xref: /linux/drivers/net/bonding/bond_alb.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License along
15  * with this program; if not, write to the Free Software Foundation, Inc.,
16  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  */
22 
23 //#define BONDING_DEBUG 1
24 
25 #include <linux/skbuff.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/pkt_sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/ip.h>
33 #include <linux/ipv6.h>
34 #include <linux/if_arp.h>
35 #include <linux/if_ether.h>
36 #include <linux/if_bonding.h>
37 #include <linux/if_vlan.h>
38 #include <linux/in.h>
39 #include <net/ipx.h>
40 #include <net/arp.h>
41 #include <asm/byteorder.h>
42 #include "bonding.h"
43 #include "bond_alb.h"
44 
45 
46 #define ALB_TIMER_TICKS_PER_SEC	    10	/* should be a divisor of HZ */
47 #define BOND_TLB_REBALANCE_INTERVAL 10	/* In seconds, periodic re-balancing.
48 					 * Used for division - never set
49 					 * to zero !!!
50 					 */
51 #define BOND_ALB_LP_INTERVAL	    1	/* In seconds, periodic send of
52 					 * learning packets to the switch
53 					 */
54 
55 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
56 				  * ALB_TIMER_TICKS_PER_SEC)
57 
58 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
59 			   * ALB_TIMER_TICKS_PER_SEC)
60 
61 #define TLB_HASH_TABLE_SIZE 256	/* The size of the clients hash table.
62 				 * Note that this value MUST NOT be smaller
63 				 * because the key hash table is BYTE wide !
64 				 */
65 
66 
67 #define TLB_NULL_INDEX		0xffffffff
68 #define MAX_LP_BURST		3
69 
70 /* rlb defs */
71 #define RLB_HASH_TABLE_SIZE	256
72 #define RLB_NULL_INDEX		0xffffffff
73 #define RLB_UPDATE_DELAY	2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
74 #define RLB_ARP_BURST_SIZE	2
75 #define RLB_UPDATE_RETRY	3	/* 3-ticks - must be smaller than the rlb
76 					 * rebalance interval (5 min).
77 					 */
78 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
79  * promiscuous after failover
80  */
81 #define RLB_PROMISC_TIMEOUT	10*ALB_TIMER_TICKS_PER_SEC
82 
83 static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
84 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
85 
86 #pragma pack(1)
87 struct learning_pkt {
88 	u8 mac_dst[ETH_ALEN];
89 	u8 mac_src[ETH_ALEN];
90 	__be16 type;
91 	u8 padding[ETH_ZLEN - ETH_HLEN];
92 };
93 
94 struct arp_pkt {
95 	__be16  hw_addr_space;
96 	__be16  prot_addr_space;
97 	u8      hw_addr_len;
98 	u8      prot_addr_len;
99 	__be16  op_code;
100 	u8      mac_src[ETH_ALEN];	/* sender hardware address */
101 	__be32  ip_src;			/* sender IP address */
102 	u8      mac_dst[ETH_ALEN];	/* target hardware address */
103 	__be32  ip_dst;			/* target IP address */
104 };
105 #pragma pack()
106 
107 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
108 {
109 	return (struct arp_pkt *)skb_network_header(skb);
110 }
111 
112 /* Forward declaration */
113 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
114 
115 static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
116 {
117 	int i;
118 	u8 hash = 0;
119 
120 	for (i = 0; i < hash_size; i++) {
121 		hash ^= hash_start[i];
122 	}
123 
124 	return hash;
125 }
126 
127 /*********************** tlb specific functions ***************************/
128 
129 static inline void _lock_tx_hashtbl(struct bonding *bond)
130 {
131 	spin_lock(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
132 }
133 
134 static inline void _unlock_tx_hashtbl(struct bonding *bond)
135 {
136 	spin_unlock(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
137 }
138 
139 /* Caller must hold tx_hashtbl lock */
140 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
141 {
142 	if (save_load) {
143 		entry->load_history = 1 + entry->tx_bytes /
144 				      BOND_TLB_REBALANCE_INTERVAL;
145 		entry->tx_bytes = 0;
146 	}
147 
148 	entry->tx_slave = NULL;
149 	entry->next = TLB_NULL_INDEX;
150 	entry->prev = TLB_NULL_INDEX;
151 }
152 
153 static inline void tlb_init_slave(struct slave *slave)
154 {
155 	SLAVE_TLB_INFO(slave).load = 0;
156 	SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
157 }
158 
159 /* Caller must hold bond lock for read */
160 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
161 {
162 	struct tlb_client_info *tx_hash_table;
163 	u32 index;
164 
165 	_lock_tx_hashtbl(bond);
166 
167 	/* clear slave from tx_hashtbl */
168 	tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
169 
170 	index = SLAVE_TLB_INFO(slave).head;
171 	while (index != TLB_NULL_INDEX) {
172 		u32 next_index = tx_hash_table[index].next;
173 		tlb_init_table_entry(&tx_hash_table[index], save_load);
174 		index = next_index;
175 	}
176 
177 	tlb_init_slave(slave);
178 
179 	_unlock_tx_hashtbl(bond);
180 }
181 
182 /* Must be called before starting the monitor timer */
183 static int tlb_initialize(struct bonding *bond)
184 {
185 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
186 	int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
187 	struct tlb_client_info *new_hashtbl;
188 	int i;
189 
190 	spin_lock_init(&(bond_info->tx_hashtbl_lock));
191 
192 	new_hashtbl = kzalloc(size, GFP_KERNEL);
193 	if (!new_hashtbl) {
194 		printk(KERN_ERR DRV_NAME
195 		       ": %s: Error: Failed to allocate TLB hash table\n",
196 		       bond->dev->name);
197 		return -1;
198 	}
199 	_lock_tx_hashtbl(bond);
200 
201 	bond_info->tx_hashtbl = new_hashtbl;
202 
203 	for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
204 		tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
205 	}
206 
207 	_unlock_tx_hashtbl(bond);
208 
209 	return 0;
210 }
211 
212 /* Must be called only after all slaves have been released */
213 static void tlb_deinitialize(struct bonding *bond)
214 {
215 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
216 
217 	_lock_tx_hashtbl(bond);
218 
219 	kfree(bond_info->tx_hashtbl);
220 	bond_info->tx_hashtbl = NULL;
221 
222 	_unlock_tx_hashtbl(bond);
223 }
224 
225 /* Caller must hold bond lock for read */
226 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
227 {
228 	struct slave *slave, *least_loaded;
229 	s64 max_gap;
230 	int i, found = 0;
231 
232 	/* Find the first enabled slave */
233 	bond_for_each_slave(bond, slave, i) {
234 		if (SLAVE_IS_OK(slave)) {
235 			found = 1;
236 			break;
237 		}
238 	}
239 
240 	if (!found) {
