1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 35 36 #include <linux/kernel.h> 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/fcntl.h> 40 #include <linux/interrupt.h> 41 #include <linux/ptrace.h> 42 #include <linux/ioport.h> 43 #include <linux/in.h> 44 #include <net/ip.h> 45 #include <linux/ip.h> 46 #include <linux/tcp.h> 47 #include <linux/udp.h> 48 #include <linux/slab.h> 49 #include <linux/string.h> 50 #include <linux/init.h> 51 #include <linux/timer.h> 52 #include <linux/socket.h> 53 #include <linux/ctype.h> 54 #include <linux/inet.h> 55 #include <linux/bitops.h> 56 #include <linux/io.h> 57 #include <asm/system.h> 58 #include <asm/dma.h> 59 #include <linux/uaccess.h> 60 #include <linux/errno.h> 61 #include <linux/netdevice.h> 62 #include <linux/netpoll.h> 63 #include <linux/inetdevice.h> 64 #include <linux/igmp.h> 65 #include <linux/etherdevice.h> 66 #include <linux/skbuff.h> 67 #include <net/sock.h> 68 #include <linux/rtnetlink.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/smp.h> 72 #include <linux/if_ether.h> 73 #include <net/arp.h> 74 #include <linux/mii.h> 75 #include <linux/ethtool.h> 76 #include <linux/if_vlan.h> 77 #include <linux/if_bonding.h> 78 #include <linux/jiffies.h> 79 #include <net/route.h> 80 #include <net/net_namespace.h> 81 #include <net/netns/generic.h> 82 #include "bonding.h" 83 #include "bond_3ad.h" 84 #include "bond_alb.h" 85 86 /*---------------------------- Module parameters ----------------------------*/ 87 88 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 89 #define BOND_LINK_MON_INTERV 0 90 #define BOND_LINK_ARP_INTERV 0 91 92 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 93 static int tx_queues = BOND_DEFAULT_TX_QUEUES; 94 static int num_grat_arp = 1; 95 static int num_unsol_na = 1; 96 static int miimon = BOND_LINK_MON_INTERV; 97 static int updelay; 98 static int downdelay; 99 static int use_carrier = 1; 100 static char *mode; 101 static char *primary; 102 static char *primary_reselect; 103 static char *lacp_rate; 104 static char *ad_select; 105 static char *xmit_hash_policy; 106 static int arp_interval = BOND_LINK_ARP_INTERV; 107 static char *arp_ip_target[BOND_MAX_ARP_TARGETS]; 108 static char *arp_validate; 109 static char *fail_over_mac; 110 static int all_slaves_active = 0; 111 static struct bond_params bonding_defaults; 112 113 module_param(max_bonds, int, 0); 114 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 115 module_param(tx_queues, int, 0); 116 MODULE_PARM_DESC(tx_queues, "Max number of transmit queues (default = 16)"); 117 module_param(num_grat_arp, int, 0644); 118 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event"); 119 module_param(num_unsol_na, int, 0644); 120 MODULE_PARM_DESC(num_unsol_na, "Number of unsolicited IPv6 Neighbor Advertisements packets to send on failover event"); 121 module_param(miimon, int, 0); 122 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 123 module_param(updelay, int, 0); 124 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 125 module_param(downdelay, int, 0); 126 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 127 "in milliseconds"); 128 module_param(use_carrier, int, 0); 129 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 130 "0 for off, 1 for on (default)"); 131 module_param(mode, charp, 0); 132 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, " 133 "1 for active-backup, 2 for balance-xor, " 134 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 135 "6 for balance-alb"); 136 module_param(primary, charp, 0); 137 MODULE_PARM_DESC(primary, "Primary network device to use"); 138 module_param(primary_reselect, charp, 0); 139 MODULE_PARM_DESC(primary_reselect, "Reselect primary slave " 140 "once it comes up; " 141 "0 for always (default), " 142 "1 for only if speed of primary is " 143 "better, " 144 "2 for only on active slave " 145 "failure"); 146 module_param(lacp_rate, charp, 0); 147 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner " 148 "(slow/fast)"); 149 module_param(ad_select, charp, 0); 150 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic: stable (0, default), bandwidth (1), count (2)"); 151 module_param(xmit_hash_policy, charp, 0); 152 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)" 153 ", 1 for layer 3+4"); 154 module_param(arp_interval, int, 0); 155 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 156 module_param_array(arp_ip_target, charp, NULL, 0); 157 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 158 module_param(arp_validate, charp, 0); 159 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all"); 160 module_param(fail_over_mac, charp, 0); 161 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. none (default), active or follow"); 162 module_param(all_slaves_active, int, 0); 163 MODULE_PARM_DESC(all_slaves_active, "Keep all frames received on an interface" 164 "by setting active flag for all slaves. " 165 "0 for never (default), 1 for always."); 166 167 /*----------------------------- Global variables ----------------------------*/ 168 169 static const char * const version = 170 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n"; 171 172 int bond_net_id __read_mostly; 173 174 static __be32 arp_target[BOND_MAX_ARP_TARGETS]; 175 static int arp_ip_count; 176 static int bond_mode = BOND_MODE_ROUNDROBIN; 177 static int xmit_hashtype = BOND_XMIT_POLICY_LAYER2; 178 static int lacp_fast; 179 #ifdef CONFIG_NET_POLL_CONTROLLER 180 static int disable_netpoll = 1; 181 #endif 182 183 const struct bond_parm_tbl bond_lacp_tbl[] = { 184 { "slow", AD_LACP_SLOW}, 185 { "fast", AD_LACP_FAST}, 186 { NULL, -1}, 187 }; 188 189 const struct bond_parm_tbl bond_mode_tbl[] = { 190 { "balance-rr", BOND_MODE_ROUNDROBIN}, 191 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 192 { "balance-xor", BOND_MODE_XOR}, 193 { "broadcast", BOND_MODE_BROADCAST}, 194 { "802.3ad", BOND_MODE_8023AD}, 195 { "balance-tlb", BOND_MODE_TLB}, 196 { "balance-alb", BOND_MODE_ALB}, 197 { NULL, -1}, 198 }; 199 200 const struct bond_parm_tbl xmit_hashtype_tbl[] = { 201 { "layer2", BOND_XMIT_POLICY_LAYER2}, 202 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 203 { "layer2+3", BOND_XMIT_POLICY_LAYER23}, 204 { NULL, -1}, 205 }; 206 207 const struct bond_parm_tbl arp_validate_tbl[] = { 208 { "none", BOND_ARP_VALIDATE_NONE}, 209 { "active", BOND_ARP_VALIDATE_ACTIVE}, 210 { "backup", BOND_ARP_VALIDATE_BACKUP}, 211 { "all", BOND_ARP_VALIDATE_ALL}, 212 { NULL, -1}, 213 }; 214 215 const struct bond_parm_tbl fail_over_mac_tbl[] = { 216 { "none", BOND_FOM_NONE}, 217 { "active", BOND_FOM_ACTIVE}, 218 { "follow", BOND_FOM_FOLLOW}, 219 { NULL, -1}, 220 }; 221 222 const struct bond_parm_tbl pri_reselect_tbl[] = { 223 { "always", BOND_PRI_RESELECT_ALWAYS}, 224 { "better", BOND_PRI_RESELECT_BETTER}, 225 { "failure", BOND_PRI_RESELECT_FAILURE}, 226 { NULL, -1}, 227 }; 228 229 struct bond_parm_tbl ad_select_tbl[] = { 230 { "stable", BOND_AD_STABLE}, 231 { "bandwidth", BOND_AD_BANDWIDTH}, 232 { "count", BOND_AD_COUNT}, 233 { NULL, -1}, 234 }; 235 236 /*-------------------------- Forward declarations ---------------------------*/ 237 238 static void bond_send_gratuitous_arp(struct bonding *bond); 239 static int bond_init(struct net_device *bond_dev); 240 static void bond_uninit(struct net_device *bond_dev); 241 242 /*---------------------------- General routines -----------------------------*/ 243 244 static const char *bond_mode_name(int mode) 245 { 246 static const char *names[] = { 247 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)", 248 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)", 249 [BOND_MODE_XOR] = "load balancing (xor)", 250 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)", 251 [BOND_MODE_8023AD] = "IEEE 802.3ad Dynamic link aggregation", 252 [BOND_MODE_TLB] = "transmit load balancing", 253 [BOND_MODE_ALB] = "adaptive load balancing", 254 }; 255 256 if (mode < 0 || mode > BOND_MODE_ALB) 257 return "unknown"; 258 259 return names[mode]; 260 } 261 262 /*---------------------------------- VLAN -----------------------------------*/ 263 264 /** 265 * bond_add_vlan - add a new vlan id on bond 266 * @bond: bond that got the notification 267 * @vlan_id: the vlan id to add 268 * 269 * Returns -ENOMEM if allocation failed. 270 */ 271 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 272 { 273 struct vlan_entry *vlan; 274 275 pr_debug("bond: %s, vlan id %d\n", 276 (bond ? bond->dev->name : "None"), vlan_id); 277 278 vlan = kzalloc(sizeof(struct vlan_entry), GFP_KERNEL); 279 if (!vlan) 280 return -ENOMEM; 281 282 INIT_LIST_HEAD(&vlan->vlan_list); 283 vlan->vlan_id = vlan_id; 284 285 write_lock_bh(&bond->lock); 286 287 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 288 289 write_unlock_bh(&bond->lock); 290 291 pr_debug("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 292 293 return 0; 294 } 295 296 /** 297 * bond_del_vlan - delete a vlan id from bond 298 * @bond: bond that got the notification 299 * @vlan_id: the vlan id to delete 300 * 301 * returns -ENODEV if @vlan_id was not found in @bond. 302 */ 303 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 304 { 305 struct vlan_entry *vlan; 306 int res = -ENODEV; 307 308 pr_debug("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 309 310 write_lock_bh(&bond->lock); 311 312 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 313 if (vlan->vlan_id == vlan_id) { 314 list_del(&vlan->vlan_list); 315 316 if (bond_is_lb(bond)) 317 bond_alb_clear_vlan(bond, vlan_id); 318 319 pr_debug("removed VLAN ID %d from bond %s\n", 320 vlan_id, bond->dev->name); 321 322 kfree(vlan); 323 324 if (list_empty(&bond->vlan_list) && 325 (bond->slave_cnt == 0)) { 326 /* Last VLAN removed and no slaves, so 327 * restore block on adding VLANs. This will 328 * be removed once new slaves that are not 329 * VLAN challenged will be added. 330 */ 331 bond->dev->features |= NETIF_F_VLAN_CHALLENGED; 332 } 333 334 res = 0; 335 goto out; 336 } 337 } 338 339 pr_debug("couldn't find VLAN ID %d in bond %s\n", 340 vlan_id, bond->dev->name); 341 342 out: 343 write_unlock_bh(&bond->lock); 344 return res; 345 } 346 347 /** 348 * bond_has_challenged_slaves 349 * @bond: the bond we're working on 350 * 351 * Searches the slave list. Returns 1 if a vlan challenged slave 352 * was found, 0 otherwise. 353 * 354 * Assumes bond->lock is held. 355 */ 356 static int bond_has_challenged_slaves(struct bonding *bond) 357 { 358 struct slave *slave; 359 int i; 360 361 bond_for_each_slave(bond, slave, i) { 362 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) { 363 pr_debug("found VLAN challenged slave - %s\n", 364 slave->dev->name); 365 return 1; 366 } 367 } 368 369 pr_debug("no VLAN challenged slaves found\n"); 370 return 0; 371 } 372 373 /** 374 * bond_next_vlan - safely skip to the next item in the vlans list. 375 * @bond: the bond we're working on 376 * @curr: item we're advancing from 377 * 378 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 379 * or @curr->next otherwise (even if it is @curr itself again). 380 * 381 * Caller must hold bond->lock 382 */ 383 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 384 { 385 struct vlan_entry *next, *last; 386 387 if (list_empty(&bond->vlan_list)) 388 return NULL; 389 390 if (!curr) { 391 next = list_entry(bond->vlan_list.next, 392 struct vlan_entry, vlan_list); 393 } else { 394 last = list_entry(bond->vlan_list.prev, 395 struct vlan_entry, vlan_list); 396 if (last == curr) { 397 next = list_entry(bond->vlan_list.next, 398 struct vlan_entry, vlan_list); 399 } else { 400 next = list_entry(curr->vlan_list.next, 401 struct vlan_entry, vlan_list); 402 } 403 } 404 405 return next; 406 } 407 408 /** 409 * bond_dev_queue_xmit - Prepare skb for xmit. 410 * 411 * @bond: bond device that got this skb for tx. 412 * @skb: hw accel VLAN tagged skb to transmit 413 * @slave_dev: slave that is supposed to xmit this skbuff 414 * 415 * When the bond gets an skb to transmit that is 416 * already hardware accelerated VLAN tagged, and it 417 * needs to relay this skb to a slave that is not 418 * hw accel capable, the skb needs to be "unaccelerated", 419 * i.e. strip the hwaccel tag and re-insert it as part 420 * of the payload. 421 */ 422 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, 423 struct net_device *slave_dev) 424 { 425 unsigned short uninitialized_var(vlan_id); 426 427 /* Test vlan_list not vlgrp to catch and handle 802.1p tags */ 428 if (!list_empty(&bond->vlan_list) && 429 !(slave_dev->features & NETIF_F_HW_VLAN_TX) && 430 vlan_get_tag(skb, &vlan_id) == 0) { 431 skb->dev = slave_dev; 432 skb = vlan_put_tag(skb, vlan_id); 433 if (!skb) { 434 /* vlan_put_tag() frees the skb in case of error, 435 * so return success here so the calling functions 436 * won't attempt to free is again. 437 */ 438 return 0; 439 } 440 } else { 441 skb->dev = slave_dev; 442 } 443 444 skb->priority = 1; 445 #ifdef CONFIG_NET_POLL_CONTROLLER 446 if (unlikely(bond->dev->priv_flags & IFF_IN_NETPOLL)) { 447 struct netpoll *np = bond->dev->npinfo->netpoll; 448 slave_dev->npinfo = bond->dev->npinfo; 449 np->real_dev = np->dev = skb->dev; 450 slave_dev->priv_flags |= IFF_IN_NETPOLL; 451 netpoll_send_skb(np, skb); 452 slave_dev->priv_flags &= ~IFF_IN_NETPOLL; 453 np->dev = bond->dev; 454 } else 455 #endif 456 dev_queue_xmit(skb); 457 458 return 0; 459 } 460 461 /* 462 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid 463 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a 464 * lock because: 465 * a. This operation is performed in IOCTL context, 466 * b. The operation is protected by the RTNL semaphore in the 8021q code, 467 * c. Holding a lock with BH disabled while directly calling a base driver 468 * entry point is generally a BAD idea. 469 * 470 * The design of synchronization/protection for this operation in the 8021q 471 * module is good for one or more VLAN devices over a single physical device 472 * and cannot be extended for a teaming solution like bonding, so there is a 473 * potential race condition here where a net device from the vlan group might 474 * be referenced (either by a base driver or the 8021q code) while it is being 475 * removed from the system. However, it turns out we're not making matters 476 * worse, and if it works for regular VLAN usage it will work here too. 477 */ 478 479 /** 480 * bond_vlan_rx_register - Propagates registration to slaves 481 * @bond_dev: bonding net device that got called 482 * @grp: vlan group being registered 483 */ 484 static void bond_vlan_rx_register(struct net_device *bond_dev, 485 struct vlan_group *grp) 486 { 487 struct bonding *bond = netdev_priv(bond_dev); 488 struct slave *slave; 489 int i; 490 491 write_lock(&bond->lock); 492 bond->vlgrp = grp; 493 write_unlock(&bond->lock); 494 495 bond_for_each_slave(bond, slave, i) { 496 struct net_device *slave_dev = slave->dev; 497 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 498 499 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 500 slave_ops->ndo_vlan_rx_register) { 501 slave_ops->ndo_vlan_rx_register(slave_dev, grp); 502 } 503 } 504 } 505 506 /** 507 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 508 * @bond_dev: bonding net device that got called 509 * @vid: vlan id being added 510 */ 511 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid) 512 { 513 struct bonding *bond = netdev_priv(bond_dev); 514 struct slave *slave; 515 int i, res; 516 517 bond_for_each_slave(bond, slave, i) { 518 struct net_device *slave_dev = slave->dev; 519 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 520 521 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 522 slave_ops->ndo_vlan_rx_add_vid) { 523 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vid); 524 } 525 } 526 527 res = bond_add_vlan(bond, vid); 528 if (res) { 529 pr_err("%s: Error: Failed to add vlan id %d\n", 530 bond_dev->name, vid); 531 } 532 } 533 534 /** 535 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 536 * @bond_dev: bonding net device that got called 537 * @vid: vlan id being removed 538 */ 539 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid) 540 { 541 struct bonding *bond = netdev_priv(bond_dev); 542 struct slave *slave; 543 struct net_device *vlan_dev; 544 int i, res; 545 546 bond_for_each_slave(bond, slave, i) { 547 struct net_device *slave_dev = slave->dev; 548 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 549 550 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 551 slave_ops->ndo_vlan_rx_kill_vid) { 552 /* Save and then restore vlan_dev in the grp array, 553 * since the slave's driver might clear it. 554 */ 555 vlan_dev = vlan_group_get_device(bond->vlgrp, vid); 556 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vid); 557 vlan_group_set_device(bond->vlgrp, vid, vlan_dev); 558 } 559 } 560 561 res = bond_del_vlan(bond, vid); 562 if (res) { 563 pr_err("%s: Error: Failed to remove vlan id %d\n", 564 bond_dev->name, vid); 565 } 566 } 567 568 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 569 { 570 struct vlan_entry *vlan; 571 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 572 573 if (!bond->vlgrp) 574 return; 575 576 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 577 slave_ops->ndo_vlan_rx_register) 578 slave_ops->ndo_vlan_rx_register(slave_dev, bond->vlgrp); 579 580 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 581 !(slave_ops->ndo_vlan_rx_add_vid)) 582 return; 583 584 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) 585 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vlan->vlan_id); 586 } 587 588 static void bond_del_vlans_from_slave(struct bonding *bond, 589 struct net_device *slave_dev) 590 { 591 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 592 struct vlan_entry *vlan; 593 struct net_device *vlan_dev; 594 595 if (!bond->vlgrp) 596 return; 597 598 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 599 !(slave_ops->ndo_vlan_rx_kill_vid)) 600 goto unreg; 601 602 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 603 if (!vlan->vlan_id) 604 continue; 605 /* Save and then restore vlan_dev in the grp array, 606 * since the slave's driver might clear it. 607 */ 608 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 609 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vlan->vlan_id); 610 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev); 611 } 612 613 unreg: 614 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 615 slave_ops->ndo_vlan_rx_register) 616 slave_ops->ndo_vlan_rx_register(slave_dev, NULL); 617 } 618 619 /*------------------------------- Link status -------------------------------*/ 620 621 /* 622 * Set the carrier state for the master according to the state of its 623 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 624 * do special 802.3ad magic. 625 * 626 * Returns zero if carrier state does not change, nonzero if it does. 627 */ 628 static int bond_set_carrier(struct bonding *bond) 629 { 630 struct slave *slave; 631 int i; 632 633 if (bond->slave_cnt == 0) 634 goto down; 635 636 if (bond->params.mode == BOND_MODE_8023AD) 637 return bond_3ad_set_carrier(bond); 638 639 bond_for_each_slave(bond, slave, i) { 640 if (slave->link == BOND_LINK_UP) { 641 if (!netif_carrier_ok(bond->dev)) { 642 netif_carrier_on(bond->dev); 643 return 1; 644 } 645 return 0; 646 } 647 } 648 649 down: 650 if (netif_carrier_ok(bond->dev)) { 651 netif_carrier_off(bond->dev); 652 return 1; 653 } 654 return 0; 655 } 656 657 /* 658 * Get link speed and duplex from the slave's base driver 659 * using ethtool. If for some reason the call fails or the 660 * values are invalid, fake speed and duplex to 100/Full 661 * and return error. 