAME 3186 ": Warning: cannot create /proc/net/%s\n", 3187 DRV_NAME); 3188 } 3189 } 3190 } 3191 3192 /* Destroy the bonding directory under /proc/net, if empty. 3193 * Caller must hold rtnl_lock. 3194 */ 3195 static void bond_destroy_proc_dir(void) 3196 { 3197 struct proc_dir_entry *de; 3198 3199 if (!bond_proc_dir) { 3200 return; 3201 } 3202 3203 /* verify that the /proc dir is empty */ 3204 for (de = bond_proc_dir->subdir; de; de = de->next) { 3205 /* ignore . and .. */ 3206 if (*(de->name) != '.') { 3207 break; 3208 } 3209 } 3210 3211 if (de) { 3212 if (bond_proc_dir->owner == THIS_MODULE) { 3213 bond_proc_dir->owner = NULL; 3214 } 3215 } else { 3216 remove_proc_entry(DRV_NAME, proc_net); 3217 bond_proc_dir = NULL; 3218 } 3219 } 3220 #endif /* CONFIG_PROC_FS */ 3221 3222 /*-------------------------- netdev event handling --------------------------*/ 3223 3224 /* 3225 * Change device name 3226 */ 3227 static int bond_event_changename(struct bonding *bond) 3228 { 3229 #ifdef CONFIG_PROC_FS 3230 bond_remove_proc_entry(bond); 3231 bond_create_proc_entry(bond); 3232 #endif 3233 down_write(&(bonding_rwsem)); 3234 bond_destroy_sysfs_entry(bond); 3235 bond_create_sysfs_entry(bond); 3236 up_write(&(bonding_rwsem)); 3237 return NOTIFY_DONE; 3238 } 3239 3240 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev) 3241 { 3242 struct bonding *event_bond = bond_dev->priv; 3243 3244 switch (event) { 3245 case NETDEV_CHANGENAME: 3246 return bond_event_changename(event_bond); 3247 case NETDEV_UNREGISTER: 3248 /* 3249 * TODO: remove a bond from the list? 3250 */ 3251 break; 3252 default: 3253 break; 3254 } 3255 3256 return NOTIFY_DONE; 3257 } 3258 3259 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev) 3260 { 3261 struct net_device *bond_dev = slave_dev->master; 3262 struct bonding *bond = bond_dev->priv; 3263 3264 switch (event) { 3265 case NETDEV_UNREGISTER: 3266 if (bond_dev) { 3267 bond_release(bond_dev, slave_dev); 3268 } 3269 break; 3270 case NETDEV_CHANGE: 3271 /* 3272 * TODO: is this what we get if somebody 3273 * sets up a hierarchical bond, then rmmod's 3274 * one of the slave bonding devices? 3275 */ 3276 break; 3277 case NETDEV_DOWN: 3278 /* 3279 * ... Or is it this? 3280 */ 3281 break; 3282 case NETDEV_CHANGEMTU: 3283 /* 3284 * TODO: Should slaves be allowed to 3285 * independently alter their MTU? For 3286 * an active-backup bond, slaves need 3287 * not be the same type of device, so 3288 * MTUs may vary. For other modes, 3289 * slaves arguably should have the 3290 * same MTUs. To do this, we'd need to 3291 * take over the slave's change_mtu 3292 * function for the duration of their 3293 * servitude. 3294 */ 3295 break; 3296 case NETDEV_CHANGENAME: 3297 /* 3298 * TODO: handle changing the primary's name 3299 */ 3300 break; 3301 case NETDEV_FEAT_CHANGE: 3302 bond_compute_features(bond); 3303 break; 3304 default: 3305 break; 3306 } 3307 3308 return NOTIFY_DONE; 3309 } 3310 3311 /* 3312 * bond_netdev_event: handle netdev notifier chain events. 3313 * 3314 * This function receives events for the netdev chain. The caller (an 3315 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3316 * locks for us to safely manipulate the slave devices (RTNL lock, 3317 * dev_probe_lock). 3318 */ 3319 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) 3320 { 3321 struct net_device *event_dev = (struct net_device *)ptr; 3322 3323 dprintk("event_dev: %s, event: %lx\n", 3324 (event_dev ? event_dev->name : "None"), 3325 event); 3326 3327 if (!(event_dev->priv_flags & IFF_BONDING)) 3328 return NOTIFY_DONE; 3329 3330 if (event_dev->flags & IFF_MASTER) { 3331 dprintk("IFF_MASTER\n"); 3332 return bond_master_netdev_event(event, event_dev); 3333 } 3334 3335 if (event_dev->flags & IFF_SLAVE) { 3336 dprintk("IFF_SLAVE\n"); 3337 return bond_slave_netdev_event(event, event_dev); 3338 } 3339 3340 return NOTIFY_DONE; 3341 } 3342 3343 /* 3344 * bond_inetaddr_event: handle inetaddr notifier chain events. 3345 * 3346 * We keep track of device IPs primarily to use as source addresses in 3347 * ARP monitor probes (rather than spewing out broadcasts all the time). 3348 * 3349 * We track one IP for the main device (if it has one), plus one per VLAN. 3350 */ 3351 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) 3352 { 3353 struct in_ifaddr *ifa = ptr; 3354 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev; 3355 struct bonding *bond, *bond_next; 3356 struct vlan_entry *vlan, *vlan_next; 3357 3358 list_for_each_entry_safe(bond, bond_next, &bond_dev_list, bond_list) { 3359 if (bond->dev == event_dev) { 3360 switch (event) { 3361 case NETDEV_UP: 3362 bond->master_ip = ifa->ifa_local; 3363 return NOTIFY_OK; 3364 case NETDEV_DOWN: 3365 bond->master_ip = bond_glean_dev_ip(bond->dev); 3366 return NOTIFY_OK; 3367 default: 3368 return NOTIFY_DONE; 3369 } 3370 } 3371 3372 if (list_empty(&bond->vlan_list)) 3373 continue; 3374 3375 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list, 3376 vlan_list) { 3377 vlan_dev = bond->vlgrp->vlan_devices[vlan->vlan_id]; 3378 if (vlan_dev == event_dev) { 3379 switch (event) { 3380 case NETDEV_UP: 3381 vlan->vlan_ip = ifa->ifa_local; 3382 return NOTIFY_OK; 3383 case NETDEV_DOWN: 3384 vlan->vlan_ip = 3385 bond_glean_dev_ip(vlan_dev); 3386 return NOTIFY_OK; 3387 default: 3388 return NOTIFY_DONE; 3389 } 3390 } 3391 } 3392 } 3393 return NOTIFY_DONE; 3394 } 3395 3396 static struct notifier_block bond_netdev_notifier = { 3397 .notifier_call = bond_netdev_event, 3398 }; 3399 3400 static struct notifier_block bond_inetaddr_notifier = { 3401 .notifier_call = bond_inetaddr_event, 3402 }; 3403 3404 /*-------------------------- Packet type handling ---------------------------*/ 3405 3406 /* register to receive lacpdus on a bond */ 3407 static void bond_register_lacpdu(struct