xref: /linux/drivers/net/bonding/bond_alb.c (revision a234ca0faa65dcd5cc473915bd925130ebb7b74b)
1 /*
2  * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License along
15  * with this program; if not, write to the Free Software Foundation, Inc.,
16  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/skbuff.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/pkt_sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/ip.h>
33 #include <linux/ipv6.h>
34 #include <linux/if_arp.h>
35 #include <linux/if_ether.h>
36 #include <linux/if_bonding.h>
37 #include <linux/if_vlan.h>
38 #include <linux/in.h>
39 #include <net/ipx.h>
40 #include <net/arp.h>
41 #include <net/ipv6.h>
42 #include <asm/byteorder.h>
43 #include "bonding.h"
44 #include "bond_alb.h"
45 
46 
47 #define ALB_TIMER_TICKS_PER_SEC	    10	/* should be a divisor of HZ */
48 #define BOND_TLB_REBALANCE_INTERVAL 10	/* In seconds, periodic re-balancing.
49 					 * Used for division - never set
50 					 * to zero !!!
51 					 */
52 #define BOND_ALB_LP_INTERVAL	    1	/* In seconds, periodic send of
53 					 * learning packets to the switch
54 					 */
55 
56 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
57 				  * ALB_TIMER_TICKS_PER_SEC)
58 
59 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
60 			   * ALB_TIMER_TICKS_PER_SEC)
61 
62 #define TLB_HASH_TABLE_SIZE 256	/* The size of the clients hash table.
63 				 * Note that this value MUST NOT be smaller
64 				 * because the key hash table is BYTE wide !
65 				 */
66 
67 
68 #define TLB_NULL_INDEX		0xffffffff
69 #define MAX_LP_BURST		3
70 
71 /* rlb defs */
72 #define RLB_HASH_TABLE_SIZE	256
73 #define RLB_NULL_INDEX		0xffffffff
74 #define RLB_UPDATE_DELAY	2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
75 #define RLB_ARP_BURST_SIZE	2
76 #define RLB_UPDATE_RETRY	3	/* 3-ticks - must be smaller than the rlb
77 					 * rebalance interval (5 min).
78 					 */
79 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
80  * promiscuous after failover
81  */
82 #define RLB_PROMISC_TIMEOUT	10*ALB_TIMER_TICKS_PER_SEC
83 
84 #ifndef __long_aligned
85 #define __long_aligned __attribute__((aligned((sizeof(long)))))
86 #endif
87 static const u8 mac_bcast[ETH_ALEN] __long_aligned = {
88 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
89 };
90 static const u8 mac_v6_allmcast[ETH_ALEN] __long_aligned = {
91 	0x33, 0x33, 0x00, 0x00, 0x00, 0x01
92 };
93 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
94 
95 #pragma pack(1)
96 struct learning_pkt {
97 	u8 mac_dst[ETH_ALEN];
98 	u8 mac_src[ETH_ALEN];
99 	__be16 type;
100 	u8 padding[ETH_ZLEN - ETH_HLEN];
101 };
102 
103 struct arp_pkt {
104 	__be16  hw_addr_space;
105 	__be16  prot_addr_space;
106 	u8      hw_addr_len;
107 	u8      prot_addr_len;
108 	__be16  op_code;
109 	u8      mac_src[ETH_ALEN];	/* sender hardware address */
110 	__be32  ip_src;			/* sender IP address */
111 	u8      mac_dst[ETH_ALEN];	/* target hardware address */
112 	__be32  ip_dst;			/* target IP address */
113 };
114 #pragma pack()
115 
116 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
117 {
118 	return (struct arp_pkt *)skb_network_header(skb);
119 }
120 
121 /* Forward declaration */
122 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
123 
124 static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
125 {
126 	int i;
127 	u8 hash = 0;
128 
129 	for (i = 0; i < hash_size; i++) {
130 		hash ^= hash_start[i];
131 	}
132 
133 	return hash;
134 }
135 
136 /*********************** tlb specific functions ***************************/
137 
138 static inline void _lock_tx_hashtbl(struct bonding *bond)
139 {
140 	spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
141 }
142 
143 static inline void _unlock_tx_hashtbl(struct bonding *bond)
144 {
145 	spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
146 }
147 
148 /* Caller must hold tx_hashtbl lock */
149 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
150 {
151 	if (save_load) {
152 		entry->load_history = 1 + entry->tx_bytes /
153 				      BOND_TLB_REBALANCE_INTERVAL;
154 		entry->tx_bytes = 0;
155 	}
156 
157 	entry->tx_slave = NULL;
158 	entry->next = TLB_NULL_INDEX;
159 	entry->prev = TLB_NULL_INDEX;
160 }
161 
162 static inline void tlb_init_slave(struct slave *slave)
163 {
164 	SLAVE_TLB_INFO(slave).load = 0;
165 	SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
166 }
167 
168 /* Caller must hold bond lock for read */
169 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
170 {
171 	struct tlb_client_info *tx_hash_table;
172 	u32 index;
173 
174 	_lock_tx_hashtbl(bond);
175 
176 	/* clear slave from tx_hashtbl */
177 	tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
178 
179 	/* skip this if we've already freed the tx hash table */
180 	if (tx_hash_table) {
181 		index = SLAVE_TLB_INFO(slave).head;
182 		while (index != TLB_NULL_INDEX) {
183 			u32 next_index = tx_hash_table[index].next;
184 			tlb_init_table_entry(&tx_hash_table[index], save_load);
185 			index = next_index;
186 		}
187 	}
188 
189 	tlb_init_slave(slave);
190 
191 	_unlock_tx_hashtbl(bond);
192 }
193 
194 /* Must be called before starting the monitor timer */
195 static int tlb_initialize(struct bonding *bond)
196 {
197 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
198 	int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
199 	struct tlb_client_info *new_hashtbl;
200 	int i;
201 
202 	spin_lock_init(&(bond_info->tx_hashtbl_lock));
203 
204 	new_hashtbl = kzalloc(size, GFP_KERNEL);
205 	if (!new_hashtbl) {
206 		pr_err("%s: Error: Failed to allocate TLB hash table\n",
207 		       bond->dev->name);
208 		return -1;
209 	}
210 	_lock_tx_hashtbl(bond);
211 
212 	bond_info->tx_hashtbl = new_hashtbl;
213 
214 	for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
215 		tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
216 	}
217 
218 	_unlock_tx_hashtbl(bond);
219 
220 	return 0;
221 }
222 
223 /* Must be called only after all slaves have been released */
224 static void tlb_deinitialize(struct bonding *bond)
225 {
226 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
227 
228 	_lock_tx_hashtbl(bond);
229 
230 	kfree(bond_info->tx_hashtbl);
231 	bond_info->tx_hashtbl = NULL;
232 
233 	_unlock_tx_hashtbl(bond);
234 }
235 
236 static long long compute_gap(struct slave *slave)
237 {
238 	return (s64) (slave->speed << 20) - /* Convert to Megabit per sec */
239 	       (s64) (SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