662 */ 663 static int bond_update_speed_duplex(struct slave *slave) 664 { 665 struct net_device *slave_dev = slave->dev; 666 struct ethtool_cmd etool; 667 int res; 668 669 /* Fake speed and duplex */ 670 slave->speed = SPEED_100; 671 slave->duplex = DUPLEX_FULL; 672 673 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings) 674 return -1; 675 676 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool); 677 if (res < 0) 678 return -1; 679 680 switch (etool.speed) { 681 case SPEED_10: 682 case SPEED_100: 683 case SPEED_1000: 684 case SPEED_10000: 685 break; 686 default: 687 return -1; 688 } 689 690 switch (etool.duplex) { 691 case DUPLEX_FULL: 692 case DUPLEX_HALF: 693 break; 694 default: 695 return -1; 696 } 697 698 slave->speed = etool.speed; 699 slave->duplex = etool.duplex; 700 701 return 0; 702 } 703 704 /* 705 * if <dev> supports MII link status reporting, check its link status. 706 * 707 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 708 * depending upon the setting of the use_carrier parameter. 709 * 710 * Return either BMSR_LSTATUS, meaning that the link is up (or we 711 * can't tell and just pretend it is), or 0, meaning that the link is 712 * down. 713 * 714 * If reporting is non-zero, instead of faking link up, return -1 if 715 * both ETHTOOL and MII ioctls fail (meaning the device does not 716 * support them). If use_carrier is set, return whatever it says. 717 * It'd be nice if there was a good way to tell if a driver supports 718 * netif_carrier, but there really isn't. 719 */ 720 static int bond_check_dev_link(struct bonding *bond, 721 struct net_device *slave_dev, int reporting) 722 { 723 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 724 int (*ioctl)(struct net_device *, struct ifreq *, int); 725 struct ifreq ifr; 726 struct mii_ioctl_data *mii; 727 728 if (!reporting && !netif_running(slave_dev)) 729 return 0; 730 731 if (bond->params.use_carrier) 732 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 733 734 /* Try to get link status using Ethtool first. */ 735 if (slave_dev->ethtool_ops) { 736 if (slave_dev->ethtool_ops->get_link) { 737 u32 link; 738 739 link = slave_dev->ethtool_ops->get_link(slave_dev); 740 741 return link ? BMSR_LSTATUS : 0; 742 } 743 } 744 745 /* Ethtool can't be used, fallback to MII ioctls. */ 746 ioctl = slave_ops->ndo_do_ioctl; 747 if (ioctl) { 748 /* TODO: set pointer to correct ioctl on a per team member */ 749 /* bases to make this more efficient. that is, once */ 750 /* we determine the correct ioctl, we will always */ 751 /* call it and not the others for that team */ 752 /* member. */ 753 754 /* 755 * We cannot assume that SIOCGMIIPHY will also read a 756 * register; not all network drivers (e.g., e100) 757 * support that. 758 */ 759 760 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 761 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 762 mii = if_mii(&ifr); 763 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 764 mii->reg_num = MII_BMSR; 765 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) 766 return mii->val_out & BMSR_LSTATUS; 767 } 768 } 769 770 /* 771 * If reporting, report that either there's no dev->do_ioctl, 772 * or both SIOCGMIIREG and get_link failed (meaning that we 773 * cannot report link status). If not reporting, pretend 774 * we're ok. 775 */ 776 return reporting ? -1 : BMSR_LSTATUS; 777 } 778 779 /*----------------------------- Multicast list ------------------------------*/ 780 781 /* 782 * Push the promiscuity flag down to appropriate slaves 783 */ 784 static int bond_set_promiscuity(struct bonding *bond, int inc) 785 { 786 int err = 0; 787 if (USES_PRIMARY(bond->params.mode)) { 788 /* write lock already acquired */ 789 if (bond->curr_active_slave) { 790 err = dev_set_promiscuity(bond->curr_active_slave->dev, 791 inc); 792 } 793 } else { 794 struct slave *slave; 795 int i; 796 bond_for_each_slave(bond, slave, i) { 797 err = dev_set_promiscuity(slave->dev, inc); 798 if (err) 799 return err; 800 } 801 } 802 return err; 803 } 804 805 /* 806 * Push the allmulti flag down to all slaves 807 */ 808 static int bond_set_allmulti(struct bonding *bond, int inc) 809 { 810 int err = 0; 811 if (USES_PRIMARY(bond->params.mode)) { 812 /* write lock already acquired */ 813 if (bond->curr_active_slave) { 814 err = dev_set_allmulti(bond->curr_active_slave->dev, 815 inc); 816 } 817 } else { 818 struct slave *slave; 819 int i; 820 bond_for_each_slave(bond, slave, i) { 821 err = dev_set_allmulti(slave->dev, inc); 822 if (err) 823 return err; 824 } 825 } 826 return err; 827 } 828 829 /* 830 * Add a Multicast address to slaves 831 * according to mode 832 */ 833 static void bond_mc_add(struct bonding *bond, void *addr) 834 { 835 if (USES_PRIMARY(bond->params.mode)) { 836 /* write lock already acquired */ 837 if (bond->curr_active_slave) 838 dev_mc_add(bond->curr_active_slave->dev, addr); 839 } else { 840 struct slave *slave; 841 int i; 842 843 bond_for_each_slave(bond, slave, i) 844 dev_mc_add(slave->dev, addr); 845 } 846 } 847 848 /* 849 * Remove a multicast address from slave 850 * according to mode 851 */ 852 static void bond_mc_del(struct bonding *bond, void *addr) 853 { 854 if (USES_PRIMARY(bond->params.mode)) { 855 /* write lock already acquired */ 856 if (bond->curr_active_slave) 857 dev_mc_del(bond->curr_active_slave->dev, addr); 858 } else { 859 struct slave *slave; 860 int i; 861 bond_for_each_slave(bond, slave, i) { 862 dev_mc_del(slave->dev, addr); 863 } 864 } 865 } 866 867 868 /* 869 * Retrieve the list of registered multicast addresses for the bonding 870 * device and retransmit an IGMP JOIN request to the current active 871 * slave. 872 */ 873 static void bond_resend_igmp_join_requests(struct bonding *bond) 874 { 875 struct in_device *in_dev; 876 struct ip_mc_list *im; 877 878 rcu_read_lock(); 879 in_dev = __in_dev_get_rcu(bond->dev); 880 if (in_dev) { 881 for (im = in_dev->mc_list; im; im = im->next) 882 ip_mc_rejoin_group(im); 883 } 884 885 rcu_read_unlock(); 886 } 887 888 /* 889 * flush all members of flush->mc_list from device dev->mc_list 890 */ 891 static void bond_mc_list_flush(struct net_device *bond_dev, 892 struct net_device *slave_dev) 893 { 894 struct bonding *bond = netdev_priv(bond_dev); 895 struct netdev_hw_addr *ha; 896 897 netdev_for_each_mc_addr(ha, bond_dev) 898 dev_mc_del(slave_dev, ha->addr); 899 900 if (bond->params.mode == BOND_MODE_8023AD) { 901 /* del lacpdu mc addr from mc list */ 902 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 903 904 dev_mc_del(slave_dev, lacpdu_multicast); 905 } 906 } 907 908 /*--------------------------- Active slave change ---------------------------*/ 909 910 /* 911 * Update the mc list and multicast-related flags for the new and 912 * old active slaves (if any) according to the multicast mode, and 913 * promiscuous flags unconditionally. 914 */ 915 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, 916 struct slave *old_active) 917 { 918 struct netdev_hw_addr *ha; 919 920 if (!USES_PRIMARY(bond->params.mode)) 921 /* nothing to do - mc list is already up-to-date on 922 * all slaves 923 */ 924 return; 925 926 if (old_active) { 927 if (bond->dev->flags & IFF_PROMISC) 928 dev_set_promiscuity(old_active->dev, -1); 929 930 if (bond->dev->flags & IFF_ALLMULTI) 931 dev_set_allmulti(old_active->dev, -1); 932 933 netdev_for_each_mc_addr(ha, bond->dev) 934 dev_mc_del(old_active->dev, ha->addr); 935 } 936 937 if (new_active) { 938 /* FIXME: Signal errors upstream. */ 939 if (bond->dev->flags & IFF_PROMISC) 940 dev_set_promiscuity(new_active->dev, 1); 941 942 if (bond->dev->flags & IFF_ALLMULTI) 943 dev_set_allmulti(new_active->dev, 1); 944 945 netdev_for_each_mc_addr(ha, bond->dev) 946 dev_mc_add(new_active->dev, ha->addr); 947 bond_resend_igmp_join_requests(bond); 948 } 949 } 950 951 /* 952 * bond_do_fail_over_mac 953 * 954 * Perform special MAC address swapping for fail_over_mac settings 955 * 956 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh. 957 */ 958 static void bond_do_fail_over_mac(struct bonding *bond, 959 struct slave *new_active, 960 struct slave *old_active) 961 __releases(&bond->curr_slave_lock) 962 __releases(&bond->lock) 963 __acquires(&bond->lock) 964 __acquires(&bond->curr_slave_lock) 965 { 966 u8 tmp_mac[ETH_ALEN]; 967 struct sockaddr saddr; 968 int rv; 969 970 switch (bond->params.fail_over_mac) { 971 case BOND_FOM_ACTIVE: 972 if (new_active) 973 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr, 974 new_active->dev->addr_len); 975 break; 976 case BOND_FOM_FOLLOW: 977 /* 978 * if new_active && old_active, swap them 979 * if just old_active, do nothing (going to no active slave) 980 * if just new_active, set new_active to bond's MAC 981 */ 982 if (!new_active) 983 return; 984 985 write_unlock_bh(&bond->curr_slave_lock); 986 read_unlock(&bond->lock); 987 988 if (old_active) { 989 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN); 990 memcpy(saddr.sa_data, old_active->dev->dev_addr, 991 ETH_ALEN); 992 saddr.sa_family = new_active->dev->type; 993 } else { 994 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN); 995 saddr.sa_family = bond->dev->type; 996 } 997 998 rv = dev_set_mac_address(new_active->dev, &saddr); 999 if (rv) { 1000 pr_err("%s: Error %d setting MAC of slave %s\n", 1001 bond->dev->name, -rv, new_active->dev->name); 1002 goto out; 1003 } 1004 1005 if (!old_active) 1006 goto out; 1007 1008 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN); 1009 saddr.sa_family = old_active->dev->type; 1010 1011 rv = dev_set_mac_address(old_active->dev, &saddr); 1012 if (rv) 1013 pr_err("%s: Error %d setting MAC of slave %s\n", 1014 bond->dev->name, -rv, new_active->dev->name); 1015 out: 1016 read_lock(&bond->lock); 1017 write_lock_bh(&bond->curr_slave_lock); 1018 break; 1019 default: 1020 pr_err("%s: bond_do_fail_over_mac impossible: bad policy %d\n", 1021 bond->dev->name, bond->params.fail_over_mac); 1022 break; 1023 } 1024 1025 } 1026 1027 static bool bond_should_change_active(struct bonding *bond) 1028 { 1029 struct slave *prim = bond->primary_slave; 1030 struct slave *curr = bond->curr_active_slave; 1031 1032 if (!prim || !curr || curr->link != BOND_LINK_UP) 1033 return true; 1034 if (bond->force_primary) { 1035 bond->force_primary = false; 1036 return true; 1037 } 1038 if (bond->params.primary_reselect == BOND_PRI_RESELECT_BETTER && 1039 (prim->speed < curr->speed || 1040 (prim->speed == curr->speed && prim->duplex <= curr->duplex))) 1041 return false; 1042 if (bond->params.primary_reselect == BOND_PRI_RESELECT_FAILURE) 1043 return false; 1044 return true; 1045 } 1046 1047 /** 1048 * find_best_interface - select the best available slave to be the active one 1049 * @bond: our bonding struct 1050 * 1051 * Warning: Caller must hold curr_slave_lock for writing. 1052 */ 1053 static struct slave *bond_find_best_slave(struct bonding *bond) 1054 { 1055 struct slave *new_active, *old_active; 1056 struct slave *bestslave = NULL; 1057 int mintime = bond->params.updelay; 1058 int i; 1059 1060 new_active = bond->curr_active_slave; 1061 1062 if (!new_active) { /* there were no active slaves left */ 1063 if (bond->slave_cnt > 0) /* found one slave */ 1064 new_active = bond->first_slave; 1065 else 1066 return NULL; /* still no slave, return NULL */ 1067 } 1068 1069 if ((bond->primary_slave) && 1070 bond->primary_slave->link == BOND_LINK_UP && 1071 bond_should_change_active(bond)) { 1072 new_active = bond->primary_slave; 1073 } 1074 1075 /* remember where to stop iterating over the slaves */ 1076 old_active = new_active; 1077 1078 bond_for_each_slave_from(bond, new_active, i, old_active) { 1079 if (new_active->link == BOND_LINK_UP) { 1080 return new_active; 1081 } else if (new_active->link == BOND_LINK_BACK && 1082 IS_UP(new_active->dev)) { 1083 /* link up, but waiting for stabilization */ 1084 if (new_active->delay < mintime) { 1085 mintime = new_active->delay; 1086 bestslave = new_active; 1087 } 1088 } 1089 } 1090 1091 return bestslave; 1092 } 1093 1094 /** 1095 * change_active_interface - change the active slave into the specified one 1096 * @bond: our bonding struct 1097 * @new: the new slave to make the active one 1098 * 1099 * Set the new slave to the bond's settings and unset them on the old 1100 * curr_active_slave. 1101 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1102 * 1103 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1104 * because it is apparently the best available slave we have, even though its 1105 * updelay hasn't timed out yet. 1106 * 1107 * If new_active is not NULL, caller must hold bond->lock for read and 1108 * curr_slave_lock for write_bh. 1109 */ 1110 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1111 { 1112 struct slave *old_active = bond->curr_active_slave; 1113 1114 if (old_active == new_active) 1115 return; 1116 1117 if (new_active) { 1118 new_active->jiffies = jiffies; 1119 1120 if (new_active->link == BOND_LINK_BACK) { 1121 if (USES_PRIMARY(bond->params.mode)) { 1122 pr_info("%s: making interface %s the new active one %d ms earlier.\n", 1123 bond->dev->name, new_active->dev->name, 1124 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1125 } 1126 1127 new_active->delay = 0; 1128 new_active->link = BOND_LINK_UP; 1129 1130 if (bond->params.mode == BOND_MODE_8023AD) 1131 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1132 1133 if (bond_is_lb(bond)) 1134 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1135 } else { 1136 if (USES_PRIMARY(bond->params.mode)) { 1137 pr_info("%s: making interface %s the new active one.\n", 1138 bond->dev->name, new_active->dev->name); 1139 } 1140 } 1141 } 1142 1143 if (USES_PRIMARY(bond->params.mode)) 1144 bond_mc_swap(bond, new_active, old_active); 1145 1146 if (bond_is_lb(bond)) { 1147 bond_alb_handle_active_change(bond, new_active); 1148 if (old_active) 1149 bond_set_slave_inactive_flags(old_active); 1150 if (new_active) 1151 bond_set_slave_active_flags(new_active); 1152 } else { 1153 bond->curr_active_slave = new_active; 1154 } 1155 1156 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1157 if (old_active) 1158 bond_set_slave_inactive_flags(old_active); 1159 1160 if (new_active) { 1161 bond_set_slave_active_flags(new_active); 1162 1163 if (bond->params.fail_over_mac) 1164 bond_do_fail_over_mac(bond, new_active, 1165 old_active); 1166 1167 bond->send_grat_arp = bond->params.num_grat_arp; 1168 bond_send_gratuitous_arp(bond); 1169 1170 bond->send_unsol_na = bond->params.num_unsol_na; 1171 bond_send_unsolicited_na(bond); 1172 1173 write_unlock_bh(&bond->curr_slave_lock); 1174 read_unlock(&bond->lock); 1175 1176 netdev_bonding_change(bond->dev, NETDEV_BONDING_FAILOVER); 1177 1178 read_lock(&bond->lock); 1179 write_lock_bh(&bond->curr_slave_lock); 1180 } 1181 } 1182 1183 /* resend IGMP joins since all were sent on curr_active_slave */ 1184 if (bond->params.mode == BOND_MODE_ROUNDROBIN) { 1185 bond_resend_igmp_join_requests(bond); 1186 } 1187 } 1188 1189 /** 1190 * bond_select_active_slave - select a new active slave, if needed 1191 * @bond: our bonding struct 1192 * 1193 * This functions should be called when one of the following occurs: 1194 * - The old curr_active_slave has been released or lost its link. 1195 * - The primary_slave has got its link back. 1196 * - A slave has got its link back and there's no old curr_active_slave. 1197 * 1198 * Caller must hold bond->lock for read and curr_slave_lock for write_bh. 1199 */ 1200 void bond_select_active_slave(struct bonding *bond) 1201 { 1202 struct slave *best_slave; 1203 int rv; 1204 1205 best_slave = bond_find_best_slave(bond); 1206 if (best_slave != bond->curr_active_slave) { 1207 bond_change_active_slave(bond, best_slave); 1208 rv = bond_set_carrier(bond); 1209 if (!rv) 1210 return; 1211 1212 if (netif_carrier_ok(bond->dev)) { 1213 pr_info("%s: first active interface up!\n", 1214 bond->dev->name); 1215 } else { 1216 pr_info("%s: now running without any active interface !\n", 1217 bond->dev->name); 1218 } 1219 } 1220 } 1221 1222 /*--------------------------- slave list handling ---------------------------*/ 1223 1224 /* 1225 * This function attaches the slave to the end of list. 1226 * 1227 * bond->lock held for writing by caller. 1228 */ 1229 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1230 { 1231 if (bond->first_slave == NULL) { /* attaching the first slave */ 1232 new_slave->next = new_slave; 1233 new_slave->prev = new_slave; 1234 bond->first_slave = new_slave; 1235 } else { 1236 new_slave->next = bond->first_slave; 1237 new_slave->prev = bond->first_slave->prev; 1238 new_slave->next->prev = new_slave; 1239 new_slave->prev->next = new_slave; 1240 } 1241 1242 bond->slave_cnt++; 1243 } 1244 1245 /* 1246 * This function detaches the slave from the list. 1247 * WARNING: no check is made to verify if the slave effectively 1248 * belongs to <bond>. 1249 * Nothing is freed on return, structures are just unchained. 1250 * If any slave pointer in bond was pointing to <slave>, 1251 * it should be changed by the calling function. 1252 * 1253 * bond->lock held for writing by caller. 1254 */ 1255 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1256 { 1257 if (slave->next) 1258 slave->next->prev = slave->prev; 1259 1260 if (slave->prev) 1261 slave->prev->next = slave->next; 1262 1263 if (bond->first_slave == slave) { /* slave is the first slave */ 1264 if (bond->slave_cnt > 1) { /* there are more slave */ 1265 bond->first_slave = slave->next; 1266 } else { 1267 bond->first_slave = NULL; /* slave was the last one */ 1268 } 1269 } 1270 1271 slave->next = NULL; 1272 slave->prev = NULL; 1273 bond->slave_cnt--; 1274 } 1275 1276 #ifdef CONFIG_NET_POLL_CONTROLLER 1277 /* 1278 * You must hold read lock on bond->lock before calling this. 1279 */ 1280 static bool slaves_support_netpoll(struct net_device *bond_dev) 1281 { 1282 struct bonding *bond = netdev_priv(bond_dev); 1283 struct slave *slave; 1284 int i = 0; 1285 bool ret = true; 1286 1287 bond_for_each_slave(bond, slave, i) { 1288 if ((slave->dev->priv_flags & IFF_DISABLE_NETPOLL) || 1289 !slave->dev->netdev_ops->ndo_poll_controller) 1290 ret = false; 1291 } 1292 return i != 0 && ret; 1293 } 1294 1295 static void bond_poll_controller(struct net_device *bond_dev) 1296 { 1297 struct net_device *dev = bond_dev->npinfo->netpoll->real_dev; 1298 if (dev != bond_dev) 1299 netpoll_poll_dev(dev); 1300 } 1301 1302 static void bond_netpoll_cleanup(struct net_device *bond_dev) 1303 { 1304 struct bonding *bond = netdev_priv(bond_dev); 1305 struct slave *slave; 1306 const struct net_device_ops *ops; 1307 int i; 1308 1309 read_lock(&bond->lock); 1310 bond_dev->npinfo = NULL; 1311 bond_for_each_slave(bond, slave, i) { 1312 if (slave->dev) { 1313 ops = slave->dev->netdev_ops; 1314 if (ops->ndo_netpoll_cleanup) 1315 ops->ndo_netpoll_cleanup(slave->dev); 1316 else 1317 slave->dev->npinfo = NULL; 1318 } 1319 } 1320 read_unlock(&bond->lock); 1321 } 1322 1323 #else 1324 1325 static void bond_netpoll_cleanup(struct net_device *bond_dev) 1326 { 1327 } 1328 1329 #endif 1330 1331 /*---------------------------------- IOCTL ----------------------------------*/ 1332 1333 static int bond_sethwaddr(struct net_device *bond_dev, 1334 struct net_device *slave_dev) 1335 { 1336 pr_debug("bond_dev=%p\n", bond_dev); 1337 pr_debug("slave_dev=%p\n", slave_dev); 1338 pr_debug("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1339 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1340 return 0; 1341 } 1342 1343 #define BOND_VLAN_FEATURES \ 1344 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \ 1345 NETIF_F_HW_VLAN_FILTER) 1346 1347 /* 1348 * Compute the common dev->feature set available to all slaves. Some 1349 * feature bits are managed elsewhere, so preserve those feature bits 1350 * on the master device. 