241 		return NULL;
242 	}
243 
244 	least_loaded = slave;
245 	max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */
246 			(s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
247 
248 	/* Find the slave with the largest gap */
249 	bond_for_each_slave_from(bond, slave, i, least_loaded) {
250 		if (SLAVE_IS_OK(slave)) {
251 			s64 gap = (s64)(slave->speed << 20) -
252 					(s64)(SLAVE_TLB_INFO(slave).load << 3);
253 			if (max_gap < gap) {
254 				least_loaded = slave;
255 				max_gap = gap;
256 			}
257 		}
258 	}
259 
260 	return least_loaded;
261 }
262 
263 /* Caller must hold bond lock for read */
264 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
265 {
266 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
267 	struct tlb_client_info *hash_table;
268 	struct slave *assigned_slave;
269 
270 	_lock_tx_hashtbl(bond);
271 
272 	hash_table = bond_info->tx_hashtbl;
273 	assigned_slave = hash_table[hash_index].tx_slave;
274 	if (!assigned_slave) {
275 		assigned_slave = tlb_get_least_loaded_slave(bond);
276 
277 		if (assigned_slave) {
278 			struct tlb_slave_info *slave_info =
279 				&(SLAVE_TLB_INFO(assigned_slave));
280 			u32 next_index = slave_info->head;
281 
282 			hash_table[hash_index].tx_slave = assigned_slave;
283 			hash_table[hash_index].next = next_index;
284 			hash_table[hash_index].prev = TLB_NULL_INDEX;
285 
286 			if (next_index != TLB_NULL_INDEX) {
287 				hash_table[next_index].prev = hash_index;
288 			}
289 
290 			slave_info->head = hash_index;
291 			slave_info->load +=
292 				hash_table[hash_index].load_history;
293 		}
294 	}
295 
296 	if (assigned_slave) {
297 		hash_table[hash_index].tx_bytes += skb_len;
298 	}
299 
300 	_unlock_tx_hashtbl(bond);
301 
302 	return assigned_slave;
303 }
304 
305 /*********************** rlb specific functions ***************************/
306 static inline void _lock_rx_hashtbl(struct bonding *bond)
307 {
308 	spin_lock(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
309 }
310 
311 static inline void _unlock_rx_hashtbl(struct bonding *bond)
312 {
313 	spin_unlock(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
314 }
315 
316 /* when an ARP REPLY is received from a client update its info
317  * in the rx_hashtbl
318  */
319 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
320 {
321 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
322 	struct rlb_client_info *client_info;
323 	u32 hash_index;
324 
325 	_lock_rx_hashtbl(bond);
326 
327 	hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
328 	client_info = &(bond_info->rx_hashtbl[hash_index]);
329 
330 	if ((client_info->assigned) &&
331 	    (client_info->ip_src == arp->ip_dst) &&
332 	    (client_info->ip_dst == arp->ip_src)) {
333 		/* update the clients MAC address */
334 		memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
335 		client_info->ntt = 1;
336 		bond_info->rx_ntt = 1;
337 	}
338 
339 	_unlock_rx_hashtbl(bond);
340 }
341 
342 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
343 {
344 	struct bonding *bond = bond_dev->priv;
345 	struct arp_pkt *arp = (struct arp_pkt *)skb->data;
346 	int res = NET_RX_DROP;
347 
348 	if (bond_dev->nd_net != &init_net)
349 		goto out;
350 
351 	if (!(bond_dev->flags & IFF_MASTER))
352 		goto out;
353 
354 	if (!arp) {
355 		dprintk("Packet has no ARP data\n");
356 		goto out;
357 	}
358 
359 	if (skb->len < sizeof(struct arp_pkt)) {
360 		dprintk("Packet is too small to be an ARP\n");
361 		goto out;
362 	}
363 
364 	if (arp->op_code == htons(ARPOP_REPLY)) {
365 		/* update rx hash table for this ARP */
366 		rlb_update_entry_from_arp(bond, arp);
367 		dprintk("Server received an ARP Reply from client\n");
368 	}
369 
370 	res = NET_RX_SUCCESS;
371 
372 out:
373 	dev_kfree_skb(skb);
374 
375 	return res;
376 }
377 
378 /* Caller must hold bond lock for read */
379 static struct slave *rlb_next_rx_slave(struct bonding *bond)
380 {
381 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
382 	struct slave *rx_slave, *slave, *start_at;
383 	int i = 0;
384 
385 	if (bond_info->next_rx_slave) {
386 		start_at = bond_info->next_rx_slave;
387 	} else {
388 		start_at = bond->first_slave;
389 	}
390 
391 	rx_slave = NULL;
392 
393 	bond_for_each_slave_from(bond, slave, i, start_at) {
394 		if (SLAVE_IS_OK(slave)) {
395 			if (!rx_slave) {
396 				rx_slave = slave;
397 			} else if (slave->speed > rx_slave->speed) {
398 				rx_slave = slave;
399 			}
400 		}
401 	}
402 
403 	if (rx_slave) {
404 		bond_info->next_rx_slave = rx_slave->next;
405 	}
406 
407 	return rx_slave;
408 }
409 
410 /* teach the switch the mac of a disabled slave
411  * on the primary for fault tolerance
412  *
413  * Caller must hold bond->curr_slave_lock for write or bond lock for write
414  */
415 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
416 {
417 	if (!bond->curr_active_slave) {
418 		return;
419 	}
420 
421 	if (!bond->alb_info.primary_is_promisc) {
422 		bond->alb_info.primary_is_promisc = 1;
423 		dev_set_promiscuity(bond->curr_active_slave->dev, 1);
424 	}
425 
426 	bond->alb_info.rlb_promisc_timeout_counter = 0;
427 
428 	alb_send_learning_packets(bond->curr_active_slave, addr);
429 }
430 
431 /* slave being removed should not be active at this point
432  *
433  * Caller must hold bond lock for read
434  */
435 static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
436 {
437 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
438 	struct rlb_client_info *rx_hash_table;
439 	u32 index, next_index;
440 
441 	/* clear slave from rx_hashtbl */
442 	_lock_rx_hashtbl(bond);
443 
444 	rx_hash_table = bond_info->rx_hashtbl;
445 	index = bond_info->rx_hashtbl_head;
446 	for (; index != RLB_NULL_INDEX; index = next_index) {
447 		next_index = rx_hash_table[index].next;
448 		if (rx_hash_table[index].slave == slave) {
449 			struct slave *assigned_slave = rlb_next_rx_slave(bond);
450 
451 			if (assigned_slave) {
452 				rx_hash_table[index].slave = assigned_slave;
453 				if (memcmp(rx_hash_table[index].mac_dst,
454 					   mac_bcast, ETH_ALEN)) {
455 					bond_info->rx_hashtbl[index].ntt = 1;
456 					bond_info->rx_ntt = 1;
457 					/* A slave has been removed from the
458 					 * table because it is either disabled
459 					 * or being released. We must retry the
