xref: /linux/drivers/net/bonding/bond_main.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  * originally based on the dummy device.
3  *
4  * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5  * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6  *
7  * bonding.c: an Ethernet Bonding driver
8  *
9  * This is useful to talk to a Cisco EtherChannel compatible equipment:
10  *	Cisco 5500
11  *	Sun Trunking (Solaris)
12  *	Alteon AceDirector Trunks
13  *	Linux Bonding
14  *	and probably many L2 switches ...
15  *
16  * How it works:
17  *    ifconfig bond0 ipaddress netmask up
18  *      will setup a network device, with an ip address.  No mac address
19  *	will be assigned at this time.  The hw mac address will come from
20  *	the first slave bonded to the channel.  All slaves will then use
21  *	this hw mac address.
22  *
23  *    ifconfig bond0 down
24  *         will release all slaves, marking them as down.
25  *
26  *    ifenslave bond0 eth0
27  *	will attach eth0 to bond0 as a slave.  eth0 hw mac address will either
28  *	a: be used as initial mac address
29  *	b: if a hw mac address already is there, eth0's hw mac address
30  *	   will then be set from bond0.
31  *
32  */
33 
34 //#define BONDING_DEBUG 1
35 
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <asm/system.h>
57 #include <asm/io.h>
58 #include <asm/dma.h>
59 #include <asm/uaccess.h>
60 #include <linux/errno.h>
61 #include <linux/netdevice.h>
62 #include <linux/inetdevice.h>
63 #include <linux/igmp.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <net/sock.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/smp.h>
71 #include <linux/if_ether.h>
72 #include <net/arp.h>
73 #include <linux/mii.h>
74 #include <linux/ethtool.h>
75 #include <linux/if_vlan.h>
76 #include <linux/if_bonding.h>
77 #include <net/route.h>
78 #include <net/net_namespace.h>
79 #include "bonding.h"
80 #include "bond_3ad.h"
81 #include "bond_alb.h"
82 
83 /*---------------------------- Module parameters ----------------------------*/
84 
85 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
86 #define BOND_LINK_MON_INTERV	0
87 #define BOND_LINK_ARP_INTERV	0
88 
89 static int max_bonds	= BOND_DEFAULT_MAX_BONDS;
90 static int miimon	= BOND_LINK_MON_INTERV;
91 static int updelay	= 0;
92 static int downdelay	= 0;
93 static int use_carrier	= 1;
94 static char *mode	= NULL;
95 static char *primary	= NULL;
96 static char *lacp_rate	= NULL;
97 static char *xmit_hash_policy = NULL;
98 static int arp_interval = BOND_LINK_ARP_INTERV;
99 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
100 static char *arp_validate = NULL;
101 static int fail_over_mac = 0;
102 struct bond_params bonding_defaults;
103 
104 module_param(max_bonds, int, 0);
105 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
106 module_param(miimon, int, 0);
107 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
108 module_param(updelay, int, 0);
109 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
110 module_param(downdelay, int, 0);
111 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
112 			    "in milliseconds");
113 module_param(use_carrier, int, 0);
114 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
115 			      "0 for off, 1 for on (default)");
116 module_param(mode, charp, 0);
117 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
118 		       "1 for active-backup, 2 for balance-xor, "
119 		       "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
120 		       "6 for balance-alb");
121 module_param(primary, charp, 0);
122 MODULE_PARM_DESC(primary, "Primary network device to use");
123 module_param(lacp_rate, charp, 0);
124 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
125 			    "(slow/fast)");
126 module_param(xmit_hash_policy, charp, 0);
127 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
128 				   ", 1 for layer 3+4");
129 module_param(arp_interval, int, 0);
130 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
131 module_param_array(arp_ip_target, charp, NULL, 0);
132 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
133 module_param(arp_validate, charp, 0);
134 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all");
135 module_param(fail_over_mac, int, 0);
136 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC.  0 of off (default), 1 for on.");
137 
138 /*----------------------------- Global variables ----------------------------*/
139 
140 static const char * const version =
141 	DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
142 
143 LIST_HEAD(bond_dev_list);
144 
145 #ifdef CONFIG_PROC_FS
146 static struct proc_dir_entry *bond_proc_dir = NULL;
147 #endif
148 
149 extern struct rw_semaphore bonding_rwsem;
150 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
151 static int arp_ip_count	= 0;
152 static int bond_mode	= BOND_MODE_ROUNDROBIN;
153 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
154 static int lacp_fast	= 0;
155 
156 
157 struct bond_parm_tbl bond_lacp_tbl[] = {
158 {	"slow",		AD_LACP_SLOW},
159 {	"fast",		AD_LACP_FAST},
160 {	NULL,		-1},
161 };
162 
163 struct bond_parm_tbl bond_mode_tbl[] = {
164 {	"balance-rr",		BOND_MODE_ROUNDROBIN},
165 {	"active-backup",	BOND_MODE_ACTIVEBACKUP},
166 {	"balance-xor",		BOND_MODE_XOR},
167 {	"broadcast",		BOND_MODE_BROADCAST},
168 {	"802.3ad",		BOND_MODE_8023AD},
169 {	"balance-tlb",		BOND_MODE_TLB},
170 {	"balance-alb",		BOND_MODE_ALB},
171 {	NULL,			-1},
172 };
173 
174 struct bond_parm_tbl xmit_hashtype_tbl[] = {
175 {	"layer2",		BOND_XMIT_POLICY_LAYER2},
176 {	"layer3+4",		BOND_XMIT_POLICY_LAYER34},
177 {	NULL,			-1},
178 };
179 
180 struct bond_parm_tbl arp_validate_tbl[] = {
181 {	"none",			BOND_ARP_VALIDATE_NONE},
182 {	"active",		BOND_ARP_VALIDATE_ACTIVE},
183 {	"backup",		BOND_ARP_VALIDATE_BACKUP},
184 {	"all",			BOND_ARP_VALIDATE_ALL},
185 {	NULL,			-1},
186 };
187 
188 /*-------------------------- Forward declarations ---------------------------*/
189 
190 static void bond_send_gratuitous_arp(struct bonding *bond);
191 static void bond_deinit(struct net_device *bond_dev);
192 
193 /*---------------------------- General routines -----------------------------*/
194 
195 static const char *bond_mode_name(int mode)
196 {
197 	switch (mode) {
198 	case BOND_MODE_ROUNDROBIN :
199 		return "load balancing (round-robin)";
200 	case BOND_MODE_ACTIVEBACKUP :
201 		return "fault-tolerance (active-backup)";
202 	case BOND_MODE_XOR :
203 		return "load balancing (xor)";
204 	case BOND_MODE_BROADCAST :
205 		return "fault-tolerance (broadcast)";
206 	case BOND_MODE_8023AD:
207 		return "IEEE 802.3ad Dynamic link aggregation";
208 	case BOND_MODE_TLB:
209 		return "transmit load balancing";
210 	case BOND_MODE_ALB:
211 		return "adaptive load balancing";
212 	default:
213 		return "unknown";
214 	}
215 }
216 
217 /*---------------------------------- VLAN -----------------------------------*/
218 
219 /**
220  * bond_add_vlan - add a new vlan id on bond
221  * @bond: bond that got the notification
222  * @vlan_id: the vlan id to add
223  *
224  * Returns -ENOMEM if allocation failed.
225  */
226 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
227 {
228 	struct vlan_entry *vlan;
229 
230 	dprintk("bond: %s, vlan id %d\n",
231 		(bond ? bond->dev->name: "None"), vlan_id);
232 
233 	vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL);
234 	if (!vlan) {
235 		return -ENOMEM;
236 	}
237 
238 	INIT_LIST_HEAD(&vlan->vlan_list);
239 	vlan->vlan_id = vlan_id;
240 	vlan->vlan_ip = 0;
241 
242 	write_lock_bh(&bond->lock);
243 
244 	list_add_tail(&vlan->vlan_list, &bond->vlan_list);
245 
246 	write_unlock_bh(&bond->lock);
247 
248 	dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
249 
250 	return 0;
251 }
252 
253 /**
254  * bond_del_vlan - delete a vlan id from bond
255  * @bond: bond that got the notification
256  * @vlan_id: the vlan id to delete
257  *
258  * returns -ENODEV if @vlan_id was not found in @bond.
259  */
260 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
261 {
262 	struct vlan_entry *vlan, *next;
263 	int res = -ENODEV;
264 
265 	dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
266 
267 	write_lock_bh(&bond->lock);
268 
269 	list_for_each_entry_safe(vlan, next, &bond->vlan_list, vlan_list) {
270 		if (vlan->vlan_id == vlan_id) {
271 			list_del(&vlan->vlan_list);
272 
273 			if ((bond->params.mode == BOND_MODE_TLB) ||
274 			    (bond->params.mode == BOND_MODE_ALB)) {
275 				bond_alb_clear_vlan(bond, vlan_id);
276 			}
277 
278 			dprintk("removed VLAN ID %d from bond %s\n", vlan_id,
279 				bond->dev->name);
280 
281 			kfree(vlan);
282 
283 			if (list_empty(&bond->vlan_list) &&
284 			    (bond->slave_cnt == 0)) {
285 				/* Last VLAN removed and no slaves, so
286 				 * restore block on adding VLANs. This will
287 				 * be removed once new slaves that are not
288 				 * VLAN challenged will be added.
289 				 */
290 				bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
291 			}
292 
293 			res = 0;
294 			goto out;
295 		}
296 	}
297 
298 	dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id,
299 		bond->dev->name);
300 
301 out:
302 	write_unlock_bh(&bond->lock);
303 	return res;
304 }
305 
306 /**
307  * bond_has_challenged_slaves
308  * @bond: the bond we're working on
309  *
310  * Searches the slave list. Returns 1 if a vlan challenged slave
311  * was found, 0 otherwise.
312  *
313  * Assumes bond->lock is held.
314  */
315 static int bond_has_challenged_slaves(struct bonding *bond)
316 {
317 	struct slave *slave;
318 	int i;
319 
320 	bond_for_each_slave(bond, slave, i) {
321 		if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
322 			dprintk("found VLAN challenged slave - %s\n",
323 				slave->dev->name);
324 			return 1;
325 		}
326 	}
327 
328 	dprintk("no VLAN challenged slaves found\n");
329 	return 0;
330 }
331 
332 /**
333  * bond_next_vlan - safely skip to the next item in the vlans list.
334  * @bond: the bond we're working on
335  * @curr: item we're advancing from
336  *
337  * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
338  * or @curr->next otherwise (even if it is @curr itself again).
339  *
340  * Caller must hold bond->lock
341  */
342 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
343 {
344 	struct vlan_entry *next, *last;
345 
346 	if (list_empty(&bond->vlan_list)) {
347 		return NULL;
348 	}
349 
350 	if (!curr) {
351 		next = list_entry(bond->vlan_list.next,
352 				  struct vlan_entry, vlan_list);
353 	} else {
354 		last = list_entry(bond->vlan_list.prev,
355 				  struct vlan_entry, vlan_list);
356 		if (last == curr) {
357 			next = list_entry(bond->vlan_list.next,
358 					  struct vlan_entry, vlan_list);
359 		} else {
360 			next = list_entry(curr->vlan_list.next,
361 					  struct vlan_entry, vlan_list);
362 		}
363 	}
364 
365 	return next;
366 }
367 
368 /**
369  * bond_dev_queue_xmit - Prepare skb for xmit.
370  *
371  * @bond: bond device that got this skb for tx.
372  * @skb: hw accel VLAN tagged skb to transmit
373  * @slave_dev: slave that is supposed to xmit this skbuff
374  *
375  * When the bond gets an skb to transmit that is
376  * already hardware accelerated VLAN tagged, and it
377  * needs to relay this skb to a slave that is not
378  * hw accel capable, the skb needs to be "unaccelerated",
379  * i.e. strip the hwaccel tag and re-insert it as part
380  * of the payload.
381  */
382 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
383 {
384 	unsigned short vlan_id;
385 
386 	if (!list_empty(&bond->vlan_list) &&
387 	    !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
388 	    vlan_get_tag(skb, &vlan_id) == 0) {
389 		skb->dev = slave_dev;
390 		skb = vlan_put_tag(skb, vlan_id);
391 		if (!skb) {
392 			/* vlan_put_tag() frees the skb in case of error,
393 			 * so return success here so the calling functions
394 			 * won't attempt to free is again.
395 			 */
396 			return 0;
397 		}
398 	} else {
399 		skb->dev = slave_dev;
400 	}
401 
402 	skb->priority = 1;
403 	dev_queue_xmit(skb);
404 
405 	return 0;
406 }
407 
408 /*
409  * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
410  * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
411  * lock because:
412  * a. This operation is performed in IOCTL context,
413  * b. The operation is protected by the RTNL semaphore in the 8021q code,
414  * c. Holding a lock with BH disabled while directly calling a base driver
415  *    entry point is generally a BAD idea.
416  *
417  * The design of synchronization/protection for this operation in the 8021q
418  * module is good for one or more VLAN devices over a single physical device
419  * and cannot be extended for a teaming solution like bonding, so there is a
420  * potential race condition here where a net device from the vlan group might
421  * be referenced (either by a base driver or the 8021q code) while it is being
422  * removed from the system. However, it turns out we're not making matters
423  * worse, and if it works for regular VLAN usage it will work here too.
424 */
425 
426 /**
427  * bond_vlan_rx_register - Propagates registration to slaves
428  * @bond_dev: bonding net device that got called
429  * @grp: vlan group being registered
430  */
431 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
432 {
433 	struct bonding *bond = bond_dev->priv;
434 	struct slave *slave;
435 	int i;
436 
437 	bond->vlgrp = grp;
438 
439 	bond_for_each_slave(bond, slave, i) {
440 		struct net_device *slave_dev = slave->dev;
441 
442 		if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
443 		    slave_dev->vlan_rx_register) {
444 			slave_dev->vlan_rx_register(slave_dev, grp);
445 		}
446 	}
447 }
448 
449 /**
450  * bond_vlan_rx_add_vid - Propagates adding an id to slaves
451  * @bond_dev: bonding net device that got called
452  * @vid: vlan id being added
453  */
454 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
455 {
456 	struct bonding *bond = bond_dev->priv;
457 	struct slave *slave;
458 	int i, res;
459 
460 	bond_for_each_slave(bond, slave, i) {
461 		struct net_device *slave_dev = slave->dev;
462 
463 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
464 		    slave_dev->vlan_rx_add_vid) {
465 			slave_dev->vlan_rx_add_vid(slave_dev, vid);
466 		}
467 	}
468 
469 	res = bond_add_vlan(bond, vid);
470 	if (res) {
471 		printk(KERN_ERR DRV_NAME
472 		       ": %s: Error: Failed to add vlan id %d\n",
473 		       bond_dev->name, vid);
474 	}
475 }
476 
477 /**
478  * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
479  * @bond_dev: bonding net device that got called
480  * @vid: vlan id being removed
481  */
482 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
483 {
484 	struct bonding *bond = bond_dev->priv;
485 	struct slave *slave;
486 	struct net_device *vlan_dev;
487 	int i, res;
488 
489 	bond_for_each_slave(bond, slave, i) {
490 		struct net_device *slave_dev = slave->dev;
491 
492 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
493 		    slave_dev->vlan_rx_kill_vid) {
494 			/* Save and then restore vlan_dev in the grp array,
495 			 * since the slave's driver might clear it.
496 			 */
497 			vlan_dev = vlan_group_get_device(bond->vlgrp, vid);
498 			slave_dev->vlan_rx_kill_vid(slave_dev, vid);
499 			vlan_group_set_device(bond->vlgrp, vid, vlan_dev);
500 		}
501 	}
502 
503 	res = bond_del_vlan(bond, vid);
504 	if (res) {
505 		printk(KERN_ERR DRV_NAME
506 		       ": %s: Error: Failed to remove vlan id %d\n",
507 		       bond_dev->name, vid);
508 	}
509 }
510 
511 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
512 {
513 	struct vlan_entry *vlan;
514 
515 	write_lock_bh(&bond->lock);
516 
517 	if (list_empty(&bond->vlan_list)) {
518 		goto out;
519 	}
520 
521 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
522 	    slave_dev->vlan_rx_register) {
523 		slave_dev->vlan_rx_register(slave_dev, bond->vlgrp);
524 	}
525 
526 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
527 	    !(slave_dev->vlan_rx_add_vid)) {
528 		goto out;
529 	}
530 
531 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
532 		slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id);
533 	}
534 
535 out:
536 	write_unlock_bh(&bond->lock);
537 }
538 
539 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
540 {
541 	struct vlan_entry *vlan;
542 	struct net_device *vlan_dev;
543 
544 	write_lock_bh(&bond->lock);
545 
546 	if (list_empty(&bond->vlan_list)) {
547 		goto out;
548 	}
549 
550 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
551 	    !(slave_dev->vlan_rx_kill_vid)) {
552 		goto unreg;
553 	}
554 
555 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
556 		/* Save and then restore vlan_dev in the grp array,
557 		 * since the slave's driver might clear it.
558 		 */
559 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
560 		slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
561 		vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev);
562 	}
563 
564 unreg:
565 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
566 	    slave_dev->vlan_rx_register) {
567 		slave_dev->vlan_rx_register(slave_dev, NULL);
568 	}
569 
570 out:
571 	write_unlock_bh(&bond->lock);
572 }
573 
574 /*------------------------------- Link status -------------------------------*/
575 
576 /*
577  * Set the carrier state for the master according to the state of its
578  * slaves.  If any slaves are up, the master is up.  In 802.3ad mode,
579  * do special 802.3ad magic.
580  *
581  * Returns zero if carrier state does not change, nonzero if it does.
582  */
583 static int bond_set_carrier(struct bonding *bond)
584 {
585 	struct slave *slave;
586 	int i;
587 
588 	if (bond->slave_cnt == 0)
589 		goto down;
590 
591 	if (bond->params.mode == BOND_MODE_8023AD)
592 		return bond_3ad_set_carrier(bond);
593 
594 	bond_for_each_slave(bond, slave, i) {
595 		if (slave->link == BOND_LINK_UP) {
596 			if (!netif_carrier_ok(bond->dev)) {
597 				netif_carrier_on(bond->dev);
598 				return 1;
599 			}
600 			return 0;
601 		}
602 	}
603 
604 down:
605 	if (netif_carrier_ok(bond->dev)) {
606 		netif_carrier_off(bond->dev);
607 		return 1;
608 	}
609 	return 0;
610 }
611 
612 /*
613  * Get link speed and duplex from the slave's base driver
614  * using ethtool. If for some reason the call fails or the
615  * values are invalid, fake speed and duplex to 100/Full
616  * and return error.
617  */
618 static int bond_update_speed_duplex(struct slave *slave)
619 {
620 	struct net_device *slave_dev = slave->dev;
621 	struct ethtool_cmd etool;
622 	int res;
623 
624 	/* Fake speed and duplex */
625 	slave->speed = SPEED_100;
626 	slave->duplex = DUPLEX_FULL;
627 
628 	if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings)
629 		return -1;
630 
631 	res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
632 	if (res < 0)
633 		return -1;
634 
635 	switch (etool.speed) {
636 	case SPEED_10:
637 	case SPEED_100:
638 	case SPEED_1000:
639 	case SPEED_10000:
640 		break;
641 	default:
642 		return -1;
643 	}
644 
645 	switch (etool.duplex) {
646 	case DUPLEX_FULL:
647 	case DUPLEX_HALF:
648 		break;
649 	default:
650 		return -1;
651 	}
652 
653 	slave->speed = etool.speed;
654 	slave->duplex = etool.duplex;
655 
656 	return 0;
657 }
658 
659 /*
660  * if <dev> supports MII link status reporting, check its link status.
661  *
662  * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
663  * depening upon the setting of the use_carrier parameter.
664  *
665  * Return either BMSR_LSTATUS, meaning that the link is up (or we
666  * can't tell and just pretend it is), or 0, meaning that the link is
667  * down.
668  *
669  * If reporting is non-zero, instead of faking link up, return -1 if
670  * both ETHTOOL and MII ioctls fail (meaning the device does not
671  * support them).  If use_carrier is set, return whatever it says.
672  * It'd be nice if there was a good way to tell if a driver supports
673  * netif_carrier, but there really isn't.
674  */
675 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
676 {
677 	static int (* ioctl)(struct net_device *, struct ifreq *, int);
678 	struct ifreq ifr;
679 	struct mii_ioctl_data *mii;
680 
681 	if (bond->params.use_carrier) {
682 		return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
683 	}
684 
685 	ioctl = slave_dev->do_ioctl;
686 	if (ioctl) {
687 		/* TODO: set pointer to correct ioctl on a per team member */
688 		/*       bases to make this more efficient. that is, once  */
689 		/*       we determine the correct ioctl, we will always    */
690 		/*       call it and not the others for that team          */
691 		/*       member.                                           */
692 
693 		/*
694 		 * We cannot assume that SIOCGMIIPHY will also read a
695 		 * register; not all network drivers (e.g., e100)
696 		 * support that.
