1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/types.h> 37 #include <linux/fcntl.h> 38 #include <linux/interrupt.h> 39 #include <linux/ptrace.h> 40 #include <linux/ioport.h> 41 #include <linux/in.h> 42 #include <net/ip.h> 43 #include <linux/ip.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/slab.h> 47 #include <linux/string.h> 48 #include <linux/init.h> 49 #include <linux/timer.h> 50 #include <linux/socket.h> 51 #include <linux/ctype.h> 52 #include <linux/inet.h> 53 #include <linux/bitops.h> 54 #include <asm/system.h> 55 #include <asm/io.h> 56 #include <asm/dma.h> 57 #include <asm/uaccess.h> 58 #include <linux/errno.h> 59 #include <linux/netdevice.h> 60 #include <linux/inetdevice.h> 61 #include <linux/igmp.h> 62 #include <linux/etherdevice.h> 63 #include <linux/skbuff.h> 64 #include <net/sock.h> 65 #include <linux/rtnetlink.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/smp.h> 69 #include <linux/if_ether.h> 70 #include <net/arp.h> 71 #include <linux/mii.h> 72 #include <linux/ethtool.h> 73 #include <linux/if_vlan.h> 74 #include <linux/if_bonding.h> 75 #include <linux/jiffies.h> 76 #include <net/route.h> 77 #include <net/net_namespace.h> 78 #include "bonding.h" 79 #include "bond_3ad.h" 80 #include "bond_alb.h" 81 82 /*---------------------------- Module parameters ----------------------------*/ 83 84 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 85 #define BOND_LINK_MON_INTERV 0 86 #define BOND_LINK_ARP_INTERV 0 87 88 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 89 static int num_grat_arp = 1; 90 static int num_unsol_na = 1; 91 static int miimon = BOND_LINK_MON_INTERV; 92 static int updelay = 0; 93 static int downdelay = 0; 94 static int use_carrier = 1; 95 static char *mode = NULL; 96 static char *primary = NULL; 97 static char *lacp_rate = NULL; 98 static char *ad_select = NULL; 99 static char *xmit_hash_policy = NULL; 100 static int arp_interval = BOND_LINK_ARP_INTERV; 101 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, }; 102 static char *arp_validate = NULL; 103 static char *fail_over_mac = NULL; 104 struct bond_params bonding_defaults; 105 106 module_param(max_bonds, int, 0); 107 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 108 module_param(num_grat_arp, int, 0644); 109 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event"); 110 module_param(num_unsol_na, int, 0644); 111 MODULE_PARM_DESC(num_unsol_na, "Number of unsolicited IPv6 Neighbor Advertisements packets to send on failover event"); 112 module_param(miimon, int, 0); 113 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 114 module_param(updelay, int, 0); 115 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 116 module_param(downdelay, int, 0); 117 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 118 "in milliseconds"); 119 module_param(use_carrier, int, 0); 120 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 121 "0 for off, 1 for on (default)"); 122 module_param(mode, charp, 0); 123 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, " 124 "1 for active-backup, 2 for balance-xor, " 125 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 126 "6 for balance-alb"); 127 module_param(primary, charp, 0); 128 MODULE_PARM_DESC(primary, "Primary network device to use"); 129 module_param(lacp_rate, charp, 0); 130 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner " 131 "(slow/fast)"); 132 module_param(ad_select, charp, 0); 133 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic: stable (0, default), bandwidth (1), count (2)"); 134 module_param(xmit_hash_policy, charp, 0); 135 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)" 136 ", 1 for layer 3+4"); 137 module_param(arp_interval, int, 0); 138 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 139 module_param_array(arp_ip_target, charp, NULL, 0); 140 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 141 module_param(arp_validate, charp, 0); 142 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all"); 143 module_param(fail_over_mac, charp, 0); 144 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. none (default), active or follow"); 145 146 /*----------------------------- Global variables ----------------------------*/ 147 148 static const char * const version = 149 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n"; 150 151 LIST_HEAD(bond_dev_list); 152 153 #ifdef CONFIG_PROC_FS 154 static struct proc_dir_entry *bond_proc_dir = NULL; 155 #endif 156 157 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ; 158 static int arp_ip_count = 0; 159 static int bond_mode = BOND_MODE_ROUNDROBIN; 160 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2; 161 static int lacp_fast = 0; 162 163 164 const struct bond_parm_tbl bond_lacp_tbl[] = { 165 { "slow", AD_LACP_SLOW}, 166 { "fast", AD_LACP_FAST}, 167 { NULL, -1}, 168 }; 169 170 const struct bond_parm_tbl bond_mode_tbl[] = { 171 { "balance-rr", BOND_MODE_ROUNDROBIN}, 172 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 173 { "balance-xor", BOND_MODE_XOR}, 174 { "broadcast", BOND_MODE_BROADCAST}, 175 { "802.3ad", BOND_MODE_8023AD}, 176 { "balance-tlb", BOND_MODE_TLB}, 177 { "balance-alb", BOND_MODE_ALB}, 178 { NULL, -1}, 179 }; 180 181 const struct bond_parm_tbl xmit_hashtype_tbl[] = { 182 { "layer2", BOND_XMIT_POLICY_LAYER2}, 183 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 184 { "layer2+3", BOND_XMIT_POLICY_LAYER23}, 185 { NULL, -1}, 186 }; 187 188 const struct bond_parm_tbl arp_validate_tbl[] = { 189 { "none", BOND_ARP_VALIDATE_NONE}, 190 { "active", BOND_ARP_VALIDATE_ACTIVE}, 191 { "backup", BOND_ARP_VALIDATE_BACKUP}, 192 { "all", BOND_ARP_VALIDATE_ALL}, 193 { NULL, -1}, 194 }; 195 196 const struct bond_parm_tbl fail_over_mac_tbl[] = { 197 { "none", BOND_FOM_NONE}, 198 { "active", BOND_FOM_ACTIVE}, 199 { "follow", BOND_FOM_FOLLOW}, 200 { NULL, -1}, 201 }; 202 203 struct bond_parm_tbl ad_select_tbl[] = { 204 { "stable", BOND_AD_STABLE}, 205 { "bandwidth", BOND_AD_BANDWIDTH}, 206 { "count", BOND_AD_COUNT}, 207 { NULL, -1}, 208 }; 209 210 /*-------------------------- Forward declarations ---------------------------*/ 211 212 static void bond_send_gratuitous_arp(struct bonding *bond); 213 static void bond_deinit(struct net_device *bond_dev); 214 215 /*---------------------------- General routines -----------------------------*/ 216 217 static const char *bond_mode_name(int mode) 218 { 219 static const char *names[] = { 220 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)", 221 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)", 222 [BOND_MODE_XOR] = "load balancing (xor)", 223 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)", 224 [BOND_MODE_8023AD]= "IEEE 802.3ad Dynamic link aggregation", 225 [BOND_MODE_TLB] = "transmit load balancing", 226 [BOND_MODE_ALB] = "adaptive load balancing", 227 }; 228 229 if (mode < 0 || mode > BOND_MODE_ALB) 230 return "unknown"; 231 232 return names[mode]; 233 } 234 235 /*---------------------------------- VLAN -----------------------------------*/ 236 237 /** 238 * bond_add_vlan - add a new vlan id on bond 239 * @bond: bond that got the notification 240 * @vlan_id: the vlan id to add 241 * 242 * Returns -ENOMEM if allocation failed. 243 */ 244 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 245 { 246 struct vlan_entry *vlan; 247 248 pr_debug("bond: %s, vlan id %d\n", 249 (bond ? bond->dev->name: "None"), vlan_id); 250 251 vlan = kzalloc(sizeof(struct vlan_entry), GFP_KERNEL); 252 if (!vlan) { 253 return -ENOMEM; 254 } 255 256 INIT_LIST_HEAD(&vlan->vlan_list); 257 vlan->vlan_id = vlan_id; 258 259 write_lock_bh(&bond->lock); 260 261 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 262 263 write_unlock_bh(&bond->lock); 264 265 pr_debug("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 266 267 return 0; 268 } 269 270 /** 271 * bond_del_vlan - delete a vlan id from bond 272 * @bond: bond that got the notification 273 * @vlan_id: the vlan id to delete 274 * 275 * returns -ENODEV if @vlan_id was not found in @bond. 276 */ 277 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 278 { 279 struct vlan_entry *vlan; 280 int res = -ENODEV; 281 282 pr_debug("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 283 284 write_lock_bh(&bond->lock); 285 286 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 287 if (vlan->vlan_id == vlan_id) { 288 list_del(&vlan->vlan_list); 289 290 if (bond_is_lb(bond)) 291 bond_alb_clear_vlan(bond, vlan_id); 292 293 pr_debug("removed VLAN ID %d from bond %s\n", vlan_id, 294 bond->dev->name); 295 296 kfree(vlan); 297 298 if (list_empty(&bond->vlan_list) && 299 (bond->slave_cnt == 0)) { 300 /* Last VLAN removed and no slaves, so 301 * restore block on adding VLANs. This will 302 * be removed once new slaves that are not 303 * VLAN challenged will be added. 304 */ 305 bond->dev->features |= NETIF_F_VLAN_CHALLENGED; 306 } 307 308 res = 0; 309 goto out; 310 } 311 } 312 313 pr_debug("couldn't find VLAN ID %d in bond %s\n", vlan_id, 314 bond->dev->name); 315 316 out: 317 write_unlock_bh(&bond->lock); 318 return res; 319 } 320 321 /** 322 * bond_has_challenged_slaves 323 * @bond: the bond we're working on 324 * 325 * Searches the slave list. Returns 1 if a vlan challenged slave 326 * was found, 0 otherwise. 327 * 328 * Assumes bond->lock is held. 329 */ 330 static int bond_has_challenged_slaves(struct bonding *bond) 331 { 332 struct slave *slave; 333 int i; 334 335 bond_for_each_slave(bond, slave, i) { 336 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) { 337 pr_debug("found VLAN challenged slave - %s\n", 338 slave->dev->name); 339 return 1; 340 } 341 } 342 343 pr_debug("no VLAN challenged slaves found\n"); 344 return 0; 345 } 346 347 /** 348 * bond_next_vlan - safely skip to the next item in the vlans list. 349 * @bond: the bond we're working on 350 * @curr: item we're advancing from 351 * 352 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 353 * or @curr->next otherwise (even if it is @curr itself again). 354 * 355 * Caller must hold bond->lock 356 */ 357 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 358 { 359 struct vlan_entry *next, *last; 360 361 if (list_empty(&bond->vlan_list)) { 362 return NULL; 363 } 364 365 if (!curr) { 366 next = list_entry(bond->vlan_list.next, 367 struct vlan_entry, vlan_list); 368 } else { 369 last = list_entry(bond->vlan_list.prev, 370 struct vlan_entry, vlan_list); 371 if (last == curr) { 372 next = list_entry(bond->vlan_list.next, 373 struct vlan_entry, vlan_list); 374 } else { 375 next = list_entry(curr->vlan_list.next, 376 struct vlan_entry, vlan_list); 377 } 378 } 379 380 return next; 381 } 382 383 /** 384 * bond_dev_queue_xmit - Prepare skb for xmit. 385 * 386 * @bond: bond device that got this skb for tx. 387 * @skb: hw accel VLAN tagged skb to transmit 388 * @slave_dev: slave that is supposed to xmit this skbuff 389 * 390 * When the bond gets an skb to transmit that is 391 * already hardware accelerated VLAN tagged, and it 392 * needs to relay this skb to a slave that is not 393 * hw accel capable, the skb needs to be "unaccelerated", 394 * i.e. strip the hwaccel tag and re-insert it as part 395 * of the payload. 396 */ 397 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev) 398 { 399 unsigned short uninitialized_var(vlan_id); 400 401 if (!list_empty(&bond->vlan_list) && 402 !(slave_dev->features & NETIF_F_HW_VLAN_TX) && 403 vlan_get_tag(skb, &vlan_id) == 0) { 404 skb->dev = slave_dev; 405 skb = vlan_put_tag(skb, vlan_id); 406 if (!skb) { 407 /* vlan_put_tag() frees the skb in case of error, 408 * so return success here so the calling functions 409 * won't attempt to free is again. 410 */ 411 return 0; 412 } 413 } else { 414 skb->dev = slave_dev; 415 } 416 417 skb->priority = 1; 418 dev_queue_xmit(skb); 419 420 return 0; 421 } 422 423 /* 424 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid 425 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a 426 * lock because: 427 * a. This operation is performed in IOCTL context, 428 * b. The operation is protected by the RTNL semaphore in the 8021q code, 429 * c. Holding a lock with BH disabled while directly calling a base driver 430 * entry point is generally a BAD idea. 431 * 432 * The design of synchronization/protection for this operation in the 8021q 433 * module is good for one or more VLAN devices over a single physical device 434 * and cannot be extended for a teaming solution like bonding, so there is a 435 * potential race condition here where a net device from the vlan group might 436 * be referenced (either by a base driver or the 8021q code) while it is being 437 * removed from the system. However, it turns out we're not making matters 438 * worse, and if it works for regular VLAN usage it will work here too. 439 */ 440 441 /** 442 * bond_vlan_rx_register - Propagates registration to slaves 443 * @bond_dev: bonding net device that got called 444 * @grp: vlan group being registered 445 */ 446 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp) 447 { 448 struct bonding *bond = netdev_priv(bond_dev); 449 struct slave *slave; 450 int i; 451 452 bond->vlgrp = grp; 453 454 bond_for_each_slave(bond, slave, i) { 455 struct net_device *slave_dev = slave->dev; 456 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 457 458 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 459 slave_ops->ndo_vlan_rx_register) { 460 slave_ops->ndo_vlan_rx_register(slave_dev, grp); 461 } 462 } 463 } 464 465 /** 466 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 467 * @bond_dev: bonding net device that got called 468 * @vid: vlan id being added 469 */ 470 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid) 471 { 472 struct bonding *bond = netdev_priv(bond_dev); 473 struct slave *slave; 474 int i, res; 475 476 bond_for_each_slave(bond, slave, i) { 477 struct net_device *slave_dev = slave->dev; 478 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 479 480 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 481 slave_ops->ndo_vlan_rx_add_vid) { 482 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vid); 483 } 484 } 485 486 res = bond_add_vlan(bond, vid); 487 if (res) { 488 printk(KERN_ERR DRV_NAME 489 ": %s: Error: Failed to add vlan id %d\n", 490 bond_dev->name, vid); 491 } 492 } 493 494 /** 495 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 496 * @bond_dev: bonding net device that got called 497 * @vid: vlan id being removed 498 */ 499 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid) 500 { 501 struct bonding *bond = netdev_priv(bond_dev); 502 struct slave *slave; 503 struct net_device *vlan_dev; 504 int i, res; 505 506 bond_for_each_slave(bond, slave, i) { 507 struct net_device *slave_dev = slave->dev; 508 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 509 510 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 511 slave_ops->ndo_vlan_rx_kill_vid) { 512 /* Save and then restore vlan_dev in the grp array, 513 * since the slave's driver might clear it. 514 */ 515 vlan_dev = vlan_group_get_device(bond->vlgrp, vid); 516 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vid); 517 vlan_group_set_device(bond->vlgrp, vid, vlan_dev); 518 } 519 } 520 521 res = bond_del_vlan(bond, vid); 522 if (res) { 523 printk(KERN_ERR DRV_NAME 524 ": %s: Error: Failed to remove vlan id %d\n", 525 bond_dev->name, vid); 526 } 527 } 528 529 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 530 { 531 struct vlan_entry *vlan; 532 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 533 534 write_lock_bh(&bond->lock); 535 536 if (list_empty(&bond->vlan_list)) 537 goto out; 538 539 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 540 slave_ops->ndo_vlan_rx_register) 541 slave_ops->ndo_vlan_rx_register(slave_dev, bond->vlgrp); 542 543 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 544 !(slave_ops->ndo_vlan_rx_add_vid)) 545 goto out; 546 547 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) 548 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vlan->vlan_id); 549 550 out: 551 write_unlock_bh(&bond->lock); 552 } 553 554 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev) 555 { 556 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 557 struct vlan_entry *vlan; 558 struct net_device *vlan_dev; 559 560 write_lock_bh(&bond->lock); 561 562 if (list_empty(&bond->vlan_list)) 563 goto out; 564 565 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 566 !(slave_ops->ndo_vlan_rx_kill_vid)) 567 goto unreg; 568 569 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 570 /* Save and then restore vlan_dev in the grp array, 571 * since the slave's driver might clear it. 572 */ 573 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 574 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vlan->vlan_id); 575 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev); 576 } 577 578 unreg: 579 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 580 slave_ops->ndo_vlan_rx_register) 581 slave_ops->ndo_vlan_rx_register(slave_dev, NULL); 582 583 out: 584 write_unlock_bh(&bond->lock); 585 } 586 587 /*------------------------------- Link status -------------------------------*/ 588 589 /* 590 * Set the carrier state for the master according to the state of its 591 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 592 * do special 802.3ad magic. 593 * 594 * Returns zero if carrier state does not change, nonzero if it does. 595 */ 596 static int bond_set_carrier(struct bonding *bond) 597 { 598 struct slave *slave; 599 int i; 600 601 if (bond->slave_cnt == 0) 602 goto down; 603 604 if (bond->params.mode == BOND_MODE_8023AD) 605 return bond_3ad_set_carrier(bond); 606 607 bond_for_each_slave(bond, slave, i) { 608 if (slave->link == BOND_LINK_UP) { 609 if (!netif_carrier_ok(bond->dev)) { 610 netif_carrier_on(bond->dev); 611 return 1; 612 } 613 return 0; 614 } 615 } 616 617 down: 618 if (netif_carrier_ok(bond->dev)) { 619 netif_carrier_off(bond->dev); 620 return 1; 621 } 622 return 0; 623 } 624 625 /* 626 * Get link speed and duplex from the slave's base driver 627 * using ethtool. If for some reason the call fails or the 628 * values are invalid, fake speed and duplex to 100/Full 629 * and return error. 630 */ 631 static int bond_update_speed_duplex(struct slave *slave) 632 { 633 struct net_device *slave_dev = slave->dev; 634 struct ethtool_cmd etool; 635 int res; 636 637 /* Fake speed and duplex */ 638 slave->speed = SPEED_100; 639 slave->duplex = DUPLEX_FULL; 640 641 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings) 642 return -1; 643 644 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool); 645 if (res < 0) 646 return -1; 647 648 switch (etool.speed) { 649 case SPEED_10: 650 case SPEED_100: 651 case SPEED_1000: 652 case SPEED_10000: 653 break; 654 default: 655 return -1; 656 } 657 658 switch (etool.duplex) { 659 case DUPLEX_FULL: 660 case DUPLEX_HALF: 661 break; 662 default: 663 return -1; 664 } 665 666 slave->speed = etool.speed; 667 slave->duplex = etool.duplex; 668 669 return 0; 670 } 671 672 /* 673 * if <dev> supports MII link status reporting, check its link status. 