460 					 * update to avoid clients from not
461 					 * being updated & disconnecting when
462 					 * there is stress
463 					 */
464 					bond_info->rlb_update_retry_counter =
465 						RLB_UPDATE_RETRY;
466 				}
467 			} else {  /* there is no active slave */
468 				rx_hash_table[index].slave = NULL;
469 			}
470 		}
471 	}
472 
473 	_unlock_rx_hashtbl(bond);
474 
475 	write_lock(&bond->curr_slave_lock);
476 
477 	if (slave != bond->curr_active_slave) {
478 		rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
479 	}
480 
481 	write_unlock(&bond->curr_slave_lock);
482 }
483 
484 static void rlb_update_client(struct rlb_client_info *client_info)
485 {
486 	int i;
487 
488 	if (!client_info->slave) {
489 		return;
490 	}
491 
492 	for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
493 		struct sk_buff *skb;
494 
495 		skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
496 				 client_info->ip_dst,
497 				 client_info->slave->dev,
498 				 client_info->ip_src,
499 				 client_info->mac_dst,
500 				 client_info->slave->dev->dev_addr,
501 				 client_info->mac_dst);
502 		if (!skb) {
503 			printk(KERN_ERR DRV_NAME
504 			       ": %s: Error: failed to create an ARP packet\n",
505 			       client_info->slave->dev->master->name);
506 			continue;
507 		}
508 
509 		skb->dev = client_info->slave->dev;
510 
511 		if (client_info->tag) {
512 			skb = vlan_put_tag(skb, client_info->vlan_id);
513 			if (!skb) {
514 				printk(KERN_ERR DRV_NAME
515 				       ": %s: Error: failed to insert VLAN tag\n",
516 				       client_info->slave->dev->master->name);
517 				continue;
518 			}
519 		}
520 
521 		arp_xmit(skb);
522 	}
523 }
524 
525 /* sends ARP REPLIES that update the clients that need updating */
526 static void rlb_update_rx_clients(struct bonding *bond)
527 {
528 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
529 	struct rlb_client_info *client_info;
530 	u32 hash_index;
531 
532 	_lock_rx_hashtbl(bond);
533 
534 	hash_index = bond_info->rx_hashtbl_head;
535 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
536 		client_info = &(bond_info->rx_hashtbl[hash_index]);
537 		if (client_info->ntt) {
538 			rlb_update_client(client_info);
539 			if (bond_info->rlb_update_retry_counter == 0) {
540 				client_info->ntt = 0;
541 			}
542 		}
543 	}
544 
545 	/* do not update the entries again untill this counter is zero so that
546 	 * not to confuse the clients.
547 	 */
548 	bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
549 
550 	_unlock_rx_hashtbl(bond);
551 }
552 
553 /* The slave was assigned a new mac address - update the clients */
554 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
555 {
556 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
557 	struct rlb_client_info *client_info;
558 	int ntt = 0;
559 	u32 hash_index;
560 
561 	_lock_rx_hashtbl(bond);
562 
563 	hash_index = bond_info->rx_hashtbl_head;
564 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
565 		client_info = &(bond_info->rx_hashtbl[hash_index]);
566 
567 		if ((client_info->slave == slave) &&
568 		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
569 			client_info->ntt = 1;
570 			ntt = 1;
571 		}
572 	}
573 
574 	// update the team's flag only after the whole iteration
575 	if (ntt) {
576 		bond_info->rx_ntt = 1;
577 		//fasten the change
578 		bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
579 	}
580 
581 	_unlock_rx_hashtbl(bond);
582 }
583 
584 /* mark all clients using src_ip to be updated */
585 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
586 {
587 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
588 	struct rlb_client_info *client_info;
589 	u32 hash_index;
590 
591 	_lock_rx_hashtbl(bond);
592 
593 	hash_index = bond_info->rx_hashtbl_head;
594 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
595 		client_info = &(bond_info->rx_hashtbl[hash_index]);
596 
597 		if (!client_info->slave) {
598 			printk(KERN_ERR DRV_NAME
599 			       ": %s: Error: found a client with no channel in "
600 			       "the client's hash table\n",
601 			       bond->dev->name);
602 			continue;
603 		}
604 		/*update all clients using this src_ip, that are not assigned
605 		 * to the team's address (curr_active_slave) and have a known
606 		 * unicast mac address.
607 		 */
608 		if ((client_info->ip_src == src_ip) &&
609 		    memcmp(client_info->slave->dev->dev_addr,
610 			   bond->dev->dev_addr, ETH_ALEN) &&
611 		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
612 			client_info->ntt = 1;
613 			bond_info->rx_ntt = 1;
614 		}
615 	}
616 
617 	_unlock_rx_hashtbl(bond);
618 }
619 
620 /* Caller must hold both bond and ptr locks for read */
621 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
622 {
623 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
624 	struct arp_pkt *arp = arp_pkt(skb);
625 	struct slave *assigned_slave;
626 	struct rlb_client_info *client_info;
627 	u32 hash_index = 0;
628 
629 	_lock_rx_hashtbl(bond);
630 
631 	hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
632 	client_info = &(bond_info->rx_hashtbl[hash_index]);
633 
634 	if (client_info->assigned) {
635 		if ((client_info->ip_src == arp->ip_src) &&
636 		    (client_info->ip_dst == arp->ip_dst)) {
637 			/* the entry is already assigned to this client */
638 			if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
639 				/* update mac address from arp */
640 				memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
641 			}
642 
643 			assigned_slave = client_info->slave;
644 			if (assigned_slave) {
645 				_unlock_rx_hashtbl(bond);
646 				return assigned_slave;
647 			}
648 		} else {
649 			/* the entry is already assigned to some other client,
650 			 * move the old client to primary (curr_active_slave) so
651 			 * that the new client can be assigned to this entry.
652 			 */
653 			if (bond->curr_active_slave &&
654 			    client_info->slave != bond->curr_active_slave) {
655 				client_info->slave = bond->curr_active_slave;
656 				rlb_update_client(client_info);
657 			}
658 		}
659 	}
660 	/* assign a new slave */
661 	assigned_slave = rlb_next_rx_slave(bond);
662 
663 	if (assigned_slave) {
664 		client_info->ip_src = arp->ip_src;
665 		client_info->ip_dst = arp->ip_dst;
666 		/* arp->mac_dst is broadcast for arp reqeusts.