bonding *bond) 3408 { 3409 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type); 3410 3411 /* initialize packet type */ 3412 pk_type->type = PKT_TYPE_LACPDU; 3413 pk_type->dev = bond->dev; 3414 pk_type->func = bond_3ad_lacpdu_recv; 3415 3416 dev_add_pack(pk_type); 3417 } 3418 3419 /* unregister to receive lacpdus on a bond */ 3420 static void bond_unregister_lacpdu(struct bonding *bond) 3421 { 3422 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type)); 3423 } 3424 3425 void bond_register_arp(struct bonding *bond) 3426 { 3427 struct packet_type *pt = &bond->arp_mon_pt; 3428 3429 pt->type = htons(ETH_P_ARP); 3430 pt->dev = NULL; /*bond->dev;XXX*/ 3431 pt->func = bond_arp_rcv; 3432 dev_add_pack(pt); 3433 } 3434 3435 void bond_unregister_arp(struct bonding *bond) 3436 { 3437 dev_remove_pack(&bond->arp_mon_pt); 3438 } 3439 3440 /*---------------------------- Hashing Policies -----------------------------*/ 3441 3442 /* 3443 * Hash for the the output device based upon layer 3 and layer 4 data. If 3444 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3445 * altogether not IP, mimic bond_xmit_hash_policy_l2() 3446 */ 3447 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, 3448 struct net_device *bond_dev, int count) 3449 { 3450 struct ethhdr *data = (struct ethhdr *)skb->data; 3451 struct iphdr *iph = skb->nh.iph; 3452 u16 *layer4hdr = (u16 *)((u32 *)iph + iph->ihl); 3453 int layer4_xor = 0; 3454 3455 if (skb->protocol == __constant_htons(ETH_P_IP)) { 3456 if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) && 3457 (iph->protocol == IPPROTO_TCP || 3458 iph->protocol == IPPROTO_UDP)) { 3459 layer4_xor = htons((*layer4hdr ^ *(layer4hdr + 1))); 3460 } 3461 return (layer4_xor ^ 3462 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3463 3464 } 3465 3466 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3467 } 3468 3469 /* 3470 * Hash for the output device based upon layer 2 data 3471 */ 3472 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, 3473 struct net_device *bond_dev, int count) 3474 { 3475 struct ethhdr *data = (struct ethhdr *)skb->data; 3476 3477 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3478 } 3479 3480 /*-------------------------- Device entry points ----------------------------*/ 3481 3482 static int bond_open(struct net_device *bond_dev) 3483 { 3484 struct bonding *bond = bond_dev->priv; 3485 struct timer_list *mii_timer = &bond->mii_timer; 3486 struct timer_list *arp_timer = &bond->arp_timer; 3487 3488 bond->kill_timers = 0; 3489 3490 if ((bond->params.mode == BOND_MODE_TLB) || 3491 (bond->params.mode == BOND_MODE_ALB)) { 3492 struct timer_list *alb_timer = &(BOND_ALB_INFO(bond).alb_timer); 3493 3494 /* bond_alb_initialize must be called before the timer 3495 * is started. 3496 */ 3497 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) { 3498 /* something went wrong - fail the open operation */ 3499 return -1; 3500 } 3501 3502 init_timer(alb_timer); 3503 alb_timer->expires = jiffies + 1; 3504 alb_timer->data = (unsigned long)bond; 3505 alb_timer->function = (void *)&bond_alb_monitor; 3506 add_timer(alb_timer); 3507 } 3508 3509 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3510 init_timer(mii_timer); 3511 mii_timer->expires = jiffies + 1; 3512 mii_timer->data = (unsigned long)bond_dev; 3513 mii_timer->function = (void *)&bond_mii_monitor; 3514 add_timer(mii_timer); 3515 } 3516 3517 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3518 init_timer(arp_timer); 3519 arp_timer->expires = jiffies + 1; 3520 arp_timer->data = (unsigned long)bond_dev; 3521 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 3522 arp_timer->function = (void *)&bond_activebackup_arp_mon; 3523 } else { 3524 arp_timer->function = (void *)&bond_loadbalance_arp_mon; 3525 } 3526 if (bond->params.arp_validate) 3527 bond_register_arp(bond); 3528 3529 add_timer(arp_timer); 3530 } 3531 3532 if (bond->params.mode == BOND_MODE_8023AD) { 3533 struct timer_list *ad_timer = &(BOND_AD_INFO(bond).ad_timer); 3534 init_timer(ad_timer); 3535 ad_timer->expires = jiffies + 1; 3536 ad_timer->data = (unsigned long)bond; 3537 ad_timer->function = (void *)&bond_3ad_state_machine_handler; 3538 add_timer(ad_timer); 3539 3540 /* register to receive LACPDUs */ 3541 bond_register_lacpdu(bond); 3542 } 3543 3544 return 0; 3545 } 3546 3547 static int bond_close(struct net_device *bond_dev) 3548 { 3549 struct bonding *bond = bond_dev->priv; 3550 3551 if (bond->params.mode == BOND_MODE_8023AD) { 3552 /* Unregister the receive of LACPDUs */ 3553 bond_unregister_lacpdu(bond); 3554 } 3555 3556 if (bond->params.arp_validate) 3557 bond_unregister_arp(bond); 3558 3559 write_lock_bh(&bond->lock); 3560 3561 3562 /* signal timers not to re-arm */ 3563 bond->kill_timers = 1; 3564 3565 write_unlock_bh(&bond->lock); 3566 3567 /* del_timer_sync must run without holding the bond->lock 3568 * because a running timer might be trying to hold it too 3569 */ 3570 3571 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3572 del_timer_sync(&bond->mii_timer); 3573 } 3574 3575 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3576 del_timer_sync(&bond->arp_timer); 3577 } 3578 3579 switch (bond->params.mode) { 3580 case BOND_MODE_8023AD: 3581 del_timer_sync(&(BOND_AD_INFO(bond).ad_timer)); 3582 break; 3583 case BOND_MODE_TLB: 3584 case BOND_MODE_ALB: 3585 del_timer_sync(&(BOND_ALB_INFO(bond).alb_timer)); 3586 break; 3587 default: 3588 break; 3589 } 3590 3591 3592 if ((bond->params.mode == BOND_MODE_TLB) || 3593 (bond->params.mode == BOND_MODE_ALB)) { 3594 /* Must be called only after all 3595 * slaves have been released 3596 */ 3597 bond_alb_deinitialize(bond); 3598 } 3599 3600 return 0; 3601 } 3602 3603 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev) 3604 { 3605 struct bonding *bond = bond_dev->priv; 3606 struct net_device_stats *stats = &(bond->stats), *sstats; 3607 struct slave *slave; 3608 int i; 3609 3610 memset(stats, 0, sizeof(struct net_device_stats)); 3611 3612 read_lock_bh(&bond->lock); 3613 3614 bond_for_each_slave(bond, slave, i) { 3615 if (slave->dev->get_stats) { 3616 sstats = slave->dev->get_stats(slave->dev); 3617 3618 stats->rx_packets += sstats->rx_packets; 3619 stats->rx_bytes += sstats->rx_bytes; 3620 stats->rx_errors += sstats->rx_errors; 3621 stats->rx_dropped += sstats->rx_dropped; 3622 3623 stats->tx_packets += sstats->tx_packets; 3624 stats->tx_bytes += sstats->tx_bytes; 3625 stats->tx_errors += sstats->tx_errors; 3626 stats->tx_dropped += sstats->tx_dropped; 3627 3628 stats->multicast += sstats->multicast; 3629 stats->collisions += sstats->collisions; 3630 3631 stats->rx_length_errors += sstats->rx_length_errors; 3632 stats->rx_over_errors += sstats->rx_over_errors; 3633 stats->rx_crc_errors += sstats->rx_crc_errors; 3634 stats->rx_frame_errors += sstats->rx_frame_errors; 3635 stats->rx_fifo_errors += sstats->rx_fifo_errors; 3636 stats->rx_missed_errors += sstats->rx_missed_errors; 3637 3638 stats->tx_aborted_errors += sstats->tx_aborted_errors; 3639 stats->tx_carrier_errors += sstats->tx_carrier_errors; 3640 stats->tx_fifo_errors += sstats->tx_fifo_errors; 3641 stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3642 stats->tx_window_errors += sstats->tx_window_errors; 3643 } 3644 } 3645 3646 read_unlock_bh(&bond->lock); 3647 3648 return stats; 3649 } 3650 3651 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3652 { 3653 struct net_device *slave_dev = NULL; 3654 struct ifbond k_binfo; 3655 struct ifbond __user *u_binfo = NULL; 3656 struct ifslave k_sinfo; 3657 struct ifslave __user *u_sinfo = NULL; 3658 struct mii_ioctl_data *mii = NULL; 3659 int res = 0; 3660 3661 dprintk("bond_ioctl: master=%s, cmd=%d\n", 3662 bond_dev->name, cmd); 3663 3664 switch (cmd) { 3665 case SIOCGMIIPHY: 3666 mii = if_mii(ifr); 3667 if (!mii) { 3668 return -EINVAL; 3669 } 3670 mii->phy_id = 0; 3671 /* Fall Through */ 3672 case SIOCGMIIREG: 3673 /* 3674 * We do this again just in case we were called by SIOCGMIIREG 3675 * instead of SIOCGMIIPHY. 3676 */ 3677 mii = if_mii(ifr); 3678 if (!mii) { 3679 return -EINVAL; 3680 } 3681 3682 if (mii->reg_num == 1) { 3683 struct bonding *bond = bond_dev->priv; 3684 mii->val_out = 0; 3685 read_lock_bh(&bond->lock); 3686 read_lock(&bond->curr_slave_lock); 3687 if (netif_carrier_ok(bond->dev)) { 3688 mii->val_out = BMSR_LSTATUS; 3689 } 3690 read_unlock(&bond->curr_slave_lock); 3691 read_unlock_bh(&bond->lock); 3692 } 3693 3694 return 0; 3695 case BOND_INFO_QUERY_OLD: 3696 case SIOCBONDINFOQUERY: 3697 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3698 3699 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) { 3700 return -EFAULT; 3701 } 3702 3703 res = bond_info_query(bond_dev, &k_binfo); 3704 if (res == 0) { 3705 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) { 3706 return -EFAULT; 3707 } 3708 } 3709 3710 return res; 3711 case BOND_SLAVE_INFO_QUERY_OLD: 3712 case SIOCBONDSLAVEINFOQUERY: 3713 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 3714 3715 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) { 3716 return -EFAULT; 3717 } 3718 3719 res = bond_slave_info_query(bond_dev, &k_sinfo); 3720 if (res == 0) { 3721 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) { 3722 return -EFAULT; 3723 } 3724 } 3725 3726 return res; 3727 default: 3728 /* Go on */ 3729 break; 3730 } 3731 3732 if (!capable(CAP_NET_ADMIN)) { 3733 return -EPERM; 3734 } 3735 3736 down_write(&(bonding_rwsem)); 3737 slave_dev = dev_get_by_name(ifr->ifr_slave); 3738 3739 dprintk("slave_dev=%p: \n", slave_dev); 3740 3741 if (!slave_dev) { 3742 res = -ENODEV; 3743 } else { 3744 dprintk("slave_dev->name=%s: \n", slave_dev->name); 3745 switch (cmd) { 3746 case BOND_ENSLAVE_OLD: 3747 case SIOCBONDENSLAVE: 3748 res = bond_enslave(bond_dev, slave_dev); 3749 break; 3750 case BOND_RELEASE_OLD: 3751 case SIOCBONDRELEASE: 3752 res = bond_release(bond_dev, slave_dev); 3753 break; 3754 case BOND_SETHWADDR_OLD: 3755 case SIOCBONDSETHWADDR: 3756 res = bond_sethwaddr(bond_dev, slave_dev); 3757 break; 3758 case BOND_CHANGE_ACTIVE_OLD: 3759 case SIOCBONDCHANGEACTIVE: 3760 res = bond_ioctl_change_active(bond_dev, slave_dev); 3761 break; 3762 default: 3763 res = -EOPNOTSUPP; 3764 } 3765 3766 dev_put(slave_dev); 3767 } 3768 3769 up_write(&(bonding_rwsem)); 3770 return res; 3771 } 3772 3773 static void bond_set_multicast_list(struct net_device *bond_dev) 3774 { 3775 struct bonding *bond = bond_dev->priv; 3776 struct dev_mc_list *dmi; 3777 3778 write_lock_bh(&bond->lock); 3779 3780 /* 3781 * Do promisc before checking multicast_mode 3782 */ 3783 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) { 3784 bond_set_promiscuity(bond, 1); 3785 } 3786 3787 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) { 3788 bond_set_promiscuity(bond, -1); 3789 } 3790 3791 /* set allmulti flag to slaves */ 3792 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) { 3793 bond_set_allmulti(bond, 1); 3794 } 3795 3796 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) { 3797 bond_set_allmulti(bond, -1); 3798 } 3799 3800 bond->flags = bond_dev->flags; 3801 3802 /* looking for addresses to add to slaves' mc list */ 3803 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 3804 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) { 3805 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen); 3806 } 3807 } 3808 3809 /* looking for addresses to delete from slaves' list */ 3810 for (dmi = bond->mc_list; dmi; dmi = dmi->next) { 3811 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) { 3812 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen); 