697 		 */
698 
699 		/* Yes, the mii is overlaid on the ifreq.ifr_ifru */
700 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
701 		mii = if_mii(&ifr);
702 		if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
703 			mii->reg_num = MII_BMSR;
704 			if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
705 				return (mii->val_out & BMSR_LSTATUS);
706 			}
707 		}
708 	}
709 
710 	/*
711 	 * Some drivers cache ETHTOOL_GLINK for a period of time so we only
712 	 * attempt to get link status from it if the above MII ioctls fail.
713 	 */
714 	if (slave_dev->ethtool_ops) {
715 		if (slave_dev->ethtool_ops->get_link) {
716 			u32 link;
717 
718 			link = slave_dev->ethtool_ops->get_link(slave_dev);
719 
720 			return link ? BMSR_LSTATUS : 0;
721 		}
722 	}
723 
724 	/*
725 	 * If reporting, report that either there's no dev->do_ioctl,
726 	 * or both SIOCGMIIREG and get_link failed (meaning that we
727 	 * cannot report link status).  If not reporting, pretend
728 	 * we're ok.
729 	 */
730 	return (reporting ? -1 : BMSR_LSTATUS);
731 }
732 
733 /*----------------------------- Multicast list ------------------------------*/
734 
735 /*
736  * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
737  */
738 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
739 {
740 	return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
741 			dmi1->dmi_addrlen == dmi2->dmi_addrlen;
742 }
743 
744 /*
745  * returns dmi entry if found, NULL otherwise
746  */
747 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
748 {
749 	struct dev_mc_list *idmi;
750 
751 	for (idmi = mc_list; idmi; idmi = idmi->next) {
752 		if (bond_is_dmi_same(dmi, idmi)) {
753 			return idmi;
754 		}
755 	}
756 
757 	return NULL;
758 }
759 
760 /*
761  * Push the promiscuity flag down to appropriate slaves
762  */
763 static void bond_set_promiscuity(struct bonding *bond, int inc)
764 {
765 	if (USES_PRIMARY(bond->params.mode)) {
766 		/* write lock already acquired */
767 		if (bond->curr_active_slave) {
768 			dev_set_promiscuity(bond->curr_active_slave->dev, inc);
769 		}
770 	} else {
771 		struct slave *slave;
772 		int i;
773 		bond_for_each_slave(bond, slave, i) {
774 			dev_set_promiscuity(slave->dev, inc);
775 		}
776 	}
777 }
778 
779 /*
780  * Push the allmulti flag down to all slaves
781  */
782 static void bond_set_allmulti(struct bonding *bond, int inc)
783 {
784 	if (USES_PRIMARY(bond->params.mode)) {
785 		/* write lock already acquired */
786 		if (bond->curr_active_slave) {
787 			dev_set_allmulti(bond->curr_active_slave->dev, inc);
788 		}
789 	} else {
790 		struct slave *slave;
791 		int i;
792 		bond_for_each_slave(bond, slave, i) {
793 			dev_set_allmulti(slave->dev, inc);
794 		}
795 	}
796 }
797 
798 /*
799  * Add a Multicast address to slaves
800  * according to mode
801  */
802 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
803 {
804 	if (USES_PRIMARY(bond->params.mode)) {
805 		/* write lock already acquired */
806 		if (bond->curr_active_slave) {
807 			dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
808 		}
809 	} else {
810 		struct slave *slave;
811 		int i;
812 		bond_for_each_slave(bond, slave, i) {
813 			dev_mc_add(slave->dev, addr, alen, 0);
814 		}
815 	}
816 }
817 
818 /*
819  * Remove a multicast address from slave
820  * according to mode
821  */
822 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
823 {
824 	if (USES_PRIMARY(bond->params.mode)) {
825 		/* write lock already acquired */
826 		if (bond->curr_active_slave) {
827 			dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
828 		}
829 	} else {
830 		struct slave *slave;
831 		int i;
832 		bond_for_each_slave(bond, slave, i) {
833 			dev_mc_delete(slave->dev, addr, alen, 0);
834 		}
835 	}
836 }
837 
838 
839 /*
840  * Retrieve the list of registered multicast addresses for the bonding
841  * device and retransmit an IGMP JOIN request to the current active
842  * slave.
843  */
844 static void bond_resend_igmp_join_requests(struct bonding *bond)
845 {
846 	struct in_device *in_dev;
847 	struct ip_mc_list *im;
848 
849 	rcu_read_lock();
850 	in_dev = __in_dev_get_rcu(bond->dev);
851 	if (in_dev) {
852 		for (im = in_dev->mc_list; im; im = im->next) {
853 			ip_mc_rejoin_group(im);
854 		}
855 	}
856 
857 	rcu_read_unlock();
858 }
859 
860 /*
861  * Totally destroys the mc_list in bond
862  */
863 static void bond_mc_list_destroy(struct bonding *bond)
864 {
865 	struct dev_mc_list *dmi;
866 
867 	dmi = bond->mc_list;
868 	while (dmi) {
869 		bond->mc_list = dmi->next;
870 		kfree(dmi);
871 		dmi = bond->mc_list;
872 	}
873         bond->mc_list = NULL;
874 }
875 
876 /*
877  * Copy all the Multicast addresses from src to the bonding device dst
878  */
879 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
880 			     gfp_t gfp_flag)
881 {
882 	struct dev_mc_list *dmi, *new_dmi;
883 
884 	for (dmi = mc_list; dmi; dmi = dmi->next) {
885 		new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
886 
887 		if (!new_dmi) {
888 			/* FIXME: Potential memory leak !!! */
889 			return -ENOMEM;
890 		}
891 
892 		new_dmi->next = bond->mc_list;
893 		bond->mc_list = new_dmi;
894 		new_dmi->dmi_addrlen = dmi->dmi_addrlen;
895 		memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
896 		new_dmi->dmi_users = dmi->dmi_users;
897 		new_dmi->dmi_gusers = dmi->dmi_gusers;
898 	}
899 
900 	return 0;
901 }
902 
903 /*
904  * flush all members of flush->mc_list from device dev->mc_list
905  */
906 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
907 {
908 	struct bonding *bond = bond_dev->priv;
909 	struct dev_mc_list *dmi;
910 
911 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
912 		dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
913 	}
914 
915 	if (bond->params.mode == BOND_MODE_8023AD) {
916 		/* del lacpdu mc addr from mc list */
917 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
918 
919 		dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
920 	}
921 }
922 
923 /*--------------------------- Active slave change ---------------------------*/
924 
925 /*
926  * Update the mc list and multicast-related flags for the new and
927  * old active slaves (if any) according to the multicast mode, and
928  * promiscuous flags unconditionally.
929  */
930 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
931 {
932 	struct dev_mc_list *dmi;
933 
934 	if (!USES_PRIMARY(bond->params.mode)) {
935 		/* nothing to do -  mc list is already up-to-date on
936 		 * all slaves
937 		 */
938 		return;
939 	}
940 
941 	if (old_active) {
942 		if (bond->dev->flags & IFF_PROMISC) {
943 			dev_set_promiscuity(old_active->dev, -1);
944 		}
945 
946 		if (bond->dev->flags & IFF_ALLMULTI) {
947 			dev_set_allmulti(old_active->dev, -1);
948 		}
949 
950 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
951 			dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
952 		}
953 	}
954 
955 	if (new_active) {
956 		if (bond->dev->flags & IFF_PROMISC) {
957 			dev_set_promiscuity(new_active->dev, 1);
958 		}
959 
960 		if (bond->dev->flags & IFF_ALLMULTI) {
961 			dev_set_allmulti(new_active->dev, 1);
962 		}
963 
964 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
965 			dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
966 		}
967 		bond_resend_igmp_join_requests(bond);
968 	}
969 }
970 
971 /**
972  * find_best_interface - select the best available slave to be the active one
973  * @bond: our bonding struct
974  *
975  * Warning: Caller must hold curr_slave_lock for writing.
976  */
977 static struct slave *bond_find_best_slave(struct bonding *bond)
978 {
979 	struct slave *new_active, *old_active;
980 	struct slave *bestslave = NULL;
981 	int mintime = bond->params.updelay;
982 	int i;
983 
984 	new_active = old_active = bond->curr_active_slave;
985 
986 	if (!new_active) { /* there were no active slaves left */
987 		if (bond->slave_cnt > 0) {  /* found one slave */
988 			new_active = bond->first_slave;
989 		} else {
990 			return NULL; /* still no slave, return NULL */
991 		}
992 	}
993 
994 	/* first try the primary link; if arping, a link must tx/rx traffic
995 	 * before it can be considered the curr_active_slave - also, we would skip
996 	 * slaves between the curr_active_slave and primary_slave that may be up
997 	 * and able to arp
998 	 */
999 	if ((bond->primary_slave) &&
1000 	    (!bond->params.arp_interval) &&
1001 	    (IS_UP(bond->primary_slave->dev))) {
1002 		new_active = bond->primary_slave;
1003 	}
1004 
1005 	/* remember where to stop iterating over the slaves */
1006 	old_active = new_active;
1007 
1008 	bond_for_each_slave_from(bond, new_active, i, old_active) {
1009 		if (IS_UP(new_active->dev)) {
1010 			if (new_active->link == BOND_LINK_UP) {
1011 				return new_active;
1012 			} else if (new_active->link == BOND_LINK_BACK) {
1013 				/* link up, but waiting for stabilization */
1014 				if (new_active->delay < mintime) {
1015 					mintime = new_active->delay;
1016 					bestslave = new_active;
1017 				}
1018 			}
1019 		}
1020 	}
1021 
1022 	return bestslave;
1023 }
1024 
1025 /**
1026  * change_active_interface - change the active slave into the specified one
1027  * @bond: our bonding struct
1028  * @new: the new slave to make the active one
1029  *
1030  * Set the new slave to the bond's settings and unset them on the old
1031  * curr_active_slave.
1032  * Setting include flags, mc-list, promiscuity, allmulti, etc.
1033  *
1034  * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1035  * because it is apparently the best available slave we have, even though its
1036  * updelay hasn't timed out yet.
1037  *
1038  * Warning: Caller must hold curr_slave_lock for writing.
1039  */
1040 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1041 {
1042 	struct slave *old_active = bond->curr_active_slave;
1043 
1044 	if (old_active == new_active) {
1045 		return;
1046 	}
1047 
1048 	if (new_active) {
1049 		if (new_active->link == BOND_LINK_BACK) {
1050 			if (USES_PRIMARY(bond->params.mode)) {
1051 				printk(KERN_INFO DRV_NAME
1052 				       ": %s: making interface %s the new "
1053 				       "active one %d ms earlier.\n",
1054 				       bond->dev->name, new_active->dev->name,
1055 				       (bond->params.updelay - new_active->delay) * bond->params.miimon);
1056 			}
1057 
1058 			new_active->delay = 0;
1059 			new_active->link = BOND_LINK_UP;
1060 			new_active->jiffies = jiffies;
1061 
1062 			if (bond->params.mode == BOND_MODE_8023AD) {
1063 				bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1064 			}
1065 
1066 			if ((bond->params.mode == BOND_MODE_TLB) ||
1067 			    (bond->params.mode == BOND_MODE_ALB)) {
1068 				bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1069 			}
1070 		} else {
1071 			if (USES_PRIMARY(bond->params.mode)) {
1072 				printk(KERN_INFO DRV_NAME
1073 				       ": %s: making interface %s the new "
1074 				       "active one.\n",
1075 				       bond->dev->name, new_active->dev->name);
1076 			}
1077 		}
1078 	}
1079 
1080 	if (USES_PRIMARY(bond->params.mode)) {
1081 		bond_mc_swap(bond, new_active, old_active);
1082 	}
1083 
1084 	if ((bond->params.mode == BOND_MODE_TLB) ||
1085 	    (bond->params.mode == BOND_MODE_ALB)) {
1086 		bond_alb_handle_active_change(bond, new_active);
1087 		if (old_active)
1088 			bond_set_slave_inactive_flags(old_active);
1089 		if (new_active)
1090 			bond_set_slave_active_flags(new_active);
1091 	} else {
1092 		bond->curr_active_slave = new_active;
1093 	}
1094 
1095 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1096 		if (old_active) {
1097 			bond_set_slave_inactive_flags(old_active);
1098 		}
1099 
1100 		if (new_active) {
1101 			bond_set_slave_active_flags(new_active);
1102 		}
1103 
1104 		/* when bonding does not set the slave MAC address, the bond MAC
1105 		 * address is the one of the active slave.
1106 		 */
1107 		if (new_active && bond->params.fail_over_mac)
1108 			memcpy(bond->dev->dev_addr,  new_active->dev->dev_addr,
1109 				new_active->dev->addr_len);
1110 		if (bond->curr_active_slave &&
1111 			test_bit(__LINK_STATE_LINKWATCH_PENDING,
1112 					&bond->curr_active_slave->dev->state)) {
1113 			dprintk("delaying gratuitous arp on %s\n",
1114 				bond->curr_active_slave->dev->name);
1115 			bond->send_grat_arp = 1;
1116 		} else
1117 			bond_send_gratuitous_arp(bond);
1118 	}
1119 }
1120 
1121 /**
1122  * bond_select_active_slave - select a new active slave, if needed
1123  * @bond: our bonding struct
1124  *
1125  * This functions shoud be called when one of the following occurs:
1126  * - The old curr_active_slave has been released or lost its link.
1127  * - The primary_slave has got its link back.
1128  * - A slave has got its link back and there's no old curr_active_slave.
1129  *
1130  * Warning: Caller must hold curr_slave_lock for writing.
1131  */
1132 void bond_select_active_slave(struct bonding *bond)
1133 {
1134 	struct slave *best_slave;
1135 	int rv;
1136 
1137 	best_slave = bond_find_best_slave(bond);
1138 	if (best_slave != bond->curr_active_slave) {
1139 		bond_change_active_slave(bond, best_slave);
1140 		rv = bond_set_carrier(bond);
1141 		if (!rv)
1142 			return;
1143 
1144 		if (netif_carrier_ok(bond->dev)) {
1145 			printk(KERN_INFO DRV_NAME
1146 			       ": %s: first active interface up!\n",
1147 			       bond->dev->name);
1148 		} else {
1149 			printk(KERN_INFO DRV_NAME ": %s: "
1150 			       "now running without any active interface !\n",
1151 			       bond->dev->name);
1152 		}
1153 	}
1154 }
1155 
1156 /*--------------------------- slave list handling ---------------------------*/
1157 
1158 /*
1159  * This function attaches the slave to the end of list.
1160  *
1161  * bond->lock held for writing by caller.
1162  */
1163 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1164 {
1165 	if (bond->first_slave == NULL) { /* attaching the first slave */
1166 		new_slave->next = new_slave;
1167 		new_slave->prev = new_slave;
1168 		bond->first_slave = new_slave;
1169 	} else {
1170 		new_slave->next = bond->first_slave;
1171 		new_slave->prev = bond->first_slave->prev;
1172 		new_slave->next->prev = new_slave;
1173 		new_slave->prev->next = new_slave;
1174 	}
1175 
1176 	bond->slave_cnt++;
1177 }
1178 
1179 /*
1180  * This function detaches the slave from the list.
1181  * WARNING: no check is made to verify if the slave effectively
1182  * belongs to <bond>.
1183  * Nothing is freed on return, structures are just unchained.
1184  * If any slave pointer in bond was pointing to <slave>,
1185  * it should be changed by the calling function.
1186  *
1187  * bond->lock held for writing by caller.
1188  */
1189 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1190 {
1191 	if (slave->next) {
1192 		slave->next->prev = slave->prev;
1193 	}
1194 
1195 	if (slave->prev) {
1196 		slave->prev->next = slave->next;
1197 	}
1198 
1199 	if (bond->first_slave == slave) { /* slave is the first slave */
1200 		if (bond->slave_cnt > 1) { /* there are more slave */
1201 			bond->first_slave = slave->next;
1202 		} else {
1203 			bond->first_slave = NULL; /* slave was the last one */
1204 		}
1205 	}
1206 
1207 	slave->next = NULL;
1208 	slave->prev = NULL;
1209 	bond->slave_cnt--;
1210 }
1211 
1212 /*---------------------------------- IOCTL ----------------------------------*/
1213 
1214 static int bond_sethwaddr(struct net_device *bond_dev,
1215 			  struct net_device *slave_dev)
1216 {
1217 	dprintk("bond_dev=%p\n", bond_dev);
1218 	dprintk("slave_dev=%p\n", slave_dev);
1219 	dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1220 	memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1221 	return 0;
1222 }
1223 
1224 #define BOND_VLAN_FEATURES \
1225 	(NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \
1226 	 NETIF_F_HW_VLAN_FILTER)
1227 
1228 /*
1229  * Compute the common dev->feature set available to all slaves.  Some
1230  * feature bits are managed elsewhere, so preserve those feature bits
1231  * on the master device.
1232  */
1233 static int bond_compute_features(struct bonding *bond)
1234 {
1235 	struct slave *slave;
1236 	struct net_device *bond_dev = bond->dev;
1237 	unsigned long features = bond_dev->features;
1238 	unsigned short max_hard_header_len = max((u16)ETH_HLEN,
1239 						bond_dev->hard_header_len);
1240 	int i;
1241 
1242 	features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES);
1243 	features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA |
1244 		    NETIF_F_GSO_MASK | NETIF_F_NO_CSUM;
1245 
1246 	bond_for_each_slave(bond, slave, i) {
1247 		features = netdev_compute_features(features,
1248 						   slave->dev->features);
1249 		if (slave->dev->hard_header_len > max_hard_header_len)
1250 			max_hard_header_len = slave->dev->hard_header_len;
1251 	}
1252 
1253 	features |= (bond_dev->features & BOND_VLAN_FEATURES);
1254 	bond_dev->features = features;
1255 	bond_dev->hard_header_len = max_hard_header_len;
1256 
1257 	return 0;
1258 }
1259 
1260 
1261 static void bond_setup_by_slave(struct net_device *bond_dev,
1262 				struct net_device *slave_dev)
1263 {
1264 	struct bonding *bond = bond_dev->priv;
1265 
1266 	bond_dev->neigh_setup           = slave_dev->neigh_setup;
1267 	bond_dev->header_ops		= slave_dev->header_ops;
1268 
1269 	bond_dev->type		    = slave_dev->type;
1270 	bond_dev->hard_header_len   = slave_dev->hard_header_len;
1271 	bond_dev->addr_len	    = slave_dev->addr_len;
1272 
1273 	memcpy(bond_dev->broadcast, slave_dev->broadcast,
1274 		slave_dev->addr_len);
1275 	bond->setup_by_slave = 1;
1276 }
1277 
1278 /* enslave device <slave> to bond device <master> */
1279 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1280 {
1281 	struct bonding *bond = bond_dev->priv;
1282 	struct slave *new_slave = NULL;
1283 	struct dev_mc_list *dmi;
1284 	struct sockaddr addr;
1285 	int link_reporting;
1286 	int old_features = bond_dev->features;
1287 	int res = 0;
1288 
1289 	if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1290 		slave_dev->do_ioctl == NULL) {
1291 		printk(KERN_WARNING DRV_NAME
1292 		       ": %s: Warning: no link monitoring support for %s\n",
1293 		       bond_dev->name, slave_dev->name);
1294 	}
1295 
1296 	/* bond must be initialized by bond_open() before enslaving */
1297 	if (!(bond_dev->flags & IFF_UP)) {
1298 		printk(KERN_WARNING DRV_NAME
1299 			" %s: master_dev is not up in bond_enslave\n",
1300 			bond_dev->name);
1301 	}
1302 
1303 	/* already enslaved */
1304 	if (slave_dev->flags & IFF_SLAVE) {
1305 		dprintk("Error, Device was already enslaved\n");
1306 		return -EBUSY;
1307 	}
1308 
1309 	/* vlan challenged mutual exclusion */
1310 	/* no need to lock since we're protected by rtnl_lock */
1311 	if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1312 		dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1313 		if (!list_empty(&bond->vlan_list)) {
1314 			printk(KERN_ERR DRV_NAME
1315 			       ": %s: Error: cannot enslave VLAN "
1316 			       "challenged slave %s on VLAN enabled "
1317 			       "bond %s\n", bond_dev->name, slave_dev->name,
1318 			       bond_dev->name);
1319 			return -EPERM;
1320 		} else {
1321 			printk(KERN_WARNING DRV_NAME
1322 			       ": %s: Warning: enslaved VLAN challenged "
1323 			       "slave %s. Adding VLANs will be blocked as "
1324 			       "long as %s is part of bond %s\n",
1325 			       bond_dev->name, slave_dev->name, slave_dev->name,
1326 			       bond_dev->name);
1327 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1328 		}
1329 	} else {
1330 		dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1331 		if (bond->slave_cnt == 0) {
1332 			/* First slave, and it is not VLAN challenged,
1333 			 * so remove the block of adding VLANs over the bond.
1334 			 */
1335 			bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1336 		}
1337 	}
1338 
1339 	/*
1340 	 * Old ifenslave binaries are no longer supported.  These can
1341 	 * be identified with moderate accurary by the state of the slave:
1342 	 * the current ifenslave will set the interface down prior to
1343 	 * enslaving it; the old ifenslave will not.
