1 /* 2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License along 15 * with this program; if not, write to the Free Software Foundation, Inc., 16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called LICENSE. 20 * 21 */ 22 23 //#define BONDING_DEBUG 1 24 25 #include <linux/skbuff.h> 26 #include <linux/netdevice.h> 27 #include <linux/etherdevice.h> 28 #include <linux/pkt_sched.h> 29 #include <linux/spinlock.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/ip.h> 33 #include <linux/ipv6.h> 34 #include <linux/if_arp.h> 35 #include <linux/if_ether.h> 36 #include <linux/if_bonding.h> 37 #include <linux/if_vlan.h> 38 #include <linux/in.h> 39 #include <net/ipx.h> 40 #include <net/arp.h> 41 #include <net/ipv6.h> 42 #include <asm/byteorder.h> 43 #include "bonding.h" 44 #include "bond_alb.h" 45 46 47 #define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */ 48 #define BOND_TLB_REBALANCE_INTERVAL 10 /* In seconds, periodic re-balancing. 49 * Used for division - never set 50 * to zero !!! 51 */ 52 #define BOND_ALB_LP_INTERVAL 1 /* In seconds, periodic send of 53 * learning packets to the switch 54 */ 55 56 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \ 57 * ALB_TIMER_TICKS_PER_SEC) 58 59 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \ 60 * ALB_TIMER_TICKS_PER_SEC) 61 62 #define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table. 63 * Note that this value MUST NOT be smaller 64 * because the key hash table is BYTE wide ! 65 */ 66 67 68 #define TLB_NULL_INDEX 0xffffffff 69 #define MAX_LP_BURST 3 70 71 /* rlb defs */ 72 #define RLB_HASH_TABLE_SIZE 256 73 #define RLB_NULL_INDEX 0xffffffff 74 #define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */ 75 #define RLB_ARP_BURST_SIZE 2 76 #define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb 77 * rebalance interval (5 min). 78 */ 79 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is 80 * promiscuous after failover 81 */ 82 #define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC 83 84 static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff}; 85 static const u8 mac_v6_allmcast[ETH_ALEN] = {0x33,0x33,0x00,0x00,0x00,0x01}; 86 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC; 87 88 #pragma pack(1) 89 struct learning_pkt { 90 u8 mac_dst[ETH_ALEN]; 91 u8 mac_src[ETH_ALEN]; 92 __be16 type; 93 u8 padding[ETH_ZLEN - ETH_HLEN]; 94 }; 95 96 struct arp_pkt { 97 __be16 hw_addr_space; 98 __be16 prot_addr_space; 99 u8 hw_addr_len; 100 u8 prot_addr_len; 101 __be16 op_code; 102 u8 mac_src[ETH_ALEN]; /* sender hardware address */ 103 __be32 ip_src; /* sender IP address */ 104 u8 mac_dst[ETH_ALEN]; /* target hardware address */ 105 __be32 ip_dst; /* target IP address */ 106 }; 107 #pragma pack() 108 109 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb) 110 { 111 return (struct arp_pkt *)skb_network_header(skb); 112 } 113 114 /* Forward declaration */ 115 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]); 116 117 static inline u8 _simple_hash(const u8 *hash_start, int hash_size) 118 { 119 int i; 120 u8 hash = 0; 121 122 for (i = 0; i < hash_size; i++) { 123 hash ^= hash_start[i]; 124 } 125 126 return hash; 127 } 128 129 /*********************** tlb specific functions ***************************/ 130 131 static inline void _lock_tx_hashtbl(struct bonding *bond) 132 { 133 spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 134 } 135 136 static inline void _unlock_tx_hashtbl(struct bonding *bond) 137 { 138 spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 139 } 140 141 /* Caller must hold tx_hashtbl lock */ 142 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load) 143 { 144 if (save_load) { 145 entry->load_history = 1 + entry->tx_bytes / 146 BOND_TLB_REBALANCE_INTERVAL; 147 entry->tx_bytes = 0; 148 } 149 150 entry->tx_slave = NULL; 151 entry->next = TLB_NULL_INDEX; 152 entry->prev = TLB_NULL_INDEX; 153 } 154 155 static inline void tlb_init_slave(struct slave *slave) 156 { 157 SLAVE_TLB_INFO(slave).load = 0; 158 SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX; 159 } 160 161 /* Caller must hold bond lock for read */ 162 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load) 163 { 164 struct tlb_client_info *tx_hash_table; 165 u32 index; 166 167 _lock_tx_hashtbl(bond); 168 169 /* clear slave from tx_hashtbl */ 170 tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl; 171 172 index = SLAVE_TLB_INFO(slave).head; 173 while (index != TLB_NULL_INDEX) { 174 u32 next_index = tx_hash_table[index].next; 175 tlb_init_table_entry(&tx_hash_table[index], save_load); 176 index = next_index; 177 } 178 179 tlb_init_slave(slave); 180 181 _unlock_tx_hashtbl(bond); 182 } 183 184 /* Must be called before starting the monitor timer */ 185 static int tlb_initialize(struct bonding *bond) 186 { 187 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 188 int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info); 189 struct tlb_client_info *new_hashtbl; 190 int i; 191 192 spin_lock_init(&(bond_info->tx_hashtbl_lock)); 193 194 new_hashtbl = kzalloc(size, GFP_KERNEL); 195 if (!new_hashtbl) { 196 printk(KERN_ERR DRV_NAME 197 ": %s: Error: Failed to allocate TLB hash table\n", 198 bond->dev->name); 199 return -1; 200 } 201 _lock_tx_hashtbl(bond); 202 203 bond_info->tx_hashtbl = new_hashtbl; 204 205 for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) { 206 tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1); 207 } 208 209 _unlock_tx_hashtbl(bond); 210 211 return 0; 212 } 213 214 /* Must be called only after all slaves have been released */ 215 static void tlb_deinitialize(struct bonding *bond) 216 { 217 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 218 219 _lock_tx_hashtbl(bond); 220 221 kfree(bond_info->tx_hashtbl); 222 bond_info->tx_hashtbl = NULL; 223 224 _unlock_tx_hashtbl(bond); 225 } 226 227 /* Caller must hold bond lock for read */ 228 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond) 229 { 230 struct slave *slave, *least_loaded; 231 s64 max_gap; 232 int i, found = 0; 233 234 /* Find the first enabled slave */ 235 bond_for_each_slave(bond, slave, i) { 