1 /* 2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License along 15 * with this program; if not, write to the Free Software Foundation, Inc., 16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called LICENSE. 20 * 21 */ 22 23 //#define BONDING_DEBUG 1 24 25 #include <linux/skbuff.h> 26 #include <linux/netdevice.h> 27 #include <linux/etherdevice.h> 28 #include <linux/pkt_sched.h> 29 #include <linux/spinlock.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/ip.h> 33 #include <linux/ipv6.h> 34 #include <linux/if_arp.h> 35 #include <linux/if_ether.h> 36 #include <linux/if_bonding.h> 37 #include <linux/if_vlan.h> 38 #include <linux/in.h> 39 #include <net/ipx.h> 40 #include <net/arp.h> 41 #include <asm/byteorder.h> 42 #include "bonding.h" 43 #include "bond_alb.h" 44 45 46 #define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */ 47 #define BOND_TLB_REBALANCE_INTERVAL 10 /* In seconds, periodic re-balancing. 48 * Used for division - never set 49 * to zero !!! 50 */ 51 #define BOND_ALB_LP_INTERVAL 1 /* In seconds, periodic send of 52 * learning packets to the switch 53 */ 54 55 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \ 56 * ALB_TIMER_TICKS_PER_SEC) 57 58 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \ 59 * ALB_TIMER_TICKS_PER_SEC) 60 61 #define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table. 62 * Note that this value MUST NOT be smaller 63 * because the key hash table is BYTE wide ! 64 */ 65 66 67 #define TLB_NULL_INDEX 0xffffffff 68 #define MAX_LP_BURST 3 69 70 /* rlb defs */ 71 #define RLB_HASH_TABLE_SIZE 256 72 #define RLB_NULL_INDEX 0xffffffff 73 #define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */ 74 #define RLB_ARP_BURST_SIZE 2 75 #define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb 76 * rebalance interval (5 min). 77 */ 78 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is 79 * promiscuous after failover 80 */ 81 #define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC 82 83 static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff}; 84 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC; 85 86 #pragma pack(1) 87 struct learning_pkt { 88 u8 mac_dst[ETH_ALEN]; 89 u8 mac_src[ETH_ALEN]; 90 __be16 type; 91 u8 padding[ETH_ZLEN - ETH_HLEN]; 92 }; 93 94 struct arp_pkt { 95 __be16 hw_addr_space; 96 __be16 prot_addr_space; 97 u8 hw_addr_len; 98 u8 prot_addr_len; 99 __be16 op_code; 100 u8 mac_src[ETH_ALEN]; /* sender hardware address */ 101 __be32 ip_src; /* sender IP address */ 102 u8 mac_dst[ETH_ALEN]; /* target hardware address */ 103 __be32 ip_dst; /* target IP address */ 104 }; 105 #pragma pack() 106 107 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb) 108 { 109 return (struct arp_pkt *)skb_network_header(skb); 110 } 111 112 /* Forward declaration */ 113 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]); 114 115 static inline u8 _simple_hash(const u8 *hash_start, int hash_size) 116 { 117 int i; 118 u8 hash = 0; 119 120 for (i = 0; i < hash_size; i++) { 121 hash ^= hash_start[i]; 122 } 123 124 return hash; 125 } 126 127 /*********************** tlb specific functions ***************************/ 128 129 static inline void _lock_tx_hashtbl(struct bonding *bond) 130 { 131 spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 132 } 133 134 static inline void _unlock_tx_hashtbl(struct bonding *bond) 135 { 136 spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 137 } 138 139 /* Caller must hold tx_hashtbl lock */ 140 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load) 141 { 142 if (save_load) { 143 entry->load_history = 1 + entry->tx_bytes / 144 BOND_TLB_REBALANCE_INTERVAL; 145 entry->tx_bytes = 0; 146 } 147 148 entry->tx_slave = NULL; 149 entry->next = TLB_NULL_INDEX; 150 entry->prev = TLB_NULL_INDEX; 151 } 152 153 static inline void tlb_init_slave(struct slave *slave) 154 { 155 SLAVE_TLB_INFO(slave).load = 0; 156 SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX; 157 } 158 159 /* Caller must hold bond lock for read */ 160 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load) 161 { 162 struct tlb_client_info *tx_hash_table; 163 u32 index; 164 165 _lock_tx_hashtbl(bond); 166 167 /* clear slave from tx_hashtbl */ 168 tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl; 169 170 index = SLAVE_TLB_INFO(slave).head; 171 while (index != TLB_NULL_INDEX) { 172 u32 next_index = tx_hash_table[index].next; 173 tlb_init_table_entry(&tx_hash_table[index], save_load); 174 index = next_index; 175 } 176 177 tlb_init_slave(slave); 178 179 _unlock_tx_hashtbl(bond); 180 } 181 182 /* Must be called before starting the monitor timer */ 183 static int tlb_initialize(struct bonding *bond) 184 { 185 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 186 int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info); 187 struct tlb_client_info *new_hashtbl; 188 int i; 189 190 spin_lock_init(&(bond_info->tx_hashtbl_lock)); 191 192 new_hashtbl = kzalloc(size, GFP_KERNEL); 193 if (!new_hashtbl) { 194 printk(KERN_ERR DRV_NAME 195 ": %s: Error: Failed to allocate TLB hash table\n", 196 bond->dev->name); 197 return -1; 198 } 199 _lock_tx_hashtbl(bond); 200 201 bond_info->tx_hashtbl = new_hashtbl; 202 203 for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) { 204 tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1); 205 } 206 207 _unlock_tx_hashtbl(bond); 208 209 return 0; 210 } 211 212 /* Must be called only after all slaves have been released */ 213 static void tlb_deinitialize(struct bonding *bond) 214 { 215 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 216 217 _lock_tx_hashtbl(bond); 218 219 kfree(bond_info->tx_hashtbl); 220 bond_info->tx_hashtbl = NULL; 221 222 _unlock_tx_hashtbl(bond); 223 } 224 225 /* Caller must hold bond lock for read */ 226 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond) 227 { 228 struct slave *slave, *least_loaded; 229 s64 max_gap; 230 int i, found = 0; 231 232 /* Find the first enabled slave */ 233 bond_for_each_slave(bond, slave, i) { 234 