674 * 675 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 676 * depening upon the setting of the use_carrier parameter. 677 * 678 * Return either BMSR_LSTATUS, meaning that the link is up (or we 679 * can't tell and just pretend it is), or 0, meaning that the link is 680 * down. 681 * 682 * If reporting is non-zero, instead of faking link up, return -1 if 683 * both ETHTOOL and MII ioctls fail (meaning the device does not 684 * support them). If use_carrier is set, return whatever it says. 685 * It'd be nice if there was a good way to tell if a driver supports 686 * netif_carrier, but there really isn't. 687 */ 688 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting) 689 { 690 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 691 static int (* ioctl)(struct net_device *, struct ifreq *, int); 692 struct ifreq ifr; 693 struct mii_ioctl_data *mii; 694 695 if (bond->params.use_carrier) 696 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 697 698 ioctl = slave_ops->ndo_do_ioctl; 699 if (ioctl) { 700 /* TODO: set pointer to correct ioctl on a per team member */ 701 /* bases to make this more efficient. that is, once */ 702 /* we determine the correct ioctl, we will always */ 703 /* call it and not the others for that team */ 704 /* member. */ 705 706 /* 707 * We cannot assume that SIOCGMIIPHY will also read a 708 * register; not all network drivers (e.g., e100) 709 * support that. 710 */ 711 712 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 713 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 714 mii = if_mii(&ifr); 715 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 716 mii->reg_num = MII_BMSR; 717 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) { 718 return (mii->val_out & BMSR_LSTATUS); 719 } 720 } 721 } 722 723 /* 724 * Some drivers cache ETHTOOL_GLINK for a period of time so we only 725 * attempt to get link status from it if the above MII ioctls fail. 726 */ 727 if (slave_dev->ethtool_ops) { 728 if (slave_dev->ethtool_ops->get_link) { 729 u32 link; 730 731 link = slave_dev->ethtool_ops->get_link(slave_dev); 732 733 return link ? BMSR_LSTATUS : 0; 734 } 735 } 736 737 /* 738 * If reporting, report that either there's no dev->do_ioctl, 739 * or both SIOCGMIIREG and get_link failed (meaning that we 740 * cannot report link status). If not reporting, pretend 741 * we're ok. 742 */ 743 return (reporting ? -1 : BMSR_LSTATUS); 744 } 745 746 /*----------------------------- Multicast list ------------------------------*/ 747 748 /* 749 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise 750 */ 751 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2) 752 { 753 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 && 754 dmi1->dmi_addrlen == dmi2->dmi_addrlen; 755 } 756 757 /* 758 * returns dmi entry if found, NULL otherwise 759 */ 760 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) 761 { 762 struct dev_mc_list *idmi; 763 764 for (idmi = mc_list; idmi; idmi = idmi->next) { 765 if (bond_is_dmi_same(dmi, idmi)) { 766 return idmi; 767 } 768 } 769 770 return NULL; 771 } 772 773 /* 774 * Push the promiscuity flag down to appropriate slaves 775 */ 776 static int bond_set_promiscuity(struct bonding *bond, int inc) 777 { 778 int err = 0; 779 if (USES_PRIMARY(bond->params.mode)) { 780 /* write lock already acquired */ 781 if (bond->curr_active_slave) { 782 err = dev_set_promiscuity(bond->curr_active_slave->dev, 783 inc); 784 } 785 } else { 786 struct slave *slave; 787 int i; 788 bond_for_each_slave(bond, slave, i) { 789 err = dev_set_promiscuity(slave->dev, inc); 790 if (err) 791 return err; 792 } 793 } 794 return err; 795 } 796 797 /* 798 * Push the allmulti flag down to all slaves 799 */ 800 static int bond_set_allmulti(struct bonding *bond, int inc) 801 { 802 int err = 0; 803 if (USES_PRIMARY(bond->params.mode)) { 804 /* write lock already acquired */ 805 if (bond->curr_active_slave) { 806 err = dev_set_allmulti(bond->curr_active_slave->dev, 807 inc); 808 } 809 } else { 810 struct slave *slave; 811 int i; 812 bond_for_each_slave(bond, slave, i) { 813 err = dev_set_allmulti(slave->dev, inc); 814 if (err) 815 return err; 816 } 817 } 818 return err; 819 } 820 821 /* 822 * Add a Multicast address to slaves 823 * according to mode 824 */ 825 static void bond_mc_add(struct bonding *bond, void *addr, int alen) 826 { 827 if (USES_PRIMARY(bond->params.mode)) { 828 /* write lock already acquired */ 829 if (bond->curr_active_slave) { 830 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0); 831 } 832 } else { 833 struct slave *slave; 834 int i; 835 bond_for_each_slave(bond, slave, i) { 836 dev_mc_add(slave->dev, addr, alen, 0); 837 } 838 } 839 } 840 841 /* 842 * Remove a multicast address from slave 843 * according to mode 844 */ 845 static void bond_mc_delete(struct bonding *bond, void *addr, int alen) 846 { 847 if (USES_PRIMARY(bond->params.mode)) { 848 /* write lock already acquired */ 849 if (bond->curr_active_slave) { 850 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0); 851 } 852 } else { 853 struct slave *slave; 854 int i; 855 bond_for_each_slave(bond, slave, i) { 856 dev_mc_delete(slave->dev, addr, alen, 0); 857 } 858 } 859 } 860 861 862 /* 863 * Retrieve the list of registered multicast addresses for the bonding 864 * device and retransmit an IGMP JOIN request to the current active 865 * slave. 866 */ 867 static void bond_resend_igmp_join_requests(struct bonding *bond) 868 { 869 struct in_device *in_dev; 870 struct ip_mc_list *im; 871 872 rcu_read_lock(); 873 in_dev = __in_dev_get_rcu(bond->dev); 874 if (in_dev) { 875 for (im = in_dev->mc_list; im; im = im->next) { 876 ip_mc_rejoin_group(im); 877 } 878 } 879 880 rcu_read_unlock(); 881 } 882 883 /* 884 * Totally destroys the mc_list in bond 885 */ 886 static void bond_mc_list_destroy(struct bonding *bond) 887 { 888 struct dev_mc_list *dmi; 889 890 dmi = bond->mc_list; 891 while (dmi) { 892 bond->mc_list = dmi->next; 893 kfree(dmi); 894 dmi = bond->mc_list; 895 } 896 bond->mc_list = NULL; 897 } 898 899 /* 900 * Copy all the Multicast addresses from src to the bonding device dst 901 */ 902 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond, 903 gfp_t gfp_flag) 904 { 905 struct dev_mc_list *dmi, *new_dmi; 906 907 for (dmi = mc_list; dmi; dmi = dmi->next) { 908 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag); 909 910 if (!new_dmi) { 911 /* FIXME: Potential memory leak !!! */ 912 return -ENOMEM; 913 } 914 915 new_dmi->next = bond->mc_list; 916 bond->mc_list = new_dmi; 917 new_dmi->dmi_addrlen = dmi->dmi_addrlen; 918 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen); 919 new_dmi->dmi_users = dmi->dmi_users; 920 new_dmi->dmi_gusers = dmi->dmi_gusers; 921 } 922 923 return 0; 924 } 925 926 /* 927 * flush all members of flush->mc_list from device dev->mc_list 928 */ 929 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev) 930 { 931 struct bonding *bond = netdev_priv(bond_dev); 932 struct dev_mc_list *dmi; 933 934 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 935 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 936 } 937 938 if (bond->params.mode == BOND_MODE_8023AD) { 939 /* del lacpdu mc addr from mc list */ 940 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 941 942 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 943 } 944 } 945 946 /*--------------------------- Active slave change ---------------------------*/ 947 948 /* 949 * Update the mc list and multicast-related flags for the new and 950 * old active slaves (if any) according to the multicast mode, and 951 * promiscuous flags unconditionally. 952 */ 953 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active) 954 { 955 struct dev_mc_list *dmi; 956 957 if (!USES_PRIMARY(bond->params.mode)) { 958 /* nothing to do - mc list is already up-to-date on 959 * all slaves 960 */ 961 return; 962 } 963 964 if (old_active) { 965 if (bond->dev->flags & IFF_PROMISC) { 966 dev_set_promiscuity(old_active->dev, -1); 967 } 968 969 if (bond->dev->flags & IFF_ALLMULTI) { 970 dev_set_allmulti(old_active->dev, -1); 971 } 972 973 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 974 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 975 } 976 } 977 978 if (new_active) { 979 /* FIXME: Signal errors upstream. */ 980 if (bond->dev->flags & IFF_PROMISC) { 981 dev_set_promiscuity(new_active->dev, 1); 982 } 983 984 if (bond->dev->flags & IFF_ALLMULTI) { 985 dev_set_allmulti(new_active->dev, 1); 986 } 987 988 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 989 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 990 } 991 bond_resend_igmp_join_requests(bond); 992 } 993 } 994 995 /* 996 * bond_do_fail_over_mac 997 * 998 * Perform special MAC address swapping for fail_over_mac settings 999 * 1000 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh. 1001 */ 1002 static void bond_do_fail_over_mac(struct bonding *bond, 1003 struct slave *new_active, 1004 struct slave *old_active) 1005 { 1006 u8 tmp_mac[ETH_ALEN]; 1007 struct sockaddr saddr; 1008 int rv; 1009 1010 switch (bond->params.fail_over_mac) { 1011 case BOND_FOM_ACTIVE: 1012 if (new_active) 1013 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr, 1014 new_active->dev->addr_len); 1015 break; 1016 case BOND_FOM_FOLLOW: 1017 /* 1018 * if new_active && old_active, swap them 1019 * if just old_active, do nothing (going to no active slave) 1020 * if just new_active, set new_active to bond's MAC 1021 */ 1022 if (!new_active) 1023 return; 1024 1025 write_unlock_bh(&bond->curr_slave_lock); 1026 read_unlock(&bond->lock); 1027 1028 if (old_active) { 1029 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN); 1030 memcpy(saddr.sa_data, old_active->dev->dev_addr, 1031 ETH_ALEN); 1032 saddr.sa_family = new_active->dev->type; 1033 } else { 1034 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN); 1035 saddr.sa_family = bond->dev->type; 1036 } 1037 1038 rv = dev_set_mac_address(new_active->dev, &saddr); 1039 if (rv) { 1040 printk(KERN_ERR DRV_NAME 1041 ": %s: Error %d setting MAC of slave %s\n", 1042 bond->dev->name, -rv, new_active->dev->name); 1043 goto out; 1044 } 1045 1046 if (!old_active) 1047 goto out; 1048 1049 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN); 1050 saddr.sa_family = old_active->dev->type; 1051 1052 rv = dev_set_mac_address(old_active->dev, &saddr); 1053 if (rv) 1054 printk(KERN_ERR DRV_NAME 1055 ": %s: Error %d setting MAC of slave %s\n", 1056 bond->dev->name, -rv, new_active->dev->name); 1057 out: 1058 read_lock(&bond->lock); 1059 write_lock_bh(&bond->curr_slave_lock); 1060 break; 1061 default: 1062 printk(KERN_ERR DRV_NAME 1063 ": %s: bond_do_fail_over_mac impossible: bad policy %d\n", 1064 bond->dev->name, bond->params.fail_over_mac); 1065 break; 1066 } 1067 1068 } 1069 1070 1071 /** 1072 * find_best_interface - select the best available slave to be the active one 1073 * @bond: our bonding struct 1074 * 1075 * Warning: Caller must hold curr_slave_lock for writing. 1076 */ 1077 static struct slave *bond_find_best_slave(struct bonding *bond) 1078 { 1079 struct slave *new_active, *old_active; 1080 struct slave *bestslave = NULL; 1081 int mintime = bond->params.updelay; 1082 int i; 1083 1084 new_active = old_active = bond->curr_active_slave; 1085 1086 if (!new_active) { /* there were no active slaves left */ 1087 if (bond->slave_cnt > 0) { /* found one slave */ 1088 new_active = bond->first_slave; 1089 } else { 1090 return NULL; /* still no slave, return NULL */ 1091 } 1092 } 1093 1094 /* first try the primary link; if arping, a link must tx/rx traffic 1095 * before it can be considered the curr_active_slave - also, we would skip 1096 * slaves between the curr_active_slave and primary_slave that may be up 1097 * and able to arp 1098 */ 1099 if ((bond->primary_slave) && 1100 (!bond->params.arp_interval) && 1101 (IS_UP(bond->primary_slave->dev))) { 1102 new_active = bond->primary_slave; 1103 } 1104 1105 /* remember where to stop iterating over the slaves */ 1106 old_active = new_active; 1107 1108 bond_for_each_slave_from(bond, new_active, i, old_active) { 1109 if (IS_UP(new_active->dev)) { 1110 if (new_active->link == BOND_LINK_UP) { 1111 return new_active; 1112 } else if (new_active->link == BOND_LINK_BACK) { 1113 /* link up, but waiting for stabilization */ 1114 if (new_active->delay < mintime) { 1115 mintime = new_active->delay; 1116 bestslave = new_active; 1117 } 1118 } 1119 } 1120 } 1121 1122 return bestslave; 1123 } 1124 1125 /** 1126 * change_active_interface - change the active slave into the specified one 1127 * @bond: our bonding struct 1128 * @new: the new slave to make the active one 1129 * 1130 * Set the new slave to the bond's settings and unset them on the old 1131 * curr_active_slave. 1132 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1133 * 1134 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1135 * because it is apparently the best available slave we have, even though its 1136 * updelay hasn't timed out yet. 1137 * 1138 * If new_active is not NULL, caller must hold bond->lock for read and 1139 * curr_slave_lock for write_bh. 1140 */ 1141 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1142 { 1143 struct slave *old_active = bond->curr_active_slave; 1144 1145 if (old_active == new_active) { 1146 return; 1147 } 1148 1149 if (new_active) { 1150 new_active->jiffies = jiffies; 1151 1152 if (new_active->link == BOND_LINK_BACK) { 1153 if (USES_PRIMARY(bond->params.mode)) { 1154 printk(KERN_INFO DRV_NAME 1155 ": %s: making interface %s the new " 1156 "active one %d ms earlier.\n", 1157 bond->dev->name, new_active->dev->name, 1158 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1159 } 1160 1161 new_active->delay = 0; 1162 new_active->link = BOND_LINK_UP; 1163 1164 if (bond->params.mode == BOND_MODE_8023AD) { 1165 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1166 } 1167 1168 if (bond_is_lb(bond)) 1169 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1170 } else { 1171 if (USES_PRIMARY(bond->params.mode)) { 1172 printk(KERN_INFO DRV_NAME 1173 ": %s: making interface %s the new " 1174 "active one.\n", 1175 bond->dev->name, new_active->dev->name); 1176 } 1177 } 1178 } 1179 1180 if (USES_PRIMARY(bond->params.mode)) { 1181 bond_mc_swap(bond, new_active, old_active); 1182 } 1183 1184 if (bond_is_lb(bond)) { 1185 bond_alb_handle_active_change(bond, new_active); 1186 if (old_active) 1187 bond_set_slave_inactive_flags(old_active); 1188 if (new_active) 1189 bond_set_slave_active_flags(new_active); 1190 } else { 1191 bond->curr_active_slave = new_active; 1192 } 1193 1194 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1195 if (old_active) { 1196 bond_set_slave_inactive_flags(old_active); 1197 } 1198 1199 if (new_active) { 1200 bond_set_slave_active_flags(new_active); 1201 1202 if (bond->params.fail_over_mac) 1203 bond_do_fail_over_mac(bond, new_active, 1204 old_active); 1205 1206 bond->send_grat_arp = bond->params.num_grat_arp; 1207 bond_send_gratuitous_arp(bond); 1208 1209 bond->send_unsol_na = bond->params.num_unsol_na; 1210 bond_send_unsolicited_na(bond); 1211 1212 write_unlock_bh(&bond->curr_slave_lock); 1213 read_unlock(&bond->lock); 1214 1215 netdev_bonding_change(bond->dev); 1216 1217 read_lock(&bond->lock); 1218 write_lock_bh(&bond->curr_slave_lock); 1219 } 1220 } 1221 } 1222 1223 /** 1224 * bond_select_active_slave - select a new active slave, if needed 1225 * @bond: our bonding struct 1226 * 1227 * This functions shoud be called when one of the following occurs: 1228 * - The old curr_active_slave has been released or lost its link. 1229 * - The primary_slave has got its link back. 1230 * - A slave has got its link back and there's no old curr_active_slave. 1231 * 1232 * Caller must hold bond->lock for read and curr_slave_lock for write_bh. 1233 */ 1234 void bond_select_active_slave(struct bonding *bond) 1235 { 1236 struct slave *best_slave; 1237 int rv; 1238 1239 best_slave = bond_find_best_slave(bond); 1240 if (best_slave != bond->curr_active_slave) { 1241 bond_change_active_slave(bond, best_slave); 1242 rv = bond_set_carrier(bond); 1243 if (!rv) 1244 return; 1245 1246 if (netif_carrier_ok(bond->dev)) { 1247 printk(KERN_INFO DRV_NAME 1248 ": %s: first active interface up!\n", 1249 bond->dev->name); 1250 } else { 1251 printk(KERN_INFO DRV_NAME ": %s: " 1252 "now running without any active interface !\n", 1253 bond->dev->name); 1254 } 1255 } 1256 } 1257 1258 /*--------------------------- slave list handling ---------------------------*/ 1259 1260 /* 1261 * This function attaches the slave to the end of list. 1262 * 1263 * bond->lock held for writing by caller. 1264 */ 1265 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1266 { 1267 if (bond->first_slave == NULL) { /* attaching the first slave */ 1268 new_slave->next = new_slave; 1269 new_slave->prev = new_slave; 1270 bond->first_slave = new_slave; 1271 } else { 1272 new_slave->next = bond->first_slave; 1273 new_slave->prev = bond->first_slave->prev; 1274 new_slave->next->prev = new_slave; 1275 new_slave->prev->next = new_slave; 1276 } 1277 1278 bond->slave_cnt++; 1279 } 1280 1281 /* 1282 * This function detaches the slave from the list. 1283 * WARNING: no check is made to verify if the slave effectively 1284 * belongs to <bond>. 1285 * Nothing is freed on return, structures are just unchained. 1286 * If any slave pointer in bond was pointing to <slave>, 1287 * it should be changed by the calling function. 1288 * 1289 * bond->lock held for writing by caller. 1290 */ 1291 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1292 { 1293 if (slave->next) { 1294 slave->next->prev = slave->prev; 1295 } 1296 1297 if (slave->prev) { 1298 slave->prev->next = slave->next; 1299 } 1300 1301 if (bond->first_slave == slave) { /* slave is the first slave */ 1302 if (bond->slave_cnt > 1) { /* there are more slave */ 1303 bond->first_slave = slave->next; 1304 } else { 1305 bond->first_slave = NULL; /* slave was the last one */ 1306 } 1307 } 1308 1309 slave->next = NULL; 1310 slave->prev = NULL; 1311 bond->slave_cnt--; 1312 } 1313 1314 /*---------------------------------- IOCTL ----------------------------------*/ 1315 1316 static int bond_sethwaddr(struct net_device *bond_dev, 1317 struct net_device *slave_dev) 1318 { 1319 pr_debug("bond_dev=%p\n", bond_dev); 1320 pr_debug("slave_dev=%p\n", slave_dev); 1321 pr_debug("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1322 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1323 return 0; 1324 } 1325 1326 #define BOND_VLAN_FEATURES \ 1327 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \ 1328 NETIF_F_HW_VLAN_FILTER) 1329 1330 /* 1331 * Compute the common dev->feature set available to all slaves. Some 1332 * feature bits are managed elsewhere, so preserve those feature bits 1333 * on the master device. 