1344 	 */
1345 	if ((slave_dev->flags & IFF_UP)) {
1346 		printk(KERN_ERR DRV_NAME ": %s is up. "
1347 		       "This may be due to an out of date ifenslave.\n",
1348 		       slave_dev->name);
1349 		res = -EPERM;
1350 		goto err_undo_flags;
1351 	}
1352 
1353 	/* set bonding device ether type by slave - bonding netdevices are
1354 	 * created with ether_setup, so when the slave type is not ARPHRD_ETHER
1355 	 * there is a need to override some of the type dependent attribs/funcs.
1356 	 *
1357 	 * bond ether type mutual exclusion - don't allow slaves of dissimilar
1358 	 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond
1359 	 */
1360 	if (bond->slave_cnt == 0) {
1361 		if (slave_dev->type != ARPHRD_ETHER)
1362 			bond_setup_by_slave(bond_dev, slave_dev);
1363 	} else if (bond_dev->type != slave_dev->type) {
1364 		printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different "
1365 			"from other slaves (%d), can not enslave it.\n",
1366 			slave_dev->name,
1367 			slave_dev->type, bond_dev->type);
1368 			res = -EINVAL;
1369 			goto err_undo_flags;
1370 	}
1371 
1372 	if (slave_dev->set_mac_address == NULL) {
1373 		if (bond->slave_cnt == 0) {
1374 			printk(KERN_WARNING DRV_NAME
1375 			       ": %s: Warning: The first slave device "
1376 			       "specified does not support setting the MAC "
1377 			       "address. Enabling the fail_over_mac option.",
1378 			       bond_dev->name);
1379 			bond->params.fail_over_mac = 1;
1380 		} else if (!bond->params.fail_over_mac) {
1381 			printk(KERN_ERR DRV_NAME
1382 				": %s: Error: The slave device specified "
1383 				"does not support setting the MAC address, "
1384 				"but fail_over_mac is not enabled.\n"
1385 				, bond_dev->name);
1386 			res = -EOPNOTSUPP;
1387 			goto err_undo_flags;
1388 		}
1389 	}
1390 
1391 	new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1392 	if (!new_slave) {
1393 		res = -ENOMEM;
1394 		goto err_undo_flags;
1395 	}
1396 
1397 	/* save slave's original flags before calling
1398 	 * netdev_set_master and dev_open
1399 	 */
1400 	new_slave->original_flags = slave_dev->flags;
1401 
1402 	/*
1403 	 * Save slave's original ("permanent") mac address for modes
1404 	 * that need it, and for restoring it upon release, and then
1405 	 * set it to the master's address
1406 	 */
1407 	memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1408 
1409 	if (!bond->params.fail_over_mac) {
1410 		/*
1411 		 * Set slave to master's mac address.  The application already
1412 		 * set the master's mac address to that of the first slave
1413 		 */
1414 		memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1415 		addr.sa_family = slave_dev->type;
1416 		res = dev_set_mac_address(slave_dev, &addr);
1417 		if (res) {
1418 			dprintk("Error %d calling set_mac_address\n", res);
1419 			goto err_free;
1420 		}
1421 	}
1422 
1423 	res = netdev_set_master(slave_dev, bond_dev);
1424 	if (res) {
1425 		dprintk("Error %d calling netdev_set_master\n", res);
1426 		goto err_close;
1427 	}
1428 	/* open the slave since the application closed it */
1429 	res = dev_open(slave_dev);
1430 	if (res) {
1431 		dprintk("Openning slave %s failed\n", slave_dev->name);
1432 		goto err_restore_mac;
1433 	}
1434 
1435 	new_slave->dev = slave_dev;
1436 	slave_dev->priv_flags |= IFF_BONDING;
1437 
1438 	if ((bond->params.mode == BOND_MODE_TLB) ||
1439 	    (bond->params.mode == BOND_MODE_ALB)) {
1440 		/* bond_alb_init_slave() must be called before all other stages since
1441 		 * it might fail and we do not want to have to undo everything
1442 		 */
1443 		res = bond_alb_init_slave(bond, new_slave);
1444 		if (res) {
1445 			goto err_unset_master;
1446 		}
1447 	}
1448 
1449 	/* If the mode USES_PRIMARY, then the new slave gets the
1450 	 * master's promisc (and mc) settings only if it becomes the
1451 	 * curr_active_slave, and that is taken care of later when calling
1452 	 * bond_change_active()
1453 	 */
1454 	if (!USES_PRIMARY(bond->params.mode)) {
1455 		/* set promiscuity level to new slave */
1456 		if (bond_dev->flags & IFF_PROMISC) {
1457 			dev_set_promiscuity(slave_dev, 1);
1458 		}
1459 
1460 		/* set allmulti level to new slave */
1461 		if (bond_dev->flags & IFF_ALLMULTI) {
1462 			dev_set_allmulti(slave_dev, 1);
1463 		}
1464 
1465 		/* upload master's mc_list to new slave */
1466 		for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1467 			dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1468 		}
1469 	}
1470 
1471 	if (bond->params.mode == BOND_MODE_8023AD) {
1472 		/* add lacpdu mc addr to mc list */
1473 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1474 
1475 		dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1476 	}
1477 
1478 	bond_add_vlans_on_slave(bond, slave_dev);
1479 
1480 	write_lock_bh(&bond->lock);
1481 
1482 	bond_attach_slave(bond, new_slave);
1483 
1484 	new_slave->delay = 0;
1485 	new_slave->link_failure_count = 0;
1486 
1487 	bond_compute_features(bond);
1488 
1489 	new_slave->last_arp_rx = jiffies;
1490 
1491 	if (bond->params.miimon && !bond->params.use_carrier) {
1492 		link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1493 
1494 		if ((link_reporting == -1) && !bond->params.arp_interval) {
1495 			/*
1496 			 * miimon is set but a bonded network driver
1497 			 * does not support ETHTOOL/MII and
1498 			 * arp_interval is not set.  Note: if
1499 			 * use_carrier is enabled, we will never go
1500 			 * here (because netif_carrier is always
1501 			 * supported); thus, we don't need to change
1502 			 * the messages for netif_carrier.
1503 			 */
1504 			printk(KERN_WARNING DRV_NAME
1505 			       ": %s: Warning: MII and ETHTOOL support not "
1506 			       "available for interface %s, and "
1507 			       "arp_interval/arp_ip_target module parameters "
1508 			       "not specified, thus bonding will not detect "
1509 			       "link failures! see bonding.txt for details.\n",
1510 			       bond_dev->name, slave_dev->name);
1511 		} else if (link_reporting == -1) {
1512 			/* unable get link status using mii/ethtool */
1513 			printk(KERN_WARNING DRV_NAME
1514 			       ": %s: Warning: can't get link status from "
1515 			       "interface %s; the network driver associated "
1516 			       "with this interface does not support MII or "
1517 			       "ETHTOOL link status reporting, thus miimon "
1518 			       "has no effect on this interface.\n",
1519 			       bond_dev->name, slave_dev->name);
1520 		}
1521 	}
1522 
1523 	/* check for initial state */
1524 	if (!bond->params.miimon ||
1525 	    (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1526 		if (bond->params.updelay) {
1527 			dprintk("Initial state of slave_dev is "
1528 				"BOND_LINK_BACK\n");
1529 			new_slave->link  = BOND_LINK_BACK;
1530 			new_slave->delay = bond->params.updelay;
1531 		} else {
1532 			dprintk("Initial state of slave_dev is "
1533 				"BOND_LINK_UP\n");
1534 			new_slave->link  = BOND_LINK_UP;
1535 		}
1536 		new_slave->jiffies = jiffies;
1537 	} else {
1538 		dprintk("Initial state of slave_dev is "
1539 			"BOND_LINK_DOWN\n");
1540 		new_slave->link  = BOND_LINK_DOWN;
1541 	}
1542 
1543 	if (bond_update_speed_duplex(new_slave) &&
1544 	    (new_slave->link != BOND_LINK_DOWN)) {
1545 		printk(KERN_WARNING DRV_NAME
1546 		       ": %s: Warning: failed to get speed and duplex from %s, "
1547 		       "assumed to be 100Mb/sec and Full.\n",
1548 		       bond_dev->name, new_slave->dev->name);
1549 
1550 		if (bond->params.mode == BOND_MODE_8023AD) {
1551 			printk(KERN_WARNING DRV_NAME
1552 			       ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1553 			       "support in base driver for proper aggregator "
1554 			       "selection.\n", bond_dev->name);
1555 		}
1556 	}
1557 
1558 	if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1559 		/* if there is a primary slave, remember it */
1560 		if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1561 			bond->primary_slave = new_slave;
1562 		}
1563 	}
1564 
1565 	switch (bond->params.mode) {
1566 	case BOND_MODE_ACTIVEBACKUP:
1567 		bond_set_slave_inactive_flags(new_slave);
1568 		bond_select_active_slave(bond);
1569 		break;
1570 	case BOND_MODE_8023AD:
1571 		/* in 802.3ad mode, the internal mechanism
1572 		 * will activate the slaves in the selected
1573 		 * aggregator
1574 		 */
1575 		bond_set_slave_inactive_flags(new_slave);
1576 		/* if this is the first slave */
1577 		if (bond->slave_cnt == 1) {
1578 			SLAVE_AD_INFO(new_slave).id = 1;
1579 			/* Initialize AD with the number of times that the AD timer is called in 1 second
1580 			 * can be called only after the mac address of the bond is set
1581 			 */
1582 			bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1583 					    bond->params.lacp_fast);
1584 		} else {
1585 			SLAVE_AD_INFO(new_slave).id =
1586 				SLAVE_AD_INFO(new_slave->prev).id + 1;
1587 		}
1588 
1589 		bond_3ad_bind_slave(new_slave);
1590 		break;
1591 	case BOND_MODE_TLB:
1592 	case BOND_MODE_ALB:
1593 		new_slave->state = BOND_STATE_ACTIVE;
1594 		bond_set_slave_inactive_flags(new_slave);
1595 		break;
1596 	default:
1597 		dprintk("This slave is always active in trunk mode\n");
1598 
1599 		/* always active in trunk mode */
1600 		new_slave->state = BOND_STATE_ACTIVE;
1601 
1602 		/* In trunking mode there is little meaning to curr_active_slave
1603 		 * anyway (it holds no special properties of the bond device),
1604 		 * so we can change it without calling change_active_interface()
1605 		 */
1606 		if (!bond->curr_active_slave) {
1607 			bond->curr_active_slave = new_slave;
1608 		}
1609 		break;
1610 	} /* switch(bond_mode) */
1611 
1612 	bond_set_carrier(bond);
1613 
1614 	write_unlock_bh(&bond->lock);
1615 
1616 	res = bond_create_slave_symlinks(bond_dev, slave_dev);
1617 	if (res)
1618 		goto err_unset_master;
1619 
1620 	printk(KERN_INFO DRV_NAME
1621 	       ": %s: enslaving %s as a%s interface with a%s link.\n",
1622 	       bond_dev->name, slave_dev->name,
1623 	       new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1624 	       new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1625 
1626 	/* enslave is successful */
1627 	return 0;
1628 
1629 /* Undo stages on error */
1630 err_unset_master:
1631 	netdev_set_master(slave_dev, NULL);
1632 
1633 err_close:
1634 	dev_close(slave_dev);
1635 
1636 err_restore_mac:
1637 	if (!bond->params.fail_over_mac) {
1638 		memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1639 		addr.sa_family = slave_dev->type;
1640 		dev_set_mac_address(slave_dev, &addr);
1641 	}
1642 
1643 err_free:
1644 	kfree(new_slave);
1645 
1646 err_undo_flags:
1647 	bond_dev->features = old_features;
1648 
1649 	return res;
1650 }
1651 
1652 /*
1653  * Try to release the slave device <slave> from the bond device <master>
1654  * It is legal to access curr_active_slave without a lock because all the function
1655  * is write-locked.
1656  *
1657  * The rules for slave state should be:
1658  *   for Active/Backup:
1659  *     Active stays on all backups go down
1660  *   for Bonded connections:
1661  *     The first up interface should be left on and all others downed.
1662  */
1663 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1664 {
1665 	struct bonding *bond = bond_dev->priv;
1666 	struct slave *slave, *oldcurrent;
1667 	struct sockaddr addr;
1668 	int mac_addr_differ;
1669 	DECLARE_MAC_BUF(mac);
1670 
1671 	/* slave is not a slave or master is not master of this slave */
1672 	if (!(slave_dev->flags & IFF_SLAVE) ||
1673 	    (slave_dev->master != bond_dev)) {
1674 		printk(KERN_ERR DRV_NAME
1675 		       ": %s: Error: cannot release %s.\n",
1676 		       bond_dev->name, slave_dev->name);
1677 		return -EINVAL;
1678 	}
1679 
1680 	write_lock_bh(&bond->lock);
1681 
1682 	slave = bond_get_slave_by_dev(bond, slave_dev);
1683 	if (!slave) {
1684 		/* not a slave of this bond */
1685 		printk(KERN_INFO DRV_NAME
1686 		       ": %s: %s not enslaved\n",
1687 		       bond_dev->name, slave_dev->name);
1688 		write_unlock_bh(&bond->lock);
1689 		return -EINVAL;
1690 	}
1691 
1692 	mac_addr_differ = memcmp(bond_dev->dev_addr,
1693 				 slave->perm_hwaddr,
1694 				 ETH_ALEN);
1695 	if (!mac_addr_differ && (bond->slave_cnt > 1)) {
1696 		printk(KERN_WARNING DRV_NAME
1697 		       ": %s: Warning: the permanent HWaddr of %s - "
1698 		       "%s - is still in use by %s. "
1699 		       "Set the HWaddr of %s to a different address "
1700 		       "to avoid conflicts.\n",
1701 		       bond_dev->name,
1702 		       slave_dev->name,
1703 		       print_mac(mac, slave->perm_hwaddr),
1704 		       bond_dev->name,
1705 		       slave_dev->name);
1706 	}
1707 
1708 	/* Inform AD package of unbinding of slave. */
1709 	if (bond->params.mode == BOND_MODE_8023AD) {
1710 		/* must be called before the slave is
1711 		 * detached from the list
1712 		 */
1713 		bond_3ad_unbind_slave(slave);
1714 	}
1715 
1716 	printk(KERN_INFO DRV_NAME
1717 	       ": %s: releasing %s interface %s\n",
1718 	       bond_dev->name,
1719 	       (slave->state == BOND_STATE_ACTIVE)
1720 	       ? "active" : "backup",
1721 	       slave_dev->name);
1722 
1723 	oldcurrent = bond->curr_active_slave;
1724 
1725 	bond->current_arp_slave = NULL;
1726 
1727 	/* release the slave from its bond */
1728 	bond_detach_slave(bond, slave);
1729 
1730 	bond_compute_features(bond);
1731 
1732 	if (bond->primary_slave == slave) {
1733 		bond->primary_slave = NULL;
1734 	}
1735 
1736 	if (oldcurrent == slave) {
1737 		bond_change_active_slave(bond, NULL);
1738 	}
1739 
1740 	if ((bond->params.mode == BOND_MODE_TLB) ||
1741 	    (bond->params.mode == BOND_MODE_ALB)) {
1742 		/* Must be called only after the slave has been
1743 		 * detached from the list and the curr_active_slave
1744 		 * has been cleared (if our_slave == old_current),
1745 		 * but before a new active slave is selected.
1746 		 */
1747 		bond_alb_deinit_slave(bond, slave);
1748 	}
1749 
1750 	if (oldcurrent == slave) {
1751 		/*
1752 		 * Note that we hold RTNL over this sequence, so there
1753 		 * is no concern that another slave add/remove event
1754 		 * will interfere.
1755 		 */
1756 		write_unlock_bh(&bond->lock);
1757 		read_lock(&bond->lock);
1758 		write_lock_bh(&bond->curr_slave_lock);
1759 
1760 		bond_select_active_slave(bond);
1761 
1762 		write_unlock_bh(&bond->curr_slave_lock);
1763 		read_unlock(&bond->lock);
1764 		write_lock_bh(&bond->lock);
1765 	}
1766 
1767 	if (bond->slave_cnt == 0) {
1768 		bond_set_carrier(bond);
1769 
1770 		/* if the last slave was removed, zero the mac address
1771 		 * of the master so it will be set by the application
1772 		 * to the mac address of the first slave
1773 		 */
1774 		memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1775 
1776 		if (list_empty(&bond->vlan_list)) {
1777 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1778 		} else {
1779 			printk(KERN_WARNING DRV_NAME
1780 			       ": %s: Warning: clearing HW address of %s while it "
1781 			       "still has VLANs.\n",
1782 			       bond_dev->name, bond_dev->name);
1783 			printk(KERN_WARNING DRV_NAME
1784 			       ": %s: When re-adding slaves, make sure the bond's "
1785 			       "HW address matches its VLANs'.\n",
1786 			       bond_dev->name);
1787 		}
1788 	} else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1789 		   !bond_has_challenged_slaves(bond)) {
1790 		printk(KERN_INFO DRV_NAME
1791 		       ": %s: last VLAN challenged slave %s "
1792 		       "left bond %s. VLAN blocking is removed\n",
1793 		       bond_dev->name, slave_dev->name, bond_dev->name);
1794 		bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1795 	}
1796 
1797 	write_unlock_bh(&bond->lock);
1798 
1799 	/* must do this from outside any spinlocks */
1800 	bond_destroy_slave_symlinks(bond_dev, slave_dev);
1801 
1802 	bond_del_vlans_from_slave(bond, slave_dev);
1803 
1804 	/* If the mode USES_PRIMARY, then we should only remove its
1805 	 * promisc and mc settings if it was the curr_active_slave, but that was
1806 	 * already taken care of above when we detached the slave
1807 	 */
1808 	if (!USES_PRIMARY(bond->params.mode)) {
1809 		/* unset promiscuity level from slave */
1810 		if (bond_dev->flags & IFF_PROMISC) {
1811 			dev_set_promiscuity(slave_dev, -1);
1812 		}
1813 
1814 		/* unset allmulti level from slave */
1815 		if (bond_dev->flags & IFF_ALLMULTI) {
1816 			dev_set_allmulti(slave_dev, -1);
1817 		}
1818 
1819 		/* flush master's mc_list from slave */
1820 		bond_mc_list_flush(bond_dev, slave_dev);
1821 	}
1822 
1823 	netdev_set_master(slave_dev, NULL);
1824 
1825 	/* close slave before restoring its mac address */
1826 	dev_close(slave_dev);
1827 
1828 	if (!bond->params.fail_over_mac) {
1829 		/* restore original ("permanent") mac address */
1830 		memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1831 		addr.sa_family = slave_dev->type;
1832 		dev_set_mac_address(slave_dev, &addr);
1833 	}
1834 
1835 	slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1836 				   IFF_SLAVE_INACTIVE | IFF_BONDING |
1837 				   IFF_SLAVE_NEEDARP);
1838 
1839 	kfree(slave);
1840 
1841 	return 0;  /* deletion OK */
1842 }
1843 
1844 /*
1845 * Destroy a bonding device.
1846 * Must be under rtnl_lock when this function is called.
1847 */
1848 void bond_destroy(struct bonding *bond)
1849 {
1850 	unregister_netdevice(bond->dev);
1851 	bond_deinit(bond->dev);
1852 	bond_destroy_sysfs_entry(bond);
1853 }
1854 
1855 /*
1856 * First release a slave and than destroy the bond if no more slaves iare left.
1857 * Must be under rtnl_lock when this function is called.
1858 */
1859 int  bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev)
1860 {
1861 	struct bonding *bond = bond_dev->priv;
1862 	int ret;
1863 
1864 	ret = bond_release(bond_dev, slave_dev);
1865 	if ((ret == 0) && (bond->slave_cnt == 0)) {
1866 		printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n",
1867 		       bond_dev->name, bond_dev->name);
1868 		bond_destroy(bond);
1869 	}
1870 	return ret;
1871 }
1872 
1873 /*
1874  * This function releases all slaves.
1875  */
1876 static int bond_release_all(struct net_device *bond_dev)
1877 {
1878 	struct bonding *bond = bond_dev->priv;
1879 	struct slave *slave;
1880 	struct net_device *slave_dev;
1881 	struct sockaddr addr;
1882 
1883 	write_lock_bh(&bond->lock);
1884 
1885 	netif_carrier_off(bond_dev);
1886 
1887 	if (bond->slave_cnt == 0) {
1888 		goto out;
1889 	}
1890 
1891 	bond->current_arp_slave = NULL;
1892 	bond->primary_slave = NULL;
1893 	bond_change_active_slave(bond, NULL);
1894 
1895 	while ((slave = bond->first_slave) != NULL) {
1896 		/* Inform AD package of unbinding of slave
1897 		 * before slave is detached from the list.
1898 		 */
1899 		if (bond->params.mode == BOND_MODE_8023AD) {
1900 			bond_3ad_unbind_slave(slave);
1901 		}
1902 
1903 		slave_dev = slave->dev;
1904 		bond_detach_slave(bond, slave);
1905 
1906 		if ((bond->params.mode == BOND_MODE_TLB) ||
1907 		    (bond->params.mode == BOND_MODE_ALB)) {
1908 			/* must be called only after the slave
1909 			 * has been detached from the list
1910 			 */
1911 			bond_alb_deinit_slave(bond, slave);
1912 		}
1913 
1914 		bond_compute_features(bond);
1915 
1916 		/* now that the slave is detached, unlock and perform
1917 		 * all the undo steps that should not be called from
1918 		 * within a lock.