if (SLAVE_IS_OK(slave)) { 235 found = 1; 236 break; 237 } 238 } 239 240 if (!found) { 241 return NULL; 242 } 243 244 least_loaded = slave; 245 max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */ 246 (s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */ 247 248 /* Find the slave with the largest gap */ 249 bond_for_each_slave_from(bond, slave, i, least_loaded) { 250 if (SLAVE_IS_OK(slave)) { 251 s64 gap = (s64)(slave->speed << 20) - 252 (s64)(SLAVE_TLB_INFO(slave).load << 3); 253 if (max_gap < gap) { 254 least_loaded = slave; 255 max_gap = gap; 256 } 257 } 258 } 259 260 return least_loaded; 261 } 262 263 /* Caller must hold bond lock for read */ 264 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len) 265 { 266 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 267 struct tlb_client_info *hash_table; 268 struct slave *assigned_slave; 269 270 _lock_tx_hashtbl(bond); 271 272 hash_table = bond_info->tx_hashtbl; 273 assigned_slave = hash_table[hash_index].tx_slave; 274 if (!assigned_slave) { 275 assigned_slave = tlb_get_least_loaded_slave(bond); 276 277 if (assigned_slave) { 278 struct tlb_slave_info *slave_info = 279 &(SLAVE_TLB_INFO(assigned_slave)); 280 u32 next_index = slave_info->head; 281 282 hash_table[hash_index].tx_slave = assigned_slave; 283 hash_table[hash_index].next = next_index; 284 hash_table[hash_index].prev = TLB_NULL_INDEX; 285 286 if (next_index != TLB_NULL_INDEX) { 287 hash_table[next_index].prev = hash_index; 288 } 289 290 slave_info->head = hash_index; 291 slave_info->load += 292 hash_table[hash_index].load_history; 293 } 294 } 295 296 if (assigned_slave) { 297 hash_table[hash_index].tx_bytes += skb_len; 298 } 299 300 _unlock_tx_hashtbl(bond); 301 302 return assigned_slave; 303 } 304 305 /*********************** rlb specific functions ***************************/ 306 static inline void _lock_rx_hashtbl(struct bonding *bond) 307 { 308 spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 309 } 310 311 static inline void _unlock_rx_hashtbl(struct bonding *bond) 312 { 313 spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 314 } 315 316 /* when an ARP REPLY is received from a client update its info 317 * in the rx_hashtbl 318 */ 319 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp) 320 { 321 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 322 struct rlb_client_info *client_info; 323 u32 hash_index; 324 325 _lock_rx_hashtbl(bond); 326 327 hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src)); 328 client_info = &(bond_info->rx_hashtbl[hash_index]); 329 330 if ((client_info->assigned) && 331 (client_info->ip_src == arp->ip_dst) && 332 (client_info->ip_dst == arp->ip_src)) { 333 /* update the clients MAC address */ 334 memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN); 335 client_info->ntt = 1; 336 bond_info->rx_ntt = 1; 337 } 338 339 _unlock_rx_hashtbl(bond); 340 } 341 342 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev) 343 { 344 struct bonding *bond = bond_dev->priv; 345 struct arp_pkt *arp = (struct arp_pkt *)skb->data; 346 int res = NET_RX_DROP; 347 348 if (bond_dev->nd_net != &init_net) 349 goto out; 350 351 if (!(bond_dev->flags & IFF_MASTER)) 352 goto out; 353 354 if (!arp) { 355 dprintk("Packet has no ARP data\n"); 356 goto out; 357 } 358 359 if (skb->len < sizeof(struct arp_pkt)) { 360 dprintk("Packet is too small to be an ARP\n"); 361 goto out; 362 } 363 364 if (arp->op_code == htons(ARPOP_REPLY)) { 365 /* update rx hash table for this ARP */ 366 rlb_update_entry_from_arp(bond, arp); 367 dprintk("Server received an ARP Reply from client\n"); 368 } 369 370 res = NET_RX_SUCCESS; 371 372 out: 373 dev_kfree_skb(skb); 374 375 return res; 376 } 377 378 /* Caller must hold bond lock for read */ 379 static struct slave *rlb_next_rx_slave(struct bonding *bond) 380 { 381 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 382 struct slave *rx_slave, *slave, *start_at; 383 int i = 0; 384 385 if (bond_info->next_rx_slave) { 386 start_at = bond_info->next_rx_slave; 387 } else { 388 start_at = bond->first_slave; 389 } 390 391 rx_slave = NULL; 392 393 bond_for_each_slave_from(bond, slave, i, start_at) { 394 if (SLAVE_IS_OK(slave)) { 395 if (!rx_slave) { 396 rx_slave = slave; 397 } else if (slave->speed > rx_slave->speed) { 398 rx_slave = slave; 399 } 400 } 401 } 402 403 if (rx_slave) { 404 bond_info->next_rx_slave = rx_slave->next; 405 } 406 407 return rx_slave; 408 } 409 410 /* teach the switch the mac of a disabled slave 411 * on the primary for fault tolerance 412 * 413 * Caller must hold bond->curr_slave_lock for write or bond lock for write 414 */ 415 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[]) 416 { 417 if (!bond->curr_active_slave) { 418 return; 419 } 420 421 if (!bond->alb_info.primary_is_promisc) { 422 bond->alb_info.primary_is_promisc = 1; 423 dev_set_promiscuity(bond->curr_active_slave->dev, 1); 424 } 425 426 bond->alb_info.rlb_promisc_timeout_counter = 0; 427 428 alb_send_learning_packets(bond->curr_active_slave, addr); 429 } 430 431 /* slave being removed should not be active at this point 432 * 433 * Caller must hold bond lock for read 434 */ 435 static void rlb_clear_slave(struct bonding *bond, struct slave *slave) 436 { 437 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 438 struct rlb_client_info *rx_hash_table; 439 u32 index, next_index; 440 441 /* clear slave from rx_hashtbl */ 442 _lock_rx_hashtbl(bond); 443 444 rx_hash_table = bond_info->rx_hashtbl; 445 index = bond_info->rx_hashtbl_head; 446 for (; index != RLB_NULL_INDEX; index = next_index) { 447 next_index = rx_hash_table[index].next; 448 if (rx_hash_table[index].slave == slave) { 449 struct slave *assigned_slave = rlb_next_rx_slave(bond); 450 451 if (assigned_slave) { 452 rx_hash_table[index].slave = assigned_slave; 453 if (memcmp(rx_hash_table[index].mac_dst, 454 mac_bcast, ETH_ALEN)) { 455 bond_info->rx_hashtbl[index].ntt = 1; 456 bond_info->rx_ntt = 1; 457 /* A slave has been removed from the 458 * table because