240 }
241 
242 /* Caller must hold bond lock for read */
243 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
244 {
245 	struct slave *slave, *least_loaded;
246 	long long max_gap;
247 	int i;
248 
249 	least_loaded = NULL;
250 	max_gap = LLONG_MIN;
251 
252 	/* Find the slave with the largest gap */
253 	bond_for_each_slave(bond, slave, i) {
254 		if (SLAVE_IS_OK(slave)) {
255 			long long gap = compute_gap(slave);
256 
257 			if (max_gap < gap) {
258 				least_loaded = slave;
259 				max_gap = gap;
260 			}
261 		}
262 	}
263 
264 	return least_loaded;
265 }
266 
267 /* Caller must hold bond lock for read */
268 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
269 {
270 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
271 	struct tlb_client_info *hash_table;
272 	struct slave *assigned_slave;
273 
274 	_lock_tx_hashtbl(bond);
275 
276 	hash_table = bond_info->tx_hashtbl;
277 	assigned_slave = hash_table[hash_index].tx_slave;
278 	if (!assigned_slave) {
279 		assigned_slave = tlb_get_least_loaded_slave(bond);
280 
281 		if (assigned_slave) {
282 			struct tlb_slave_info *slave_info =
283 				&(SLAVE_TLB_INFO(assigned_slave));
284 			u32 next_index = slave_info->head;
285 
286 			hash_table[hash_index].tx_slave = assigned_slave;
287 			hash_table[hash_index].next = next_index;
288 			hash_table[hash_index].prev = TLB_NULL_INDEX;
289 
290 			if (next_index != TLB_NULL_INDEX) {
291 				hash_table[next_index].prev = hash_index;
292 			}
293 
294 			slave_info->head = hash_index;
295 			slave_info->load +=
296 				hash_table[hash_index].load_history;
297 		}
298 	}
299 
300 	if (assigned_slave) {
301 		hash_table[hash_index].tx_bytes += skb_len;
302 	}
303 
304 	_unlock_tx_hashtbl(bond);
305 
306 	return assigned_slave;
307 }
308 
309 /*********************** rlb specific functions ***************************/
310 static inline void _lock_rx_hashtbl(struct bonding *bond)
311 {
312 	spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
313 }
314 
315 static inline void _unlock_rx_hashtbl(struct bonding *bond)
316 {
317 	spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
318 }
319 
320 /* when an ARP REPLY is received from a client update its info
321  * in the rx_hashtbl
322  */
323 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
324 {
325 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
326 	struct rlb_client_info *client_info;
327 	u32 hash_index;
328 
329 	_lock_rx_hashtbl(bond);
330 
331 	hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
332 	client_info = &(bond_info->rx_hashtbl[hash_index]);
333 
334 	if ((client_info->assigned) &&
335 	    (client_info->ip_src == arp->ip_dst) &&
336 	    (client_info->ip_dst == arp->ip_src) &&
337 	    (compare_ether_addr_64bits(client_info->mac_dst, arp->mac_src))) {
338 		/* update the clients MAC address */
339 		memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
340 		client_info->ntt = 1;
341 		bond_info->rx_ntt = 1;
342 	}
343 
344 	_unlock_rx_hashtbl(bond);
345 }
346 
347 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
348 {
349 	struct bonding *bond;
350 	struct arp_pkt *arp = (struct arp_pkt *)skb->data;
351 	int res = NET_RX_DROP;
352 
353 	while (bond_dev->priv_flags & IFF_802_1Q_VLAN)
354 		bond_dev = vlan_dev_real_dev(bond_dev);
355 
356 	if (!(bond_dev->priv_flags & IFF_BONDING) ||
357 	    !(bond_dev->flags & IFF_MASTER))
358 		goto out;
359 
360 	if (!arp) {
361 		pr_debug("Packet has no ARP data\n");
362 		goto out;
363 	}
364 
365 	if (skb->len < sizeof(struct arp_pkt)) {
366 		pr_debug("Packet is too small to be an ARP\n");
367 		goto out;
368 	}
369 
370 	if (arp->op_code == htons(ARPOP_REPLY)) {
371 		/* update rx hash table for this ARP */
372 		bond = netdev_priv(bond_dev);
373 		rlb_update_entry_from_arp(bond, arp);
374 		pr_debug("Server received an ARP Reply from client\n");
375 	}
376 
377 	res = NET_RX_SUCCESS;
378 
379 out:
380 	dev_kfree_skb(skb);
381 
382 	return res;
383 }
384 
385 /* Caller must hold bond lock for read */
386 static struct slave *rlb_next_rx_slave(struct bonding *bond)
387 {
388 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
389 	struct slave *rx_slave, *slave, *start_at;
390 	int i = 0;
391 
392 	if (bond_info->next_rx_slave) {
393 		start_at = bond_info->next_rx_slave;
394 	} else {
395 		start_at = bond->first_slave;
396 	}
397 
398 	rx_slave = NULL;
399 
400 	bond_for_each_slave_from(bond, slave, i, start_at) {
401 		if (SLAVE_IS_OK(slave)) {
402 			if (!rx_slave) {
403 				rx_slave = slave;
404 			} else if (slave->speed > rx_slave->speed) {
405 				rx_slave = slave;
406 			}
407 		}
408 	}
409 
410 	if (rx_slave) {
411 		bond_info->next_rx_slave = rx_slave->next;
412 	}
413 
414 	return rx_slave;
415 }
416 
417 /* teach the switch the mac of a disabled slave
418  * on the primary for fault tolerance
419  *
420  * Caller must hold bond->curr_slave_lock for write or bond lock for write
421  */
422 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
423 {
424 	if (!bond->curr_active_slave) {
425 		return;
426 	}
427 
428 	if (!bond->alb_info.primary_is_promisc) {
429 		if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1))
430 			bond->alb_info.primary_is_promisc = 1;
431 		else
432 			bond->alb_info.primary_is_promisc = 0;
433 	}
434 
435 	bond->alb_info.rlb_promisc_timeout_counter = 0;
436 
437 	alb_send_learning_packets(bond->curr_active_slave, addr);
438 }
439 
440 /* slave being removed should not be active at this point
441  *
442  * Caller must hold bond lock for read
443  */
444 static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
445 {
446 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
447 	struct rlb_client_info *rx_hash_table;
448 	u32 index, next_index;
449 
450 	/* clear slave from rx_hashtbl */
451 	_lock_rx_hashtbl(bond);
452 
453 	rx_hash_table = bond_info->rx_hashtbl;
454 	index = bond_info->rx_hashtbl_head;
455 	for (; index != RLB_NULL_INDEX; index = next_index) {
456 		next_index = rx_hash_table[index].next;
457 		if (rx_hash_table[index].slave == slave) {
458 			struct slave *assigned_slave = rlb_next_rx_slave(bond);
459 
460 			if (assigned_slave) {
461 				rx_hash_table[index].slave = assigned_slave;
462 				if (compare_ether_addr_64bits(rx_hash_table[index].mac_dst,
463 							      mac_bcast)) {
464 					bond_info->rx_hashtbl[index].ntt = 1;
465 					bond_info->rx_ntt = 1;