1334 */ 1335 static int bond_compute_features(struct bonding *bond) 1336 { 1337 struct slave *slave; 1338 struct net_device *bond_dev = bond->dev; 1339 unsigned long features = bond_dev->features; 1340 unsigned short max_hard_header_len = max((u16)ETH_HLEN, 1341 bond_dev->hard_header_len); 1342 int i; 1343 1344 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES); 1345 features |= NETIF_F_GSO_MASK | NETIF_F_NO_CSUM; 1346 1347 if (!bond->first_slave) 1348 goto done; 1349 1350 features &= ~NETIF_F_ONE_FOR_ALL; 1351 1352 bond_for_each_slave(bond, slave, i) { 1353 features = netdev_increment_features(features, 1354 slave->dev->features, 1355 NETIF_F_ONE_FOR_ALL); 1356 if (slave->dev->hard_header_len > max_hard_header_len) 1357 max_hard_header_len = slave->dev->hard_header_len; 1358 } 1359 1360 done: 1361 features |= (bond_dev->features & BOND_VLAN_FEATURES); 1362 bond_dev->features = netdev_fix_features(features, NULL); 1363 bond_dev->hard_header_len = max_hard_header_len; 1364 1365 return 0; 1366 } 1367 1368 static void bond_setup_by_slave(struct net_device *bond_dev, 1369 struct net_device *slave_dev) 1370 { 1371 struct bonding *bond = netdev_priv(bond_dev); 1372 1373 bond_dev->header_ops = slave_dev->header_ops; 1374 1375 bond_dev->type = slave_dev->type; 1376 bond_dev->hard_header_len = slave_dev->hard_header_len; 1377 bond_dev->addr_len = slave_dev->addr_len; 1378 1379 memcpy(bond_dev->broadcast, slave_dev->broadcast, 1380 slave_dev->addr_len); 1381 bond->setup_by_slave = 1; 1382 } 1383 1384 /* enslave device <slave> to bond device <master> */ 1385 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1386 { 1387 struct bonding *bond = netdev_priv(bond_dev); 1388 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 1389 struct slave *new_slave = NULL; 1390 struct dev_mc_list *dmi; 1391 struct sockaddr addr; 1392 int link_reporting; 1393 int old_features = bond_dev->features; 1394 int res = 0; 1395 1396 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL && 1397 slave_ops->ndo_do_ioctl == NULL) { 1398 printk(KERN_WARNING DRV_NAME 1399 ": %s: Warning: no link monitoring support for %s\n", 1400 bond_dev->name, slave_dev->name); 1401 } 1402 1403 /* bond must be initialized by bond_open() before enslaving */ 1404 if (!(bond_dev->flags & IFF_UP)) { 1405 printk(KERN_WARNING DRV_NAME 1406 " %s: master_dev is not up in bond_enslave\n", 1407 bond_dev->name); 1408 } 1409 1410 /* already enslaved */ 1411 if (slave_dev->flags & IFF_SLAVE) { 1412 pr_debug("Error, Device was already enslaved\n"); 1413 return -EBUSY; 1414 } 1415 1416 /* vlan challenged mutual exclusion */ 1417 /* no need to lock since we're protected by rtnl_lock */ 1418 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1419 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1420 if (!list_empty(&bond->vlan_list)) { 1421 printk(KERN_ERR DRV_NAME 1422 ": %s: Error: cannot enslave VLAN " 1423 "challenged slave %s on VLAN enabled " 1424 "bond %s\n", bond_dev->name, slave_dev->name, 1425 bond_dev->name); 1426 return -EPERM; 1427 } else { 1428 printk(KERN_WARNING DRV_NAME 1429 ": %s: Warning: enslaved VLAN challenged " 1430 "slave %s. Adding VLANs will be blocked as " 1431 "long as %s is part of bond %s\n", 1432 bond_dev->name, slave_dev->name, slave_dev->name, 1433 bond_dev->name); 1434 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1435 } 1436 } else { 1437 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1438 if (bond->slave_cnt == 0) { 1439 /* First slave, and it is not VLAN challenged, 1440 * so remove the block of adding VLANs over the bond. 1441 */ 1442 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1443 } 1444 } 1445 1446 /* 1447 * Old ifenslave binaries are no longer supported. These can 1448 * be identified with moderate accurary by the state of the slave: 1449 * the current ifenslave will set the interface down prior to 1450 * enslaving it; the old ifenslave will not. 1451 */ 1452 if ((slave_dev->flags & IFF_UP)) { 1453 printk(KERN_ERR DRV_NAME ": %s is up. " 1454 "This may be due to an out of date ifenslave.\n", 1455 slave_dev->name); 1456 res = -EPERM; 1457 goto err_undo_flags; 1458 } 1459 1460 /* set bonding device ether type by slave - bonding netdevices are 1461 * created with ether_setup, so when the slave type is not ARPHRD_ETHER 1462 * there is a need to override some of the type dependent attribs/funcs. 1463 * 1464 * bond ether type mutual exclusion - don't allow slaves of dissimilar 1465 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond 1466 */ 1467 if (bond->slave_cnt == 0) { 1468 if (slave_dev->type != ARPHRD_ETHER) 1469 bond_setup_by_slave(bond_dev, slave_dev); 1470 } else if (bond_dev->type != slave_dev->type) { 1471 printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different " 1472 "from other slaves (%d), can not enslave it.\n", 1473 slave_dev->name, 1474 slave_dev->type, bond_dev->type); 1475 res = -EINVAL; 1476 goto err_undo_flags; 1477 } 1478 1479 if (slave_ops->ndo_set_mac_address == NULL) { 1480 if (bond->slave_cnt == 0) { 1481 printk(KERN_WARNING DRV_NAME 1482 ": %s: Warning: The first slave device " 1483 "specified does not support setting the MAC " 1484 "address. Setting fail_over_mac to active.", 1485 bond_dev->name); 1486 bond->params.fail_over_mac = BOND_FOM_ACTIVE; 1487 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1488 printk(KERN_ERR DRV_NAME 1489 ": %s: Error: The slave device specified " 1490 "does not support setting the MAC address, " 1491 "but fail_over_mac is not set to active.\n" 1492 , bond_dev->name); 1493 res = -EOPNOTSUPP; 1494 goto err_undo_flags; 1495 } 1496 } 1497 1498 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1499 if (!new_slave) { 1500 res = -ENOMEM; 1501 goto err_undo_flags; 1502 } 1503 1504 /* save slave's original flags before calling 1505 * netdev_set_master and dev_open 1506 */ 1507 new_slave->original_flags = slave_dev->flags; 1508 1509 /* 1510 * Save slave's original ("permanent") mac address for modes 1511 * that need it, and for restoring it upon release, and then 1512 * set it to the master's address 1513 */ 1514 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1515 1516 if (!bond->params.fail_over_mac) { 1517 /* 1518 * Set slave to master's mac address. The application already 1519 * set the master's mac address to that of the first slave 1520 */ 1521 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1522 addr.sa_family = slave_dev->type; 1523 res = dev_set_mac_address(slave_dev, &addr); 1524 if (res) { 1525 pr_debug("Error %d calling set_mac_address\n", res); 1526 goto err_free; 1527 } 1528 } 1529 1530 res = netdev_set_master(slave_dev, bond_dev); 1531 if (res) { 1532 pr_debug("Error %d calling netdev_set_master\n", res); 1533 goto err_restore_mac; 1534 } 1535 /* open the slave since the application closed it */ 1536 res = dev_open(slave_dev); 1537 if (res) { 1538 pr_debug("Openning slave %s failed\n", slave_dev->name); 1539 goto err_unset_master; 1540 } 1541 1542 new_slave->dev = slave_dev; 1543 slave_dev->priv_flags |= IFF_BONDING; 1544 1545 if (bond_is_lb(bond)) { 1546 /* bond_alb_init_slave() must be called before all other stages since 1547 * it might fail and we do not want to have to undo everything 1548 */ 1549 res = bond_alb_init_slave(bond, new_slave); 1550 if (res) { 1551 goto err_close; 1552 } 1553 } 1554 1555 /* If the mode USES_PRIMARY, then the new slave gets the 1556 * master's promisc (and mc) settings only if it becomes the 1557 * curr_active_slave, and that is taken care of later when calling 1558 * bond_change_active() 1559 */ 1560 if (!USES_PRIMARY(bond->params.mode)) { 1561 /* set promiscuity level to new slave */ 1562 if (bond_dev->flags & IFF_PROMISC) { 1563 res = dev_set_promiscuity(slave_dev, 1); 1564 if (res) 1565 goto err_close; 1566 } 1567 1568 /* set allmulti level to new slave */ 1569 if (bond_dev->flags & IFF_ALLMULTI) { 1570 res = dev_set_allmulti(slave_dev, 1); 1571 if (res) 1572 goto err_close; 1573 } 1574 1575 netif_addr_lock_bh(bond_dev); 1576 /* upload master's mc_list to new slave */ 1577 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 1578 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 1579 } 1580 netif_addr_unlock_bh(bond_dev); 1581 } 1582 1583 if (bond->params.mode == BOND_MODE_8023AD) { 1584 /* add lacpdu mc addr to mc list */ 1585 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1586 1587 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 1588 } 1589 1590 bond_add_vlans_on_slave(bond, slave_dev); 1591 1592 write_lock_bh(&bond->lock); 1593 1594 bond_attach_slave(bond, new_slave); 1595 1596 new_slave->delay = 0; 1597 new_slave->link_failure_count = 0; 1598 1599 bond_compute_features(bond); 1600 1601 write_unlock_bh(&bond->lock); 1602 1603 read_lock(&bond->lock); 1604 1605 new_slave->last_arp_rx = jiffies; 1606 1607 if (bond->params.miimon && !bond->params.use_carrier) { 1608 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1609 1610 if ((link_reporting == -1) && !bond->params.arp_interval) { 1611 /* 1612 * miimon is set but a bonded network driver 1613 * does not support ETHTOOL/MII and 1614 * arp_interval is not set. Note: if 1615 * use_carrier is enabled, we will never go 1616 * here (because netif_carrier is always 1617 * supported); thus, we don't need to change 1618 * the messages for netif_carrier. 1619 */ 1620 printk(KERN_WARNING DRV_NAME 1621 ": %s: Warning: MII and ETHTOOL support not " 1622 "available for interface %s, and " 1623 "arp_interval/arp_ip_target module parameters " 1624 "not specified, thus bonding will not detect " 1625 "link failures! see bonding.txt for details.\n", 1626 bond_dev->name, slave_dev->name); 1627 } else if (link_reporting == -1) { 1628 /* unable get link status using mii/ethtool */ 1629 printk(KERN_WARNING DRV_NAME 1630 ": %s: Warning: can't get link status from " 1631 "interface %s; the network driver associated " 1632 "with this interface does not support MII or " 1633 "ETHTOOL link status reporting, thus miimon " 1634 "has no effect on this interface.\n", 1635 bond_dev->name, slave_dev->name); 1636 } 1637 } 1638 1639 /* check for initial state */ 1640 if (!bond->params.miimon || 1641 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) { 1642 if (bond->params.updelay) { 1643 pr_debug("Initial state of slave_dev is " 1644 "BOND_LINK_BACK\n"); 1645 new_slave->link = BOND_LINK_BACK; 1646 new_slave->delay = bond->params.updelay; 1647 } else { 1648 pr_debug("Initial state of slave_dev is " 1649 "BOND_LINK_UP\n"); 1650 new_slave->link = BOND_LINK_UP; 1651 } 1652 new_slave->jiffies = jiffies; 1653 } else { 1654 pr_debug("Initial state of slave_dev is " 1655 "BOND_LINK_DOWN\n"); 1656 new_slave->link = BOND_LINK_DOWN; 1657 } 1658 1659 if (bond_update_speed_duplex(new_slave) && 1660 (new_slave->link != BOND_LINK_DOWN)) { 1661 printk(KERN_WARNING DRV_NAME 1662 ": %s: Warning: failed to get speed and duplex from %s, " 1663 "assumed to be 100Mb/sec and Full.\n", 1664 bond_dev->name, new_slave->dev->name); 1665 1666 if (bond->params.mode == BOND_MODE_8023AD) { 1667 printk(KERN_WARNING DRV_NAME 1668 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL " 1669 "support in base driver for proper aggregator " 1670 "selection.\n", bond_dev->name); 1671 } 1672 } 1673 1674 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1675 /* if there is a primary slave, remember it */ 1676 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1677 bond->primary_slave = new_slave; 1678 } 1679 } 1680 1681 write_lock_bh(&bond->curr_slave_lock); 1682 1683 switch (bond->params.mode) { 1684 case BOND_MODE_ACTIVEBACKUP: 1685 bond_set_slave_inactive_flags(new_slave); 1686 bond_select_active_slave(bond); 1687 break; 1688 case BOND_MODE_8023AD: 1689 /* in 802.3ad mode, the internal mechanism 1690 * will activate the slaves in the selected 1691 * aggregator 1692 */ 1693 bond_set_slave_inactive_flags(new_slave); 1694 /* if this is the first slave */ 1695 if (bond->slave_cnt == 1) { 1696 SLAVE_AD_INFO(new_slave).id = 1; 1697 /* Initialize AD with the number of times that the AD timer is called in 1 second 1698 * can be called only after the mac address of the bond is set 1699 */ 1700 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL, 1701 bond->params.lacp_fast); 1702 } else { 1703 SLAVE_AD_INFO(new_slave).id = 1704 SLAVE_AD_INFO(new_slave->prev).id + 1; 1705 } 1706 1707 bond_3ad_bind_slave(new_slave); 1708 break; 1709 case BOND_MODE_TLB: 1710 case BOND_MODE_ALB: 1711 new_slave->state = BOND_STATE_ACTIVE; 1712 bond_set_slave_inactive_flags(new_slave); 1713 break; 1714 default: 1715 pr_debug("This slave is always active in trunk mode\n"); 1716 1717 /* always active in trunk mode */ 1718 new_slave->state = BOND_STATE_ACTIVE; 1719 1720 /* In trunking mode there is little meaning to curr_active_slave 1721 * anyway (it holds no special properties of the bond device), 1722 * so we can change it without calling change_active_interface() 1723 */ 1724 if (!bond->curr_active_slave) { 1725 bond->curr_active_slave = new_slave; 1726 } 1727 break; 1728 } /* switch(bond_mode) */ 1729 1730 write_unlock_bh(&bond->curr_slave_lock); 1731 1732 bond_set_carrier(bond); 1733 1734 read_unlock(&bond->lock); 1735 1736 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1737 if (res) 1738 goto err_close; 1739 1740 printk(KERN_INFO DRV_NAME 1741 ": %s: enslaving %s as a%s interface with a%s link.\n", 1742 bond_dev->name, slave_dev->name, 1743 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup", 1744 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1745 1746 /* enslave is successful */ 1747 return 0; 1748 1749 /* Undo stages on error */ 1750 err_close: 1751 dev_close(slave_dev); 1752 1753 err_unset_master: 1754 netdev_set_master(slave_dev, NULL); 1755 1756 err_restore_mac: 1757 if (!bond->params.fail_over_mac) { 1758 /* XXX TODO - fom follow mode needs to change master's 1759 * MAC if this slave's MAC is in use by the bond, or at 1760 * least print a warning. 1761 */ 1762 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1763 addr.sa_family = slave_dev->type; 1764 dev_set_mac_address(slave_dev, &addr); 1765 } 1766 1767 err_free: 1768 kfree(new_slave); 1769 1770 err_undo_flags: 1771 bond_dev->features = old_features; 1772 1773 return res; 1774 } 1775 1776 /* 1777 * Try to release the slave device <slave> from the bond device <master> 1778 * It is legal to access curr_active_slave without a lock because all the function 1779 * is write-locked. 1780 * 1781 * The rules for slave state should be: 1782 * for Active/Backup: 1783 * Active stays on all backups go down 1784 * for Bonded connections: 1785 * The first up interface should be left on and all others downed. 1786 */ 1787 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 1788 { 1789 struct bonding *bond = netdev_priv(bond_dev); 1790 struct slave *slave, *oldcurrent; 1791 struct sockaddr addr; 1792 int mac_addr_differ; 1793 1794 /* slave is not a slave or master is not master of this slave */ 1795 if (!(slave_dev->flags & IFF_SLAVE) || 1796 (slave_dev->master != bond_dev)) { 1797 printk(KERN_ERR DRV_NAME 1798 ": %s: Error: cannot release %s.\n", 1799 bond_dev->name, slave_dev->name); 1800 return -EINVAL; 1801 } 1802 1803 write_lock_bh(&bond->lock); 1804 1805 slave = bond_get_slave_by_dev(bond, slave_dev); 1806 if (!slave) { 1807 /* not a slave of this bond */ 1808 printk(KERN_INFO DRV_NAME 1809 ": %s: %s not enslaved\n", 1810 bond_dev->name, slave_dev->name); 1811 write_unlock_bh(&bond->lock); 1812 return -EINVAL; 1813 } 1814 1815 if (!bond->params.fail_over_mac) { 1816 mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr, 1817 ETH_ALEN); 1818 if (!mac_addr_differ && (bond->slave_cnt > 1)) 1819 printk(KERN_WARNING DRV_NAME 1820 ": %s: Warning: the permanent HWaddr of %s - " 1821 "%pM - is still in use by %s. " 1822 "Set the HWaddr of %s to a different address " 1823 "to avoid conflicts.\n", 1824 bond_dev->name, slave_dev->name, 1825 slave->perm_hwaddr, 1826 bond_dev->name, slave_dev->name); 1827 } 1828 1829 /* Inform AD package of unbinding of slave. */ 1830 if (bond->params.mode == BOND_MODE_8023AD) { 1831 /* must be called before the slave is 1832 * detached from the list 1833 */ 1834 bond_3ad_unbind_slave(slave); 1835 } 1836 1837 printk(KERN_INFO DRV_NAME 1838 ": %s: releasing %s interface %s\n", 1839 bond_dev->name, 1840 (slave->state == BOND_STATE_ACTIVE) 1841 ? "active" : "backup", 1842 slave_dev->name); 1843 1844 oldcurrent = bond->curr_active_slave; 1845 1846 bond->current_arp_slave = NULL; 1847 1848 /* release the slave from its bond */ 1849 bond_detach_slave(bond, slave); 1850 1851 bond_compute_features(bond); 1852 1853 if (bond->primary_slave == slave) { 1854 bond->primary_slave = NULL; 1855 } 1856 1857 if (oldcurrent == slave) { 1858 bond_change_active_slave(bond, NULL); 1859 } 1860 1861 if (bond_is_lb(bond)) { 1862 /* Must be called only after the slave has been 1863 * detached from the list and the curr_active_slave 1864 * has been cleared (if our_slave == old_current), 1865 * but before a new active slave is selected. 1866 */ 1867 write_unlock_bh(&bond->lock); 1868 bond_alb_deinit_slave(bond, slave); 1869 write_lock_bh(&bond->lock); 1870 } 1871 1872 if (oldcurrent == slave) { 1873 /* 1874 * Note that we hold RTNL over this sequence, so there 1875 * is no concern that another slave add/remove event 1876 * will interfere. 1877 */ 1878 write_unlock_bh(&bond->lock); 1879 read_lock(&bond->lock); 1880 write_lock_bh(&bond->curr_slave_lock); 1881 1882 bond_select_active_slave(bond); 1883 1884 write_unlock_bh(&bond->curr_slave_lock); 1885 read_unlock(&bond->lock); 1886 write_lock_bh(&bond->lock); 1887 } 1888 1889 if (bond->slave_cnt == 0) { 1890 bond_set_carrier(bond); 1891 1892 /* if the last slave was removed, zero the mac address 1893 * of the master so it will be set by the application 1894 * to the mac address of the first slave 1895 */ 1896 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 1897 1898 if (list_empty(&bond->vlan_list)) { 1899 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1900 } else { 1901 printk(KERN_WARNING DRV_NAME 1902 ": %s: Warning: clearing HW address of %s while it " 1903 "still has VLANs.\n", 1904 bond_dev->name, bond_dev->name); 1905 printk(KERN_WARNING DRV_NAME 1906 ": %s: When re-adding slaves, make sure the bond's " 1907 "HW address matches its VLANs'.