236 if (SLAVE_IS_OK(slave)) { 237 found = 1; 238 break; 239 } 240 } 241 242 if (!found) { 243 return NULL; 244 } 245 246 least_loaded = slave; 247 max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */ 248 (s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */ 249 250 /* Find the slave with the largest gap */ 251 bond_for_each_slave_from(bond, slave, i, least_loaded) { 252 if (SLAVE_IS_OK(slave)) { 253 s64 gap = (s64)(slave->speed << 20) - 254 (s64)(SLAVE_TLB_INFO(slave).load << 3); 255 if (max_gap < gap) { 256 least_loaded = slave; 257 max_gap = gap; 258 } 259 } 260 } 261 262 return least_loaded; 263 } 264 265 /* Caller must hold bond lock for read */ 266 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len) 267 { 268 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 269 struct tlb_client_info *hash_table; 270 struct slave *assigned_slave; 271 272 _lock_tx_hashtbl(bond); 273 274 hash_table = bond_info->tx_hashtbl; 275 assigned_slave = hash_table[hash_index].tx_slave; 276 if (!assigned_slave) { 277 assigned_slave = tlb_get_least_loaded_slave(bond); 278 279 if (assigned_slave) { 280 struct tlb_slave_info *slave_info = 281 &(SLAVE_TLB_INFO(assigned_slave)); 282 u32 next_index = slave_info->head; 283 284 hash_table[hash_index].tx_slave = assigned_slave; 285 hash_table[hash_index].next = next_index; 286 hash_table[hash_index].prev = TLB_NULL_INDEX; 287 288 if (next_index != TLB_NULL_INDEX) { 289 hash_table[next_index].prev = hash_index; 290 } 291 292 slave_info->head = hash_index; 293 slave_info->load += 294 hash_table[hash_index].load_history; 295 } 296 } 297 298 if (assigned_slave) { 299 hash_table[hash_index].tx_bytes += skb_len; 300 } 301 302 _unlock_tx_hashtbl(bond); 303 304 return assigned_slave; 305 } 306 307 /*********************** rlb specific functions ***************************/ 308 static inline void _lock_rx_hashtbl(struct bonding *bond) 309 { 310 spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 311 } 312 313 static inline void _unlock_rx_hashtbl(struct bonding *bond) 314 { 315 spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 316 } 317 318 /* when an ARP REPLY is received from a client update its info 319 * in the rx_hashtbl 320 */ 321 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp) 322 { 323 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 324 struct rlb_client_info *client_info; 325 u32 hash_index; 326 327 _lock_rx_hashtbl(bond); 328 329 hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src)); 330 client_info = &(bond_info->rx_hashtbl[hash_index]); 331 332 if ((client_info->assigned) && 333 (client_info->ip_src == arp->ip_dst) && 334 (client_info->ip_dst == arp->ip_src)) { 335 /* update the clients MAC address */ 336 memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN); 337 client_info->ntt = 1; 338 bond_info->rx_ntt = 1; 339 } 340 341 _unlock_rx_hashtbl(bond); 342 } 343 344 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev) 345 { 346 struct bonding *bond = bond_dev->priv; 347 struct arp_pkt *arp = (struct arp_pkt *)skb->data; 348 int res = NET_RX_DROP; 349 350 if (dev_net(bond_dev) != &init_net) 351 goto out; 352 353 if (!(bond_dev->flags & IFF_MASTER)) 354 goto out; 355 356 if (!arp) { 357 dprintk("Packet has no ARP data\n"); 358 goto out; 359 } 360 361 if (skb->len < sizeof(struct arp_pkt)) { 362 dprintk("Packet is too small to be an ARP\n"); 363 goto out; 364 } 365 366 if (arp->op_code == htons(ARPOP_REPLY)) { 367 /* update rx hash table for this ARP */ 368 rlb_update_entry_from_arp(bond, arp); 369 dprintk("Server received an ARP Reply from client\n"); 370 } 371 372 res = NET_RX_SUCCESS; 373 374 out: 375 dev_kfree_skb(skb); 376 377 return res; 378 } 379 380 /* Caller must hold bond lock for read */ 381 static struct slave *rlb_next_rx_slave(struct bonding *bond) 382 { 383 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 384 struct slave *rx_slave, *slave, *start_at; 385 int i = 0; 386 387 if (bond_info->next_rx_slave) { 388 start_at = bond_info->next_rx_slave; 389 } else { 390 start_at = bond->first_slave; 391 } 392 393 rx_slave = NULL; 394 395 bond_for_each_slave_from(bond, slave, i, start_at) { 396 if (SLAVE_IS_OK(slave)) { 397 if (!rx_slave) { 398 rx_slave = slave; 399 } else if (slave->speed > rx_slave->speed) { 400 rx_slave = slave; 401 } 402 } 403 } 404 405 if (rx_slave) { 406 bond_info->next_rx_slave = rx_slave->next; 407 } 408 409 return rx_slave; 410 } 411 412 /* teach the switch the mac of a disabled slave 413 * on the primary for fault tolerance 414 * 415 * Caller must hold bond->curr_slave_lock for write or bond lock for write 416 */ 417 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[]) 418 { 419 if (!bond->curr_active_slave) { 420 return; 421 } 422 423 if (!bond->alb_info.primary_is_promisc) { 424 if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1)) 425 bond->alb_info.primary_is_promisc = 1; 426 else 427 bond->alb_info.primary_is_promisc = 0; 428 } 429 430 bond->alb_info.rlb_promisc_timeout_counter = 0; 431 432 alb_send_learning_packets(bond->curr_active_slave, addr); 433 } 434 435 /* slave being removed should not be active at this point 436 * 437 * Caller must hold bond lock for read 438 */ 439 static void rlb_clear_slave(struct bonding *bond, struct slave *slave) 440 { 441 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 442 struct rlb_client_info *rx_hash_table; 443 u32 index, next_index; 444 445 /* clear slave from rx_hashtbl */ 446 _lock_rx_hashtbl(bond); 447 448 rx_hash_table = bond_info->rx_hashtbl; 449 index = bond_info->rx_hashtbl_head; 450 for (; index != RLB_NULL_INDEX; index = next_index) { 451 next_index = rx_hash_table[index].next; 452 if (rx_hash_table[index].slave == slave) { 453 struct slave *assigned_slave = rlb_next_rx_slave(bond); 454 455 if (assigned_slave) { 456 rx_hash_table[index].slave = assigned_slave; 457 if (memcmp(rx_hash_table[index].mac_dst, 458 mac_bcast, ETH_ALEN)) { 459 bond_info->rx_hashtbl[index].ntt = 1; 460 bond_info->rx_ntt = 1; 461 /* A slave has been removed from the 462 * table because it is either