667 		 * will be updated with clients actual unicast mac address
668 		 * upon receiving an arp reply.
669 		 */
670 		memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
671 		client_info->slave = assigned_slave;
672 
673 		if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
674 			client_info->ntt = 1;
675 			bond->alb_info.rx_ntt = 1;
676 		} else {
677 			client_info->ntt = 0;
678 		}
679 
680 		if (!list_empty(&bond->vlan_list)) {
681 			unsigned short vlan_id;
682 			int res = vlan_get_tag(skb, &vlan_id);
683 			if (!res) {
684 				client_info->tag = 1;
685 				client_info->vlan_id = vlan_id;
686 			}
687 		}
688 
689 		if (!client_info->assigned) {
690 			u32 prev_tbl_head = bond_info->rx_hashtbl_head;
691 			bond_info->rx_hashtbl_head = hash_index;
692 			client_info->next = prev_tbl_head;
693 			if (prev_tbl_head != RLB_NULL_INDEX) {
694 				bond_info->rx_hashtbl[prev_tbl_head].prev =
695 					hash_index;
696 			}
697 			client_info->assigned = 1;
698 		}
699 	}
700 
701 	_unlock_rx_hashtbl(bond);
702 
703 	return assigned_slave;
704 }
705 
706 /* chooses (and returns) transmit channel for arp reply
707  * does not choose channel for other arp types since they are
708  * sent on the curr_active_slave
709  */
710 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
711 {
712 	struct arp_pkt *arp = arp_pkt(skb);
713 	struct slave *tx_slave = NULL;
714 
715 	if (arp->op_code == __constant_htons(ARPOP_REPLY)) {
716 		/* the arp must be sent on the selected
717 		* rx channel
718 		*/
719 		tx_slave = rlb_choose_channel(skb, bond);
720 		if (tx_slave) {
721 			memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
722 		}
723 		dprintk("Server sent ARP Reply packet\n");
724 	} else if (arp->op_code == __constant_htons(ARPOP_REQUEST)) {
725 		/* Create an entry in the rx_hashtbl for this client as a
726 		 * place holder.
727 		 * When the arp reply is received the entry will be updated
728 		 * with the correct unicast address of the client.
729 		 */
730 		rlb_choose_channel(skb, bond);
731 
732 		/* The ARP relpy packets must be delayed so that
733 		 * they can cancel out the influence of the ARP request.
734 		 */
735 		bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
736 
737 		/* arp requests are broadcast and are sent on the primary
738 		 * the arp request will collapse all clients on the subnet to
739 		 * the primary slave. We must register these clients to be
740 		 * updated with their assigned mac.
741 		 */
742 		rlb_req_update_subnet_clients(bond, arp->ip_src);
743 		dprintk("Server sent ARP Request packet\n");
744 	}
745 
746 	return tx_slave;
747 }
748 
749 /* Caller must hold bond lock for read */
750 static void rlb_rebalance(struct bonding *bond)
751 {
752 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
753 	struct slave *assigned_slave;
754 	struct rlb_client_info *client_info;
755 	int ntt;
756 	u32 hash_index;
757 
758 	_lock_rx_hashtbl(bond);
759 
760 	ntt = 0;
761 	hash_index = bond_info->rx_hashtbl_head;
762 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
763 		client_info = &(bond_info->rx_hashtbl[hash_index]);
764 		assigned_slave = rlb_next_rx_slave(bond);
765 		if (assigned_slave && (client_info->slave != assigned_slave)) {
766 			client_info->slave = assigned_slave;
767 			client_info->ntt = 1;
768 			ntt = 1;
769 		}
770 	}
771 
772 	/* update the team's flag only after the whole iteration */
773 	if (ntt) {
774 		bond_info->rx_ntt = 1;
775 	}
776 	_unlock_rx_hashtbl(bond);
777 }
778 
779 /* Caller must hold rx_hashtbl lock */
780 static void rlb_init_table_entry(struct rlb_client_info *entry)
781 {
782 	memset(entry, 0, sizeof(struct rlb_client_info));
783 	entry->next = RLB_NULL_INDEX;
784 	entry->prev = RLB_NULL_INDEX;
785 }
786 
787 static int rlb_initialize(struct bonding *bond)
788 {
789 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
790 	struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
791 	struct rlb_client_info	*new_hashtbl;
792 	int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
793 	int i;
794 
795 	spin_lock_init(&(bond_info->rx_hashtbl_lock));
796 
797 	new_hashtbl = kmalloc(size, GFP_KERNEL);
798 	if (!new_hashtbl) {
799 		printk(KERN_ERR DRV_NAME
800 		       ": %s: Error: Failed to allocate RLB hash table\n",
801 		       bond->dev->name);
802 		return -1;
803 	}
804 	_lock_rx_hashtbl(bond);
805 
806 	bond_info->rx_hashtbl = new_hashtbl;
807 
808 	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
809 
810 	for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
811 		rlb_init_table_entry(bond_info->rx_hashtbl + i);
812 	}
813 
814 	_unlock_rx_hashtbl(bond);
815 
816 	/*initialize packet type*/
817 	pk_type->type = __constant_htons(ETH_P_ARP);
818 	pk_type->dev = bond->dev;
819 	pk_type->func = rlb_arp_recv;
820 
821 	/* register to receive ARPs */
822 	dev_add_pack(pk_type);
823 
824 	return 0;
825 }
826 
827 static void rlb_deinitialize(struct bonding *bond)
828 {
829 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
830 
831 	dev_remove_pack(&(bond_info->rlb_pkt_type));
832 
833 	_lock_rx_hashtbl(bond);
834 
835 	kfree(bond_info->rx_hashtbl);
836 	bond_info->rx_hashtbl = NULL;
837 	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
838 
839 	_unlock_rx_hashtbl(bond);
840 }
841 
842 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
843 {
844 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
845 	u32 curr_index;
846 
847 	_lock_rx_hashtbl(bond);
848 
849 	curr_index = bond_info->rx_hashtbl_head;
850 	while (curr_index != RLB_NULL_INDEX) {
851 		struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
852 		u32 next_index = bond_info->rx_hashtbl[curr_index].next;
853 		u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
854 
855 		if (curr->tag && (curr->vlan_id == vlan_id)) {
856 			if (curr_index == bond_info->rx_hashtbl_head) {
857 				bond_info->rx_hashtbl_head = next_index;
858 			}
859 			if (prev_index != RLB_NULL_INDEX) {