1351 */ 1352 static int bond_compute_features(struct bonding *bond) 1353 { 1354 struct slave *slave; 1355 struct net_device *bond_dev = bond->dev; 1356 unsigned long features = bond_dev->features; 1357 unsigned long vlan_features = 0; 1358 unsigned short max_hard_header_len = max((u16)ETH_HLEN, 1359 bond_dev->hard_header_len); 1360 int i; 1361 1362 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES); 1363 features |= NETIF_F_GSO_MASK | NETIF_F_NO_CSUM; 1364 1365 if (!bond->first_slave) 1366 goto done; 1367 1368 features &= ~NETIF_F_ONE_FOR_ALL; 1369 1370 vlan_features = bond->first_slave->dev->vlan_features; 1371 bond_for_each_slave(bond, slave, i) { 1372 features = netdev_increment_features(features, 1373 slave->dev->features, 1374 NETIF_F_ONE_FOR_ALL); 1375 vlan_features = netdev_increment_features(vlan_features, 1376 slave->dev->vlan_features, 1377 NETIF_F_ONE_FOR_ALL); 1378 if (slave->dev->hard_header_len > max_hard_header_len) 1379 max_hard_header_len = slave->dev->hard_header_len; 1380 } 1381 1382 done: 1383 features |= (bond_dev->features & BOND_VLAN_FEATURES); 1384 bond_dev->features = netdev_fix_features(features, NULL); 1385 bond_dev->vlan_features = netdev_fix_features(vlan_features, NULL); 1386 bond_dev->hard_header_len = max_hard_header_len; 1387 1388 return 0; 1389 } 1390 1391 static void bond_setup_by_slave(struct net_device *bond_dev, 1392 struct net_device *slave_dev) 1393 { 1394 struct bonding *bond = netdev_priv(bond_dev); 1395 1396 bond_dev->header_ops = slave_dev->header_ops; 1397 1398 bond_dev->type = slave_dev->type; 1399 bond_dev->hard_header_len = slave_dev->hard_header_len; 1400 bond_dev->addr_len = slave_dev->addr_len; 1401 1402 memcpy(bond_dev->broadcast, slave_dev->broadcast, 1403 slave_dev->addr_len); 1404 bond->setup_by_slave = 1; 1405 } 1406 1407 /* enslave device <slave> to bond device <master> */ 1408 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1409 { 1410 struct bonding *bond = netdev_priv(bond_dev); 1411 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 1412 struct slave *new_slave = NULL; 1413 struct netdev_hw_addr *ha; 1414 struct sockaddr addr; 1415 int link_reporting; 1416 int old_features = bond_dev->features; 1417 int res = 0; 1418 1419 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL && 1420 slave_ops->ndo_do_ioctl == NULL) { 1421 pr_warning("%s: Warning: no link monitoring support for %s\n", 1422 bond_dev->name, slave_dev->name); 1423 } 1424 1425 /* bond must be initialized by bond_open() before enslaving */ 1426 if (!(bond_dev->flags & IFF_UP)) { 1427 pr_warning("%s: master_dev is not up in bond_enslave\n", 1428 bond_dev->name); 1429 } 1430 1431 /* already enslaved */ 1432 if (slave_dev->flags & IFF_SLAVE) { 1433 pr_debug("Error, Device was already enslaved\n"); 1434 return -EBUSY; 1435 } 1436 1437 /* vlan challenged mutual exclusion */ 1438 /* no need to lock since we're protected by rtnl_lock */ 1439 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1440 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1441 if (bond->vlgrp) { 1442 pr_err("%s: Error: cannot enslave VLAN challenged slave %s on VLAN enabled bond %s\n", 1443 bond_dev->name, slave_dev->name, bond_dev->name); 1444 return -EPERM; 1445 } else { 1446 pr_warning("%s: Warning: enslaved VLAN challenged slave %s. Adding VLANs will be blocked as long as %s is part of bond %s\n", 1447 bond_dev->name, slave_dev->name, 1448 slave_dev->name, bond_dev->name); 1449 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1450 } 1451 } else { 1452 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1453 if (bond->slave_cnt == 0) { 1454 /* First slave, and it is not VLAN challenged, 1455 * so remove the block of adding VLANs over the bond. 1456 */ 1457 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1458 } 1459 } 1460 1461 /* 1462 * Old ifenslave binaries are no longer supported. These can 1463 * be identified with moderate accuracy by the state of the slave: 1464 * the current ifenslave will set the interface down prior to 1465 * enslaving it; the old ifenslave will not. 1466 */ 1467 if ((slave_dev->flags & IFF_UP)) { 1468 pr_err("%s is up. This may be due to an out of date ifenslave.\n", 1469 slave_dev->name); 1470 res = -EPERM; 1471 goto err_undo_flags; 1472 } 1473 1474 /* set bonding device ether type by slave - bonding netdevices are 1475 * created with ether_setup, so when the slave type is not ARPHRD_ETHER 1476 * there is a need to override some of the type dependent attribs/funcs. 1477 * 1478 * bond ether type mutual exclusion - don't allow slaves of dissimilar 1479 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond 1480 */ 1481 if (bond->slave_cnt == 0) { 1482 if (bond_dev->type != slave_dev->type) { 1483 pr_debug("%s: change device type from %d to %d\n", 1484 bond_dev->name, 1485 bond_dev->type, slave_dev->type); 1486 1487 res = netdev_bonding_change(bond_dev, 1488 NETDEV_PRE_TYPE_CHANGE); 1489 res = notifier_to_errno(res); 1490 if (res) { 1491 pr_err("%s: refused to change device type\n", 1492 bond_dev->name); 1493 res = -EBUSY; 1494 goto err_undo_flags; 1495 } 1496 1497 /* Flush unicast and multicast addresses */ 1498 dev_uc_flush(bond_dev); 1499 dev_mc_flush(bond_dev); 1500 1501 if (slave_dev->type != ARPHRD_ETHER) 1502 bond_setup_by_slave(bond_dev, slave_dev); 1503 else 1504 ether_setup(bond_dev); 1505 1506 netdev_bonding_change(bond_dev, 1507 NETDEV_POST_TYPE_CHANGE); 1508 } 1509 } else if (bond_dev->type != slave_dev->type) { 1510 pr_err("%s ether type (%d) is different from other slaves (%d), can not enslave it.\n", 1511 slave_dev->name, 1512 slave_dev->type, bond_dev->type); 1513 res = -EINVAL; 1514 goto err_undo_flags; 1515 } 1516 1517 if (slave_ops->ndo_set_mac_address == NULL) { 1518 if (bond->slave_cnt == 0) { 1519 pr_warning("%s: Warning: The first slave device specified does not support setting the MAC address. Setting fail_over_mac to active.", 1520 bond_dev->name); 1521 bond->params.fail_over_mac = BOND_FOM_ACTIVE; 1522 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1523 pr_err("%s: Error: The slave device specified does not support setting the MAC address, but fail_over_mac is not set to active.\n", 1524 bond_dev->name); 1525 res = -EOPNOTSUPP; 1526 goto err_undo_flags; 1527 } 1528 } 1529 1530 /* If this is the first slave, then we need to set the master's hardware 1531 * address to be the same as the slave's. */ 1532 if (bond->slave_cnt == 0) 1533 memcpy(bond->dev->dev_addr, slave_dev->dev_addr, 1534 slave_dev->addr_len); 1535 1536 1537 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1538 if (!new_slave) { 1539 res = -ENOMEM; 1540 goto err_undo_flags; 1541 } 1542 1543 /* 1544 * Set the new_slave's queue_id to be zero. Queue ID mapping 1545 * is set via sysfs or module option if desired. 1546 */ 1547 new_slave->queue_id = 0; 1548 1549 /* Save slave's original mtu and then set it to match the bond */ 1550 new_slave->original_mtu = slave_dev->mtu; 1551 res = dev_set_mtu(slave_dev, bond->dev->mtu); 1552 if (res) { 1553 pr_debug("Error %d calling dev_set_mtu\n", res); 1554 goto err_free; 1555 } 1556 1557 /* 1558 * Save slave's original ("permanent") mac address for modes 1559 * that need it, and for restoring it upon release, and then 1560 * set it to the master's address 1561 */ 1562 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1563 1564 if (!bond->params.fail_over_mac) { 1565 /* 1566 * Set slave to master's mac address. The application already 1567 * set the master's mac address to that of the first slave 1568 */ 1569 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1570 addr.sa_family = slave_dev->type; 1571 res = dev_set_mac_address(slave_dev, &addr); 1572 if (res) { 1573 pr_debug("Error %d calling set_mac_address\n", res); 1574 goto err_restore_mtu; 1575 } 1576 } 1577 1578 res = netdev_set_master(slave_dev, bond_dev); 1579 if (res) { 1580 pr_debug("Error %d calling netdev_set_master\n", res); 1581 goto err_restore_mac; 1582 } 1583 /* open the slave since the application closed it */ 1584 res = dev_open(slave_dev); 1585 if (res) { 1586 pr_debug("Opening slave %s failed\n", slave_dev->name); 1587 goto err_unset_master; 1588 } 1589 1590 new_slave->dev = slave_dev; 1591 slave_dev->priv_flags |= IFF_BONDING; 1592 1593 if (bond_is_lb(bond)) { 1594 /* bond_alb_init_slave() must be called before all other stages since 1595 * it might fail and we do not want to have to undo everything 1596 */ 1597 res = bond_alb_init_slave(bond, new_slave); 1598 if (res) 1599 goto err_close; 1600 } 1601 1602 /* If the mode USES_PRIMARY, then the new slave gets the 1603 * master's promisc (and mc) settings only if it becomes the 1604 * curr_active_slave, and that is taken care of later when calling 1605 * bond_change_active() 1606 */ 1607 if (!USES_PRIMARY(bond->params.mode)) { 1608 /* set promiscuity level to new slave */ 1609 if (bond_dev->flags & IFF_PROMISC) { 1610 res = dev_set_promiscuity(slave_dev, 1); 1611 if (res) 1612 goto err_close; 1613 } 1614 1615 /* set allmulti level to new slave */ 1616 if (bond_dev->flags & IFF_ALLMULTI) { 1617 res = dev_set_allmulti(slave_dev, 1); 1618 if (res) 1619 goto err_close; 1620 } 1621 1622 netif_addr_lock_bh(bond_dev); 1623 /* upload master's mc_list to new slave */ 1624 netdev_for_each_mc_addr(ha, bond_dev) 1625 dev_mc_add(slave_dev, ha->addr); 1626 netif_addr_unlock_bh(bond_dev); 1627 } 1628 1629 if (bond->params.mode == BOND_MODE_8023AD) { 1630 /* add lacpdu mc addr to mc list */ 1631 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1632 1633 dev_mc_add(slave_dev, lacpdu_multicast); 1634 } 1635 1636 bond_add_vlans_on_slave(bond, slave_dev); 1637 1638 write_lock_bh(&bond->lock); 1639 1640 bond_attach_slave(bond, new_slave); 1641 1642 new_slave->delay = 0; 1643 new_slave->link_failure_count = 0; 1644 1645 bond_compute_features(bond); 1646 1647 write_unlock_bh(&bond->lock); 1648 1649 read_lock(&bond->lock); 1650 1651 new_slave->last_arp_rx = jiffies; 1652 1653 if (bond->params.miimon && !bond->params.use_carrier) { 1654 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1655 1656 if ((link_reporting == -1) && !bond->params.arp_interval) { 1657 /* 1658 * miimon is set but a bonded network driver 1659 * does not support ETHTOOL/MII and 1660 * arp_interval is not set. Note: if 1661 * use_carrier is enabled, we will never go 1662 * here (because netif_carrier is always 1663 * supported); thus, we don't need to change 1664 * the messages for netif_carrier. 1665 */ 1666 pr_warning("%s: Warning: MII and ETHTOOL support not available for interface %s, and arp_interval/arp_ip_target module parameters not specified, thus bonding will not detect link failures! see bonding.txt for details.\n", 1667 bond_dev->name, slave_dev->name); 1668 } else if (link_reporting == -1) { 1669 /* unable get link status using mii/ethtool */ 1670 pr_warning("%s: Warning: can't get link status from interface %s; the network driver associated with this interface does not support MII or ETHTOOL link status reporting, thus miimon has no effect on this interface.\n", 1671 bond_dev->name, slave_dev->name); 1672 } 1673 } 1674 1675 /* check for initial state */ 1676 if (!bond->params.miimon || 1677 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) { 1678 if (bond->params.updelay) { 1679 pr_debug("Initial state of slave_dev is BOND_LINK_BACK\n"); 1680 new_slave->link = BOND_LINK_BACK; 1681 new_slave->delay = bond->params.updelay; 1682 } else { 1683 pr_debug("Initial state of slave_dev is BOND_LINK_UP\n"); 1684 new_slave->link = BOND_LINK_UP; 1685 } 1686 new_slave->jiffies = jiffies; 1687 } else { 1688 pr_debug("Initial state of slave_dev is BOND_LINK_DOWN\n"); 1689 new_slave->link = BOND_LINK_DOWN; 1690 } 1691 1692 if (bond_update_speed_duplex(new_slave) && 1693 (new_slave->link != BOND_LINK_DOWN)) { 1694 pr_warning("%s: Warning: failed to get speed and duplex from %s, assumed to be 100Mb/sec and Full.\n", 1695 bond_dev->name, new_slave->dev->name); 1696 1697 if (bond->params.mode == BOND_MODE_8023AD) { 1698 pr_warning("%s: Warning: Operation of 802.3ad mode requires ETHTOOL support in base driver for proper aggregator selection.\n", 1699 bond_dev->name); 1700 } 1701 } 1702 1703 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1704 /* if there is a primary slave, remember it */ 1705 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1706 bond->primary_slave = new_slave; 1707 bond->force_primary = true; 1708 } 1709 } 1710 1711 write_lock_bh(&bond->curr_slave_lock); 1712 1713 switch (bond->params.mode) { 1714 case BOND_MODE_ACTIVEBACKUP: 1715 bond_set_slave_inactive_flags(new_slave); 1716 bond_select_active_slave(bond); 1717 break; 1718 case BOND_MODE_8023AD: 1719 /* in 802.3ad mode, the internal mechanism 1720 * will activate the slaves in the selected 1721 * aggregator 1722 */ 1723 bond_set_slave_inactive_flags(new_slave); 1724 /* if this is the first slave */ 1725 if (bond->slave_cnt == 1) { 1726 SLAVE_AD_INFO(new_slave).id = 1; 1727 /* Initialize AD with the number of times that the AD timer is called in 1 second 1728 * can be called only after the mac address of the bond is set 1729 */ 1730 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL, 1731 bond->params.lacp_fast); 1732 } else { 1733 SLAVE_AD_INFO(new_slave).id = 1734 SLAVE_AD_INFO(new_slave->prev).id + 1; 1735 } 1736 1737 bond_3ad_bind_slave(new_slave); 1738 break; 1739 case BOND_MODE_TLB: 1740 case BOND_MODE_ALB: 1741 new_slave->state = BOND_STATE_ACTIVE; 1742 bond_set_slave_inactive_flags(new_slave); 1743 bond_select_active_slave(bond); 1744 break; 1745 default: 1746 pr_debug("This slave is always active in trunk mode\n"); 1747 1748 /* always active in trunk mode */ 1749 new_slave->state = BOND_STATE_ACTIVE; 1750 1751 /* In trunking mode there is little meaning to curr_active_slave 1752 * anyway (it holds no special properties of the bond device), 1753 * so we can change it without calling change_active_interface() 1754 */ 1755 if (!bond->curr_active_slave) 1756 bond->curr_active_slave = new_slave; 1757 1758 break; 1759 } /* switch(bond_mode) */ 1760 1761 write_unlock_bh(&bond->curr_slave_lock); 1762 1763 bond_set_carrier(bond); 1764 1765 #ifdef CONFIG_NET_POLL_CONTROLLER 1766 /* 1767 * Netpoll and bonding is broken, make sure it is not initialized 1768 * until it is fixed. 1769 */ 1770 if (disable_netpoll) { 1771 bond_dev->priv_flags |= IFF_DISABLE_NETPOLL; 1772 } else { 1773 if (slaves_support_netpoll(bond_dev)) { 1774 bond_dev->priv_flags &= ~IFF_DISABLE_NETPOLL; 1775 if (bond_dev->npinfo) 1776 slave_dev->npinfo = bond_dev->npinfo; 1777 } else if (!(bond_dev->priv_flags & IFF_DISABLE_NETPOLL)) { 1778 bond_dev->priv_flags |= IFF_DISABLE_NETPOLL; 1779 pr_info("New slave device %s does not support netpoll\n", 1780 slave_dev->name); 1781 pr_info("Disabling netpoll support for %s\n", bond_dev->name); 1782 } 1783 } 1784 #endif 1785 read_unlock(&bond->lock); 1786 1787 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1788 if (res) 1789 goto err_close; 1790 1791 pr_info("%s: enslaving %s as a%s interface with a%s link.\n", 1792 bond_dev->name, slave_dev->name, 1793 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup", 1794 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1795 1796 /* enslave is successful */ 1797 return 0; 1798 1799 /* Undo stages on error */ 1800 err_close: 1801 dev_close(slave_dev); 1802 1803 err_unset_master: 1804 netdev_set_master(slave_dev, NULL); 1805 1806 err_restore_mac: 1807 if (!bond->params.fail_over_mac) { 1808 /* XXX TODO - fom follow mode needs to change master's 1809 * MAC if this slave's MAC is in use by the bond, or at 1810 * least print a warning. 1811 */ 1812 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1813 addr.sa_family = slave_dev->type; 1814 dev_set_mac_address(slave_dev, &addr); 1815 } 1816 1817 err_restore_mtu: 1818 dev_set_mtu(slave_dev, new_slave->original_mtu); 1819 1820 err_free: 1821 kfree(new_slave); 1822 1823 err_undo_flags: 1824 bond_dev->features = old_features; 1825 1826 return res; 1827 } 1828 1829 /* 1830 * Try to release the slave device <slave> from the bond device <master> 1831 * It is legal to access curr_active_slave without a lock because all the function 1832 * is write-locked. 1833 * 1834 * The rules for slave state should be: 1835 * for Active/Backup: 1836 * Active stays on all backups go down 1837 * for Bonded connections: 1838 * The first up interface should be left on and all others downed. 1839 */ 1840 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 1841 { 1842 struct bonding *bond = netdev_priv(bond_dev); 1843 struct slave *slave, *oldcurrent; 1844 struct sockaddr addr; 1845 1846 /* slave is not a slave or master is not master of this slave */ 1847 if (!(slave_dev->flags & IFF_SLAVE) || 1848 (slave_dev->master != bond_dev)) { 1849 pr_err("%s: Error: cannot release %s.\n", 1850 bond_dev->name, slave_dev->name); 1851 return -EINVAL; 1852 } 1853 1854 netdev_bonding_change(bond_dev, NETDEV_BONDING_DESLAVE); 1855 write_lock_bh(&bond->lock); 1856 1857 slave = bond_get_slave_by_dev(bond, slave_dev); 1858 if (!slave) { 1859 /* not a slave of this bond */ 1860 pr_info("%s: %s not enslaved\n", 1861 bond_dev->name, slave_dev->name); 1862 write_unlock_bh(&bond->lock); 1863 return -EINVAL; 1864 } 1865 1866 if (!bond->params.fail_over_mac) { 1867 if (!compare_ether_addr(bond_dev->dev_addr, slave->perm_hwaddr) && 1868 bond->slave_cnt > 1) 1869 pr_warning("%s: Warning: the permanent HWaddr of %s - %pM - is still in use by %s. Set the HWaddr of %s to a different address to avoid conflicts.\n", 1870 bond_dev->name, slave_dev->name, 1871 slave->perm_hwaddr, 1872 bond_dev->name, slave_dev->name); 1873 } 1874 1875 /* Inform AD package of unbinding of slave. */ 1876 if (bond->params.mode == BOND_MODE_8023AD) { 1877 /* must be called before the slave is 1878 * detached from the list 1879 */ 1880 bond_3ad_unbind_slave(slave); 1881 } 1882 1883 pr_info("%s: releasing %s interface %s\n", 1884 bond_dev->name, 1885 (slave->state == BOND_STATE_ACTIVE) ? "active" : "backup", 1886 slave_dev->name); 1887 1888 oldcurrent = bond->curr_active_slave; 1889 1890 bond->current_arp_slave = NULL; 1891 1892 /* release the slave from its bond */ 1893 bond_detach_slave(bond, slave); 1894 1895 bond_compute_features(bond); 1896 1897 if (bond->primary_slave == slave) 1898 bond->primary_slave = NULL; 1899 1900 if (oldcurrent == slave) 1901 bond_change_active_slave(bond, NULL); 1902 1903 if (bond_is_lb(bond)) { 1904 /* Must be called only after the slave has been 1905 * detached from the list and the curr_active_slave 1906 * has been cleared (if our_slave == old_current), 1907 * but before a new active slave is selected. 