disabled 463 * or being released. We must retry the 464 * update to avoid clients from not 465 * being updated & disconnecting when 466 * there is stress 467 */ 468 bond_info->rlb_update_retry_counter = 469 RLB_UPDATE_RETRY; 470 } 471 } else { /* there is no active slave */ 472 rx_hash_table[index].slave = NULL; 473 } 474 } 475 } 476 477 _unlock_rx_hashtbl(bond); 478 479 write_lock_bh(&bond->curr_slave_lock); 480 481 if (slave != bond->curr_active_slave) { 482 rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr); 483 } 484 485 write_unlock_bh(&bond->curr_slave_lock); 486 } 487 488 static void rlb_update_client(struct rlb_client_info *client_info) 489 { 490 int i; 491 492 if (!client_info->slave) { 493 return; 494 } 495 496 for (i = 0; i < RLB_ARP_BURST_SIZE; i++) { 497 struct sk_buff *skb; 498 499 skb = arp_create(ARPOP_REPLY, ETH_P_ARP, 500 client_info->ip_dst, 501 client_info->slave->dev, 502 client_info->ip_src, 503 client_info->mac_dst, 504 client_info->slave->dev->dev_addr, 505 client_info->mac_dst); 506 if (!skb) { 507 printk(KERN_ERR DRV_NAME 508 ": %s: Error: failed to create an ARP packet\n", 509 client_info->slave->dev->master->name); 510 continue; 511 } 512 513 skb->dev = client_info->slave->dev; 514 515 if (client_info->tag) { 516 skb = vlan_put_tag(skb, client_info->vlan_id); 517 if (!skb) { 518 printk(KERN_ERR DRV_NAME 519 ": %s: Error: failed to insert VLAN tag\n", 520 client_info->slave->dev->master->name); 521 continue; 522 } 523 } 524 525 arp_xmit(skb); 526 } 527 } 528 529 /* sends ARP REPLIES that update the clients that need updating */ 530 static void rlb_update_rx_clients(struct bonding *bond) 531 { 532 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 533 struct rlb_client_info *client_info; 534 u32 hash_index; 535 536 _lock_rx_hashtbl(bond); 537 538 hash_index = bond_info->rx_hashtbl_head; 539 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 540 client_info = &(bond_info->rx_hashtbl[hash_index]); 541 if (client_info->ntt) { 542 rlb_update_client(client_info); 543 if (bond_info->rlb_update_retry_counter == 0) { 544 client_info->ntt = 0; 545 } 546 } 547 } 548 549 /* do not update the entries again untill this counter is zero so that 550 * not to confuse the clients. 551 */ 552 bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY; 553 554 _unlock_rx_hashtbl(bond); 555 } 556 557 /* The slave was assigned a new mac address - update the clients */ 558 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave) 559 { 560 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 561 struct rlb_client_info *client_info; 562 int ntt = 0; 563 u32 hash_index; 564 565 _lock_rx_hashtbl(bond); 566 567 hash_index = bond_info->rx_hashtbl_head; 568 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 569 client_info = &(bond_info->rx_hashtbl[hash_index]); 570 571 if ((client_info->slave == slave) && 572 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { 573 client_info->ntt = 1; 574 ntt = 1; 575 } 576 } 577 578 // update the team's flag only after the whole iteration 579 if (ntt) { 580 bond_info->rx_ntt = 1; 581 //fasten the change 582 bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; 583 } 584 585 _unlock_rx_hashtbl(bond); 586 } 587 588 /* mark all clients using src_ip to be updated */ 589 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip) 590 { 591 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 592 struct rlb_client_info *client_info; 593 u32 hash_index; 594 595 _lock_rx_hashtbl(bond); 596 597 hash_index = bond_info->rx_hashtbl_head; 598 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 599 client_info = &(bond_info->rx_hashtbl[hash_index]); 600 601 if (!client_info->slave) { 602 printk(KERN_ERR DRV_NAME 603 ": %s: Error: found a client with no channel in " 604 "the client's hash table\n", 605 bond->dev->name); 606 continue; 607 } 608 /*update all clients using this src_ip, that are not assigned 609 * to the team's address (curr_active_slave) and have a known 610 * unicast mac address. 611 */ 612 if ((client_info->ip_src == src_ip) && 613 memcmp(client_info->slave->dev->dev_addr, 614 bond->dev->dev_addr, ETH_ALEN) && 615 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { 616 client_info->ntt = 1; 617 bond_info->rx_ntt = 1; 618 } 619 } 620 621 _unlock_rx_hashtbl(bond); 622 } 623 624 /* Caller must hold both bond and ptr locks for read */ 625 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond) 626 { 627 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 628 struct arp_pkt *arp = arp_pkt(skb); 629 struct slave *assigned_slave; 630 struct rlb_client_info *client_info; 631 u32 hash_index = 0; 632 633 _lock_rx_hashtbl(bond); 634 635 hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src)); 636 client_info = &(bond_info->rx_hashtbl[hash_index]); 637 638 if (client_info->assigned) { 639 if ((client_info->ip_src == arp->ip_src) && 640 (client_info->ip_dst == arp->ip_dst)) { 641 /* the entry is already assigned to this client */ 642 if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) { 643 /* update mac address from arp */ 644 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 645 } 646 647 assigned_slave = client_info->slave; 648 if (assigned_slave) { 649 _unlock_rx_hashtbl(bond); 650 return assigned_slave; 651 } 652 } else { 653 /* the entry is already assigned to some other client, 654 * move the old client to primary (curr_active_slave) so 655 * that the new client can be assigned to this entry. 656 */ 657 if (bond->curr_active_slave && 658 client_info->slave != bond->curr_active_slave) { 659 client_info->slave = bond->curr_active_slave; 660 rlb_update_client(client_info); 661 } 662 } 663 } 664 /* assign a new slave */ 665 assigned_slave = rlb_next_rx_slave(bond); 666 667 if (assigned_slave) { 668 client_info->ip_src = arp->ip_src; 669 client_info->ip_dst = arp->ip_dst; 670 /* arp->mac_dst is broadcast for arp reqeusts. 671 * will be updated with clients actual unicast mac address 672 * upon receiving an arp reply. 