1919 		 */
1920 		write_unlock_bh(&bond->lock);
1921 
1922 		bond_destroy_slave_symlinks(bond_dev, slave_dev);
1923 		bond_del_vlans_from_slave(bond, slave_dev);
1924 
1925 		/* If the mode USES_PRIMARY, then we should only remove its
1926 		 * promisc and mc settings if it was the curr_active_slave, but that was
1927 		 * already taken care of above when we detached the slave
1928 		 */
1929 		if (!USES_PRIMARY(bond->params.mode)) {
1930 			/* unset promiscuity level from slave */
1931 			if (bond_dev->flags & IFF_PROMISC) {
1932 				dev_set_promiscuity(slave_dev, -1);
1933 			}
1934 
1935 			/* unset allmulti level from slave */
1936 			if (bond_dev->flags & IFF_ALLMULTI) {
1937 				dev_set_allmulti(slave_dev, -1);
1938 			}
1939 
1940 			/* flush master's mc_list from slave */
1941 			bond_mc_list_flush(bond_dev, slave_dev);
1942 		}
1943 
1944 		netdev_set_master(slave_dev, NULL);
1945 
1946 		/* close slave before restoring its mac address */
1947 		dev_close(slave_dev);
1948 
1949 		if (!bond->params.fail_over_mac) {
1950 			/* restore original ("permanent") mac address*/
1951 			memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1952 			addr.sa_family = slave_dev->type;
1953 			dev_set_mac_address(slave_dev, &addr);
1954 		}
1955 
1956 		slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1957 					   IFF_SLAVE_INACTIVE);
1958 
1959 		kfree(slave);
1960 
1961 		/* re-acquire the lock before getting the next slave */
1962 		write_lock_bh(&bond->lock);
1963 	}
1964 
1965 	/* zero the mac address of the master so it will be
1966 	 * set by the application to the mac address of the
1967 	 * first slave
1968 	 */
1969 	memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1970 
1971 	if (list_empty(&bond->vlan_list)) {
1972 		bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1973 	} else {
1974 		printk(KERN_WARNING DRV_NAME
1975 		       ": %s: Warning: clearing HW address of %s while it "
1976 		       "still has VLANs.\n",
1977 		       bond_dev->name, bond_dev->name);
1978 		printk(KERN_WARNING DRV_NAME
1979 		       ": %s: When re-adding slaves, make sure the bond's "
1980 		       "HW address matches its VLANs'.\n",
1981 		       bond_dev->name);
1982 	}
1983 
1984 	printk(KERN_INFO DRV_NAME
1985 	       ": %s: released all slaves\n",
1986 	       bond_dev->name);
1987 
1988 out:
1989 	write_unlock_bh(&bond->lock);
1990 
1991 	return 0;
1992 }
1993 
1994 /*
1995  * This function changes the active slave to slave <slave_dev>.
1996  * It returns -EINVAL in the following cases.
1997  *  - <slave_dev> is not found in the list.
1998  *  - There is not active slave now.
1999  *  - <slave_dev> is already active.
2000  *  - The link state of <slave_dev> is not BOND_LINK_UP.
2001  *  - <slave_dev> is not running.
2002  * In these cases, this fuction does nothing.
2003  * In the other cases, currnt_slave pointer is changed and 0 is returned.
2004  */
2005 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
2006 {
2007 	struct bonding *bond = bond_dev->priv;
2008 	struct slave *old_active = NULL;
2009 	struct slave *new_active = NULL;
2010 	int res = 0;
2011 
2012 	if (!USES_PRIMARY(bond->params.mode)) {
2013 		return -EINVAL;
2014 	}
2015 
2016 	/* Verify that master_dev is indeed the master of slave_dev */
2017 	if (!(slave_dev->flags & IFF_SLAVE) ||
2018 	    (slave_dev->master != bond_dev)) {
2019 		return -EINVAL;
2020 	}
2021 
2022 	read_lock(&bond->lock);
2023 
2024 	read_lock(&bond->curr_slave_lock);
2025 	old_active = bond->curr_active_slave;
2026 	read_unlock(&bond->curr_slave_lock);
2027 
2028 	new_active = bond_get_slave_by_dev(bond, slave_dev);
2029 
2030 	/*
2031 	 * Changing to the current active: do nothing; return success.
2032 	 */
2033 	if (new_active && (new_active == old_active)) {
2034 		read_unlock(&bond->lock);
2035 		return 0;
2036 	}
2037 
2038 	if ((new_active) &&
2039 	    (old_active) &&
2040 	    (new_active->link == BOND_LINK_UP) &&
2041 	    IS_UP(new_active->dev)) {
2042 		write_lock_bh(&bond->curr_slave_lock);
2043 		bond_change_active_slave(bond, new_active);
2044 		write_unlock_bh(&bond->curr_slave_lock);
2045 	} else {
2046 		res = -EINVAL;
2047 	}
2048 
2049 	read_unlock(&bond->lock);
2050 
2051 	return res;
2052 }
2053 
2054 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
2055 {
2056 	struct bonding *bond = bond_dev->priv;
2057 
2058 	info->bond_mode = bond->params.mode;
2059 	info->miimon = bond->params.miimon;
2060 
2061 	read_lock(&bond->lock);
2062 	info->num_slaves = bond->slave_cnt;
2063 	read_unlock(&bond->lock);
2064 
2065 	return 0;
2066 }
2067 
2068 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
2069 {
2070 	struct bonding *bond = bond_dev->priv;
2071 	struct slave *slave;
2072 	int i, found = 0;
2073 
2074 	if (info->slave_id < 0) {
2075 		return -ENODEV;
2076 	}
2077 
2078 	read_lock(&bond->lock);
2079 
2080 	bond_for_each_slave(bond, slave, i) {
2081 		if (i == (int)info->slave_id) {
2082 			found = 1;
2083 			break;
2084 		}
2085 	}
2086 
2087 	read_unlock(&bond->lock);
2088 
2089 	if (found) {
2090 		strcpy(info->slave_name, slave->dev->name);
2091 		info->link = slave->link;
2092 		info->state = slave->state;
2093 		info->link_failure_count = slave->link_failure_count;
2094 	} else {
2095 		return -ENODEV;
2096 	}
2097 
2098 	return 0;
2099 }
2100 
2101 /*-------------------------------- Monitoring -------------------------------*/
2102 
2103 /*
2104  * if !have_locks, return nonzero if a failover is necessary.  if
2105  * have_locks, do whatever failover activities are needed.
2106  *
2107  * This is to separate the inspection and failover steps for locking
2108  * purposes; failover requires rtnl, but acquiring it for every
2109  * inspection is undesirable, so a wrapper first does inspection, and
2110  * the acquires the necessary locks and calls again to perform
2111  * failover if needed.  Since all locks are dropped, a complete
2112  * restart is needed between calls.
2113  */
2114 static int __bond_mii_monitor(struct bonding *bond, int have_locks)
2115 {
2116 	struct slave *slave, *oldcurrent;
2117 	int do_failover = 0;
2118 	int i;
2119 
2120 	if (bond->slave_cnt == 0)
2121 		goto out;
2122 
2123 	/* we will try to read the link status of each of our slaves, and
2124 	 * set their IFF_RUNNING flag appropriately. For each slave not
2125 	 * supporting MII status, we won't do anything so that a user-space
2126 	 * program could monitor the link itself if needed.
2127 	 */
2128 
2129 	if (bond->send_grat_arp) {
2130 		if (bond->curr_active_slave && test_bit(__LINK_STATE_LINKWATCH_PENDING,
2131 				&bond->curr_active_slave->dev->state))
2132 			dprintk("Needs to send gratuitous arp but not yet\n");
2133 		else {
2134 			dprintk("sending delayed gratuitous arp on on %s\n",
2135 				bond->curr_active_slave->dev->name);
2136 			bond_send_gratuitous_arp(bond);
2137 			bond->send_grat_arp = 0;
2138 		}
2139 	}
2140 	read_lock(&bond->curr_slave_lock);
2141 	oldcurrent = bond->curr_active_slave;
2142 	read_unlock(&bond->curr_slave_lock);
2143 
2144 	bond_for_each_slave(bond, slave, i) {
2145 		struct net_device *slave_dev = slave->dev;
2146 		int link_state;
2147 		u16 old_speed = slave->speed;
2148 		u8 old_duplex = slave->duplex;
2149 
2150 		link_state = bond_check_dev_link(bond, slave_dev, 0);
2151 
2152 		switch (slave->link) {
2153 		case BOND_LINK_UP:	/* the link was up */
2154 			if (link_state == BMSR_LSTATUS) {
2155 				if (!oldcurrent) {
2156 					if (!have_locks)
2157 						return 1;
2158 					do_failover = 1;
2159 				}
2160 				break;
2161 			} else { /* link going down */
2162 				slave->link  = BOND_LINK_FAIL;
2163 				slave->delay = bond->params.downdelay;
2164 
2165 				if (slave->link_failure_count < UINT_MAX) {
2166 					slave->link_failure_count++;
2167 				}
2168 
2169 				if (bond->params.downdelay) {
2170 					printk(KERN_INFO DRV_NAME
2171 					       ": %s: link status down for %s "
2172 					       "interface %s, disabling it in "
2173 					       "%d ms.\n",
2174 					       bond->dev->name,
2175 					       IS_UP(slave_dev)
2176 					       ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP)
2177 						  ? ((slave == oldcurrent)
2178 						     ? "active " : "backup ")
2179 						  : "")
2180 					       : "idle ",
2181 					       slave_dev->name,
2182 					       bond->params.downdelay * bond->params.miimon);
2183 				}
2184 			}
2185 			/* no break ! fall through the BOND_LINK_FAIL test to
2186 			   ensure proper action to be taken
2187 			*/
2188 		case BOND_LINK_FAIL:	/* the link has just gone down */
2189 			if (link_state != BMSR_LSTATUS) {
2190 				/* link stays down */
2191 				if (slave->delay <= 0) {
2192 					if (!have_locks)
2193 						return 1;
2194 
2195 					/* link down for too long time */
2196 					slave->link = BOND_LINK_DOWN;
2197 
2198 					/* in active/backup mode, we must
2199 					 * completely disable this interface
2200 					 */
2201 					if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) ||
2202 					    (bond->params.mode == BOND_MODE_8023AD)) {
2203 						bond_set_slave_inactive_flags(slave);
2204 					}
2205 
2206 					printk(KERN_INFO DRV_NAME
2207 					       ": %s: link status definitely "
2208 					       "down for interface %s, "
2209 					       "disabling it\n",
2210 					       bond->dev->name,
2211 					       slave_dev->name);
2212 
2213 					/* notify ad that the link status has changed */
2214 					if (bond->params.mode == BOND_MODE_8023AD) {
2215 						bond_3ad_handle_link_change(slave, BOND_LINK_DOWN);
2216 					}
2217 
2218 					if ((bond->params.mode == BOND_MODE_TLB) ||
2219 					    (bond->params.mode == BOND_MODE_ALB)) {
2220 						bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN);
2221 					}
2222 
2223 					if (slave == oldcurrent) {
2224 						do_failover = 1;
2225 					}
2226 				} else {
2227 					slave->delay--;
2228 				}
2229 			} else {
2230 				/* link up again */
2231 				slave->link  = BOND_LINK_UP;
2232 				slave->jiffies = jiffies;
2233 				printk(KERN_INFO DRV_NAME
2234 				       ": %s: link status up again after %d "
2235 				       "ms for interface %s.\n",
2236 				       bond->dev->name,
2237 				       (bond->params.downdelay - slave->delay) * bond->params.miimon,
2238 				       slave_dev->name);
2239 			}
2240 			break;
2241 		case BOND_LINK_DOWN:	/* the link was down */
2242 			if (link_state != BMSR_LSTATUS) {
2243 				/* the link stays down, nothing more to do */
2244 				break;
2245 			} else {	/* link going up */
2246 				slave->link  = BOND_LINK_BACK;
2247 				slave->delay = bond->params.updelay;
2248 
2249 				if (bond->params.updelay) {
2250 					/* if updelay == 0, no need to
2251 					   advertise about a 0 ms delay */
2252 					printk(KERN_INFO DRV_NAME
2253 					       ": %s: link status up for "
2254 					       "interface %s, enabling it "
2255 					       "in %d ms.\n",
2256 					       bond->dev->name,
2257 					       slave_dev->name,
2258 					       bond->params.updelay * bond->params.miimon);
2259 				}
2260 			}
2261 			/* no break ! fall through the BOND_LINK_BACK state in
2262 			   case there's something to do.
2263 			*/
2264 		case BOND_LINK_BACK:	/* the link has just come back */
2265 			if (link_state != BMSR_LSTATUS) {
2266 				/* link down again */
2267 				slave->link  = BOND_LINK_DOWN;
2268 
2269 				printk(KERN_INFO DRV_NAME
2270 				       ": %s: link status down again after %d "
2271 				       "ms for interface %s.\n",
2272 				       bond->dev->name,
2273 				       (bond->params.updelay - slave->delay) * bond->params.miimon,
2274 				       slave_dev->name);
2275 			} else {
2276 				/* link stays up */
2277 				if (slave->delay == 0) {
2278 					if (!have_locks)
2279 						return 1;
2280 
2281 					/* now the link has been up for long time enough */
2282 					slave->link = BOND_LINK_UP;
2283 					slave->jiffies = jiffies;
2284 
2285 					if (bond->params.mode == BOND_MODE_8023AD) {
2286 						/* prevent it from being the active one */
2287 						slave->state = BOND_STATE_BACKUP;
2288 					} else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2289 						/* make it immediately active */
2290 						slave->state = BOND_STATE_ACTIVE;
2291 					} else if (slave != bond->primary_slave) {
2292 						/* prevent it from being the active one */
2293 						slave->state = BOND_STATE_BACKUP;
2294 					}
2295 
2296 					printk(KERN_INFO DRV_NAME
2297 					       ": %s: link status definitely "
2298 					       "up for interface %s.\n",
2299 					       bond->dev->name,
2300 					       slave_dev->name);
2301 
2302 					/* notify ad that the link status has changed */
2303 					if (bond->params.mode == BOND_MODE_8023AD) {
2304 						bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2305 					}
2306 
2307 					if ((bond->params.mode == BOND_MODE_TLB) ||
2308 					    (bond->params.mode == BOND_MODE_ALB)) {
2309 						bond_alb_handle_link_change(bond, slave, BOND_LINK_UP);
2310 					}
2311 
2312 					if ((!oldcurrent) ||
2313 					    (slave == bond->primary_slave)) {
2314 						do_failover = 1;
2315 					}
2316 				} else {
2317 					slave->delay--;
2318 				}
2319 			}
2320 			break;
2321 		default:
2322 			/* Should not happen */
2323 			printk(KERN_ERR DRV_NAME
2324 			       ": %s: Error: %s Illegal value (link=%d)\n",
2325 			       bond->dev->name,
2326 			       slave->dev->name,
2327 			       slave->link);
2328 			goto out;
2329 		} /* end of switch (slave->link) */
2330 
2331 		bond_update_speed_duplex(slave);
2332 
2333 		if (bond->params.mode == BOND_MODE_8023AD) {
2334 			if (old_speed != slave->speed) {
2335 				bond_3ad_adapter_speed_changed(slave);
2336 			}
2337 
2338 			if (old_duplex != slave->duplex) {
2339 				bond_3ad_adapter_duplex_changed(slave);
2340 			}
2341 		}
2342 
2343 	} /* end of for */
2344 
2345 	if (do_failover) {
2346 		ASSERT_RTNL();
2347 
2348 		write_lock_bh(&bond->curr_slave_lock);
2349 
2350 		bond_select_active_slave(bond);
2351 
2352 		write_unlock_bh(&bond->curr_slave_lock);
2353 
2354 	} else
2355 		bond_set_carrier(bond);
2356 
2357 out:
2358 	return 0;
2359 }
2360 
2361 /*
2362  * bond_mii_monitor
2363  *
2364  * Really a wrapper that splits the mii monitor into two phases: an
2365  * inspection, then (if inspection indicates something needs to be
2366  * done) an acquisition of appropriate locks followed by another pass
2367  * to implement whatever link state changes are indicated.
2368  */
2369 void bond_mii_monitor(struct work_struct *work)
2370 {
2371 	struct bonding *bond = container_of(work, struct bonding,
2372 					    mii_work.work);
2373 	unsigned long delay;
2374 
2375 	read_lock(&bond->lock);
2376 	if (bond->kill_timers) {
2377 		read_unlock(&bond->lock);
2378 		return;
2379 	}
2380 	if (__bond_mii_monitor(bond, 0)) {
2381 		read_unlock(&bond->lock);
2382 		rtnl_lock();
2383 		read_lock(&bond->lock);
2384 		__bond_mii_monitor(bond, 1);
2385 		rtnl_unlock();
2386 	}
2387 
2388 	delay = ((bond->params.miimon * HZ) / 1000) ? : 1;
2389 	read_unlock(&bond->lock);
2390 	queue_delayed_work(bond->wq, &bond->mii_work, delay);
2391 }
2392 
2393 static __be32 bond_glean_dev_ip(struct net_device *dev)
2394 {
2395 	struct in_device *idev;
2396 	struct in_ifaddr *ifa;
2397 	__be32 addr = 0;
2398 
2399 	if (!dev)
2400 		return 0;
2401 
2402 	rcu_read_lock();
2403 	idev = __in_dev_get_rcu(dev);
2404 	if (!idev)
2405 		goto out;
2406 
2407 	ifa = idev->ifa_list;
2408 	if (!ifa)
2409 		goto out;
2410 
2411 	addr = ifa->ifa_local;
2412 out:
2413 	rcu_read_unlock();
2414 	return addr;
2415 }
2416 
2417 static int bond_has_ip(struct bonding *bond)
2418 {
2419 	struct vlan_entry *vlan, *vlan_next;
2420 
2421 	if (bond->master_ip)
2422 		return 1;
2423 
2424 	if (list_empty(&bond->vlan_list))
2425 		return 0;
2426 
2427 	list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2428 				 vlan_list) {
2429 		if (vlan->vlan_ip)
2430 			return 1;
2431 	}
2432 
2433 	return 0;
2434 }
2435 
2436 static int bond_has_this_ip(struct bonding *bond, __be32 ip)
2437 {
2438 	struct vlan_entry *vlan, *vlan_next;
2439 
2440 	if (ip == bond->master_ip)
2441 		return 1;
2442 
2443 	if (list_empty(&bond->vlan_list))
2444 		return 0;
2445 
2446 	list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2447 				 vlan_list) {
2448 		if (ip == vlan->vlan_ip)
2449 			return 1;
2450 	}
2451 
2452 	return 0;
2453 }
2454 
2455 /*
2456  * We go to the (large) trouble of VLAN tagging ARP frames because
2457  * switches in VLAN mode (especially if ports are configured as
2458  * "native" to a VLAN) might not pass non-tagged frames.
2459  */
2460 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id)
2461 {
2462 	struct sk_buff *skb;
2463 
2464 	dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2465 	       slave_dev->name, dest_ip, src_ip, vlan_id);
2466 
2467 	skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2468 			 NULL, slave_dev->dev_addr, NULL);
2469 
2470 	if (!skb) {
2471 		printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2472 		return;
2473 	}
2474 	if (vlan_id) {
2475 		skb = vlan_put_tag(skb, vlan_id);
2476 		if (!skb) {
2477 			printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2478 			return;
2479 		}
2480 	}
2481 	arp_xmit(skb);
2482 }
2483 
2484 
2485 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2486 {
2487 	int i, vlan_id, rv;
2488 	__be32 *targets = bond->params.arp_targets;
2489 	struct vlan_entry *vlan, *vlan_next;
2490 	struct net_device *vlan_dev;
2491 	struct flowi fl;
2492 	struct rtable *rt;
2493 
2494 	for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2495 		if (!targets[i])
2496 			continue;
2497 		dprintk("basa: target %x\n", targets[i]);
2498 		if (list_empty(&bond->vlan_list)) {
2499 			dprintk("basa: empty vlan: arp_send\n");
2500 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2501 				      bond->master_ip, 0);
2502 			continue;
2503 		}
2504 
2505 		/*
2506 		 * If VLANs are configured, we do a route lookup to
2507 		 * determine which VLAN interface would be used, so we
2508 		 * can tag the ARP with the proper VLAN tag.
