1 /* 2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License along 15 * with this program; if not, write to the Free Software Foundation, Inc., 16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called LICENSE. 20 * 21 */ 22 23 #include <linux/skbuff.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/pkt_sched.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/timer.h> 30 #include <linux/ip.h> 31 #include <linux/ipv6.h> 32 #include <linux/if_arp.h> 33 #include <linux/if_ether.h> 34 #include <linux/if_bonding.h> 35 #include <linux/if_vlan.h> 36 #include <linux/in.h> 37 #include <net/ipx.h> 38 #include <net/arp.h> 39 #include <net/ipv6.h> 40 #include <asm/byteorder.h> 41 #include "bonding.h" 42 #include "bond_alb.h" 43 44 45 #define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */ 46 #define BOND_TLB_REBALANCE_INTERVAL 10 /* In seconds, periodic re-balancing. 47 * Used for division - never set 48 * to zero !!! 49 */ 50 #define BOND_ALB_LP_INTERVAL 1 /* In seconds, periodic send of 51 * learning packets to the switch 52 */ 53 54 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \ 55 * ALB_TIMER_TICKS_PER_SEC) 56 57 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \ 58 * ALB_TIMER_TICKS_PER_SEC) 59 60 #define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table. 61 * Note that this value MUST NOT be smaller 62 * because the key hash table is BYTE wide ! 63 */ 64 65 66 #define TLB_NULL_INDEX 0xffffffff 67 #define MAX_LP_BURST 3 68 69 /* rlb defs */ 70 #define RLB_HASH_TABLE_SIZE 256 71 #define RLB_NULL_INDEX 0xffffffff 72 #define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */ 73 #define RLB_ARP_BURST_SIZE 2 74 #define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb 75 * rebalance interval (5 min). 76 */ 77 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is 78 * promiscuous after failover 79 */ 80 #define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC 81 82 #ifndef __long_aligned 83 #define __long_aligned __attribute__((aligned((sizeof(long))))) 84 #endif 85 static const u8 mac_bcast[ETH_ALEN] __long_aligned = { 86 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 87 }; 88 static const u8 mac_v6_allmcast[ETH_ALEN] __long_aligned = { 89 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 90 }; 91 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC; 92 93 #pragma pack(1) 94 struct learning_pkt { 95 u8 mac_dst[ETH_ALEN]; 96 u8 mac_src[ETH_ALEN]; 97 __be16 type; 98 u8 padding[ETH_ZLEN - ETH_HLEN]; 99 }; 100 101 struct arp_pkt { 102 __be16 hw_addr_space; 103 __be16 prot_addr_space; 104 u8 hw_addr_len; 105 u8 prot_addr_len; 106 __be16 op_code; 107 u8 mac_src[ETH_ALEN]; /* sender hardware address */ 108 __be32 ip_src; /* sender IP address */ 109 u8 mac_dst[ETH_ALEN]; /* target hardware address */ 110 __be32 ip_dst; /* target IP address */ 111 }; 112 #pragma pack() 113 114 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb) 115 { 116 return (struct arp_pkt *)skb_network_header(skb); 117 } 118 119 /* Forward declaration */ 120 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]); 121 122 static inline u8 _simple_hash(const u8 *hash_start, int hash_size) 123 { 124 int i; 125 u8 hash = 0; 126 127 for (i = 0; i < hash_size; i++) { 128 hash ^= hash_start[i]; 129 } 130 131 return hash; 132 } 133 134 /*********************** tlb specific functions ***************************/ 135 136 static inline void _lock_tx_hashtbl(struct bonding *bond) 137 { 138 spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 139 } 140 141 static inline void _unlock_tx_hashtbl(struct bonding *bond) 142 { 143 spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 144 } 145 146 /* Caller must hold tx_hashtbl lock */ 147 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load) 148 { 149 if (save_load) { 150 entry->load_history = 1 + entry->tx_bytes / 151 BOND_TLB_REBALANCE_INTERVAL; 152 entry->tx_bytes = 0; 153 } 154 155 entry->tx_slave = NULL; 156 entry->next = TLB_NULL_INDEX; 157 entry->prev = TLB_NULL_INDEX; 158 } 159 160 static inline void tlb_init_slave(struct slave *slave) 161 { 162 SLAVE_TLB_INFO(slave).load = 0; 163 SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX; 164 } 165 166 /* Caller must hold bond lock for read */ 167 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load) 168 { 169 struct tlb_client_info *tx_hash_table; 170 u32 