860 				bond_info->rx_hashtbl[prev_index].next = next_index;
861 			}
862 			if (next_index != RLB_NULL_INDEX) {
863 				bond_info->rx_hashtbl[next_index].prev = prev_index;
864 			}
865 
866 			rlb_init_table_entry(curr);
867 		}
868 
869 		curr_index = next_index;
870 	}
871 
872 	_unlock_rx_hashtbl(bond);
873 }
874 
875 /*********************** tlb/rlb shared functions *********************/
876 
877 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
878 {
879 	struct bonding *bond = bond_get_bond_by_slave(slave);
880 	struct learning_pkt pkt;
881 	int size = sizeof(struct learning_pkt);
882 	int i;
883 
884 	memset(&pkt, 0, size);
885 	memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
886 	memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
887 	pkt.type = __constant_htons(ETH_P_LOOP);
888 
889 	for (i = 0; i < MAX_LP_BURST; i++) {
890 		struct sk_buff *skb;
891 		char *data;
892 
893 		skb = dev_alloc_skb(size);
894 		if (!skb) {
895 			return;
896 		}
897 
898 		data = skb_put(skb, size);
899 		memcpy(data, &pkt, size);
900 
901 		skb_reset_mac_header(skb);
902 		skb->network_header = skb->mac_header + ETH_HLEN;
903 		skb->protocol = pkt.type;
904 		skb->priority = TC_PRIO_CONTROL;
905 		skb->dev = slave->dev;
906 
907 		if (!list_empty(&bond->vlan_list)) {
908 			struct vlan_entry *vlan;
909 
910 			vlan = bond_next_vlan(bond,
911 					      bond->alb_info.current_alb_vlan);
912 
913 			bond->alb_info.current_alb_vlan = vlan;
914 			if (!vlan) {
915 				kfree_skb(skb);
916 				continue;
917 			}
918 
919 			skb = vlan_put_tag(skb, vlan->vlan_id);
920 			if (!skb) {
921 				printk(KERN_ERR DRV_NAME
922 				       ": %s: Error: failed to insert VLAN tag\n",
923 				       bond->dev->name);
924 				continue;
925 			}
926 		}
927 
928 		dev_queue_xmit(skb);
929 	}
930 }
931 
932 /* hw is a boolean parameter that determines whether we should try and
933  * set the hw address of the device as well as the hw address of the
934  * net_device
935  */
936 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
937 {
938 	struct net_device *dev = slave->dev;
939 	struct sockaddr s_addr;
940 
941 	if (!hw) {
942 		memcpy(dev->dev_addr, addr, dev->addr_len);
943 		return 0;
944 	}
945 
946 	/* for rlb each slave must have a unique hw mac addresses so that */
947 	/* each slave will receive packets destined to a different mac */
948 	memcpy(s_addr.sa_data, addr, dev->addr_len);
949 	s_addr.sa_family = dev->type;
950 	if (dev_set_mac_address(dev, &s_addr)) {
951 		printk(KERN_ERR DRV_NAME
952 		       ": %s: Error: dev_set_mac_address of dev %s failed! ALB "
953 		       "mode requires that the base driver support setting "
954 		       "the hw address also when the network device's "
955 		       "interface is open\n",
956 		       dev->master->name, dev->name);
957 		return -EOPNOTSUPP;
958 	}
959 	return 0;
960 }
961 
962 /* Caller must hold bond lock for write or curr_slave_lock for write*/
963 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
964 {
965 	struct slave *disabled_slave = NULL;
966 	u8 tmp_mac_addr[ETH_ALEN];
967 	int slaves_state_differ;
968 
969 	slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
970 
971 	memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
972 	alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
973 	alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
974 
975 	/* fasten the change in the switch */
976 	if (SLAVE_IS_OK(slave1)) {
977 		alb_send_learning_packets(slave1, slave1->dev->dev_addr);
978 		if (bond->alb_info.rlb_enabled) {
979 			/* inform the clients that the mac address
980 			 * has changed
981 			 */
982 			rlb_req_update_slave_clients(bond, slave1);
983 		}
984 	} else {
985 		disabled_slave = slave1;
986 	}
987 
988 	if (SLAVE_IS_OK(slave2)) {
989 		alb_send_learning_packets(slave2, slave2->dev->dev_addr);
990 		if (bond->alb_info.rlb_enabled) {
991 			/* inform the clients that the mac address
992 			 * has changed
993 			 */
994 			rlb_req_update_slave_clients(bond, slave2);
995 		}
996 	} else {
997 		disabled_slave = slave2;
998 	}
999 
1000 	if (bond->alb_info.rlb_enabled && slaves_state_differ) {
1001 		/* A disabled slave was assigned an active mac addr */
1002 		rlb_teach_disabled_mac_on_primary(bond,
1003 						  disabled_slave->dev->dev_addr);
1004 	}
1005 }
1006 
1007 /**
1008  * alb_change_hw_addr_on_detach
1009  * @bond: bonding we're working on
1010  * @slave: the slave that was just detached
1011  *
1012  * We assume that @slave was already detached from the slave list.
1013  *
1014  * If @slave's permanent hw address is different both from its current
1015  * address and from @bond's address, then somewhere in the bond there's
1016  * a slave that has @slave's permanet address as its current address.
1017  * We'll make sure that that slave no longer uses @slave's permanent address.
1018  *
1019  * Caller must hold bond lock
1020  */
1021 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
1022 {
1023 	int perm_curr_diff;
1024 	int perm_bond_diff;
1025 
1026 	perm_curr_diff = memcmp(slave->perm_hwaddr,
1027 				slave->dev->dev_addr,
1028 				ETH_ALEN);
1029 	perm_bond_diff = memcmp(slave->perm_hwaddr,
1030 				bond->dev->dev_addr,
1031 				ETH_ALEN);
1032 
1033 	if (perm_curr_diff && perm_bond_diff) {
1034 		struct slave *tmp_slave;
1035 		int i, found = 0;
1036 
1037 		bond_for_each_slave(bond, tmp_slave, i) {
1038 			if (!memcmp(slave->perm_hwaddr,
1039 				    tmp_slave->dev->dev_addr,
1040 				    ETH_ALEN)) {
1041 				found = 1;
1042 				break;
1043 			}
1044 		}
1045 
1046 		if (found) {
1047 			alb_swap_mac_addr(bond, slave, tmp_slave);
1048 		}
1049 	}
1050 }
1051 
1052 /**
1053  * alb_handle_addr_collision_on_attach
1054  * @bond: bonding we're working on
1055  * @slave: the slave that was just attached
1056  *
1057  * checks uniqueness of slave's mac address and handles the case the
1058  * new slave uses the bonds mac address.