\n", 1908 bond_dev->name); 1909 } 1910 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 1911 !bond_has_challenged_slaves(bond)) { 1912 printk(KERN_INFO DRV_NAME 1913 ": %s: last VLAN challenged slave %s " 1914 "left bond %s. VLAN blocking is removed\n", 1915 bond_dev->name, slave_dev->name, bond_dev->name); 1916 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1917 } 1918 1919 write_unlock_bh(&bond->lock); 1920 1921 /* must do this from outside any spinlocks */ 1922 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1923 1924 bond_del_vlans_from_slave(bond, slave_dev); 1925 1926 /* If the mode USES_PRIMARY, then we should only remove its 1927 * promisc and mc settings if it was the curr_active_slave, but that was 1928 * already taken care of above when we detached the slave 1929 */ 1930 if (!USES_PRIMARY(bond->params.mode)) { 1931 /* unset promiscuity level from slave */ 1932 if (bond_dev->flags & IFF_PROMISC) { 1933 dev_set_promiscuity(slave_dev, -1); 1934 } 1935 1936 /* unset allmulti level from slave */ 1937 if (bond_dev->flags & IFF_ALLMULTI) { 1938 dev_set_allmulti(slave_dev, -1); 1939 } 1940 1941 /* flush master's mc_list from slave */ 1942 netif_addr_lock_bh(bond_dev); 1943 bond_mc_list_flush(bond_dev, slave_dev); 1944 netif_addr_unlock_bh(bond_dev); 1945 } 1946 1947 netdev_set_master(slave_dev, NULL); 1948 1949 /* close slave before restoring its mac address */ 1950 dev_close(slave_dev); 1951 1952 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1953 /* restore original ("permanent") mac address */ 1954 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 1955 addr.sa_family = slave_dev->type; 1956 dev_set_mac_address(slave_dev, &addr); 1957 } 1958 1959 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 1960 IFF_SLAVE_INACTIVE | IFF_BONDING | 1961 IFF_SLAVE_NEEDARP); 1962 1963 kfree(slave); 1964 1965 return 0; /* deletion OK */ 1966 } 1967 1968 /* 1969 * Destroy a bonding device. 1970 * Must be under rtnl_lock when this function is called. 1971 */ 1972 void bond_destroy(struct bonding *bond) 1973 { 1974 bond_deinit(bond->dev); 1975 bond_destroy_sysfs_entry(bond); 1976 unregister_netdevice(bond->dev); 1977 } 1978 1979 static void bond_destructor(struct net_device *bond_dev) 1980 { 1981 struct bonding *bond = netdev_priv(bond_dev); 1982 1983 if (bond->wq) 1984 destroy_workqueue(bond->wq); 1985 1986 netif_addr_lock_bh(bond_dev); 1987 bond_mc_list_destroy(bond); 1988 netif_addr_unlock_bh(bond_dev); 1989 1990 free_netdev(bond_dev); 1991 } 1992 1993 /* 1994 * First release a slave and than destroy the bond if no more slaves iare left. 1995 * Must be under rtnl_lock when this function is called. 1996 */ 1997 int bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev) 1998 { 1999 struct bonding *bond = netdev_priv(bond_dev); 2000 int ret; 2001 2002 ret = bond_release(bond_dev, slave_dev); 2003 if ((ret == 0) && (bond->slave_cnt == 0)) { 2004 printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n", 2005 bond_dev->name, bond_dev->name); 2006 bond_destroy(bond); 2007 } 2008 return ret; 2009 } 2010 2011 /* 2012 * This function releases all slaves. 2013 */ 2014 static int bond_release_all(struct net_device *bond_dev) 2015 { 2016 struct bonding *bond = netdev_priv(bond_dev); 2017 struct slave *slave; 2018 struct net_device *slave_dev; 2019 struct sockaddr addr; 2020 2021 write_lock_bh(&bond->lock); 2022 2023 netif_carrier_off(bond_dev); 2024 2025 if (bond->slave_cnt == 0) { 2026 goto out; 2027 } 2028 2029 bond->current_arp_slave = NULL; 2030 bond->primary_slave = NULL; 2031 bond_change_active_slave(bond, NULL); 2032 2033 while ((slave = bond->first_slave) != NULL) { 2034 /* Inform AD package of unbinding of slave 2035 * before slave is detached from the list. 2036 */ 2037 if (bond->params.mode == BOND_MODE_8023AD) { 2038 bond_3ad_unbind_slave(slave); 2039 } 2040 2041 slave_dev = slave->dev; 2042 bond_detach_slave(bond, slave); 2043 2044 /* now that the slave is detached, unlock and perform 2045 * all the undo steps that should not be called from 2046 * within a lock. 2047 */ 2048 write_unlock_bh(&bond->lock); 2049 2050 if (bond_is_lb(bond)) { 2051 /* must be called only after the slave 2052 * has been detached from the list 2053 */ 2054 bond_alb_deinit_slave(bond, slave); 2055 } 2056 2057 bond_compute_features(bond); 2058 2059 bond_destroy_slave_symlinks(bond_dev, slave_dev); 2060 bond_del_vlans_from_slave(bond, slave_dev); 2061 2062 /* If the mode USES_PRIMARY, then we should only remove its 2063 * promisc and mc settings if it was the curr_active_slave, but that was 2064 * already taken care of above when we detached the slave 2065 */ 2066 if (!USES_PRIMARY(bond->params.mode)) { 2067 /* unset promiscuity level from slave */ 2068 if (bond_dev->flags & IFF_PROMISC) { 2069 dev_set_promiscuity(slave_dev, -1); 2070 } 2071 2072 /* unset allmulti level from slave */ 2073 if (bond_dev->flags & IFF_ALLMULTI) { 2074 dev_set_allmulti(slave_dev, -1); 2075 } 2076 2077 /* flush master's mc_list from slave */ 2078 netif_addr_lock_bh(bond_dev); 2079 bond_mc_list_flush(bond_dev, slave_dev); 2080 netif_addr_unlock_bh(bond_dev); 2081 } 2082 2083 netdev_set_master(slave_dev, NULL); 2084 2085 /* close slave before restoring its mac address */ 2086 dev_close(slave_dev); 2087 2088 if (!bond->params.fail_over_mac) { 2089 /* restore original ("permanent") mac address*/ 2090 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2091 addr.sa_family = slave_dev->type; 2092 dev_set_mac_address(slave_dev, &addr); 2093 } 2094 2095 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 2096 IFF_SLAVE_INACTIVE); 2097 2098 kfree(slave); 2099 2100 /* re-acquire the lock before getting the next slave */ 2101 write_lock_bh(&bond->lock); 2102 } 2103 2104 /* zero the mac address of the master so it will be 2105 * set by the application to the mac address of the 2106 * first slave 2107 */ 2108 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 2109 2110 if (list_empty(&bond->vlan_list)) { 2111 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 2112 } else { 2113 printk(KERN_WARNING DRV_NAME 2114 ": %s: Warning: clearing HW address of %s while it " 2115 "still has VLANs.\n", 2116 bond_dev->name, bond_dev->name); 2117 printk(KERN_WARNING DRV_NAME 2118 ": %s: When re-adding slaves, make sure the bond's " 2119 "HW address matches its VLANs'.\n", 2120 bond_dev->name); 2121 } 2122 2123 printk(KERN_INFO DRV_NAME 2124 ": %s: released all slaves\n", 2125 bond_dev->name); 2126 2127 out: 2128 write_unlock_bh(&bond->lock); 2129 2130 return 0; 2131 } 2132 2133 /* 2134 * This function changes the active slave to slave <slave_dev>. 2135 * It returns -EINVAL in the following cases. 2136 * - <slave_dev> is not found in the list. 2137 * - There is not active slave now. 2138 * - <slave_dev> is already active. 2139 * - The link state of <slave_dev> is not BOND_LINK_UP. 2140 * - <slave_dev> is not running. 2141 * In these cases, this fuction does nothing. 2142 * In the other cases, currnt_slave pointer is changed and 0 is returned. 2143 */ 2144 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 2145 { 2146 struct bonding *bond = netdev_priv(bond_dev); 2147 struct slave *old_active = NULL; 2148 struct slave *new_active = NULL; 2149 int res = 0; 2150 2151 if (!USES_PRIMARY(bond->params.mode)) { 2152 return -EINVAL; 2153 } 2154 2155 /* Verify that master_dev is indeed the master of slave_dev */ 2156 if (!(slave_dev->flags & IFF_SLAVE) || 2157 (slave_dev->master != bond_dev)) { 2158 return -EINVAL; 2159 } 2160 2161 read_lock(&bond->lock); 2162 2163 read_lock(&bond->curr_slave_lock); 2164 old_active = bond->curr_active_slave; 2165 read_unlock(&bond->curr_slave_lock); 2166 2167 new_active = bond_get_slave_by_dev(bond, slave_dev); 2168 2169 /* 2170 * Changing to the current active: do nothing; return success. 2171 */ 2172 if (new_active && (new_active == old_active)) { 2173 read_unlock(&bond->lock); 2174 return 0; 2175 } 2176 2177 if ((new_active) && 2178 (old_active) && 2179 (new_active->link == BOND_LINK_UP) && 2180 IS_UP(new_active->dev)) { 2181 write_lock_bh(&bond->curr_slave_lock); 2182 bond_change_active_slave(bond, new_active); 2183 write_unlock_bh(&bond->curr_slave_lock); 2184 } else { 2185 res = -EINVAL; 2186 } 2187 2188 read_unlock(&bond->lock); 2189 2190 return res; 2191 } 2192 2193 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 2194 { 2195 struct bonding *bond = netdev_priv(bond_dev); 2196 2197 info->bond_mode = bond->params.mode; 2198 info->miimon = bond->params.miimon; 2199 2200 read_lock(&bond->lock); 2201 info->num_slaves = bond->slave_cnt; 2202 read_unlock(&bond->lock); 2203 2204 return 0; 2205 } 2206 2207 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 2208 { 2209 struct bonding *bond = netdev_priv(bond_dev); 2210 struct slave *slave; 2211 int i, found = 0; 2212 2213 if (info->slave_id < 0) { 2214 return -ENODEV; 2215 } 2216 2217 read_lock(&bond->lock); 2218 2219 bond_for_each_slave(bond, slave, i) { 2220 if (i == (int)info->slave_id) { 2221 found = 1; 2222 break; 2223 } 2224 } 2225 2226 read_unlock(&bond->lock); 2227 2228 if (found) { 2229 strcpy(info->slave_name, slave->dev->name); 2230 info->link = slave->link; 2231 info->state = slave->state; 2232 info->link_failure_count = slave->link_failure_count; 2233 } else { 2234 return -ENODEV; 2235 } 2236 2237 return 0; 2238 } 2239 2240 /*-------------------------------- Monitoring -------------------------------*/ 2241 2242 2243 static int bond_miimon_inspect(struct bonding *bond) 2244 { 2245 struct slave *slave; 2246 int i, link_state, commit = 0; 2247 2248 bond_for_each_slave(bond, slave, i) { 2249 slave->new_link = BOND_LINK_NOCHANGE; 2250 2251 link_state = bond_check_dev_link(bond, slave->dev, 0); 2252 2253 switch (slave->link) { 2254 case BOND_LINK_UP: 2255 if (link_state) 2256 continue; 2257 2258 slave->link = BOND_LINK_FAIL; 2259 slave->delay = bond->params.downdelay; 2260 if (slave->delay) { 2261 printk(KERN_INFO DRV_NAME 2262 ": %s: link status down for %s" 2263 "interface %s, disabling it in %d ms.\n", 2264 bond->dev->name, 2265 (bond->params.mode == 2266 BOND_MODE_ACTIVEBACKUP) ? 2267 ((slave->state == BOND_STATE_ACTIVE) ? 2268 "active " : "backup ") : "", 2269 slave->dev->name, 2270 bond->params.downdelay * bond->params.miimon); 2271 } 2272 /*FALLTHRU*/ 2273 case BOND_LINK_FAIL: 2274 if (link_state) { 2275 /* 2276 * recovered before downdelay expired 2277 */ 2278 slave->link = BOND_LINK_UP; 2279 slave->jiffies = jiffies; 2280 printk(KERN_INFO DRV_NAME 2281 ": %s: link status up again after %d " 2282 "ms for interface %s.\n", 2283 bond->dev->name, 2284 (bond->params.downdelay - slave->delay) * 2285 bond->params.miimon, 2286 slave->dev->name); 2287 continue; 2288 } 2289 2290 if (slave->delay <= 0) { 2291 slave->new_link = BOND_LINK_DOWN; 2292 commit++; 2293 continue; 2294 } 2295 2296 slave->delay--; 2297 break; 2298 2299 case BOND_LINK_DOWN: 2300 if (!link_state) 2301 continue; 2302 2303 slave->link = BOND_LINK_BACK; 2304 slave->delay = bond->params.updelay; 2305 2306 if (slave->delay) { 2307 printk(KERN_INFO DRV_NAME 2308 ": %s: link status up for " 2309 "interface %s, enabling it in %d ms.\n", 2310 bond->dev->name, slave->dev->name, 2311 bond->params.updelay * 2312 bond->params.miimon); 2313 } 2314 /*FALLTHRU*/ 2315 case BOND_LINK_BACK: 2316 if (!link_state) { 2317 slave->link = BOND_LINK_DOWN; 2318 printk(KERN_INFO DRV_NAME 2319 ": %s: link status down again after %d " 2320 "ms for interface %s.\n", 2321 bond->dev->name, 2322 (bond->params.updelay - slave->delay) * 2323 bond->params.miimon, 2324 slave->dev->name); 2325 2326 continue; 2327 } 2328 2329 if (slave->delay <= 0) { 2330 slave->new_link = BOND_LINK_UP; 2331 commit++; 2332 continue; 2333 } 2334 2335 slave->delay--; 2336 break; 2337 } 2338 } 2339 2340 return commit; 2341 } 2342 2343 static void bond_miimon_commit(struct bonding *bond) 2344 { 2345 struct slave *slave; 2346 int i; 2347 2348 bond_for_each_slave(bond, slave, i) { 2349 switch (slave->new_link) { 2350 case BOND_LINK_NOCHANGE: 2351 continue; 2352 2353 case BOND_LINK_UP: 2354 slave->link = BOND_LINK_UP; 2355 slave->jiffies = jiffies; 2356 2357 if (bond->params.mode == BOND_MODE_8023AD) { 2358 /* prevent it from being the active one */ 2359 slave->state = BOND_STATE_BACKUP; 2360 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2361 /* make it immediately active */ 2362 slave->state = BOND_STATE_ACTIVE; 2363 } else if (slave != bond->primary_slave) { 2364 /* prevent it from being the active one */ 2365 slave->state = BOND_STATE_BACKUP; 2366 } 2367 2368 printk(KERN_INFO DRV_NAME 2369 ": %s: link status definitely " 2370 "up for interface %s.\n", 2371 bond->dev->name, slave->dev->name); 2372 2373 /* notify ad that the link status has changed */ 2374 if (bond->params.mode == BOND_MODE_8023AD) 2375 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2376 2377 if (bond_is_lb(bond)) 2378 bond_alb_handle_link_change(bond, slave, 2379 BOND_LINK_UP); 2380 2381 if (!bond->curr_active_slave || 2382 (slave == bond->primary_slave)) 2383 goto do_failover; 2384 2385 continue; 2386 2387 case BOND_LINK_DOWN: 2388 if (slave->link_failure_count < UINT_MAX) 2389 slave->link_failure_count++; 2390 2391 slave->link = BOND_LINK_DOWN; 2392 2393 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP || 2394 bond->params.mode == BOND_MODE_8023AD) 2395 bond_set_slave_inactive_flags(slave); 2396 2397 printk(KERN_INFO DRV_NAME 2398 ": %s: link status definitely down for " 2399 "interface %s, disabling it\n", 2400 bond->dev->name, slave->dev->name); 2401 2402 if (bond->params.mode == BOND_MODE_8023AD) 2403 bond_3ad_handle_link_change(slave, 2404 BOND_LINK_DOWN); 2405 2406 if (bond->params.mode == BOND_MODE_TLB || 2407 bond->params.mode == BOND_MODE_ALB) 2408 bond_alb_handle_link_change(bond, slave, 2409 BOND_LINK_DOWN); 2410 2411 if (slave == bond->curr_active_slave) 2412 goto do_failover; 2413 2414 continue; 2415 2416 default: 2417 printk(KERN_ERR DRV_NAME 2418 ": %s: invalid new link %d on slave %s\n", 2419 bond->dev->name, slave->new_link, 2420 slave->dev->name); 2421 slave->new_link = BOND_LINK_NOCHANGE; 2422 2423 continue; 2424 } 2425 2426 do_failover: 2427 ASSERT_RTNL(); 2428 write_lock_bh(&bond->curr_slave_lock); 2429 bond_select_active_slave(bond); 2430 write_unlock_bh(&bond->curr_slave_lock); 2431 } 2432 2433 bond_set_carrier(bond); 2434 } 2435 2436 /* 2437 * bond_mii_monitor 2438 * 2439 * Really a wrapper that splits the mii monitor into two phases: an 2440 * inspection, then (if inspection indicates something needs to be done) 2441 * an acquisition of appropriate locks followed by a commit phase to 2442 * implement whatever link state changes are indicated. 2443 */ 2444 void bond_mii_monitor(struct work_struct *work) 2445 { 2446 struct bonding *bond = container_of(work, struct bonding, 2447 mii_work.work); 2448 2449 read_lock(&bond->lock); 2450 if (bond->kill_timers) 2451 goto out; 2452 2453 if (bond->slave_cnt == 0) 2454 goto re_arm; 2455 2456 if (bond->send_grat_arp) { 2457 read_lock(&bond->curr_slave_lock); 2458 bond_send_gratuitous_arp(bond); 2459 read_unlock(&bond->curr_slave_lock); 2460 } 2461 2462 if (bond->send_unsol_na) { 2463 read_lock(&bond->curr_slave_lock); 2464 bond_send_unsolicited_na(bond); 2465 read_unlock(&bond->curr_slave_lock); 2466 } 2467 2468 if (bond_miimon_inspect(bond)) { 2469 read_unlock(&bond->lock); 2470 rtnl_lock(); 2471 read_lock(&bond->lock); 2472 2473 bond_miimon_commit(bond); 2474 2475 read_unlock(&bond->lock); 2476 rtnl_unlock(); /* might sleep, hold no other locks */ 2477 read_lock(&bond->lock); 2478 } 2479 2480 re_arm: 2481 if (bond->params.miimon) 2482 queue_delayed_work(bond->wq, &bond->mii_work, 2483 msecs_to_jiffies(bond->params.miimon)); 2484 out: 2485 read_unlock(&bond->lock); 2486 } 2487 2488 static __be32 bond_glean_dev_ip(struct net_device *dev) 2489 { 2490 struct in_device *idev; 2491 struct in_ifaddr *ifa; 2492 __be32 addr = 0; 2493 2494 if (!dev) 2495 return 0; 2496 2497 rcu_read_lock(); 2498 idev = __in_dev_get_rcu(dev); 2499 if (!idev) 2500 goto out; 2501 2502 ifa = idev->ifa_list; 2503 if (!ifa) 2504 goto out; 2505 2506 addr = ifa->ifa_local; 2507 out: 2508 rcu_read_unlock(); 2509 return addr; 2510 } 2511 2512 static int bond_has_this_ip(struct bonding *bond, __be32 ip) 2513 { 2514 struct vlan_entry *vlan; 2515 2516 if (ip == bond->master_ip) 2517 return 1; 2518 2519 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2520 if (ip == vlan->vlan_ip) 2521 return 1; 2522 } 2523 2524 return 0; 2525 } 2526 2527 /* 2528 * We go to the (large) trouble of VLAN tagging ARP frames because 2529 * switches in VLAN mode (especially if ports are configured as 2530 * "native" to a VLAN) might not pass non-tagged frames. 