2509 		 */
2510 		memset(&fl, 0, sizeof(fl));
2511 		fl.fl4_dst = targets[i];
2512 		fl.fl4_tos = RTO_ONLINK;
2513 
2514 		rv = ip_route_output_key(&rt, &fl);
2515 		if (rv) {
2516 			if (net_ratelimit()) {
2517 				printk(KERN_WARNING DRV_NAME
2518 			     ": %s: no route to arp_ip_target %u.%u.%u.%u\n",
2519 				       bond->dev->name, NIPQUAD(fl.fl4_dst));
2520 			}
2521 			continue;
2522 		}
2523 
2524 		/*
2525 		 * This target is not on a VLAN
2526 		 */
2527 		if (rt->u.dst.dev == bond->dev) {
2528 			ip_rt_put(rt);
2529 			dprintk("basa: rtdev == bond->dev: arp_send\n");
2530 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2531 				      bond->master_ip, 0);
2532 			continue;
2533 		}
2534 
2535 		vlan_id = 0;
2536 		list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2537 					 vlan_list) {
2538 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2539 			if (vlan_dev == rt->u.dst.dev) {
2540 				vlan_id = vlan->vlan_id;
2541 				dprintk("basa: vlan match on %s %d\n",
2542 				       vlan_dev->name, vlan_id);
2543 				break;
2544 			}
2545 		}
2546 
2547 		if (vlan_id) {
2548 			ip_rt_put(rt);
2549 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2550 				      vlan->vlan_ip, vlan_id);
2551 			continue;
2552 		}
2553 
2554 		if (net_ratelimit()) {
2555 			printk(KERN_WARNING DRV_NAME
2556 	       ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n",
2557 			       bond->dev->name, NIPQUAD(fl.fl4_dst),
2558 			       rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2559 		}
2560 		ip_rt_put(rt);
2561 	}
2562 }
2563 
2564 /*
2565  * Kick out a gratuitous ARP for an IP on the bonding master plus one
2566  * for each VLAN above us.
2567  */
2568 static void bond_send_gratuitous_arp(struct bonding *bond)
2569 {
2570 	struct slave *slave = bond->curr_active_slave;
2571 	struct vlan_entry *vlan;
2572 	struct net_device *vlan_dev;
2573 
2574 	dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2575 				slave ? slave->dev->name : "NULL");
2576 	if (!slave)
2577 		return;
2578 
2579 	if (bond->master_ip) {
2580 		bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2581 				bond->master_ip, 0);
2582 	}
2583 
2584 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2585 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2586 		if (vlan->vlan_ip) {
2587 			bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2588 				      vlan->vlan_ip, vlan->vlan_id);
2589 		}
2590 	}
2591 }
2592 
2593 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip)
2594 {
2595 	int i;
2596 	__be32 *targets = bond->params.arp_targets;
2597 
2598 	targets = bond->params.arp_targets;
2599 	for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2600 		dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] "
2601 			"%u.%u.%u.%u bhti(tip) %d\n",
2602 		       NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]),
2603 		       bond_has_this_ip(bond, tip));
2604 		if (sip == targets[i]) {
2605 			if (bond_has_this_ip(bond, tip))
2606 				slave->last_arp_rx = jiffies;
2607 			return;
2608 		}
2609 	}
2610 }
2611 
2612 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
2613 {
2614 	struct arphdr *arp;
2615 	struct slave *slave;
2616 	struct bonding *bond;
2617 	unsigned char *arp_ptr;
2618 	__be32 sip, tip;
2619 
2620 	if (dev->nd_net != &init_net)
2621 		goto out;
2622 
2623 	if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER))
2624 		goto out;
2625 
2626 	bond = dev->priv;
2627 	read_lock(&bond->lock);
2628 
2629 	dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n",
2630 		bond->dev->name, skb->dev ? skb->dev->name : "NULL",
2631 		orig_dev ? orig_dev->name : "NULL");
2632 
2633 	slave = bond_get_slave_by_dev(bond, orig_dev);
2634 	if (!slave || !slave_do_arp_validate(bond, slave))
2635 		goto out_unlock;
2636 
2637 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
2638 	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
2639 				 (2 * dev->addr_len) +
2640 				 (2 * sizeof(u32)))))
2641 		goto out_unlock;
2642 
2643 	arp = arp_hdr(skb);
2644 	if (arp->ar_hln != dev->addr_len ||
2645 	    skb->pkt_type == PACKET_OTHERHOST ||
2646 	    skb->pkt_type == PACKET_LOOPBACK ||
2647 	    arp->ar_hrd != htons(ARPHRD_ETHER) ||
2648 	    arp->ar_pro != htons(ETH_P_IP) ||
2649 	    arp->ar_pln != 4)
2650 		goto out_unlock;
2651 
2652 	arp_ptr = (unsigned char *)(arp + 1);
2653 	arp_ptr += dev->addr_len;
2654 	memcpy(&sip, arp_ptr, 4);
2655 	arp_ptr += 4 + dev->addr_len;
2656 	memcpy(&tip, arp_ptr, 4);
2657 
2658 	dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u"
2659 		" tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name,
2660 		slave->state, bond->params.arp_validate,
2661 		slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip));
2662 
2663 	/*
2664 	 * Backup slaves won't see the ARP reply, but do come through
2665 	 * here for each ARP probe (so we swap the sip/tip to validate
2666 	 * the probe).  In a "redundant switch, common router" type of
2667 	 * configuration, the ARP probe will (hopefully) travel from
2668 	 * the active, through one switch, the router, then the other
2669 	 * switch before reaching the backup.
2670 	 */
2671 	if (slave->state == BOND_STATE_ACTIVE)
2672 		bond_validate_arp(bond, slave, sip, tip);
2673 	else
2674 		bond_validate_arp(bond, slave, tip, sip);
2675 
2676 out_unlock:
2677 	read_unlock(&bond->lock);
2678 out:
2679 	dev_kfree_skb(skb);
2680 	return NET_RX_SUCCESS;
2681 }
2682 
2683 /*
2684  * this function is called regularly to monitor each slave's link
2685  * ensuring that traffic is being sent and received when arp monitoring
2686  * is used in load-balancing mode. if the adapter has been dormant, then an
2687  * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2688  * arp monitoring in active backup mode.
2689  */
2690 void bond_loadbalance_arp_mon(struct work_struct *work)
2691 {
2692 	struct bonding *bond = container_of(work, struct bonding,
2693 					    arp_work.work);
2694 	struct slave *slave, *oldcurrent;
2695 	int do_failover = 0;
2696 	int delta_in_ticks;
2697 	int i;
2698 
2699 	read_lock(&bond->lock);
2700 
2701 	delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2702 
2703 	if (bond->kill_timers) {
2704 		goto out;
2705 	}
2706 
2707 	if (bond->slave_cnt == 0) {
2708 		goto re_arm;
2709 	}
2710 
2711 	read_lock(&bond->curr_slave_lock);
2712 	oldcurrent = bond->curr_active_slave;
2713 	read_unlock(&bond->curr_slave_lock);
2714 
2715 	/* see if any of the previous devices are up now (i.e. they have
2716 	 * xmt and rcv traffic). the curr_active_slave does not come into
2717 	 * the picture unless it is null. also, slave->jiffies is not needed
2718 	 * here because we send an arp on each slave and give a slave as
2719 	 * long as it needs to get the tx/rx within the delta.
2720 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2721 	 *       so it can wait
2722 	 */
2723 	bond_for_each_slave(bond, slave, i) {
2724 		if (slave->link != BOND_LINK_UP) {
2725 			if (((jiffies - slave->dev->trans_start) <= delta_in_ticks) &&
2726 			    ((jiffies - slave->dev->last_rx) <= delta_in_ticks)) {
2727 
2728 				slave->link  = BOND_LINK_UP;
2729 				slave->state = BOND_STATE_ACTIVE;
2730 
2731 				/* primary_slave has no meaning in round-robin
2732 				 * mode. the window of a slave being up and
2733 				 * curr_active_slave being null after enslaving
2734 				 * is closed.
2735 				 */
2736 				if (!oldcurrent) {
2737 					printk(KERN_INFO DRV_NAME
2738 					       ": %s: link status definitely "
2739 					       "up for interface %s, ",
2740 					       bond->dev->name,
2741 					       slave->dev->name);
2742 					do_failover = 1;
2743 				} else {
2744 					printk(KERN_INFO DRV_NAME
2745 					       ": %s: interface %s is now up\n",
2746 					       bond->dev->name,
2747 					       slave->dev->name);
2748 				}
2749 			}
2750 		} else {
2751 			/* slave->link == BOND_LINK_UP */
2752 
2753 			/* not all switches will respond to an arp request
2754 			 * when the source ip is 0, so don't take the link down
2755 			 * if we don't know our ip yet
2756 			 */
2757 			if (((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) ||
2758 			    (((jiffies - slave->dev->last_rx) >= (2*delta_in_ticks)) &&
2759 			     bond_has_ip(bond))) {
2760 
2761 				slave->link  = BOND_LINK_DOWN;
2762 				slave->state = BOND_STATE_BACKUP;
2763 
2764 				if (slave->link_failure_count < UINT_MAX) {
2765 					slave->link_failure_count++;
2766 				}
2767 
2768 				printk(KERN_INFO DRV_NAME
2769 				       ": %s: interface %s is now down.\n",
2770 				       bond->dev->name,
2771 				       slave->dev->name);
2772 
2773 				if (slave == oldcurrent) {
2774 					do_failover = 1;
2775 				}
2776 			}
2777 		}
2778 
2779 		/* note: if switch is in round-robin mode, all links
2780 		 * must tx arp to ensure all links rx an arp - otherwise
2781 		 * links may oscillate or not come up at all; if switch is
2782 		 * in something like xor mode, there is nothing we can
2783 		 * do - all replies will be rx'ed on same link causing slaves
2784 		 * to be unstable during low/no traffic periods
2785 		 */
2786 		if (IS_UP(slave->dev)) {
2787 			bond_arp_send_all(bond, slave);
2788 		}
2789 	}
2790 
2791 	if (do_failover) {
2792 		rtnl_lock();
2793 		write_lock_bh(&bond->curr_slave_lock);
2794 
2795 		bond_select_active_slave(bond);
2796 
2797 		write_unlock_bh(&bond->curr_slave_lock);
2798 		rtnl_unlock();
2799 
2800 	}
2801 
2802 re_arm:
2803 	if (bond->params.arp_interval)
2804 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
2805 out:
2806 	read_unlock(&bond->lock);
2807 }
2808 
2809 /*
2810  * When using arp monitoring in active-backup mode, this function is
2811  * called to determine if any backup slaves have went down or a new
2812  * current slave needs to be found.
2813  * The backup slaves never generate traffic, they are considered up by merely
2814  * receiving traffic. If the current slave goes down, each backup slave will
2815  * be given the opportunity to tx/rx an arp before being taken down - this
2816  * prevents all slaves from being taken down due to the current slave not
2817  * sending any traffic for the backups to receive. The arps are not necessarily
2818  * necessary, any tx and rx traffic will keep the current slave up. While any
2819  * rx traffic will keep the backup slaves up, the current slave is responsible
2820  * for generating traffic to keep them up regardless of any other traffic they
2821  * may have received.
2822  * see loadbalance_arp_monitor for arp monitoring in load balancing mode
2823  */
2824 void bond_activebackup_arp_mon(struct work_struct *work)
2825 {
2826 	struct bonding *bond = container_of(work, struct bonding,
2827 					    arp_work.work);
2828 	struct slave *slave;
2829 	int delta_in_ticks;
2830 	int i;
2831 
2832 	read_lock(&bond->lock);
2833 
2834 	delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2835 
2836 	if (bond->kill_timers) {
2837 		goto out;
2838 	}
2839 
2840 	if (bond->slave_cnt == 0) {
2841 		goto re_arm;
2842 	}
2843 
2844 	/* determine if any slave has come up or any backup slave has
2845 	 * gone down
2846 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2847 	 *       so it can wait
2848 	 */
2849 	bond_for_each_slave(bond, slave, i) {
2850 		if (slave->link != BOND_LINK_UP) {
2851 			if ((jiffies - slave_last_rx(bond, slave)) <=
2852 			     delta_in_ticks) {
2853 
2854 				slave->link = BOND_LINK_UP;
2855 
2856 				rtnl_lock();
2857 
2858 				write_lock_bh(&bond->curr_slave_lock);
2859 
2860 				if ((!bond->curr_active_slave) &&
2861 				    ((jiffies - slave->dev->trans_start) <= delta_in_ticks)) {
2862 					bond_change_active_slave(bond, slave);
2863 					bond->current_arp_slave = NULL;
2864 				} else if (bond->curr_active_slave != slave) {
2865 					/* this slave has just come up but we
2866 					 * already have a current slave; this
2867 					 * can also happen if bond_enslave adds
2868 					 * a new slave that is up while we are
2869 					 * searching for a new slave
2870 					 */
2871 					bond_set_slave_inactive_flags(slave);
2872 					bond->current_arp_slave = NULL;
2873 				}
2874 
2875 				bond_set_carrier(bond);
2876 
2877 				if (slave == bond->curr_active_slave) {
2878 					printk(KERN_INFO DRV_NAME
2879 					       ": %s: %s is up and now the "
2880 					       "active interface\n",
2881 					       bond->dev->name,
2882 					       slave->dev->name);
2883 					netif_carrier_on(bond->dev);
2884 				} else {
2885 					printk(KERN_INFO DRV_NAME
2886 					       ": %s: backup interface %s is "
2887 					       "now up\n",
2888 					       bond->dev->name,
2889 					       slave->dev->name);
2890 				}
2891 
2892 				write_unlock_bh(&bond->curr_slave_lock);
2893 				rtnl_unlock();
2894 			}
2895 		} else {
2896 			read_lock(&bond->curr_slave_lock);
2897 
2898 			if ((slave != bond->curr_active_slave) &&
2899 			    (!bond->current_arp_slave) &&
2900 			    (((jiffies - slave_last_rx(bond, slave)) >= 3*delta_in_ticks) &&
2901 			     bond_has_ip(bond))) {
2902 				/* a backup slave has gone down; three times
2903 				 * the delta allows the current slave to be
2904 				 * taken out before the backup slave.
2905 				 * note: a non-null current_arp_slave indicates
2906 				 * the curr_active_slave went down and we are
2907 				 * searching for a new one; under this
2908 				 * condition we only take the curr_active_slave
2909 				 * down - this gives each slave a chance to
2910 				 * tx/rx traffic before being taken out
2911 				 */
2912 
2913 				read_unlock(&bond->curr_slave_lock);
2914 
2915 				slave->link  = BOND_LINK_DOWN;
2916 
2917 				if (slave->link_failure_count < UINT_MAX) {
2918 					slave->link_failure_count++;
2919 				}
2920 
2921 				bond_set_slave_inactive_flags(slave);
2922 
2923 				printk(KERN_INFO DRV_NAME
2924 				       ": %s: backup interface %s is now down\n",
2925 				       bond->dev->name,
2926 				       slave->dev->name);
2927 			} else {
2928 				read_unlock(&bond->curr_slave_lock);
2929 			}
2930 		}
2931 	}
2932 
2933 	read_lock(&bond->curr_slave_lock);
2934 	slave = bond->curr_active_slave;
2935 	read_unlock(&bond->curr_slave_lock);
2936 
2937 	if (slave) {
2938 		/* if we have sent traffic in the past 2*arp_intervals but
2939 		 * haven't xmit and rx traffic in that time interval, select
2940 		 * a different slave. slave->jiffies is only updated when
2941 		 * a slave first becomes the curr_active_slave - not necessarily
2942 		 * after every arp; this ensures the slave has a full 2*delta
2943 		 * before being taken out. if a primary is being used, check
2944 		 * if it is up and needs to take over as the curr_active_slave
2945 		 */
2946 		if ((((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) ||
2947 	    (((jiffies - slave_last_rx(bond, slave)) >= (2*delta_in_ticks)) &&
2948 	     bond_has_ip(bond))) &&
2949 		    ((jiffies - slave->jiffies) >= 2*delta_in_ticks)) {
2950 
2951 			slave->link  = BOND_LINK_DOWN;
2952 
2953 			if (slave->link_failure_count < UINT_MAX) {
2954 				slave->link_failure_count++;
2955 			}
2956 
2957 			printk(KERN_INFO DRV_NAME
2958 			       ": %s: link status down for active interface "
2959 			       "%s, disabling it\n",
2960 			       bond->dev->name,
2961 			       slave->dev->name);
2962 
2963 			rtnl_lock();
2964 			write_lock_bh(&bond->curr_slave_lock);
2965 
2966 			bond_select_active_slave(bond);
2967 			slave = bond->curr_active_slave;
2968 
2969 			write_unlock_bh(&bond->curr_slave_lock);
2970 
2971 			rtnl_unlock();
2972 
2973 			bond->current_arp_slave = slave;
2974 
2975 			if (slave) {
2976 				slave->jiffies = jiffies;
2977 			}
2978 		} else if ((bond->primary_slave) &&
2979 			   (bond->primary_slave != slave) &&
2980 			   (bond->primary_slave->link == BOND_LINK_UP)) {
2981 			/* at this point, slave is the curr_active_slave */
2982 			printk(KERN_INFO DRV_NAME
2983 			       ": %s: changing from interface %s to primary "
2984 			       "interface %s\n",
2985 			       bond->dev->name,
2986 			       slave->dev->name,
2987 			       bond->primary_slave->dev->name);
2988 
2989 			/* primary is up so switch to it */
2990 			rtnl_lock();
2991 			write_lock_bh(&bond->curr_slave_lock);
2992 			bond_change_active_slave(bond, bond->primary_slave);
2993 			write_unlock_bh(&bond->curr_slave_lock);
2994 
2995 			rtnl_unlock();
2996 
2997 			slave = bond->primary_slave;
2998 			slave->jiffies = jiffies;
2999 		} else {
3000 			bond->current_arp_slave = NULL;
3001 		}
3002 
3003 		/* the current slave must tx an arp to ensure backup slaves
3004 		 * rx traffic
3005 		 */
3006 		if (slave && bond_has_ip(bond)) {
3007 			bond_arp_send_all(bond, slave);
3008 		}
3009 	}
3010 
3011 	/* if we don't have a curr_active_slave, search for the next available
3012 	 * backup slave from the current_arp_slave and make it the candidate
3013 	 * for becoming the curr_active_slave
3014 	 */
3015 	if (!slave) {
3016 		if (!bond->current_arp_slave) {
3017 			bond->current_arp_slave = bond->first_slave;
3018 		}
3019 
3020 		if (bond->current_arp_slave) {
3021 			bond_set_slave_inactive_flags(bond->current_arp_slave);
3022 
3023 			/* search for next candidate */
3024 			bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
3025 				if (IS_UP(slave->dev)) {
3026 					slave->link = BOND_LINK_BACK;
3027 					bond_set_slave_active_flags(slave);
3028 					bond_arp_send_all(bond, slave);
3029 					slave->jiffies = jiffies;
3030 					bond->current_arp_slave = slave;
3031 					break;
3032 				}
3033 
3034 				/* if the link state is up at this point, we
3035 				 * mark it down - this can happen if we have
3036 				 * simultaneous link failures and
3037 				 * reselect_active_interface doesn't make this
3038 				 * one the current slave so it is still marked
3039 				 * up when it is actually down
3040 				 */
3041 				if (slave->link == BOND_LINK_UP) {
3042 					slave->link  = BOND_LINK_DOWN;
3043 					if (slave->link_failure_count < UINT_MAX) {
3044 						slave->link_failure_count++;
3045 					}
3046 
3047 					bond_set_slave_inactive_flags(slave);
3048 
3049 					printk(KERN_INFO DRV_NAME
3050 					       ": %s: backup interface %s is "
3051 					       "now down.\n",
3052 					       bond->dev->name,
3053 					       slave->dev->name);
3054 				}
3055 			}
3056 		}
3057 	}
3058 
3059 re_arm:
3060 	if (bond->params.arp_interval) {
3061 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
3062 	}
3063 out:
3064 	read_unlock(&bond->lock);
3065 }
3066 
3067 /*------------------------------ proc/seq_file-------------------------------*/
3068 
3069 #ifdef CONFIG_PROC_FS
3070 
3071 #define SEQ_START_TOKEN ((void *)1)
3072 
3073 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
3074 {
3075 	struct bonding *bond = seq->private;
3076 	loff_t off = 0;
3077 	struct slave *slave;
3078 	int i;
3079 
3080 	/* make sure the bond won't be taken away */
3081 	read_lock(&dev_base_lock);
3082 	read_lock(&bond->lock);
3083 
3084 	if (*pos == 0) {
3085 		return SEQ_START_TOKEN;
3086 	}
3087 
3088 	bond_for_each_slave(bond, slave, i) {
3089 		if (++off == *pos) {
3090 			return slave;
3091 		}
3092 	}
3093 
3094 	return NULL;
3095 }
3096 
3097 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3098 {
3099 	struct bonding *bond = seq->private;
3100 	struct slave *slave = v;
3101 
3102 	++*pos;
3103 	if (v == SEQ_START_TOKEN) {
3104 		return bond->first_slave;
3105 	}
3106 
3107 	slave = slave->next;
3108 
3109 	return (slave == bond->first_slave) ? NULL : slave;
3110 }
3111 
3112 static void bond_info_seq_stop(struct seq_file *seq, void *v)
3113 {
3114 	struct bonding *bond = seq->private;
3115 
3116 	read_unlock(&bond->lock);
3117 	read_unlock(&dev_base_lock);
3118 }
3119 
3120 static void bond_info_show_master(struct seq_file *seq)
3121 {
3122 	struct bonding *bond = seq->private;
3123 	struct slave *curr;
3124 	int i;
3125 	u32 target;
3126 
3127 	read_lock(&bond->curr_slave_lock);
3128 	curr = bond->curr_active_slave;
3129 	read_unlock(&bond->curr_slave_lock);
3130 
3131 	seq_printf(seq, "Bonding Mode: %s",
3132 		   bond_mode_name(bond->params.mode));
3133 
3134 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP &&
3135 	    bond->params.fail_over_mac)
3136 		seq_printf(seq, " (fail_over_mac)");
3137 
3138 	seq_printf(seq, "\n");
3139 
3140 	if (bond->params.mode == BOND_MODE_XOR ||
3141 		bond->params.mode == BOND_MODE_8023AD) {
3142 		seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
3143 			xmit_hashtype_tbl[bond->params.xmit_policy].modename,
3144 			bond->params.xmit_policy);
3145 	}
3146 
3147 	if (USES_PRIMARY(bond->params.mode)) {
3148 		seq_printf(seq, "Primary Slave: %s\n",
3149 			   (bond->primary_slave) ?