466 					/* A slave has been removed from the
467 					 * table because it is either disabled
468 					 * or being released. We must retry the
469 					 * update to avoid clients from not
470 					 * being updated & disconnecting when
471 					 * there is stress
472 					 */
473 					bond_info->rlb_update_retry_counter =
474 						RLB_UPDATE_RETRY;
475 				}
476 			} else {  /* there is no active slave */
477 				rx_hash_table[index].slave = NULL;
478 			}
479 		}
480 	}
481 
482 	_unlock_rx_hashtbl(bond);
483 
484 	write_lock_bh(&bond->curr_slave_lock);
485 
486 	if (slave != bond->curr_active_slave) {
487 		rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
488 	}
489 
490 	write_unlock_bh(&bond->curr_slave_lock);
491 }
492 
493 static void rlb_update_client(struct rlb_client_info *client_info)
494 {
495 	int i;
496 
497 	if (!client_info->slave) {
498 		return;
499 	}
500 
501 	for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
502 		struct sk_buff *skb;
503 
504 		skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
505 				 client_info->ip_dst,
506 				 client_info->slave->dev,
507 				 client_info->ip_src,
508 				 client_info->mac_dst,
509 				 client_info->slave->dev->dev_addr,
510 				 client_info->mac_dst);
511 		if (!skb) {
512 			pr_err("%s: Error: failed to create an ARP packet\n",
513 			       client_info->slave->dev->master->name);
514 			continue;
515 		}
516 
517 		skb->dev = client_info->slave->dev;
518 
519 		if (client_info->tag) {
520 			skb = vlan_put_tag(skb, client_info->vlan_id);
521 			if (!skb) {
522 				pr_err("%s: Error: failed to insert VLAN tag\n",
523 				       client_info->slave->dev->master->name);
524 				continue;
525 			}
526 		}
527 
528 		arp_xmit(skb);
529 	}
530 }
531 
532 /* sends ARP REPLIES that update the clients that need updating */
533 static void rlb_update_rx_clients(struct bonding *bond)
534 {
535 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
536 	struct rlb_client_info *client_info;
537 	u32 hash_index;
538 
539 	_lock_rx_hashtbl(bond);
540 
541 	hash_index = bond_info->rx_hashtbl_head;
542 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
543 		client_info = &(bond_info->rx_hashtbl[hash_index]);
544 		if (client_info->ntt) {
545 			rlb_update_client(client_info);
546 			if (bond_info->rlb_update_retry_counter == 0) {
547 				client_info->ntt = 0;
548 			}
549 		}
550 	}
551 
552 	/* do not update the entries again until this counter is zero so that
553 	 * not to confuse the clients.
554 	 */
555 	bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
556 
557 	_unlock_rx_hashtbl(bond);
558 }
559 
560 /* The slave was assigned a new mac address - update the clients */
561 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
562 {
563 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
564 	struct rlb_client_info *client_info;
565 	int ntt = 0;
566 	u32 hash_index;
567 
568 	_lock_rx_hashtbl(bond);
569 
570 	hash_index = bond_info->rx_hashtbl_head;
571 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
572 		client_info = &(bond_info->rx_hashtbl[hash_index]);
573 
574 		if ((client_info->slave == slave) &&
575 		    compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) {
576 			client_info->ntt = 1;
577 			ntt = 1;
578 		}
579 	}
580 
581 	// update the team's flag only after the whole iteration
582 	if (ntt) {
583 		bond_info->rx_ntt = 1;
584 		//fasten the change
585 		bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
586 	}
587 
588 	_unlock_rx_hashtbl(bond);
589 }
590 
591 /* mark all clients using src_ip to be updated */
592 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
593 {
594 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
595 	struct rlb_client_info *client_info;
596 	u32 hash_index;
597 
598 	_lock_rx_hashtbl(bond);
599 
600 	hash_index = bond_info->rx_hashtbl_head;
601 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
602 		client_info = &(bond_info->rx_hashtbl[hash_index]);
603 
604 		if (!client_info->slave) {
605 			pr_err("%s: Error: found a client with no channel in the client's hash table\n",
606 			       bond->dev->name);
607 			continue;
608 		}
609 		/*update all clients using this src_ip, that are not assigned
610 		 * to the team's address (curr_active_slave) and have a known
611 		 * unicast mac address.
612 		 */
613 		if ((client_info->ip_src == src_ip) &&
614 		    compare_ether_addr_64bits(client_info->slave->dev->dev_addr,
615 			   bond->dev->dev_addr) &&
616 		    compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) {
617 			client_info->ntt = 1;
618 			bond_info->rx_ntt = 1;
619 		}
620 	}
621 
622 	_unlock_rx_hashtbl(bond);
623 }
624 
625 /* Caller must hold both bond and ptr locks for read */
626 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
627 {
628 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
629 	struct arp_pkt *arp = arp_pkt(skb);
630 	struct slave *assigned_slave;
631 	struct rlb_client_info *client_info;
632 	u32 hash_index = 0;
633 
634 	_lock_rx_hashtbl(bond);
635 
636 	hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
637 	client_info = &(bond_info->rx_hashtbl[hash_index]);
638 
639 	if (client_info->assigned) {
640 		if ((client_info->ip_src == arp->ip_src) &&
641 		    (client_info->ip_dst == arp->ip_dst)) {
642 			/* the entry is already assigned to this client */
643 			if (compare_ether_addr_64bits(arp->mac_dst, mac_bcast)) {
644 				/* update mac address from arp */
645 				memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
646 			}
647 
648 			assigned_slave = client_info->slave;
649 			if (assigned_slave) {
650 				_unlock_rx_hashtbl(bond);
651 				return assigned_slave;
652 			}
653 		} else {
654 			/* the entry is already assigned to some other client,
655 			 * move the old client to primary (curr_active_slave) so
656 			 * that the new client can be assigned to this entry.
657 			 */
658 			if (bond->curr_active_slave &&
659 			    client_info->slave != bond->curr_active_slave) {
660 				client_info->slave = bond->curr_active_slave;
661 				rlb_update_client(client_info);
662 			}
663 		}
664 	}
665 	/* assign a new slave */
666 	assigned_slave = rlb_next_rx_slave(bond);
667 
668 	if (assigned_slave) {
669 		client_info->ip_src = arp->ip_src;
670 		client_info->ip_dst = arp->ip_dst;
671 		/* arp->mac_dst is broadcast for arp reqeusts.
672 		 * will be updated with clients actual unicast mac address
673 		 * upon receiving an arp reply.