2531 */ 2532 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) 2533 { 2534 struct sk_buff *skb; 2535 2536 pr_debug("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, 2537 slave_dev->name, dest_ip, src_ip, vlan_id); 2538 2539 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2540 NULL, slave_dev->dev_addr, NULL); 2541 2542 if (!skb) { 2543 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n"); 2544 return; 2545 } 2546 if (vlan_id) { 2547 skb = vlan_put_tag(skb, vlan_id); 2548 if (!skb) { 2549 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n"); 2550 return; 2551 } 2552 } 2553 arp_xmit(skb); 2554 } 2555 2556 2557 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2558 { 2559 int i, vlan_id, rv; 2560 __be32 *targets = bond->params.arp_targets; 2561 struct vlan_entry *vlan; 2562 struct net_device *vlan_dev; 2563 struct flowi fl; 2564 struct rtable *rt; 2565 2566 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2567 if (!targets[i]) 2568 continue; 2569 pr_debug("basa: target %x\n", targets[i]); 2570 if (list_empty(&bond->vlan_list)) { 2571 pr_debug("basa: empty vlan: arp_send\n"); 2572 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2573 bond->master_ip, 0); 2574 continue; 2575 } 2576 2577 /* 2578 * If VLANs are configured, we do a route lookup to 2579 * determine which VLAN interface would be used, so we 2580 * can tag the ARP with the proper VLAN tag. 2581 */ 2582 memset(&fl, 0, sizeof(fl)); 2583 fl.fl4_dst = targets[i]; 2584 fl.fl4_tos = RTO_ONLINK; 2585 2586 rv = ip_route_output_key(&init_net, &rt, &fl); 2587 if (rv) { 2588 if (net_ratelimit()) { 2589 printk(KERN_WARNING DRV_NAME 2590 ": %s: no route to arp_ip_target %pI4\n", 2591 bond->dev->name, &fl.fl4_dst); 2592 } 2593 continue; 2594 } 2595 2596 /* 2597 * This target is not on a VLAN 2598 */ 2599 if (rt->u.dst.dev == bond->dev) { 2600 ip_rt_put(rt); 2601 pr_debug("basa: rtdev == bond->dev: arp_send\n"); 2602 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2603 bond->master_ip, 0); 2604 continue; 2605 } 2606 2607 vlan_id = 0; 2608 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2609 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2610 if (vlan_dev == rt->u.dst.dev) { 2611 vlan_id = vlan->vlan_id; 2612 pr_debug("basa: vlan match on %s %d\n", 2613 vlan_dev->name, vlan_id); 2614 break; 2615 } 2616 } 2617 2618 if (vlan_id) { 2619 ip_rt_put(rt); 2620 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2621 vlan->vlan_ip, vlan_id); 2622 continue; 2623 } 2624 2625 if (net_ratelimit()) { 2626 printk(KERN_WARNING DRV_NAME 2627 ": %s: no path to arp_ip_target %pI4 via rt.dev %s\n", 2628 bond->dev->name, &fl.fl4_dst, 2629 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL"); 2630 } 2631 ip_rt_put(rt); 2632 } 2633 } 2634 2635 /* 2636 * Kick out a gratuitous ARP for an IP on the bonding master plus one 2637 * for each VLAN above us. 2638 * 2639 * Caller must hold curr_slave_lock for read or better 2640 */ 2641 static void bond_send_gratuitous_arp(struct bonding *bond) 2642 { 2643 struct slave *slave = bond->curr_active_slave; 2644 struct vlan_entry *vlan; 2645 struct net_device *vlan_dev; 2646 2647 pr_debug("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name, 2648 slave ? slave->dev->name : "NULL"); 2649 2650 if (!slave || !bond->send_grat_arp || 2651 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state)) 2652 return; 2653 2654 bond->send_grat_arp--; 2655 2656 if (bond->master_ip) { 2657 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip, 2658 bond->master_ip, 0); 2659 } 2660 2661 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2662 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2663 if (vlan->vlan_ip) { 2664 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip, 2665 vlan->vlan_ip, vlan->vlan_id); 2666 } 2667 } 2668 } 2669 2670 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) 2671 { 2672 int i; 2673 __be32 *targets = bond->params.arp_targets; 2674 2675 targets = bond->params.arp_targets; 2676 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2677 pr_debug("bva: sip %pI4 tip %pI4 t[%d] %pI4 bhti(tip) %d\n", 2678 &sip, &tip, i, &targets[i], bond_has_this_ip(bond, tip)); 2679 if (sip == targets[i]) { 2680 if (bond_has_this_ip(bond, tip)) 2681 slave->last_arp_rx = jiffies; 2682 return; 2683 } 2684 } 2685 } 2686 2687 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) 2688 { 2689 struct arphdr *arp; 2690 struct slave *slave; 2691 struct bonding *bond; 2692 unsigned char *arp_ptr; 2693 __be32 sip, tip; 2694 2695 if (dev_net(dev) != &init_net) 2696 goto out; 2697 2698 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER)) 2699 goto out; 2700 2701 bond = netdev_priv(dev); 2702 read_lock(&bond->lock); 2703 2704 pr_debug("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n", 2705 bond->dev->name, skb->dev ? skb->dev->name : "NULL", 2706 orig_dev ? orig_dev->name : "NULL"); 2707 2708 slave = bond_get_slave_by_dev(bond, orig_dev); 2709 if (!slave || !slave_do_arp_validate(bond, slave)) 2710 goto out_unlock; 2711 2712 if (!pskb_may_pull(skb, arp_hdr_len(dev))) 2713 goto out_unlock; 2714 2715 arp = arp_hdr(skb); 2716 if (arp->ar_hln != dev->addr_len || 2717 skb->pkt_type == PACKET_OTHERHOST || 2718 skb->pkt_type == PACKET_LOOPBACK || 2719 arp->ar_hrd != htons(ARPHRD_ETHER) || 2720 arp->ar_pro != htons(ETH_P_IP) || 2721 arp->ar_pln != 4) 2722 goto out_unlock; 2723 2724 arp_ptr = (unsigned char *)(arp + 1); 2725 arp_ptr += dev->addr_len; 2726 memcpy(&sip, arp_ptr, 4); 2727 arp_ptr += 4 + dev->addr_len; 2728 memcpy(&tip, arp_ptr, 4); 2729 2730 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n", 2731 bond->dev->name, slave->dev->name, slave->state, 2732 bond->params.arp_validate, slave_do_arp_validate(bond, slave), 2733 &sip, &tip); 2734 2735 /* 2736 * Backup slaves won't see the ARP reply, but do come through 2737 * here for each ARP probe (so we swap the sip/tip to validate 2738 * the probe). In a "redundant switch, common router" type of 2739 * configuration, the ARP probe will (hopefully) travel from 2740 * the active, through one switch, the router, then the other 2741 * switch before reaching the backup. 2742 */ 2743 if (slave->state == BOND_STATE_ACTIVE) 2744 bond_validate_arp(bond, slave, sip, tip); 2745 else 2746 bond_validate_arp(bond, slave, tip, sip); 2747 2748 out_unlock: 2749 read_unlock(&bond->lock); 2750 out: 2751 dev_kfree_skb(skb); 2752 return NET_RX_SUCCESS; 2753 } 2754 2755 /* 2756 * this function is called regularly to monitor each slave's link 2757 * ensuring that traffic is being sent and received when arp monitoring 2758 * is used in load-balancing mode. if the adapter has been dormant, then an 2759 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2760 * arp monitoring in active backup mode. 2761 */ 2762 void bond_loadbalance_arp_mon(struct work_struct *work) 2763 { 2764 struct bonding *bond = container_of(work, struct bonding, 2765 arp_work.work); 2766 struct slave *slave, *oldcurrent; 2767 int do_failover = 0; 2768 int delta_in_ticks; 2769 int i; 2770 2771 read_lock(&bond->lock); 2772 2773 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2774 2775 if (bond->kill_timers) { 2776 goto out; 2777 } 2778 2779 if (bond->slave_cnt == 0) { 2780 goto re_arm; 2781 } 2782 2783 read_lock(&bond->curr_slave_lock); 2784 oldcurrent = bond->curr_active_slave; 2785 read_unlock(&bond->curr_slave_lock); 2786 2787 /* see if any of the previous devices are up now (i.e. they have 2788 * xmt and rcv traffic). the curr_active_slave does not come into 2789 * the picture unless it is null. also, slave->jiffies is not needed 2790 * here because we send an arp on each slave and give a slave as 2791 * long as it needs to get the tx/rx within the delta. 2792 * TODO: what about up/down delay in arp mode? it wasn't here before 2793 * so it can wait 2794 */ 2795 bond_for_each_slave(bond, slave, i) { 2796 if (slave->link != BOND_LINK_UP) { 2797 if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) && 2798 time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) { 2799 2800 slave->link = BOND_LINK_UP; 2801 slave->state = BOND_STATE_ACTIVE; 2802 2803 /* primary_slave has no meaning in round-robin 2804 * mode. the window of a slave being up and 2805 * curr_active_slave being null after enslaving 2806 * is closed. 2807 */ 2808 if (!oldcurrent) { 2809 printk(KERN_INFO DRV_NAME 2810 ": %s: link status definitely " 2811 "up for interface %s, ", 2812 bond->dev->name, 2813 slave->dev->name); 2814 do_failover = 1; 2815 } else { 2816 printk(KERN_INFO DRV_NAME 2817 ": %s: interface %s is now up\n", 2818 bond->dev->name, 2819 slave->dev->name); 2820 } 2821 } 2822 } else { 2823 /* slave->link == BOND_LINK_UP */ 2824 2825 /* not all switches will respond to an arp request 2826 * when the source ip is 0, so don't take the link down 2827 * if we don't know our ip yet 2828 */ 2829 if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) || 2830 (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) { 2831 2832 slave->link = BOND_LINK_DOWN; 2833 slave->state = BOND_STATE_BACKUP; 2834 2835 if (slave->link_failure_count < UINT_MAX) { 2836 slave->link_failure_count++; 2837 } 2838 2839 printk(KERN_INFO DRV_NAME 2840 ": %s: interface %s is now down.\n", 2841 bond->dev->name, 2842 slave->dev->name); 2843 2844 if (slave == oldcurrent) { 2845 do_failover = 1; 2846 } 2847 } 2848 } 2849 2850 /* note: if switch is in round-robin mode, all links 2851 * must tx arp to ensure all links rx an arp - otherwise 2852 * links may oscillate or not come up at all; if switch is 2853 * in something like xor mode, there is nothing we can 2854 * do - all replies will be rx'ed on same link causing slaves 2855 * to be unstable during low/no traffic periods 2856 */ 2857 if (IS_UP(slave->dev)) { 2858 bond_arp_send_all(bond, slave); 2859 } 2860 } 2861 2862 if (do_failover) { 2863 write_lock_bh(&bond->curr_slave_lock); 2864 2865 bond_select_active_slave(bond); 2866 2867 write_unlock_bh(&bond->curr_slave_lock); 2868 } 2869 2870 re_arm: 2871 if (bond->params.arp_interval) 2872 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 2873 out: 2874 read_unlock(&bond->lock); 2875 } 2876 2877 /* 2878 * Called to inspect slaves for active-backup mode ARP monitor link state 2879 * changes. Sets new_link in slaves to specify what action should take 2880 * place for the slave. Returns 0 if no changes are found, >0 if changes 2881 * to link states must be committed. 2882 * 2883 * Called with bond->lock held for read. 2884 */ 2885 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks) 2886 { 2887 struct slave *slave; 2888 int i, commit = 0; 2889 2890 bond_for_each_slave(bond, slave, i) { 2891 slave->new_link = BOND_LINK_NOCHANGE; 2892 2893 if (slave->link != BOND_LINK_UP) { 2894 if (time_before_eq(jiffies, slave_last_rx(bond, slave) + 2895 delta_in_ticks)) { 2896 slave->new_link = BOND_LINK_UP; 2897 commit++; 2898 } 2899 2900 continue; 2901 } 2902 2903 /* 2904 * Give slaves 2*delta after being enslaved or made 2905 * active. This avoids bouncing, as the last receive 2906 * times need a full ARP monitor cycle to be updated. 2907 */ 2908 if (!time_after_eq(jiffies, slave->jiffies + 2909 2 * delta_in_ticks)) 2910 continue; 2911 2912 /* 2913 * Backup slave is down if: 2914 * - No current_arp_slave AND 2915 * - more than 3*delta since last receive AND 2916 * - the bond has an IP address 2917 * 2918 * Note: a non-null current_arp_slave indicates 2919 * the curr_active_slave went down and we are 2920 * searching for a new one; under this condition 2921 * we only take the curr_active_slave down - this 2922 * gives each slave a chance to tx/rx traffic 2923 * before being taken out 2924 */ 2925 if (slave->state == BOND_STATE_BACKUP && 2926 !bond->current_arp_slave && 2927 time_after(jiffies, slave_last_rx(bond, slave) + 2928 3 * delta_in_ticks)) { 2929 slave->new_link = BOND_LINK_DOWN; 2930 commit++; 2931 } 2932 2933 /* 2934 * Active slave is down if: 2935 * - more than 2*delta since transmitting OR 2936 * - (more than 2*delta since receive AND 2937 * the bond has an IP address) 2938 */ 2939 if ((slave->state == BOND_STATE_ACTIVE) && 2940 (time_after_eq(jiffies, slave->dev->trans_start + 2941 2 * delta_in_ticks) || 2942 (time_after_eq(jiffies, slave_last_rx(bond, slave) 2943 + 2 * delta_in_ticks)))) { 2944 slave->new_link = BOND_LINK_DOWN; 2945 commit++; 2946 } 2947 } 2948 2949 read_lock(&bond->curr_slave_lock); 2950 2951 /* 2952 * Trigger a commit if the primary option setting has changed. 2953 */ 2954 if (bond->primary_slave && 2955 (bond->primary_slave != bond->curr_active_slave) && 2956 (bond->primary_slave->link == BOND_LINK_UP)) 2957 commit++; 2958 2959 read_unlock(&bond->curr_slave_lock); 2960 2961 return commit; 2962 } 2963 2964 /* 2965 * Called to commit link state changes noted by inspection step of 2966 * active-backup mode ARP monitor. 2967 * 2968 * Called with RTNL and bond->lock for read. 2969 */ 2970 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks) 2971 { 2972 struct slave *slave; 2973 int i; 2974 2975 bond_for_each_slave(bond, slave, i) { 2976 switch (slave->new_link) { 2977 case BOND_LINK_NOCHANGE: 2978 continue; 2979 2980 case BOND_LINK_UP: 2981 write_lock_bh(&bond->curr_slave_lock); 2982 2983 if (!bond->curr_active_slave && 2984 time_before_eq(jiffies, slave->dev->trans_start + 2985 delta_in_ticks)) { 2986 slave->link = BOND_LINK_UP; 2987 bond_change_active_slave(bond, slave); 2988 bond->current_arp_slave = NULL; 2989 2990 printk(KERN_INFO DRV_NAME 2991 ": %s: %s is up and now the " 2992 "active interface\n", 2993 bond->dev->name, slave->dev->name); 2994 2995 } else if (bond->curr_active_slave != slave) { 2996 /* this slave has just come up but we 2997 * already have a current slave; this can 2998 * also happen if bond_enslave adds a new 2999 * slave that is up while we are searching 3000 * for a new slave 3001 */ 3002 slave->link = BOND_LINK_UP; 3003 bond_set_slave_inactive_flags(slave); 3004 bond->current_arp_slave = NULL; 3005 3006 printk(KERN_INFO DRV_NAME 3007 ": %s: backup interface %s is now up\n", 3008 bond->dev->name, slave->dev->name); 3009 } 3010 3011 write_unlock_bh(&bond->curr_slave_lock); 3012 3013 break; 3014 3015 case BOND_LINK_DOWN: 3016 if (slave->link_failure_count < UINT_MAX) 3017 slave->link_failure_count++; 3018 3019 slave->link = BOND_LINK_DOWN; 3020 3021 if (slave == bond->curr_active_slave) { 3022 printk(KERN_INFO DRV_NAME 3023 ": %s: link status down for active " 3024 "interface %s, disabling it\n", 3025 bond->dev->name, slave->dev->name); 3026 3027 bond_set_slave_inactive_flags(slave); 3028 3029 write_lock_bh(&bond->curr_slave_lock); 3030 3031 bond_select_active_slave(bond); 3032 if (bond->curr_active_slave) 3033 bond->curr_active_slave->jiffies = 3034 jiffies; 3035 3036 write_unlock_bh(&bond->curr_slave_lock); 3037 3038 bond->current_arp_slave = NULL; 3039 3040 } else if (slave->state == BOND_STATE_BACKUP) { 3041 printk(KERN_INFO DRV_NAME 3042 ": %s: backup interface %s is now down\n", 3043 bond->dev->name, slave->dev->name); 3044 3045 bond_set_slave_inactive_flags(slave); 3046 } 3047 break; 3048 3049 default: 3050 printk(KERN_ERR DRV_NAME 3051 ": %s: impossible: new_link %d on slave %s\n", 3052 bond->dev->name, slave->new_link, 3053 slave->dev->name); 3054 } 3055 } 3056 3057 /* 3058 * No race with changes to primary via sysfs, as we hold rtnl. 3059 */ 3060 if (bond->primary_slave && 3061 (bond->primary_slave != bond->curr_active_slave) && 3062 (bond->primary_slave->link == BOND_LINK_UP)) { 3063 write_lock_bh(&bond->curr_slave_lock); 3064 bond_change_active_slave(bond, bond->primary_slave); 3065 write_unlock_bh(&bond->curr_slave_lock); 3066 } 3067 3068 bond_set_carrier(bond); 3069 } 3070 3071 /* 3072 * Send ARP probes for active-backup mode ARP monitor. 3073 * 3074 * Called with bond->lock held for read. 3075 */ 3076 static void bond_ab_arp_probe(struct bonding *bond) 3077 { 3078 struct slave *slave; 3079 int i; 3080 3081 read_lock(&bond->curr_slave_lock); 3082 3083 if (bond->current_arp_slave && bond->curr_active_slave) 3084 printk("PROBE: c_arp %s && cas %s BAD\n", 3085 bond->current_arp_slave->dev->name, 3086 bond->curr_active_slave->dev->name); 3087 3088 if (bond->curr_active_slave) { 3089 bond_arp_send_all(bond, bond->curr_active_slave); 3090 read_unlock(&bond->curr_slave_lock); 3091 return; 3092 } 3093 3094 read_unlock(&bond->curr_slave_lock); 3095 3096 /* if we don't have a curr_active_slave, search for the next available 3097 * backup slave from the current_arp_slave and make it the candidate 3098 * for becoming the curr_active_slave 3099 */ 3100 3101 if (!bond->current_arp_slave) { 3102 bond->current_arp_slave = bond->first_slave; 3103 if (!bond->current_arp_slave) 3104 return; 3105 } 3106 3107 bond_set_slave_inactive_flags(bond->current_arp_slave); 3108 3109 /* search for next candidate */ 3110 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 3111 if (IS_UP(slave->dev)) { 3112 slave->link = BOND_LINK_BACK; 3113 bond_set_slave_active_flags(slave); 3114 bond_arp_send_all(bond, slave); 3115 slave->jiffies = jiffies; 3116 bond->current_arp_slave = slave; 3117 break; 3118 } 3119 3120 /* if the link state is up at this point, we 3121 * mark it down - this can happen if we have 3122 * simultaneous link failures and 3123 * reselect_active_interface doesn't make this 3124 * one the current slave so it is still marked 3125 * up when it is actually down 3126 */ 3127 if (slave->link == BOND_LINK_UP) { 3128 slave->link = BOND_LINK_DOWN; 3129 if (slave->link_failure_count < UINT_MAX) 3130 slave->link_failure_count++; 3131 3132 bond_set_slave_inactive_flags(slave); 3133 3134 printk(KERN_INFO DRV_NAME 3135 ": %s: backup interface %s is now down.\n", 3136 bond->dev->name, slave->dev->name); 3137 } 3138 } 3139 } 3140 3141 void bond_activebackup_arp_mon(struct work_struct *work) 3142 { 3143 struct bonding *bond = container_of(work, struct bonding, 3144 arp_work.work); 3145 int delta_in_ticks; 3146 3147 read_lock(&bond->lock); 3148 3149 if (bond->kill_timers) 3150 goto out; 3151 3152 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 3153 3154 if (bond->slave_cnt == 0) 3155 goto re_arm; 3156 3157 if (bond->send_grat_arp) { 3158 read_lock(&bond->curr_slave_lock); 3159 bond_send_gratuitous_arp(bond); 3160 read_unlock(&bond->curr_slave_lock); 3161 } 3162 3163 if (bond->send_unsol_na) { 3164 read_lock(&bond->curr_slave_lock); 3165 bond_send_unsolicited_na(bond); 3166 read_unlock(&bond->curr_slave_lock); 3167 } 3168 3169 if (bond_ab_arp_inspect(bond, delta_in_ticks)) { 3170 read_unlock(&bond->lock); 3171 rtnl_lock(); 3172 read_lock(&bond->lock); 3173 3174 bond_ab_arp_commit(bond, delta_in_ticks); 3175 3176 read_unlock(&bond->lock); 3177 rtnl_unlock(); 3178 read_lock(&bond->lock); 3179 } 3180 3181 bond_ab_arp_probe(bond); 3182 3183 re_arm: 3184 if (bond->params.arp_interval) { 3185 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 3186 } 3187 out: 3188 read_unlock(&bond->lock); 3189 } 3190 3191 /*------------------------------ proc/seq_file-------------------------------*/ 3192 3193 #ifdef CONFIG_PROC_FS 3194 3195 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos) 3196 { 3197 struct bonding *bond = seq->private; 3198 loff_t off = 0; 3199 struct slave *slave; 3200 int i; 3201 3202 /* make sure the bond won't be taken away */ 3203 read_lock(&dev_base_lock); 3204 read_lock(&bond->lock); 3205 3206 if (*pos == 0) { 3207 return SEQ_START_TOKEN; 3208 } 3209 3210 bond_for_each_slave(bond, slave, i) { 3211 if (++off == *pos) { 3212 return slave; 3213 } 3214 } 3215 3216 return NULL; 3217 } 3218 3219 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3220 { 3221 struct bonding *bond = seq->private; 3222 struct slave *slave = v; 3223 3224 ++*pos; 3225 if (v == SEQ_START_TOKEN) { 3226 return bond->first_slave; 3227 } 3228 3229 slave = slave->next; 3230 3231 return (slave == bond->first_slave) ? NULL : slave; 3232 } 3233 3234 static void bond_info_seq_stop(struct seq_file *seq, void *v) 3235 { 3236 struct bonding *bond = seq->private; 3237 3238 read_unlock(&bond->lock); 3239 read_unlock(&dev_base_lock); 3240 } 3241 3242 static void bond_info_show_master(struct seq_file *seq) 3243 { 3244 struct bonding *bond = seq->private; 3245 struct slave *curr; 3246 int i; 3247 3248 read_lock(&bond->curr_slave_lock); 3249 curr = bond->curr_active_slave; 3250 read_unlock(&bond->curr_slave_lock); 3251 3252 seq_printf(seq, "Bonding Mode: %s", 3253 bond_mode_name(bond->params.mode)); 3254 3255 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP && 3256 bond->params.fail_over_mac) 3257 seq_printf(seq, " (fail_over_mac %s)", 3258 fail_over_mac_tbl[bond->params.fail_over_mac].modename); 3259 3260 seq_printf(seq, "\n"); 3261 3262 if (bond->params.mode == BOND_MODE_XOR || 3263 bond->params.mode == BOND_MODE_8023AD) { 3264 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n", 3265 xmit_hashtype_tbl[bond->params.xmit_policy].modename, 3266 bond->params.xmit_policy); 3267 } 3268 3269 if (USES_PRIMARY(bond->params.mode)) { 3270 seq_printf(seq, "Primary Slave: %s\n", 3271 (bond->primary_slave) ? 3272 bond->primary_slave->dev->name : "None"); 3273 3274 seq_printf(seq, "Currently Active Slave: %s\n", 3275 (curr) ? curr->dev->name : "None"); 3276 } 3277 3278 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ? 