it is either disabled 459 * or being released. We must retry the 460 * update to avoid clients from not 461 * being updated & disconnecting when 462 * there is stress 463 */ 464 bond_info->rlb_update_retry_counter = 465 RLB_UPDATE_RETRY; 466 } 467 } else { /* there is no active slave */ 468 rx_hash_table[index].slave = NULL; 469 } 470 } 471 } 472 473 _unlock_rx_hashtbl(bond); 474 475 write_lock_bh(&bond->curr_slave_lock); 476 477 if (slave != bond->curr_active_slave) { 478 rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr); 479 } 480 481 write_unlock_bh(&bond->curr_slave_lock); 482 } 483 484 static void rlb_update_client(struct rlb_client_info *client_info) 485 { 486 int i; 487 488 if (!client_info->slave) { 489 return; 490 } 491 492 for (i = 0; i < RLB_ARP_BURST_SIZE; i++) { 493 struct sk_buff *skb; 494 495 skb = arp_create(ARPOP_REPLY, ETH_P_ARP, 496 client_info->ip_dst, 497 client_info->slave->dev, 498 client_info->ip_src, 499 client_info->mac_dst, 500 client_info->slave->dev->dev_addr, 501 client_info->mac_dst); 502 if (!skb) { 503 printk(KERN_ERR DRV_NAME 504 ": %s: Error: failed to create an ARP packet\n", 505 client_info->slave->dev->master->name); 506 continue; 507 } 508 509 skb->dev = client_info->slave->dev; 510 511 if (client_info->tag) { 512 skb = vlan_put_tag(skb, client_info->vlan_id); 513 if (!skb) { 514 printk(KERN_ERR DRV_NAME 515 ": %s: Error: failed to insert VLAN tag\n", 516 client_info->slave->dev->master->name); 517 continue; 518 } 519 } 520 521 arp_xmit(skb); 522 } 523 } 524 525 /* sends ARP REPLIES that update the clients that need updating */ 526 static void rlb_update_rx_clients(struct bonding *bond) 527 { 528 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 529 struct rlb_client_info *client_info; 530 u32 hash_index; 531 532 _lock_rx_hashtbl(bond); 533 534 hash_index = bond_info->rx_hashtbl_head; 535 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 536 client_info = &(bond_info->rx_hashtbl[hash_index]); 537 if (client_info->ntt) { 538 rlb_update_client(client_info); 539 if (bond_info->rlb_update_retry_counter == 0) { 540 client_info->ntt = 0; 541 } 542 } 543 } 544 545 /* do not update the entries again untill this counter is zero so that 546 * not to confuse the clients. 547 */ 548 bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY; 549 550 _unlock_rx_hashtbl(bond); 551 } 552 553 /* The slave was assigned a new mac address - update the clients */ 554 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave) 555 { 556 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 557 struct rlb_client_info *client_info; 558 int ntt = 0; 559 u32 hash_index; 560 561 _lock_rx_hashtbl(bond); 562 563 hash_index = bond_info->rx_hashtbl_head; 564 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 565 client_info = &(bond_info->rx_hashtbl[hash_index]); 566 567 if ((client_info->slave == slave) && 568 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { 569 client_info->ntt = 1; 570 ntt = 1; 571 } 572 } 573 574 // update the team's flag only after the whole iteration 575 if (ntt) { 576 bond_info->rx_ntt = 1; 577 //fasten the change 578 bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; 579 } 580 581 _unlock_rx_hashtbl(bond); 582 } 583 584 /* mark all clients using src_ip to be updated */ 585 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip) 586 { 587 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 588 struct rlb_client_info *client_info; 589 u32 hash_index; 590 591 _lock_rx_hashtbl(bond); 592 593 hash_index = bond_info->rx_hashtbl_head; 594 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 595 client_info = &(bond_info->rx_hashtbl[hash_index]); 596 597 if (!client_info->slave) { 598 printk(KERN_ERR DRV_NAME 599 ": %s: Error: found a client with no channel in " 600 "the client's hash table\n", 601 bond->dev->name); 602 continue; 603 } 604 /*update all clients using this src_ip, that are not assigned 605 * to the team's address (curr_active_slave) and have a known 606 * unicast mac address. 607 */ 608 if ((client_info->ip_src == src_ip) && 609 memcmp(client_info->slave->dev->dev_addr, 610 bond->dev->dev_addr, ETH_ALEN) && 611 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { 612 client_info->ntt = 1; 613 bond_info->rx_ntt = 1; 614 } 615 } 616 617 _unlock_rx_hashtbl(bond); 618 } 619 620 /* Caller must hold both bond and ptr locks for read */ 621 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond) 622 { 623 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 624 struct arp_pkt *arp = arp_pkt(skb); 625 struct slave *assigned_slave; 626 struct rlb_client_info *client_info; 627 u32 hash_index = 0; 628 629 _lock_rx_hashtbl(bond); 630 631 hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src)); 632 client_info = &(bond_info->rx_hashtbl[hash_index]); 633 634 if (client_info->assigned) { 635 if ((client_info->ip_src == arp->ip_src) && 636 (client_info->ip_dst == arp->ip_dst)) { 637 /* the entry is already assigned to this client */ 638 if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) { 639 /* update mac address from arp */ 640 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 641 } 642 643 assigned_slave = client_info->slave; 644 if (assigned_slave) { 645 _unlock_rx_hashtbl(bond); 646 return assigned_slave; 647 } 648 } else { 649 /* the entry is already assigned to some other client, 650 * move the old client to primary (curr_active_slave) so 651 * that the new client can be assigned to this entry. 652 */ 653 if (bond->curr_active_slave && 654 client_info->slave != bond->curr_active_slave) { 655 client_info->slave = bond->curr_active_slave; 656 rlb_update_client(client_info); 657 } 658 } 659 } 660 /* assign a new slave */ 661 assigned_slave = rlb_next_rx_slave(bond); 662 663 if (assigned_slave) { 664 client_info->ip_src = arp->ip_src; 665 client_info->ip_dst = arp->ip_dst; 666 /* arp->mac_dst is broadcast for arp reqeusts. 667 * will be updated with clients actual unicast mac address 668 * upon receiving an arp reply. 