673 */ 674 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 675 client_info->slave = assigned_slave; 676 677 if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { 678 client_info->ntt = 1; 679 bond->alb_info.rx_ntt = 1; 680 } else { 681 client_info->ntt = 0; 682 } 683 684 if (!list_empty(&bond->vlan_list)) { 685 if (!vlan_get_tag(skb, &client_info->vlan_id)) 686 client_info->tag = 1; 687 } 688 689 if (!client_info->assigned) { 690 u32 prev_tbl_head = bond_info->rx_hashtbl_head; 691 bond_info->rx_hashtbl_head = hash_index; 692 client_info->next = prev_tbl_head; 693 if (prev_tbl_head != RLB_NULL_INDEX) { 694 bond_info->rx_hashtbl[prev_tbl_head].prev = 695 hash_index; 696 } 697 client_info->assigned = 1; 698 } 699 } 700 701 _unlock_rx_hashtbl(bond); 702 703 return assigned_slave; 704 } 705 706 /* chooses (and returns) transmit channel for arp reply 707 * does not choose channel for other arp types since they are 708 * sent on the curr_active_slave 709 */ 710 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond) 711 { 712 struct arp_pkt *arp = arp_pkt(skb); 713 struct slave *tx_slave = NULL; 714 715 if (arp->op_code == htons(ARPOP_REPLY)) { 716 /* the arp must be sent on the selected 717 * rx channel 718 */ 719 tx_slave = rlb_choose_channel(skb, bond); 720 if (tx_slave) { 721 memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN); 722 } 723 dprintk("Server sent ARP Reply packet\n"); 724 } else if (arp->op_code == htons(ARPOP_REQUEST)) { 725 /* Create an entry in the rx_hashtbl for this client as a 726 * place holder. 727 * When the arp reply is received the entry will be updated 728 * with the correct unicast address of the client. 729 */ 730 rlb_choose_channel(skb, bond); 731 732 /* The ARP relpy packets must be delayed so that 733 * they can cancel out the influence of the ARP request. 734 */ 735 bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY; 736 737 /* arp requests are broadcast and are sent on the primary 738 * the arp request will collapse all clients on the subnet to 739 * the primary slave. We must register these clients to be 740 * updated with their assigned mac. 741 */ 742 rlb_req_update_subnet_clients(bond, arp->ip_src); 743 dprintk("Server sent ARP Request packet\n"); 744 } 745 746 return tx_slave; 747 } 748 749 /* Caller must hold bond lock for read */ 750 static void rlb_rebalance(struct bonding *bond) 751 { 752 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 753 struct slave *assigned_slave; 754 struct rlb_client_info *client_info; 755 int ntt; 756 u32 hash_index; 757 758 _lock_rx_hashtbl(bond); 759 760 ntt = 0; 761 hash_index = bond_info->rx_hashtbl_head; 762 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 763 client_info = &(bond_info->rx_hashtbl[hash_index]); 764 assigned_slave = rlb_next_rx_slave(bond); 765 if (assigned_slave && (client_info->slave != assigned_slave)) { 766 client_info->slave = assigned_slave; 767 client_info->ntt = 1; 768 ntt = 1; 769 } 770 } 771 772 /* update the team's flag only after the whole iteration */ 773 if (ntt) { 774 bond_info->rx_ntt = 1; 775 } 776 _unlock_rx_hashtbl(bond); 777 } 778 779 /* Caller must hold rx_hashtbl lock */ 780 static void rlb_init_table_entry(struct rlb_client_info *entry) 781 { 782 memset(entry, 0, sizeof(struct rlb_client_info)); 783 entry->next = RLB_NULL_INDEX; 784 entry->prev = RLB_NULL_INDEX; 785 } 786 787 static int rlb_initialize(struct bonding *bond) 788 { 789 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 790 struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type); 791 struct rlb_client_info *new_hashtbl; 792 int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info); 793 int i; 794 795 spin_lock_init(&(bond_info->rx_hashtbl_lock)); 796 797 new_hashtbl = kmalloc(size, GFP_KERNEL); 798 if (!new_hashtbl) { 799 printk(KERN_ERR DRV_NAME 800 ": %s: Error: Failed to allocate RLB hash table\n", 801 bond->dev->name); 802 return -1; 803 } 804 _lock_rx_hashtbl(bond); 805 806 bond_info->rx_hashtbl = new_hashtbl; 807 808 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 809 810 for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) { 811 rlb_init_table_entry(bond_info->rx_hashtbl + i); 812 } 813 814 _unlock_rx_hashtbl(bond); 815 816 /*initialize packet type*/ 817 pk_type->type = __constant_htons(ETH_P_ARP); 818 pk_type->dev = bond->dev; 819 pk_type->func = rlb_arp_recv; 820 821 /* register to receive ARPs */ 822 dev_add_pack(pk_type); 823 824 return 0; 825 } 826 827 static void rlb_deinitialize(struct bonding *bond) 828 { 829 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 830 831 dev_remove_pack(&(bond_info->rlb_pkt_type)); 832 833 _lock_rx_hashtbl(bond); 834 835 kfree(bond_info->rx_hashtbl); 836 bond_info->rx_hashtbl = NULL; 837 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 838 839 _unlock_rx_hashtbl(bond); 840 } 841 842 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 843 { 844 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 845 u32 curr_index; 846 847 _lock_rx_hashtbl(bond); 848 849 curr_index = bond_info->rx_hashtbl_head; 850 while (curr_index != RLB_NULL_INDEX) { 851 struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]); 852 u32 next_index = bond_info->rx_hashtbl[curr_index].next; 853 u32 prev_index = bond_info->rx_hashtbl[curr_index].prev; 854 855 if (curr->tag && (curr->vlan_id == vlan_id)) { 856 if (curr_index == bond_info->rx_hashtbl_head) { 857 bond_info->rx_hashtbl_head = next_index; 858 } 859 if (prev_index != RLB_NULL_INDEX) { 860 bond_info->rx_hashtbl[prev_index].next = next_index; 861 } 862 if (next_index != RLB_NULL_INDEX) { 863 bond_info->rx_hashtbl[next_index].prev = prev_index; 864 } 865 866 rlb_init_table_entry(curr); 867 } 868 869 curr_index = next_index; 870 } 871 872 _unlock_rx_hashtbl(bond); 873 } 874 875 /*********************** tlb/rlb shared functions *********************/ 876 877 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]) 878 { 879 struct bonding *bond = bond_get_bond_by_slave(slave); 880 struct learning_pkt pkt; 881 int size = sizeof(struct learning_pkt); 882 int i; 883 884 memset(&pkt, 0, size); 885 memcpy(pkt.mac_dst, mac_addr, ETH_ALEN); 886 