3279 "up" : "down"); 3280 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon); 3281 seq_printf(seq, "Up Delay (ms): %d\n", 3282 bond->params.updelay * bond->params.miimon); 3283 seq_printf(seq, "Down Delay (ms): %d\n", 3284 bond->params.downdelay * bond->params.miimon); 3285 3286 3287 /* ARP information */ 3288 if(bond->params.arp_interval > 0) { 3289 int printed=0; 3290 seq_printf(seq, "ARP Polling Interval (ms): %d\n", 3291 bond->params.arp_interval); 3292 3293 seq_printf(seq, "ARP IP target/s (n.n.n.n form):"); 3294 3295 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) { 3296 if (!bond->params.arp_targets[i]) 3297 continue; 3298 if (printed) 3299 seq_printf(seq, ","); 3300 seq_printf(seq, " %pI4", &bond->params.arp_targets[i]); 3301 printed = 1; 3302 } 3303 seq_printf(seq, "\n"); 3304 } 3305 3306 if (bond->params.mode == BOND_MODE_8023AD) { 3307 struct ad_info ad_info; 3308 3309 seq_puts(seq, "\n802.3ad info\n"); 3310 seq_printf(seq, "LACP rate: %s\n", 3311 (bond->params.lacp_fast) ? "fast" : "slow"); 3312 seq_printf(seq, "Aggregator selection policy (ad_select): %s\n", 3313 ad_select_tbl[bond->params.ad_select].modename); 3314 3315 if (bond_3ad_get_active_agg_info(bond, &ad_info)) { 3316 seq_printf(seq, "bond %s has no active aggregator\n", 3317 bond->dev->name); 3318 } else { 3319 seq_printf(seq, "Active Aggregator Info:\n"); 3320 3321 seq_printf(seq, "\tAggregator ID: %d\n", 3322 ad_info.aggregator_id); 3323 seq_printf(seq, "\tNumber of ports: %d\n", 3324 ad_info.ports); 3325 seq_printf(seq, "\tActor Key: %d\n", 3326 ad_info.actor_key); 3327 seq_printf(seq, "\tPartner Key: %d\n", 3328 ad_info.partner_key); 3329 seq_printf(seq, "\tPartner Mac Address: %pM\n", 3330 ad_info.partner_system); 3331 } 3332 } 3333 } 3334 3335 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave) 3336 { 3337 struct bonding *bond = seq->private; 3338 3339 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name); 3340 seq_printf(seq, "MII Status: %s\n", 3341 (slave->link == BOND_LINK_UP) ? "up" : "down"); 3342 seq_printf(seq, "Link Failure Count: %u\n", 3343 slave->link_failure_count); 3344 3345 seq_printf(seq, "Permanent HW addr: %pM\n", slave->perm_hwaddr); 3346 3347 if (bond->params.mode == BOND_MODE_8023AD) { 3348 const struct aggregator *agg 3349 = SLAVE_AD_INFO(slave).port.aggregator; 3350 3351 if (agg) { 3352 seq_printf(seq, "Aggregator ID: %d\n", 3353 agg->aggregator_identifier); 3354 } else { 3355 seq_puts(seq, "Aggregator ID: N/A\n"); 3356 } 3357 } 3358 } 3359 3360 static int bond_info_seq_show(struct seq_file *seq, void *v) 3361 { 3362 if (v == SEQ_START_TOKEN) { 3363 seq_printf(seq, "%s\n", version); 3364 bond_info_show_master(seq); 3365 } else { 3366 bond_info_show_slave(seq, v); 3367 } 3368 3369 return 0; 3370 } 3371 3372 static struct seq_operations bond_info_seq_ops = { 3373 .start = bond_info_seq_start, 3374 .next = bond_info_seq_next, 3375 .stop = bond_info_seq_stop, 3376 .show = bond_info_seq_show, 3377 }; 3378 3379 static int bond_info_open(struct inode *inode, struct file *file) 3380 { 3381 struct seq_file *seq; 3382 struct proc_dir_entry *proc; 3383 int res; 3384 3385 res = seq_open(file, &bond_info_seq_ops); 3386 if (!res) { 3387 /* recover the pointer buried in proc_dir_entry data */ 3388 seq = file->private_data; 3389 proc = PDE(inode); 3390 seq->private = proc->data; 3391 } 3392 3393 return res; 3394 } 3395 3396 static const struct file_operations bond_info_fops = { 3397 .owner = THIS_MODULE, 3398 .open = bond_info_open, 3399 .read = seq_read, 3400 .llseek = seq_lseek, 3401 .release = seq_release, 3402 }; 3403 3404 static int bond_create_proc_entry(struct bonding *bond) 3405 { 3406 struct net_device *bond_dev = bond->dev; 3407 3408 if (bond_proc_dir) { 3409 bond->proc_entry = proc_create_data(bond_dev->name, 3410 S_IRUGO, bond_proc_dir, 3411 &bond_info_fops, bond); 3412 if (bond->proc_entry == NULL) { 3413 printk(KERN_WARNING DRV_NAME 3414 ": Warning: Cannot create /proc/net/%s/%s\n", 3415 DRV_NAME, bond_dev->name); 3416 } else { 3417 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ); 3418 } 3419 } 3420 3421 return 0; 3422 } 3423 3424 static void bond_remove_proc_entry(struct bonding *bond) 3425 { 3426 if (bond_proc_dir && bond->proc_entry) { 3427 remove_proc_entry(bond->proc_file_name, bond_proc_dir); 3428 memset(bond->proc_file_name, 0, IFNAMSIZ); 3429 bond->proc_entry = NULL; 3430 } 3431 } 3432 3433 /* Create the bonding directory under /proc/net, if doesn't exist yet. 3434 * Caller must hold rtnl_lock. 3435 */ 3436 static void bond_create_proc_dir(void) 3437 { 3438 int len = strlen(DRV_NAME); 3439 3440 for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir; 3441 bond_proc_dir = bond_proc_dir->next) { 3442 if ((bond_proc_dir->namelen == len) && 3443 !memcmp(bond_proc_dir->name, DRV_NAME, len)) { 3444 break; 3445 } 3446 } 3447 3448 if (!bond_proc_dir) { 3449 bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net); 3450 if (bond_proc_dir) { 3451 bond_proc_dir->owner = THIS_MODULE; 3452 } else { 3453 printk(KERN_WARNING DRV_NAME 3454 ": Warning: cannot create /proc/net/%s\n", 3455 DRV_NAME); 3456 } 3457 } 3458 } 3459 3460 /* Destroy the bonding directory under /proc/net, if empty. 3461 * Caller must hold rtnl_lock. 3462 */ 3463 static void bond_destroy_proc_dir(void) 3464 { 3465 struct proc_dir_entry *de; 3466 3467 if (!bond_proc_dir) { 3468 return; 3469 } 3470 3471 /* verify that the /proc dir is empty */ 3472 for (de = bond_proc_dir->subdir; de; de = de->next) { 3473 /* ignore . and .. */ 3474 if (*(de->name) != '.') { 3475 break; 3476 } 3477 } 3478 3479 if (de) { 3480 if (bond_proc_dir->owner == THIS_MODULE) { 3481 bond_proc_dir->owner = NULL; 3482 } 3483 } else { 3484 remove_proc_entry(DRV_NAME, init_net.proc_net); 3485 bond_proc_dir = NULL; 3486 } 3487 } 3488 #endif /* CONFIG_PROC_FS */ 3489 3490 /*-------------------------- netdev event handling --------------------------*/ 3491 3492 /* 3493 * Change device name 3494 */ 3495 static int bond_event_changename(struct bonding *bond) 3496 { 3497 #ifdef CONFIG_PROC_FS 3498 bond_remove_proc_entry(bond); 3499 bond_create_proc_entry(bond); 3500 #endif 3501 down_write(&(bonding_rwsem)); 3502 bond_destroy_sysfs_entry(bond); 3503 bond_create_sysfs_entry(bond); 3504 up_write(&(bonding_rwsem)); 3505 return NOTIFY_DONE; 3506 } 3507 3508 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev) 3509 { 3510 struct bonding *event_bond = netdev_priv(bond_dev); 3511 3512 switch (event) { 3513 case NETDEV_CHANGENAME: 3514 return bond_event_changename(event_bond); 3515 case NETDEV_UNREGISTER: 3516 bond_release_all(event_bond->dev); 3517 break; 3518 default: 3519 break; 3520 } 3521 3522 return NOTIFY_DONE; 3523 } 3524 3525 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev) 3526 { 3527 struct net_device *bond_dev = slave_dev->master; 3528 struct bonding *bond = netdev_priv(bond_dev); 3529 3530 switch (event) { 3531 case NETDEV_UNREGISTER: 3532 if (bond_dev) { 3533 if (bond->setup_by_slave) 3534 bond_release_and_destroy(bond_dev, slave_dev); 3535 else 3536 bond_release(bond_dev, slave_dev); 3537 } 3538 break; 3539 case NETDEV_CHANGE: 3540 if (bond->params.mode == BOND_MODE_8023AD || bond_is_lb(bond)) { 3541 struct slave *slave; 3542 3543 slave = bond_get_slave_by_dev(bond, slave_dev); 3544 if (slave) { 3545 u16 old_speed = slave->speed; 3546 u16 old_duplex = slave->duplex; 3547 3548 bond_update_speed_duplex(slave); 3549 3550 if (bond_is_lb(bond)) 3551 break; 3552 3553 if (old_speed != slave->speed) 3554 bond_3ad_adapter_speed_changed(slave); 3555 if (old_duplex != slave->duplex) 3556 bond_3ad_adapter_duplex_changed(slave); 3557 } 3558 } 3559 3560 break; 3561 case NETDEV_DOWN: 3562 /* 3563 * ... Or is it this? 3564 */ 3565 break; 3566 case NETDEV_CHANGEMTU: 3567 /* 3568 * TODO: Should slaves be allowed to 3569 * independently alter their MTU? For 3570 * an active-backup bond, slaves need 3571 * not be the same type of device, so 3572 * MTUs may vary. For other modes, 3573 * slaves arguably should have the 3574 * same MTUs. To do this, we'd need to 3575 * take over the slave's change_mtu 3576 * function for the duration of their 3577 * servitude. 3578 */ 3579 break; 3580 case NETDEV_CHANGENAME: 3581 /* 3582 * TODO: handle changing the primary's name 3583 */ 3584 break; 3585 case NETDEV_FEAT_CHANGE: 3586 bond_compute_features(bond); 3587 break; 3588 default: 3589 break; 3590 } 3591 3592 return NOTIFY_DONE; 3593 } 3594 3595 /* 3596 * bond_netdev_event: handle netdev notifier chain events. 3597 * 3598 * This function receives events for the netdev chain. The caller (an 3599 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3600 * locks for us to safely manipulate the slave devices (RTNL lock, 3601 * dev_probe_lock). 3602 */ 3603 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) 3604 { 3605 struct net_device *event_dev = (struct net_device *)ptr; 3606 3607 if (dev_net(event_dev) != &init_net) 3608 return NOTIFY_DONE; 3609 3610 pr_debug("event_dev: %s, event: %lx\n", 3611 (event_dev ? event_dev->name : "None"), 3612 event); 3613 3614 if (!(event_dev->priv_flags & IFF_BONDING)) 3615 return NOTIFY_DONE; 3616 3617 if (event_dev->flags & IFF_MASTER) { 3618 pr_debug("IFF_MASTER\n"); 3619 return bond_master_netdev_event(event, event_dev); 3620 } 3621 3622 if (event_dev->flags & IFF_SLAVE) { 3623 pr_debug("IFF_SLAVE\n"); 3624 return bond_slave_netdev_event(event, event_dev); 3625 } 3626 3627 return NOTIFY_DONE; 3628 } 3629 3630 /* 3631 * bond_inetaddr_event: handle inetaddr notifier chain events. 3632 * 3633 * We keep track of device IPs primarily to use as source addresses in 3634 * ARP monitor probes (rather than spewing out broadcasts all the time). 3635 * 3636 * We track one IP for the main device (if it has one), plus one per VLAN. 3637 */ 3638 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) 3639 { 3640 struct in_ifaddr *ifa = ptr; 3641 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev; 3642 struct bonding *bond; 3643 struct vlan_entry *vlan; 3644 3645 if (dev_net(ifa->ifa_dev->dev) != &init_net) 3646 return NOTIFY_DONE; 3647 3648 list_for_each_entry(bond, &bond_dev_list, bond_list) { 3649 if (bond->dev == event_dev) { 3650 switch (event) { 3651 case NETDEV_UP: 3652 bond->master_ip = ifa->ifa_local; 3653 return NOTIFY_OK; 3654 case NETDEV_DOWN: 3655 bond->master_ip = bond_glean_dev_ip(bond->dev); 3656 return NOTIFY_OK; 3657 default: 3658 return NOTIFY_DONE; 3659 } 3660 } 3661 3662 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 3663 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 3664 if (vlan_dev == event_dev) { 3665 switch (event) { 3666 case NETDEV_UP: 3667 vlan->vlan_ip = ifa->ifa_local; 3668 return NOTIFY_OK; 3669 case NETDEV_DOWN: 3670 vlan->vlan_ip = 3671 bond_glean_dev_ip(vlan_dev); 3672 return NOTIFY_OK; 3673 default: 3674 return NOTIFY_DONE; 3675 } 3676 } 3677 } 3678 } 3679 return NOTIFY_DONE; 3680 } 3681 3682 static struct notifier_block bond_netdev_notifier = { 3683 .notifier_call = bond_netdev_event, 3684 }; 3685 3686 static struct notifier_block bond_inetaddr_notifier = { 3687 .notifier_call = bond_inetaddr_event, 3688 }; 3689 3690 /*-------------------------- Packet type handling ---------------------------*/ 3691 3692 /* register to receive lacpdus on a bond */ 3693 static void bond_register_lacpdu(struct bonding *bond) 3694 { 3695 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type); 3696 3697 /* initialize packet type */ 3698 pk_type->type = PKT_TYPE_LACPDU; 3699 pk_type->dev = bond->dev; 3700 pk_type->func = bond_3ad_lacpdu_recv; 3701 3702 dev_add_pack(pk_type); 3703 } 3704 3705 /* unregister to receive lacpdus on a bond */ 3706 static void bond_unregister_lacpdu(struct bonding *bond) 3707 { 3708 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type)); 3709 } 3710 3711 void bond_register_arp(struct bonding *bond) 3712 { 3713 struct packet_type *pt = &bond->arp_mon_pt; 3714 3715 if (pt->type) 3716 return; 3717 3718 pt->type = htons(ETH_P_ARP); 3719 pt->dev = bond->dev; 3720 pt->func = bond_arp_rcv; 3721 dev_add_pack(pt); 3722 } 3723 3724 void bond_unregister_arp(struct bonding *bond) 3725 { 3726 struct packet_type *pt = &bond->arp_mon_pt; 3727 3728 dev_remove_pack(pt); 3729 pt->type = 0; 3730 } 3731 3732 /*---------------------------- Hashing Policies -----------------------------*/ 3733 3734 /* 3735 * Hash for the output device based upon layer 2 and layer 3 data. If 3736 * the packet is not IP mimic bond_xmit_hash_policy_l2() 3737 */ 3738 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, 3739 struct net_device *bond_dev, int count) 3740 { 3741 struct ethhdr *data = (struct ethhdr *)skb->data; 3742 struct iphdr *iph = ip_hdr(skb); 3743 3744 if (skb->protocol == htons(ETH_P_IP)) { 3745 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ 3746 (data->h_dest[5] ^ bond_dev->dev_addr[5])) % count; 3747 } 3748 3749 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3750 } 3751 3752 /* 3753 * Hash for the output device based upon layer 3 and layer 4 data. If 3754 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3755 * altogether not IP, mimic bond_xmit_hash_policy_l2() 3756 */ 3757 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, 3758 struct net_device *bond_dev, int count) 3759 { 3760 struct ethhdr *data = (struct ethhdr *)skb->data; 3761 struct iphdr *iph = ip_hdr(skb); 3762 __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl); 3763 int layer4_xor = 0; 3764 3765 if (skb->protocol == htons(ETH_P_IP)) { 3766 if (!(iph->frag_off & htons(IP_MF|IP_OFFSET)) && 3767 (iph->protocol == IPPROTO_TCP || 3768 iph->protocol == IPPROTO_UDP)) { 3769 layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1))); 3770 } 3771 return (layer4_xor ^ 3772 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3773 3774 } 3775 3776 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3777 } 3778 3779 /* 3780 * Hash for the output device based upon layer 2 data 3781 */ 3782 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, 3783 struct net_device *bond_dev, int count) 3784 { 3785 struct ethhdr *data = (struct ethhdr *)skb->data; 3786 3787 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3788 } 3789 3790 /*-------------------------- Device entry points ----------------------------*/ 3791 3792 static int bond_open(struct net_device *bond_dev) 3793 { 3794 struct bonding *bond = netdev_priv(bond_dev); 3795 3796 bond->kill_timers = 0; 3797 3798 if (bond_is_lb(bond)) { 3799 /* bond_alb_initialize must be called before the timer 3800 * is started. 3801 */ 3802 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) { 3803 /* something went wrong - fail the open operation */ 3804 return -1; 3805 } 3806 3807 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); 3808 queue_delayed_work(bond->wq, &bond->alb_work, 0); 3809 } 3810 3811 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3812 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); 3813 queue_delayed_work(bond->wq, &bond->mii_work, 0); 3814 } 3815 3816 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3817 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3818 INIT_DELAYED_WORK(&bond->arp_work, 3819 bond_activebackup_arp_mon); 3820 else 3821 INIT_DELAYED_WORK(&bond->arp_work, 3822 bond_loadbalance_arp_mon); 3823 3824 queue_delayed_work(bond->wq, &bond->arp_work, 0); 3825 if (bond->params.arp_validate) 3826 bond_register_arp(bond); 3827 } 3828 3829 if (bond->params.mode == BOND_MODE_8023AD) { 3830 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); 3831 queue_delayed_work(bond->wq, &bond->ad_work, 0); 3832 /* register to receive LACPDUs */ 3833 bond_register_lacpdu(bond); 3834 bond_3ad_initiate_agg_selection(bond, 1); 3835 } 3836 3837 return 0; 3838 } 3839 3840 static int bond_close(struct net_device *bond_dev) 3841 { 3842 struct bonding *bond = netdev_priv(bond_dev); 3843 3844 if (bond->params.mode == BOND_MODE_8023AD) { 3845 /* Unregister the receive of LACPDUs */ 3846 bond_unregister_lacpdu(bond); 3847 } 3848 3849 if (bond->params.arp_validate) 3850 bond_unregister_arp(bond); 3851 3852 write_lock_bh(&bond->lock); 3853 3854 bond->send_grat_arp = 0; 3855 bond->send_unsol_na = 0; 3856 3857 /* signal timers not to re-arm */ 3858 bond->kill_timers = 1; 3859 3860 write_unlock_bh(&bond->lock); 3861 3862 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3863 cancel_delayed_work(&bond->mii_work); 3864 } 3865 3866 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3867 cancel_delayed_work(&bond->arp_work); 3868 } 3869 3870 switch (bond->params.mode) { 3871 case BOND_MODE_8023AD: 3872 cancel_delayed_work(&bond->ad_work); 3873 break; 3874 case BOND_MODE_TLB: 3875 case BOND_MODE_ALB: 3876 cancel_delayed_work(&bond->alb_work); 3877 break; 3878 default: 3879 break; 3880 } 3881 3882 3883 if (bond_is_lb(bond)) { 3884 /* Must be called only after all 3885 * slaves have been released 3886 */ 3887 bond_alb_deinitialize(bond); 3888 } 3889 3890 return 0; 3891 } 3892 3893 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev) 3894 { 3895 struct bonding *bond = netdev_priv(bond_dev); 3896 struct net_device_stats *stats = &bond->stats; 3897 struct net_device_stats local_stats; 3898 struct slave *slave; 3899 int i; 3900 3901 memset(&local_stats, 0, sizeof(struct net_device_stats)); 3902 3903 read_lock_bh(&bond->lock); 3904 3905 bond_for_each_slave(bond, slave, i) { 3906 const struct net_device_stats *sstats = dev_get_stats(slave->dev); 3907 3908 local_stats.rx_packets += sstats->rx_packets; 3909 local_stats.rx_bytes += sstats->rx_bytes; 3910 local_stats.rx_errors += sstats->rx_errors; 3911 local_stats.rx_dropped += sstats->rx_dropped; 3912 3913 local_stats.tx_packets += sstats->tx_packets; 3914 local_stats.tx_bytes += sstats->tx_bytes; 3915 local_stats.tx_errors += sstats->tx_errors; 3916 local_stats.tx_dropped += sstats->tx_dropped; 3917 3918 local_stats.multicast += sstats->multicast; 3919 local_stats.collisions += sstats->collisions; 3920 3921 local_stats.rx_length_errors += sstats->rx_length_errors; 3922 local_stats.rx_over_errors += sstats->rx_over_errors; 3923 local_stats.rx_crc_errors += sstats->rx_crc_errors; 3924 local_stats.rx_frame_errors += sstats->rx_frame_errors; 3925 local_stats.rx_fifo_errors += sstats->rx_fifo_errors; 3926 local_stats.rx_missed_errors += sstats->rx_missed_errors; 3927 3928 local_stats.tx_aborted_errors += sstats->tx_aborted_errors; 3929 local_stats.tx_carrier_errors += sstats->tx_carrier_errors; 3930 local_stats.tx_fifo_errors += sstats->tx_fifo_errors; 3931 local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3932 local_stats.tx_window_errors += sstats->tx_window_errors; 3933 } 3934 3935 memcpy(stats, &local_stats, sizeof(struct net_device_stats)); 3936 3937 read_unlock_bh(&bond->lock); 3938 3939 return stats; 3940 } 3941 3942 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3943 { 3944 struct net_device *slave_dev = NULL; 3945 struct ifbond k_binfo; 3946 struct ifbond __user *u_binfo = NULL; 3947 struct ifslave k_sinfo; 3948 struct ifslave __user *u_sinfo = NULL; 3949 struct mii_ioctl_data *mii = NULL; 3950 int res = 0; 3951 3952 pr_debug("bond_ioctl: master=%s, cmd=%d\n", 3953 bond_dev->name, cmd); 3954 3955 switch (cmd) { 3956 case SIOCGMIIPHY: 3957 mii = if_mii(ifr); 3958 if (!mii) { 3959 return -EINVAL; 3960 } 3961 mii->phy_id = 0; 3962 /* Fall Through */ 3963 case SIOCGMIIREG: 3964 /* 3965 * We do this again just in case we were called by SIOCGMIIREG 3966 * instead of SIOCGMIIPHY. 