669 */ 670 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 671 client_info->slave = assigned_slave; 672 673 if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { 674 client_info->ntt = 1; 675 bond->alb_info.rx_ntt = 1; 676 } else { 677 client_info->ntt = 0; 678 } 679 680 if (!list_empty(&bond->vlan_list)) { 681 unsigned short vlan_id; 682 int res = vlan_get_tag(skb, &vlan_id); 683 if (!res) { 684 client_info->tag = 1; 685 client_info->vlan_id = vlan_id; 686 } 687 } 688 689 if (!client_info->assigned) { 690 u32 prev_tbl_head = bond_info->rx_hashtbl_head; 691 bond_info->rx_hashtbl_head = hash_index; 692 client_info->next = prev_tbl_head; 693 if (prev_tbl_head != RLB_NULL_INDEX) { 694 bond_info->rx_hashtbl[prev_tbl_head].prev = 695 hash_index; 696 } 697 client_info->assigned = 1; 698 } 699 } 700 701 _unlock_rx_hashtbl(bond); 702 703 return assigned_slave; 704 } 705 706 /* chooses (and returns) transmit channel for arp reply 707 * does not choose channel for other arp types since they are 708 * sent on the curr_active_slave 709 */ 710 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond) 711 { 712 struct arp_pkt *arp = arp_pkt(skb); 713 struct slave *tx_slave = NULL; 714 715 if (arp->op_code == __constant_htons(ARPOP_REPLY)) { 716 /* the arp must be sent on the selected 717 * rx channel 718 */ 719 tx_slave = rlb_choose_channel(skb, bond); 720 if (tx_slave) { 721 memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN); 722 } 723 dprintk("Server sent ARP Reply packet\n"); 724 } else if (arp->op_code == __constant_htons(ARPOP_REQUEST)) { 725 /* Create an entry in the rx_hashtbl for this client as a 726 * place holder. 727 * When the arp reply is received the entry will be updated 728 * with the correct unicast address of the client. 729 */ 730 rlb_choose_channel(skb, bond); 731 732 /* The ARP relpy packets must be delayed so that 733 * they can cancel out the influence of the ARP request. 734 */ 735 bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY; 736 737 /* arp requests are broadcast and are sent on the primary 738 * the arp request will collapse all clients on the subnet to 739 * the primary slave. We must register these clients to be 740 * updated with their assigned mac. 741 */ 742 rlb_req_update_subnet_clients(bond, arp->ip_src); 743 dprintk("Server sent ARP Request packet\n"); 744 } 745 746 return tx_slave; 747 } 748 749 /* Caller must hold bond lock for read */ 750 static void rlb_rebalance(struct bonding *bond) 751 { 752 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 753 struct slave *assigned_slave; 754 struct rlb_client_info *client_info; 755 int ntt; 756 u32 hash_index; 757 758 _lock_rx_hashtbl(bond); 759 760 ntt = 0; 761 hash_index = bond_info->rx_hashtbl_head; 762 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 763 client_info = &(bond_info->rx_hashtbl[hash_index]); 764 assigned_slave = rlb_next_rx_slave(bond); 765 if (assigned_slave && (client_info->slave != assigned_slave)) { 766 client_info->slave = assigned_slave; 767 client_info->ntt = 1; 768 ntt = 1; 769 } 770 } 771 772 /* update the team's flag only after the whole iteration */ 773 if (ntt) { 774 bond_info->rx_ntt = 1; 775 } 776 _unlock_rx_hashtbl(bond); 777 } 778 779 /* Caller must hold rx_hashtbl lock */ 780 static void rlb_init_table_entry(struct rlb_client_info *entry) 781 { 782 memset(entry, 0, sizeof(struct rlb_client_info)); 783 entry->next = RLB_NULL_INDEX; 784 entry->prev = RLB_NULL_INDEX; 785 } 786 787 static int rlb_initialize(struct bonding *bond) 788 { 789 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 790 struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type); 791 struct rlb_client_info *new_hashtbl; 792 int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info); 793 int i; 794 795 spin_lock_init(&(bond_info->rx_hashtbl_lock)); 796 797 new_hashtbl = kmalloc(size, GFP_KERNEL); 798 if (!new_hashtbl) { 799 printk(KERN_ERR DRV_NAME 800 ": %s: Error: Failed to allocate RLB hash table\n", 801 bond->dev->name); 802 return -1; 803 } 804 _lock_rx_hashtbl(bond); 805 806 bond_info->rx_hashtbl = new_hashtbl; 807 808 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 809 810 for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) { 811 rlb_init_table_entry(bond_info->rx_hashtbl + i); 812 } 813 814 _unlock_rx_hashtbl(bond); 815 816 /*initialize packet type*/ 817 pk_type->type = __constant_htons(ETH_P_ARP); 818 pk_type->dev = bond->dev; 819 pk_type->func = rlb_arp_recv; 820 821 /* register to receive ARPs */ 822 dev_add_pack(pk_type); 823 824 return 0; 825 } 826 827 static void rlb_deinitialize(struct bonding *bond) 828 { 829 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 830 831 dev_remove_pack(&(bond_info->rlb_pkt_type)); 832 833 _lock_rx_hashtbl(bond); 834 835 kfree(bond_info->rx_hashtbl); 836 bond_info->rx_hashtbl = NULL; 837 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 838 839 _unlock_rx_hashtbl(bond); 840 } 841 842 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 843 { 844 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 845 u32 curr_index; 846 847 _lock_rx_hashtbl(bond); 848 849 curr_index = bond_info->rx_hashtbl_head; 850 while (curr_index != RLB_NULL_INDEX) { 851 struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]); 852 u32 next_index = bond_info->rx_hashtbl[curr_index].next; 853 u32 prev_index = bond_info->rx_hashtbl[curr_index].prev; 854 855 if (curr->tag && (curr->vlan_id == vlan_id)) { 856 if (curr_index == bond_info->rx_hashtbl_head) { 857 bond_info->rx_hashtbl_head = next_index; 858 } 859 if (prev_index != RLB_NULL_INDEX) { 860 bond_info->rx_hashtbl[prev_index].next = next_index; 861 } 862 if (next_index != RLB_NULL_INDEX) { 863 bond_info->rx_hashtbl[next_index].prev = prev_index; 864 } 865 866 rlb_init_table_entry(curr); 867 } 868 869 curr_index = next_index; 870 } 871 872 _unlock_rx_hashtbl(bond); 873 } 874 875 /*********************** tlb/rlb shared functions *********************/ 876 877 