3813 } 3814 } 3815 3816 /* save master's multicast list */ 3817 bond_mc_list_destroy(bond); 3818 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC); 3819 3820 write_unlock_bh(&bond->lock); 3821 } 3822 3823 /* 3824 * Change the MTU of all of a master's slaves to match the master 3825 */ 3826 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 3827 { 3828 struct bonding *bond = bond_dev->priv; 3829 struct slave *slave, *stop_at; 3830 int res = 0; 3831 int i; 3832 3833 dprintk("bond=%p, name=%s, new_mtu=%d\n", bond, 3834 (bond_dev ? bond_dev->name : "None"), new_mtu); 3835 3836 /* Can't hold bond->lock with bh disabled here since 3837 * some base drivers panic. On the other hand we can't 3838 * hold bond->lock without bh disabled because we'll 3839 * deadlock. The only solution is to rely on the fact 3840 * that we're under rtnl_lock here, and the slaves 3841 * list won't change. This doesn't solve the problem 3842 * of setting the slave's MTU while it is 3843 * transmitting, but the assumption is that the base 3844 * driver can handle that. 3845 * 3846 * TODO: figure out a way to safely iterate the slaves 3847 * list, but without holding a lock around the actual 3848 * call to the base driver. 3849 */ 3850 3851 bond_for_each_slave(bond, slave, i) { 3852 dprintk("s %p s->p %p c_m %p\n", slave, 3853 slave->prev, slave->dev->change_mtu); 3854 3855 res = dev_set_mtu(slave->dev, new_mtu); 3856 3857 if (res) { 3858 /* If we failed to set the slave's mtu to the new value 3859 * we must abort the operation even in ACTIVE_BACKUP 3860 * mode, because if we allow the backup slaves to have 3861 * different mtu values than the active slave we'll 3862 * need to change their mtu when doing a failover. That 3863 * means changing their mtu from timer context, which 3864 * is probably not a good idea. 3865 */ 3866 dprintk("err %d %s\n", res, slave->dev->name); 3867 goto unwind; 3868 } 3869 } 3870 3871 bond_dev->mtu = new_mtu; 3872 3873 return 0; 3874 3875 unwind: 3876 /* unwind from head to the slave that failed */ 3877 stop_at = slave; 3878 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 3879 int tmp_res; 3880 3881 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 3882 if (tmp_res) { 3883 dprintk("unwind err %d dev %s\n", tmp_res, 3884 slave->dev->name); 3885 } 3886 } 3887 3888 return res; 3889 } 3890 3891 /* 3892 * Change HW address 3893 * 3894 * Note that many devices must be down to change the HW address, and 3895 * downing the master releases all slaves. We can make bonds full of 3896 * bonding devices to test this, however. 3897 */ 3898 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 3899 { 3900 struct bonding *bond = bond_dev->priv; 3901 struct sockaddr *sa = addr, tmp_sa; 3902 struct slave *slave, *stop_at; 3903 int res = 0; 3904 int i; 3905 3906 dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None")); 3907 3908 if (!is_valid_ether_addr(sa->sa_data)) { 3909 return -EADDRNOTAVAIL; 3910 } 3911 3912 /* Can't hold bond->lock with bh disabled here since 3913 * some base drivers panic. On the other hand we can't 3914 * hold bond->lock without bh disabled because we'll 3915 * deadlock. The only solution is to rely on the fact 3916 * that we're under rtnl_lock here, and the slaves 3917 * list won't change. This doesn't solve the problem 3918 * of setting the slave's hw address while it is 3919 * transmitting, but the assumption is that the base 3920 * driver can handle that. 3921 * 3922 * TODO: figure out a way to safely iterate the slaves 3923 * list, but without holding a lock around the actual 3924 * call to the base driver. 3925 */ 3926 3927 bond_for_each_slave(bond, slave, i) { 3928 dprintk("slave %p %s\n", slave, slave->dev->name); 3929 3930 if (slave->dev->set_mac_address == NULL) { 3931 res = -EOPNOTSUPP; 3932 dprintk("EOPNOTSUPP %s\n", slave->dev->name); 3933 goto unwind; 3934 } 3935 3936 res = dev_set_mac_address(slave->dev, addr); 3937 if (res) { 3938 /* TODO: consider downing the slave 3939 * and retry ? 3940 * User should expect communications 3941 * breakage anyway until ARP finish 3942 * updating, so... 3943 */ 3944 dprintk("err %d %s\n", res, slave->dev->name); 3945 goto unwind; 3946 } 3947 } 3948 3949 /* success */ 3950 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 3951 return 0; 3952 3953 unwind: 3954 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 3955 tmp_sa.sa_family = bond_dev->type; 3956 3957 /* unwind from head to the slave that failed */ 3958 stop_at = slave; 3959 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 3960 int tmp_res; 3961 3962 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 3963 if (tmp_res) { 3964 dprintk("unwind err %d dev %s\n", tmp_res, 3965 slave->dev->name); 3966 } 3967 } 3968 3969 return res; 3970 } 3971 3972 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 3973 { 3974 struct bonding *bond = bond_dev->priv; 3975 struct slave *slave, *start_at; 3976 int i; 3977 int res = 1; 3978 3979 read_lock(&bond->lock); 3980 3981 if (!BOND_IS_OK(bond)) { 3982 goto out; 3983 } 3984 3985 read_lock(&bond->curr_slave_lock); 3986 slave = start_at = bond->curr_active_slave; 3987 read_unlock(&bond->curr_slave_lock); 3988 3989 if (!slave) { 3990 goto out; 3991 } 3992 3993 bond_for_each_slave_from(bond, slave, i, start_at) { 3994 if (IS_UP(slave->dev) && 3995 (slave->link == BOND_LINK_UP) && 3996 (slave->state == BOND_STATE_ACTIVE)) { 3997 res = bond_dev_queue_xmit(bond, skb, slave->dev); 3998 3999 write_lock(&bond->curr_slave_lock); 4000 bond->curr_active_slave = slave->next; 4001 write_unlock(&bond->curr_slave_lock); 4002 4003 break; 4004 } 4005 } 4006 4007 4008 out: 4009 if (res) { 4010 /* no suitable interface, frame not sent */ 4011 dev_kfree_skb(skb); 4012 } 4013 read_unlock(&bond->lock); 4014 return 0; 4015 } 4016 4017 static void bond_activebackup_xmit_copy(struct sk_buff *skb, 4018 struct bonding *bond, 4019 struct slave *slave) 4020 { 4021 struct sk_buff *skb2 = skb_copy(skb, GFP_ATOMIC); 4022 struct ethhdr *eth_data; 4023 u8 *hwaddr; 4024 int res; 4025 4026 if (!skb2) { 4027 printk(KERN_ERR DRV_NAME ": Error: " 4028 "bond_activebackup_xmit_copy(): skb_copy() failed\n"); 4029 return; 4030 } 4031 4032 skb2->mac.raw = (unsigned char *)skb2->data; 4033 eth_data = eth_hdr(skb2); 4034 4035 /* Pick an appropriate source MAC address 4036 * -- use slave's perm MAC addr, unless used by bond 4037 * -- otherwise, borrow active slave's perm MAC addr 4038 * since that will not be used 4039 */ 4040 hwaddr = slave->perm_hwaddr; 4041 if (!memcmp(eth_data->h_source, hwaddr, ETH_ALEN)) 4042 hwaddr = bond->curr_active_slave->perm_hwaddr; 4043 4044 /* Set source MAC address appropriately */ 4045 memcpy(eth_data->h_source, hwaddr, ETH_ALEN); 4046 4047 res = bond_dev_queue_xmit(bond, skb2, slave->dev); 4048 if (res) 4049 dev_kfree_skb(skb2); 4050 4051 return; 4052 } 4053 4054 /* 4055 * in active-backup mode, we know that bond->curr_active_slave is always valid if 4056 * the bond has a usable interface. 4057 */ 4058 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 4059 { 4060 struct bonding *bond = bond_dev->priv; 4061 int res = 1; 4062 4063 read_lock(&bond->lock); 4064 read_lock(&bond->curr_slave_lock); 4065 4066 if (!BOND_IS_OK(bond)) { 4067 goto out; 4068 } 4069 4070 if (!bond->curr_active_slave) 4071 goto out; 4072 4073 /* Xmit IGMP frames on all slaves to ensure rapid fail-over 4074 for multicast traffic on snooping switches */ 4075 if (skb->protocol == __constant_htons(ETH_P_IP) && 4076 skb->nh.iph->protocol == IPPROTO_IGMP) { 4077 struct slave *slave, *active_slave; 4078 int i; 4079 4080 active_slave = bond->curr_active_slave; 4081 bond_for_each_slave_from_to(bond, slave, i, active_slave->next, 4082 active_slave->prev) 4083 if (IS_UP(slave->dev) && 4084 (slave->link == BOND_LINK_UP)) 4085 bond_activebackup_xmit_copy(skb, bond, slave); 4086 } 4087 4088 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev); 4089 4090 out: 4091 if (res) { 4092 /* no suitable interface, frame not sent */ 4093 dev_kfree_skb(skb); 4094 } 4095 read_unlock(&bond->curr_slave_lock); 4096 read_unlock(&bond->lock); 4097 return 0; 4098 } 4099 4100 /* 4101 * In bond_xmit_xor() , we determine the output device by using a pre- 4102 * determined xmit_hash_policy(), If the selected device is not enabled, 4103 * find the next active slave. 4104 */ 4105 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4106 { 4107 struct bonding *bond = bond_dev->priv; 4108 struct slave *slave, *start_at; 4109 int slave_no; 4110 int i; 4111 int res = 1; 4112 4113 read_lock(&bond->lock); 4114 4115 if (!BOND_IS_OK(bond)) { 4116 goto out; 4117 } 4118 4119 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt); 4120 4121 bond_for_each_slave(bond, slave, i) { 4122 slave_no--; 4123 if (slave_no < 0) { 4124 break; 4125 } 4126 } 4127 4128 start_at = slave; 4129 4130 bond_for_each_slave_from(bond, slave, i, start_at) { 4131 if (IS_UP(slave->dev) && 4132 (slave->link == BOND_LINK_UP) && 4133 (slave->state == BOND_STATE_ACTIVE)) { 4134 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4135 break; 4136 } 4137 } 4138 4139 out: 4140 if (res) { 4141 /* no suitable interface, frame not sent */ 4142 dev_kfree_skb(skb); 4143 } 4144 read_unlock(&bond->lock); 4145 return 0; 4146 } 4147 4148 /* 4149 * in broadcast mode, we send everything to all usable interfaces. 4150 */ 4151 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4152 { 4153 struct bonding *bond = bond_dev->priv; 4154 struct slave *slave, *start_at; 4155 struct net_device *tx_dev = NULL; 4156 int i; 4157 int res = 1; 4158 4159 read_lock(&bond->lock); 4160 4161 if (!BOND_IS_OK(bond)) { 4162 goto out; 4163 } 4164 4165 read_lock(&bond->curr_slave_lock); 4166 start_at = bond->curr_active_slave; 4167 read_unlock(&bond->curr_slave_lock); 4168 4169 if (!start_at) { 4170 goto out; 4171 } 4172 4173 bond_for_each_slave_from(bond, slave, i, start_at) { 4174 if (IS_UP(slave->dev) && 4175 (slave->link == BOND_LINK_UP) && 4176 (slave->state == BOND_STATE_ACTIVE)) { 4177 if (tx_dev) { 4178 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4179 if (!skb2) { 4180 printk(KERN_ERR DRV_NAME 4181 ": %s: Error: bond_xmit_broadcast(): " 4182 "skb_clone() failed\n", 4183 bond_dev->name); 4184 continue; 4185 } 4186 4187 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4188 if (res) { 4189 dev_kfree_skb(skb2); 4190 continue; 4191 } 4192 } 4193 tx_dev = slave->dev; 4194 } 4195 } 4196 4197 if (tx_dev) { 4198 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4199 } 4200 4201 out: 4202 if (res) { 4203 /* no suitable interface, frame not sent */ 4204 dev_kfree_skb(skb); 4205 } 4206 /* frame sent to all suitable interfaces */ 4207 read_unlock(&bond->lock); 4208 return 0; 4209 } 4210 4211 /*------------------------- Device initialization ---------------------------*/ 4212 4213 /* 4214 * set bond mode specific net device operations 4215 */ 4216 void bond_set_mode_ops(struct bonding *bond, int mode) 4217 { 4218 struct net_device *bond_dev = bond->dev; 4219 4220 switch (mode) { 4221 case BOND_MODE_ROUNDROBIN: 4222 bond_dev->hard_start_xmit = bond_xmit_roundrobin; 4223 break; 4224 case BOND_MODE_ACTIVEBACKUP: 4225 bond_dev->hard_start_xmit = bond_xmit_activebackup; 4226 break; 4227 case BOND_MODE_XOR: 4228 bond_dev->hard_start_xmit = bond_xmit_xor; 4229 if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34) 4230 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4231 else 4232 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4233 break; 4234 case BOND_MODE_BROADCAST: 4235 bond_dev->hard_start_xmit = bond_xmit_broadcast; 4236 break; 4237 case BOND_MODE_8023AD: 4238 bond_set_master_3ad_flags(bond); 4239 bond_dev->hard_start_xmit = bond_3ad_xmit_xor; 4240 if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34) 4241 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4242 else 4243 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4244 break; 4245 case BOND_MODE_ALB: 4246 bond_set_master_alb_flags(bond); 4247 /* FALLTHRU */ 4248 case BOND_MODE_TLB: 4249 bond_dev->hard_start_xmit = bond_alb_xmit; 4250 bond_dev->set_mac_address = bond_alb_set_mac_address; 4251 break; 4252 default: 4253 /* Should never happen, mode already checked */ 4254 printk(KERN_ERR DRV_NAME 4255 ": %s: Error: Unknown bonding mode %d\n", 4256 bond_dev->name, 4257 mode); 4258 break; 4259 } 4260 } 4261 4262 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4263 struct ethtool_drvinfo *drvinfo) 4264 { 4265 strncpy(drvinfo->driver, DRV_NAME, 32); 4266 strncpy(drvinfo->version, DRV_VERSION, 32); 4267 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION); 4268 } 4269 4270 static const struct ethtool_ops bond_ethtool_ops = { 4271 .get_tx_csum = ethtool_op_get_tx_csum, 4272 .get_tso = ethtool_op_get_tso, 4273 .get_ufo = ethtool_op_get_ufo, 4274 .get_sg = ethtool_op_get_sg, 4275 .get_drvinfo = bond_ethtool_get_drvinfo, 4276 }; 4277 4278 /* 4279 * Does not allocate but creates a /proc entry. 4280 * Allowed to fail. 4281 */ 4282 static int bond_init(struct net_device *bond_dev, struct bond_params *params) 4283 { 4284 struct bonding *bond = bond_dev->priv; 4285 4286 dprintk("Begin bond_init for %s\n", bond_dev->name); 4287 4288 /* initialize rwlocks */ 4289 rwlock_init(&bond->lock); 4290 rwlock_init(&bond->curr_slave_lock); 4291 4292 bond->params = *params; /* copy params struct */ 4293 4294 /* Initialize pointers */ 4295 bond->first_slave = NULL; 4296 bond->curr_active_slave = NULL; 4297 bond->current_arp_slave = NULL; 4298 bond->primary_slave = NULL; 4299 bond->dev = bond_dev; 4300 INIT_LIST_HEAD(&bond->vlan_list); 4301 4302 /* Initialize the device entry points */ 4303 bond_dev->open = bond_open; 4304 bond_dev->stop = bond_close; 4305 bond_dev->get_stats = bond_get_stats; 4306 bond_dev->do_ioctl = bond_do_ioctl; 4307 bond_dev->ethtool_ops = &bond_ethtool_ops; 4308 bond_dev->set_multicast_list = bond_set_multicast_list; 4309 bond_dev->change_mtu = bond_change_mtu; 4310 bond_dev->set_mac_address = bond_set_mac_address; 4311 4312 bond_set_mode_ops(bond, bond->params.mode); 4313 4314 bond_dev->destructor = free_netdev; 4315 4316 /* Initialize the device options */ 4317 bond_dev->tx_queue_len = 0; 4318 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4319 bond_dev->priv_flags |= IFF_BONDING; 4320 4321 /* At first, we block adding VLANs. That's the only way to 4322 * prevent problems that occur when adding VLANs over an 4323 * empty bond. The block will be removed once non-challenged 4324 * slaves are enslaved. 4325 */ 4326 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4327 4328 /* don't acquire bond device's netif_tx_lock when 4329 * transmitting */ 4330 bond_dev->features |= NETIF_F_LLTX; 4331 4332 /* By default, we declare the bond to be fully 4333 * VLAN hardware accelerated capable. Special 4334 * care is taken in the various xmit functions 4335 * when there are slaves that are not hw accel 4336 * capable 4337 */ 4338 bond_dev->vlan_rx_register = bond_vlan_rx_register; 4339 bond_dev->vlan_rx_add_vid = bond_vlan_rx_add_vid; 4340 bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid; 4341 bond_dev->features |= (NETIF_F_HW_VLAN_TX | 4342 NETIF_F_HW_VLAN_RX | 4343 NETIF_F_HW_VLAN_FILTER); 4344 4345 #ifdef CONFIG_PROC_FS 4346 bond_create_proc_entry(bond); 4347 #endif 4348 4349 list_add_tail(&bond->bond_list, &bond_dev_list); 4350 4351 return 0; 4352 } 4353 4354 /* De-initialize device specific data. 4355 * Caller must hold rtnl_lock. 4356 */ 4357 void bond_deinit(struct net_device *bond_dev) 4358 { 4359 struct bonding *bond = bond_dev->priv; 4360 4361 list_del(&bond->bond_list); 4362 4363 #ifdef CONFIG_PROC_FS 4364 bond_remove_proc_entry(bond); 4365 #endif 4366 } 4367 4368 /* Unregister and free all bond devices. 4369 * Caller must hold rtnl_lock. 4370 */ 4371 static void bond_free_all(void) 4372 { 4373 struct bonding *bond, *nxt; 4374 4375 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) { 4376 struct net_device *bond_dev = bond->dev; 4377 4378 bond_mc_list_destroy(bond); 4379 /* Release the bonded slaves */ 4380 bond_release_all(bond_dev); 4381 unregister_netdevice(bond_dev); 4382 bond_deinit(bond_dev); 4383 } 4384 4385 #ifdef CONFIG_PROC_FS 4386 bond_destroy_proc_dir(); 4387 #endif 4388 } 4389 4390 /*------------------------- Module initialization ---------------------------*/ 4391 4392 /* 4393 * Convert string input module parms. Accept either the 4394 * number of the mode or its string name. 4395 */ 4396 int bond_parse_parm(char *mode_arg, struct bond_parm_tbl *tbl) 4397 { 4398 int i; 4399 4400 for (i = 0; tbl[i].modename; i++) { 4401 if ((isdigit(*mode_arg) && 4402 tbl[i].mode == simple_strtol(mode_arg, NULL, 0)) || 4403 (strncmp(mode_arg, tbl[i].modename, 4404 strlen(tbl[i].modename)) == 0)) { 4405 return tbl[i].mode; 4406 } 4407 } 4408 4409 return -1; 4410 } 4411 4412 static int bond_check_params(struct bond_params *params) 4413 { 4414 int arp_validate_value; 4415 4416 /* 4417 * Convert string parameters. 