memcpy(pkt.mac_src, mac_addr, ETH_ALEN); 887 pkt.type = __constant_htons(ETH_P_LOOP); 888 889 for (i = 0; i < MAX_LP_BURST; i++) { 890 struct sk_buff *skb; 891 char *data; 892 893 skb = dev_alloc_skb(size); 894 if (!skb) { 895 return; 896 } 897 898 data = skb_put(skb, size); 899 memcpy(data, &pkt, size); 900 901 skb_reset_mac_header(skb); 902 skb->network_header = skb->mac_header + ETH_HLEN; 903 skb->protocol = pkt.type; 904 skb->priority = TC_PRIO_CONTROL; 905 skb->dev = slave->dev; 906 907 if (!list_empty(&bond->vlan_list)) { 908 struct vlan_entry *vlan; 909 910 vlan = bond_next_vlan(bond, 911 bond->alb_info.current_alb_vlan); 912 913 bond->alb_info.current_alb_vlan = vlan; 914 if (!vlan) { 915 kfree_skb(skb); 916 continue; 917 } 918 919 skb = vlan_put_tag(skb, vlan->vlan_id); 920 if (!skb) { 921 printk(KERN_ERR DRV_NAME 922 ": %s: Error: failed to insert VLAN tag\n", 923 bond->dev->name); 924 continue; 925 } 926 } 927 928 dev_queue_xmit(skb); 929 } 930 } 931 932 /* hw is a boolean parameter that determines whether we should try and 933 * set the hw address of the device as well as the hw address of the 934 * net_device 935 */ 936 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw) 937 { 938 struct net_device *dev = slave->dev; 939 struct sockaddr s_addr; 940 941 if (!hw) { 942 memcpy(dev->dev_addr, addr, dev->addr_len); 943 return 0; 944 } 945 946 /* for rlb each slave must have a unique hw mac addresses so that */ 947 /* each slave will receive packets destined to a different mac */ 948 memcpy(s_addr.sa_data, addr, dev->addr_len); 949 s_addr.sa_family = dev->type; 950 if (dev_set_mac_address(dev, &s_addr)) { 951 printk(KERN_ERR DRV_NAME 952 ": %s: Error: dev_set_mac_address of dev %s failed! ALB " 953 "mode requires that the base driver support setting " 954 "the hw address also when the network device's " 955 "interface is open\n", 956 dev->master->name, dev->name); 957 return -EOPNOTSUPP; 958 } 959 return 0; 960 } 961 962 /* 963 * Swap MAC addresses between two slaves. 964 * 965 * Called with RTNL held, and no other locks. 966 * 967 */ 968 969 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2) 970 { 971 u8 tmp_mac_addr[ETH_ALEN]; 972 973 memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN); 974 alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled); 975 alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled); 976 977 } 978 979 /* 980 * Send learning packets after MAC address swap. 981 * 982 * Called with RTNL and no other locks 983 */ 984 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1, 985 struct slave *slave2) 986 { 987 int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2)); 988 struct slave *disabled_slave = NULL; 989 990 ASSERT_RTNL(); 991 992 /* fasten the change in the switch */ 993 if (SLAVE_IS_OK(slave1)) { 994 alb_send_learning_packets(slave1, slave1->dev->dev_addr); 995 if (bond->alb_info.rlb_enabled) { 996 /* inform the clients that the mac address 997 * has changed 998 */ 999 rlb_req_update_slave_clients(bond, slave1); 1000 } 1001 } else { 1002 disabled_slave = slave1; 1003 } 1004 1005 if (SLAVE_IS_OK(slave2)) { 1006 alb_send_learning_packets(slave2, slave2->dev->dev_addr); 1007 if (bond->alb_info.rlb_enabled) { 1008 /* inform the clients that the mac address 1009 * has changed 1010 */ 1011 rlb_req_update_slave_clients(bond, slave2); 1012 } 1013 } else { 1014 disabled_slave = slave2; 1015 } 1016 1017 if (bond->alb_info.rlb_enabled && slaves_state_differ) { 1018 /* A disabled slave was assigned an active mac addr */ 1019 rlb_teach_disabled_mac_on_primary(bond, 1020 disabled_slave->dev->dev_addr); 1021 } 1022 } 1023 1024 /** 1025 * alb_change_hw_addr_on_detach 1026 * @bond: bonding we're working on 1027 * @slave: the slave that was just detached 1028 * 1029 * We assume that @slave was already detached from the slave list. 1030 * 1031 * If @slave's permanent hw address is different both from its current 1032 * address and from @bond's address, then somewhere in the bond there's 1033 * a slave that has @slave's permanet address as its current address. 1034 * We'll make sure that that slave no longer uses @slave's permanent address. 1035 * 1036 * Caller must hold RTNL and no other locks 1037 */ 1038 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave) 1039 { 1040 int perm_curr_diff; 1041 int perm_bond_diff; 1042 1043 perm_curr_diff = memcmp(slave->perm_hwaddr, 1044 slave->dev->dev_addr, 1045 ETH_ALEN); 1046 perm_bond_diff = memcmp(slave->perm_hwaddr, 1047 bond->dev->dev_addr, 1048 ETH_ALEN); 1049 1050 if (perm_curr_diff && perm_bond_diff) { 1051 struct slave *tmp_slave; 1052 int i, found = 0; 1053 1054 bond_for_each_slave(bond, tmp_slave, i) { 1055 if (!memcmp(slave->perm_hwaddr, 1056 tmp_slave->dev->dev_addr, 1057 ETH_ALEN)) { 1058 found = 1; 1059 break; 1060 } 1061 } 1062 1063 if (found) { 1064 /* locking: needs RTNL and nothing else */ 1065 alb_swap_mac_addr(bond, slave, tmp_slave); 1066 alb_fasten_mac_swap(bond, slave, tmp_slave); 1067 } 1068 } 1069 } 1070 1071 /** 1072 * alb_handle_addr_collision_on_attach 1073 * @bond: bonding we're working on 1074 * @slave: the slave that was just attached 1075 * 1076 * checks uniqueness of slave's mac address and handles the case the 1077 * new slave uses the bonds mac address. 1078 * 1079 * If the permanent hw address of @slave is @bond's hw address, we need to 1080 * find a different hw address to give @slave, that isn't in use by any other 1081 * slave in the bond. This address must be, of course, one of the premanent 1082 * addresses of the other slaves. 1083 * 1084 * We go over the slave list, and for each slave there we compare its 1085 * permanent hw address with the current address of all the other slaves. 1086 * If no match was found, then we've found a slave with a permanent address 1087 * that isn't used by any other slave in the bond, so we can assign it to 1088 * @slave. 1089 * 1090 * assumption: this function is called before @slave is attached to the 1091 * bond slave list. 1092 * 1093 * caller must hold the bond lock for write since the mac addresses are compared 1094 * and may be swapped. 