674 		 */
675 		memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
676 		client_info->slave = assigned_slave;
677 
678 		if (compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) {
679 			client_info->ntt = 1;
680 			bond->alb_info.rx_ntt = 1;
681 		} else {
682 			client_info->ntt = 0;
683 		}
684 
685 		if (bond->vlgrp) {
686 			if (!vlan_get_tag(skb, &client_info->vlan_id))
687 				client_info->tag = 1;
688 		}
689 
690 		if (!client_info->assigned) {
691 			u32 prev_tbl_head = bond_info->rx_hashtbl_head;
692 			bond_info->rx_hashtbl_head = hash_index;
693 			client_info->next = prev_tbl_head;
694 			if (prev_tbl_head != RLB_NULL_INDEX) {
695 				bond_info->rx_hashtbl[prev_tbl_head].prev =
696 					hash_index;
697 			}
698 			client_info->assigned = 1;
699 		}
700 	}
701 
702 	_unlock_rx_hashtbl(bond);
703 
704 	return assigned_slave;
705 }
706 
707 /* chooses (and returns) transmit channel for arp reply
708  * does not choose channel for other arp types since they are
709  * sent on the curr_active_slave
710  */
711 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
712 {
713 	struct arp_pkt *arp = arp_pkt(skb);
714 	struct slave *tx_slave = NULL;
715 
716 	if (arp->op_code == htons(ARPOP_REPLY)) {
717 		/* the arp must be sent on the selected
718 		* rx channel
719 		*/
720 		tx_slave = rlb_choose_channel(skb, bond);
721 		if (tx_slave) {
722 			memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
723 		}
724 		pr_debug("Server sent ARP Reply packet\n");
725 	} else if (arp->op_code == htons(ARPOP_REQUEST)) {
726 		/* Create an entry in the rx_hashtbl for this client as a
727 		 * place holder.
728 		 * When the arp reply is received the entry will be updated
729 		 * with the correct unicast address of the client.
730 		 */
731 		rlb_choose_channel(skb, bond);
732 
733 		/* The ARP relpy packets must be delayed so that
734 		 * they can cancel out the influence of the ARP request.
735 		 */
736 		bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
737 
738 		/* arp requests are broadcast and are sent on the primary
739 		 * the arp request will collapse all clients on the subnet to
740 		 * the primary slave. We must register these clients to be
741 		 * updated with their assigned mac.
742 		 */
743 		rlb_req_update_subnet_clients(bond, arp->ip_src);
744 		pr_debug("Server sent ARP Request packet\n");
745 	}
746 
747 	return tx_slave;
748 }
749 
750 /* Caller must hold bond lock for read */
751 static void rlb_rebalance(struct bonding *bond)
752 {
753 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
754 	struct slave *assigned_slave;
755 	struct rlb_client_info *client_info;
756 	int ntt;
757 	u32 hash_index;
758 
759 	_lock_rx_hashtbl(bond);
760 
761 	ntt = 0;
762 	hash_index = bond_info->rx_hashtbl_head;
763 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
764 		client_info = &(bond_info->rx_hashtbl[hash_index]);
765 		assigned_slave = rlb_next_rx_slave(bond);
766 		if (assigned_slave && (client_info->slave != assigned_slave)) {
767 			client_info->slave = assigned_slave;
768 			client_info->ntt = 1;
769 			ntt = 1;
770 		}
771 	}
772 
773 	/* update the team's flag only after the whole iteration */
774 	if (ntt) {
775 		bond_info->rx_ntt = 1;
776 	}
777 	_unlock_rx_hashtbl(bond);
778 }
779 
780 /* Caller must hold rx_hashtbl lock */
781 static void rlb_init_table_entry(struct rlb_client_info *entry)
782 {
783 	memset(entry, 0, sizeof(struct rlb_client_info));
784 	entry->next = RLB_NULL_INDEX;
785 	entry->prev = RLB_NULL_INDEX;
786 }
787 
788 static int rlb_initialize(struct bonding *bond)
789 {
790 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
791 	struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
792 	struct rlb_client_info	*new_hashtbl;
793 	int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
794 	int i;
795 
796 	spin_lock_init(&(bond_info->rx_hashtbl_lock));
797 
798 	new_hashtbl = kmalloc(size, GFP_KERNEL);
799 	if (!new_hashtbl) {
800 		pr_err("%s: Error: Failed to allocate RLB hash table\n",
801 		       bond->dev->name);
802 		return -1;
803 	}
804 	_lock_rx_hashtbl(bond);
805 
806 	bond_info->rx_hashtbl = new_hashtbl;
807 
808 	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
809 
810 	for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
811 		rlb_init_table_entry(bond_info->rx_hashtbl + i);
812 	}
813 
814 	_unlock_rx_hashtbl(bond);
815 
816 	/*initialize packet type*/
817 	pk_type->type = cpu_to_be16(ETH_P_ARP);
818 	pk_type->dev = bond->dev;
819 	pk_type->func = rlb_arp_recv;
820 
821 	/* register to receive ARPs */
822 	dev_add_pack(pk_type);
823 
824 	return 0;
825 }
826 
827 static void rlb_deinitialize(struct bonding *bond)
828 {
829 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
830 
831 	dev_remove_pack(&(bond_info->rlb_pkt_type));
832 
833 	_lock_rx_hashtbl(bond);
834 
835 	kfree(bond_info->rx_hashtbl);
836 	bond_info->rx_hashtbl = NULL;
837 	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
838 
839 	_unlock_rx_hashtbl(bond);
840 }
841 
842 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
843 {
844 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
845 	u32 curr_index;
846 
847 	_lock_rx_hashtbl(bond);
848 
849 	curr_index = bond_info->rx_hashtbl_head;
850 	while (curr_index != RLB_NULL_INDEX) {
851 		struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
852 		u32 next_index = bond_info->rx_hashtbl[curr_index].next;
853 		u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
854 
855 		if (curr->tag && (curr->vlan_id == vlan_id)) {
856 			if (curr_index == bond_info->rx_hashtbl_head) {
857 				bond_info->rx_hashtbl_head = next_index;
858 			}
859 			if (prev_index != RLB_NULL_INDEX) {
860 				bond_info->rx_hashtbl[prev_index].next = next_index;
861 			}
862 			if (next_index != RLB_NULL_INDEX) {
863 				bond_info->rx_hashtbl[next_index].prev = prev_index;
864 			}
865 
866 			rlb_init_table_entry(curr);
867 		}
868 
869 		curr_index = next_index;
870 	}
871 
872 	_unlock_rx_hashtbl(bond);
873 }
874 
875 /*********************** tlb/rlb shared functions *********************/
876 
877 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
878 {
879 	struct bonding *bond = bond_get_bond_by_slave(slave);
880 	struct learning_pkt pkt;
881 	int size = sizeof(struct learning_pkt);
882 	int i;
883 
884 	memset(&pkt, 0, size);
885 	memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
886 	memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
887 	pkt.type = cpu_to_be16(ETH_P_LOOP);
888 
889 	for (i = 0; i < MAX_LP_BURST; i++) {
890 		struct sk_buff *skb;
891 		char *data;
892 
893 		skb = dev_alloc_skb(size);
894 		if (!skb) {
895 			return;
896 		}
897 
898 		data = skb_put(skb, size);
899 		memcpy(data, &pkt, size);
900 
901 		skb_reset_mac_header(skb);
902 		skb->network_header = skb->mac_header + ETH_HLEN;
903 		skb->protocol = pkt.type;
904 		skb->priority = TC_PRIO_CONTROL;
905 		skb->dev = slave->dev;
906 
907 		if (bond->vlgrp) {
908 			struct vlan_entry *vlan;
909 
910 			vlan = bond_next_vlan(bond,
911 					      bond->alb_info.current_alb_vlan);
912 
913 			bond->alb_info.current_alb_vlan = vlan;
914 			if (!vlan) {
915 				kfree_skb(skb);
916 				continue;
917 			}
918 
919 			skb = vlan_put_tag(skb, vlan->vlan_id);
920 			if (!skb) {
921 				pr_err("%s: Error: failed to insert VLAN tag\n",
922 				       bond->dev->name);
923 				continue;
924 			}
925 		}
926 
927 		dev_queue_xmit(skb);
928 	}
929 }
930 
931 /* hw is a boolean parameter that determines whether we should try and
932  * set the hw address of the device as well as the hw address of the
933  * net_device
934  */
935 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
936 {
937 	struct net_device *dev = slave->dev;
938 	struct sockaddr s_addr;
939 
940 	if (!hw) {
941 		memcpy(dev->dev_addr, addr, dev->addr_len);
942 		return 0;
943 	}
944 
945 	/* for rlb each slave must have a unique hw mac addresses so that */
946 	/* each slave will receive packets destined to a different mac */
947 	memcpy(s_addr.sa_data, addr, dev->addr_len);
948 	s_addr.sa_family = dev->type;
949 	if (dev_set_mac_address(dev, &s_addr)) {
950 		pr_err("%s: Error: dev_set_mac_address of dev %s failed!\n"
951 		       "ALB mode requires that the base driver support setting the hw address also when the network device's interface is open\n",
952 		       dev->master->name, dev->name);
953 		return -EOPNOTSUPP;
954 	}
955 	return 0;
956 }
957 
958 /*
959  * Swap MAC addresses between two slaves.