1908 */ 1909 write_unlock_bh(&bond->lock); 1910 bond_alb_deinit_slave(bond, slave); 1911 write_lock_bh(&bond->lock); 1912 } 1913 1914 if (oldcurrent == slave) { 1915 /* 1916 * Note that we hold RTNL over this sequence, so there 1917 * is no concern that another slave add/remove event 1918 * will interfere. 1919 */ 1920 write_unlock_bh(&bond->lock); 1921 read_lock(&bond->lock); 1922 write_lock_bh(&bond->curr_slave_lock); 1923 1924 bond_select_active_slave(bond); 1925 1926 write_unlock_bh(&bond->curr_slave_lock); 1927 read_unlock(&bond->lock); 1928 write_lock_bh(&bond->lock); 1929 } 1930 1931 if (bond->slave_cnt == 0) { 1932 bond_set_carrier(bond); 1933 1934 /* if the last slave was removed, zero the mac address 1935 * of the master so it will be set by the application 1936 * to the mac address of the first slave 1937 */ 1938 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 1939 1940 if (!bond->vlgrp) { 1941 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1942 } else { 1943 pr_warning("%s: Warning: clearing HW address of %s while it still has VLANs.\n", 1944 bond_dev->name, bond_dev->name); 1945 pr_warning("%s: When re-adding slaves, make sure the bond's HW address matches its VLANs'.\n", 1946 bond_dev->name); 1947 } 1948 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 1949 !bond_has_challenged_slaves(bond)) { 1950 pr_info("%s: last VLAN challenged slave %s left bond %s. VLAN blocking is removed\n", 1951 bond_dev->name, slave_dev->name, bond_dev->name); 1952 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1953 } 1954 1955 write_unlock_bh(&bond->lock); 1956 1957 /* must do this from outside any spinlocks */ 1958 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1959 1960 bond_del_vlans_from_slave(bond, slave_dev); 1961 1962 /* If the mode USES_PRIMARY, then we should only remove its 1963 * promisc and mc settings if it was the curr_active_slave, but that was 1964 * already taken care of above when we detached the slave 1965 */ 1966 if (!USES_PRIMARY(bond->params.mode)) { 1967 /* unset promiscuity level from slave */ 1968 if (bond_dev->flags & IFF_PROMISC) 1969 dev_set_promiscuity(slave_dev, -1); 1970 1971 /* unset allmulti level from slave */ 1972 if (bond_dev->flags & IFF_ALLMULTI) 1973 dev_set_allmulti(slave_dev, -1); 1974 1975 /* flush master's mc_list from slave */ 1976 netif_addr_lock_bh(bond_dev); 1977 bond_mc_list_flush(bond_dev, slave_dev); 1978 netif_addr_unlock_bh(bond_dev); 1979 } 1980 1981 netdev_set_master(slave_dev, NULL); 1982 1983 #ifdef CONFIG_NET_POLL_CONTROLLER 1984 read_lock_bh(&bond->lock); 1985 1986 /* Make sure netpoll over stays disabled until fixed. */ 1987 if (!disable_netpoll) 1988 if (slaves_support_netpoll(bond_dev)) 1989 bond_dev->priv_flags &= ~IFF_DISABLE_NETPOLL; 1990 read_unlock_bh(&bond->lock); 1991 if (slave_dev->netdev_ops->ndo_netpoll_cleanup) 1992 slave_dev->netdev_ops->ndo_netpoll_cleanup(slave_dev); 1993 else 1994 slave_dev->npinfo = NULL; 1995 #endif 1996 1997 /* close slave before restoring its mac address */ 1998 dev_close(slave_dev); 1999 2000 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 2001 /* restore original ("permanent") mac address */ 2002 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2003 addr.sa_family = slave_dev->type; 2004 dev_set_mac_address(slave_dev, &addr); 2005 } 2006 2007 dev_set_mtu(slave_dev, slave->original_mtu); 2008 2009 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 2010 IFF_SLAVE_INACTIVE | IFF_BONDING | 2011 IFF_SLAVE_NEEDARP); 2012 2013 kfree(slave); 2014 2015 return 0; /* deletion OK */ 2016 } 2017 2018 /* 2019 * First release a slave and than destroy the bond if no more slaves are left. 2020 * Must be under rtnl_lock when this function is called. 2021 */ 2022 int bond_release_and_destroy(struct net_device *bond_dev, 2023 struct net_device *slave_dev) 2024 { 2025 struct bonding *bond = netdev_priv(bond_dev); 2026 int ret; 2027 2028 ret = bond_release(bond_dev, slave_dev); 2029 if ((ret == 0) && (bond->slave_cnt == 0)) { 2030 pr_info("%s: destroying bond %s.\n", 2031 bond_dev->name, bond_dev->name); 2032 unregister_netdevice(bond_dev); 2033 } 2034 return ret; 2035 } 2036 2037 /* 2038 * This function releases all slaves. 2039 */ 2040 static int bond_release_all(struct net_device *bond_dev) 2041 { 2042 struct bonding *bond = netdev_priv(bond_dev); 2043 struct slave *slave; 2044 struct net_device *slave_dev; 2045 struct sockaddr addr; 2046 2047 write_lock_bh(&bond->lock); 2048 2049 netif_carrier_off(bond_dev); 2050 2051 if (bond->slave_cnt == 0) 2052 goto out; 2053 2054 bond->current_arp_slave = NULL; 2055 bond->primary_slave = NULL; 2056 bond_change_active_slave(bond, NULL); 2057 2058 while ((slave = bond->first_slave) != NULL) { 2059 /* Inform AD package of unbinding of slave 2060 * before slave is detached from the list. 2061 */ 2062 if (bond->params.mode == BOND_MODE_8023AD) 2063 bond_3ad_unbind_slave(slave); 2064 2065 slave_dev = slave->dev; 2066 bond_detach_slave(bond, slave); 2067 2068 /* now that the slave is detached, unlock and perform 2069 * all the undo steps that should not be called from 2070 * within a lock. 2071 */ 2072 write_unlock_bh(&bond->lock); 2073 2074 if (bond_is_lb(bond)) { 2075 /* must be called only after the slave 2076 * has been detached from the list 2077 */ 2078 bond_alb_deinit_slave(bond, slave); 2079 } 2080 2081 bond_compute_features(bond); 2082 2083 bond_destroy_slave_symlinks(bond_dev, slave_dev); 2084 bond_del_vlans_from_slave(bond, slave_dev); 2085 2086 /* If the mode USES_PRIMARY, then we should only remove its 2087 * promisc and mc settings if it was the curr_active_slave, but that was 2088 * already taken care of above when we detached the slave 2089 */ 2090 if (!USES_PRIMARY(bond->params.mode)) { 2091 /* unset promiscuity level from slave */ 2092 if (bond_dev->flags & IFF_PROMISC) 2093 dev_set_promiscuity(slave_dev, -1); 2094 2095 /* unset allmulti level from slave */ 2096 if (bond_dev->flags & IFF_ALLMULTI) 2097 dev_set_allmulti(slave_dev, -1); 2098 2099 /* flush master's mc_list from slave */ 2100 netif_addr_lock_bh(bond_dev); 2101 bond_mc_list_flush(bond_dev, slave_dev); 2102 netif_addr_unlock_bh(bond_dev); 2103 } 2104 2105 netdev_set_master(slave_dev, NULL); 2106 2107 /* close slave before restoring its mac address */ 2108 dev_close(slave_dev); 2109 2110 if (!bond->params.fail_over_mac) { 2111 /* restore original ("permanent") mac address*/ 2112 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2113 addr.sa_family = slave_dev->type; 2114 dev_set_mac_address(slave_dev, &addr); 2115 } 2116 2117 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 2118 IFF_SLAVE_INACTIVE); 2119 2120 kfree(slave); 2121 2122 /* re-acquire the lock before getting the next slave */ 2123 write_lock_bh(&bond->lock); 2124 } 2125 2126 /* zero the mac address of the master so it will be 2127 * set by the application to the mac address of the 2128 * first slave 2129 */ 2130 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 2131 2132 if (!bond->vlgrp) { 2133 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 2134 } else { 2135 pr_warning("%s: Warning: clearing HW address of %s while it still has VLANs.\n", 2136 bond_dev->name, bond_dev->name); 2137 pr_warning("%s: When re-adding slaves, make sure the bond's HW address matches its VLANs'.\n", 2138 bond_dev->name); 2139 } 2140 2141 pr_info("%s: released all slaves\n", bond_dev->name); 2142 2143 out: 2144 write_unlock_bh(&bond->lock); 2145 2146 return 0; 2147 } 2148 2149 /* 2150 * This function changes the active slave to slave <slave_dev>. 2151 * It returns -EINVAL in the following cases. 2152 * - <slave_dev> is not found in the list. 2153 * - There is not active slave now. 2154 * - <slave_dev> is already active. 2155 * - The link state of <slave_dev> is not BOND_LINK_UP. 2156 * - <slave_dev> is not running. 2157 * In these cases, this function does nothing. 2158 * In the other cases, current_slave pointer is changed and 0 is returned. 2159 */ 2160 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 2161 { 2162 struct bonding *bond = netdev_priv(bond_dev); 2163 struct slave *old_active = NULL; 2164 struct slave *new_active = NULL; 2165 int res = 0; 2166 2167 if (!USES_PRIMARY(bond->params.mode)) 2168 return -EINVAL; 2169 2170 /* Verify that master_dev is indeed the master of slave_dev */ 2171 if (!(slave_dev->flags & IFF_SLAVE) || (slave_dev->master != bond_dev)) 2172 return -EINVAL; 2173 2174 read_lock(&bond->lock); 2175 2176 read_lock(&bond->curr_slave_lock); 2177 old_active = bond->curr_active_slave; 2178 read_unlock(&bond->curr_slave_lock); 2179 2180 new_active = bond_get_slave_by_dev(bond, slave_dev); 2181 2182 /* 2183 * Changing to the current active: do nothing; return success. 2184 */ 2185 if (new_active && (new_active == old_active)) { 2186 read_unlock(&bond->lock); 2187 return 0; 2188 } 2189 2190 if ((new_active) && 2191 (old_active) && 2192 (new_active->link == BOND_LINK_UP) && 2193 IS_UP(new_active->dev)) { 2194 write_lock_bh(&bond->curr_slave_lock); 2195 bond_change_active_slave(bond, new_active); 2196 write_unlock_bh(&bond->curr_slave_lock); 2197 } else 2198 res = -EINVAL; 2199 2200 read_unlock(&bond->lock); 2201 2202 return res; 2203 } 2204 2205 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 2206 { 2207 struct bonding *bond = netdev_priv(bond_dev); 2208 2209 info->bond_mode = bond->params.mode; 2210 info->miimon = bond->params.miimon; 2211 2212 read_lock(&bond->lock); 2213 info->num_slaves = bond->slave_cnt; 2214 read_unlock(&bond->lock); 2215 2216 return 0; 2217 } 2218 2219 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 2220 { 2221 struct bonding *bond = netdev_priv(bond_dev); 2222 struct slave *slave; 2223 int i, res = -ENODEV; 2224 2225 read_lock(&bond->lock); 2226 2227 bond_for_each_slave(bond, slave, i) { 2228 if (i == (int)info->slave_id) { 2229 res = 0; 2230 strcpy(info->slave_name, slave->dev->name); 2231 info->link = slave->link; 2232 info->state = slave->state; 2233 info->link_failure_count = slave->link_failure_count; 2234 break; 2235 } 2236 } 2237 2238 read_unlock(&bond->lock); 2239 2240 return res; 2241 } 2242 2243 /*-------------------------------- Monitoring -------------------------------*/ 2244 2245 2246 static int bond_miimon_inspect(struct bonding *bond) 2247 { 2248 struct slave *slave; 2249 int i, link_state, commit = 0; 2250 bool ignore_updelay; 2251 2252 ignore_updelay = !bond->curr_active_slave ? true : false; 2253 2254 bond_for_each_slave(bond, slave, i) { 2255 slave->new_link = BOND_LINK_NOCHANGE; 2256 2257 link_state = bond_check_dev_link(bond, slave->dev, 0); 2258 2259 switch (slave->link) { 2260 case BOND_LINK_UP: 2261 if (link_state) 2262 continue; 2263 2264 slave->link = BOND_LINK_FAIL; 2265 slave->delay = bond->params.downdelay; 2266 if (slave->delay) { 2267 pr_info("%s: link status down for %sinterface %s, disabling it in %d ms.\n", 2268 bond->dev->name, 2269 (bond->params.mode == 2270 BOND_MODE_ACTIVEBACKUP) ? 2271 ((slave->state == BOND_STATE_ACTIVE) ? 2272 "active " : "backup ") : "", 2273 slave->dev->name, 2274 bond->params.downdelay * bond->params.miimon); 2275 } 2276 /*FALLTHRU*/ 2277 case BOND_LINK_FAIL: 2278 if (link_state) { 2279 /* 2280 * recovered before downdelay expired 2281 */ 2282 slave->link = BOND_LINK_UP; 2283 slave->jiffies = jiffies; 2284 pr_info("%s: link status up again after %d ms for interface %s.\n", 2285 bond->dev->name, 2286 (bond->params.downdelay - slave->delay) * 2287 bond->params.miimon, 2288 slave->dev->name); 2289 continue; 2290 } 2291 2292 if (slave->delay <= 0) { 2293 slave->new_link = BOND_LINK_DOWN; 2294 commit++; 2295 continue; 2296 } 2297 2298 slave->delay--; 2299 break; 2300 2301 case BOND_LINK_DOWN: 2302 if (!link_state) 2303 continue; 2304 2305 slave->link = BOND_LINK_BACK; 2306 slave->delay = bond->params.updelay; 2307 2308 if (slave->delay) { 2309 pr_info("%s: link status up for interface %s, enabling it in %d ms.\n", 2310 bond->dev->name, slave->dev->name, 2311 ignore_updelay ? 0 : 2312 bond->params.updelay * 2313 bond->params.miimon); 2314 } 2315 /*FALLTHRU*/ 2316 case BOND_LINK_BACK: 2317 if (!link_state) { 2318 slave->link = BOND_LINK_DOWN; 2319 pr_info("%s: link status down again after %d ms for interface %s.\n", 2320 bond->dev->name, 2321 (bond->params.updelay - slave->delay) * 2322 bond->params.miimon, 2323 slave->dev->name); 2324 2325 continue; 2326 } 2327 2328 if (ignore_updelay) 2329 slave->delay = 0; 2330 2331 if (slave->delay <= 0) { 2332 slave->new_link = BOND_LINK_UP; 2333 commit++; 2334 ignore_updelay = false; 2335 continue; 2336 } 2337 2338 slave->delay--; 2339 break; 2340 } 2341 } 2342 2343 return commit; 2344 } 2345 2346 static void bond_miimon_commit(struct bonding *bond) 2347 { 2348 struct slave *slave; 2349 int i; 2350 2351 bond_for_each_slave(bond, slave, i) { 2352 switch (slave->new_link) { 2353 case BOND_LINK_NOCHANGE: 2354 continue; 2355 2356 case BOND_LINK_UP: 2357 slave->link = BOND_LINK_UP; 2358 slave->jiffies = jiffies; 2359 2360 if (bond->params.mode == BOND_MODE_8023AD) { 2361 /* prevent it from being the active one */ 2362 slave->state = BOND_STATE_BACKUP; 2363 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2364 /* make it immediately active */ 2365 slave->state = BOND_STATE_ACTIVE; 2366 } else if (slave != bond->primary_slave) { 2367 /* prevent it from being the active one */ 2368 slave->state = BOND_STATE_BACKUP; 2369 } 2370 2371 pr_info("%s: link status definitely up for interface %s.\n", 2372 bond->dev->name, slave->dev->name); 2373 2374 /* notify ad that the link status has changed */ 2375 if (bond->params.mode == BOND_MODE_8023AD) 2376 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2377 2378 if (bond_is_lb(bond)) 2379 bond_alb_handle_link_change(bond, slave, 2380 BOND_LINK_UP); 2381 2382 if (!bond->curr_active_slave || 2383 (slave == bond->primary_slave)) 2384 goto do_failover; 2385 2386 continue; 2387 2388 case BOND_LINK_DOWN: 2389 if (slave->link_failure_count < UINT_MAX) 2390 slave->link_failure_count++; 2391 2392 slave->link = BOND_LINK_DOWN; 2393 2394 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP || 2395 bond->params.mode == BOND_MODE_8023AD) 2396 bond_set_slave_inactive_flags(slave); 2397 2398 pr_info("%s: link status definitely down for interface %s, disabling it\n", 2399 bond->dev->name, slave->dev->name); 2400 2401 if (bond->params.mode == BOND_MODE_8023AD) 2402 bond_3ad_handle_link_change(slave, 2403 BOND_LINK_DOWN); 2404 2405 if (bond_is_lb(bond)) 2406 bond_alb_handle_link_change(bond, slave, 2407 BOND_LINK_DOWN); 2408 2409 if (slave == bond->curr_active_slave) 2410 goto do_failover; 2411 2412 continue; 2413 2414 default: 2415 pr_err("%s: invalid new link %d on slave %s\n", 2416 bond->dev->name, slave->new_link, 2417 slave->dev->name); 2418 slave->new_link = BOND_LINK_NOCHANGE; 2419 2420 continue; 2421 } 2422 2423 do_failover: 2424 ASSERT_RTNL(); 2425 write_lock_bh(&bond->curr_slave_lock); 2426 bond_select_active_slave(bond); 2427 write_unlock_bh(&bond->curr_slave_lock); 2428 } 2429 2430 bond_set_carrier(bond); 2431 } 2432 2433 /* 2434 * bond_mii_monitor 2435 * 2436 * Really a wrapper that splits the mii monitor into two phases: an 2437 * inspection, then (if inspection indicates something needs to be done) 2438 * an acquisition of appropriate locks followed by a commit phase to 2439 * implement whatever link state changes are indicated. 2440 */ 2441 void bond_mii_monitor(struct work_struct *work) 2442 { 2443 struct bonding *bond = container_of(work, struct bonding, 2444 mii_work.work); 2445 2446 read_lock(&bond->lock); 2447 if (bond->kill_timers) 2448 goto out; 2449 2450 if (bond->slave_cnt == 0) 2451 goto re_arm; 2452 2453 if (bond->send_grat_arp) { 2454 read_lock(&bond->curr_slave_lock); 2455 bond_send_gratuitous_arp(bond); 2456 read_unlock(&bond->curr_slave_lock); 2457 } 2458 2459 if (bond->send_unsol_na) { 2460 read_lock(&bond->curr_slave_lock); 2461 bond_send_unsolicited_na(bond); 2462 read_unlock(&bond->curr_slave_lock); 2463 } 2464 2465 if (bond_miimon_inspect(bond)) { 2466 read_unlock(&bond->lock); 2467 rtnl_lock(); 2468 read_lock(&bond->lock); 2469 2470 bond_miimon_commit(bond); 2471 2472 read_unlock(&bond->lock); 2473 rtnl_unlock(); /* might sleep, hold no other locks */ 2474 read_lock(&bond->lock); 2475 } 2476 2477 re_arm: 2478 if (bond->params.miimon) 2479 queue_delayed_work(bond->wq, &bond->mii_work, 2480 msecs_to_jiffies(bond->params.miimon)); 2481 out: 2482 read_unlock(&bond->lock); 2483 } 2484 2485 static __be32 bond_glean_dev_ip(struct net_device *dev) 2486 { 2487 struct in_device *idev; 2488 struct in_ifaddr *ifa; 2489 __be32 addr = 0; 2490 2491 if (!dev) 2492 return 0; 2493 2494 rcu_read_lock(); 2495 idev = __in_dev_get_rcu(dev); 2496 if (!idev) 2497 goto out; 2498 2499 ifa = idev->ifa_list; 2500 if (!ifa) 2501 goto out; 2502 2503 addr = ifa->ifa_local; 2504 out: 2505 rcu_read_unlock(); 2506 return addr; 2507 } 2508 2509 static int bond_has_this_ip(struct bonding *bond, __be32 ip) 2510 { 2511 struct vlan_entry *vlan; 2512 2513 if (ip == bond->master_ip) 2514 return 1; 2515 2516 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2517 if (ip == vlan->vlan_ip) 2518 return 1; 2519 } 2520 2521 return 0; 2522 } 2523 2524 /* 2525 * We go to the (large) trouble of VLAN tagging ARP frames because 2526 * switches in VLAN mode (especially if ports are configured as 2527 * "native" to a VLAN) might not pass non-tagged frames. 