4418 */ 4419 if (mode) { 4420 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4421 if (bond_mode == -1) { 4422 printk(KERN_ERR DRV_NAME 4423 ": Error: Invalid bonding mode \"%s\"\n", 4424 mode == NULL ? "NULL" : mode); 4425 return -EINVAL; 4426 } 4427 } 4428 4429 if (xmit_hash_policy) { 4430 if ((bond_mode != BOND_MODE_XOR) && 4431 (bond_mode != BOND_MODE_8023AD)) { 4432 printk(KERN_INFO DRV_NAME 4433 ": xor_mode param is irrelevant in mode %s\n", 4434 bond_mode_name(bond_mode)); 4435 } else { 4436 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4437 xmit_hashtype_tbl); 4438 if (xmit_hashtype == -1) { 4439 printk(KERN_ERR DRV_NAME 4440 ": Error: Invalid xmit_hash_policy \"%s\"\n", 4441 xmit_hash_policy == NULL ? "NULL" : 4442 xmit_hash_policy); 4443 return -EINVAL; 4444 } 4445 } 4446 } 4447 4448 if (lacp_rate) { 4449 if (bond_mode != BOND_MODE_8023AD) { 4450 printk(KERN_INFO DRV_NAME 4451 ": lacp_rate param is irrelevant in mode %s\n", 4452 bond_mode_name(bond_mode)); 4453 } else { 4454 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4455 if (lacp_fast == -1) { 4456 printk(KERN_ERR DRV_NAME 4457 ": Error: Invalid lacp rate \"%s\"\n", 4458 lacp_rate == NULL ? "NULL" : lacp_rate); 4459 return -EINVAL; 4460 } 4461 } 4462 } 4463 4464 if (max_bonds < 1 || max_bonds > INT_MAX) { 4465 printk(KERN_WARNING DRV_NAME 4466 ": Warning: max_bonds (%d) not in range %d-%d, so it " 4467 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4468 max_bonds, 1, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4469 max_bonds = BOND_DEFAULT_MAX_BONDS; 4470 } 4471 4472 if (miimon < 0) { 4473 printk(KERN_WARNING DRV_NAME 4474 ": Warning: miimon module parameter (%d), " 4475 "not in range 0-%d, so it was reset to %d\n", 4476 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4477 miimon = BOND_LINK_MON_INTERV; 4478 } 4479 4480 if (updelay < 0) { 4481 printk(KERN_WARNING DRV_NAME 4482 ": Warning: updelay module parameter (%d), " 4483 "not in range 0-%d, so it was reset to 0\n", 4484 updelay, INT_MAX); 4485 updelay = 0; 4486 } 4487 4488 if (downdelay < 0) { 4489 printk(KERN_WARNING DRV_NAME 4490 ": Warning: downdelay module parameter (%d), " 4491 "not in range 0-%d, so it was reset to 0\n", 4492 downdelay, INT_MAX); 4493 downdelay = 0; 4494 } 4495 4496 if ((use_carrier != 0) && (use_carrier != 1)) { 4497 printk(KERN_WARNING DRV_NAME 4498 ": Warning: use_carrier module parameter (%d), " 4499 "not of valid value (0/1), so it was set to 1\n", 4500 use_carrier); 4501 use_carrier = 1; 4502 } 4503 4504 /* reset values for 802.3ad */ 4505 if (bond_mode == BOND_MODE_8023AD) { 4506 if (!miimon) { 4507 printk(KERN_WARNING DRV_NAME 4508 ": Warning: miimon must be specified, " 4509 "otherwise bonding will not detect link " 4510 "failure, speed and duplex which are " 4511 "essential for 802.3ad operation\n"); 4512 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4513 miimon = 100; 4514 } 4515 } 4516 4517 /* reset values for TLB/ALB */ 4518 if ((bond_mode == BOND_MODE_TLB) || 4519 (bond_mode == BOND_MODE_ALB)) { 4520 if (!miimon) { 4521 printk(KERN_WARNING DRV_NAME 4522 ": Warning: miimon must be specified, " 4523 "otherwise bonding will not detect link " 4524 "failure and link speed which are essential " 4525 "for TLB/ALB load balancing\n"); 4526 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4527 miimon = 100; 4528 } 4529 } 4530 4531 if (bond_mode == BOND_MODE_ALB) { 4532 printk(KERN_NOTICE DRV_NAME 4533 ": In ALB mode you might experience client " 4534 "disconnections upon reconnection of a link if the " 4535 "bonding module updelay parameter (%d msec) is " 4536 "incompatible with the forwarding delay time of the " 4537 "switch\n", 4538 updelay); 4539 } 4540 4541 if (!miimon) { 4542 if (updelay || downdelay) { 4543 /* just warn the user the up/down delay will have 4544 * no effect since miimon is zero... 4545 */ 4546 printk(KERN_WARNING DRV_NAME 4547 ": Warning: miimon module parameter not set " 4548 "and updelay (%d) or downdelay (%d) module " 4549 "parameter is set; updelay and downdelay have " 4550 "no effect unless miimon is set\n", 4551 updelay, downdelay); 4552 } 4553 } else { 4554 /* don't allow arp monitoring */ 4555 if (arp_interval) { 4556 printk(KERN_WARNING DRV_NAME 4557 ": Warning: miimon (%d) and arp_interval (%d) " 4558 "can't be used simultaneously, disabling ARP " 4559 "monitoring\n", 4560 miimon, arp_interval); 4561 arp_interval = 0; 4562 } 4563 4564 if ((updelay % miimon) != 0) { 4565 printk(KERN_WARNING DRV_NAME 4566 ": Warning: updelay (%d) is not a multiple " 4567 "of miimon (%d), updelay rounded to %d ms\n", 4568 updelay, miimon, (updelay / miimon) * miimon); 4569 } 4570 4571 updelay /= miimon; 4572 4573 if ((downdelay % miimon) != 0) { 4574 printk(KERN_WARNING DRV_NAME 4575 ": Warning: downdelay (%d) is not a multiple " 4576 "of miimon (%d), downdelay rounded to %d ms\n", 4577 downdelay, miimon, 4578 (downdelay / miimon) * miimon); 4579 } 4580 4581 downdelay /= miimon; 4582 } 4583 4584 if (arp_interval < 0) { 4585 printk(KERN_WARNING DRV_NAME 4586 ": Warning: arp_interval module parameter (%d) " 4587 ", not in range 0-%d, so it was reset to %d\n", 4588 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4589 arp_interval = BOND_LINK_ARP_INTERV; 4590 } 4591 4592 for (arp_ip_count = 0; 4593 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; 4594 arp_ip_count++) { 4595 /* not complete check, but should be good enough to 4596 catch mistakes */ 4597 if (!isdigit(arp_ip_target[arp_ip_count][0])) { 4598 printk(KERN_WARNING DRV_NAME 4599 ": Warning: bad arp_ip_target module parameter " 4600 "(%s), ARP monitoring will not be performed\n", 4601 arp_ip_target[arp_ip_count]); 4602 arp_interval = 0; 4603 } else { 4604 u32 ip = in_aton(arp_ip_target[arp_ip_count]); 4605 arp_target[arp_ip_count] = ip; 4606 } 4607 } 4608 4609 if (arp_interval && !arp_ip_count) { 4610 /* don't allow arping if no arp_ip_target given... */ 4611 printk(KERN_WARNING DRV_NAME 4612 ": Warning: arp_interval module parameter (%d) " 4613 "specified without providing an arp_ip_target " 4614 "parameter, arp_interval was reset to 0\n", 4615 arp_interval); 4616 arp_interval = 0; 4617 } 4618 4619 if (arp_validate) { 4620 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4621 printk(KERN_ERR DRV_NAME 4622 ": arp_validate only supported in active-backup mode\n"); 4623 return -EINVAL; 4624 } 4625 if (!arp_interval) { 4626 printk(KERN_ERR DRV_NAME 4627 ": arp_validate requires arp_interval\n"); 4628 return -EINVAL; 4629 } 4630 4631 arp_validate_value = bond_parse_parm(arp_validate, 4632 arp_validate_tbl); 4633 if (arp_validate_value == -1) { 4634 printk(KERN_ERR DRV_NAME 4635 ": Error: invalid arp_validate \"%s\"\n", 4636 arp_validate == NULL ? "NULL" : arp_validate); 4637 return -EINVAL; 4638 } 4639 } else 4640 arp_validate_value = 0; 4641 4642 if (miimon) { 4643 printk(KERN_INFO DRV_NAME 4644 ": MII link monitoring set to %d ms\n", 4645 miimon); 4646 } else if (arp_interval) { 4647 int i; 4648 4649 printk(KERN_INFO DRV_NAME 4650 ": ARP monitoring set to %d ms, validate %s, with %d target(s):", 4651 arp_interval, 4652 arp_validate_tbl[arp_validate_value].modename, 4653 arp_ip_count); 4654 4655 for (i = 0; i < arp_ip_count; i++) 4656 printk (" %s", arp_ip_target[i]); 4657 4658 printk("\n"); 4659 4660 } else { 4661 /* miimon and arp_interval not set, we need one so things 4662 * work as expected, see bonding.txt for details 4663 */ 4664 printk(KERN_WARNING DRV_NAME 4665 ": Warning: either miimon or arp_interval and " 4666 "arp_ip_target module parameters must be specified, " 4667 "otherwise bonding will not detect link failures! see " 4668 "bonding.txt for details.\n"); 4669 } 4670 4671 if (primary && !USES_PRIMARY(bond_mode)) { 4672 /* currently, using a primary only makes sense 4673 * in active backup, TLB or ALB modes 4674 */ 4675 printk(KERN_WARNING DRV_NAME 4676 ": Warning: %s primary device specified but has no " 4677 "effect in %s mode\n", 4678 primary, bond_mode_name(bond_mode)); 4679 primary = NULL; 4680 } 4681 4682 /* fill params struct with the proper values */ 4683 params->mode = bond_mode; 4684 params->xmit_policy = xmit_hashtype; 4685 params->miimon = miimon; 4686 params->arp_interval = arp_interval; 4687 params->arp_validate = arp_validate_value; 4688 params->updelay = updelay; 4689 params->downdelay = downdelay; 4690 params->use_carrier = use_carrier; 4691 params->lacp_fast = lacp_fast; 4692 params->primary[0] = 0; 4693 4694 if (primary) { 4695 strncpy(params->primary, primary, IFNAMSIZ); 4696 params->primary[IFNAMSIZ - 1] = 0; 4697 } 4698 4699 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 4700 4701 return 0; 4702 } 4703 4704 static struct lock_class_key bonding_netdev_xmit_lock_key; 4705 4706 /* Create a new bond based on the specified name and bonding parameters. 4707 * If name is NULL, obtain a suitable "bond%d" name for us. 4708 * Caller must NOT hold rtnl_lock; we need to release it here before we 4709 * set up our sysfs entries. 4710 */ 4711 int bond_create(char *name, struct bond_params *params, struct bonding **newbond) 4712 { 4713 struct net_device *bond_dev; 4714 int res; 4715 4716 rtnl_lock(); 4717 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "", 4718 ether_setup); 4719 if (!bond_dev) { 4720 printk(KERN_ERR DRV_NAME 4721 ": %s: eek! can't alloc netdev!\n", 4722 name); 4723 res = -ENOMEM; 4724 goto out_rtnl; 4725 } 4726 4727 if (!name) { 4728 res = dev_alloc_name(bond_dev, "bond%d"); 4729 if (res < 0) 4730 goto out_netdev; 4731 } 4732 4733 /* bond_init() must be called after dev_alloc_name() (for the 4734 * /proc files), but before register_netdevice(), because we 4735 * need to set function pointers. 4736 */ 4737 4738 res = bond_init(bond_dev, params); 4739 if (res < 0) { 4740 goto out_netdev; 4741 } 4742 4743 SET_MODULE_OWNER(bond_dev); 4744 4745 res = register_netdevice(bond_dev); 4746 if (res < 0) { 4747 goto out_bond; 4748 } 4749 4750 lockdep_set_class(&bond_dev->_xmit_lock, &bonding_netdev_xmit_lock_key); 4751 4752 if (newbond) 4753 *newbond = bond_dev->priv; 4754 4755 netif_carrier_off(bond_dev); 4756 4757 rtnl_unlock(); /* allows sysfs registration of net device */ 4758 res = bond_create_sysfs_entry(bond_dev->priv); 4759 if (res < 0) { 4760 rtnl_lock(); 4761 goto out_bond; 4762 } 4763 4764 return 0; 4765 4766 out_bond: 4767 bond_deinit(bond_dev); 4768 out_netdev: 4769 free_netdev(bond_dev); 4770 out_rtnl: 4771 rtnl_unlock(); 4772 return res; 4773 } 4774 4775 static int __init bonding_init(void) 4776 { 4777 int i; 4778 int res; 4779 4780 printk(KERN_INFO "%s", version); 4781 4782 res = bond_check_params(&bonding_defaults); 4783 if (res) { 4784 goto out; 4785 } 4786 4787 #ifdef CONFIG_PROC_FS 4788 bond_create_proc_dir(); 4789 #endif 4790 for (i = 0; i < max_bonds; i++) { 4791 res = bond_create(NULL, &bonding_defaults, NULL); 4792 if (res) 4793 goto err; 4794 } 4795 4796 res = bond_create_sysfs(); 4797 if (res) 4798 goto err; 4799 4800 register_netdevice_notifier(&bond_netdev_notifier); 4801 register_inetaddr_notifier(&bond_inetaddr_notifier); 4802 4803 goto out; 4804 err: 4805 rtnl_lock(); 4806 bond_free_all(); 4807 bond_destroy_sysfs(); 4808 rtnl_unlock(); 4809 out: 4810 return res; 4811 4812 } 4813 4814 static void __exit bonding_exit(void) 4815 { 4816 unregister_netdevice_notifier(&bond_netdev_notifier); 4817 unregister_inetaddr_notifier(&bond_inetaddr_notifier); 4818 4819 rtnl_lock(); 4820 bond_free_all(); 4821 bond_destroy_sysfs(); 4822 rtnl_unlock(); 4823 } 4824 4825 module_init(bonding_init); 4826 module_exit(bonding_exit); 4827 MODULE_LICENSE("GPL"); 4828 MODULE_VERSION(DRV_VERSION); 4829 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 4830 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 4831 MODULE_SUPPORTED_DEVICE("most ethernet devices"); 4832 4833 /* 4834 * Local variables: 4835 * c-indent-level: 8 4836 * c-basic-offset: 8 4837 * tab-width: 8 4838 * End: 4839 */ 4840 4841