index; 171 172 _lock_tx_hashtbl(bond); 173 174 /* clear slave from tx_hashtbl */ 175 tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl; 176 177 /* skip this if we've already freed the tx hash table */ 178 if (tx_hash_table) { 179 index = SLAVE_TLB_INFO(slave).head; 180 while (index != TLB_NULL_INDEX) { 181 u32 next_index = tx_hash_table[index].next; 182 tlb_init_table_entry(&tx_hash_table[index], save_load); 183 index = next_index; 184 } 185 } 186 187 tlb_init_slave(slave); 188 189 _unlock_tx_hashtbl(bond); 190 } 191 192 /* Must be called before starting the monitor timer */ 193 static int tlb_initialize(struct bonding *bond) 194 { 195 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 196 int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info); 197 struct tlb_client_info *new_hashtbl; 198 int i; 199 200 spin_lock_init(&(bond_info->tx_hashtbl_lock)); 201 202 new_hashtbl = kzalloc(size, GFP_KERNEL); 203 if (!new_hashtbl) { 204 pr_err(DRV_NAME 205 ": %s: Error: Failed to allocate TLB hash table\n", 206 bond->dev->name); 207 return -1; 208 } 209 _lock_tx_hashtbl(bond); 210 211 bond_info->tx_hashtbl = new_hashtbl; 212 213 for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) { 214 tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1); 215 } 216 217 _unlock_tx_hashtbl(bond); 218 219 return 0; 220 } 221 222 /* Must be called only after all slaves have been released */ 223 static void tlb_deinitialize(struct bonding *bond) 224 { 225 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 226 227 _lock_tx_hashtbl(bond); 228 229 kfree(bond_info->tx_hashtbl); 230 bond_info->tx_hashtbl = NULL; 231 232 _unlock_tx_hashtbl(bond); 233 } 234 235 /* Caller must hold bond lock for read */ 236 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond) 237 { 238 struct slave *slave, *least_loaded; 239 s64 max_gap; 240 int i, found = 0; 241 242 /* Find the first enabled slave */ 243 bond_for_each_slave(bond, slave, i) { 244 if (SLAVE_IS_OK(slave)) { 245 found = 1; 246 break; 247 } 248 } 249 250 if (!found) { 251 return NULL; 252 } 253 254 least_loaded = slave; 255 max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */ 256 (s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */ 257 258 /* Find the slave with the largest gap */ 259 bond_for_each_slave_from(bond, slave, i, least_loaded) { 260 if (SLAVE_IS_OK(slave)) { 261 s64 gap = (s64)(slave->speed << 20) - 262 (s64)(SLAVE_TLB_INFO(slave).load << 3); 263 if (max_gap < gap) { 264 least_loaded = slave; 265 max_gap = gap; 266 } 267 } 268 } 269 270 return least_loaded; 271 } 272 273 /* Caller must hold bond lock for read */ 274 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len) 275 { 276 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 277 struct tlb_client_info *hash_table; 278 struct slave *assigned_slave; 279 280 _lock_tx_hashtbl(bond); 281 282 hash_table = bond_info->tx_hashtbl; 283 assigned_slave = hash_table[hash_index].tx_slave; 284 if (!assigned_slave) { 285 assigned_slave = tlb_get_least_loaded_slave(bond); 286 287 if (assigned_slave) { 288 struct tlb_slave_info *slave_info = 289 &(SLAVE_TLB_INFO(assigned_slave)); 290 u32 next_index = slave_info->head; 291 292 hash_table[hash_index].tx_slave = assigned_slave; 293 hash_table[hash_index].next = next_index; 294 hash_table[hash_index].prev = TLB_NULL_INDEX; 295 296 if (next_index != TLB_NULL_INDEX) { 297 hash_table[next_index].prev = hash_index; 298 } 299 300 slave_info->head = hash_index; 301 slave_info->load += 302 hash_table[hash_index].load_history; 303 } 304 } 305 306 if (assigned_slave) { 307 hash_table[hash_index].tx_bytes += skb_len; 308 } 309 310 _unlock_tx_hashtbl(bond); 311 312 return assigned_slave; 313 } 314 315 /*********************** rlb specific functions ***************************/ 316 static inline void _lock_rx_hashtbl(struct bonding *bond) 317 { 318 spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 319 } 320 321 static inline void _unlock_rx_hashtbl(struct bonding *bond) 322 { 323 spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 324 } 325 326 /* when an ARP REPLY is received from a client update its info 327 * in the rx_hashtbl 328 */ 329 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp) 330 { 331 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 332 struct rlb_client_info *client_info; 333 u32 hash_index; 334 335 _lock_rx_hashtbl(bond); 336 337 hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src)); 338 client_info = &(bond_info->rx_hashtbl[hash_index]); 339 340 if ((client_info->assigned) && 341 (client_info->ip_src == arp->ip_dst) && 342 (client_info->ip_dst == arp->ip_src)) { 343 /* update the clients MAC address */ 344 memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN); 345 client_info->ntt = 1; 346 bond_info->rx_ntt = 1; 347 } 348 349 _unlock_rx_hashtbl(bond); 350 } 351 352 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev) 353 { 354 struct bonding *bond; 355 struct arp_pkt *arp = (struct arp_pkt *)skb->data; 356 int res = NET_RX_DROP; 357 358 while (bond_dev->priv_flags & IFF_802_1Q_VLAN) 359 bond_dev = vlan_dev_real_dev(bond_dev); 360 361 if (!(bond_dev->priv_flags & IFF_BONDING) || 362 !(bond_dev->flags & IFF_MASTER)) 363 goto out; 364 365 if (!arp) { 366 pr_debug("Packet has no ARP data\n"); 367 goto out; 368 } 369 370 if (skb->len < sizeof(struct arp_pkt)) { 371 pr_debug("Packet is too small to be an ARP\n"); 372 goto out; 373 } 374 375 if (arp->op_code == htons(ARPOP_REPLY)) { 376 /* update rx hash table for this ARP */ 377 bond = netdev_priv(bond_dev); 378 rlb_update_entry_from_arp(bond, arp); 379 pr_debug("Server received an ARP Reply from client\n"); 380 } 381 382 res = NET_RX_SUCCESS; 383 384 out: 385 dev_kfree_skb(skb); 386 387 return res; 388 } 389 390 /* Caller must hold bond lock for read */ 391 static struct slave *rlb_next_rx_slave(struct bonding *bond) 392 { 393 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 394 struct slave *rx_slave, *slave, *start_at; 395 int i = 0; 396 397 if (bond_info->next_rx_slave) { 398 start_at = bond_info->next_rx_slave; 399 } else { 400 start_at = bond->first_slave; 401 } 402 403 rx_slave = NULL; 404 405 bond_for_each_slave_from(bond, slave, i, start_at) { 406 if (SLAVE_IS_OK(slave)) { 407 if (!rx_slave) { 408 rx_slave = slave; 409 } else if (slave->speed > rx_slave->speed) { 410 rx_slave = slave; 411 } 412 } 413 } 414 415 if (rx_slave) { 416 bond_info->next_rx_slave = rx_slave->next; 417 } 418 419 return rx_slave; 420 } 421 422 /* teach the switch the mac of a disabled slave 423 * on the primary for fault tolerance 424 * 425 * Caller must hold bond->curr_slave_lock for write or bond lock for write 426 */ 427 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[]) 428 { 429 if (!bond->curr_active_slave) { 430 return; 431 } 432 433 if (!bond->alb_info.primary_is_promisc) { 434 if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1)) 435 bond->alb_info.primary_is_promisc = 1; 436 else 437 bond->alb_info.primary_is_promisc = 0; 438 } 439 440 bond->alb_info.rlb_promisc_timeout_counter = 0; 441 442 alb_send_learning_packets(bond->curr_active_slave, addr); 443 } 444 445 /* slave being removed should not be active at this point 446 * 447 * Caller must hold bond lock for read 448 */ 449 static void rlb_clear_slave(struct bonding *bond, struct slave *slave) 450 { 451 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 452 struct rlb_client_info *rx_hash_table; 453 u32 index, next_index; 454 455 /* clear slave from rx_hashtbl */ 456 _lock_rx_hashtbl(bond); 457 458 rx_hash_table = bond_info->rx_hashtbl; 459 index = bond_info->rx_hashtbl_head; 460 for (; index != RLB_NULL_INDEX; index = next_index) { 461 next_index = rx_hash_table[index].next; 462 if (rx_hash_table[index].slave == slave) { 463 struct slave *assigned_slave = rlb_next_rx_slave(bond); 464 465 if (assigned_slave) { 466 rx_hash_table[index].slave = assigned_slave; 467 if (compare_ether_addr_64bits(rx_hash_table[index].mac_dst, 468 mac_bcast)) { 469 bond_info->rx_hashtbl[index].ntt = 1; 470 bond_info->rx_ntt = 1; 471 /* A slave has been removed from the 472 * table because it is either disabled 473 * or being released. We must retry the 474 * update to avoid clients from not 475 * being updated & disconnecting when 476 * there is stress 477 */ 478 bond_info->rlb_update_retry_counter = 479 RLB_UPDATE_RETRY; 480 } 481 } else { /* there is no active slave */ 482 rx_hash_table[index].slave = NULL; 483 } 484 } 485 } 486 487 _unlock_rx_hashtbl(bond); 488 489 write_lock_bh(&bond->curr_slave_lock); 490 491 if (slave != bond->curr_active_slave) { 492 rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr); 493 } 494 495 write_unlock_bh(&bond->curr_slave_lock); 496 } 497 498 static