3150 			   bond->primary_slave->dev->name : "None");
3151 
3152 		seq_printf(seq, "Currently Active Slave: %s\n",
3153 			   (curr) ? curr->dev->name : "None");
3154 	}
3155 
3156 	seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
3157 		   "up" : "down");
3158 	seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
3159 	seq_printf(seq, "Up Delay (ms): %d\n",
3160 		   bond->params.updelay * bond->params.miimon);
3161 	seq_printf(seq, "Down Delay (ms): %d\n",
3162 		   bond->params.downdelay * bond->params.miimon);
3163 
3164 
3165 	/* ARP information */
3166 	if(bond->params.arp_interval > 0) {
3167 		int printed=0;
3168 		seq_printf(seq, "ARP Polling Interval (ms): %d\n",
3169 				bond->params.arp_interval);
3170 
3171 		seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
3172 
3173 		for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
3174 			if (!bond->params.arp_targets[i])
3175 				continue;
3176 			if (printed)
3177 				seq_printf(seq, ",");
3178 			target = ntohl(bond->params.arp_targets[i]);
3179 			seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target));
3180 			printed = 1;
3181 		}
3182 		seq_printf(seq, "\n");
3183 	}
3184 
3185 	if (bond->params.mode == BOND_MODE_8023AD) {
3186 		struct ad_info ad_info;
3187 		DECLARE_MAC_BUF(mac);
3188 
3189 		seq_puts(seq, "\n802.3ad info\n");
3190 		seq_printf(seq, "LACP rate: %s\n",
3191 			   (bond->params.lacp_fast) ? "fast" : "slow");
3192 
3193 		if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
3194 			seq_printf(seq, "bond %s has no active aggregator\n",
3195 				   bond->dev->name);
3196 		} else {
3197 			seq_printf(seq, "Active Aggregator Info:\n");
3198 
3199 			seq_printf(seq, "\tAggregator ID: %d\n",
3200 				   ad_info.aggregator_id);
3201 			seq_printf(seq, "\tNumber of ports: %d\n",
3202 				   ad_info.ports);
3203 			seq_printf(seq, "\tActor Key: %d\n",
3204 				   ad_info.actor_key);
3205 			seq_printf(seq, "\tPartner Key: %d\n",
3206 				   ad_info.partner_key);
3207 			seq_printf(seq, "\tPartner Mac Address: %s\n",
3208 				   print_mac(mac, ad_info.partner_system));
3209 		}
3210 	}
3211 }
3212 
3213 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
3214 {
3215 	struct bonding *bond = seq->private;
3216 	DECLARE_MAC_BUF(mac);
3217 
3218 	seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
3219 	seq_printf(seq, "MII Status: %s\n",
3220 		   (slave->link == BOND_LINK_UP) ?  "up" : "down");
3221 	seq_printf(seq, "Link Failure Count: %u\n",
3222 		   slave->link_failure_count);
3223 
3224 	seq_printf(seq,
3225 		   "Permanent HW addr: %s\n",
3226 		   print_mac(mac, slave->perm_hwaddr));
3227 
3228 	if (bond->params.mode == BOND_MODE_8023AD) {
3229 		const struct aggregator *agg
3230 			= SLAVE_AD_INFO(slave).port.aggregator;
3231 
3232 		if (agg) {
3233 			seq_printf(seq, "Aggregator ID: %d\n",
3234 				   agg->aggregator_identifier);
3235 		} else {
3236 			seq_puts(seq, "Aggregator ID: N/A\n");
3237 		}
3238 	}
3239 }
3240 
3241 static int bond_info_seq_show(struct seq_file *seq, void *v)
3242 {
3243 	if (v == SEQ_START_TOKEN) {
3244 		seq_printf(seq, "%s\n", version);
3245 		bond_info_show_master(seq);
3246 	} else {
3247 		bond_info_show_slave(seq, v);
3248 	}
3249 
3250 	return 0;
3251 }
3252 
3253 static struct seq_operations bond_info_seq_ops = {
3254 	.start = bond_info_seq_start,
3255 	.next  = bond_info_seq_next,
3256 	.stop  = bond_info_seq_stop,
3257 	.show  = bond_info_seq_show,
3258 };
3259 
3260 static int bond_info_open(struct inode *inode, struct file *file)
3261 {
3262 	struct seq_file *seq;
3263 	struct proc_dir_entry *proc;
3264 	int res;
3265 
3266 	res = seq_open(file, &bond_info_seq_ops);
3267 	if (!res) {
3268 		/* recover the pointer buried in proc_dir_entry data */
3269 		seq = file->private_data;
3270 		proc = PDE(inode);
3271 		seq->private = proc->data;
3272 	}
3273 
3274 	return res;
3275 }
3276 
3277 static const struct file_operations bond_info_fops = {
3278 	.owner   = THIS_MODULE,
3279 	.open    = bond_info_open,
3280 	.read    = seq_read,
3281 	.llseek  = seq_lseek,
3282 	.release = seq_release,
3283 };
3284 
3285 static int bond_create_proc_entry(struct bonding *bond)
3286 {
3287 	struct net_device *bond_dev = bond->dev;
3288 
3289 	if (bond_proc_dir) {
3290 		bond->proc_entry = create_proc_entry(bond_dev->name,
3291 						     S_IRUGO,
3292 						     bond_proc_dir);
3293 		if (bond->proc_entry == NULL) {
3294 			printk(KERN_WARNING DRV_NAME
3295 			       ": Warning: Cannot create /proc/net/%s/%s\n",
3296 			       DRV_NAME, bond_dev->name);
3297 		} else {
3298 			bond->proc_entry->data = bond;
3299 			bond->proc_entry->proc_fops = &bond_info_fops;
3300 			bond->proc_entry->owner = THIS_MODULE;
3301 			memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3302 		}
3303 	}
3304 
3305 	return 0;
3306 }
3307 
3308 static void bond_remove_proc_entry(struct bonding *bond)
3309 {
3310 	if (bond_proc_dir && bond->proc_entry) {
3311 		remove_proc_entry(bond->proc_file_name, bond_proc_dir);
3312 		memset(bond->proc_file_name, 0, IFNAMSIZ);
3313 		bond->proc_entry = NULL;
3314 	}
3315 }
3316 
3317 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3318  * Caller must hold rtnl_lock.
3319  */
3320 static void bond_create_proc_dir(void)
3321 {
3322 	int len = strlen(DRV_NAME);
3323 
3324 	for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir;
3325 	     bond_proc_dir = bond_proc_dir->next) {
3326 		if ((bond_proc_dir->namelen == len) &&
3327 		    !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3328 			break;
3329 		}
3330 	}
3331 
3332 	if (!bond_proc_dir) {
3333 		bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net);
3334 		if (bond_proc_dir) {
3335 			bond_proc_dir->owner = THIS_MODULE;
3336 		} else {
3337 			printk(KERN_WARNING DRV_NAME
3338 				": Warning: cannot create /proc/net/%s\n",
3339 				DRV_NAME);
3340 		}
3341 	}
3342 }
3343 
3344 /* Destroy the bonding directory under /proc/net, if empty.
3345  * Caller must hold rtnl_lock.
3346  */
3347 static void bond_destroy_proc_dir(void)
3348 {
3349 	struct proc_dir_entry *de;
3350 
3351 	if (!bond_proc_dir) {
3352 		return;
3353 	}
3354 
3355 	/* verify that the /proc dir is empty */
3356 	for (de = bond_proc_dir->subdir; de; de = de->next) {
3357 		/* ignore . and .. */
3358 		if (*(de->name) != '.') {
3359 			break;
3360 		}
3361 	}
3362 
3363 	if (de) {
3364 		if (bond_proc_dir->owner == THIS_MODULE) {
3365 			bond_proc_dir->owner = NULL;
3366 		}
3367 	} else {
3368 		remove_proc_entry(DRV_NAME, init_net.proc_net);
3369 		bond_proc_dir = NULL;
3370 	}
3371 }
3372 #endif /* CONFIG_PROC_FS */
3373 
3374 /*-------------------------- netdev event handling --------------------------*/
3375 
3376 /*
3377  * Change device name
3378  */
3379 static int bond_event_changename(struct bonding *bond)
3380 {
3381 #ifdef CONFIG_PROC_FS
3382 	bond_remove_proc_entry(bond);
3383 	bond_create_proc_entry(bond);
3384 #endif
3385 	down_write(&(bonding_rwsem));
3386         bond_destroy_sysfs_entry(bond);
3387         bond_create_sysfs_entry(bond);
3388 	up_write(&(bonding_rwsem));
3389 	return NOTIFY_DONE;
3390 }
3391 
3392 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3393 {
3394 	struct bonding *event_bond = bond_dev->priv;
3395 
3396 	switch (event) {
3397 	case NETDEV_CHANGENAME:
3398 		return bond_event_changename(event_bond);
3399 	case NETDEV_UNREGISTER:
3400 		/*
3401 		 * TODO: remove a bond from the list?
3402 		 */
3403 		break;
3404 	default:
3405 		break;
3406 	}
3407 
3408 	return NOTIFY_DONE;
3409 }
3410 
3411 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3412 {
3413 	struct net_device *bond_dev = slave_dev->master;
3414 	struct bonding *bond = bond_dev->priv;
3415 
3416 	switch (event) {
3417 	case NETDEV_UNREGISTER:
3418 		if (bond_dev) {
3419 			if (bond->setup_by_slave)
3420 				bond_release_and_destroy(bond_dev, slave_dev);
3421 			else
3422 				bond_release(bond_dev, slave_dev);
3423 		}
3424 		break;
3425 	case NETDEV_CHANGE:
3426 		/*
3427 		 * TODO: is this what we get if somebody
3428 		 * sets up a hierarchical bond, then rmmod's
3429 		 * one of the slave bonding devices?
3430 		 */
3431 		break;
3432 	case NETDEV_DOWN:
3433 		/*
3434 		 * ... Or is it this?
3435 		 */
3436 		break;
3437 	case NETDEV_CHANGEMTU:
3438 		/*
3439 		 * TODO: Should slaves be allowed to
3440 		 * independently alter their MTU?  For
3441 		 * an active-backup bond, slaves need
3442 		 * not be the same type of device, so
3443 		 * MTUs may vary.  For other modes,
3444 		 * slaves arguably should have the
3445 		 * same MTUs. To do this, we'd need to
3446 		 * take over the slave's change_mtu
3447 		 * function for the duration of their
3448 		 * servitude.
3449 		 */
3450 		break;
3451 	case NETDEV_CHANGENAME:
3452 		/*
3453 		 * TODO: handle changing the primary's name
3454 		 */
3455 		break;
3456 	case NETDEV_FEAT_CHANGE:
3457 		bond_compute_features(bond);
3458 		break;
3459 	default:
3460 		break;
3461 	}
3462 
3463 	return NOTIFY_DONE;
3464 }
3465 
3466 /*
3467  * bond_netdev_event: handle netdev notifier chain events.
3468  *
3469  * This function receives events for the netdev chain.  The caller (an
3470  * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3471  * locks for us to safely manipulate the slave devices (RTNL lock,
3472  * dev_probe_lock).
3473  */
3474 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3475 {
3476 	struct net_device *event_dev = (struct net_device *)ptr;
3477 
3478 	if (event_dev->nd_net != &init_net)
3479 		return NOTIFY_DONE;
3480 
3481 	dprintk("event_dev: %s, event: %lx\n",
3482 		(event_dev ? event_dev->name : "None"),
3483 		event);
3484 
3485 	if (!(event_dev->priv_flags & IFF_BONDING))
3486 		return NOTIFY_DONE;
3487 
3488 	if (event_dev->flags & IFF_MASTER) {
3489 		dprintk("IFF_MASTER\n");
3490 		return bond_master_netdev_event(event, event_dev);
3491 	}
3492 
3493 	if (event_dev->flags & IFF_SLAVE) {
3494 		dprintk("IFF_SLAVE\n");
3495 		return bond_slave_netdev_event(event, event_dev);
3496 	}
3497 
3498 	return NOTIFY_DONE;
3499 }
3500 
3501 /*
3502  * bond_inetaddr_event: handle inetaddr notifier chain events.
3503  *
3504  * We keep track of device IPs primarily to use as source addresses in
3505  * ARP monitor probes (rather than spewing out broadcasts all the time).
3506  *
3507  * We track one IP for the main device (if it has one), plus one per VLAN.
3508  */
3509 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3510 {
3511 	struct in_ifaddr *ifa = ptr;
3512 	struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3513 	struct bonding *bond, *bond_next;
3514 	struct vlan_entry *vlan, *vlan_next;
3515 
3516 	list_for_each_entry_safe(bond, bond_next, &bond_dev_list, bond_list) {
3517 		if (bond->dev == event_dev) {
3518 			switch (event) {
3519 			case NETDEV_UP:
3520 				bond->master_ip = ifa->ifa_local;
3521 				return NOTIFY_OK;
3522 			case NETDEV_DOWN:
3523 				bond->master_ip = bond_glean_dev_ip(bond->dev);
3524 				return NOTIFY_OK;
3525 			default:
3526 				return NOTIFY_DONE;
3527 			}
3528 		}
3529 
3530 		if (list_empty(&bond->vlan_list))
3531 			continue;
3532 
3533 		list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
3534 					 vlan_list) {
3535 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
3536 			if (vlan_dev == event_dev) {
3537 				switch (event) {
3538 				case NETDEV_UP:
3539 					vlan->vlan_ip = ifa->ifa_local;
3540 					return NOTIFY_OK;
3541 				case NETDEV_DOWN:
3542 					vlan->vlan_ip =
3543 						bond_glean_dev_ip(vlan_dev);
3544 					return NOTIFY_OK;
3545 				default:
3546 					return NOTIFY_DONE;
3547 				}
3548 			}
3549 		}
3550 	}
3551 	return NOTIFY_DONE;
3552 }
3553 
3554 static struct notifier_block bond_netdev_notifier = {
3555 	.notifier_call = bond_netdev_event,
3556 };
3557 
3558 static struct notifier_block bond_inetaddr_notifier = {
3559 	.notifier_call = bond_inetaddr_event,
3560 };
3561 
3562 /*-------------------------- Packet type handling ---------------------------*/
3563 
3564 /* register to receive lacpdus on a bond */
3565 static void bond_register_lacpdu(struct bonding *bond)
3566 {
3567 	struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3568 
3569 	/* initialize packet type */
3570 	pk_type->type = PKT_TYPE_LACPDU;
3571 	pk_type->dev = bond->dev;
3572 	pk_type->func = bond_3ad_lacpdu_recv;
3573 
3574 	dev_add_pack(pk_type);
3575 }
3576 
3577 /* unregister to receive lacpdus on a bond */
3578 static void bond_unregister_lacpdu(struct bonding *bond)
3579 {
3580 	dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3581 }
3582 
3583 void bond_register_arp(struct bonding *bond)
3584 {
3585 	struct packet_type *pt = &bond->arp_mon_pt;
3586 
3587 	if (pt->type)
3588 		return;
3589 
3590 	pt->type = htons(ETH_P_ARP);
3591 	pt->dev = bond->dev;
3592 	pt->func = bond_arp_rcv;
3593 	dev_add_pack(pt);
3594 }
3595 
3596 void bond_unregister_arp(struct bonding *bond)
3597 {
3598 	struct packet_type *pt = &bond->arp_mon_pt;
3599 
3600 	dev_remove_pack(pt);
3601 	pt->type = 0;
3602 }
3603 
3604 /*---------------------------- Hashing Policies -----------------------------*/
3605 
3606 /*
3607  * Hash for the output device based upon layer 3 and layer 4 data. If
3608  * the packet is a frag or not TCP or UDP, just use layer 3 data.  If it is
3609  * altogether not IP, mimic bond_xmit_hash_policy_l2()
3610  */
3611 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3612 				    struct net_device *bond_dev, int count)
3613 {
3614 	struct ethhdr *data = (struct ethhdr *)skb->data;
3615 	struct iphdr *iph = ip_hdr(skb);
3616 	__be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl);
3617 	int layer4_xor = 0;
3618 
3619 	if (skb->protocol == __constant_htons(ETH_P_IP)) {
3620 		if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) &&
3621 		    (iph->protocol == IPPROTO_TCP ||
3622 		     iph->protocol == IPPROTO_UDP)) {
3623 			layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1)));
3624 		}
3625 		return (layer4_xor ^
3626 			((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3627 
3628 	}
3629 
3630 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3631 }
3632 
3633 /*
3634  * Hash for the output device based upon layer 2 data
3635  */
3636 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3637 				   struct net_device *bond_dev, int count)
3638 {
3639 	struct ethhdr *data = (struct ethhdr *)skb->data;
3640 
3641 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3642 }
3643 
3644 /*-------------------------- Device entry points ----------------------------*/
3645 
3646 static int bond_open(struct net_device *bond_dev)
3647 {
3648 	struct bonding *bond = bond_dev->priv;
3649 
3650 	bond->kill_timers = 0;
3651 
3652 	if ((bond->params.mode == BOND_MODE_TLB) ||
3653 	    (bond->params.mode == BOND_MODE_ALB)) {
3654 		/* bond_alb_initialize must be called before the timer
3655 		 * is started.
3656 		 */
3657 		if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3658 			/* something went wrong - fail the open operation */
3659 			return -1;
3660 		}
3661 
3662 		INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor);
3663 		queue_delayed_work(bond->wq, &bond->alb_work, 0);
3664 	}
3665 
3666 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3667 		INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor);
3668 		queue_delayed_work(bond->wq, &bond->mii_work, 0);
3669 	}
3670 
3671 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3672 		if (bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3673 			INIT_DELAYED_WORK(&bond->arp_work,
3674 					  bond_activebackup_arp_mon);
3675 		else
3676 			INIT_DELAYED_WORK(&bond->arp_work,
3677 					  bond_loadbalance_arp_mon);
3678 
3679 		queue_delayed_work(bond->wq, &bond->arp_work, 0);
3680 		if (bond->params.arp_validate)
3681 			bond_register_arp(bond);
3682 	}
3683 
3684 	if (bond->params.mode == BOND_MODE_8023AD) {
3685 		INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler);
3686 		queue_delayed_work(bond->wq, &bond->ad_work, 0);
3687 		/* register to receive LACPDUs */
3688 		bond_register_lacpdu(bond);
3689 	}
3690 
3691 	return 0;
3692 }
3693 
3694 static int bond_close(struct net_device *bond_dev)
3695 {
3696 	struct bonding *bond = bond_dev->priv;
3697 
3698 	if (bond->params.mode == BOND_MODE_8023AD) {
3699 		/* Unregister the receive of LACPDUs */
3700 		bond_unregister_lacpdu(bond);
3701 	}
3702 
3703 	if (bond->params.arp_validate)
3704 		bond_unregister_arp(bond);
3705 
3706 	write_lock_bh(&bond->lock);
3707 
3708 
3709 	/* signal timers not to re-arm */
3710 	bond->kill_timers = 1;
3711 
3712 	write_unlock_bh(&bond->lock);
3713 
3714 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3715 		cancel_delayed_work(&bond->mii_work);
3716 	}
3717 
3718 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3719 		cancel_delayed_work(&bond->arp_work);
3720 	}
3721 
3722 	switch (bond->params.mode) {
3723 	case BOND_MODE_8023AD:
3724 		cancel_delayed_work(&bond->ad_work);
3725 		break;
3726 	case BOND_MODE_TLB:
3727 	case BOND_MODE_ALB:
3728 		cancel_delayed_work(&bond->alb_work);
3729 		break;
3730 	default:
3731 		break;
3732 	}
3733 
3734 
3735 	if ((bond->params.mode == BOND_MODE_TLB) ||
3736 	    (bond->params.mode == BOND_MODE_ALB)) {
3737 		/* Must be called only after all
3738 		 * slaves have been released
3739 		 */
3740 		bond_alb_deinitialize(bond);
3741 	}
3742 
3743 	return 0;
3744 }
3745 
3746 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3747 {
3748 	struct bonding *bond = bond_dev->priv;
3749 	struct net_device_stats *stats = &(bond->stats), *sstats;
3750 	struct slave *slave;
3751 	int i;
3752 
3753 	memset(stats, 0, sizeof(struct net_device_stats));
3754 
3755 	read_lock_bh(&bond->lock);
3756 
3757 	bond_for_each_slave(bond, slave, i) {
3758 		sstats = slave->dev->get_stats(slave->dev);
3759 		stats->rx_packets += sstats->rx_packets;
3760 		stats->rx_bytes += sstats->rx_bytes;
3761 		stats->rx_errors += sstats->rx_errors;
3762 		stats->rx_dropped += sstats->rx_dropped;
3763 
3764 		stats->tx_packets += sstats->tx_packets;
3765 		stats->tx_bytes += sstats->tx_bytes;
3766 		stats->tx_errors += sstats->tx_errors;
3767 		stats->tx_dropped += sstats->tx_dropped;
3768 
3769 		stats->multicast += sstats->multicast;
3770 		stats->collisions += sstats->collisions;
3771 
3772 		stats->rx_length_errors += sstats->rx_length_errors;
3773 		stats->rx_over_errors += sstats->rx_over_errors;
3774 		stats->rx_crc_errors += sstats->rx_crc_errors;
3775 		stats->rx_frame_errors += sstats->rx_frame_errors;
3776 		stats->rx_fifo_errors += sstats->rx_fifo_errors;
3777 		stats->rx_missed_errors += sstats->rx_missed_errors;
3778 
3779 		stats->tx_aborted_errors += sstats->tx_aborted_errors;
3780 		stats->tx_carrier_errors += sstats->tx_carrier_errors;
3781 		stats->tx_fifo_errors += sstats->tx_fifo_errors;
3782 		stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3783 		stats->tx_window_errors += sstats->tx_window_errors;
3784 	}
3785 
3786 	read_unlock_bh(&bond->lock);
3787 
3788 	return stats;
3789 }
3790 
3791 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3792 {
3793 	struct net_device *slave_dev = NULL;
3794 	struct ifbond k_binfo;
3795 	struct ifbond __user *u_binfo = NULL;
3796 	struct ifslave k_sinfo;
3797 	struct ifslave __user *u_sinfo = NULL;
3798 	struct mii_ioctl_data *mii = NULL;
3799 	int res = 0;
3800 
3801 	dprintk("bond_ioctl: master=%s, cmd=%d\n",
3802 		bond_dev->name, cmd);
3803 
3804 	switch (cmd) {
3805 	case SIOCGMIIPHY:
3806 		mii = if_mii(ifr);
3807 		if (!mii) {
3808 			return -EINVAL;
3809 		}
3810 		mii->phy_id = 0;
3811 		/* Fall Through */
3812 	case SIOCGMIIREG:
3813 		/*
3814 		 * We do this again just in case we were called by SIOCGMIIREG
3815 		 * instead of SIOCGMIIPHY.