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]) 878 { 879 struct bonding *bond = bond_get_bond_by_slave(slave); 880 struct learning_pkt pkt; 881 int size = sizeof(struct learning_pkt); 882 int i; 883 884 memset(&pkt, 0, size); 885 memcpy(pkt.mac_dst, mac_addr, ETH_ALEN); 886 memcpy(pkt.mac_src, mac_addr, ETH_ALEN); 887 pkt.type = __constant_htons(ETH_P_LOOP); 888 889 for (i = 0; i < MAX_LP_BURST; i++) { 890 struct sk_buff *skb; 891 char *data; 892 893 skb = dev_alloc_skb(size); 894 if (!skb) { 895 return; 896 } 897 898 data = skb_put(skb, size); 899 memcpy(data, &pkt, size); 900 901 skb_reset_mac_header(skb); 902 skb->network_header = skb->mac_header + ETH_HLEN; 903 skb->protocol = pkt.type; 904 skb->priority = TC_PRIO_CONTROL; 905 skb->dev = slave->dev; 906 907 if (!list_empty(&bond->vlan_list)) { 908 struct vlan_entry *vlan; 909 910 vlan = bond_next_vlan(bond, 911 bond->alb_info.current_alb_vlan); 912 913 bond->alb_info.current_alb_vlan = vlan; 914 if (!vlan) { 915 kfree_skb(skb); 916 continue; 917 } 918 919 skb = vlan_put_tag(skb, vlan->vlan_id); 920 if (!skb) { 921 printk(KERN_ERR DRV_NAME 922 ": %s: Error: failed to insert VLAN tag\n", 923 bond->dev->name); 924 continue; 925 } 926 } 927 928 dev_queue_xmit(skb); 929 } 930 } 931 932 /* hw is a boolean parameter that determines whether we should try and 933 * set the hw address of the device as well as the hw address of the 934 * net_device 935 */ 936 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw) 937 { 938 struct net_device *dev = slave->dev; 939 struct sockaddr s_addr; 940 941 if (!hw) { 942 memcpy(dev->dev_addr, addr, dev->addr_len); 943 return 0; 944 } 945 946 /* for rlb each slave must have a unique hw mac addresses so that */ 947 /* each slave will receive packets destined to a different mac */ 948 memcpy(s_addr.sa_data, addr, dev->addr_len); 949 s_addr.sa_family = dev->type; 950 if (dev_set_mac_address(dev, &s_addr)) { 951 printk(KERN_ERR DRV_NAME 952 ": %s: Error: dev_set_mac_address of dev %s failed! ALB " 953 "mode requires that the base driver support setting " 954 "the hw address also when the network device's " 955 "interface is open\n", 956 dev->master->name, dev->name); 957 return -EOPNOTSUPP; 958 } 959 return 0; 960 } 961 962 /* 963 * Swap MAC addresses between two slaves. 964 * 965 * Called with RTNL held, and no other locks. 966 * 967 */ 968 969 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2) 970 { 971 u8 tmp_mac_addr[ETH_ALEN]; 972 973 memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN); 974 alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled); 975 alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled); 976 977 } 978 979 /* 980 * Send learning packets after MAC address swap. 981 * 982 * Called with RTNL and no other locks 983 */ 984 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1, 985 struct slave *slave2) 986 { 987 int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2)); 988 struct slave *disabled_slave = NULL; 989 990 ASSERT_RTNL(); 991 992 /* fasten the change in the switch */ 993 if (SLAVE_IS_OK(slave1)) { 994 alb_send_learning_packets(slave1, slave1->dev->dev_addr); 995 if (bond->alb_info.rlb_enabled) { 996 /* inform the clients that the mac address 997 * has changed 998 */ 999 rlb_req_update_slave_clients(bond, slave1); 1000 } 1001 } else { 1002 disabled_slave = slave1; 1003 } 1004 1005 if (SLAVE_IS_OK(slave2)) { 1006 alb_send_learning_packets(slave2, slave2->dev->dev_addr); 1007 if (bond->alb_info.rlb_enabled) { 1008 /* inform the clients that the mac address 1009 * has changed 1010 */ 1011 rlb_req_update_slave_clients(bond, slave2); 1012 } 1013 } else { 1014 disabled_slave = slave2; 1015 } 1016 1017 if (bond->alb_info.rlb_enabled && slaves_state_differ) { 1018 /* A disabled slave was assigned an active mac addr */ 1019 rlb_teach_disabled_mac_on_primary(bond, 1020 disabled_slave->dev->dev_addr); 1021 } 1022 } 1023 1024 /** 1025 * alb_change_hw_addr_on_detach 1026 * @bond: bonding we're working on 1027 * @slave: the slave that was just detached 1028 * 1029 * We assume that @slave was already detached from the slave list. 1030 * 1031 * If @slave's permanent hw address is different both from its current 1032 * address and from @bond's address, then somewhere in the bond there's 1033 * a slave that has @slave's permanet address as its current address. 1034 * We'll make sure that that slave no longer uses @slave's permanent address. 1035 * 1036 * Caller must hold RTNL and no other locks 1037 */ 1038 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave) 1039 { 1040 int perm_curr_diff; 1041 int perm_bond_diff; 1042 1043 perm_curr_diff = memcmp(slave->perm_hwaddr, 1044 slave->dev->dev_addr, 1045 ETH_ALEN); 1046 perm_bond_diff = memcmp(slave->perm_hwaddr, 1047 bond->dev->dev_addr, 1048 ETH_ALEN); 1049 1050 if (perm_curr_diff && perm_bond_diff) { 1051 struct slave *tmp_slave; 1052 int i, found = 0; 1053 1054 bond_for_each_slave(bond, tmp_slave, i) { 1055 if (!memcmp(slave->perm_hwaddr, 1056 tmp_slave->dev->dev_addr, 1057 ETH_ALEN)) { 1058 found = 1; 1059 break; 1060 } 1061 } 1062 1063 if (found) { 1064 /* locking: needs RTNL and nothing else */ 1065 alb_swap_mac_addr(bond, slave, tmp_slave); 1066 alb_fasten_mac_swap(bond, slave, tmp_slave); 1067 } 1068 } 1069 } 1070 1071 /** 1072 * alb_handle_addr_collision_on_attach 1073 * @bond: bonding we're working on 1074 * @slave: the slave that was just attached 1075 * 1076 * checks uniqueness of slave's mac address and handles the case the 1077 * new slave uses the bonds mac address. 1078 * 1079 * If the permanent hw address of @slave is @bond's hw address, we need to 1080 * find a different hw address to give @slave, that isn't in use by any other 1081 * slave in the bond. This address must be, of course, one of the premanent 1082 * addresses of the other slaves. 1083 * 1084 * We go over the slave list, and for each slave there we compare its 1085 * permanent hw address with the current address of all the other slaves. 