1095 */ 1096 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave) 1097 { 1098 struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave; 1099 struct slave *has_bond_addr = bond->curr_active_slave; 1100 int i, j, found = 0; 1101 1102 if (bond->slave_cnt == 0) { 1103 /* this is the first slave */ 1104 return 0; 1105 } 1106 1107 /* if slave's mac address differs from bond's mac address 1108 * check uniqueness of slave's mac address against the other 1109 * slaves in the bond. 1110 */ 1111 if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) { 1112 bond_for_each_slave(bond, tmp_slave1, i) { 1113 if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr, 1114 ETH_ALEN)) { 1115 found = 1; 1116 break; 1117 } 1118 } 1119 1120 if (!found) 1121 return 0; 1122 1123 /* Try setting slave mac to bond address and fall-through 1124 to code handling that situation below... */ 1125 alb_set_slave_mac_addr(slave, bond->dev->dev_addr, 1126 bond->alb_info.rlb_enabled); 1127 } 1128 1129 /* The slave's address is equal to the address of the bond. 1130 * Search for a spare address in the bond for this slave. 1131 */ 1132 free_mac_slave = NULL; 1133 1134 bond_for_each_slave(bond, tmp_slave1, i) { 1135 found = 0; 1136 bond_for_each_slave(bond, tmp_slave2, j) { 1137 if (!memcmp(tmp_slave1->perm_hwaddr, 1138 tmp_slave2->dev->dev_addr, 1139 ETH_ALEN)) { 1140 found = 1; 1141 break; 1142 } 1143 } 1144 1145 if (!found) { 1146 /* no slave has tmp_slave1's perm addr 1147 * as its curr addr 1148 */ 1149 free_mac_slave = tmp_slave1; 1150 break; 1151 } 1152 1153 if (!has_bond_addr) { 1154 if (!memcmp(tmp_slave1->dev->dev_addr, 1155 bond->dev->dev_addr, 1156 ETH_ALEN)) { 1157 1158 has_bond_addr = tmp_slave1; 1159 } 1160 } 1161 } 1162 1163 if (free_mac_slave) { 1164 alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr, 1165 bond->alb_info.rlb_enabled); 1166 1167 printk(KERN_WARNING DRV_NAME 1168 ": %s: Warning: the hw address of slave %s is in use by " 1169 "the bond; giving it the hw address of %s\n", 1170 bond->dev->name, slave->dev->name, free_mac_slave->dev->name); 1171 1172 } else if (has_bond_addr) { 1173 printk(KERN_ERR DRV_NAME 1174 ": %s: Error: the hw address of slave %s is in use by the " 1175 "bond; couldn't find a slave with a free hw address to " 1176 "give it (this should not have happened)\n", 1177 bond->dev->name, slave->dev->name); 1178 return -EFAULT; 1179 } 1180 1181 return 0; 1182 } 1183 1184 /** 1185 * alb_set_mac_address 1186 * @bond: 1187 * @addr: 1188 * 1189 * In TLB mode all slaves are configured to the bond's hw address, but set 1190 * their dev_addr field to different addresses (based on their permanent hw 1191 * addresses). 1192 * 1193 * For each slave, this function sets the interface to the new address and then 1194 * changes its dev_addr field to its previous value. 1195 * 1196 * Unwinding assumes bond's mac address has not yet changed. 1197 */ 1198 static int alb_set_mac_address(struct bonding *bond, void *addr) 1199 { 1200 struct sockaddr sa; 1201 struct slave *slave, *stop_at; 1202 char tmp_addr[ETH_ALEN]; 1203 int res; 1204 int i; 1205 1206 if (bond->alb_info.rlb_enabled) { 1207 return 0; 1208 } 1209 1210 bond_for_each_slave(bond, slave, i) { 1211 if (slave->dev->set_mac_address == NULL) { 1212 res = -EOPNOTSUPP; 1213 goto unwind; 1214 } 1215 1216 /* save net_device's current hw address */ 1217 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1218 1219 res = dev_set_mac_address(slave->dev, addr); 1220 1221 /* restore net_device's hw address */ 1222 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1223 1224 if (res) { 1225 goto unwind; 1226 } 1227 } 1228 1229 return 0; 1230 1231 unwind: 1232 memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len); 1233 sa.sa_family = bond->dev->type; 1234 1235 /* unwind from head to the slave that failed */ 1236 stop_at = slave; 1237 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 1238 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1239 dev_set_mac_address(slave->dev, &sa); 1240 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1241 } 1242 1243 return res; 1244 } 1245 1246 /************************ exported alb funcions ************************/ 1247 1248 int bond_alb_initialize(struct bonding *bond, int rlb_enabled) 1249 { 1250 int res; 1251 1252 res = tlb_initialize(bond); 1253 if (res) { 1254 return res; 1255 } 1256 1257 if (rlb_enabled) { 1258 bond->alb_info.rlb_enabled = 1; 1259 /* initialize rlb */ 1260 res = rlb_initialize(bond); 1261 if (res) { 1262 tlb_deinitialize(bond); 1263 return res; 1264 } 1265 } else { 1266 bond->alb_info.rlb_enabled = 0; 1267 } 1268 1269 return 0; 1270 } 1271 1272 void bond_alb_deinitialize(struct bonding *bond) 1273 { 1274 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1275 1276 tlb_deinitialize(bond); 1277 1278 if (bond_info->rlb_enabled) { 1279 rlb_deinitialize(bond); 1280 } 1281 } 1282 1283 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) 1284 { 1285 struct bonding *bond = bond_dev->priv; 1286 struct ethhdr *eth_data; 1287 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1288 struct slave *tx_slave = NULL; 1289 static const __be32 ip_bcast = htonl(0xffffffff); 1290 int hash_size = 0; 1291 int do_tx_balance = 1; 1292 u32 hash_index = 0; 1293 const u8 *hash_start = NULL; 1294 int res = 1; 1295 struct ipv6hdr *ip6hdr; 1296 1297 skb_reset_mac_header(skb); 1298 eth_data = eth_hdr(skb); 1299 1300 /* make sure that the curr_active_slave and the slaves list do 1301 * not change during tx 1302 */ 1303 read_lock(&bond->lock); 1304 read_lock(&bond->curr_slave_lock); 1305 1306 if (!BOND_IS_OK(bond)) { 1307 goto out; 1308 } 1309 1310 switch (ntohs(skb->protocol)) { 1311 case ETH_P_IP: { 1312 const struct iphdr *iph = ip_hdr(skb); 1313 1314 if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) || 1315 (iph->daddr == ip_bcast) || 1316 (iph->protocol == IPPROTO_IGMP)) { 1317 do_tx_balance = 0; 1318 break; 1319 } 1320 hash_start = (char *)&(iph->daddr); 1321 hash_size = sizeof(iph->daddr); 1322 } 1323 break; 1324 case ETH_P_IPV6: 1325 /* IPv6 doesn't really use broadcast mac address, but leave 1326 * that here just in case. 1327 */ 1328 if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) { 1329 do_tx_balance = 0; 1330 break; 1331 } 1332 1333 /* IPv6 uses all-nodes multicast as an equivalent to 1334 * broadcasts in IPv4. 