1059  *
1060  * If the permanent hw address of @slave is @bond's hw address, we need to
1061  * find a different hw address to give @slave, that isn't in use by any other
1062  * slave in the bond. This address must be, of course, one of the premanent
1063  * addresses of the other slaves.
1064  *
1065  * We go over the slave list, and for each slave there we compare its
1066  * permanent hw address with the current address of all the other slaves.
1067  * If no match was found, then we've found a slave with a permanent address
1068  * that isn't used by any other slave in the bond, so we can assign it to
1069  * @slave.
1070  *
1071  * assumption: this function is called before @slave is attached to the
1072  * 	       bond slave list.
1073  *
1074  * caller must hold the bond lock for write since the mac addresses are compared
1075  * and may be swapped.
1076  */
1077 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1078 {
1079 	struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1080 	struct slave *has_bond_addr = bond->curr_active_slave;
1081 	int i, j, found = 0;
1082 
1083 	if (bond->slave_cnt == 0) {
1084 		/* this is the first slave */
1085 		return 0;
1086 	}
1087 
1088 	/* if slave's mac address differs from bond's mac address
1089 	 * check uniqueness of slave's mac address against the other
1090 	 * slaves in the bond.
1091 	 */
1092 	if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) {
1093 		bond_for_each_slave(bond, tmp_slave1, i) {
1094 			if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
1095 				    ETH_ALEN)) {
1096 				found = 1;
1097 				break;
1098 			}
1099 		}
1100 
1101 		if (!found)
1102 			return 0;
1103 
1104 		/* Try setting slave mac to bond address and fall-through
1105 		   to code handling that situation below... */
1106 		alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
1107 				       bond->alb_info.rlb_enabled);
1108 	}
1109 
1110 	/* The slave's address is equal to the address of the bond.
1111 	 * Search for a spare address in the bond for this slave.
1112 	 */
1113 	free_mac_slave = NULL;
1114 
1115 	bond_for_each_slave(bond, tmp_slave1, i) {
1116 		found = 0;
1117 		bond_for_each_slave(bond, tmp_slave2, j) {
1118 			if (!memcmp(tmp_slave1->perm_hwaddr,
1119 				    tmp_slave2->dev->dev_addr,
1120 				    ETH_ALEN)) {
1121 				found = 1;
1122 				break;
1123 			}
1124 		}
1125 
1126 		if (!found) {
1127 			/* no slave has tmp_slave1's perm addr
1128 			 * as its curr addr
1129 			 */
1130 			free_mac_slave = tmp_slave1;
1131 			break;
1132 		}
1133 
1134 		if (!has_bond_addr) {
1135 			if (!memcmp(tmp_slave1->dev->dev_addr,
1136 				    bond->dev->dev_addr,
1137 				    ETH_ALEN)) {
1138 
1139 				has_bond_addr = tmp_slave1;
1140 			}
1141 		}
1142 	}
1143 
1144 	if (free_mac_slave) {
1145 		alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
1146 				       bond->alb_info.rlb_enabled);
1147 
1148 		printk(KERN_WARNING DRV_NAME
1149 		       ": %s: Warning: the hw address of slave %s is in use by "
1150 		       "the bond; giving it the hw address of %s\n",
1151 		       bond->dev->name, slave->dev->name, free_mac_slave->dev->name);
1152 
1153 	} else if (has_bond_addr) {
1154 		printk(KERN_ERR DRV_NAME
1155 		       ": %s: Error: the hw address of slave %s is in use by the "
1156 		       "bond; couldn't find a slave with a free hw address to "
1157 		       "give it (this should not have happened)\n",
1158 		       bond->dev->name, slave->dev->name);
1159 		return -EFAULT;
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 /**
1166  * alb_set_mac_address
1167  * @bond:
1168  * @addr:
1169  *
1170  * In TLB mode all slaves are configured to the bond's hw address, but set
1171  * their dev_addr field to different addresses (based on their permanent hw
1172  * addresses).
1173  *
1174  * For each slave, this function sets the interface to the new address and then
1175  * changes its dev_addr field to its previous value.
1176  *
1177  * Unwinding assumes bond's mac address has not yet changed.
1178  */
1179 static int alb_set_mac_address(struct bonding *bond, void *addr)
1180 {
1181 	struct sockaddr sa;
1182 	struct slave *slave, *stop_at;
1183 	char tmp_addr[ETH_ALEN];
1184 	int res;
1185 	int i;
1186 
1187 	if (bond->alb_info.rlb_enabled) {
1188 		return 0;
1189 	}
1190 
1191 	bond_for_each_slave(bond, slave, i) {
1192 		if (slave->dev->set_mac_address == NULL) {
1193 			res = -EOPNOTSUPP;
1194 			goto unwind;
1195 		}
1196 
1197 		/* save net_device's current hw address */
1198 		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1199 
1200 		res = dev_set_mac_address(slave->dev, addr);
1201 
1202 		/* restore net_device's hw address */
1203 		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1204 
1205 		if (res) {
1206 			goto unwind;
1207 		}
1208 	}
1209 
1210 	return 0;
1211 
1212 unwind:
1213 	memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1214 	sa.sa_family = bond->dev->type;
1215 
1216 	/* unwind from head to the slave that failed */
1217 	stop_at = slave;
1218 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1219 		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1220 		dev_set_mac_address(slave->dev, &sa);
1221 		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1222 	}
1223 
1224 	return res;
1225 }
1226 
1227 /************************ exported alb funcions ************************/
1228 
1229 int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1230 {
1231 	int res;
1232 
1233 	res = tlb_initialize(bond);
1234 	if (res) {
1235 		return res;
1236 	}
1237 
1238 	if (rlb_enabled) {
1239 		bond->alb_info.rlb_enabled = 1;
1240 		/* initialize rlb */
1241 		res = rlb_initialize(bond);
1242 		if (res) {
1243 			tlb_deinitialize(bond);
1244 			return res;
1245 		}
1246 	} else {