2528 */ 2529 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) 2530 { 2531 struct sk_buff *skb; 2532 2533 pr_debug("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, 2534 slave_dev->name, dest_ip, src_ip, vlan_id); 2535 2536 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2537 NULL, slave_dev->dev_addr, NULL); 2538 2539 if (!skb) { 2540 pr_err("ARP packet allocation failed\n"); 2541 return; 2542 } 2543 if (vlan_id) { 2544 skb = vlan_put_tag(skb, vlan_id); 2545 if (!skb) { 2546 pr_err("failed to insert VLAN tag\n"); 2547 return; 2548 } 2549 } 2550 arp_xmit(skb); 2551 } 2552 2553 2554 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2555 { 2556 int i, vlan_id, rv; 2557 __be32 *targets = bond->params.arp_targets; 2558 struct vlan_entry *vlan; 2559 struct net_device *vlan_dev; 2560 struct flowi fl; 2561 struct rtable *rt; 2562 2563 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2564 if (!targets[i]) 2565 break; 2566 pr_debug("basa: target %x\n", targets[i]); 2567 if (!bond->vlgrp) { 2568 pr_debug("basa: empty vlan: arp_send\n"); 2569 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2570 bond->master_ip, 0); 2571 continue; 2572 } 2573 2574 /* 2575 * If VLANs are configured, we do a route lookup to 2576 * determine which VLAN interface would be used, so we 2577 * can tag the ARP with the proper VLAN tag. 2578 */ 2579 memset(&fl, 0, sizeof(fl)); 2580 fl.fl4_dst = targets[i]; 2581 fl.fl4_tos = RTO_ONLINK; 2582 2583 rv = ip_route_output_key(dev_net(bond->dev), &rt, &fl); 2584 if (rv) { 2585 if (net_ratelimit()) { 2586 pr_warning("%s: no route to arp_ip_target %pI4\n", 2587 bond->dev->name, &fl.fl4_dst); 2588 } 2589 continue; 2590 } 2591 2592 /* 2593 * This target is not on a VLAN 2594 */ 2595 if (rt->dst.dev == bond->dev) { 2596 ip_rt_put(rt); 2597 pr_debug("basa: rtdev == bond->dev: arp_send\n"); 2598 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2599 bond->master_ip, 0); 2600 continue; 2601 } 2602 2603 vlan_id = 0; 2604 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2605 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2606 if (vlan_dev == rt->dst.dev) { 2607 vlan_id = vlan->vlan_id; 2608 pr_debug("basa: vlan match on %s %d\n", 2609 vlan_dev->name, vlan_id); 2610 break; 2611 } 2612 } 2613 2614 if (vlan_id) { 2615 ip_rt_put(rt); 2616 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2617 vlan->vlan_ip, vlan_id); 2618 continue; 2619 } 2620 2621 if (net_ratelimit()) { 2622 pr_warning("%s: no path to arp_ip_target %pI4 via rt.dev %s\n", 2623 bond->dev->name, &fl.fl4_dst, 2624 rt->dst.dev ? rt->dst.dev->name : "NULL"); 2625 } 2626 ip_rt_put(rt); 2627 } 2628 } 2629 2630 /* 2631 * Kick out a gratuitous ARP for an IP on the bonding master plus one 2632 * for each VLAN above us. 2633 * 2634 * Caller must hold curr_slave_lock for read or better 2635 */ 2636 static void bond_send_gratuitous_arp(struct bonding *bond) 2637 { 2638 struct slave *slave = bond->curr_active_slave; 2639 struct vlan_entry *vlan; 2640 struct net_device *vlan_dev; 2641 2642 pr_debug("bond_send_grat_arp: bond %s slave %s\n", 2643 bond->dev->name, slave ? slave->dev->name : "NULL"); 2644 2645 if (!slave || !bond->send_grat_arp || 2646 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state)) 2647 return; 2648 2649 bond->send_grat_arp--; 2650 2651 if (bond->master_ip) { 2652 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip, 2653 bond->master_ip, 0); 2654 } 2655 2656 if (!bond->vlgrp) 2657 return; 2658 2659 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2660 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2661 if (vlan->vlan_ip) { 2662 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip, 2663 vlan->vlan_ip, vlan->vlan_id); 2664 } 2665 } 2666 } 2667 2668 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) 2669 { 2670 int i; 2671 __be32 *targets = bond->params.arp_targets; 2672 2673 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2674 pr_debug("bva: sip %pI4 tip %pI4 t[%d] %pI4 bhti(tip) %d\n", 2675 &sip, &tip, i, &targets[i], 2676 bond_has_this_ip(bond, tip)); 2677 if (sip == targets[i]) { 2678 if (bond_has_this_ip(bond, tip)) 2679 slave->last_arp_rx = jiffies; 2680 return; 2681 } 2682 } 2683 } 2684 2685 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) 2686 { 2687 struct arphdr *arp; 2688 struct slave *slave; 2689 struct bonding *bond; 2690 unsigned char *arp_ptr; 2691 __be32 sip, tip; 2692 2693 if (dev->priv_flags & IFF_802_1Q_VLAN) { 2694 /* 2695 * When using VLANS and bonding, dev and oriv_dev may be 2696 * incorrect if the physical interface supports VLAN 2697 * acceleration. With this change ARP validation now 2698 * works for hosts only reachable on the VLAN interface. 2699 */ 2700 dev = vlan_dev_real_dev(dev); 2701 orig_dev = dev_get_by_index_rcu(dev_net(skb->dev),skb->skb_iif); 2702 } 2703 2704 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER)) 2705 goto out; 2706 2707 bond = netdev_priv(dev); 2708 read_lock(&bond->lock); 2709 2710 pr_debug("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n", 2711 bond->dev->name, skb->dev ? skb->dev->name : "NULL", 2712 orig_dev ? orig_dev->name : "NULL"); 2713 2714 slave = bond_get_slave_by_dev(bond, orig_dev); 2715 if (!slave || !slave_do_arp_validate(bond, slave)) 2716 goto out_unlock; 2717 2718 if (!pskb_may_pull(skb, arp_hdr_len(dev))) 2719 goto out_unlock; 2720 2721 arp = arp_hdr(skb); 2722 if (arp->ar_hln != dev->addr_len || 2723 skb->pkt_type == PACKET_OTHERHOST || 2724 skb->pkt_type == PACKET_LOOPBACK || 2725 arp->ar_hrd != htons(ARPHRD_ETHER) || 2726 arp->ar_pro != htons(ETH_P_IP) || 2727 arp->ar_pln != 4) 2728 goto out_unlock; 2729 2730 arp_ptr = (unsigned char *)(arp + 1); 2731 arp_ptr += dev->addr_len; 2732 memcpy(&sip, arp_ptr, 4); 2733 arp_ptr += 4 + dev->addr_len; 2734 memcpy(&tip, arp_ptr, 4); 2735 2736 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n", 2737 bond->dev->name, slave->dev->name, slave->state, 2738 bond->params.arp_validate, slave_do_arp_validate(bond, slave), 2739 &sip, &tip); 2740 2741 /* 2742 * Backup slaves won't see the ARP reply, but do come through 2743 * here for each ARP probe (so we swap the sip/tip to validate 2744 * the probe). In a "redundant switch, common router" type of 2745 * configuration, the ARP probe will (hopefully) travel from 2746 * the active, through one switch, the router, then the other 2747 * switch before reaching the backup. 2748 */ 2749 if (slave->state == BOND_STATE_ACTIVE) 2750 bond_validate_arp(bond, slave, sip, tip); 2751 else 2752 bond_validate_arp(bond, slave, tip, sip); 2753 2754 out_unlock: 2755 read_unlock(&bond->lock); 2756 out: 2757 dev_kfree_skb(skb); 2758 return NET_RX_SUCCESS; 2759 } 2760 2761 /* 2762 * this function is called regularly to monitor each slave's link 2763 * ensuring that traffic is being sent and received when arp monitoring 2764 * is used in load-balancing mode. if the adapter has been dormant, then an 2765 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2766 * arp monitoring in active backup mode. 2767 */ 2768 void bond_loadbalance_arp_mon(struct work_struct *work) 2769 { 2770 struct bonding *bond = container_of(work, struct bonding, 2771 arp_work.work); 2772 struct slave *slave, *oldcurrent; 2773 int do_failover = 0; 2774 int delta_in_ticks; 2775 int i; 2776 2777 read_lock(&bond->lock); 2778 2779 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2780 2781 if (bond->kill_timers) 2782 goto out; 2783 2784 if (bond->slave_cnt == 0) 2785 goto re_arm; 2786 2787 read_lock(&bond->curr_slave_lock); 2788 oldcurrent = bond->curr_active_slave; 2789 read_unlock(&bond->curr_slave_lock); 2790 2791 /* see if any of the previous devices are up now (i.e. they have 2792 * xmt and rcv traffic). the curr_active_slave does not come into 2793 * the picture unless it is null. also, slave->jiffies is not needed 2794 * here because we send an arp on each slave and give a slave as 2795 * long as it needs to get the tx/rx within the delta. 2796 * TODO: what about up/down delay in arp mode? it wasn't here before 2797 * so it can wait 2798 */ 2799 bond_for_each_slave(bond, slave, i) { 2800 unsigned long trans_start = dev_trans_start(slave->dev); 2801 2802 if (slave->link != BOND_LINK_UP) { 2803 if (time_in_range(jiffies, 2804 trans_start - delta_in_ticks, 2805 trans_start + delta_in_ticks) && 2806 time_in_range(jiffies, 2807 slave->dev->last_rx - delta_in_ticks, 2808 slave->dev->last_rx + delta_in_ticks)) { 2809 2810 slave->link = BOND_LINK_UP; 2811 slave->state = BOND_STATE_ACTIVE; 2812 2813 /* primary_slave has no meaning in round-robin 2814 * mode. the window of a slave being up and 2815 * curr_active_slave being null after enslaving 2816 * is closed. 2817 */ 2818 if (!oldcurrent) { 2819 pr_info("%s: link status definitely up for interface %s, ", 2820 bond->dev->name, 2821 slave->dev->name); 2822 do_failover = 1; 2823 } else { 2824 pr_info("%s: interface %s is now up\n", 2825 bond->dev->name, 2826 slave->dev->name); 2827 } 2828 } 2829 } else { 2830 /* slave->link == BOND_LINK_UP */ 2831 2832 /* not all switches will respond to an arp request 2833 * when the source ip is 0, so don't take the link down 2834 * if we don't know our ip yet 2835 */ 2836 if (!time_in_range(jiffies, 2837 trans_start - delta_in_ticks, 2838 trans_start + 2 * delta_in_ticks) || 2839 !time_in_range(jiffies, 2840 slave->dev->last_rx - delta_in_ticks, 2841 slave->dev->last_rx + 2 * delta_in_ticks)) { 2842 2843 slave->link = BOND_LINK_DOWN; 2844 slave->state = BOND_STATE_BACKUP; 2845 2846 if (slave->link_failure_count < UINT_MAX) 2847 slave->link_failure_count++; 2848 2849 pr_info("%s: interface %s is now down.\n", 2850 bond->dev->name, 2851 slave->dev->name); 2852 2853 if (slave == oldcurrent) 2854 do_failover = 1; 2855 } 2856 } 2857 2858 /* note: if switch is in round-robin mode, all links 2859 * must tx arp to ensure all links rx an arp - otherwise 2860 * links may oscillate or not come up at all; if switch is 2861 * in something like xor mode, there is nothing we can 2862 * do - all replies will be rx'ed on same link causing slaves 2863 * to be unstable during low/no traffic periods 2864 */ 2865 if (IS_UP(slave->dev)) 2866 bond_arp_send_all(bond, slave); 2867 } 2868 2869 if (do_failover) { 2870 write_lock_bh(&bond->curr_slave_lock); 2871 2872 bond_select_active_slave(bond); 2873 2874 write_unlock_bh(&bond->curr_slave_lock); 2875 } 2876 2877 re_arm: 2878 if (bond->params.arp_interval) 2879 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 2880 out: 2881 read_unlock(&bond->lock); 2882 } 2883 2884 /* 2885 * Called to inspect slaves for active-backup mode ARP monitor link state 2886 * changes. Sets new_link in slaves to specify what action should take 2887 * place for the slave. Returns 0 if no changes are found, >0 if changes 2888 * to link states must be committed. 2889 * 2890 * Called with bond->lock held for read. 2891 */ 2892 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks) 2893 { 2894 struct slave *slave; 2895 int i, commit = 0; 2896 unsigned long trans_start; 2897 2898 bond_for_each_slave(bond, slave, i) { 2899 slave->new_link = BOND_LINK_NOCHANGE; 2900 2901 if (slave->link != BOND_LINK_UP) { 2902 if (time_in_range(jiffies, 2903 slave_last_rx(bond, slave) - delta_in_ticks, 2904 slave_last_rx(bond, slave) + delta_in_ticks)) { 2905 2906 slave->new_link = BOND_LINK_UP; 2907 commit++; 2908 } 2909 2910 continue; 2911 } 2912 2913 /* 2914 * Give slaves 2*delta after being enslaved or made 2915 * active. This avoids bouncing, as the last receive 2916 * times need a full ARP monitor cycle to be updated. 2917 */ 2918 if (time_in_range(jiffies, 2919 slave->jiffies - delta_in_ticks, 2920 slave->jiffies + 2 * delta_in_ticks)) 2921 continue; 2922 2923 /* 2924 * Backup slave is down if: 2925 * - No current_arp_slave AND 2926 * - more than 3*delta since last receive AND 2927 * - the bond has an IP address 2928 * 2929 * Note: a non-null current_arp_slave indicates 2930 * the curr_active_slave went down and we are 2931 * searching for a new one; under this condition 2932 * we only take the curr_active_slave down - this 2933 * gives each slave a chance to tx/rx traffic 2934 * before being taken out 2935 */ 2936 if (slave->state == BOND_STATE_BACKUP && 2937 !bond->current_arp_slave && 2938 !time_in_range(jiffies, 2939 slave_last_rx(bond, slave) - delta_in_ticks, 2940 slave_last_rx(bond, slave) + 3 * delta_in_ticks)) { 2941 2942 slave->new_link = BOND_LINK_DOWN; 2943 commit++; 2944 } 2945 2946 /* 2947 * Active slave is down if: 2948 * - more than 2*delta since transmitting OR 2949 * - (more than 2*delta since receive AND 2950 * the bond has an IP address) 2951 */ 2952 trans_start = dev_trans_start(slave->dev); 2953 if ((slave->state == BOND_STATE_ACTIVE) && 2954 (!time_in_range(jiffies, 2955 trans_start - delta_in_ticks, 2956 trans_start + 2 * delta_in_ticks) || 2957 !time_in_range(jiffies, 2958 slave_last_rx(bond, slave) - delta_in_ticks, 2959 slave_last_rx(bond, slave) + 2 * delta_in_ticks))) { 2960 2961 slave->new_link = BOND_LINK_DOWN; 2962 commit++; 2963 } 2964 } 2965 2966 return commit; 2967 } 2968 2969 /* 2970 * Called to commit link state changes noted by inspection step of 2971 * active-backup mode ARP monitor. 2972 * 2973 * Called with RTNL and bond->lock for read. 2974 */ 2975 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks) 2976 { 2977 struct slave *slave; 2978 int i; 2979 unsigned long trans_start; 2980 2981 bond_for_each_slave(bond, slave, i) { 2982 switch (slave->new_link) { 2983 case BOND_LINK_NOCHANGE: 2984 continue; 2985 2986 case BOND_LINK_UP: 2987 trans_start = dev_trans_start(slave->dev); 2988 if ((!bond->curr_active_slave && 2989 time_in_range(jiffies, 2990 trans_start - delta_in_ticks, 2991 trans_start + delta_in_ticks)) || 2992 bond->curr_active_slave != slave) { 2993 slave->link = BOND_LINK_UP; 2994 bond->current_arp_slave = NULL; 2995 2996 pr_info("%s: link status definitely up for interface %s.\n", 2997 bond->dev->name, slave->dev->name); 2998 2999 if (!bond->curr_active_slave || 3000 (slave == bond->primary_slave)) 3001 goto do_failover; 3002 3003 } 3004 3005 continue; 3006 3007 case BOND_LINK_DOWN: 3008 if (slave->link_failure_count < UINT_MAX) 3009 slave->link_failure_count++; 3010 3011 slave->link = BOND_LINK_DOWN; 3012 bond_set_slave_inactive_flags(slave); 3013 3014 pr_info("%s: link status definitely down for interface %s, disabling it\n", 3015 bond->dev->name, slave->dev->name); 3016 3017 if (slave == bond->curr_active_slave) { 3018 bond->current_arp_slave = NULL; 3019 goto do_failover; 3020 } 3021 3022 continue; 3023 3024 default: 3025 pr_err("%s: impossible: new_link %d on slave %s\n", 3026 bond->dev->name, slave->new_link, 3027 slave->dev->name); 3028 continue; 3029 } 3030 3031 do_failover: 3032 ASSERT_RTNL(); 3033 write_lock_bh(&bond->curr_slave_lock); 3034 bond_select_active_slave(bond); 3035 write_unlock_bh(&bond->curr_slave_lock); 3036 } 3037 3038 bond_set_carrier(bond); 3039 } 3040 3041 /* 3042 * Send ARP probes for active-backup mode ARP monitor. 3043 * 3044 * Called with bond->lock held for read. 3045 */ 3046 static void bond_ab_arp_probe(struct bonding *bond) 3047 { 3048 struct slave *slave; 3049 int i; 3050 3051 read_lock(&bond->curr_slave_lock); 3052 3053 if (bond->current_arp_slave && bond->curr_active_slave) 3054 pr_info("PROBE: c_arp %s && cas %s BAD\n", 3055 bond->current_arp_slave->dev->name, 3056 bond->curr_active_slave->dev->name); 3057 3058 if (bond->curr_active_slave) { 3059 bond_arp_send_all(bond, bond->curr_active_slave); 3060 read_unlock(&bond->curr_slave_lock); 3061 return; 3062 } 3063 3064 read_unlock(&bond->curr_slave_lock); 3065 3066 /* if we don't have a curr_active_slave, search for the next available 3067 * backup slave from the current_arp_slave and make it the candidate 3068 * for becoming the curr_active_slave 3069 */ 3070 3071 if (!bond->current_arp_slave) { 3072 bond->current_arp_slave = bond->first_slave; 3073 if (!bond->current_arp_slave) 3074 return; 3075 } 3076 3077 bond_set_slave_inactive_flags(bond->current_arp_slave); 3078 3079 /* search for next candidate */ 3080 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 3081 if (IS_UP(slave->dev)) { 3082 slave->link = BOND_LINK_BACK; 3083 bond_set_slave_active_flags(slave); 3084 bond_arp_send_all(bond, slave); 3085 slave->jiffies = jiffies; 3086 bond->current_arp_slave = slave; 3087 break; 3088 } 3089 3090 /* if the link state is up at this point, we 3091 * mark it down - this can happen if we have 3092 * simultaneous link failures and 3093 * reselect_active_interface doesn't make this 3094 * one the current slave so it is still marked 3095 * up when it is actually down 3096 */ 3097 if (slave->link == BOND_LINK_UP) { 3098 slave->link = BOND_LINK_DOWN; 3099 if (slave->link_failure_count < UINT_MAX) 3100 slave->link_failure_count++; 3101 3102 bond_set_slave_inactive_flags(slave); 3103 3104 pr_info("%s: backup interface %s is now down.\n", 3105 bond->dev->name, slave->dev->name); 3106 } 3107 } 3108 } 3109 3110 void bond_activebackup_arp_mon(struct work_struct *work) 3111 { 3112 struct bonding *bond = container_of(work, struct bonding, 3113 arp_work.work); 3114 int delta_in_ticks; 3115 3116 read_lock(&bond->lock); 3117 3118 if (bond->kill_timers) 3119 goto out; 3120 3121 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 3122 3123 if (bond->slave_cnt == 0) 3124 goto re_arm; 3125 3126 if (bond->send_grat_arp) { 3127 read_lock(&bond->curr_slave_lock); 3128 bond_send_gratuitous_arp(bond); 3129 read_unlock(&bond->curr_slave_lock); 3130 } 3131 3132 if (bond->send_unsol_na) { 3133 read_lock(&bond->curr_slave_lock); 3134 bond_send_unsolicited_na(bond); 3135 read_unlock(&bond->curr_slave_lock); 3136 } 3137 3138 if (bond_ab_arp_inspect(bond, delta_in_ticks)) { 3139 read_unlock(&bond->lock); 3140 rtnl_lock(); 3141 read_lock(&bond->lock); 3142 3143 bond_ab_arp_commit(bond, delta_in_ticks); 3144 3145 read_unlock(&bond->lock); 3146 rtnl_unlock(); 3147 read_lock(&bond->lock); 3148 } 3149 3150 bond_ab_arp_probe(bond); 3151 3152 re_arm: 3153 if (bond->params.arp_interval) 3154 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 3155 out: 3156 read_unlock(&bond->lock); 3157 } 3158 3159 /*------------------------------ proc/seq_file-------------------------------*/ 3160 3161 #ifdef CONFIG_PROC_FS 3162 3163 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos) 3164 __acquires(&dev_base_lock) 3165 __acquires(&bond->lock) 3166 { 3167 struct bonding *bond = seq->private; 3168 loff_t off = 0; 3169 struct slave *slave; 3170 int i; 3171 3172 /* make sure the bond won't be taken away */ 3173 read_lock(&dev_base_lock); 3174 read_lock(&bond->lock); 3175 3176 if (*pos == 0) 3177 return SEQ_START_TOKEN; 3178 3179 bond_for_each_slave(bond, slave, i) { 3180 if (++off == *pos) 3181 return slave; 3182 } 3183 3184 return NULL; 3185 } 3186 3187 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3188 { 3189 struct bonding *bond = seq->private; 3190 struct slave *slave = v; 3191 3192 ++*pos; 3193 if (v == SEQ_START_TOKEN) 3194 return bond->first_slave; 3195 3196 slave = slave->next; 3197 3198 return (slave == bond->first_slave) ? NULL : slave; 3199 } 3200 3201 static void bond_info_seq_stop(struct seq_file *seq, void *v) 3202 __releases(&bond->lock) 3203 __releases(&dev_base_lock) 3204 { 3205 struct bonding *bond = seq->private; 3206 3207 read_unlock(&bond->lock); 3208 read_unlock(&dev_base_lock); 3209 } 3210 3211 static void bond_info_show_master(struct seq_file *seq) 3212 { 3213 struct bonding *bond = seq->private; 3214 struct slave *curr; 3215 int i; 3216 3217 read_lock(&bond->curr_slave_lock); 3218 curr = bond->curr_active_slave; 3219 read_unlock(&bond->curr_slave_lock); 3220 3221 seq_printf(seq, "Bonding Mode: %s", 3222 bond_mode_name(bond->params.mode)); 3223 3224 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP && 3225 bond->params.fail_over_mac) 3226 seq_printf(seq, " (fail_over_mac %s)", 3227 fail_over_mac_tbl[bond->params.fail_over_mac].modename); 3228 3229 seq_printf(seq, "\n"); 3230 3231 if (bond->params.mode == BOND_MODE_XOR || 3232 bond->params.mode == BOND_MODE_8023AD) { 3233 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n", 3234 xmit_hashtype_tbl[bond->params.xmit_policy].modename, 3235 bond->params.xmit_policy); 3236 } 3237 3238 if (USES_PRIMARY(bond->params.mode)) { 3239 seq_printf(seq, "Primary Slave: %s", 3240 (bond->primary_slave) ? 3241 bond->primary_slave->dev->name : "None"); 3242 if (bond->primary_slave) 3243 seq_printf(seq, " (primary_reselect %s)", 3244 pri_reselect_tbl[bond->params.primary_reselect].modename); 3245 3246 seq_printf(seq, "\nCurrently Active Slave: %s\n", 3247 (curr) ? curr->dev->name : "None"); 3248 } 3249 3250 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ? 