960  *
961  * Called with RTNL held, and no other locks.
962  *
963  */
964 
965 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
966 {
967 	u8 tmp_mac_addr[ETH_ALEN];
968 
969 	memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
970 	alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
971 	alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
972 
973 }
974 
975 /*
976  * Send learning packets after MAC address swap.
977  *
978  * Called with RTNL and no other locks
979  */
980 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
981 				struct slave *slave2)
982 {
983 	int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
984 	struct slave *disabled_slave = NULL;
985 
986 	ASSERT_RTNL();
987 
988 	/* fasten the change in the switch */
989 	if (SLAVE_IS_OK(slave1)) {
990 		alb_send_learning_packets(slave1, slave1->dev->dev_addr);
991 		if (bond->alb_info.rlb_enabled) {
992 			/* inform the clients that the mac address
993 			 * has changed
994 			 */
995 			rlb_req_update_slave_clients(bond, slave1);
996 		}
997 	} else {
998 		disabled_slave = slave1;
999 	}
1000 
1001 	if (SLAVE_IS_OK(slave2)) {
1002 		alb_send_learning_packets(slave2, slave2->dev->dev_addr);
1003 		if (bond->alb_info.rlb_enabled) {
1004 			/* inform the clients that the mac address
1005 			 * has changed
1006 			 */
1007 			rlb_req_update_slave_clients(bond, slave2);
1008 		}
1009 	} else {
1010 		disabled_slave = slave2;
1011 	}
1012 
1013 	if (bond->alb_info.rlb_enabled && slaves_state_differ) {
1014 		/* A disabled slave was assigned an active mac addr */
1015 		rlb_teach_disabled_mac_on_primary(bond,
1016 						  disabled_slave->dev->dev_addr);
1017 	}
1018 }
1019 
1020 /**
1021  * alb_change_hw_addr_on_detach
1022  * @bond: bonding we're working on
1023  * @slave: the slave that was just detached
1024  *
1025  * We assume that @slave was already detached from the slave list.
1026  *
1027  * If @slave's permanent hw address is different both from its current
1028  * address and from @bond's address, then somewhere in the bond there's
1029  * a slave that has @slave's permanet address as its current address.
1030  * We'll make sure that that slave no longer uses @slave's permanent address.
1031  *
1032  * Caller must hold RTNL and no other locks
1033  */
1034 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
1035 {
1036 	int perm_curr_diff;
1037 	int perm_bond_diff;
1038 
1039 	perm_curr_diff = compare_ether_addr_64bits(slave->perm_hwaddr,
1040 						   slave->dev->dev_addr);
1041 	perm_bond_diff = compare_ether_addr_64bits(slave->perm_hwaddr,
1042 						   bond->dev->dev_addr);
1043 
1044 	if (perm_curr_diff && perm_bond_diff) {
1045 		struct slave *tmp_slave;
1046 		int i, found = 0;
1047 
1048 		bond_for_each_slave(bond, tmp_slave, i) {
1049 			if (!compare_ether_addr_64bits(slave->perm_hwaddr,
1050 						       tmp_slave->dev->dev_addr)) {
1051 				found = 1;
1052 				break;
1053 			}
1054 		}
1055 
1056 		if (found) {
1057 			/* locking: needs RTNL and nothing else */
1058 			alb_swap_mac_addr(bond, slave, tmp_slave);
1059 			alb_fasten_mac_swap(bond, slave, tmp_slave);
1060 		}
1061 	}
1062 }
1063 
1064 /**
1065  * alb_handle_addr_collision_on_attach
1066  * @bond: bonding we're working on
1067  * @slave: the slave that was just attached
1068  *
1069  * checks uniqueness of slave's mac address and handles the case the
1070  * new slave uses the bonds mac address.
1071  *
1072  * If the permanent hw address of @slave is @bond's hw address, we need to
1073  * find a different hw address to give @slave, that isn't in use by any other
1074  * slave in the bond. This address must be, of course, one of the premanent
1075  * addresses of the other slaves.
1076  *
1077  * We go over the slave list, and for each slave there we compare its
1078  * permanent hw address with the current address of all the other slaves.
1079  * If no match was found, then we've found a slave with a permanent address
1080  * that isn't used by any other slave in the bond, so we can assign it to
1081  * @slave.
1082  *
1083  * assumption: this function is called before @slave is attached to the
1084  * 	       bond slave list.
1085  *
1086  * caller must hold the bond lock for write since the mac addresses are compared
1087  * and may be swapped.
1088  */
1089 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1090 {
1091 	struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1092 	struct slave *has_bond_addr = bond->curr_active_slave;
1093 	int i, j, found = 0;
1094 
1095 	if (bond->slave_cnt == 0) {
1096 		/* this is the first slave */
1097 		return 0;
1098 	}
1099 
1100 	/* if slave's mac address differs from bond's mac address
1101 	 * check uniqueness of slave's mac address against the other
1102 	 * slaves in the bond.