1247 		bond->alb_info.rlb_enabled = 0;
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 void bond_alb_deinitialize(struct bonding *bond)
1254 {
1255 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1256 
1257 	tlb_deinitialize(bond);
1258 
1259 	if (bond_info->rlb_enabled) {
1260 		rlb_deinitialize(bond);
1261 	}
1262 }
1263 
1264 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1265 {
1266 	struct bonding *bond = bond_dev->priv;
1267 	struct ethhdr *eth_data;
1268 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1269 	struct slave *tx_slave = NULL;
1270 	static const __be32 ip_bcast = htonl(0xffffffff);
1271 	int hash_size = 0;
1272 	int do_tx_balance = 1;
1273 	u32 hash_index = 0;
1274 	const u8 *hash_start = NULL;
1275 	int res = 1;
1276 
1277 	skb_reset_mac_header(skb);
1278 	eth_data = eth_hdr(skb);
1279 
1280 	/* make sure that the curr_active_slave and the slaves list do
1281 	 * not change during tx
1282 	 */
1283 	read_lock(&bond->lock);
1284 	read_lock(&bond->curr_slave_lock);
1285 
1286 	if (!BOND_IS_OK(bond)) {
1287 		goto out;
1288 	}
1289 
1290 	switch (ntohs(skb->protocol)) {
1291 	case ETH_P_IP: {
1292 		const struct iphdr *iph = ip_hdr(skb);
1293 
1294 		if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
1295 		    (iph->daddr == ip_bcast) ||
1296 		    (iph->protocol == IPPROTO_IGMP)) {
1297 			do_tx_balance = 0;
1298 			break;
1299 		}
1300 		hash_start = (char *)&(iph->daddr);
1301 		hash_size = sizeof(iph->daddr);
1302 	}
1303 		break;
1304 	case ETH_P_IPV6:
1305 		if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
1306 			do_tx_balance = 0;
1307 			break;
1308 		}
1309 
1310 		hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1311 		hash_size = sizeof(ipv6_hdr(skb)->daddr);
1312 		break;
1313 	case ETH_P_IPX:
1314 		if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
1315 			/* something is wrong with this packet */
1316 			do_tx_balance = 0;
1317 			break;
1318 		}
1319 
1320 		if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1321 			/* The only protocol worth balancing in
1322 			 * this family since it has an "ARP" like
1323 			 * mechanism
1324 			 */
1325 			do_tx_balance = 0;
1326 			break;
1327 		}
1328 
1329 		hash_start = (char*)eth_data->h_dest;
1330 		hash_size = ETH_ALEN;
1331 		break;
1332 	case ETH_P_ARP:
1333 		do_tx_balance = 0;
1334 		if (bond_info->rlb_enabled) {
1335 			tx_slave = rlb_arp_xmit(skb, bond);
1336 		}
1337 		break;
1338 	default:
1339 		do_tx_balance = 0;
1340 		break;
1341 	}
1342 
1343 	if (do_tx_balance) {
1344 		hash_index = _simple_hash(hash_start, hash_size);
1345 		tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1346 	}
1347 
1348 	if (!tx_slave) {
1349 		/* unbalanced or unassigned, send through primary */
1350 		tx_slave = bond->curr_active_slave;
1351 		bond_info->unbalanced_load += skb->len;
1352 	}
1353 
1354 	if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1355 		if (tx_slave != bond->curr_active_slave) {
1356 			memcpy(eth_data->h_source,
1357 			       tx_slave->dev->dev_addr,
1358 			       ETH_ALEN);
1359 		}
1360 
1361 		res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1362 	} else {
1363 		if (tx_slave) {
1364 			tlb_clear_slave(bond, tx_slave, 0);
1365 		}
1366 	}
1367 
1368 out:
1369 	if (res) {
1370 		/* no suitable interface, frame not sent */
1371 		dev_kfree_skb(skb);
1372 	}
1373 	read_unlock(&bond->curr_slave_lock);
1374 	read_unlock(&bond->lock);
1375 	return 0;
1376 }
1377 
1378 void bond_alb_monitor(struct bonding *bond)
1379 {
1380 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1381 	struct slave *slave;
1382 	int i;
1383 
1384 	read_lock(&bond->lock);
1385 
1386 	if (bond->kill_timers) {
1387 		goto out;
1388 	}
1389 
1390 	if (bond->slave_cnt == 0) {
1391 		bond_info->tx_rebalance_counter = 0;
1392 		bond_info->lp_counter = 0;
1393 		goto re_arm;
1394 	}
1395 
1396 	bond_info->tx_rebalance_counter++;
1397 	bond_info->lp_counter++;
1398 
1399 	/* send learning packets */
1400 	if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1401 		/* change of curr_active_slave involves swapping of mac addresses.
1402 		 * in order to avoid this swapping from happening while
1403 		 * sending the learning packets, the curr_slave_lock must be held for
1404 		 * read.
1405 		 */
1406 		read_lock(&bond->curr_slave_lock);
1407 
1408 		bond_for_each_slave(bond, slave, i) {
1409 			alb_send_learning_packets(slave, slave->dev->dev_addr);
1410 		}
1411 
1412 		read_unlock(&bond->curr_slave_lock);
1413 
1414 		bond_info->lp_counter = 0;
1415 	}
1416 
1417 	/* rebalance tx traffic */
1418 	if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1419 
1420 		read_lock(&bond->curr_slave_lock);
1421 
1422 		bond_for_each_slave(bond, slave, i) {
1423 			tlb_clear_slave(bond, slave, 1);
1424 			if (slave == bond->curr_active_slave) {
1425 				SLAVE_TLB_INFO(slave).load =
1426 					bond_info->unbalanced_load /
1427 						BOND_TLB_REBALANCE_INTERVAL;
1428 				bond_info->unbalanced_load = 0;
1429 			}
1430 		}
1431 
1432 		read_unlock(&bond->curr_slave_lock);
1433 
1434 		bond_info->tx_rebalance_counter = 0;
1435 	}
1436 
1437 	/* handle rlb stuff */
1438 	if (bond_info->rlb_enabled) {
1439 		/* the following code changes the promiscuity of the
1440 		 * the curr_active_slave. It needs to be locked with a
1441 		 * write lock to protect from other code that also
1442 		 * sets the promiscuity.
1443 		 */
1444 		write_lock_bh(&bond->curr_slave_lock);
1445 
1446 		if (bond_info->primary_is_promisc &&
1447 		    (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1448 
1449 			bond_info->rlb_promisc_timeout_counter = 0;
1450 
1451 			/* If the primary was set to promiscuous mode
1452 			 * because a slave was disabled then
1453 			 * it can now leave promiscuous mode.