3251 "up" : "down"); 3252 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon); 3253 seq_printf(seq, "Up Delay (ms): %d\n", 3254 bond->params.updelay * bond->params.miimon); 3255 seq_printf(seq, "Down Delay (ms): %d\n", 3256 bond->params.downdelay * bond->params.miimon); 3257 3258 3259 /* ARP information */ 3260 if (bond->params.arp_interval > 0) { 3261 int printed = 0; 3262 seq_printf(seq, "ARP Polling Interval (ms): %d\n", 3263 bond->params.arp_interval); 3264 3265 seq_printf(seq, "ARP IP target/s (n.n.n.n form):"); 3266 3267 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 3268 if (!bond->params.arp_targets[i]) 3269 break; 3270 if (printed) 3271 seq_printf(seq, ","); 3272 seq_printf(seq, " %pI4", &bond->params.arp_targets[i]); 3273 printed = 1; 3274 } 3275 seq_printf(seq, "\n"); 3276 } 3277 3278 if (bond->params.mode == BOND_MODE_8023AD) { 3279 struct ad_info ad_info; 3280 3281 seq_puts(seq, "\n802.3ad info\n"); 3282 seq_printf(seq, "LACP rate: %s\n", 3283 (bond->params.lacp_fast) ? "fast" : "slow"); 3284 seq_printf(seq, "Aggregator selection policy (ad_select): %s\n", 3285 ad_select_tbl[bond->params.ad_select].modename); 3286 3287 if (bond_3ad_get_active_agg_info(bond, &ad_info)) { 3288 seq_printf(seq, "bond %s has no active aggregator\n", 3289 bond->dev->name); 3290 } else { 3291 seq_printf(seq, "Active Aggregator Info:\n"); 3292 3293 seq_printf(seq, "\tAggregator ID: %d\n", 3294 ad_info.aggregator_id); 3295 seq_printf(seq, "\tNumber of ports: %d\n", 3296 ad_info.ports); 3297 seq_printf(seq, "\tActor Key: %d\n", 3298 ad_info.actor_key); 3299 seq_printf(seq, "\tPartner Key: %d\n", 3300 ad_info.partner_key); 3301 seq_printf(seq, "\tPartner Mac Address: %pM\n", 3302 ad_info.partner_system); 3303 } 3304 } 3305 } 3306 3307 static void bond_info_show_slave(struct seq_file *seq, 3308 const struct slave *slave) 3309 { 3310 struct bonding *bond = seq->private; 3311 3312 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name); 3313 seq_printf(seq, "MII Status: %s\n", 3314 (slave->link == BOND_LINK_UP) ? "up" : "down"); 3315 seq_printf(seq, "Link Failure Count: %u\n", 3316 slave->link_failure_count); 3317 3318 seq_printf(seq, "Permanent HW addr: %pM\n", slave->perm_hwaddr); 3319 3320 if (bond->params.mode == BOND_MODE_8023AD) { 3321 const struct aggregator *agg 3322 = SLAVE_AD_INFO(slave).port.aggregator; 3323 3324 if (agg) 3325 seq_printf(seq, "Aggregator ID: %d\n", 3326 agg->aggregator_identifier); 3327 else 3328 seq_puts(seq, "Aggregator ID: N/A\n"); 3329 } 3330 seq_printf(seq, "Slave queue ID: %d\n", slave->queue_id); 3331 } 3332 3333 static int bond_info_seq_show(struct seq_file *seq, void *v) 3334 { 3335 if (v == SEQ_START_TOKEN) { 3336 seq_printf(seq, "%s\n", version); 3337 bond_info_show_master(seq); 3338 } else 3339 bond_info_show_slave(seq, v); 3340 3341 return 0; 3342 } 3343 3344 static const struct seq_operations bond_info_seq_ops = { 3345 .start = bond_info_seq_start, 3346 .next = bond_info_seq_next, 3347 .stop = bond_info_seq_stop, 3348 .show = bond_info_seq_show, 3349 }; 3350 3351 static int bond_info_open(struct inode *inode, struct file *file) 3352 { 3353 struct seq_file *seq; 3354 struct proc_dir_entry *proc; 3355 int res; 3356 3357 res = seq_open(file, &bond_info_seq_ops); 3358 if (!res) { 3359 /* recover the pointer buried in proc_dir_entry data */ 3360 seq = file->private_data; 3361 proc = PDE(inode); 3362 seq->private = proc->data; 3363 } 3364 3365 return res; 3366 } 3367 3368 static const struct file_operations bond_info_fops = { 3369 .owner = THIS_MODULE, 3370 .open = bond_info_open, 3371 .read = seq_read, 3372 .llseek = seq_lseek, 3373 .release = seq_release, 3374 }; 3375 3376 static void bond_create_proc_entry(struct bonding *bond) 3377 { 3378 struct net_device *bond_dev = bond->dev; 3379 struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id); 3380 3381 if (bn->proc_dir) { 3382 bond->proc_entry = proc_create_data(bond_dev->name, 3383 S_IRUGO, bn->proc_dir, 3384 &bond_info_fops, bond); 3385 if (bond->proc_entry == NULL) 3386 pr_warning("Warning: Cannot create /proc/net/%s/%s\n", 3387 DRV_NAME, bond_dev->name); 3388 else 3389 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ); 3390 } 3391 } 3392 3393 static void bond_remove_proc_entry(struct bonding *bond) 3394 { 3395 struct net_device *bond_dev = bond->dev; 3396 struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id); 3397 3398 if (bn->proc_dir && bond->proc_entry) { 3399 remove_proc_entry(bond->proc_file_name, bn->proc_dir); 3400 memset(bond->proc_file_name, 0, IFNAMSIZ); 3401 bond->proc_entry = NULL; 3402 } 3403 } 3404 3405 /* Create the bonding directory under /proc/net, if doesn't exist yet. 3406 * Caller must hold rtnl_lock. 3407 */ 3408 static void __net_init bond_create_proc_dir(struct bond_net *bn) 3409 { 3410 if (!bn->proc_dir) { 3411 bn->proc_dir = proc_mkdir(DRV_NAME, bn->net->proc_net); 3412 if (!bn->proc_dir) 3413 pr_warning("Warning: cannot create /proc/net/%s\n", 3414 DRV_NAME); 3415 } 3416 } 3417 3418 /* Destroy the bonding directory under /proc/net, if empty. 3419 * Caller must hold rtnl_lock. 3420 */ 3421 static void __net_exit bond_destroy_proc_dir(struct bond_net *bn) 3422 { 3423 if (bn->proc_dir) { 3424 remove_proc_entry(DRV_NAME, bn->net->proc_net); 3425 bn->proc_dir = NULL; 3426 } 3427 } 3428 3429 #else /* !CONFIG_PROC_FS */ 3430 3431 static void bond_create_proc_entry(struct bonding *bond) 3432 { 3433 } 3434 3435 static void bond_remove_proc_entry(struct bonding *bond) 3436 { 3437 } 3438 3439 static inline void bond_create_proc_dir(struct bond_net *bn) 3440 { 3441 } 3442 3443 static inline void bond_destroy_proc_dir(struct bond_net *bn) 3444 { 3445 } 3446 3447 #endif /* CONFIG_PROC_FS */ 3448 3449 3450 /*-------------------------- netdev event handling --------------------------*/ 3451 3452 /* 3453 * Change device name 3454 */ 3455 static int bond_event_changename(struct bonding *bond) 3456 { 3457 bond_remove_proc_entry(bond); 3458 bond_create_proc_entry(bond); 3459 3460 return NOTIFY_DONE; 3461 } 3462 3463 static int bond_master_netdev_event(unsigned long event, 3464 struct net_device *bond_dev) 3465 { 3466 struct bonding *event_bond = netdev_priv(bond_dev); 3467 3468 switch (event) { 3469 case NETDEV_CHANGENAME: 3470 return bond_event_changename(event_bond); 3471 default: 3472 break; 3473 } 3474 3475 return NOTIFY_DONE; 3476 } 3477 3478 static int bond_slave_netdev_event(unsigned long event, 3479 struct net_device *slave_dev) 3480 { 3481 struct net_device *bond_dev = slave_dev->master; 3482 struct bonding *bond = netdev_priv(bond_dev); 3483 3484 switch (event) { 3485 case NETDEV_UNREGISTER: 3486 if (bond_dev) { 3487 if (bond->setup_by_slave) 3488 bond_release_and_destroy(bond_dev, slave_dev); 3489 else 3490 bond_release(bond_dev, slave_dev); 3491 } 3492 break; 3493 case NETDEV_CHANGE: 3494 if (bond->params.mode == BOND_MODE_8023AD || bond_is_lb(bond)) { 3495 struct slave *slave; 3496 3497 slave = bond_get_slave_by_dev(bond, slave_dev); 3498 if (slave) { 3499 u16 old_speed = slave->speed; 3500 u16 old_duplex = slave->duplex; 3501 3502 bond_update_speed_duplex(slave); 3503 3504 if (bond_is_lb(bond)) 3505 break; 3506 3507 if (old_speed != slave->speed) 3508 bond_3ad_adapter_speed_changed(slave); 3509 if (old_duplex != slave->duplex) 3510 bond_3ad_adapter_duplex_changed(slave); 3511 } 3512 } 3513 3514 break; 3515 case NETDEV_DOWN: 3516 /* 3517 * ... Or is it this? 3518 */ 3519 break; 3520 case NETDEV_CHANGEMTU: 3521 /* 3522 * TODO: Should slaves be allowed to 3523 * independently alter their MTU? For 3524 * an active-backup bond, slaves need 3525 * not be the same type of device, so 3526 * MTUs may vary. For other modes, 3527 * slaves arguably should have the 3528 * same MTUs. To do this, we'd need to 3529 * take over the slave's change_mtu 3530 * function for the duration of their 3531 * servitude. 3532 */ 3533 break; 3534 case NETDEV_CHANGENAME: 3535 /* 3536 * TODO: handle changing the primary's name 3537 */ 3538 break; 3539 case NETDEV_FEAT_CHANGE: 3540 bond_compute_features(bond); 3541 break; 3542 default: 3543 break; 3544 } 3545 3546 return NOTIFY_DONE; 3547 } 3548 3549 /* 3550 * bond_netdev_event: handle netdev notifier chain events. 3551 * 3552 * This function receives events for the netdev chain. The caller (an 3553 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3554 * locks for us to safely manipulate the slave devices (RTNL lock, 3555 * dev_probe_lock). 3556 */ 3557 static int bond_netdev_event(struct notifier_block *this, 3558 unsigned long event, void *ptr) 3559 { 3560 struct net_device *event_dev = (struct net_device *)ptr; 3561 3562 pr_debug("event_dev: %s, event: %lx\n", 3563 event_dev ? event_dev->name : "None", 3564 event); 3565 3566 if (!(event_dev->priv_flags & IFF_BONDING)) 3567 return NOTIFY_DONE; 3568 3569 if (event_dev->flags & IFF_MASTER) { 3570 pr_debug("IFF_MASTER\n"); 3571 return bond_master_netdev_event(event, event_dev); 3572 } 3573 3574 if (event_dev->flags & IFF_SLAVE) { 3575 pr_debug("IFF_SLAVE\n"); 3576 return bond_slave_netdev_event(event, event_dev); 3577 } 3578 3579 return NOTIFY_DONE; 3580 } 3581 3582 /* 3583 * bond_inetaddr_event: handle inetaddr notifier chain events. 3584 * 3585 * We keep track of device IPs primarily to use as source addresses in 3586 * ARP monitor probes (rather than spewing out broadcasts all the time). 3587 * 3588 * We track one IP for the main device (if it has one), plus one per VLAN. 3589 */ 3590 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) 3591 { 3592 struct in_ifaddr *ifa = ptr; 3593 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev; 3594 struct bond_net *bn = net_generic(dev_net(event_dev), bond_net_id); 3595 struct bonding *bond; 3596 struct vlan_entry *vlan; 3597 3598 list_for_each_entry(bond, &bn->dev_list, bond_list) { 3599 if (bond->dev == event_dev) { 3600 switch (event) { 3601 case NETDEV_UP: 3602 bond->master_ip = ifa->ifa_local; 3603 return NOTIFY_OK; 3604 case NETDEV_DOWN: 3605 bond->master_ip = bond_glean_dev_ip(bond->dev); 3606 return NOTIFY_OK; 3607 default: 3608 return NOTIFY_DONE; 3609 } 3610 } 3611 3612 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 3613 if (!bond->vlgrp) 3614 continue; 3615 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 3616 if (vlan_dev == event_dev) { 3617 switch (event) { 3618 case NETDEV_UP: 3619 vlan->vlan_ip = ifa->ifa_local; 3620 return NOTIFY_OK; 3621 case NETDEV_DOWN: 3622 vlan->vlan_ip = 3623 bond_glean_dev_ip(vlan_dev); 3624 return NOTIFY_OK; 3625 default: 3626 return NOTIFY_DONE; 3627 } 3628 } 3629 } 3630 } 3631 return NOTIFY_DONE; 3632 } 3633 3634 static struct notifier_block bond_netdev_notifier = { 3635 .notifier_call = bond_netdev_event, 3636 }; 3637 3638 static struct notifier_block bond_inetaddr_notifier = { 3639 .notifier_call = bond_inetaddr_event, 3640 }; 3641 3642 /*-------------------------- Packet type handling ---------------------------*/ 3643 3644 /* register to receive lacpdus on a bond */ 3645 static void bond_register_lacpdu(struct bonding *bond) 3646 { 3647 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type); 3648 3649 /* initialize packet type */ 3650 pk_type->type = PKT_TYPE_LACPDU; 3651 pk_type->dev = bond->dev; 3652 pk_type->func = bond_3ad_lacpdu_recv; 3653 3654 dev_add_pack(pk_type); 3655 } 3656 3657 /* unregister to receive lacpdus on a bond */ 3658 static void bond_unregister_lacpdu(struct bonding *bond) 3659 { 3660 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type)); 3661 } 3662 3663 void bond_register_arp(struct bonding *bond) 3664 { 3665 struct packet_type *pt = &bond->arp_mon_pt; 3666 3667 if (pt->type) 3668 return; 3669 3670 pt->type = htons(ETH_P_ARP); 3671 pt->dev = bond->dev; 3672 pt->func = bond_arp_rcv; 3673 dev_add_pack(pt); 3674 } 3675 3676 void bond_unregister_arp(struct bonding *bond) 3677 { 3678 struct packet_type *pt = &bond->arp_mon_pt; 3679 3680 dev_remove_pack(pt); 3681 pt->type = 0; 3682 } 3683 3684 /*---------------------------- Hashing Policies -----------------------------*/ 3685 3686 /* 3687 * Hash for the output device based upon layer 2 and layer 3 data. If 3688 * the packet is not IP mimic bond_xmit_hash_policy_l2() 3689 */ 3690 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, int count) 3691 { 3692 struct ethhdr *data = (struct ethhdr *)skb->data; 3693 struct iphdr *iph = ip_hdr(skb); 3694 3695 if (skb->protocol == htons(ETH_P_IP)) { 3696 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ 3697 (data->h_dest[5] ^ data->h_source[5])) % count; 3698 } 3699 3700 return (data->h_dest[5] ^ data->h_source[5]) % count; 3701 } 3702 3703 /* 3704 * Hash for the output device based upon layer 3 and layer 4 data. If 3705 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3706 * altogether not IP, mimic bond_xmit_hash_policy_l2() 3707 */ 3708 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, int count) 3709 { 3710 struct ethhdr *data = (struct ethhdr *)skb->data; 3711 struct iphdr *iph = ip_hdr(skb); 3712 __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl); 3713 int layer4_xor = 0; 3714 3715 if (skb->protocol == htons(ETH_P_IP)) { 3716 if (!(iph->frag_off & htons(IP_MF|IP_OFFSET)) && 3717 (iph->protocol == IPPROTO_TCP || 3718 iph->protocol == IPPROTO_UDP)) { 3719 layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1))); 3720 } 3721 return (layer4_xor ^ 3722 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3723 3724 } 3725 3726 return (data->h_dest[5] ^ data->h_source[5]) % count; 3727 } 3728 3729 /* 3730 * Hash for the output device based upon layer 2 data 3731 */ 3732 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, int count) 3733 { 3734 struct ethhdr *data = (struct ethhdr *)skb->data; 3735 3736 return (data->h_dest[5] ^ data->h_source[5]) % count; 3737 } 3738 3739 /*-------------------------- Device entry points ----------------------------*/ 3740 3741 static int bond_open(struct net_device *bond_dev) 3742 { 3743 struct bonding *bond = netdev_priv(bond_dev); 3744 3745 bond->kill_timers = 0; 3746 3747 if (bond_is_lb(bond)) { 3748 /* bond_alb_initialize must be called before the timer 3749 * is started. 3750 */ 3751 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) { 3752 /* something went wrong - fail the open operation */ 3753 return -ENOMEM; 3754 } 3755 3756 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); 3757 queue_delayed_work(bond->wq, &bond->alb_work, 0); 3758 } 3759 3760 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3761 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); 3762 queue_delayed_work(bond->wq, &bond->mii_work, 0); 3763 } 3764 3765 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3766 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3767 INIT_DELAYED_WORK(&bond->arp_work, 3768 bond_activebackup_arp_mon); 3769 else 3770 INIT_DELAYED_WORK(&bond->arp_work, 3771 bond_loadbalance_arp_mon); 3772 3773 queue_delayed_work(bond->wq, &bond->arp_work, 0); 3774 if (bond->params.arp_validate) 3775 bond_register_arp(bond); 3776 } 3777 3778 if (bond->params.mode == BOND_MODE_8023AD) { 3779 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); 3780 queue_delayed_work(bond->wq, &bond->ad_work, 0); 3781 /* register to receive LACPDUs */ 3782 bond_register_lacpdu(bond); 3783 bond_3ad_initiate_agg_selection(bond, 1); 3784 } 3785 3786 return 0; 3787 } 3788 3789 static int bond_close(struct net_device *bond_dev) 3790 { 3791 struct bonding *bond = netdev_priv(bond_dev); 3792 3793 if (bond->params.mode == BOND_MODE_8023AD) { 3794 /* Unregister the receive of LACPDUs */ 3795 bond_unregister_lacpdu(bond); 3796 } 3797 3798 if (bond->params.arp_validate) 3799 bond_unregister_arp(bond); 3800 3801 write_lock_bh(&bond->lock); 3802 3803 bond->send_grat_arp = 0; 3804 bond->send_unsol_na = 0; 3805 3806 /* signal timers not to re-arm */ 3807 bond->kill_timers = 1; 3808 3809 write_unlock_bh(&bond->lock); 3810 3811 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3812 cancel_delayed_work(&bond->mii_work); 3813 } 3814 3815 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3816 cancel_delayed_work(&bond->arp_work); 3817 } 3818 3819 switch (bond->params.mode) { 3820 case BOND_MODE_8023AD: 3821 cancel_delayed_work(&bond->ad_work); 3822 break; 3823 case BOND_MODE_TLB: 3824 case BOND_MODE_ALB: 3825 cancel_delayed_work(&bond->alb_work); 3826 break; 3827 default: 3828 break; 3829 } 3830 3831 3832 if (bond_is_lb(bond)) { 3833 /* Must be called only after all 3834 * slaves have been released 3835 */ 3836 bond_alb_deinitialize(bond); 3837 } 3838 3839 return 0; 3840 } 3841 3842 static struct rtnl_link_stats64 *bond_get_stats(struct net_device *bond_dev, 3843 struct rtnl_link_stats64 *stats) 3844 { 3845 struct bonding *bond = netdev_priv(bond_dev); 3846 struct rtnl_link_stats64 temp; 3847 struct slave *slave; 3848 int i; 3849 3850 memset(stats, 0, sizeof(*stats)); 3851 3852 read_lock_bh(&bond->lock); 3853 3854 bond_for_each_slave(bond, slave, i) { 3855 const struct rtnl_link_stats64 *sstats = 3856 dev_get_stats(slave->dev, &temp); 3857 3858 stats->rx_packets += sstats->rx_packets; 3859 stats->rx_bytes += sstats->rx_bytes; 3860 stats->rx_errors += sstats->rx_errors; 3861 stats->rx_dropped += sstats->rx_dropped; 3862 3863 stats->tx_packets += sstats->tx_packets; 3864 stats->tx_bytes += sstats->tx_bytes; 3865 stats->tx_errors += sstats->tx_errors; 3866 stats->tx_dropped += sstats->tx_dropped; 3867 3868 stats->multicast += sstats->multicast; 3869 stats->collisions += sstats->collisions; 3870 3871 stats->rx_length_errors += sstats->rx_length_errors; 3872 stats->rx_over_errors += sstats->rx_over_errors; 3873 stats->rx_crc_errors += sstats->rx_crc_errors; 3874 stats->rx_frame_errors += sstats->rx_frame_errors; 3875 stats->rx_fifo_errors += sstats->rx_fifo_errors; 3876 stats->rx_missed_errors += sstats->rx_missed_errors; 3877 3878 stats->tx_aborted_errors += sstats->tx_aborted_errors; 3879 stats->tx_carrier_errors += sstats->tx_carrier_errors; 3880 stats->tx_fifo_errors += sstats->tx_fifo_errors; 3881 stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3882 stats->tx_window_errors += sstats->tx_window_errors; 3883 } 3884 3885 read_unlock_bh(&bond->lock); 3886 3887 return stats; 3888 } 3889 3890 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3891 { 3892 struct net_device *slave_dev = NULL; 3893 struct ifbond k_binfo; 3894 struct ifbond __user *u_binfo = NULL; 3895 struct ifslave k_sinfo; 3896 struct ifslave __user *u_sinfo = NULL; 3897 struct mii_ioctl_data *mii = NULL; 3898 int res = 0; 3899 3900 pr_debug("bond_ioctl: master=%s, cmd=%d\n", bond_dev->name, cmd); 3901 3902 switch (cmd) { 3903 case SIOCGMIIPHY: 3904 mii = if_mii(ifr); 3905 if (!mii) 3906 return -EINVAL; 3907 3908 mii->phy_id = 0; 3909 /* Fall Through */ 3910 case SIOCGMIIREG: 3911 /* 3912 * We do this again just in case we were called by SIOCGMIIREG 3913 * instead of SIOCGMIIPHY. 