1103 	 */
1104 	if (compare_ether_addr_64bits(slave->perm_hwaddr, bond->dev->dev_addr)) {
1105 		bond_for_each_slave(bond, tmp_slave1, i) {
1106 			if (!compare_ether_addr_64bits(tmp_slave1->dev->dev_addr,
1107 						       slave->dev->dev_addr)) {
1108 				found = 1;
1109 				break;
1110 			}
1111 		}
1112 
1113 		if (!found)
1114 			return 0;
1115 
1116 		/* Try setting slave mac to bond address and fall-through
1117 		   to code handling that situation below... */
1118 		alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
1119 				       bond->alb_info.rlb_enabled);
1120 	}
1121 
1122 	/* The slave's address is equal to the address of the bond.
1123 	 * Search for a spare address in the bond for this slave.
1124 	 */
1125 	free_mac_slave = NULL;
1126 
1127 	bond_for_each_slave(bond, tmp_slave1, i) {
1128 		found = 0;
1129 		bond_for_each_slave(bond, tmp_slave2, j) {
1130 			if (!compare_ether_addr_64bits(tmp_slave1->perm_hwaddr,
1131 						       tmp_slave2->dev->dev_addr)) {
1132 				found = 1;
1133 				break;
1134 			}
1135 		}
1136 
1137 		if (!found) {
1138 			/* no slave has tmp_slave1's perm addr
1139 			 * as its curr addr
1140 			 */
1141 			free_mac_slave = tmp_slave1;
1142 			break;
1143 		}
1144 
1145 		if (!has_bond_addr) {
1146 			if (!compare_ether_addr_64bits(tmp_slave1->dev->dev_addr,
1147 						       bond->dev->dev_addr)) {
1148 
1149 				has_bond_addr = tmp_slave1;
1150 			}
1151 		}
1152 	}
1153 
1154 	if (free_mac_slave) {
1155 		alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
1156 				       bond->alb_info.rlb_enabled);
1157 
1158 		pr_warning("%s: Warning: the hw address of slave %s is in use by the bond; giving it the hw address of %s\n",
1159 			   bond->dev->name, slave->dev->name,
1160 			   free_mac_slave->dev->name);
1161 
1162 	} else if (has_bond_addr) {
1163 		pr_err("%s: Error: the hw address of slave %s is in use by the bond; couldn't find a slave with a free hw address to give it (this should not have happened)\n",
1164 		       bond->dev->name, slave->dev->name);
1165 		return -EFAULT;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 /**
1172  * alb_set_mac_address
1173  * @bond:
1174  * @addr:
1175  *
1176  * In TLB mode all slaves are configured to the bond's hw address, but set
1177  * their dev_addr field to different addresses (based on their permanent hw
1178  * addresses).
1179  *
1180  * For each slave, this function sets the interface to the new address and then
1181  * changes its dev_addr field to its previous value.
1182  *
1183  * Unwinding assumes bond's mac address has not yet changed.
1184  */
1185 static int alb_set_mac_address(struct bonding *bond, void *addr)
1186 {
1187 	struct sockaddr sa;
1188 	struct slave *slave, *stop_at;
1189 	char tmp_addr[ETH_ALEN];
1190 	int res;
1191 	int i;
1192 
1193 	if (bond->alb_info.rlb_enabled) {
1194 		return 0;
1195 	}
1196 
1197 	bond_for_each_slave(bond, slave, i) {
1198 		/* save net_device's current hw address */
1199 		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1200 
1201 		res = dev_set_mac_address(slave->dev, addr);
1202 
1203 		/* restore net_device's hw address */
1204 		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1205 
1206 		if (res)
1207 			goto unwind;
1208 	}
1209 
1210 	return 0;
1211 
1212 unwind:
1213 	memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1214 	sa.sa_family = bond->dev->type;
1215 
1216 	/* unwind from head to the slave that failed */
1217 	stop_at = slave;
1218 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1219 		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1220 		dev_set_mac_address(slave->dev, &sa);
1221 		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1222 	}
1223 
1224 	return res;
1225 }
1226 
1227 /************************ exported alb funcions ************************/
1228 
1229 int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1230 {
1231 	int res;
1232 
1233 	res = tlb_initialize(bond);
1234 	if (res) {
1235 		return res;
1236 	}
1237 
1238 	if (rlb_enabled) {
1239 		bond->alb_info.rlb_enabled = 1;
1240 		/* initialize rlb */
1241 		res = rlb_initialize(bond);
1242 		if (res) {
1243 			tlb_deinitialize(bond);
1244 			return res;
1245 		}
1246 	} else {
1247 		bond->alb_info.rlb_enabled = 0;
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 void bond_alb_deinitialize(struct bonding *bond)
1254 {
1255 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1256 
1257 	tlb_deinitialize(bond);
1258 
1259 	if (bond_info->rlb_enabled) {
1260 		rlb_deinitialize(bond);
1261 	}
1262 }
1263 
1264 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1265 {
1266 	struct bonding *bond = netdev_priv(bond_dev);
1267 	struct ethhdr *eth_data;
1268 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1269 	struct slave *tx_slave = NULL;
1270 	static const __be32 ip_bcast = htonl(0xffffffff);
1271 	int hash_size = 0;
1272 	int do_tx_balance = 1;
1273 	u32 hash_index = 0;
1274 	const u8 *hash_start = NULL;
1275 	int res = 1;
1276 	struct ipv6hdr *ip6hdr;
1277 
1278 	skb_reset_mac_header(skb);
1279 	eth_data = eth_hdr(skb);
1280 
1281 	/* make sure that the curr_active_slave and the slaves list do
1282 	 * not change during tx
1283 	 */
1284 	read_lock(&bond->lock);
1285 	read_lock(&bond->curr_slave_lock);
1286 
1287 	if (!BOND_IS_OK(bond)) {
1288 		goto out;
1289 	}
1290 
1291 	switch (ntohs(skb->protocol)) {
1292 	case ETH_P_IP: {
1293 		const struct iphdr *iph = ip_hdr(skb);
1294 
1295 		if (!compare_ether_addr_64bits(eth_data->h_dest, mac_bcast) ||
1296 		    (iph->daddr == ip_bcast) ||
1297 		    (iph->protocol == IPPROTO_IGMP)) {
1298 			do_tx_balance = 0;
1299 			break;
1300 		}
1301 		hash_start = (char *)&(iph->daddr);
1302 		hash_size = sizeof(iph->daddr);
1303 	}
1304 		break;
1305 	case ETH_P_IPV6:
1306 		/* IPv6 doesn't really use broadcast mac address, but leave
1307 		 * that here just in case.
1308 		 */
1309 		if (!compare_ether_addr_64bits(eth_data->h_dest, mac_bcast)) {
1310 			do_tx_balance = 0;
1311 			break;
1312 		}
1313 
1314 		/* IPv6 uses all-nodes multicast as an equivalent to
1315 		 * broadcasts in IPv4.
1316 		 */
1317 		if (!compare_ether_addr_64bits(eth_data->h_dest, mac_v6_allmcast)) {
1318 			do_tx_balance = 0;
1319 			break;
1320 		}
1321 
1322 		/* Additianally, DAD probes should not be tx-balanced as that
1323 		 * will lead to false positives for duplicate addresses and
1324 		 * prevent address configuration from working.