1086 * If no match was found, then we've found a slave with a permanent address 1087 * that isn't used by any other slave in the bond, so we can assign it to 1088 * @slave. 1089 * 1090 * assumption: this function is called before @slave is attached to the 1091 * bond slave list. 1092 * 1093 * caller must hold the bond lock for write since the mac addresses are compared 1094 * and may be swapped. 1095 */ 1096 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave) 1097 { 1098 struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave; 1099 struct slave *has_bond_addr = bond->curr_active_slave; 1100 int i, j, found = 0; 1101 1102 if (bond->slave_cnt == 0) { 1103 /* this is the first slave */ 1104 return 0; 1105 } 1106 1107 /* if slave's mac address differs from bond's mac address 1108 * check uniqueness of slave's mac address against the other 1109 * slaves in the bond. 1110 */ 1111 if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) { 1112 bond_for_each_slave(bond, tmp_slave1, i) { 1113 if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr, 1114 ETH_ALEN)) { 1115 found = 1; 1116 break; 1117 } 1118 } 1119 1120 if (!found) 1121 return 0; 1122 1123 /* Try setting slave mac to bond address and fall-through 1124 to code handling that situation below... */ 1125 alb_set_slave_mac_addr(slave, bond->dev->dev_addr, 1126 bond->alb_info.rlb_enabled); 1127 } 1128 1129 /* The slave's address is equal to the address of the bond. 1130 * Search for a spare address in the bond for this slave. 1131 */ 1132 free_mac_slave = NULL; 1133 1134 bond_for_each_slave(bond, tmp_slave1, i) { 1135 found = 0; 1136 bond_for_each_slave(bond, tmp_slave2, j) { 1137 if (!memcmp(tmp_slave1->perm_hwaddr, 1138 tmp_slave2->dev->dev_addr, 1139 ETH_ALEN)) { 1140 found = 1; 1141 break; 1142 } 1143 } 1144 1145 if (!found) { 1146 /* no slave has tmp_slave1's perm addr 1147 * as its curr addr 1148 */ 1149 free_mac_slave = tmp_slave1; 1150 break; 1151 } 1152 1153 if (!has_bond_addr) { 1154 if (!memcmp(tmp_slave1->dev->dev_addr, 1155 bond->dev->dev_addr, 1156 ETH_ALEN)) { 1157 1158 has_bond_addr = tmp_slave1; 1159 } 1160 } 1161 } 1162 1163 if (free_mac_slave) { 1164 alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr, 1165 bond->alb_info.rlb_enabled); 1166 1167 printk(KERN_WARNING DRV_NAME 1168 ": %s: Warning: the hw address of slave %s is in use by " 1169 "the bond; giving it the hw address of %s\n", 1170 bond->dev->name, slave->dev->name, free_mac_slave->dev->name); 1171 1172 } else if (has_bond_addr) { 1173 printk(KERN_ERR DRV_NAME 1174 ": %s: Error: the hw address of slave %s is in use by the " 1175 "bond; couldn't find a slave with a free hw address to " 1176 "give it (this should not have happened)\n", 1177 bond->dev->name, slave->dev->name); 1178 return -EFAULT; 1179 } 1180 1181 return 0; 1182 } 1183 1184 /** 1185 * alb_set_mac_address 1186 * @bond: 1187 * @addr: 1188 * 1189 * In TLB mode all slaves are configured to the bond's hw address, but set 1190 * their dev_addr field to different addresses (based on their permanent hw 1191 * addresses). 1192 * 1193 * For each slave, this function sets the interface to the new address and then 1194 * changes its dev_addr field to its previous value. 1195 * 1196 * Unwinding assumes bond's mac address has not yet changed. 1197 */ 1198 static int alb_set_mac_address(struct bonding *bond, void *addr) 1199 { 1200 struct sockaddr sa; 1201 struct slave *slave, *stop_at; 1202 char tmp_addr[ETH_ALEN]; 1203 int res; 1204 int i; 1205 1206 if (bond->alb_info.rlb_enabled) { 1207 return 0; 1208 } 1209 1210 bond_for_each_slave(bond, slave, i) { 1211 if (slave->dev->set_mac_address == NULL) { 1212 res = -EOPNOTSUPP; 1213 goto unwind; 1214 } 1215 1216 /* save net_device's current hw address */ 1217 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1218 1219 res = dev_set_mac_address(slave->dev, addr); 1220 1221 /* restore net_device's hw address */ 1222 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1223 1224 if (res) { 1225 goto unwind; 1226 } 1227 } 1228 1229 return 0; 1230 1231 unwind: 1232 memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len); 1233 sa.sa_family = bond->dev->type; 1234 1235 /* unwind from head to the slave that failed */ 1236 stop_at = slave; 1237 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 1238 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1239 dev_set_mac_address(slave->dev, &sa); 1240 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1241 } 1242 1243 return res; 1244 } 1245 1246 /************************ exported alb funcions ************************/ 1247 1248 int bond_alb_initialize(struct bonding *bond, int rlb_enabled) 1249 { 1250 int res; 1251 1252 res = tlb_initialize(bond); 1253 if (res) { 1254 return res; 1255 } 1256 1257 if (rlb_enabled) { 1258 bond->alb_info.rlb_enabled = 1; 1259 /* initialize rlb */ 1260 res = rlb_initialize(bond); 1261 if (res) { 1262 tlb_deinitialize(bond); 1263 return res; 1264 } 1265 } else { 1266 bond->alb_info.rlb_enabled = 0; 1267 } 1268 1269 return 0; 1270 } 1271 1272 void bond_alb_deinitialize(struct bonding *bond) 1273 { 1274 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1275 1276 tlb_deinitialize(bond); 1277 1278 if (bond_info->rlb_enabled) { 1279 rlb_deinitialize(bond); 1280 } 1281 } 1282 1283 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) 1284 { 1285 struct bonding *bond = bond_dev->priv; 1286 struct ethhdr *eth_data; 1287 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1288 struct slave *tx_slave = NULL; 1289 static const __be32 ip_bcast = htonl(0xffffffff); 1290 int hash_size = 0; 1291 int do_tx_balance = 1; 1292 u32 hash_index = 0; 1293 const u8 *hash_start = NULL; 1294 int res = 1; 1295 1296 skb_reset_mac_header(skb); 1297 eth_data = eth_hdr(skb); 1298 1299 /* make sure that the curr_active_slave and the slaves list do 1300 * not change during tx 1301 */ 1302 read_lock(&bond->lock); 1303 read_lock(&bond->curr_slave_lock); 1304 1305 if (!BOND_IS_OK(bond)) { 