3967 */ 3968 mii = if_mii(ifr); 3969 if (!mii) { 3970 return -EINVAL; 3971 } 3972 3973 if (mii->reg_num == 1) { 3974 struct bonding *bond = netdev_priv(bond_dev); 3975 mii->val_out = 0; 3976 read_lock(&bond->lock); 3977 read_lock(&bond->curr_slave_lock); 3978 if (netif_carrier_ok(bond->dev)) { 3979 mii->val_out = BMSR_LSTATUS; 3980 } 3981 read_unlock(&bond->curr_slave_lock); 3982 read_unlock(&bond->lock); 3983 } 3984 3985 return 0; 3986 case BOND_INFO_QUERY_OLD: 3987 case SIOCBONDINFOQUERY: 3988 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3989 3990 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) { 3991 return -EFAULT; 3992 } 3993 3994 res = bond_info_query(bond_dev, &k_binfo); 3995 if (res == 0) { 3996 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) { 3997 return -EFAULT; 3998 } 3999 } 4000 4001 return res; 4002 case BOND_SLAVE_INFO_QUERY_OLD: 4003 case SIOCBONDSLAVEINFOQUERY: 4004 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 4005 4006 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) { 4007 return -EFAULT; 4008 } 4009 4010 res = bond_slave_info_query(bond_dev, &k_sinfo); 4011 if (res == 0) { 4012 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) { 4013 return -EFAULT; 4014 } 4015 } 4016 4017 return res; 4018 default: 4019 /* Go on */ 4020 break; 4021 } 4022 4023 if (!capable(CAP_NET_ADMIN)) { 4024 return -EPERM; 4025 } 4026 4027 down_write(&(bonding_rwsem)); 4028 slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave); 4029 4030 pr_debug("slave_dev=%p: \n", slave_dev); 4031 4032 if (!slave_dev) { 4033 res = -ENODEV; 4034 } else { 4035 pr_debug("slave_dev->name=%s: \n", slave_dev->name); 4036 switch (cmd) { 4037 case BOND_ENSLAVE_OLD: 4038 case SIOCBONDENSLAVE: 4039 res = bond_enslave(bond_dev, slave_dev); 4040 break; 4041 case BOND_RELEASE_OLD: 4042 case SIOCBONDRELEASE: 4043 res = bond_release(bond_dev, slave_dev); 4044 break; 4045 case BOND_SETHWADDR_OLD: 4046 case SIOCBONDSETHWADDR: 4047 res = bond_sethwaddr(bond_dev, slave_dev); 4048 break; 4049 case BOND_CHANGE_ACTIVE_OLD: 4050 case SIOCBONDCHANGEACTIVE: 4051 res = bond_ioctl_change_active(bond_dev, slave_dev); 4052 break; 4053 default: 4054 res = -EOPNOTSUPP; 4055 } 4056 4057 dev_put(slave_dev); 4058 } 4059 4060 up_write(&(bonding_rwsem)); 4061 return res; 4062 } 4063 4064 static void bond_set_multicast_list(struct net_device *bond_dev) 4065 { 4066 struct bonding *bond = netdev_priv(bond_dev); 4067 struct dev_mc_list *dmi; 4068 4069 /* 4070 * Do promisc before checking multicast_mode 4071 */ 4072 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) { 4073 /* 4074 * FIXME: Need to handle the error when one of the multi-slaves 4075 * encounters error. 4076 */ 4077 bond_set_promiscuity(bond, 1); 4078 } 4079 4080 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) { 4081 bond_set_promiscuity(bond, -1); 4082 } 4083 4084 /* set allmulti flag to slaves */ 4085 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) { 4086 /* 4087 * FIXME: Need to handle the error when one of the multi-slaves 4088 * encounters error. 4089 */ 4090 bond_set_allmulti(bond, 1); 4091 } 4092 4093 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) { 4094 bond_set_allmulti(bond, -1); 4095 } 4096 4097 read_lock(&bond->lock); 4098 4099 bond->flags = bond_dev->flags; 4100 4101 /* looking for addresses to add to slaves' mc list */ 4102 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 4103 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) { 4104 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4105 } 4106 } 4107 4108 /* looking for addresses to delete from slaves' list */ 4109 for (dmi = bond->mc_list; dmi; dmi = dmi->next) { 4110 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) { 4111 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4112 } 4113 } 4114 4115 /* save master's multicast list */ 4116 bond_mc_list_destroy(bond); 4117 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC); 4118 4119 read_unlock(&bond->lock); 4120 } 4121 4122 static int bond_neigh_setup(struct net_device *dev, struct neigh_parms *parms) 4123 { 4124 struct bonding *bond = netdev_priv(dev); 4125 struct slave *slave = bond->first_slave; 4126 4127 if (slave) { 4128 const struct net_device_ops *slave_ops 4129 = slave->dev->netdev_ops; 4130 if (slave_ops->ndo_neigh_setup) 4131 return slave_ops->ndo_neigh_setup(slave->dev, parms); 4132 } 4133 return 0; 4134 } 4135 4136 /* 4137 * Change the MTU of all of a master's slaves to match the master 4138 */ 4139 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 4140 { 4141 struct bonding *bond = netdev_priv(bond_dev); 4142 struct slave *slave, *stop_at; 4143 int res = 0; 4144 int i; 4145 4146 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond, 4147 (bond_dev ? bond_dev->name : "None"), new_mtu); 4148 4149 /* Can't hold bond->lock with bh disabled here since 4150 * some base drivers panic. On the other hand we can't 4151 * hold bond->lock without bh disabled because we'll 4152 * deadlock. The only solution is to rely on the fact 4153 * that we're under rtnl_lock here, and the slaves 4154 * list won't change. This doesn't solve the problem 4155 * of setting the slave's MTU while it is 4156 * transmitting, but the assumption is that the base 4157 * driver can handle that. 4158 * 4159 * TODO: figure out a way to safely iterate the slaves 4160 * list, but without holding a lock around the actual 4161 * call to the base driver. 4162 */ 4163 4164 bond_for_each_slave(bond, slave, i) { 4165 pr_debug("s %p s->p %p c_m %p\n", slave, 4166 slave->prev, slave->dev->netdev_ops->ndo_change_mtu); 4167 4168 res = dev_set_mtu(slave->dev, new_mtu); 4169 4170 if (res) { 4171 /* If we failed to set the slave's mtu to the new value 4172 * we must abort the operation even in ACTIVE_BACKUP 4173 * mode, because if we allow the backup slaves to have 4174 * different mtu values than the active slave we'll 4175 * need to change their mtu when doing a failover. That 4176 * means changing their mtu from timer context, which 4177 * is probably not a good idea. 4178 */ 4179 pr_debug("err %d %s\n", res, slave->dev->name); 4180 goto unwind; 4181 } 4182 } 4183 4184 bond_dev->mtu = new_mtu; 4185 4186 return 0; 4187 4188 unwind: 4189 /* unwind from head to the slave that failed */ 4190 stop_at = slave; 4191 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4192 int tmp_res; 4193 4194 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 4195 if (tmp_res) { 4196 pr_debug("unwind err %d dev %s\n", tmp_res, 4197 slave->dev->name); 4198 } 4199 } 4200 4201 return res; 4202 } 4203 4204 /* 4205 * Change HW address 4206 * 4207 * Note that many devices must be down to change the HW address, and 4208 * downing the master releases all slaves. We can make bonds full of 4209 * bonding devices to test this, however. 4210 */ 4211 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 4212 { 4213 struct bonding *bond = netdev_priv(bond_dev); 4214 struct sockaddr *sa = addr, tmp_sa; 4215 struct slave *slave, *stop_at; 4216 int res = 0; 4217 int i; 4218 4219 if (bond->params.mode == BOND_MODE_ALB) 4220 return bond_alb_set_mac_address(bond_dev, addr); 4221 4222 4223 pr_debug("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None")); 4224 4225 /* 4226 * If fail_over_mac is set to active, do nothing and return 4227 * success. Returning an error causes ifenslave to fail. 4228 */ 4229 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE) 4230 return 0; 4231 4232 if (!is_valid_ether_addr(sa->sa_data)) { 4233 return -EADDRNOTAVAIL; 4234 } 4235 4236 /* Can't hold bond->lock with bh disabled here since 4237 * some base drivers panic. On the other hand we can't 4238 * hold bond->lock without bh disabled because we'll 4239 * deadlock. The only solution is to rely on the fact 4240 * that we're under rtnl_lock here, and the slaves 4241 * list won't change. This doesn't solve the problem 4242 * of setting the slave's hw address while it is 4243 * transmitting, but the assumption is that the base 4244 * driver can handle that. 4245 * 4246 * TODO: figure out a way to safely iterate the slaves 4247 * list, but without holding a lock around the actual 4248 * call to the base driver. 4249 */ 4250 4251 bond_for_each_slave(bond, slave, i) { 4252 const struct net_device_ops *slave_ops = slave->dev->netdev_ops; 4253 pr_debug("slave %p %s\n", slave, slave->dev->name); 4254 4255 if (slave_ops->ndo_set_mac_address == NULL) { 4256 res = -EOPNOTSUPP; 4257 pr_debug("EOPNOTSUPP %s\n", slave->dev->name); 4258 goto unwind; 4259 } 4260 4261 res = dev_set_mac_address(slave->dev, addr); 4262 if (res) { 4263 /* TODO: consider downing the slave 4264 * and retry ? 4265 * User should expect communications 4266 * breakage anyway until ARP finish 4267 * updating, so... 4268 */ 4269 pr_debug("err %d %s\n", res, slave->dev->name); 4270 goto unwind; 4271 } 4272 } 4273 4274 /* success */ 4275 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 4276 return 0; 4277 4278 unwind: 4279 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 4280 tmp_sa.sa_family = bond_dev->type; 4281 4282 /* unwind from head to the slave that failed */ 4283 stop_at = slave; 4284 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4285 int tmp_res; 4286 4287 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 4288 if (tmp_res) { 4289 pr_debug("unwind err %d dev %s\n", tmp_res, 4290 slave->dev->name); 4291 } 4292 } 4293 4294 return res; 4295 } 4296 4297 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 4298 { 4299 struct bonding *bond = netdev_priv(bond_dev); 4300 struct slave *slave, *start_at; 4301 int i, slave_no, res = 1; 4302 4303 read_lock(&bond->lock); 4304 4305 if (!BOND_IS_OK(bond)) { 4306 goto out; 4307 } 4308 4309 /* 4310 * Concurrent TX may collide on rr_tx_counter; we accept that 4311 * as being rare enough not to justify using an atomic op here 4312 */ 4313 slave_no = bond->rr_tx_counter++ % bond->slave_cnt; 4314 4315 bond_for_each_slave(bond, slave, i) { 4316 slave_no--; 4317 if (slave_no < 0) { 4318 break; 4319 } 4320 } 4321 4322 start_at = slave; 4323 bond_for_each_slave_from(bond, slave, i, start_at) { 4324 if (IS_UP(slave->dev) && 4325 (slave->link == BOND_LINK_UP) && 4326 (slave->state == BOND_STATE_ACTIVE)) { 4327 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4328 break; 4329 } 4330 } 4331 4332 out: 4333 if (res) { 4334 /* no suitable interface, frame not sent */ 4335 dev_kfree_skb(skb); 4336 } 4337 read_unlock(&bond->lock); 4338 return 0; 4339 } 4340 4341 4342 /* 4343 * in active-backup mode, we know that bond->curr_active_slave is always valid if 4344 * the bond has a usable interface. 4345 */ 4346 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 4347 { 4348 struct bonding *bond = netdev_priv(bond_dev); 4349 int res = 1; 4350 4351 read_lock(&bond->lock); 4352 read_lock(&bond->curr_slave_lock); 4353 4354 if (!BOND_IS_OK(bond)) { 4355 goto out; 4356 } 4357 4358 if (!bond->curr_active_slave) 4359 goto out; 4360 4361 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev); 4362 4363 out: 4364 if (res) { 4365 /* no suitable interface, frame not sent */ 4366 dev_kfree_skb(skb); 4367 } 4368 read_unlock(&bond->curr_slave_lock); 4369 read_unlock(&bond->lock); 4370 return 0; 4371 } 4372 4373 /* 4374 * In bond_xmit_xor() , we determine the output device by using a pre- 4375 * determined xmit_hash_policy(), If the selected device is not enabled, 4376 * find the next active slave. 4377 */ 4378 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4379 { 4380 struct bonding *bond = netdev_priv(bond_dev); 4381 struct slave *slave, *start_at; 4382 int slave_no; 4383 int i; 4384 int res = 1; 4385 4386 read_lock(&bond->lock); 4387 4388 if (!BOND_IS_OK(bond)) { 4389 goto out; 4390 } 4391 4392 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt); 4393 4394 bond_for_each_slave(bond, slave, i) { 4395 slave_no--; 4396 if (slave_no < 0) { 4397 break; 4398 } 4399 } 4400 4401 start_at = slave; 4402 4403 bond_for_each_slave_from(bond, slave, i, start_at) { 4404 if (IS_UP(slave->dev) && 4405 (slave->link == BOND_LINK_UP) && 4406 (slave->state == BOND_STATE_ACTIVE)) { 4407 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4408 break; 4409 } 4410 } 4411 4412 out: 4413 if (res) { 4414 /* no suitable interface, frame not sent */ 4415 dev_kfree_skb(skb); 4416 } 4417 read_unlock(&bond->lock); 4418 return 0; 4419 } 4420 4421 /* 4422 * in broadcast mode, we send everything to all usable interfaces. 4423 */ 4424 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4425 { 4426 struct bonding *bond = netdev_priv(bond_dev); 4427 struct slave *slave, *start_at; 4428 struct net_device *tx_dev = NULL; 4429 int i; 4430 int res = 1; 4431 4432 read_lock(&bond->lock); 4433 4434 if (!BOND_IS_OK(bond)) { 4435 goto out; 4436 } 4437 4438 read_lock(&bond->curr_slave_lock); 4439 start_at = bond->curr_active_slave; 4440 read_unlock(&bond->curr_slave_lock); 4441 4442 if (!start_at) { 4443 goto out; 4444 } 4445 4446 bond_for_each_slave_from(bond, slave, i, start_at) { 4447 if (IS_UP(slave->dev) && 4448 (slave->link == BOND_LINK_UP) && 4449 (slave->state == BOND_STATE_ACTIVE)) { 4450 if (tx_dev) { 4451 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4452 if (!skb2) { 4453 printk(KERN_ERR DRV_NAME 4454 ": %s: Error: bond_xmit_broadcast(): " 4455 "skb_clone() failed\n", 4456 bond_dev->name); 4457 continue; 4458 } 4459 4460 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4461 if (res) { 4462 dev_kfree_skb(skb2); 4463 continue; 4464 } 4465 } 4466 tx_dev = slave->dev; 4467 } 4468 } 4469 4470 if (tx_dev) { 4471 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4472 } 4473 4474 out: 4475 if (res) { 4476 /* no suitable interface, frame not sent */ 4477 dev_kfree_skb(skb); 4478 } 4479 /* frame sent to all suitable interfaces */ 4480 read_unlock(&bond->lock); 4481 return 0; 4482 } 4483 4484 /*------------------------- Device initialization ---------------------------*/ 4485 4486 static void bond_set_xmit_hash_policy(struct bonding *bond) 4487 { 4488 switch (bond->params.xmit_policy) { 4489 case BOND_XMIT_POLICY_LAYER23: 4490 bond->xmit_hash_policy = bond_xmit_hash_policy_l23; 4491 break; 4492 case BOND_XMIT_POLICY_LAYER34: 4493 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4494 break; 4495 case BOND_XMIT_POLICY_LAYER2: 4496 default: 4497 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4498 break; 4499 } 4500 } 4501 4502 static int bond_start_xmit(struct sk_buff *skb, struct net_device *dev) 4503 { 4504 const struct bonding *bond = netdev_priv(dev); 4505 4506 switch (bond->params.mode) { 4507 case BOND_MODE_ROUNDROBIN: 4508 return bond_xmit_roundrobin(skb, dev); 4509 case BOND_MODE_ACTIVEBACKUP: 4510 return bond_xmit_activebackup(skb, dev); 4511 case BOND_MODE_XOR: 4512 return bond_xmit_xor(skb, dev); 4513 case BOND_MODE_BROADCAST: 4514 return bond_xmit_broadcast(skb, dev); 4515 case BOND_MODE_8023AD: 4516 return bond_3ad_xmit_xor(skb, dev); 4517 case BOND_MODE_ALB: 4518 case BOND_MODE_TLB: 4519 return bond_alb_xmit(skb, dev); 4520 default: 4521 /* Should never happen, mode already checked */ 4522 printk(KERN_ERR DRV_NAME ": %s: Error: Unknown bonding mode %d\n", 4523 dev->name, bond->params.mode); 4524 WARN_ON_ONCE(1); 4525 dev_kfree_skb(skb); 4526 return NETDEV_TX_OK; 4527 } 4528 } 4529 4530 4531 /* 4532 * set bond mode specific net device operations 4533 */ 4534 void bond_set_mode_ops(struct bonding *bond, int mode) 4535 { 4536 struct net_device *bond_dev = bond->dev; 4537 4538 switch (mode) { 4539 case BOND_MODE_ROUNDROBIN: 4540 break; 4541 case BOND_MODE_ACTIVEBACKUP: 4542 break; 4543 case BOND_MODE_XOR: 4544 bond_set_xmit_hash_policy(bond); 4545 break; 4546 case BOND_MODE_BROADCAST: 4547 break; 4548 case BOND_MODE_8023AD: 4549 bond_set_master_3ad_flags(bond); 4550 bond_set_xmit_hash_policy(bond); 4551 break; 4552 case BOND_MODE_ALB: 4553 bond_set_master_alb_flags(bond); 4554 /* FALLTHRU */ 4555 case BOND_MODE_TLB: 4556 break; 4557 default: 4558 /* Should never happen, mode already checked */ 4559 printk(KERN_ERR DRV_NAME 4560 ": %s: Error: Unknown bonding mode %d\n", 4561 bond_dev->name, 4562 mode); 4563 break; 4564 } 4565 } 4566 4567 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4568 struct ethtool_drvinfo *drvinfo) 4569 { 4570 strncpy(drvinfo->driver, DRV_NAME, 32); 4571 strncpy(drvinfo->version, DRV_VERSION, 32); 4572 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION); 4573 } 4574 4575 static const struct ethtool_ops bond_ethtool_ops = { 4576 .get_drvinfo = bond_ethtool_get_drvinfo, 4577 .get_link = ethtool_op_get_link, 4578 .get_tx_csum = ethtool_op_get_tx_csum, 4579 .get_sg = ethtool_op_get_sg, 4580 .get_tso = ethtool_op_get_tso, 4581 .get_ufo = ethtool_op_get_ufo, 4582 .get_flags = ethtool_op_get_flags, 4583 }; 4584 4585 static const struct net_device_ops bond_netdev_ops = { 4586 .ndo_open = bond_open, 4587 .ndo_stop = bond_close, 4588 .ndo_start_xmit = bond_start_xmit, 4589 .ndo_get_stats = bond_get_stats, 4590 .ndo_do_ioctl = bond_do_ioctl, 4591 .ndo_set_multicast_list = bond_set_multicast_list, 4592 .ndo_change_mtu = bond_change_mtu, 4593 .ndo_set_mac_address = bond_set_mac_address, 4594 .ndo_neigh_setup = bond_neigh_setup, 4595 .ndo_vlan_rx_register = bond_vlan_rx_register, 4596 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid, 4597 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid, 4598 }; 4599 4600 /* 4601 * Does not allocate but creates a /proc entry. 4602 * Allowed to fail. 4603 */ 4604 static int bond_init(struct net_device *bond_dev, struct bond_params *params) 4605 { 4606 struct bonding *bond = netdev_priv(bond_dev); 4607 4608 pr_debug("Begin bond_init for %s\n", bond_dev->name); 4609 4610 /* initialize rwlocks */ 4611 rwlock_init(&bond->lock); 4612 rwlock_init(&bond->curr_slave_lock); 4613 4614 bond->params = *params; /* copy params struct */ 4615 4616 bond->wq = create_singlethread_workqueue(bond_dev->name); 4617 if (!bond->wq) 4618 return -ENOMEM; 4619 4620 /* Initialize pointers */ 4621 bond->first_slave = NULL; 4622 bond->curr_active_slave = NULL; 4623 bond->current_arp_slave = NULL; 4624 bond->primary_slave = NULL; 4625 bond->dev = bond_dev; 4626 bond->send_grat_arp = 0; 4627 bond->send_unsol_na = 0; 4628 bond->setup_by_slave = 0; 4629 INIT_LIST_HEAD(&bond->vlan_list); 4630 4631 /* Initialize the device entry points */ 4632 bond_dev->netdev_ops = &bond_netdev_ops; 4633 bond_dev->ethtool_ops = &bond_ethtool_ops; 4634 bond_set_mode_ops(bond, bond->params.mode); 4635 4636 bond_dev->destructor = bond_destructor; 4637 4638 /* Initialize the device options */ 4639 bond_dev->tx_queue_len = 0; 4640 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4641 bond_dev->priv_flags |= IFF_BONDING; 4642 if (bond->params.arp_interval) 4643 bond_dev->priv_flags |= IFF_MASTER_ARPMON; 4644 4645 /* At first, we block adding VLANs. That's the only way to 4646 * prevent problems that occur when adding VLANs over an 4647 * empty bond. The block will be removed once non-challenged 4648 * slaves are enslaved. 