1325 		 */
1326 		ip6hdr = ipv6_hdr(skb);
1327 		if (ipv6_addr_any(&ip6hdr->saddr)) {
1328 			do_tx_balance = 0;
1329 			break;
1330 		}
1331 
1332 		hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1333 		hash_size = sizeof(ipv6_hdr(skb)->daddr);
1334 		break;
1335 	case ETH_P_IPX:
1336 		if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
1337 			/* something is wrong with this packet */
1338 			do_tx_balance = 0;
1339 			break;
1340 		}
1341 
1342 		if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1343 			/* The only protocol worth balancing in
1344 			 * this family since it has an "ARP" like
1345 			 * mechanism
1346 			 */
1347 			do_tx_balance = 0;
1348 			break;
1349 		}
1350 
1351 		hash_start = (char*)eth_data->h_dest;
1352 		hash_size = ETH_ALEN;
1353 		break;
1354 	case ETH_P_ARP:
1355 		do_tx_balance = 0;
1356 		if (bond_info->rlb_enabled) {
1357 			tx_slave = rlb_arp_xmit(skb, bond);
1358 		}
1359 		break;
1360 	default:
1361 		do_tx_balance = 0;
1362 		break;
1363 	}
1364 
1365 	if (do_tx_balance) {
1366 		hash_index = _simple_hash(hash_start, hash_size);
1367 		tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1368 	}
1369 
1370 	if (!tx_slave) {
1371 		/* unbalanced or unassigned, send through primary */
1372 		tx_slave = bond->curr_active_slave;
1373 		bond_info->unbalanced_load += skb->len;
1374 	}
1375 
1376 	if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1377 		if (tx_slave != bond->curr_active_slave) {
1378 			memcpy(eth_data->h_source,
1379 			       tx_slave->dev->dev_addr,
1380 			       ETH_ALEN);
1381 		}
1382 
1383 		res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1384 	} else {
1385 		if (tx_slave) {
1386 			tlb_clear_slave(bond, tx_slave, 0);
1387 		}
1388 	}
1389 
1390 out:
1391 	if (res) {
1392 		/* no suitable interface, frame not sent */
1393 		dev_kfree_skb(skb);
1394 	}
1395 	read_unlock(&bond->curr_slave_lock);
1396 	read_unlock(&bond->lock);
1397 	return NETDEV_TX_OK;
1398 }
1399 
1400 void bond_alb_monitor(struct work_struct *work)
1401 {
1402 	struct bonding *bond = container_of(work, struct bonding,
1403 					    alb_work.work);
1404 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1405 	struct slave *slave;
1406 	int i;
1407 
1408 	read_lock(&bond->lock);
1409 
1410 	if (bond->kill_timers) {
1411 		goto out;
1412 	}
1413 
1414 	if (bond->slave_cnt == 0) {
1415 		bond_info->tx_rebalance_counter = 0;
1416 		bond_info->lp_counter = 0;
1417 		goto re_arm;
1418 	}
1419 
1420 	bond_info->tx_rebalance_counter++;
1421 	bond_info->lp_counter++;
1422 
1423 	/* send learning packets */
1424 	if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1425 		/* change of curr_active_slave involves swapping of mac addresses.
1426 		 * in order to avoid this swapping from happening while
1427 		 * sending the learning packets, the curr_slave_lock must be held for
1428 		 * read.
1429 		 */
1430 		read_lock(&bond->curr_slave_lock);
1431 
1432 		bond_for_each_slave(bond, slave, i) {
1433 			alb_send_learning_packets(slave, slave->dev->dev_addr);
1434 		}
1435 
1436 		read_unlock(&bond->curr_slave_lock);
1437 
1438 		bond_info->lp_counter = 0;
1439 	}
1440 
1441 	/* rebalance tx traffic */
1442 	if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1443 
1444 		read_lock(&bond->curr_slave_lock);
1445 
1446 		bond_for_each_slave(bond, slave, i) {
1447 			tlb_clear_slave(bond, slave, 1);
1448 			if (slave == bond->curr_active_slave) {
1449 				SLAVE_TLB_INFO(slave).load =
1450 					bond_info->unbalanced_load /
1451 						BOND_TLB_REBALANCE_INTERVAL;
1452 				bond_info->unbalanced_load = 0;
1453 			}
1454 		}
1455 
1456 		read_unlock(&bond->curr_slave_lock);
1457 
1458 		bond_info->tx_rebalance_counter = 0;
1459 	}
1460 
1461 	/* handle rlb stuff */
1462 	if (bond_info->rlb_enabled) {
1463 		if (bond_info->primary_is_promisc &&
1464 		    (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1465 
1466 			/*
1467 			 * dev_set_promiscuity requires rtnl and
1468 			 * nothing else.
1469 			 */
1470 			read_unlock(&bond->lock);
1471 			rtnl_lock();
1472 
1473 			bond_info->rlb_promisc_timeout_counter = 0;
1474 
1475 			/* If the primary was set to promiscuous mode
1476 			 * because a slave was disabled then
1477 			 * it can now leave promiscuous mode.
1478 			 */
1479 			dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1480 			bond_info->primary_is_promisc = 0;
1481 
1482 			rtnl_unlock();
1483 			read_lock(&bond->lock);
1484 		}
1485 
1486 		if (bond_info->rlb_rebalance) {
1487 			bond_info->rlb_rebalance = 0;
1488 			rlb_rebalance(bond);
1489 		}
1490 
1491 		/* check if clients need updating */
1492 		if (bond_info->rx_ntt) {
1493 			if (bond_info->rlb_update_delay_counter) {
1494 				--bond_info->rlb_update_delay_counter;
1495 			} else {
1496 				rlb_update_rx_clients(bond);
1497 				if (bond_info->rlb_update_retry_counter) {
1498 					--bond_info->rlb_update_retry_counter;
1499 				} else {
1500 					bond_info->rx_ntt = 0;
1501 				}
1502 			}
1503 		}
1504 	}
1505 
1506 re_arm:
1507 	queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
1508 out:
1509 	read_unlock(&bond->lock);
1510 }
1511 
1512 /* assumption: called before the slave is attached to the bond
1513  * and not locked by the bond lock
1514  */
1515 int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1516 {
1517 	int res;
1518 
1519 	res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
1520 				     bond->alb_info.rlb_enabled);
1521 	if (res) {
1522 		return res;
1523 	}
1524 
1525 	/* caller must hold the bond lock for write since the mac addresses
1526 	 * are compared and may be swapped.
1527 	 */
1528 	read_lock(&bond->lock);
1529 
1530 	res = alb_handle_addr_collision_on_attach(bond, slave);
1531 
1532 	read_unlock(&bond->lock);
1533 
1534 	if (res) {
1535 		return res;
1536 	}
1537 
1538 	tlb_init_slave(slave);
1539 
1540 	/* order a rebalance ASAP */
1541 	bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1542 
1543 	if (bond->alb_info.rlb_enabled) {
1544 		bond->alb_info.rlb_rebalance = 1;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 /*
1551  * Remove slave from tlb and rlb hash tables, and fix up MAC addresses
1552  * if necessary.