3914 */ 3915 mii = if_mii(ifr); 3916 if (!mii) 3917 return -EINVAL; 3918 3919 3920 if (mii->reg_num == 1) { 3921 struct bonding *bond = netdev_priv(bond_dev); 3922 mii->val_out = 0; 3923 read_lock(&bond->lock); 3924 read_lock(&bond->curr_slave_lock); 3925 if (netif_carrier_ok(bond->dev)) 3926 mii->val_out = BMSR_LSTATUS; 3927 3928 read_unlock(&bond->curr_slave_lock); 3929 read_unlock(&bond->lock); 3930 } 3931 3932 return 0; 3933 case BOND_INFO_QUERY_OLD: 3934 case SIOCBONDINFOQUERY: 3935 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3936 3937 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) 3938 return -EFAULT; 3939 3940 res = bond_info_query(bond_dev, &k_binfo); 3941 if (res == 0 && 3942 copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) 3943 return -EFAULT; 3944 3945 return res; 3946 case BOND_SLAVE_INFO_QUERY_OLD: 3947 case SIOCBONDSLAVEINFOQUERY: 3948 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 3949 3950 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) 3951 return -EFAULT; 3952 3953 res = bond_slave_info_query(bond_dev, &k_sinfo); 3954 if (res == 0 && 3955 copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) 3956 return -EFAULT; 3957 3958 return res; 3959 default: 3960 /* Go on */ 3961 break; 3962 } 3963 3964 if (!capable(CAP_NET_ADMIN)) 3965 return -EPERM; 3966 3967 slave_dev = dev_get_by_name(dev_net(bond_dev), ifr->ifr_slave); 3968 3969 pr_debug("slave_dev=%p:\n", slave_dev); 3970 3971 if (!slave_dev) 3972 res = -ENODEV; 3973 else { 3974 pr_debug("slave_dev->name=%s:\n", slave_dev->name); 3975 switch (cmd) { 3976 case BOND_ENSLAVE_OLD: 3977 case SIOCBONDENSLAVE: 3978 res = bond_enslave(bond_dev, slave_dev); 3979 break; 3980 case BOND_RELEASE_OLD: 3981 case SIOCBONDRELEASE: 3982 res = bond_release(bond_dev, slave_dev); 3983 break; 3984 case BOND_SETHWADDR_OLD: 3985 case SIOCBONDSETHWADDR: 3986 res = bond_sethwaddr(bond_dev, slave_dev); 3987 break; 3988 case BOND_CHANGE_ACTIVE_OLD: 3989 case SIOCBONDCHANGEACTIVE: 3990 res = bond_ioctl_change_active(bond_dev, slave_dev); 3991 break; 3992 default: 3993 res = -EOPNOTSUPP; 3994 } 3995 3996 dev_put(slave_dev); 3997 } 3998 3999 return res; 4000 } 4001 4002 static bool bond_addr_in_mc_list(unsigned char *addr, 4003 struct netdev_hw_addr_list *list, 4004 int addrlen) 4005 { 4006 struct netdev_hw_addr *ha; 4007 4008 netdev_hw_addr_list_for_each(ha, list) 4009 if (!memcmp(ha->addr, addr, addrlen)) 4010 return true; 4011 4012 return false; 4013 } 4014 4015 static void bond_set_multicast_list(struct net_device *bond_dev) 4016 { 4017 struct bonding *bond = netdev_priv(bond_dev); 4018 struct netdev_hw_addr *ha; 4019 bool found; 4020 4021 /* 4022 * Do promisc before checking multicast_mode 4023 */ 4024 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) 4025 /* 4026 * FIXME: Need to handle the error when one of the multi-slaves 4027 * encounters error. 4028 */ 4029 bond_set_promiscuity(bond, 1); 4030 4031 4032 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) 4033 bond_set_promiscuity(bond, -1); 4034 4035 4036 /* set allmulti flag to slaves */ 4037 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) 4038 /* 4039 * FIXME: Need to handle the error when one of the multi-slaves 4040 * encounters error. 4041 */ 4042 bond_set_allmulti(bond, 1); 4043 4044 4045 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) 4046 bond_set_allmulti(bond, -1); 4047 4048 4049 read_lock(&bond->lock); 4050 4051 bond->flags = bond_dev->flags; 4052 4053 /* looking for addresses to add to slaves' mc list */ 4054 netdev_for_each_mc_addr(ha, bond_dev) { 4055 found = bond_addr_in_mc_list(ha->addr, &bond->mc_list, 4056 bond_dev->addr_len); 4057 if (!found) 4058 bond_mc_add(bond, ha->addr); 4059 } 4060 4061 /* looking for addresses to delete from slaves' list */ 4062 netdev_hw_addr_list_for_each(ha, &bond->mc_list) { 4063 found = bond_addr_in_mc_list(ha->addr, &bond_dev->mc, 4064 bond_dev->addr_len); 4065 if (!found) 4066 bond_mc_del(bond, ha->addr); 4067 } 4068 4069 /* save master's multicast list */ 4070 __hw_addr_flush(&bond->mc_list); 4071 __hw_addr_add_multiple(&bond->mc_list, &bond_dev->mc, 4072 bond_dev->addr_len, NETDEV_HW_ADDR_T_MULTICAST); 4073 4074 read_unlock(&bond->lock); 4075 } 4076 4077 static int bond_neigh_setup(struct net_device *dev, struct neigh_parms *parms) 4078 { 4079 struct bonding *bond = netdev_priv(dev); 4080 struct slave *slave = bond->first_slave; 4081 4082 if (slave) { 4083 const struct net_device_ops *slave_ops 4084 = slave->dev->netdev_ops; 4085 if (slave_ops->ndo_neigh_setup) 4086 return slave_ops->ndo_neigh_setup(slave->dev, parms); 4087 } 4088 return 0; 4089 } 4090 4091 /* 4092 * Change the MTU of all of a master's slaves to match the master 4093 */ 4094 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 4095 { 4096 struct bonding *bond = netdev_priv(bond_dev); 4097 struct slave *slave, *stop_at; 4098 int res = 0; 4099 int i; 4100 4101 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond, 4102 (bond_dev ? bond_dev->name : "None"), new_mtu); 4103 4104 /* Can't hold bond->lock with bh disabled here since 4105 * some base drivers panic. On the other hand we can't 4106 * hold bond->lock without bh disabled because we'll 4107 * deadlock. The only solution is to rely on the fact 4108 * that we're under rtnl_lock here, and the slaves 4109 * list won't change. This doesn't solve the problem 4110 * of setting the slave's MTU while it is 4111 * transmitting, but the assumption is that the base 4112 * driver can handle that. 4113 * 4114 * TODO: figure out a way to safely iterate the slaves 4115 * list, but without holding a lock around the actual 4116 * call to the base driver. 4117 */ 4118 4119 bond_for_each_slave(bond, slave, i) { 4120 pr_debug("s %p s->p %p c_m %p\n", 4121 slave, 4122 slave->prev, 4123 slave->dev->netdev_ops->ndo_change_mtu); 4124 4125 res = dev_set_mtu(slave->dev, new_mtu); 4126 4127 if (res) { 4128 /* If we failed to set the slave's mtu to the new value 4129 * we must abort the operation even in ACTIVE_BACKUP 4130 * mode, because if we allow the backup slaves to have 4131 * different mtu values than the active slave we'll 4132 * need to change their mtu when doing a failover. That 4133 * means changing their mtu from timer context, which 4134 * is probably not a good idea. 4135 */ 4136 pr_debug("err %d %s\n", res, slave->dev->name); 4137 goto unwind; 4138 } 4139 } 4140 4141 bond_dev->mtu = new_mtu; 4142 4143 return 0; 4144 4145 unwind: 4146 /* unwind from head to the slave that failed */ 4147 stop_at = slave; 4148 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4149 int tmp_res; 4150 4151 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 4152 if (tmp_res) { 4153 pr_debug("unwind err %d dev %s\n", 4154 tmp_res, slave->dev->name); 4155 } 4156 } 4157 4158 return res; 4159 } 4160 4161 /* 4162 * Change HW address 4163 * 4164 * Note that many devices must be down to change the HW address, and 4165 * downing the master releases all slaves. We can make bonds full of 4166 * bonding devices to test this, however. 4167 */ 4168 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 4169 { 4170 struct bonding *bond = netdev_priv(bond_dev); 4171 struct sockaddr *sa = addr, tmp_sa; 4172 struct slave *slave, *stop_at; 4173 int res = 0; 4174 int i; 4175 4176 if (bond->params.mode == BOND_MODE_ALB) 4177 return bond_alb_set_mac_address(bond_dev, addr); 4178 4179 4180 pr_debug("bond=%p, name=%s\n", 4181 bond, bond_dev ? bond_dev->name : "None"); 4182 4183 /* 4184 * If fail_over_mac is set to active, do nothing and return 4185 * success. Returning an error causes ifenslave to fail. 4186 */ 4187 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE) 4188 return 0; 4189 4190 if (!is_valid_ether_addr(sa->sa_data)) 4191 return -EADDRNOTAVAIL; 4192 4193 /* Can't hold bond->lock with bh disabled here since 4194 * some base drivers panic. On the other hand we can't 4195 * hold bond->lock without bh disabled because we'll 4196 * deadlock. The only solution is to rely on the fact 4197 * that we're under rtnl_lock here, and the slaves 4198 * list won't change. This doesn't solve the problem 4199 * of setting the slave's hw address while it is 4200 * transmitting, but the assumption is that the base 4201 * driver can handle that. 4202 * 4203 * TODO: figure out a way to safely iterate the slaves 4204 * list, but without holding a lock around the actual 4205 * call to the base driver. 4206 */ 4207 4208 bond_for_each_slave(bond, slave, i) { 4209 const struct net_device_ops *slave_ops = slave->dev->netdev_ops; 4210 pr_debug("slave %p %s\n", slave, slave->dev->name); 4211 4212 if (slave_ops->ndo_set_mac_address == NULL) { 4213 res = -EOPNOTSUPP; 4214 pr_debug("EOPNOTSUPP %s\n", slave->dev->name); 4215 goto unwind; 4216 } 4217 4218 res = dev_set_mac_address(slave->dev, addr); 4219 if (res) { 4220 /* TODO: consider downing the slave 4221 * and retry ? 4222 * User should expect communications 4223 * breakage anyway until ARP finish 4224 * updating, so... 4225 */ 4226 pr_debug("err %d %s\n", res, slave->dev->name); 4227 goto unwind; 4228 } 4229 } 4230 4231 /* success */ 4232 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 4233 return 0; 4234 4235 unwind: 4236 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 4237 tmp_sa.sa_family = bond_dev->type; 4238 4239 /* unwind from head to the slave that failed */ 4240 stop_at = slave; 4241 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4242 int tmp_res; 4243 4244 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 4245 if (tmp_res) { 4246 pr_debug("unwind err %d dev %s\n", 4247 tmp_res, slave->dev->name); 4248 } 4249 } 4250 4251 return res; 4252 } 4253 4254 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 4255 { 4256 struct bonding *bond = netdev_priv(bond_dev); 4257 struct slave *slave, *start_at; 4258 int i, slave_no, res = 1; 4259 struct iphdr *iph = ip_hdr(skb); 4260 4261 read_lock(&bond->lock); 4262 4263 if (!BOND_IS_OK(bond)) 4264 goto out; 4265 /* 4266 * Start with the curr_active_slave that joined the bond as the 4267 * default for sending IGMP traffic. For failover purposes one 4268 * needs to maintain some consistency for the interface that will 4269 * send the join/membership reports. The curr_active_slave found 4270 * will send all of this type of traffic. 4271 */ 4272 if ((iph->protocol == IPPROTO_IGMP) && 4273 (skb->protocol == htons(ETH_P_IP))) { 4274 4275 read_lock(&bond->curr_slave_lock); 4276 slave = bond->curr_active_slave; 4277 read_unlock(&bond->curr_slave_lock); 4278 4279 if (!slave) 4280 goto out; 4281 } else { 4282 /* 4283 * Concurrent TX may collide on rr_tx_counter; we accept 4284 * that as being rare enough not to justify using an 4285 * atomic op here. 4286 */ 4287 slave_no = bond->rr_tx_counter++ % bond->slave_cnt; 4288 4289 bond_for_each_slave(bond, slave, i) { 4290 slave_no--; 4291 if (slave_no < 0) 4292 break; 4293 } 4294 } 4295 4296 start_at = slave; 4297 bond_for_each_slave_from(bond, slave, i, start_at) { 4298 if (IS_UP(slave->dev) && 4299 (slave->link == BOND_LINK_UP) && 4300 (slave->state == BOND_STATE_ACTIVE)) { 4301 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4302 break; 4303 } 4304 } 4305 4306 out: 4307 if (res) { 4308 /* no suitable interface, frame not sent */ 4309 dev_kfree_skb(skb); 4310 } 4311 read_unlock(&bond->lock); 4312 return NETDEV_TX_OK; 4313 } 4314 4315 4316 /* 4317 * in active-backup mode, we know that bond->curr_active_slave is always valid if 4318 * the bond has a usable interface. 4319 */ 4320 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 4321 { 4322 struct bonding *bond = netdev_priv(bond_dev); 4323 int res = 1; 4324 4325 read_lock(&bond->lock); 4326 read_lock(&bond->curr_slave_lock); 4327 4328 if (!BOND_IS_OK(bond)) 4329 goto out; 4330 4331 if (!bond->curr_active_slave) 4332 goto out; 4333 4334 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev); 4335 4336 out: 4337 if (res) 4338 /* no suitable interface, frame not sent */ 4339 dev_kfree_skb(skb); 4340 4341 read_unlock(&bond->curr_slave_lock); 4342 read_unlock(&bond->lock); 4343 return NETDEV_TX_OK; 4344 } 4345 4346 /* 4347 * In bond_xmit_xor() , we determine the output device by using a pre- 4348 * determined xmit_hash_policy(), If the selected device is not enabled, 4349 * find the next active slave. 4350 */ 4351 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4352 { 4353 struct bonding *bond = netdev_priv(bond_dev); 4354 struct slave *slave, *start_at; 4355 int slave_no; 4356 int i; 4357 int res = 1; 4358 4359 read_lock(&bond->lock); 4360 4361 if (!BOND_IS_OK(bond)) 4362 goto out; 4363 4364 slave_no = bond->xmit_hash_policy(skb, bond->slave_cnt); 4365 4366 bond_for_each_slave(bond, slave, i) { 4367 slave_no--; 4368 if (slave_no < 0) 4369 break; 4370 } 4371 4372 start_at = slave; 4373 4374 bond_for_each_slave_from(bond, slave, i, start_at) { 4375 if (IS_UP(slave->dev) && 4376 (slave->link == BOND_LINK_UP) && 4377 (slave->state == BOND_STATE_ACTIVE)) { 4378 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4379 break; 4380 } 4381 } 4382 4383 out: 4384 if (res) { 4385 /* no suitable interface, frame not sent */ 4386 dev_kfree_skb(skb); 4387 } 4388 read_unlock(&bond->lock); 4389 return NETDEV_TX_OK; 4390 } 4391 4392 /* 4393 * in broadcast mode, we send everything to all usable interfaces. 4394 */ 4395 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4396 { 4397 struct bonding *bond = netdev_priv(bond_dev); 4398 struct slave *slave, *start_at; 4399 struct net_device *tx_dev = NULL; 4400 int i; 4401 int res = 1; 4402 4403 read_lock(&bond->lock); 4404 4405 if (!BOND_IS_OK(bond)) 4406 goto out; 4407 4408 read_lock(&bond->curr_slave_lock); 4409 start_at = bond->curr_active_slave; 4410 read_unlock(&bond->curr_slave_lock); 4411 4412 if (!start_at) 4413 goto out; 4414 4415 bond_for_each_slave_from(bond, slave, i, start_at) { 4416 if (IS_UP(slave->dev) && 4417 (slave->link == BOND_LINK_UP) && 4418 (slave->state == BOND_STATE_ACTIVE)) { 4419 if (tx_dev) { 4420 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4421 if (!skb2) { 4422 pr_err("%s: Error: bond_xmit_broadcast(): skb_clone() failed\n", 4423 bond_dev->name); 4424 continue; 4425 } 4426 4427 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4428 if (res) { 4429 dev_kfree_skb(skb2); 4430 continue; 4431 } 4432 } 4433 tx_dev = slave->dev; 4434 } 4435 } 4436 4437 if (tx_dev) 4438 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4439 4440 out: 4441 if (res) 4442 /* no suitable interface, frame not sent */ 4443 dev_kfree_skb(skb); 4444 4445 /* frame sent to all suitable interfaces */ 4446 read_unlock(&bond->lock); 4447 return NETDEV_TX_OK; 4448 } 4449 4450 /*------------------------- Device initialization ---------------------------*/ 4451 4452 static void bond_set_xmit_hash_policy(struct bonding *bond) 4453 { 4454 switch (bond->params.xmit_policy) { 4455 case BOND_XMIT_POLICY_LAYER23: 4456 bond->xmit_hash_policy = bond_xmit_hash_policy_l23; 4457 break; 4458 case BOND_XMIT_POLICY_LAYER34: 4459 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4460 break; 4461 case BOND_XMIT_POLICY_LAYER2: 4462 default: 4463 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4464 break; 4465 } 4466 } 4467 4468 /* 4469 * Lookup the slave that corresponds to a qid 4470 */ 4471 static inline int bond_slave_override(struct bonding *bond, 4472 struct sk_buff *skb) 4473 { 4474 int i, res = 1; 4475 struct slave *slave = NULL; 4476 struct slave *check_slave; 4477 4478 read_lock(&bond->lock); 4479 4480 if (!BOND_IS_OK(bond) || !skb->queue_mapping) 4481 goto out; 4482 4483 /* Find out if any slaves have the same mapping as this skb. */ 4484 bond_for_each_slave(bond, check_slave, i) { 4485 if (check_slave->queue_id == skb->queue_mapping) { 4486 slave = check_slave; 4487 break; 4488 } 4489 } 4490 4491 /* If the slave isn't UP, use default transmit policy. */ 4492 if (slave && slave->queue_id && IS_UP(slave->dev) && 4493 (slave->link == BOND_LINK_UP)) { 4494 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4495 } 4496 4497 out: 4498 read_unlock(&bond->lock); 4499 return res; 4500 } 4501 4502 static u16 bond_select_queue(struct net_device *dev, struct sk_buff *skb) 4503 { 4504 /* 4505 * This helper function exists to help dev_pick_tx get the correct 4506 * destination queue. Using a helper function skips the a call to 4507 * skb_tx_hash and will put the skbs in the queue we expect on their 4508 * way down to the bonding driver. 4509 */ 4510 return skb->queue_mapping; 4511 } 4512 4513 static netdev_tx_t bond_start_xmit(struct sk_buff *skb, struct net_device *dev) 4514 { 4515 struct bonding *bond = netdev_priv(dev); 4516 4517 if (TX_QUEUE_OVERRIDE(bond->params.mode)) { 4518 if (!bond_slave_override(bond, skb)) 4519 return NETDEV_TX_OK; 4520 } 4521 4522 switch (bond->params.mode) { 4523 case BOND_MODE_ROUNDROBIN: 4524 return bond_xmit_roundrobin(skb, dev); 4525 case BOND_MODE_ACTIVEBACKUP: 4526 return bond_xmit_activebackup(skb, dev); 4527 case BOND_MODE_XOR: 4528 return bond_xmit_xor(skb, dev); 4529 case BOND_MODE_BROADCAST: 4530 return bond_xmit_broadcast(skb, dev); 4531 case BOND_MODE_8023AD: 4532 return bond_3ad_xmit_xor(skb, dev); 4533 case BOND_MODE_ALB: 4534 case BOND_MODE_TLB: 4535 return bond_alb_xmit(skb, dev); 4536 default: 4537 /* Should never happen, mode already checked */ 4538 pr_err("%s: Error: Unknown bonding mode %d\n", 4539 dev->name, bond->params.mode); 4540 WARN_ON_ONCE(1); 4541 dev_kfree_skb(skb); 4542 return NETDEV_TX_OK; 4543 } 4544 } 4545 4546 4547 /* 4548 * set bond mode specific net device operations 4549 */ 4550 void bond_set_mode_ops(struct bonding *bond, int mode) 4551 { 4552 struct net_device *bond_dev = bond->dev; 4553 4554 switch (mode) { 4555 case BOND_MODE_ROUNDROBIN: 4556 break; 4557 case BOND_MODE_ACTIVEBACKUP: 4558 break; 4559 case BOND_MODE_XOR: 4560 bond_set_xmit_hash_policy(bond); 4561 break; 4562 case BOND_MODE_BROADCAST: 4563 break; 4564 case BOND_MODE_8023AD: 4565 bond_set_master_3ad_flags(bond); 4566 bond_set_xmit_hash_policy(bond); 4567 break; 4568 case BOND_MODE_ALB: 4569 bond_set_master_alb_flags(bond); 4570 /* FALLTHRU */ 4571 case BOND_MODE_TLB: 4572 break; 4573 default: 4574 /* Should never happen, mode already checked */ 4575 pr_err("%s: Error: Unknown bonding mode %d\n", 4576 bond_dev->name, mode); 4577 break; 4578 } 4579 } 4580 4581 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4582 struct ethtool_drvinfo *drvinfo) 4583 { 4584 strncpy(drvinfo->driver, DRV_NAME, 32); 4585 strncpy(drvinfo->version, DRV_VERSION, 32); 4586 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION); 4587 } 4588 4589 static const struct ethtool_ops bond_ethtool_ops = { 4590 .get_drvinfo = bond_ethtool_get_drvinfo, 4591 .get_link = ethtool_op_get_link, 4592 .get_tx_csum = ethtool_op_get_tx_csum, 4593 .get_sg = ethtool_op_get_sg, 4594 .get_tso = ethtool_op_get_tso, 4595 .get_ufo = ethtool_op_get_ufo, 4596 .get_flags = ethtool_op_get_flags, 4597 }; 4598 4599 static const struct net_device_ops bond_netdev_ops = { 4600 .ndo_init = bond_init, 4601 .ndo_uninit = bond_uninit, 4602 .ndo_open = bond_open, 4603 .ndo_stop = bond_close, 4604 .ndo_start_xmit = bond_start_xmit, 4605 .ndo_select_queue = bond_select_queue, 4606 .ndo_get_stats64 = bond_get_stats, 4607 .ndo_do_ioctl = bond_do_ioctl, 4608 .ndo_set_multicast_list = bond_set_multicast_list, 4609 .ndo_change_mtu = bond_change_mtu, 4610 .ndo_set_mac_address = bond_set_mac_address, 4611 .ndo_neigh_setup = bond_neigh_setup, 4612 .ndo_vlan_rx_register = bond_vlan_rx_register, 4613 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid, 4614 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid, 4615 #ifdef CONFIG_NET_POLL_CONTROLLER 4616 .ndo_netpoll_cleanup = bond_netpoll_cleanup, 4617 .ndo_poll_controller = bond_poll_controller, 4618 #endif 4619 }; 4620 4621 static void bond_destructor(struct net_device *bond_dev) 4622 { 4623 struct bonding *bond = netdev_priv(bond_dev); 4624 if (bond->wq) 4625 destroy_workqueue(bond->wq); 4626 free_netdev(bond_dev); 4627 } 4628 4629 static void bond_setup(struct net_device *bond_dev) 4630 { 4631 struct bonding *bond = netdev_priv(bond_dev); 4632 4633 /* initialize rwlocks */ 4634 rwlock_init(&bond->lock); 4635 rwlock_init(&bond->curr_slave_lock); 4636 4637 bond->params = bonding_defaults; 4638 4639 /* Initialize pointers */ 4640 bond->dev = bond_dev; 4641 INIT_LIST_HEAD(&bond->vlan_list); 4642 4643 /* Initialize the device entry points */ 4644 ether_setup(bond_dev); 4645 bond_dev->netdev_ops = &bond_netdev_ops; 4646 bond_dev->ethtool_ops = &bond_ethtool_ops; 4647 bond_set_mode_ops(bond, bond->params.mode); 4648 4649 bond_dev->destructor = bond_destructor; 4650 4651 /* Initialize the device options */ 4652 bond_dev->tx_queue_len = 0; 4653 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4654 bond_dev->priv_flags |= IFF_BONDING; 4655 bond_dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; 4656 4657 if (bond->params.arp_interval) 4658 bond_dev->priv_flags |= IFF_MASTER_ARPMON; 4659 4660 /* At first, we block adding VLANs. That's the only way to 4661 * prevent problems that occur when adding VLANs over an 4662 * empty bond. The block will be removed once non-challenged 4663 * slaves are enslaved. 