1335 */ 1336 if (memcmp(eth_data->h_dest, mac_v6_allmcast, ETH_ALEN) == 0) { 1337 do_tx_balance = 0; 1338 break; 1339 } 1340 1341 /* Additianally, DAD probes should not be tx-balanced as that 1342 * will lead to false positives for duplicate addresses and 1343 * prevent address configuration from working. 1344 */ 1345 ip6hdr = ipv6_hdr(skb); 1346 if (ipv6_addr_any(&ip6hdr->saddr)) { 1347 do_tx_balance = 0; 1348 break; 1349 } 1350 1351 hash_start = (char *)&(ipv6_hdr(skb)->daddr); 1352 hash_size = sizeof(ipv6_hdr(skb)->daddr); 1353 break; 1354 case ETH_P_IPX: 1355 if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) { 1356 /* something is wrong with this packet */ 1357 do_tx_balance = 0; 1358 break; 1359 } 1360 1361 if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) { 1362 /* The only protocol worth balancing in 1363 * this family since it has an "ARP" like 1364 * mechanism 1365 */ 1366 do_tx_balance = 0; 1367 break; 1368 } 1369 1370 hash_start = (char*)eth_data->h_dest; 1371 hash_size = ETH_ALEN; 1372 break; 1373 case ETH_P_ARP: 1374 do_tx_balance = 0; 1375 if (bond_info->rlb_enabled) { 1376 tx_slave = rlb_arp_xmit(skb, bond); 1377 } 1378 break; 1379 default: 1380 do_tx_balance = 0; 1381 break; 1382 } 1383 1384 if (do_tx_balance) { 1385 hash_index = _simple_hash(hash_start, hash_size); 1386 tx_slave = tlb_choose_channel(bond, hash_index, skb->len); 1387 } 1388 1389 if (!tx_slave) { 1390 /* unbalanced or unassigned, send through primary */ 1391 tx_slave = bond->curr_active_slave; 1392 bond_info->unbalanced_load += skb->len; 1393 } 1394 1395 if (tx_slave && SLAVE_IS_OK(tx_slave)) { 1396 if (tx_slave != bond->curr_active_slave) { 1397 memcpy(eth_data->h_source, 1398 tx_slave->dev->dev_addr, 1399 ETH_ALEN); 1400 } 1401 1402 res = bond_dev_queue_xmit(bond, skb, tx_slave->dev); 1403 } else { 1404 if (tx_slave) { 1405 tlb_clear_slave(bond, tx_slave, 0); 1406 } 1407 } 1408 1409 out: 1410 if (res) { 1411 /* no suitable interface, frame not sent */ 1412 dev_kfree_skb(skb); 1413 } 1414 read_unlock(&bond->curr_slave_lock); 1415 read_unlock(&bond->lock); 1416 return 0; 1417 } 1418 1419 void bond_alb_monitor(struct work_struct *work) 1420 { 1421 struct bonding *bond = container_of(work, struct bonding, 1422 alb_work.work); 1423 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1424 struct slave *slave; 1425 int i; 1426 1427 read_lock(&bond->lock); 1428 1429 if (bond->kill_timers) { 1430 goto out; 1431 } 1432 1433 if (bond->slave_cnt == 0) { 1434 bond_info->tx_rebalance_counter = 0; 1435 bond_info->lp_counter = 0; 1436 goto re_arm; 1437 } 1438 1439 bond_info->tx_rebalance_counter++; 1440 bond_info->lp_counter++; 1441 1442 /* send learning packets */ 1443 if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) { 1444 /* change of curr_active_slave involves swapping of mac addresses. 1445 * in order to avoid this swapping from happening while 1446 * sending the learning packets, the curr_slave_lock must be held for 1447 * read. 1448 */ 1449 read_lock(&bond->curr_slave_lock); 1450 1451 bond_for_each_slave(bond, slave, i) { 1452 alb_send_learning_packets(slave, slave->dev->dev_addr); 1453 } 1454 1455 read_unlock(&bond->curr_slave_lock); 1456 1457 bond_info->lp_counter = 0; 1458 } 1459 1460 /* rebalance tx traffic */ 1461 if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) { 1462 1463 read_lock(&bond->curr_slave_lock); 1464 1465 bond_for_each_slave(bond, slave, i) { 1466 tlb_clear_slave(bond, slave, 1); 1467 if (slave == bond->curr_active_slave) { 1468 SLAVE_TLB_INFO(slave).load = 1469 bond_info->unbalanced_load / 1470 BOND_TLB_REBALANCE_INTERVAL; 1471 bond_info->unbalanced_load = 0; 1472 } 1473 } 1474 1475 read_unlock(&bond->curr_slave_lock); 1476 1477 bond_info->tx_rebalance_counter = 0; 1478 } 1479 1480 /* handle rlb stuff */ 1481 if (bond_info->rlb_enabled) { 1482 if (bond_info->primary_is_promisc && 1483 (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) { 1484 1485 /* 1486 * dev_set_promiscuity requires rtnl and 1487 * nothing else. 1488 */ 1489 read_unlock(&bond->lock); 1490 rtnl_lock(); 1491 1492 bond_info->rlb_promisc_timeout_counter = 0; 1493 1494 /* If the primary was set to promiscuous mode 1495 * because a slave was disabled then 1496 * it can now leave promiscuous mode. 1497 */ 1498 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1499 bond_info->primary_is_promisc = 0; 1500 1501 rtnl_unlock(); 1502 read_lock(&bond->lock); 1503 } 1504 1505 if (bond_info->rlb_rebalance) { 1506 bond_info->rlb_rebalance = 0; 1507 rlb_rebalance(bond); 1508 } 1509 1510 /* check if clients need updating */ 1511 if (bond_info->rx_ntt) { 1512 if (bond_info->rlb_update_delay_counter) { 1513 --bond_info->rlb_update_delay_counter; 1514 } else { 1515 rlb_update_rx_clients(bond); 1516 if (bond_info->rlb_update_retry_counter) { 1517 --bond_info->rlb_update_retry_counter; 1518 } else { 1519 bond_info->rx_ntt = 0; 1520 } 1521 } 1522 } 1523 } 1524 1525 re_arm: 1526 queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks); 1527 out: 1528 read_unlock(&bond->lock); 1529 } 1530 1531 /* assumption: called before the slave is attached to the bond 1532 * and not locked by the bond lock 1533 */ 1534 int bond_alb_init_slave(struct bonding *bond, struct slave *slave) 1535 { 1536 int res; 1537 1538 res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr, 1539 bond->alb_info.rlb_enabled); 1540 if (res) { 1541 return res; 1542 } 1543 1544 /* caller must hold the bond lock for write since the mac addresses 1545 * are compared and may be swapped. 