3816 		 */
3817 		mii = if_mii(ifr);
3818 		if (!mii) {
3819 			return -EINVAL;
3820 		}
3821 
3822 		if (mii->reg_num == 1) {
3823 			struct bonding *bond = bond_dev->priv;
3824 			mii->val_out = 0;
3825 			read_lock(&bond->lock);
3826 			read_lock(&bond->curr_slave_lock);
3827 			if (netif_carrier_ok(bond->dev)) {
3828 				mii->val_out = BMSR_LSTATUS;
3829 			}
3830 			read_unlock(&bond->curr_slave_lock);
3831 			read_unlock(&bond->lock);
3832 		}
3833 
3834 		return 0;
3835 	case BOND_INFO_QUERY_OLD:
3836 	case SIOCBONDINFOQUERY:
3837 		u_binfo = (struct ifbond __user *)ifr->ifr_data;
3838 
3839 		if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
3840 			return -EFAULT;
3841 		}
3842 
3843 		res = bond_info_query(bond_dev, &k_binfo);
3844 		if (res == 0) {
3845 			if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
3846 				return -EFAULT;
3847 			}
3848 		}
3849 
3850 		return res;
3851 	case BOND_SLAVE_INFO_QUERY_OLD:
3852 	case SIOCBONDSLAVEINFOQUERY:
3853 		u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3854 
3855 		if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
3856 			return -EFAULT;
3857 		}
3858 
3859 		res = bond_slave_info_query(bond_dev, &k_sinfo);
3860 		if (res == 0) {
3861 			if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
3862 				return -EFAULT;
3863 			}
3864 		}
3865 
3866 		return res;
3867 	default:
3868 		/* Go on */
3869 		break;
3870 	}
3871 
3872 	if (!capable(CAP_NET_ADMIN)) {
3873 		return -EPERM;
3874 	}
3875 
3876 	down_write(&(bonding_rwsem));
3877 	slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave);
3878 
3879 	dprintk("slave_dev=%p: \n", slave_dev);
3880 
3881 	if (!slave_dev) {
3882 		res = -ENODEV;
3883 	} else {
3884 		dprintk("slave_dev->name=%s: \n", slave_dev->name);
3885 		switch (cmd) {
3886 		case BOND_ENSLAVE_OLD:
3887 		case SIOCBONDENSLAVE:
3888 			res = bond_enslave(bond_dev, slave_dev);
3889 			break;
3890 		case BOND_RELEASE_OLD:
3891 		case SIOCBONDRELEASE:
3892 			res = bond_release(bond_dev, slave_dev);
3893 			break;
3894 		case BOND_SETHWADDR_OLD:
3895 		case SIOCBONDSETHWADDR:
3896 			res = bond_sethwaddr(bond_dev, slave_dev);
3897 			break;
3898 		case BOND_CHANGE_ACTIVE_OLD:
3899 		case SIOCBONDCHANGEACTIVE:
3900 			res = bond_ioctl_change_active(bond_dev, slave_dev);
3901 			break;
3902 		default:
3903 			res = -EOPNOTSUPP;
3904 		}
3905 
3906 		dev_put(slave_dev);
3907 	}
3908 
3909 	up_write(&(bonding_rwsem));
3910 	return res;
3911 }
3912 
3913 static void bond_set_multicast_list(struct net_device *bond_dev)
3914 {
3915 	struct bonding *bond = bond_dev->priv;
3916 	struct dev_mc_list *dmi;
3917 
3918 	write_lock_bh(&bond->lock);
3919 
3920 	/*
3921 	 * Do promisc before checking multicast_mode
3922 	 */
3923 	if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
3924 		bond_set_promiscuity(bond, 1);
3925 	}
3926 
3927 	if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
3928 		bond_set_promiscuity(bond, -1);
3929 	}
3930 
3931 	/* set allmulti flag to slaves */
3932 	if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
3933 		bond_set_allmulti(bond, 1);
3934 	}
3935 
3936 	if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
3937 		bond_set_allmulti(bond, -1);
3938 	}
3939 
3940 	bond->flags = bond_dev->flags;
3941 
3942 	/* looking for addresses to add to slaves' mc list */
3943 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
3944 		if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
3945 			bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3946 		}
3947 	}
3948 
3949 	/* looking for addresses to delete from slaves' list */
3950 	for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
3951 		if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
3952 			bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3953 		}
3954 	}
3955 
3956 	/* save master's multicast list */
3957 	bond_mc_list_destroy(bond);
3958 	bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
3959 
3960 	write_unlock_bh(&bond->lock);
3961 }
3962 
3963 /*
3964  * Change the MTU of all of a master's slaves to match the master
3965  */
3966 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
3967 {
3968 	struct bonding *bond = bond_dev->priv;
3969 	struct slave *slave, *stop_at;
3970 	int res = 0;
3971 	int i;
3972 
3973 	dprintk("bond=%p, name=%s, new_mtu=%d\n", bond,
3974 		(bond_dev ? bond_dev->name : "None"), new_mtu);
3975 
3976 	/* Can't hold bond->lock with bh disabled here since
3977 	 * some base drivers panic. On the other hand we can't
3978 	 * hold bond->lock without bh disabled because we'll
3979 	 * deadlock. The only solution is to rely on the fact
3980 	 * that we're under rtnl_lock here, and the slaves
3981 	 * list won't change. This doesn't solve the problem
3982 	 * of setting the slave's MTU while it is
3983 	 * transmitting, but the assumption is that the base
3984 	 * driver can handle that.
3985 	 *
3986 	 * TODO: figure out a way to safely iterate the slaves
3987 	 * list, but without holding a lock around the actual
3988 	 * call to the base driver.
3989 	 */
3990 
3991 	bond_for_each_slave(bond, slave, i) {
3992 		dprintk("s %p s->p %p c_m %p\n", slave,
3993 			slave->prev, slave->dev->change_mtu);
3994 
3995 		res = dev_set_mtu(slave->dev, new_mtu);
3996 
3997 		if (res) {
3998 			/* If we failed to set the slave's mtu to the new value
3999 			 * we must abort the operation even in ACTIVE_BACKUP
4000 			 * mode, because if we allow the backup slaves to have
4001 			 * different mtu values than the active slave we'll
4002 			 * need to change their mtu when doing a failover. That
4003 			 * means changing their mtu from timer context, which
4004 			 * is probably not a good idea.
4005 			 */
4006 			dprintk("err %d %s\n", res, slave->dev->name);
4007 			goto unwind;
4008 		}
4009 	}
4010 
4011 	bond_dev->mtu = new_mtu;
4012 
4013 	return 0;
4014 
4015 unwind:
4016 	/* unwind from head to the slave that failed */
4017 	stop_at = slave;
4018 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4019 		int tmp_res;
4020 
4021 		tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
4022 		if (tmp_res) {
4023 			dprintk("unwind err %d dev %s\n", tmp_res,
4024 				slave->dev->name);
4025 		}
4026 	}
4027 
4028 	return res;
4029 }
4030 
4031 /*
4032  * Change HW address
4033  *
4034  * Note that many devices must be down to change the HW address, and
4035  * downing the master releases all slaves.  We can make bonds full of
4036  * bonding devices to test this, however.
4037  */
4038 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
4039 {
4040 	struct bonding *bond = bond_dev->priv;
4041 	struct sockaddr *sa = addr, tmp_sa;
4042 	struct slave *slave, *stop_at;
4043 	int res = 0;
4044 	int i;
4045 
4046 	dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
4047 
4048 	/*
4049 	 * If fail_over_mac is enabled, do nothing and return success.
4050 	 * Returning an error causes ifenslave to fail.
4051 	 */
4052 	if (bond->params.fail_over_mac)
4053 		return 0;
4054 
4055 	if (!is_valid_ether_addr(sa->sa_data)) {
4056 		return -EADDRNOTAVAIL;
4057 	}
4058 
4059 	/* Can't hold bond->lock with bh disabled here since
4060 	 * some base drivers panic. On the other hand we can't
4061 	 * hold bond->lock without bh disabled because we'll
4062 	 * deadlock. The only solution is to rely on the fact
4063 	 * that we're under rtnl_lock here, and the slaves
4064 	 * list won't change. This doesn't solve the problem
4065 	 * of setting the slave's hw address while it is
4066 	 * transmitting, but the assumption is that the base
4067 	 * driver can handle that.
4068 	 *
4069 	 * TODO: figure out a way to safely iterate the slaves
4070 	 * list, but without holding a lock around the actual
4071 	 * call to the base driver.
4072 	 */
4073 
4074 	bond_for_each_slave(bond, slave, i) {
4075 		dprintk("slave %p %s\n", slave, slave->dev->name);
4076 
4077 		if (slave->dev->set_mac_address == NULL) {
4078 			res = -EOPNOTSUPP;
4079 			dprintk("EOPNOTSUPP %s\n", slave->dev->name);
4080 			goto unwind;
4081 		}
4082 
4083 		res = dev_set_mac_address(slave->dev, addr);
4084 		if (res) {
4085 			/* TODO: consider downing the slave
4086 			 * and retry ?
4087 			 * User should expect communications
4088 			 * breakage anyway until ARP finish
4089 			 * updating, so...
4090 			 */
4091 			dprintk("err %d %s\n", res, slave->dev->name);
4092 			goto unwind;
4093 		}
4094 	}
4095 
4096 	/* success */
4097 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
4098 	return 0;
4099 
4100 unwind:
4101 	memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
4102 	tmp_sa.sa_family = bond_dev->type;
4103 
4104 	/* unwind from head to the slave that failed */
4105 	stop_at = slave;
4106 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4107 		int tmp_res;
4108 
4109 		tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
4110 		if (tmp_res) {
4111 			dprintk("unwind err %d dev %s\n", tmp_res,
4112 				slave->dev->name);
4113 		}
4114 	}
4115 
4116 	return res;
4117 }
4118 
4119 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
4120 {
4121 	struct bonding *bond = bond_dev->priv;
4122 	struct slave *slave, *start_at;
4123 	int i, slave_no, res = 1;
4124 
4125 	read_lock(&bond->lock);
4126 
4127 	if (!BOND_IS_OK(bond)) {
4128 		goto out;
4129 	}
4130 
4131 	/*
4132 	 * Concurrent TX may collide on rr_tx_counter; we accept that
4133 	 * as being rare enough not to justify using an atomic op here
4134 	 */
4135 	slave_no = bond->rr_tx_counter++ % bond->slave_cnt;
4136 
4137 	bond_for_each_slave(bond, slave, i) {
4138 		slave_no--;
4139 		if (slave_no < 0) {
4140 			break;
4141 		}
4142 	}
4143 
4144 	start_at = slave;
4145 	bond_for_each_slave_from(bond, slave, i, start_at) {
4146 		if (IS_UP(slave->dev) &&
4147 		    (slave->link == BOND_LINK_UP) &&
4148 		    (slave->state == BOND_STATE_ACTIVE)) {
4149 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4150 			break;
4151 		}
4152 	}
4153 
4154 out:
4155 	if (res) {
4156 		/* no suitable interface, frame not sent */
4157 		dev_kfree_skb(skb);
4158 	}
4159 	read_unlock(&bond->lock);
4160 	return 0;
4161 }
4162 
4163 
4164 /*
4165  * in active-backup mode, we know that bond->curr_active_slave is always valid if
4166  * the bond has a usable interface.
4167  */
4168 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
4169 {
4170 	struct bonding *bond = bond_dev->priv;
4171 	int res = 1;
4172 
4173 	read_lock(&bond->lock);
4174 	read_lock(&bond->curr_slave_lock);
4175 
4176 	if (!BOND_IS_OK(bond)) {
4177 		goto out;
4178 	}
4179 
4180 	if (!bond->curr_active_slave)
4181 		goto out;
4182 
4183 	res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
4184 
4185 out:
4186 	if (res) {
4187 		/* no suitable interface, frame not sent */
4188 		dev_kfree_skb(skb);
4189 	}
4190 	read_unlock(&bond->curr_slave_lock);
4191 	read_unlock(&bond->lock);
4192 	return 0;
4193 }
4194 
4195 /*
4196  * In bond_xmit_xor() , we determine the output device by using a pre-
4197  * determined xmit_hash_policy(), If the selected device is not enabled,
4198  * find the next active slave.
4199  */
4200 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
4201 {
4202 	struct bonding *bond = bond_dev->priv;
4203 	struct slave *slave, *start_at;
4204 	int slave_no;
4205 	int i;
4206 	int res = 1;
4207 
4208 	read_lock(&bond->lock);
4209 
4210 	if (!BOND_IS_OK(bond)) {
4211 		goto out;
4212 	}
4213 
4214 	slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
4215 
4216 	bond_for_each_slave(bond, slave, i) {
4217 		slave_no--;
4218 		if (slave_no < 0) {
4219 			break;
4220 		}
4221 	}
4222 
4223 	start_at = slave;
4224 
4225 	bond_for_each_slave_from(bond, slave, i, start_at) {
4226 		if (IS_UP(slave->dev) &&
4227 		    (slave->link == BOND_LINK_UP) &&
4228 		    (slave->state == BOND_STATE_ACTIVE)) {
4229 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4230 			break;
4231 		}
4232 	}
4233 
4234 out:
4235 	if (res) {
4236 		/* no suitable interface, frame not sent */
4237 		dev_kfree_skb(skb);
4238 	}
4239 	read_unlock(&bond->lock);
4240 	return 0;
4241 }
4242 
4243 /*
4244  * in broadcast mode, we send everything to all usable interfaces.
4245  */
4246 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4247 {
4248 	struct bonding *bond = bond_dev->priv;
4249 	struct slave *slave, *start_at;
4250 	struct net_device *tx_dev = NULL;
4251 	int i;
4252 	int res = 1;
4253 
4254 	read_lock(&bond->lock);
4255 
4256 	if (!BOND_IS_OK(bond)) {
4257 		goto out;
4258 	}
4259 
4260 	read_lock(&bond->curr_slave_lock);
4261 	start_at = bond->curr_active_slave;
4262 	read_unlock(&bond->curr_slave_lock);
4263 
4264 	if (!start_at) {
4265 		goto out;
4266 	}
4267 
4268 	bond_for_each_slave_from(bond, slave, i, start_at) {
4269 		if (IS_UP(slave->dev) &&
4270 		    (slave->link == BOND_LINK_UP) &&
4271 		    (slave->state == BOND_STATE_ACTIVE)) {
4272 			if (tx_dev) {
4273 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4274 				if (!skb2) {
4275 					printk(KERN_ERR DRV_NAME
4276 					       ": %s: Error: bond_xmit_broadcast(): "
4277 					       "skb_clone() failed\n",
4278 					       bond_dev->name);
4279 					continue;
4280 				}
4281 
4282 				res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4283 				if (res) {
4284 					dev_kfree_skb(skb2);
4285 					continue;
4286 				}
4287 			}
4288 			tx_dev = slave->dev;
4289 		}
4290 	}
4291 
4292 	if (tx_dev) {
4293 		res = bond_dev_queue_xmit(bond, skb, tx_dev);
4294 	}
4295 
4296 out:
4297 	if (res) {
4298 		/* no suitable interface, frame not sent */
4299 		dev_kfree_skb(skb);
4300 	}
4301 	/* frame sent to all suitable interfaces */
4302 	read_unlock(&bond->lock);
4303 	return 0;
4304 }
4305 
4306 /*------------------------- Device initialization ---------------------------*/
4307 
4308 /*
4309  * set bond mode specific net device operations
4310  */
4311 void bond_set_mode_ops(struct bonding *bond, int mode)
4312 {
4313 	struct net_device *bond_dev = bond->dev;
4314 
4315 	switch (mode) {
4316 	case BOND_MODE_ROUNDROBIN:
4317 		bond_dev->hard_start_xmit = bond_xmit_roundrobin;
4318 		break;
4319 	case BOND_MODE_ACTIVEBACKUP:
4320 		bond_dev->hard_start_xmit = bond_xmit_activebackup;
4321 		break;
4322 	case BOND_MODE_XOR:
4323 		bond_dev->hard_start_xmit = bond_xmit_xor;
4324 		if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34)
4325 			bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4326 		else
4327 			bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4328 		break;
4329 	case BOND_MODE_BROADCAST:
4330 		bond_dev->hard_start_xmit = bond_xmit_broadcast;
4331 		break;
4332 	case BOND_MODE_8023AD:
4333 		bond_set_master_3ad_flags(bond);
4334 		bond_dev->hard_start_xmit = bond_3ad_xmit_xor;
4335 		if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34)
4336 			bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4337 		else
4338 			bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4339 		break;
4340 	case BOND_MODE_ALB:
4341 		bond_set_master_alb_flags(bond);
4342 		/* FALLTHRU */
4343 	case BOND_MODE_TLB:
4344 		bond_dev->hard_start_xmit = bond_alb_xmit;
4345 		bond_dev->set_mac_address = bond_alb_set_mac_address;
4346 		break;
4347 	default:
4348 		/* Should never happen, mode already checked */
4349 		printk(KERN_ERR DRV_NAME
4350 		       ": %s: Error: Unknown bonding mode %d\n",
4351 		       bond_dev->name,
4352 		       mode);
4353 		break;
4354 	}
4355 }
4356 
4357 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4358 				    struct ethtool_drvinfo *drvinfo)
4359 {
4360 	strncpy(drvinfo->driver, DRV_NAME, 32);
4361 	strncpy(drvinfo->version, DRV_VERSION, 32);
4362 	snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4363 }
4364 
4365 static const struct ethtool_ops bond_ethtool_ops = {
4366 	.get_drvinfo		= bond_ethtool_get_drvinfo,
4367 };
4368 
4369 /*
4370  * Does not allocate but creates a /proc entry.
4371  * Allowed to fail.