1553  *
1554  * Caller must hold RTNL and no other locks
1555  */
1556 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1557 {
1558 	if (bond->slave_cnt > 1) {
1559 		alb_change_hw_addr_on_detach(bond, slave);
1560 	}
1561 
1562 	tlb_clear_slave(bond, slave, 0);
1563 
1564 	if (bond->alb_info.rlb_enabled) {
1565 		bond->alb_info.next_rx_slave = NULL;
1566 		rlb_clear_slave(bond, slave);
1567 	}
1568 }
1569 
1570 /* Caller must hold bond lock for read */
1571 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1572 {
1573 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1574 
1575 	if (link == BOND_LINK_DOWN) {
1576 		tlb_clear_slave(bond, slave, 0);
1577 		if (bond->alb_info.rlb_enabled) {
1578 			rlb_clear_slave(bond, slave);
1579 		}
1580 	} else if (link == BOND_LINK_UP) {
1581 		/* order a rebalance ASAP */
1582 		bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1583 		if (bond->alb_info.rlb_enabled) {
1584 			bond->alb_info.rlb_rebalance = 1;
1585 			/* If the updelay module parameter is smaller than the
1586 			 * forwarding delay of the switch the rebalance will
1587 			 * not work because the rebalance arp replies will
1588 			 * not be forwarded to the clients..
1589 			 */
1590 		}
1591 	}
1592 }
1593 
1594 /**
1595  * bond_alb_handle_active_change - assign new curr_active_slave
1596  * @bond: our bonding struct
1597  * @new_slave: new slave to assign
1598  *
1599  * Set the bond->curr_active_slave to @new_slave and handle
1600  * mac address swapping and promiscuity changes as needed.
1601  *
1602  * If new_slave is NULL, caller must hold curr_slave_lock or
1603  * bond->lock for write.
1604  *
1605  * If new_slave is not NULL, caller must hold RTNL, bond->lock for
1606  * read and curr_slave_lock for write.  Processing here may sleep, so
1607  * no other locks may be held.
1608  */
1609 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1610 	__releases(&bond->curr_slave_lock)
1611 	__releases(&bond->lock)
1612 	__acquires(&bond->lock)
1613 	__acquires(&bond->curr_slave_lock)
1614 {
1615 	struct slave *swap_slave;
1616 	int i;
1617 
1618 	if (bond->curr_active_slave == new_slave) {
1619 		return;
1620 	}
1621 
1622 	if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1623 		dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1624 		bond->alb_info.primary_is_promisc = 0;
1625 		bond->alb_info.rlb_promisc_timeout_counter = 0;
1626 	}
1627 
1628 	swap_slave = bond->curr_active_slave;
1629 	bond->curr_active_slave = new_slave;
1630 
1631 	if (!new_slave || (bond->slave_cnt == 0)) {
1632 		return;
1633 	}
1634 
1635 	/* set the new curr_active_slave to the bonds mac address
1636 	 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1637 	 */
1638 	if (!swap_slave) {
1639 		struct slave *tmp_slave;
1640 		/* find slave that is holding the bond's mac address */
1641 		bond_for_each_slave(bond, tmp_slave, i) {
1642 			if (!compare_ether_addr_64bits(tmp_slave->dev->dev_addr,
1643 						       bond->dev->dev_addr)) {
1644 				swap_slave = tmp_slave;
1645 				break;
1646 			}
1647 		}
1648 	}
1649 
1650 	/*
1651 	 * Arrange for swap_slave and new_slave to temporarily be
1652 	 * ignored so we can mess with their MAC addresses without
1653 	 * fear of interference from transmit activity.
1654 	 */
1655 	if (swap_slave) {
1656 		tlb_clear_slave(bond, swap_slave, 1);
1657 	}
1658 	tlb_clear_slave(bond, new_slave, 1);
1659 
1660 	write_unlock_bh(&bond->curr_slave_lock);
1661 	read_unlock(&bond->lock);
1662 
1663 	ASSERT_RTNL();
1664 
1665 	/* curr_active_slave must be set before calling alb_swap_mac_addr */
1666 	if (swap_slave) {
1667 		/* swap mac address */
1668 		alb_swap_mac_addr(bond, swap_slave, new_slave);
1669 	} else {
1670 		/* set the new_slave to the bond mac address */
1671 		alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
1672 				       bond->alb_info.rlb_enabled);
1673 	}
1674 
1675 	if (swap_slave) {
1676 		alb_fasten_mac_swap(bond, swap_slave, new_slave);
1677 		read_lock(&bond->lock);
1678 	} else {
1679 		read_lock(&bond->lock);
1680 		alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1681 	}
1682 
1683 	write_lock_bh(&bond->curr_slave_lock);
1684 }
1685 
1686 /*
1687  * Called with RTNL
1688  */
1689 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1690 	__acquires(&bond->lock)
1691 	__releases(&bond->lock)
1692 {
1693 	struct bonding *bond = netdev_priv(bond_dev);
1694 	struct sockaddr *sa = addr;
1695 	struct slave *slave, *swap_slave;
1696 	int res;
1697 	int i;
1698 
1699 	if (!is_valid_ether_addr(sa->sa_data)) {
1700 		return -EADDRNOTAVAIL;
1701 	}
1702 
1703 	res = alb_set_mac_address(bond, addr);
1704 	if (res) {
1705 		return res;
1706 	}
1707 
1708 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1709 
1710 	/* If there is no curr_active_slave there is nothing else to do.
1711 	 * Otherwise we'll need to pass the new address to it and handle
1712 	 * duplications.
1713 	 */
1714 	if (!bond->curr_active_slave) {
1715 		return 0;
1716 	}
1717 
1718 	swap_slave = NULL;
1719 
1720 	bond_for_each_slave(bond, slave, i) {
1721 		if (!compare_ether_addr_64bits(slave->dev->dev_addr,
1722 					       bond_dev->dev_addr)) {
1723 			swap_slave = slave;
1724 			break;
1725 		}
1726 	}
1727 
1728 	if (swap_slave) {
1729 		alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1730 		alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave);
1731 	} else {
1732 		alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
1733 				       bond->alb_info.rlb_enabled);
1734 
1735 		read_lock(&bond->lock);
1736 		alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1737 		if (bond->alb_info.rlb_enabled) {
1738 			/* inform clients mac address has changed */
1739 			rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1740 		}
1741 		read_unlock(&bond->lock);
1742 	}
1743 
1744 	return 0;
1745 }
1746 
1747 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1748 {
1749 	if (bond->alb_info.current_alb_vlan &&
1750 	    (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1751 		bond->alb_info.current_alb_vlan = NULL;
1752 	}
1753 
1754 	if (bond->alb_info.rlb_enabled) {
1755 		rlb_clear_vlan(bond, vlan_id);
1756 	}
1757 }
1758 
1759