1546 */ 1547 read_lock(&bond->lock); 1548 1549 res = alb_handle_addr_collision_on_attach(bond, slave); 1550 1551 read_unlock(&bond->lock); 1552 1553 if (res) { 1554 return res; 1555 } 1556 1557 tlb_init_slave(slave); 1558 1559 /* order a rebalance ASAP */ 1560 bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1561 1562 if (bond->alb_info.rlb_enabled) { 1563 bond->alb_info.rlb_rebalance = 1; 1564 } 1565 1566 return 0; 1567 } 1568 1569 /* 1570 * Remove slave from tlb and rlb hash tables, and fix up MAC addresses 1571 * if necessary. 1572 * 1573 * Caller must hold RTNL and no other locks 1574 */ 1575 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave) 1576 { 1577 if (bond->slave_cnt > 1) { 1578 alb_change_hw_addr_on_detach(bond, slave); 1579 } 1580 1581 tlb_clear_slave(bond, slave, 0); 1582 1583 if (bond->alb_info.rlb_enabled) { 1584 bond->alb_info.next_rx_slave = NULL; 1585 rlb_clear_slave(bond, slave); 1586 } 1587 } 1588 1589 /* Caller must hold bond lock for read */ 1590 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link) 1591 { 1592 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1593 1594 if (link == BOND_LINK_DOWN) { 1595 tlb_clear_slave(bond, slave, 0); 1596 if (bond->alb_info.rlb_enabled) { 1597 rlb_clear_slave(bond, slave); 1598 } 1599 } else if (link == BOND_LINK_UP) { 1600 /* order a rebalance ASAP */ 1601 bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1602 if (bond->alb_info.rlb_enabled) { 1603 bond->alb_info.rlb_rebalance = 1; 1604 /* If the updelay module parameter is smaller than the 1605 * forwarding delay of the switch the rebalance will 1606 * not work because the rebalance arp replies will 1607 * not be forwarded to the clients.. 1608 */ 1609 } 1610 } 1611 } 1612 1613 /** 1614 * bond_alb_handle_active_change - assign new curr_active_slave 1615 * @bond: our bonding struct 1616 * @new_slave: new slave to assign 1617 * 1618 * Set the bond->curr_active_slave to @new_slave and handle 1619 * mac address swapping and promiscuity changes as needed. 1620 * 1621 * If new_slave is NULL, caller must hold curr_slave_lock or 1622 * bond->lock for write. 1623 * 1624 * If new_slave is not NULL, caller must hold RTNL, bond->lock for 1625 * read and curr_slave_lock for write. Processing here may sleep, so 1626 * no other locks may be held. 1627 */ 1628 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave) 1629 { 1630 struct slave *swap_slave; 1631 int i; 1632 1633 if (bond->curr_active_slave == new_slave) { 1634 return; 1635 } 1636 1637 if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) { 1638 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1639 bond->alb_info.primary_is_promisc = 0; 1640 bond->alb_info.rlb_promisc_timeout_counter = 0; 1641 } 1642 1643 swap_slave = bond->curr_active_slave; 1644 bond->curr_active_slave = new_slave; 1645 1646 if (!new_slave || (bond->slave_cnt == 0)) { 1647 return; 1648 } 1649 1650 /* set the new curr_active_slave to the bonds mac address 1651 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave 1652 */ 1653 if (!swap_slave) { 1654 struct slave *tmp_slave; 1655 /* find slave that is holding the bond's mac address */ 1656 bond_for_each_slave(bond, tmp_slave, i) { 1657 if (!memcmp(tmp_slave->dev->dev_addr, 1658 bond->dev->dev_addr, ETH_ALEN)) { 1659 swap_slave = tmp_slave; 1660 break; 1661 } 1662 } 1663 } 1664 1665 /* 1666 * Arrange for swap_slave and new_slave to temporarily be 1667 * ignored so we can mess with their MAC addresses without 1668 * fear of interference from transmit activity. 1669 */ 1670 if (swap_slave) { 1671 tlb_clear_slave(bond, swap_slave, 1); 1672 } 1673 tlb_clear_slave(bond, new_slave, 1); 1674 1675 write_unlock_bh(&bond->curr_slave_lock); 1676 read_unlock(&bond->lock); 1677 1678 ASSERT_RTNL(); 1679 1680 /* curr_active_slave must be set before calling alb_swap_mac_addr */ 1681 if (swap_slave) { 1682 /* swap mac address */ 1683 alb_swap_mac_addr(bond, swap_slave, new_slave); 1684 } else { 1685 /* set the new_slave to the bond mac address */ 1686 alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr, 1687 bond->alb_info.rlb_enabled); 1688 } 1689 1690 if (swap_slave) { 1691 alb_fasten_mac_swap(bond, swap_slave, new_slave); 1692 read_lock(&bond->lock); 1693 } else { 1694 read_lock(&bond->lock); 1695 alb_send_learning_packets(new_slave, bond->dev->dev_addr); 1696 } 1697 1698 write_lock_bh(&bond->curr_slave_lock); 1699 } 1700 1701 /* 1702 * Called with RTNL 1703 */ 1704 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr) 1705 { 1706 struct bonding *bond = bond_dev->priv; 1707 struct sockaddr *sa = addr; 1708 struct slave *slave, *swap_slave; 1709 int res; 1710 int i; 1711 1712 if (!is_valid_ether_addr(sa->sa_data)) { 1713 return -EADDRNOTAVAIL; 1714 } 1715 1716 res = alb_set_mac_address(bond, addr); 1717 if (res) { 1718 return res; 1719 } 1720 1721 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 1722 1723 /* If there is no curr_active_slave there is nothing else to do. 1724 * Otherwise we'll need to pass the new address to it and handle 1725 * duplications. 1726 */ 1727 if (!bond->curr_active_slave) { 1728 return 0; 1729 } 1730 1731 swap_slave = NULL; 1732 1733 bond_for_each_slave(bond, slave, i) { 1734 if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) { 1735 swap_slave = slave; 1736 break; 1737 } 1738 } 1739 1740 write_unlock_bh(&bond->curr_slave_lock); 1741 read_unlock(&bond->lock); 1742 1743 if (swap_slave) { 1744 alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave); 1745 alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave); 1746 } else { 1747 alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr, 1748 bond->alb_info.rlb_enabled); 1749 1750 alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr); 1751 if (bond->alb_info.rlb_enabled) { 1752 /* inform clients mac address has changed */ 1753 rlb_req_update_slave_clients(bond, bond->curr_active_slave); 1754 } 1755 } 1756 1757 read_lock(&bond->lock); 1758 write_lock_bh(&bond->curr_slave_lock); 1759 1760 return 0; 1761 } 1762 1763 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 1764 { 1765 if (bond->alb_info.current_alb_vlan && 1766 (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) { 1767 bond->alb_info.current_alb_vlan = NULL; 1768 } 1769 1770 if (bond->alb_info.rlb_enabled) { 1771 rlb_clear_vlan(bond, vlan_id); 1772 } 1773 } 1774 1775