1454 			 */
1455 			dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1456 			bond_info->primary_is_promisc = 0;
1457 		}
1458 
1459 		write_unlock_bh(&bond->curr_slave_lock);
1460 
1461 		if (bond_info->rlb_rebalance) {
1462 			bond_info->rlb_rebalance = 0;
1463 			rlb_rebalance(bond);
1464 		}
1465 
1466 		/* check if clients need updating */
1467 		if (bond_info->rx_ntt) {
1468 			if (bond_info->rlb_update_delay_counter) {
1469 				--bond_info->rlb_update_delay_counter;
1470 			} else {
1471 				rlb_update_rx_clients(bond);
1472 				if (bond_info->rlb_update_retry_counter) {
1473 					--bond_info->rlb_update_retry_counter;
1474 				} else {
1475 					bond_info->rx_ntt = 0;
1476 				}
1477 			}
1478 		}
1479 	}
1480 
1481 re_arm:
1482 	mod_timer(&(bond_info->alb_timer), jiffies + alb_delta_in_ticks);
1483 out:
1484 	read_unlock(&bond->lock);
1485 }
1486 
1487 /* assumption: called before the slave is attached to the bond
1488  * and not locked by the bond lock
1489  */
1490 int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1491 {
1492 	int res;
1493 
1494 	res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
1495 				     bond->alb_info.rlb_enabled);
1496 	if (res) {
1497 		return res;
1498 	}
1499 
1500 	/* caller must hold the bond lock for write since the mac addresses
1501 	 * are compared and may be swapped.
1502 	 */
1503 	write_lock_bh(&bond->lock);
1504 
1505 	res = alb_handle_addr_collision_on_attach(bond, slave);
1506 
1507 	write_unlock_bh(&bond->lock);
1508 
1509 	if (res) {
1510 		return res;
1511 	}
1512 
1513 	tlb_init_slave(slave);
1514 
1515 	/* order a rebalance ASAP */
1516 	bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1517 
1518 	if (bond->alb_info.rlb_enabled) {
1519 		bond->alb_info.rlb_rebalance = 1;
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 /* Caller must hold bond lock for write */
1526 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1527 {
1528 	if (bond->slave_cnt > 1) {
1529 		alb_change_hw_addr_on_detach(bond, slave);
1530 	}
1531 
1532 	tlb_clear_slave(bond, slave, 0);
1533 
1534 	if (bond->alb_info.rlb_enabled) {
1535 		bond->alb_info.next_rx_slave = NULL;
1536 		rlb_clear_slave(bond, slave);
1537 	}
1538 }
1539 
1540 /* Caller must hold bond lock for read */
1541 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1542 {
1543 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1544 
1545 	if (link == BOND_LINK_DOWN) {
1546 		tlb_clear_slave(bond, slave, 0);
1547 		if (bond->alb_info.rlb_enabled) {
1548 			rlb_clear_slave(bond, slave);
1549 		}
1550 	} else if (link == BOND_LINK_UP) {
1551 		/* order a rebalance ASAP */
1552 		bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1553 		if (bond->alb_info.rlb_enabled) {
1554 			bond->alb_info.rlb_rebalance = 1;
1555 			/* If the updelay module parameter is smaller than the
1556 			 * forwarding delay of the switch the rebalance will
1557 			 * not work because the rebalance arp replies will
1558 			 * not be forwarded to the clients..
1559 			 */
1560 		}
1561 	}
1562 }
1563 
1564 /**
1565  * bond_alb_handle_active_change - assign new curr_active_slave
1566  * @bond: our bonding struct
1567  * @new_slave: new slave to assign
1568  *
1569  * Set the bond->curr_active_slave to @new_slave and handle
1570  * mac address swapping and promiscuity changes as needed.
1571  *
1572  * Caller must hold bond curr_slave_lock for write (or bond lock for write)
1573  */
1574 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1575 {
1576 	struct slave *swap_slave;
1577 	int i;
1578 
1579 	if (bond->curr_active_slave == new_slave) {
1580 		return;
1581 	}
1582 
1583 	if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1584 		dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1585 		bond->alb_info.primary_is_promisc = 0;
1586 		bond->alb_info.rlb_promisc_timeout_counter = 0;
1587 	}
1588 
1589 	swap_slave = bond->curr_active_slave;
1590 	bond->curr_active_slave = new_slave;
1591 
1592 	if (!new_slave || (bond->slave_cnt == 0)) {
1593 		return;
1594 	}
1595 
1596 	/* set the new curr_active_slave to the bonds mac address
1597 	 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1598 	 */
1599 	if (!swap_slave) {
1600 		struct slave *tmp_slave;
1601 		/* find slave that is holding the bond's mac address */
1602 		bond_for_each_slave(bond, tmp_slave, i) {
1603 			if (!memcmp(tmp_slave->dev->dev_addr,
1604 				    bond->dev->dev_addr, ETH_ALEN)) {
1605 				swap_slave = tmp_slave;
1606 				break;
1607 			}
1608 		}
1609 	}
1610 
1611 	/* curr_active_slave must be set before calling alb_swap_mac_addr */
1612 	if (swap_slave) {
1613 		/* swap mac address */
1614 		alb_swap_mac_addr(bond, swap_slave, new_slave);
1615 	} else {
1616 		/* set the new_slave to the bond mac address */
1617 		alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
1618 				       bond->alb_info.rlb_enabled);
1619 		/* fasten bond mac on new current slave */
1620 		alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1621 	}
1622 }
1623 
1624 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1625 {
1626 	struct bonding *bond = bond_dev->priv;
1627 	struct sockaddr *sa = addr;
1628 	struct slave *slave, *swap_slave;
1629 	int res;
1630 	int i;
1631 
1632 	if (!is_valid_ether_addr(sa->sa_data)) {
1633 		return -EADDRNOTAVAIL;
1634 	}
1635 
1636 	res = alb_set_mac_address(bond, addr);
1637 	if (res) {
1638 		return res;
1639 	}
1640 
1641 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1642 
1643 	/* If there is no curr_active_slave there is nothing else to do.
1644 	 * Otherwise we'll need to pass the new address to it and handle
1645 	 * duplications.
1646 	 */
1647 	if (!bond->curr_active_slave) {
1648 		return 0;
1649 	}
1650 
1651 	swap_slave = NULL;
1652 
1653 	bond_for_each_slave(bond, slave, i) {
1654 		if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) {
1655 			swap_slave = slave;
1656 			break;
1657 		}
1658 	}
1659 
1660 	if (swap_slave) {
1661 		alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1662 	} else {
1663 		alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
1664 				       bond->alb_info.rlb_enabled);
1665 
1666 		alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1667 		if (bond->alb_info.rlb_enabled) {
1668 			/* inform clients mac address has changed */
1669 			rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1670 		}
1671 	}
1672 
1673 	return 0;
1674 }
1675 
1676 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1677 {
1678 	if (bond->alb_info.current_alb_vlan &&
1679 	    (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1680 		bond->alb_info.current_alb_vlan = NULL;
1681 	}
1682 
1683 	if (bond->alb_info.rlb_enabled) {
1684 		rlb_clear_vlan(bond, vlan_id);
1685 	}
1686 }
1687 
1688