4649 */ 4650 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4651 4652 /* don't acquire bond device's netif_tx_lock when 4653 * transmitting */ 4654 bond_dev->features |= NETIF_F_LLTX; 4655 4656 /* By default, we declare the bond to be fully 4657 * VLAN hardware accelerated capable. Special 4658 * care is taken in the various xmit functions 4659 * when there are slaves that are not hw accel 4660 * capable 4661 */ 4662 bond_dev->features |= (NETIF_F_HW_VLAN_TX | 4663 NETIF_F_HW_VLAN_RX | 4664 NETIF_F_HW_VLAN_FILTER); 4665 4666 #ifdef CONFIG_PROC_FS 4667 bond_create_proc_entry(bond); 4668 #endif 4669 list_add_tail(&bond->bond_list, &bond_dev_list); 4670 4671 return 0; 4672 } 4673 4674 static void bond_work_cancel_all(struct bonding *bond) 4675 { 4676 write_lock_bh(&bond->lock); 4677 bond->kill_timers = 1; 4678 write_unlock_bh(&bond->lock); 4679 4680 if (bond->params.miimon && delayed_work_pending(&bond->mii_work)) 4681 cancel_delayed_work(&bond->mii_work); 4682 4683 if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work)) 4684 cancel_delayed_work(&bond->arp_work); 4685 4686 if (bond->params.mode == BOND_MODE_ALB && 4687 delayed_work_pending(&bond->alb_work)) 4688 cancel_delayed_work(&bond->alb_work); 4689 4690 if (bond->params.mode == BOND_MODE_8023AD && 4691 delayed_work_pending(&bond->ad_work)) 4692 cancel_delayed_work(&bond->ad_work); 4693 } 4694 4695 /* De-initialize device specific data. 4696 * Caller must hold rtnl_lock. 4697 */ 4698 static void bond_deinit(struct net_device *bond_dev) 4699 { 4700 struct bonding *bond = netdev_priv(bond_dev); 4701 4702 list_del(&bond->bond_list); 4703 4704 bond_work_cancel_all(bond); 4705 4706 #ifdef CONFIG_PROC_FS 4707 bond_remove_proc_entry(bond); 4708 #endif 4709 } 4710 4711 /* Unregister and free all bond devices. 4712 * Caller must hold rtnl_lock. 4713 */ 4714 static void bond_free_all(void) 4715 { 4716 struct bonding *bond, *nxt; 4717 4718 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) { 4719 struct net_device *bond_dev = bond->dev; 4720 4721 bond_work_cancel_all(bond); 4722 /* Release the bonded slaves */ 4723 bond_release_all(bond_dev); 4724 bond_destroy(bond); 4725 } 4726 4727 #ifdef CONFIG_PROC_FS 4728 bond_destroy_proc_dir(); 4729 #endif 4730 } 4731 4732 /*------------------------- Module initialization ---------------------------*/ 4733 4734 /* 4735 * Convert string input module parms. Accept either the 4736 * number of the mode or its string name. A bit complicated because 4737 * some mode names are substrings of other names, and calls from sysfs 4738 * may have whitespace in the name (trailing newlines, for example). 4739 */ 4740 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl) 4741 { 4742 int mode = -1, i, rv; 4743 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; 4744 4745 for (p = (char *)buf; *p; p++) 4746 if (!(isdigit(*p) || isspace(*p))) 4747 break; 4748 4749 if (*p) 4750 rv = sscanf(buf, "%20s", modestr); 4751 else 4752 rv = sscanf(buf, "%d", &mode); 4753 4754 if (!rv) 4755 return -1; 4756 4757 for (i = 0; tbl[i].modename; i++) { 4758 if (mode == tbl[i].mode) 4759 return tbl[i].mode; 4760 if (strcmp(modestr, tbl[i].modename) == 0) 4761 return tbl[i].mode; 4762 } 4763 4764 return -1; 4765 } 4766 4767 static int bond_check_params(struct bond_params *params) 4768 { 4769 int arp_validate_value, fail_over_mac_value; 4770 4771 /* 4772 * Convert string parameters. 4773 */ 4774 if (mode) { 4775 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4776 if (bond_mode == -1) { 4777 printk(KERN_ERR DRV_NAME 4778 ": Error: Invalid bonding mode \"%s\"\n", 4779 mode == NULL ? "NULL" : mode); 4780 return -EINVAL; 4781 } 4782 } 4783 4784 if (xmit_hash_policy) { 4785 if ((bond_mode != BOND_MODE_XOR) && 4786 (bond_mode != BOND_MODE_8023AD)) { 4787 printk(KERN_INFO DRV_NAME 4788 ": xor_mode param is irrelevant in mode %s\n", 4789 bond_mode_name(bond_mode)); 4790 } else { 4791 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4792 xmit_hashtype_tbl); 4793 if (xmit_hashtype == -1) { 4794 printk(KERN_ERR DRV_NAME 4795 ": Error: Invalid xmit_hash_policy \"%s\"\n", 4796 xmit_hash_policy == NULL ? "NULL" : 4797 xmit_hash_policy); 4798 return -EINVAL; 4799 } 4800 } 4801 } 4802 4803 if (lacp_rate) { 4804 if (bond_mode != BOND_MODE_8023AD) { 4805 printk(KERN_INFO DRV_NAME 4806 ": lacp_rate param is irrelevant in mode %s\n", 4807 bond_mode_name(bond_mode)); 4808 } else { 4809 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4810 if (lacp_fast == -1) { 4811 printk(KERN_ERR DRV_NAME 4812 ": Error: Invalid lacp rate \"%s\"\n", 4813 lacp_rate == NULL ? "NULL" : lacp_rate); 4814 return -EINVAL; 4815 } 4816 } 4817 } 4818 4819 if (ad_select) { 4820 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl); 4821 if (params->ad_select == -1) { 4822 printk(KERN_ERR DRV_NAME 4823 ": Error: Invalid ad_select \"%s\"\n", 4824 ad_select == NULL ? "NULL" : ad_select); 4825 return -EINVAL; 4826 } 4827 4828 if (bond_mode != BOND_MODE_8023AD) { 4829 printk(KERN_WARNING DRV_NAME 4830 ": ad_select param only affects 802.3ad mode\n"); 4831 } 4832 } else { 4833 params->ad_select = BOND_AD_STABLE; 4834 } 4835 4836 if (max_bonds < 0 || max_bonds > INT_MAX) { 4837 printk(KERN_WARNING DRV_NAME 4838 ": Warning: max_bonds (%d) not in range %d-%d, so it " 4839 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4840 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4841 max_bonds = BOND_DEFAULT_MAX_BONDS; 4842 } 4843 4844 if (miimon < 0) { 4845 printk(KERN_WARNING DRV_NAME 4846 ": Warning: miimon module parameter (%d), " 4847 "not in range 0-%d, so it was reset to %d\n", 4848 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4849 miimon = BOND_LINK_MON_INTERV; 4850 } 4851 4852 if (updelay < 0) { 4853 printk(KERN_WARNING DRV_NAME 4854 ": Warning: updelay module parameter (%d), " 4855 "not in range 0-%d, so it was reset to 0\n", 4856 updelay, INT_MAX); 4857 updelay = 0; 4858 } 4859 4860 if (downdelay < 0) { 4861 printk(KERN_WARNING DRV_NAME 4862 ": Warning: downdelay module parameter (%d), " 4863 "not in range 0-%d, so it was reset to 0\n", 4864 downdelay, INT_MAX); 4865 downdelay = 0; 4866 } 4867 4868 if ((use_carrier != 0) && (use_carrier != 1)) { 4869 printk(KERN_WARNING DRV_NAME 4870 ": Warning: use_carrier module parameter (%d), " 4871 "not of valid value (0/1), so it was set to 1\n", 4872 use_carrier); 4873 use_carrier = 1; 4874 } 4875 4876 if (num_grat_arp < 0 || num_grat_arp > 255) { 4877 printk(KERN_WARNING DRV_NAME 4878 ": Warning: num_grat_arp (%d) not in range 0-255 so it " 4879 "was reset to 1 \n", num_grat_arp); 4880 num_grat_arp = 1; 4881 } 4882 4883 if (num_unsol_na < 0 || num_unsol_na > 255) { 4884 printk(KERN_WARNING DRV_NAME 4885 ": Warning: num_unsol_na (%d) not in range 0-255 so it " 4886 "was reset to 1 \n", num_unsol_na); 4887 num_unsol_na = 1; 4888 } 4889 4890 /* reset values for 802.3ad */ 4891 if (bond_mode == BOND_MODE_8023AD) { 4892 if (!miimon) { 4893 printk(KERN_WARNING DRV_NAME 4894 ": Warning: miimon must be specified, " 4895 "otherwise bonding will not detect link " 4896 "failure, speed and duplex which are " 4897 "essential for 802.3ad operation\n"); 4898 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4899 miimon = 100; 4900 } 4901 } 4902 4903 /* reset values for TLB/ALB */ 4904 if ((bond_mode == BOND_MODE_TLB) || 4905 (bond_mode == BOND_MODE_ALB)) { 4906 if (!miimon) { 4907 printk(KERN_WARNING DRV_NAME 4908 ": Warning: miimon must be specified, " 4909 "otherwise bonding will not detect link " 4910 "failure and link speed which are essential " 4911 "for TLB/ALB load balancing\n"); 4912 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4913 miimon = 100; 4914 } 4915 } 4916 4917 if (bond_mode == BOND_MODE_ALB) { 4918 printk(KERN_NOTICE DRV_NAME 4919 ": In ALB mode you might experience client " 4920 "disconnections upon reconnection of a link if the " 4921 "bonding module updelay parameter (%d msec) is " 4922 "incompatible with the forwarding delay time of the " 4923 "switch\n", 4924 updelay); 4925 } 4926 4927 if (!miimon) { 4928 if (updelay || downdelay) { 4929 /* just warn the user the up/down delay will have 4930 * no effect since miimon is zero... 4931 */ 4932 printk(KERN_WARNING DRV_NAME 4933 ": Warning: miimon module parameter not set " 4934 "and updelay (%d) or downdelay (%d) module " 4935 "parameter is set; updelay and downdelay have " 4936 "no effect unless miimon is set\n", 4937 updelay, downdelay); 4938 } 4939 } else { 4940 /* don't allow arp monitoring */ 4941 if (arp_interval) { 4942 printk(KERN_WARNING DRV_NAME 4943 ": Warning: miimon (%d) and arp_interval (%d) " 4944 "can't be used simultaneously, disabling ARP " 4945 "monitoring\n", 4946 miimon, arp_interval); 4947 arp_interval = 0; 4948 } 4949 4950 if ((updelay % miimon) != 0) { 4951 printk(KERN_WARNING DRV_NAME 4952 ": Warning: updelay (%d) is not a multiple " 4953 "of miimon (%d), updelay rounded to %d ms\n", 4954 updelay, miimon, (updelay / miimon) * miimon); 4955 } 4956 4957 updelay /= miimon; 4958 4959 if ((downdelay % miimon) != 0) { 4960 printk(KERN_WARNING DRV_NAME 4961 ": Warning: downdelay (%d) is not a multiple " 4962 "of miimon (%d), downdelay rounded to %d ms\n", 4963 downdelay, miimon, 4964 (downdelay / miimon) * miimon); 4965 } 4966 4967 downdelay /= miimon; 4968 } 4969 4970 if (arp_interval < 0) { 4971 printk(KERN_WARNING DRV_NAME 4972 ": Warning: arp_interval module parameter (%d) " 4973 ", not in range 0-%d, so it was reset to %d\n", 4974 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4975 arp_interval = BOND_LINK_ARP_INTERV; 4976 } 4977 4978 for (arp_ip_count = 0; 4979 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; 4980 arp_ip_count++) { 4981 /* not complete check, but should be good enough to 4982 catch mistakes */ 4983 if (!isdigit(arp_ip_target[arp_ip_count][0])) { 4984 printk(KERN_WARNING DRV_NAME 4985 ": Warning: bad arp_ip_target module parameter " 4986 "(%s), ARP monitoring will not be performed\n", 4987 arp_ip_target[arp_ip_count]); 4988 arp_interval = 0; 4989 } else { 4990 __be32 ip = in_aton(arp_ip_target[arp_ip_count]); 4991 arp_target[arp_ip_count] = ip; 4992 } 4993 } 4994 4995 if (arp_interval && !arp_ip_count) { 4996 /* don't allow arping if no arp_ip_target given... */ 4997 printk(KERN_WARNING DRV_NAME 4998 ": Warning: arp_interval module parameter (%d) " 4999 "specified without providing an arp_ip_target " 5000 "parameter, arp_interval was reset to 0\n", 5001 arp_interval); 5002 arp_interval = 0; 5003 } 5004 5005 if (arp_validate) { 5006 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 5007 printk(KERN_ERR DRV_NAME 5008 ": arp_validate only supported in active-backup mode\n"); 5009 return -EINVAL; 5010 } 5011 if (!arp_interval) { 5012 printk(KERN_ERR DRV_NAME 5013 ": arp_validate requires arp_interval\n"); 5014 return -EINVAL; 5015 } 5016 5017 arp_validate_value = bond_parse_parm(arp_validate, 5018 arp_validate_tbl); 5019 if (arp_validate_value == -1) { 5020 printk(KERN_ERR DRV_NAME 5021 ": Error: invalid arp_validate \"%s\"\n", 5022 arp_validate == NULL ? "NULL" : arp_validate); 5023 return -EINVAL; 5024 } 5025 } else 5026 arp_validate_value = 0; 5027 5028 if (miimon) { 5029 printk(KERN_INFO DRV_NAME 5030 ": MII link monitoring set to %d ms\n", 5031 miimon); 5032 } else if (arp_interval) { 5033 int i; 5034 5035 printk(KERN_INFO DRV_NAME 5036 ": ARP monitoring set to %d ms, validate %s, with %d target(s):", 5037 arp_interval, 5038 arp_validate_tbl[arp_validate_value].modename, 5039 arp_ip_count); 5040 5041 for (i = 0; i < arp_ip_count; i++) 5042 printk (" %s", arp_ip_target[i]); 5043 5044 printk("\n"); 5045 5046 } else if (max_bonds) { 5047 /* miimon and arp_interval not set, we need one so things 5048 * work as expected, see bonding.txt for details 5049 */ 5050 printk(KERN_WARNING DRV_NAME 5051 ": Warning: either miimon or arp_interval and " 5052 "arp_ip_target module parameters must be specified, " 5053 "otherwise bonding will not detect link failures! see " 5054 "bonding.txt for details.\n"); 5055 } 5056 5057 if (primary && !USES_PRIMARY(bond_mode)) { 5058 /* currently, using a primary only makes sense 5059 * in active backup, TLB or ALB modes 5060 */ 5061 printk(KERN_WARNING DRV_NAME 5062 ": Warning: %s primary device specified but has no " 5063 "effect in %s mode\n", 5064 primary, bond_mode_name(bond_mode)); 5065 primary = NULL; 5066 } 5067 5068 if (fail_over_mac) { 5069 fail_over_mac_value = bond_parse_parm(fail_over_mac, 5070 fail_over_mac_tbl); 5071 if (fail_over_mac_value == -1) { 5072 printk(KERN_ERR DRV_NAME 5073 ": Error: invalid fail_over_mac \"%s\"\n", 5074 arp_validate == NULL ? "NULL" : arp_validate); 5075 return -EINVAL; 5076 } 5077 5078 if (bond_mode != BOND_MODE_ACTIVEBACKUP) 5079 printk(KERN_WARNING DRV_NAME 5080 ": Warning: fail_over_mac only affects " 5081 "active-backup mode.\n"); 5082 } else { 5083 fail_over_mac_value = BOND_FOM_NONE; 5084 } 5085 5086 /* fill params struct with the proper values */ 5087 params->mode = bond_mode; 5088 params->xmit_policy = xmit_hashtype; 5089 params->miimon = miimon; 5090 params->num_grat_arp = num_grat_arp; 5091 params->num_unsol_na = num_unsol_na; 5092 params->arp_interval = arp_interval; 5093 params->arp_validate = arp_validate_value; 5094 params->updelay = updelay; 5095 params->downdelay = downdelay; 5096 params->use_carrier = use_carrier; 5097 params->lacp_fast = lacp_fast; 5098 params->primary[0] = 0; 5099 params->fail_over_mac = fail_over_mac_value; 5100 5101 if (primary) { 5102 strncpy(params->primary, primary, IFNAMSIZ); 5103 params->primary[IFNAMSIZ - 1] = 0; 5104 } 5105 5106 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 5107 5108 return 0; 5109 } 5110 5111 static struct lock_class_key bonding_netdev_xmit_lock_key; 5112 static struct lock_class_key bonding_netdev_addr_lock_key; 5113 5114 static void bond_set_lockdep_class_one(struct net_device *dev, 5115 struct netdev_queue *txq, 5116 void *_unused) 5117 { 5118 lockdep_set_class(&txq->_xmit_lock, 5119 &bonding_netdev_xmit_lock_key); 5120 } 5121 5122 static void bond_set_lockdep_class(struct net_device *dev) 5123 { 5124 lockdep_set_class(&dev->addr_list_lock, 5125 &bonding_netdev_addr_lock_key); 5126 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL); 5127 } 5128 5129 /* Create a new bond based on the specified name and bonding parameters. 5130 * If name is NULL, obtain a suitable "bond%d" name for us. 5131 * Caller must NOT hold rtnl_lock; we need to release it here before we 5132 * set up our sysfs entries. 5133 */ 5134 int bond_create(char *name, struct bond_params *params) 5135 { 5136 struct net_device *bond_dev; 5137 struct bonding *bond; 5138 int res; 5139 5140 rtnl_lock(); 5141 down_write(&bonding_rwsem); 5142 5143 /* Check to see if the bond already exists. */ 5144 if (name) { 5145 list_for_each_entry(bond, &bond_dev_list, bond_list) 5146 if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) { 5147 printk(KERN_ERR DRV_NAME 5148 ": cannot add bond %s; it already exists\n", 5149 name); 5150 res = -EPERM; 5151 goto out_rtnl; 5152 } 5153 } 5154 5155 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "", 5156 ether_setup); 5157 if (!bond_dev) { 5158 printk(KERN_ERR DRV_NAME 5159 ": %s: eek! can't alloc netdev!\n", 5160 name); 5161 res = -ENOMEM; 5162 goto out_rtnl; 5163 } 5164 5165 if (!name) { 5166 res = dev_alloc_name(bond_dev, "bond%d"); 5167 if (res < 0) 5168 goto out_netdev; 5169 } 5170 5171 /* bond_init() must be called after dev_alloc_name() (for the 5172 * /proc files), but before register_netdevice(), because we 5173 * need to set function pointers. 5174 */ 5175 5176 res = bond_init(bond_dev, params); 5177 if (res < 0) { 5178 goto out_netdev; 5179 } 5180 5181 res = register_netdevice(bond_dev); 5182 if (res < 0) { 5183 goto out_bond; 5184 } 5185 5186 bond_set_lockdep_class(bond_dev); 5187 5188 netif_carrier_off(bond_dev); 5189 5190 up_write(&bonding_rwsem); 5191 rtnl_unlock(); /* allows sysfs registration of net device */ 5192 res = bond_create_sysfs_entry(netdev_priv(bond_dev)); 5193 if (res < 0) { 5194 rtnl_lock(); 5195 down_write(&bonding_rwsem); 5196 bond_deinit(bond_dev); 5197 unregister_netdevice(bond_dev); 5198 goto out_rtnl; 5199 } 5200 5201 return 0; 5202 5203 out_bond: 5204 bond_deinit(bond_dev); 5205 out_netdev: 5206 free_netdev(bond_dev); 5207 out_rtnl: 5208 up_write(&bonding_rwsem); 5209 rtnl_unlock(); 5210 return res; 5211 } 5212 5213 static int __init bonding_init(void) 5214 { 5215 int i; 5216 int res; 5217 struct bonding *bond; 5218 5219 printk(KERN_INFO "%s", version); 5220 5221 res = bond_check_params(&bonding_defaults); 5222 if (res) { 5223 goto out; 5224 } 5225 5226 #ifdef CONFIG_PROC_FS 5227 bond_create_proc_dir(); 5228 #endif 5229 5230 init_rwsem(&bonding_rwsem); 5231 5232 for (i = 0; i < max_bonds; i++) { 5233 res = bond_create(NULL, &bonding_defaults); 5234 if (res) 5235 goto err; 5236 } 5237 5238 res = bond_create_sysfs(); 5239 if (res) 5240 goto err; 5241 5242 register_netdevice_notifier(&bond_netdev_notifier); 5243 register_inetaddr_notifier(&bond_inetaddr_notifier); 5244 bond_register_ipv6_notifier(); 5245 5246 goto out; 5247 err: 5248 list_for_each_entry(bond, &bond_dev_list, bond_list) { 5249 bond_work_cancel_all(bond); 5250 destroy_workqueue(bond->wq); 5251 } 5252 5253 bond_destroy_sysfs(); 5254 5255 rtnl_lock(); 5256 bond_free_all(); 5257 rtnl_unlock(); 5258 out: 5259 return res; 5260 5261 } 5262 5263 static void __exit bonding_exit(void) 5264 { 5265 unregister_netdevice_notifier(&bond_netdev_notifier); 5266 unregister_inetaddr_notifier(&bond_inetaddr_notifier); 5267 bond_unregister_ipv6_notifier(); 5268 5269 bond_destroy_sysfs(); 5270 5271 rtnl_lock(); 5272 bond_free_all(); 5273 rtnl_unlock(); 5274 } 5275 5276 module_init(bonding_init); 5277 module_exit(bonding_exit); 5278 MODULE_LICENSE("GPL"); 5279 MODULE_VERSION(DRV_VERSION); 5280 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 5281 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 5282 MODULE_SUPPORTED_DEVICE("most ethernet devices"); 5283 5284 /* 5285 * Local variables: 5286 * c-indent-level: 8 5287 * c-basic-offset: 8 5288 * tab-width: 8 5289 * End: 5290 */ 5291 5292