1306 goto out; 1307 } 1308 1309 switch (ntohs(skb->protocol)) { 1310 case ETH_P_IP: { 1311 const struct iphdr *iph = ip_hdr(skb); 1312 1313 if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) || 1314 (iph->daddr == ip_bcast) || 1315 (iph->protocol == IPPROTO_IGMP)) { 1316 do_tx_balance = 0; 1317 break; 1318 } 1319 hash_start = (char *)&(iph->daddr); 1320 hash_size = sizeof(iph->daddr); 1321 } 1322 break; 1323 case ETH_P_IPV6: 1324 if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) { 1325 do_tx_balance = 0; 1326 break; 1327 } 1328 1329 hash_start = (char *)&(ipv6_hdr(skb)->daddr); 1330 hash_size = sizeof(ipv6_hdr(skb)->daddr); 1331 break; 1332 case ETH_P_IPX: 1333 if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) { 1334 /* something is wrong with this packet */ 1335 do_tx_balance = 0; 1336 break; 1337 } 1338 1339 if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) { 1340 /* The only protocol worth balancing in 1341 * this family since it has an "ARP" like 1342 * mechanism 1343 */ 1344 do_tx_balance = 0; 1345 break; 1346 } 1347 1348 hash_start = (char*)eth_data->h_dest; 1349 hash_size = ETH_ALEN; 1350 break; 1351 case ETH_P_ARP: 1352 do_tx_balance = 0; 1353 if (bond_info->rlb_enabled) { 1354 tx_slave = rlb_arp_xmit(skb, bond); 1355 } 1356 break; 1357 default: 1358 do_tx_balance = 0; 1359 break; 1360 } 1361 1362 if (do_tx_balance) { 1363 hash_index = _simple_hash(hash_start, hash_size); 1364 tx_slave = tlb_choose_channel(bond, hash_index, skb->len); 1365 } 1366 1367 if (!tx_slave) { 1368 /* unbalanced or unassigned, send through primary */ 1369 tx_slave = bond->curr_active_slave; 1370 bond_info->unbalanced_load += skb->len; 1371 } 1372 1373 if (tx_slave && SLAVE_IS_OK(tx_slave)) { 1374 if (tx_slave != bond->curr_active_slave) { 1375 memcpy(eth_data->h_source, 1376 tx_slave->dev->dev_addr, 1377 ETH_ALEN); 1378 } 1379 1380 res = bond_dev_queue_xmit(bond, skb, tx_slave->dev); 1381 } else { 1382 if (tx_slave) { 1383 tlb_clear_slave(bond, tx_slave, 0); 1384 } 1385 } 1386 1387 out: 1388 if (res) { 1389 /* no suitable interface, frame not sent */ 1390 dev_kfree_skb(skb); 1391 } 1392 read_unlock(&bond->curr_slave_lock); 1393 read_unlock(&bond->lock); 1394 return 0; 1395 } 1396 1397 void bond_alb_monitor(struct work_struct *work) 1398 { 1399 struct bonding *bond = container_of(work, struct bonding, 1400 alb_work.work); 1401 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1402 struct slave *slave; 1403 int i; 1404 1405 read_lock(&bond->lock); 1406 1407 if (bond->kill_timers) { 1408 goto out; 1409 } 1410 1411 if (bond->slave_cnt == 0) { 1412 bond_info->tx_rebalance_counter = 0; 1413 bond_info->lp_counter = 0; 1414 goto re_arm; 1415 } 1416 1417 bond_info->tx_rebalance_counter++; 1418 bond_info->lp_counter++; 1419 1420 /* send learning packets */ 1421 if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) { 1422 /* change of curr_active_slave involves swapping of mac addresses. 1423 * in order to avoid this swapping from happening while 1424 * sending the learning packets, the curr_slave_lock must be held for 1425 * read. 1426 */ 1427 read_lock(&bond->curr_slave_lock); 1428 1429 bond_for_each_slave(bond, slave, i) { 1430 alb_send_learning_packets(slave, slave->dev->dev_addr); 1431 } 1432 1433 read_unlock(&bond->curr_slave_lock); 1434 1435 bond_info->lp_counter = 0; 1436 } 1437 1438 /* rebalance tx traffic */ 1439 if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) { 1440 1441 read_lock(&bond->curr_slave_lock); 1442 1443 bond_for_each_slave(bond, slave, i) { 1444 tlb_clear_slave(bond, slave, 1); 1445 if (slave == bond->curr_active_slave) { 1446 SLAVE_TLB_INFO(slave).load = 1447 bond_info->unbalanced_load / 1448 BOND_TLB_REBALANCE_INTERVAL; 1449 bond_info->unbalanced_load = 0; 1450 } 1451 } 1452 1453 read_unlock(&bond->curr_slave_lock); 1454 1455 bond_info->tx_rebalance_counter = 0; 1456 } 1457 1458 /* handle rlb stuff */ 1459 if (bond_info->rlb_enabled) { 1460 if (bond_info->primary_is_promisc && 1461 (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) { 1462 1463 /* 1464 * dev_set_promiscuity requires rtnl and 1465 * nothing else. 1466 */ 1467 read_unlock(&bond->lock); 1468 rtnl_lock(); 1469 1470 bond_info->rlb_promisc_timeout_counter = 0; 1471 1472 /* If the primary was set to promiscuous mode 1473 * because a slave was disabled then 1474 * it can now leave promiscuous mode. 1475 */ 1476 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1477 bond_info->primary_is_promisc = 0; 1478 1479 rtnl_unlock(); 1480 read_lock(&bond->lock); 1481 } 1482 1483 if (bond_info->rlb_rebalance) { 1484 bond_info->rlb_rebalance = 0; 1485 rlb_rebalance(bond); 1486 } 1487 1488 /* check if clients need updating */ 1489 if (bond_info->rx_ntt) { 1490 if (bond_info->rlb_update_delay_counter) { 1491 --bond_info->rlb_update_delay_counter; 1492 } else { 1493 rlb_update_rx_clients(bond); 1494 if (bond_info->rlb_update_retry_counter) { 1495 --bond_info->rlb_update_retry_counter; 1496 } else { 1497 bond_info->rx_ntt = 0; 1498 } 1499 } 1500 } 1501 } 1502 1503 re_arm: 1504 queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks); 1505 out: 1506 read_unlock(&bond->lock); 1507 } 1508 1509 /* assumption: called before the slave is attached to the bond 1510 * and not locked by the bond lock 1511 */ 1512 int bond_alb_init_slave(struct bonding *bond, struct slave *slave) 1513 { 1514 int res; 1515 1516 res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr, 1517 bond->alb_info.rlb_enabled); 1518 if (res) { 1519 return res; 1520 } 1521 1522 /* caller must hold the bond lock for write since the mac addresses 1523 * are compared and may be swapped. 1524 */ 1525 read_lock(&bond->lock); 1526 1527 res = alb_handle_addr_collision_on_attach(bond, slave); 1528 1529 read_unlock(&bond->lock); 1530 1531 if (res) { 1532 return res; 1533 } 1534 1535 tlb_init_slave(slave); 1536 1537 /* order a rebalance ASAP */ 1538 bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1539 1540 if (bond->alb_info.rlb_enabled) { 1541 bond->alb_info.rlb_rebalance = 1; 1542 } 1543 1544 return 0; 1545 } 1546 1547 /* 1548 * Remove slave from tlb and rlb hash tables, and fix up MAC addresses 1549 * if necessary. 