4372  */
4373 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4374 {
4375 	struct bonding *bond = bond_dev->priv;
4376 
4377 	dprintk("Begin bond_init for %s\n", bond_dev->name);
4378 
4379 	/* initialize rwlocks */
4380 	rwlock_init(&bond->lock);
4381 	rwlock_init(&bond->curr_slave_lock);
4382 
4383 	bond->params = *params; /* copy params struct */
4384 
4385 	bond->wq = create_singlethread_workqueue(bond_dev->name);
4386 	if (!bond->wq)
4387 		return -ENOMEM;
4388 
4389 	/* Initialize pointers */
4390 	bond->first_slave = NULL;
4391 	bond->curr_active_slave = NULL;
4392 	bond->current_arp_slave = NULL;
4393 	bond->primary_slave = NULL;
4394 	bond->dev = bond_dev;
4395 	bond->send_grat_arp = 0;
4396 	bond->setup_by_slave = 0;
4397 	INIT_LIST_HEAD(&bond->vlan_list);
4398 
4399 	/* Initialize the device entry points */
4400 	bond_dev->open = bond_open;
4401 	bond_dev->stop = bond_close;
4402 	bond_dev->get_stats = bond_get_stats;
4403 	bond_dev->do_ioctl = bond_do_ioctl;
4404 	bond_dev->ethtool_ops = &bond_ethtool_ops;
4405 	bond_dev->set_multicast_list = bond_set_multicast_list;
4406 	bond_dev->change_mtu = bond_change_mtu;
4407 	bond_dev->set_mac_address = bond_set_mac_address;
4408 
4409 	bond_set_mode_ops(bond, bond->params.mode);
4410 
4411 	bond_dev->destructor = free_netdev;
4412 
4413 	/* Initialize the device options */
4414 	bond_dev->tx_queue_len = 0;
4415 	bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4416 	bond_dev->priv_flags |= IFF_BONDING;
4417 
4418 	/* At first, we block adding VLANs. That's the only way to
4419 	 * prevent problems that occur when adding VLANs over an
4420 	 * empty bond. The block will be removed once non-challenged
4421 	 * slaves are enslaved.
4422 	 */
4423 	bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4424 
4425 	/* don't acquire bond device's netif_tx_lock when
4426 	 * transmitting */
4427 	bond_dev->features |= NETIF_F_LLTX;
4428 
4429 	/* By default, we declare the bond to be fully
4430 	 * VLAN hardware accelerated capable. Special
4431 	 * care is taken in the various xmit functions
4432 	 * when there are slaves that are not hw accel
4433 	 * capable
4434 	 */
4435 	bond_dev->vlan_rx_register = bond_vlan_rx_register;
4436 	bond_dev->vlan_rx_add_vid  = bond_vlan_rx_add_vid;
4437 	bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid;
4438 	bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4439 			       NETIF_F_HW_VLAN_RX |
4440 			       NETIF_F_HW_VLAN_FILTER);
4441 
4442 #ifdef CONFIG_PROC_FS
4443 	bond_create_proc_entry(bond);
4444 #endif
4445 	list_add_tail(&bond->bond_list, &bond_dev_list);
4446 
4447 	return 0;
4448 }
4449 
4450 /* De-initialize device specific data.
4451  * Caller must hold rtnl_lock.
4452  */
4453 static void bond_deinit(struct net_device *bond_dev)
4454 {
4455 	struct bonding *bond = bond_dev->priv;
4456 
4457 	list_del(&bond->bond_list);
4458 
4459 #ifdef CONFIG_PROC_FS
4460 	bond_remove_proc_entry(bond);
4461 #endif
4462 }
4463 
4464 /* Unregister and free all bond devices.
4465  * Caller must hold rtnl_lock.
4466  */
4467 static void bond_free_all(void)
4468 {
4469 	struct bonding *bond, *nxt;
4470 
4471 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4472 		struct net_device *bond_dev = bond->dev;
4473 
4474 		bond_mc_list_destroy(bond);
4475 		/* Release the bonded slaves */
4476 		bond_release_all(bond_dev);
4477 		unregister_netdevice(bond_dev);
4478 		bond_deinit(bond_dev);
4479 	}
4480 
4481 #ifdef CONFIG_PROC_FS
4482 	bond_destroy_proc_dir();
4483 #endif
4484 }
4485 
4486 /*------------------------- Module initialization ---------------------------*/
4487 
4488 /*
4489  * Convert string input module parms.  Accept either the
4490  * number of the mode or its string name.
4491  */
4492 int bond_parse_parm(char *mode_arg, struct bond_parm_tbl *tbl)
4493 {
4494 	int i;
4495 
4496 	for (i = 0; tbl[i].modename; i++) {
4497 		if ((isdigit(*mode_arg) &&
4498 		     tbl[i].mode == simple_strtol(mode_arg, NULL, 0)) ||
4499 		    (strncmp(mode_arg, tbl[i].modename,
4500 			     strlen(tbl[i].modename)) == 0)) {
4501 			return tbl[i].mode;
4502 		}
4503 	}
4504 
4505 	return -1;
4506 }
4507 
4508 static int bond_check_params(struct bond_params *params)
4509 {
4510 	int arp_validate_value;
4511 
4512 	/*
4513 	 * Convert string parameters.
4514 	 */
4515 	if (mode) {
4516 		bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4517 		if (bond_mode == -1) {
4518 			printk(KERN_ERR DRV_NAME
4519 			       ": Error: Invalid bonding mode \"%s\"\n",
4520 			       mode == NULL ? "NULL" : mode);
4521 			return -EINVAL;
4522 		}
4523 	}
4524 
4525 	if (xmit_hash_policy) {
4526 		if ((bond_mode != BOND_MODE_XOR) &&
4527 		    (bond_mode != BOND_MODE_8023AD)) {
4528 			printk(KERN_INFO DRV_NAME
4529 			       ": xor_mode param is irrelevant in mode %s\n",
4530 			       bond_mode_name(bond_mode));
4531 		} else {
4532 			xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4533 							xmit_hashtype_tbl);
4534 			if (xmit_hashtype == -1) {
4535 				printk(KERN_ERR DRV_NAME
4536 			       	": Error: Invalid xmit_hash_policy \"%s\"\n",
4537 			       	xmit_hash_policy == NULL ? "NULL" :
4538 				       xmit_hash_policy);
4539 				return -EINVAL;
4540 			}
4541 		}
4542 	}
4543 
4544 	if (lacp_rate) {
4545 		if (bond_mode != BOND_MODE_8023AD) {
4546 			printk(KERN_INFO DRV_NAME
4547 			       ": lacp_rate param is irrelevant in mode %s\n",
4548 			       bond_mode_name(bond_mode));
4549 		} else {
4550 			lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4551 			if (lacp_fast == -1) {
4552 				printk(KERN_ERR DRV_NAME
4553 				       ": Error: Invalid lacp rate \"%s\"\n",
4554 				       lacp_rate == NULL ? "NULL" : lacp_rate);
4555 				return -EINVAL;
4556 			}
4557 		}
4558 	}
4559 
4560 	if (max_bonds < 1 || max_bonds > INT_MAX) {
4561 		printk(KERN_WARNING DRV_NAME
4562 		       ": Warning: max_bonds (%d) not in range %d-%d, so it "
4563 		       "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4564 		       max_bonds, 1, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4565 		max_bonds = BOND_DEFAULT_MAX_BONDS;
4566 	}
4567 
4568 	if (miimon < 0) {
4569 		printk(KERN_WARNING DRV_NAME
4570 		       ": Warning: miimon module parameter (%d), "
4571 		       "not in range 0-%d, so it was reset to %d\n",
4572 		       miimon, INT_MAX, BOND_LINK_MON_INTERV);
4573 		miimon = BOND_LINK_MON_INTERV;
4574 	}
4575 
4576 	if (updelay < 0) {
4577 		printk(KERN_WARNING DRV_NAME
4578 		       ": Warning: updelay module parameter (%d), "
4579 		       "not in range 0-%d, so it was reset to 0\n",
4580 		       updelay, INT_MAX);
4581 		updelay = 0;
4582 	}
4583 
4584 	if (downdelay < 0) {
4585 		printk(KERN_WARNING DRV_NAME
4586 		       ": Warning: downdelay module parameter (%d), "
4587 		       "not in range 0-%d, so it was reset to 0\n",
4588 		       downdelay, INT_MAX);
4589 		downdelay = 0;
4590 	}
4591 
4592 	if ((use_carrier != 0) && (use_carrier != 1)) {
4593 		printk(KERN_WARNING DRV_NAME
4594 		       ": Warning: use_carrier module parameter (%d), "
4595 		       "not of valid value (0/1), so it was set to 1\n",
4596 		       use_carrier);
4597 		use_carrier = 1;
4598 	}
4599 
4600 	/* reset values for 802.3ad */
4601 	if (bond_mode == BOND_MODE_8023AD) {
4602 		if (!miimon) {
4603 			printk(KERN_WARNING DRV_NAME
4604 			       ": Warning: miimon must be specified, "
4605 			       "otherwise bonding will not detect link "
4606 			       "failure, speed and duplex which are "
4607 			       "essential for 802.3ad operation\n");
4608 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4609 			miimon = 100;
4610 		}
4611 	}
4612 
4613 	/* reset values for TLB/ALB */
4614 	if ((bond_mode == BOND_MODE_TLB) ||
4615 	    (bond_mode == BOND_MODE_ALB)) {
4616 		if (!miimon) {
4617 			printk(KERN_WARNING DRV_NAME
4618 			       ": Warning: miimon must be specified, "
4619 			       "otherwise bonding will not detect link "
4620 			       "failure and link speed which are essential "
4621 			       "for TLB/ALB load balancing\n");
4622 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4623 			miimon = 100;
4624 		}
4625 	}
4626 
4627 	if (bond_mode == BOND_MODE_ALB) {
4628 		printk(KERN_NOTICE DRV_NAME
4629 		       ": In ALB mode you might experience client "
4630 		       "disconnections upon reconnection of a link if the "
4631 		       "bonding module updelay parameter (%d msec) is "
4632 		       "incompatible with the forwarding delay time of the "
4633 		       "switch\n",
4634 		       updelay);
4635 	}
4636 
4637 	if (!miimon) {
4638 		if (updelay || downdelay) {
4639 			/* just warn the user the up/down delay will have
4640 			 * no effect since miimon is zero...
4641 			 */
4642 			printk(KERN_WARNING DRV_NAME
4643 			       ": Warning: miimon module parameter not set "
4644 			       "and updelay (%d) or downdelay (%d) module "
4645 			       "parameter is set; updelay and downdelay have "
4646 			       "no effect unless miimon is set\n",
4647 			       updelay, downdelay);
4648 		}
4649 	} else {
4650 		/* don't allow arp monitoring */
4651 		if (arp_interval) {
4652 			printk(KERN_WARNING DRV_NAME
4653 			       ": Warning: miimon (%d) and arp_interval (%d) "
4654 			       "can't be used simultaneously, disabling ARP "
4655 			       "monitoring\n",
4656 			       miimon, arp_interval);
4657 			arp_interval = 0;
4658 		}
4659 
4660 		if ((updelay % miimon) != 0) {
4661 			printk(KERN_WARNING DRV_NAME
4662 			       ": Warning: updelay (%d) is not a multiple "
4663 			       "of miimon (%d), updelay rounded to %d ms\n",
4664 			       updelay, miimon, (updelay / miimon) * miimon);
4665 		}
4666 
4667 		updelay /= miimon;
4668 
4669 		if ((downdelay % miimon) != 0) {
4670 			printk(KERN_WARNING DRV_NAME
4671 			       ": Warning: downdelay (%d) is not a multiple "
4672 			       "of miimon (%d), downdelay rounded to %d ms\n",
4673 			       downdelay, miimon,
4674 			       (downdelay / miimon) * miimon);
4675 		}
4676 
4677 		downdelay /= miimon;
4678 	}
4679 
4680 	if (arp_interval < 0) {
4681 		printk(KERN_WARNING DRV_NAME
4682 		       ": Warning: arp_interval module parameter (%d) "
4683 		       ", not in range 0-%d, so it was reset to %d\n",
4684 		       arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4685 		arp_interval = BOND_LINK_ARP_INTERV;
4686 	}
4687 
4688 	for (arp_ip_count = 0;
4689 	     (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4690 	     arp_ip_count++) {
4691 		/* not complete check, but should be good enough to
4692 		   catch mistakes */
4693 		if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4694 			printk(KERN_WARNING DRV_NAME
4695 			       ": Warning: bad arp_ip_target module parameter "
4696 			       "(%s), ARP monitoring will not be performed\n",
4697 			       arp_ip_target[arp_ip_count]);
4698 			arp_interval = 0;
4699 		} else {
4700 			__be32 ip = in_aton(arp_ip_target[arp_ip_count]);
4701 			arp_target[arp_ip_count] = ip;
4702 		}
4703 	}
4704 
4705 	if (arp_interval && !arp_ip_count) {
4706 		/* don't allow arping if no arp_ip_target given... */
4707 		printk(KERN_WARNING DRV_NAME
4708 		       ": Warning: arp_interval module parameter (%d) "
4709 		       "specified without providing an arp_ip_target "
4710 		       "parameter, arp_interval was reset to 0\n",
4711 		       arp_interval);
4712 		arp_interval = 0;
4713 	}
4714 
4715 	if (arp_validate) {
4716 		if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4717 			printk(KERN_ERR DRV_NAME
4718 	       ": arp_validate only supported in active-backup mode\n");
4719 			return -EINVAL;
4720 		}
4721 		if (!arp_interval) {
4722 			printk(KERN_ERR DRV_NAME
4723 			       ": arp_validate requires arp_interval\n");
4724 			return -EINVAL;
4725 		}
4726 
4727 		arp_validate_value = bond_parse_parm(arp_validate,
4728 						     arp_validate_tbl);
4729 		if (arp_validate_value == -1) {
4730 			printk(KERN_ERR DRV_NAME
4731 			       ": Error: invalid arp_validate \"%s\"\n",
4732 			       arp_validate == NULL ? "NULL" : arp_validate);
4733 			return -EINVAL;
4734 		}
4735 	} else
4736 		arp_validate_value = 0;
4737 
4738 	if (miimon) {
4739 		printk(KERN_INFO DRV_NAME
4740 		       ": MII link monitoring set to %d ms\n",
4741 		       miimon);
4742 	} else if (arp_interval) {
4743 		int i;
4744 
4745 		printk(KERN_INFO DRV_NAME
4746 		       ": ARP monitoring set to %d ms, validate %s, with %d target(s):",
4747 		       arp_interval,
4748 		       arp_validate_tbl[arp_validate_value].modename,
4749 		       arp_ip_count);
4750 
4751 		for (i = 0; i < arp_ip_count; i++)
4752 			printk (" %s", arp_ip_target[i]);
4753 
4754 		printk("\n");
4755 
4756 	} else {
4757 		/* miimon and arp_interval not set, we need one so things
4758 		 * work as expected, see bonding.txt for details
4759 		 */
4760 		printk(KERN_WARNING DRV_NAME
4761 		       ": Warning: either miimon or arp_interval and "
4762 		       "arp_ip_target module parameters must be specified, "
4763 		       "otherwise bonding will not detect link failures! see "
4764 		       "bonding.txt for details.\n");
4765 	}
4766 
4767 	if (primary && !USES_PRIMARY(bond_mode)) {
4768 		/* currently, using a primary only makes sense
4769 		 * in active backup, TLB or ALB modes
4770 		 */
4771 		printk(KERN_WARNING DRV_NAME
4772 		       ": Warning: %s primary device specified but has no "
4773 		       "effect in %s mode\n",
4774 		       primary, bond_mode_name(bond_mode));
4775 		primary = NULL;
4776 	}
4777 
4778 	if (fail_over_mac && (bond_mode != BOND_MODE_ACTIVEBACKUP))
4779 		printk(KERN_WARNING DRV_NAME
4780 		       ": Warning: fail_over_mac only affects "
4781 		       "active-backup mode.\n");
4782 
4783 	/* fill params struct with the proper values */
4784 	params->mode = bond_mode;
4785 	params->xmit_policy = xmit_hashtype;
4786 	params->miimon = miimon;
4787 	params->arp_interval = arp_interval;
4788 	params->arp_validate = arp_validate_value;
4789 	params->updelay = updelay;
4790 	params->downdelay = downdelay;
4791 	params->use_carrier = use_carrier;
4792 	params->lacp_fast = lacp_fast;
4793 	params->primary[0] = 0;
4794 	params->fail_over_mac = fail_over_mac;
4795 
4796 	if (primary) {
4797 		strncpy(params->primary, primary, IFNAMSIZ);
4798 		params->primary[IFNAMSIZ - 1] = 0;
4799 	}
4800 
4801 	memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4802 
4803 	return 0;
4804 }
4805 
4806 static struct lock_class_key bonding_netdev_xmit_lock_key;
4807 
4808 /* Create a new bond based on the specified name and bonding parameters.
4809  * If name is NULL, obtain a suitable "bond%d" name for us.
4810  * Caller must NOT hold rtnl_lock; we need to release it here before we
4811  * set up our sysfs entries.
4812  */
4813 int bond_create(char *name, struct bond_params *params, struct bonding **newbond)
4814 {
4815 	struct net_device *bond_dev;
4816 	int res;
4817 
4818 	rtnl_lock();
4819 	bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "",
4820 				ether_setup);
4821 	if (!bond_dev) {
4822 		printk(KERN_ERR DRV_NAME
4823 		       ": %s: eek! can't alloc netdev!\n",
4824 		       name);
4825 		res = -ENOMEM;
4826 		goto out_rtnl;
4827 	}
4828 
4829 	if (!name) {
4830 		res = dev_alloc_name(bond_dev, "bond%d");
4831 		if (res < 0)
4832 			goto out_netdev;
4833 	}
4834 
4835 	/* bond_init() must be called after dev_alloc_name() (for the
4836 	 * /proc files), but before register_netdevice(), because we
4837 	 * need to set function pointers.
4838 	 */
4839 
4840 	res = bond_init(bond_dev, params);
4841 	if (res < 0) {
4842 		goto out_netdev;
4843 	}
4844 
4845 	res = register_netdevice(bond_dev);
4846 	if (res < 0) {
4847 		goto out_bond;
4848 	}
4849 
4850 	lockdep_set_class(&bond_dev->_xmit_lock, &bonding_netdev_xmit_lock_key);
4851 
4852 	if (newbond)
4853 		*newbond = bond_dev->priv;
4854 
4855 	netif_carrier_off(bond_dev);
4856 
4857 	rtnl_unlock(); /* allows sysfs registration of net device */
4858 	res = bond_create_sysfs_entry(bond_dev->priv);
4859 	if (res < 0) {
4860 		rtnl_lock();
4861 		goto out_bond;
4862 	}
4863 
4864 	return 0;
4865 
4866 out_bond:
4867 	bond_deinit(bond_dev);
4868 out_netdev:
4869 	free_netdev(bond_dev);
4870 out_rtnl:
4871 	rtnl_unlock();
4872 	return res;
4873 }
4874 
4875 static void bond_work_cancel_all(struct bonding *bond)
4876 {
4877 	write_lock_bh(&bond->lock);
4878 	bond->kill_timers = 1;
4879 	write_unlock_bh(&bond->lock);
4880 
4881 	if (bond->params.miimon && delayed_work_pending(&bond->mii_work))
4882 		cancel_delayed_work(&bond->mii_work);
4883 
4884 	if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work))
4885 		cancel_delayed_work(&bond->arp_work);
4886 
4887 	if (bond->params.mode == BOND_MODE_ALB &&
4888 	    delayed_work_pending(&bond->alb_work))
4889 		cancel_delayed_work(&bond->alb_work);
4890 
4891 	if (bond->params.mode == BOND_MODE_8023AD &&
4892 	    delayed_work_pending(&bond->ad_work))
4893 		cancel_delayed_work(&bond->ad_work);
4894 }
4895 
4896 static int __init bonding_init(void)
4897 {
4898 	int i;
4899 	int res;
4900 	struct bonding *bond, *nxt;
4901 
4902 	printk(KERN_INFO "%s", version);
4903 
4904 	res = bond_check_params(&bonding_defaults);
4905 	if (res) {
4906 		goto out;
4907 	}
4908 
4909 #ifdef CONFIG_PROC_FS
4910 	bond_create_proc_dir();
4911 #endif
4912 	for (i = 0; i < max_bonds; i++) {
4913 		res = bond_create(NULL, &bonding_defaults, NULL);
4914 		if (res)
4915 			goto err;
4916 	}
4917 
4918 	res = bond_create_sysfs();
4919 	if (res)
4920 		goto err;
4921 
4922 	register_netdevice_notifier(&bond_netdev_notifier);
4923 	register_inetaddr_notifier(&bond_inetaddr_notifier);
4924 
4925 	goto out;
4926 err:
4927 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4928 		bond_work_cancel_all(bond);
4929 		destroy_workqueue(bond->wq);
4930 	}
4931 
4932 	rtnl_lock();
4933 	bond_free_all();
4934 	bond_destroy_sysfs();
4935 	rtnl_unlock();
4936 out:
4937 	return res;
4938 
4939 }
4940 
4941 static void __exit bonding_exit(void)
4942 {
4943 	unregister_netdevice_notifier(&bond_netdev_notifier);
4944 	unregister_inetaddr_notifier(&bond_inetaddr_notifier);
4945 
4946 	rtnl_lock();
4947 	bond_free_all();
4948 	bond_destroy_sysfs();
4949 	rtnl_unlock();
4950 }
4951 
4952 module_init(bonding_init);
4953 module_exit(bonding_exit);
4954 MODULE_LICENSE("GPL");
4955 MODULE_VERSION(DRV_VERSION);
4956 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
4957 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
4958 MODULE_SUPPORTED_DEVICE("most ethernet devices");
4959 
4960 /*
4961  * Local variables:
4962  *  c-indent-level: 8
4963  *  c-basic-offset: 8
4964  *  tab-width: 8
4965  * End:
4966  */
4967 
4968