4664 */ 4665 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4666 4667 /* don't acquire bond device's netif_tx_lock when 4668 * transmitting */ 4669 bond_dev->features |= NETIF_F_LLTX; 4670 4671 /* By default, we declare the bond to be fully 4672 * VLAN hardware accelerated capable. Special 4673 * care is taken in the various xmit functions 4674 * when there are slaves that are not hw accel 4675 * capable 4676 */ 4677 bond_dev->features |= (NETIF_F_HW_VLAN_TX | 4678 NETIF_F_HW_VLAN_RX | 4679 NETIF_F_HW_VLAN_FILTER); 4680 4681 } 4682 4683 static void bond_work_cancel_all(struct bonding *bond) 4684 { 4685 write_lock_bh(&bond->lock); 4686 bond->kill_timers = 1; 4687 write_unlock_bh(&bond->lock); 4688 4689 if (bond->params.miimon && delayed_work_pending(&bond->mii_work)) 4690 cancel_delayed_work(&bond->mii_work); 4691 4692 if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work)) 4693 cancel_delayed_work(&bond->arp_work); 4694 4695 if (bond->params.mode == BOND_MODE_ALB && 4696 delayed_work_pending(&bond->alb_work)) 4697 cancel_delayed_work(&bond->alb_work); 4698 4699 if (bond->params.mode == BOND_MODE_8023AD && 4700 delayed_work_pending(&bond->ad_work)) 4701 cancel_delayed_work(&bond->ad_work); 4702 } 4703 4704 /* 4705 * Destroy a bonding device. 4706 * Must be under rtnl_lock when this function is called. 4707 */ 4708 static void bond_uninit(struct net_device *bond_dev) 4709 { 4710 struct bonding *bond = netdev_priv(bond_dev); 4711 struct vlan_entry *vlan, *tmp; 4712 4713 bond_netpoll_cleanup(bond_dev); 4714 4715 /* Release the bonded slaves */ 4716 bond_release_all(bond_dev); 4717 4718 list_del(&bond->bond_list); 4719 4720 bond_work_cancel_all(bond); 4721 4722 bond_remove_proc_entry(bond); 4723 4724 __hw_addr_flush(&bond->mc_list); 4725 4726 list_for_each_entry_safe(vlan, tmp, &bond->vlan_list, vlan_list) { 4727 list_del(&vlan->vlan_list); 4728 kfree(vlan); 4729 } 4730 } 4731 4732 /*------------------------- Module initialization ---------------------------*/ 4733 4734 /* 4735 * Convert string input module parms. Accept either the 4736 * number of the mode or its string name. A bit complicated because 4737 * some mode names are substrings of other names, and calls from sysfs 4738 * may have whitespace in the name (trailing newlines, for example). 4739 */ 4740 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl) 4741 { 4742 int modeint = -1, i, rv; 4743 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; 4744 4745 for (p = (char *)buf; *p; p++) 4746 if (!(isdigit(*p) || isspace(*p))) 4747 break; 4748 4749 if (*p) 4750 rv = sscanf(buf, "%20s", modestr); 4751 else 4752 rv = sscanf(buf, "%d", &modeint); 4753 4754 if (!rv) 4755 return -1; 4756 4757 for (i = 0; tbl[i].modename; i++) { 4758 if (modeint == tbl[i].mode) 4759 return tbl[i].mode; 4760 if (strcmp(modestr, tbl[i].modename) == 0) 4761 return tbl[i].mode; 4762 } 4763 4764 return -1; 4765 } 4766 4767 static int bond_check_params(struct bond_params *params) 4768 { 4769 int arp_validate_value, fail_over_mac_value, primary_reselect_value; 4770 4771 /* 4772 * Convert string parameters. 4773 */ 4774 if (mode) { 4775 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4776 if (bond_mode == -1) { 4777 pr_err("Error: Invalid bonding mode \"%s\"\n", 4778 mode == NULL ? "NULL" : mode); 4779 return -EINVAL; 4780 } 4781 } 4782 4783 if (xmit_hash_policy) { 4784 if ((bond_mode != BOND_MODE_XOR) && 4785 (bond_mode != BOND_MODE_8023AD)) { 4786 pr_info("xmit_hash_policy param is irrelevant in mode %s\n", 4787 bond_mode_name(bond_mode)); 4788 } else { 4789 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4790 xmit_hashtype_tbl); 4791 if (xmit_hashtype == -1) { 4792 pr_err("Error: Invalid xmit_hash_policy \"%s\"\n", 4793 xmit_hash_policy == NULL ? "NULL" : 4794 xmit_hash_policy); 4795 return -EINVAL; 4796 } 4797 } 4798 } 4799 4800 if (lacp_rate) { 4801 if (bond_mode != BOND_MODE_8023AD) { 4802 pr_info("lacp_rate param is irrelevant in mode %s\n", 4803 bond_mode_name(bond_mode)); 4804 } else { 4805 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4806 if (lacp_fast == -1) { 4807 pr_err("Error: Invalid lacp rate \"%s\"\n", 4808 lacp_rate == NULL ? "NULL" : lacp_rate); 4809 return -EINVAL; 4810 } 4811 } 4812 } 4813 4814 if (ad_select) { 4815 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl); 4816 if (params->ad_select == -1) { 4817 pr_err("Error: Invalid ad_select \"%s\"\n", 4818 ad_select == NULL ? "NULL" : ad_select); 4819 return -EINVAL; 4820 } 4821 4822 if (bond_mode != BOND_MODE_8023AD) { 4823 pr_warning("ad_select param only affects 802.3ad mode\n"); 4824 } 4825 } else { 4826 params->ad_select = BOND_AD_STABLE; 4827 } 4828 4829 if (max_bonds < 0) { 4830 pr_warning("Warning: max_bonds (%d) not in range %d-%d, so it was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4831 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4832 max_bonds = BOND_DEFAULT_MAX_BONDS; 4833 } 4834 4835 if (miimon < 0) { 4836 pr_warning("Warning: miimon module parameter (%d), not in range 0-%d, so it was reset to %d\n", 4837 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4838 miimon = BOND_LINK_MON_INTERV; 4839 } 4840 4841 if (updelay < 0) { 4842 pr_warning("Warning: updelay module parameter (%d), not in range 0-%d, so it was reset to 0\n", 4843 updelay, INT_MAX); 4844 updelay = 0; 4845 } 4846 4847 if (downdelay < 0) { 4848 pr_warning("Warning: downdelay module parameter (%d), not in range 0-%d, so it was reset to 0\n", 4849 downdelay, INT_MAX); 4850 downdelay = 0; 4851 } 4852 4853 if ((use_carrier != 0) && (use_carrier != 1)) { 4854 pr_warning("Warning: use_carrier module parameter (%d), not of valid value (0/1), so it was set to 1\n", 4855 use_carrier); 4856 use_carrier = 1; 4857 } 4858 4859 if (num_grat_arp < 0 || num_grat_arp > 255) { 4860 pr_warning("Warning: num_grat_arp (%d) not in range 0-255 so it was reset to 1\n", 4861 num_grat_arp); 4862 num_grat_arp = 1; 4863 } 4864 4865 if (num_unsol_na < 0 || num_unsol_na > 255) { 4866 pr_warning("Warning: num_unsol_na (%d) not in range 0-255 so it was reset to 1\n", 4867 num_unsol_na); 4868 num_unsol_na = 1; 4869 } 4870 4871 /* reset values for 802.3ad */ 4872 if (bond_mode == BOND_MODE_8023AD) { 4873 if (!miimon) { 4874 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure, speed and duplex which are essential for 802.3ad operation\n"); 4875 pr_warning("Forcing miimon to 100msec\n"); 4876 miimon = 100; 4877 } 4878 } 4879 4880 if (tx_queues < 1 || tx_queues > 255) { 4881 pr_warning("Warning: tx_queues (%d) should be between " 4882 "1 and 255, resetting to %d\n", 4883 tx_queues, BOND_DEFAULT_TX_QUEUES); 4884 tx_queues = BOND_DEFAULT_TX_QUEUES; 4885 } 4886 4887 if ((all_slaves_active != 0) && (all_slaves_active != 1)) { 4888 pr_warning("Warning: all_slaves_active module parameter (%d), " 4889 "not of valid value (0/1), so it was set to " 4890 "0\n", all_slaves_active); 4891 all_slaves_active = 0; 4892 } 4893 4894 /* reset values for TLB/ALB */ 4895 if ((bond_mode == BOND_MODE_TLB) || 4896 (bond_mode == BOND_MODE_ALB)) { 4897 if (!miimon) { 4898 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure and link speed which are essential for TLB/ALB load balancing\n"); 4899 pr_warning("Forcing miimon to 100msec\n"); 4900 miimon = 100; 4901 } 4902 } 4903 4904 if (bond_mode == BOND_MODE_ALB) { 4905 pr_notice("In ALB mode you might experience client disconnections upon reconnection of a link if the bonding module updelay parameter (%d msec) is incompatible with the forwarding delay time of the switch\n", 4906 updelay); 4907 } 4908 4909 if (!miimon) { 4910 if (updelay || downdelay) { 4911 /* just warn the user the up/down delay will have 4912 * no effect since miimon is zero... 4913 */ 4914 pr_warning("Warning: miimon module parameter not set and updelay (%d) or downdelay (%d) module parameter is set; updelay and downdelay have no effect unless miimon is set\n", 4915 updelay, downdelay); 4916 } 4917 } else { 4918 /* don't allow arp monitoring */ 4919 if (arp_interval) { 4920 pr_warning("Warning: miimon (%d) and arp_interval (%d) can't be used simultaneously, disabling ARP monitoring\n", 4921 miimon, arp_interval); 4922 arp_interval = 0; 4923 } 4924 4925 if ((updelay % miimon) != 0) { 4926 pr_warning("Warning: updelay (%d) is not a multiple of miimon (%d), updelay rounded to %d ms\n", 4927 updelay, miimon, 4928 (updelay / miimon) * miimon); 4929 } 4930 4931 updelay /= miimon; 4932 4933 if ((downdelay % miimon) != 0) { 4934 pr_warning("Warning: downdelay (%d) is not a multiple of miimon (%d), downdelay rounded to %d ms\n", 4935 downdelay, miimon, 4936 (downdelay / miimon) * miimon); 4937 } 4938 4939 downdelay /= miimon; 4940 } 4941 4942 if (arp_interval < 0) { 4943 pr_warning("Warning: arp_interval module parameter (%d) , not in range 0-%d, so it was reset to %d\n", 4944 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4945 arp_interval = BOND_LINK_ARP_INTERV; 4946 } 4947 4948 for (arp_ip_count = 0; 4949 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; 4950 arp_ip_count++) { 4951 /* not complete check, but should be good enough to 4952 catch mistakes */ 4953 if (!isdigit(arp_ip_target[arp_ip_count][0])) { 4954 pr_warning("Warning: bad arp_ip_target module parameter (%s), ARP monitoring will not be performed\n", 4955 arp_ip_target[arp_ip_count]); 4956 arp_interval = 0; 4957 } else { 4958 __be32 ip = in_aton(arp_ip_target[arp_ip_count]); 4959 arp_target[arp_ip_count] = ip; 4960 } 4961 } 4962 4963 if (arp_interval && !arp_ip_count) { 4964 /* don't allow arping if no arp_ip_target given... */ 4965 pr_warning("Warning: arp_interval module parameter (%d) specified without providing an arp_ip_target parameter, arp_interval was reset to 0\n", 4966 arp_interval); 4967 arp_interval = 0; 4968 } 4969 4970 if (arp_validate) { 4971 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4972 pr_err("arp_validate only supported in active-backup mode\n"); 4973 return -EINVAL; 4974 } 4975 if (!arp_interval) { 4976 pr_err("arp_validate requires arp_interval\n"); 4977 return -EINVAL; 4978 } 4979 4980 arp_validate_value = bond_parse_parm(arp_validate, 4981 arp_validate_tbl); 4982 if (arp_validate_value == -1) { 4983 pr_err("Error: invalid arp_validate \"%s\"\n", 4984 arp_validate == NULL ? "NULL" : arp_validate); 4985 return -EINVAL; 4986 } 4987 } else 4988 arp_validate_value = 0; 4989 4990 if (miimon) { 4991 pr_info("MII link monitoring set to %d ms\n", miimon); 4992 } else if (arp_interval) { 4993 int i; 4994 4995 pr_info("ARP monitoring set to %d ms, validate %s, with %d target(s):", 4996 arp_interval, 4997 arp_validate_tbl[arp_validate_value].modename, 4998 arp_ip_count); 4999 5000 for (i = 0; i < arp_ip_count; i++) 5001 pr_info(" %s", arp_ip_target[i]); 5002 5003 pr_info("\n"); 5004 5005 } else if (max_bonds) { 5006 /* miimon and arp_interval not set, we need one so things 5007 * work as expected, see bonding.txt for details 5008 */ 5009 pr_warning("Warning: either miimon or arp_interval and arp_ip_target module parameters must be specified, otherwise bonding will not detect link failures! see bonding.txt for details.\n"); 5010 } 5011 5012 if (primary && !USES_PRIMARY(bond_mode)) { 5013 /* currently, using a primary only makes sense 5014 * in active backup, TLB or ALB modes 5015 */ 5016 pr_warning("Warning: %s primary device specified but has no effect in %s mode\n", 5017 primary, bond_mode_name(bond_mode)); 5018 primary = NULL; 5019 } 5020 5021 if (primary && primary_reselect) { 5022 primary_reselect_value = bond_parse_parm(primary_reselect, 5023 pri_reselect_tbl); 5024 if (primary_reselect_value == -1) { 5025 pr_err("Error: Invalid primary_reselect \"%s\"\n", 5026 primary_reselect == 5027 NULL ? "NULL" : primary_reselect); 5028 return -EINVAL; 5029 } 5030 } else { 5031 primary_reselect_value = BOND_PRI_RESELECT_ALWAYS; 5032 } 5033 5034 if (fail_over_mac) { 5035 fail_over_mac_value = bond_parse_parm(fail_over_mac, 5036 fail_over_mac_tbl); 5037 if (fail_over_mac_value == -1) { 5038 pr_err("Error: invalid fail_over_mac \"%s\"\n", 5039 arp_validate == NULL ? "NULL" : arp_validate); 5040 return -EINVAL; 5041 } 5042 5043 if (bond_mode != BOND_MODE_ACTIVEBACKUP) 5044 pr_warning("Warning: fail_over_mac only affects active-backup mode.\n"); 5045 } else { 5046 fail_over_mac_value = BOND_FOM_NONE; 5047 } 5048 5049 /* fill params struct with the proper values */ 5050 params->mode = bond_mode; 5051 params->xmit_policy = xmit_hashtype; 5052 params->miimon = miimon; 5053 params->num_grat_arp = num_grat_arp; 5054 params->num_unsol_na = num_unsol_na; 5055 params->arp_interval = arp_interval; 5056 params->arp_validate = arp_validate_value; 5057 params->updelay = updelay; 5058 params->downdelay = downdelay; 5059 params->use_carrier = use_carrier; 5060 params->lacp_fast = lacp_fast; 5061 params->primary[0] = 0; 5062 params->primary_reselect = primary_reselect_value; 5063 params->fail_over_mac = fail_over_mac_value; 5064 params->tx_queues = tx_queues; 5065 params->all_slaves_active = all_slaves_active; 5066 5067 if (primary) { 5068 strncpy(params->primary, primary, IFNAMSIZ); 5069 params->primary[IFNAMSIZ - 1] = 0; 5070 } 5071 5072 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 5073 5074 return 0; 5075 } 5076 5077 static struct lock_class_key bonding_netdev_xmit_lock_key; 5078 static struct lock_class_key bonding_netdev_addr_lock_key; 5079 5080 static void bond_set_lockdep_class_one(struct net_device *dev, 5081 struct netdev_queue *txq, 5082 void *_unused) 5083 { 5084 lockdep_set_class(&txq->_xmit_lock, 5085 &bonding_netdev_xmit_lock_key); 5086 } 5087 5088 static void bond_set_lockdep_class(struct net_device *dev) 5089 { 5090 lockdep_set_class(&dev->addr_list_lock, 5091 &bonding_netdev_addr_lock_key); 5092 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL); 5093 } 5094 5095 /* 5096 * Called from registration process 5097 */ 5098 static int bond_init(struct net_device *bond_dev) 5099 { 5100 struct bonding *bond = netdev_priv(bond_dev); 5101 struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id); 5102 5103 pr_debug("Begin bond_init for %s\n", bond_dev->name); 5104 5105 bond->wq = create_singlethread_workqueue(bond_dev->name); 5106 if (!bond->wq) 5107 return -ENOMEM; 5108 5109 bond_set_lockdep_class(bond_dev); 5110 5111 netif_carrier_off(bond_dev); 5112 5113 bond_create_proc_entry(bond); 5114 list_add_tail(&bond->bond_list, &bn->dev_list); 5115 5116 bond_prepare_sysfs_group(bond); 5117 5118 __hw_addr_init(&bond->mc_list); 5119 return 0; 5120 } 5121 5122 static int bond_validate(struct nlattr *tb[], struct nlattr *data[]) 5123 { 5124 if (tb[IFLA_ADDRESS]) { 5125 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 5126 return -EINVAL; 5127 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 5128 return -EADDRNOTAVAIL; 5129 } 5130 return 0; 5131 } 5132 5133 static struct rtnl_link_ops bond_link_ops __read_mostly = { 5134 .kind = "bond", 5135 .priv_size = sizeof(struct bonding), 5136 .setup = bond_setup, 5137 .validate = bond_validate, 5138 }; 5139 5140 /* Create a new bond based on the specified name and bonding parameters. 5141 * If name is NULL, obtain a suitable "bond%d" name for us. 5142 * Caller must NOT hold rtnl_lock; we need to release it here before we 5143 * set up our sysfs entries. 5144 */ 5145 int bond_create(struct net *net, const char *name) 5146 { 5147 struct net_device *bond_dev; 5148 int res; 5149 5150 rtnl_lock(); 5151 5152 bond_dev = alloc_netdev_mq(sizeof(struct bonding), name ? name : "", 5153 bond_setup, tx_queues); 5154 if (!bond_dev) { 5155 pr_err("%s: eek! can't alloc netdev!\n", name); 5156 rtnl_unlock(); 5157 return -ENOMEM; 5158 } 5159 5160 dev_net_set(bond_dev, net); 5161 bond_dev->rtnl_link_ops = &bond_link_ops; 5162 5163 if (!name) { 5164 res = dev_alloc_name(bond_dev, "bond%d"); 5165 if (res < 0) 5166 goto out; 5167 } else { 5168 /* 5169 * If we're given a name to register 5170 * we need to ensure that its not already 5171 * registered 5172 */ 5173 res = -EEXIST; 5174 if (__dev_get_by_name(net, name) != NULL) 5175 goto out; 5176 } 5177 5178 res = register_netdevice(bond_dev); 5179 5180 out: 5181 rtnl_unlock(); 5182 if (res < 0) 5183 bond_destructor(bond_dev); 5184 return res; 5185 } 5186 5187 static int __net_init bond_net_init(struct net *net) 5188 { 5189 struct bond_net *bn = net_generic(net, bond_net_id); 5190 5191 bn->net = net; 5192 INIT_LIST_HEAD(&bn->dev_list); 5193 5194 bond_create_proc_dir(bn); 5195 5196 return 0; 5197 } 5198 5199 static void __net_exit bond_net_exit(struct net *net) 5200 { 5201 struct bond_net *bn = net_generic(net, bond_net_id); 5202 5203 bond_destroy_proc_dir(bn); 5204 } 5205 5206 static struct pernet_operations bond_net_ops = { 5207 .init = bond_net_init, 5208 .exit = bond_net_exit, 5209 .id = &bond_net_id, 5210 .size = sizeof(struct bond_net), 5211 }; 5212 5213 static int __init bonding_init(void) 5214 { 5215 int i; 5216 int res; 5217 5218 pr_info("%s", version); 5219 5220 res = bond_check_params(&bonding_defaults); 5221 if (res) 5222 goto out; 5223 5224 res = register_pernet_subsys(&bond_net_ops); 5225 if (res) 5226 goto out; 5227 5228 res = rtnl_link_register(&bond_link_ops); 5229 if (res) 5230 goto err_link; 5231 5232 for (i = 0; i < max_bonds; i++) { 5233 res = bond_create(&init_net, NULL); 5234 if (res) 5235 goto err; 5236 } 5237 5238 res = bond_create_sysfs(); 5239 if (res) 5240 goto err; 5241 5242 register_netdevice_notifier(&bond_netdev_notifier); 5243 register_inetaddr_notifier(&bond_inetaddr_notifier); 5244 bond_register_ipv6_notifier(); 5245 out: 5246 return res; 5247 err: 5248 rtnl_link_unregister(&bond_link_ops); 5249 err_link: 5250 unregister_pernet_subsys(&bond_net_ops); 5251 goto out; 5252 5253 } 5254 5255 static void __exit bonding_exit(void) 5256 { 5257 unregister_netdevice_notifier(&bond_netdev_notifier); 5258 unregister_inetaddr_notifier(&bond_inetaddr_notifier); 5259 bond_unregister_ipv6_notifier(); 5260 5261 bond_destroy_sysfs(); 5262 5263 rtnl_link_unregister(&bond_link_ops); 5264 unregister_pernet_subsys(&bond_net_ops); 5265 } 5266 5267 module_init(bonding_init); 5268 module_exit(bonding_exit); 5269 MODULE_LICENSE("GPL"); 5270 MODULE_VERSION(DRV_VERSION); 5271 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 5272 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 5273 MODULE_ALIAS_RTNL_LINK("bond"); 5274