1550 * 1551 * Caller must hold RTNL and no other locks 1552 */ 1553 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave) 1554 { 1555 if (bond->slave_cnt > 1) { 1556 alb_change_hw_addr_on_detach(bond, slave); 1557 } 1558 1559 tlb_clear_slave(bond, slave, 0); 1560 1561 if (bond->alb_info.rlb_enabled) { 1562 bond->alb_info.next_rx_slave = NULL; 1563 rlb_clear_slave(bond, slave); 1564 } 1565 } 1566 1567 /* Caller must hold bond lock for read */ 1568 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link) 1569 { 1570 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1571 1572 if (link == BOND_LINK_DOWN) { 1573 tlb_clear_slave(bond, slave, 0); 1574 if (bond->alb_info.rlb_enabled) { 1575 rlb_clear_slave(bond, slave); 1576 } 1577 } else if (link == BOND_LINK_UP) { 1578 /* order a rebalance ASAP */ 1579 bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1580 if (bond->alb_info.rlb_enabled) { 1581 bond->alb_info.rlb_rebalance = 1; 1582 /* If the updelay module parameter is smaller than the 1583 * forwarding delay of the switch the rebalance will 1584 * not work because the rebalance arp replies will 1585 * not be forwarded to the clients.. 1586 */ 1587 } 1588 } 1589 } 1590 1591 /** 1592 * bond_alb_handle_active_change - assign new curr_active_slave 1593 * @bond: our bonding struct 1594 * @new_slave: new slave to assign 1595 * 1596 * Set the bond->curr_active_slave to @new_slave and handle 1597 * mac address swapping and promiscuity changes as needed. 1598 * 1599 * If new_slave is NULL, caller must hold curr_slave_lock or 1600 * bond->lock for write. 1601 * 1602 * If new_slave is not NULL, caller must hold RTNL, bond->lock for 1603 * read and curr_slave_lock for write. Processing here may sleep, so 1604 * no other locks may be held. 1605 */ 1606 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave) 1607 { 1608 struct slave *swap_slave; 1609 int i; 1610 1611 if (bond->curr_active_slave == new_slave) { 1612 return; 1613 } 1614 1615 if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) { 1616 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1617 bond->alb_info.primary_is_promisc = 0; 1618 bond->alb_info.rlb_promisc_timeout_counter = 0; 1619 } 1620 1621 swap_slave = bond->curr_active_slave; 1622 bond->curr_active_slave = new_slave; 1623 1624 if (!new_slave || (bond->slave_cnt == 0)) { 1625 return; 1626 } 1627 1628 /* set the new curr_active_slave to the bonds mac address 1629 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave 1630 */ 1631 if (!swap_slave) { 1632 struct slave *tmp_slave; 1633 /* find slave that is holding the bond's mac address */ 1634 bond_for_each_slave(bond, tmp_slave, i) { 1635 if (!memcmp(tmp_slave->dev->dev_addr, 1636 bond->dev->dev_addr, ETH_ALEN)) { 1637 swap_slave = tmp_slave; 1638 break; 1639 } 1640 } 1641 } 1642 1643 /* 1644 * Arrange for swap_slave and new_slave to temporarily be 1645 * ignored so we can mess with their MAC addresses without 1646 * fear of interference from transmit activity. 1647 */ 1648 if (swap_slave) { 1649 tlb_clear_slave(bond, swap_slave, 1); 1650 } 1651 tlb_clear_slave(bond, new_slave, 1); 1652 1653 write_unlock_bh(&bond->curr_slave_lock); 1654 read_unlock(&bond->lock); 1655 1656 ASSERT_RTNL(); 1657 1658 /* curr_active_slave must be set before calling alb_swap_mac_addr */ 1659 if (swap_slave) { 1660 /* swap mac address */ 1661 alb_swap_mac_addr(bond, swap_slave, new_slave); 1662 } else { 1663 /* set the new_slave to the bond mac address */ 1664 alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr, 1665 bond->alb_info.rlb_enabled); 1666 } 1667 1668 if (swap_slave) { 1669 alb_fasten_mac_swap(bond, swap_slave, new_slave); 1670 read_lock(&bond->lock); 1671 } else { 1672 read_lock(&bond->lock); 1673 alb_send_learning_packets(new_slave, bond->dev->dev_addr); 1674 } 1675 1676 write_lock_bh(&bond->curr_slave_lock); 1677 } 1678 1679 /* 1680 * Called with RTNL 1681 */ 1682 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr) 1683 { 1684 struct bonding *bond = bond_dev->priv; 1685 struct sockaddr *sa = addr; 1686 struct slave *slave, *swap_slave; 1687 int res; 1688 int i; 1689 1690 if (!is_valid_ether_addr(sa->sa_data)) { 1691 return -EADDRNOTAVAIL; 1692 } 1693 1694 res = alb_set_mac_address(bond, addr); 1695 if (res) { 1696 return res; 1697 } 1698 1699 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 1700 1701 /* If there is no curr_active_slave there is nothing else to do. 1702 * Otherwise we'll need to pass the new address to it and handle 1703 * duplications. 1704 */ 1705 if (!bond->curr_active_slave) { 1706 return 0; 1707 } 1708 1709 swap_slave = NULL; 1710 1711 bond_for_each_slave(bond, slave, i) { 1712 if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) { 1713 swap_slave = slave; 1714 break; 1715 } 1716 } 1717 1718 write_unlock_bh(&bond->curr_slave_lock); 1719 read_unlock(&bond->lock); 1720 1721 if (swap_slave) { 1722 alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave); 1723 alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave); 1724 } else { 1725 alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr, 1726 bond->alb_info.rlb_enabled); 1727 1728 alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr); 1729 if (bond->alb_info.rlb_enabled) { 1730 /* inform clients mac address has changed */ 1731 rlb_req_update_slave_clients(bond, bond->curr_active_slave); 1732 } 1733 } 1734 1735 read_lock(&bond->lock); 1736 write_lock_bh(&bond->curr_slave_lock); 1737 1738 return 0; 1739 } 1740 1741 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 1742 { 1743 if (bond->alb_info.current_alb_vlan && 1744 (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) { 1745 bond->alb_info.current_alb_vlan = NULL; 1746 } 1747 1748 if (bond->alb_info.rlb_enabled) { 1749 rlb_clear_vlan(bond, vlan_id); 1750 } 1751 } 1752 1753