void rlb_update_client(struct rlb_client_info *client_info) 499 { 500 int i; 501 502 if (!client_info->slave) { 503 return; 504 } 505 506 for (i = 0; i < RLB_ARP_BURST_SIZE; i++) { 507 struct sk_buff *skb; 508 509 skb = arp_create(ARPOP_REPLY, ETH_P_ARP, 510 client_info->ip_dst, 511 client_info->slave->dev, 512 client_info->ip_src, 513 client_info->mac_dst, 514 client_info->slave->dev->dev_addr, 515 client_info->mac_dst); 516 if (!skb) { 517 pr_err(DRV_NAME 518 ": %s: Error: failed to create an ARP packet\n", 519 client_info->slave->dev->master->name); 520 continue; 521 } 522 523 skb->dev = client_info->slave->dev; 524 525 if (client_info->tag) { 526 skb = vlan_put_tag(skb, client_info->vlan_id); 527 if (!skb) { 528 pr_err(DRV_NAME 529 ": %s: Error: failed to insert VLAN tag\n", 530 client_info->slave->dev->master->name); 531 continue; 532 } 533 } 534 535 arp_xmit(skb); 536 } 537 } 538 539 /* sends ARP REPLIES that update the clients that need updating */ 540 static void rlb_update_rx_clients(struct bonding *bond) 541 { 542 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 543 struct rlb_client_info *client_info; 544 u32 hash_index; 545 546 _lock_rx_hashtbl(bond); 547 548 hash_index = bond_info->rx_hashtbl_head; 549 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 550 client_info = &(bond_info->rx_hashtbl[hash_index]); 551 if (client_info->ntt) { 552 rlb_update_client(client_info); 553 if (bond_info->rlb_update_retry_counter == 0) { 554 client_info->ntt = 0; 555 } 556 } 557 } 558 559 /* do not update the entries again until this counter is zero so that 560 * not to confuse the clients. 561 */ 562 bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY; 563 564 _unlock_rx_hashtbl(bond); 565 } 566 567 /* The slave was assigned a new mac address - update the clients */ 568 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave) 569 { 570 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 571 struct rlb_client_info *client_info; 572 int ntt = 0; 573 u32 hash_index; 574 575 _lock_rx_hashtbl(bond); 576 577 hash_index = bond_info->rx_hashtbl_head; 578 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 579 client_info = &(bond_info->rx_hashtbl[hash_index]); 580 581 if ((client_info->slave == slave) && 582 compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) { 583 client_info->ntt = 1; 584 ntt = 1; 585 } 586 } 587 588 // update the team's flag only after the whole iteration 589 if (ntt) { 590 bond_info->rx_ntt = 1; 591 //fasten the change 592 bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; 593 } 594 595 _unlock_rx_hashtbl(bond); 596 } 597 598 /* mark all clients using src_ip to be updated */ 599 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip) 600 { 601 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 602 struct rlb_client_info *client_info; 603 u32 hash_index; 604 605 _lock_rx_hashtbl(bond); 606 607 hash_index = bond_info->rx_hashtbl_head; 608 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 609 client_info = &(bond_info->rx_hashtbl[hash_index]); 610 611 if (!client_info->slave) { 612 pr_err(DRV_NAME 613 ": %s: Error: found a client with no channel in " 614 "the client's hash table\n", 615 bond->dev->name); 616 continue; 617 } 618 /*update all clients using this src_ip, that are not assigned 619 * to the team's address (curr_active_slave) and have a known 620 * unicast mac address. 621 */ 622 if ((client_info->ip_src == src_ip) && 623 compare_ether_addr_64bits(client_info->slave->dev->dev_addr, 624 bond->dev->dev_addr) && 625 compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) { 626 client_info->ntt = 1; 627 bond_info->rx_ntt = 1; 628 } 629 } 630 631 _unlock_rx_hashtbl(bond); 632 } 633 634 /* Caller must hold both bond and ptr locks for read */ 635 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond) 636 { 637 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 638 struct arp_pkt *arp = arp_pkt(skb); 639 struct slave *assigned_slave; 640 struct rlb_client_info *client_info; 641 u32 hash_index = 0; 642 643 _lock_rx_hashtbl(bond); 644 645 hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src)); 646 client_info = &(bond_info->rx_hashtbl[hash_index]); 647 648 if (client_info->assigned) { 649 if ((client_info->ip_src == arp->ip_src) && 650 (client_info->ip_dst == arp->ip_dst)) { 651 /* the entry is already assigned to this client */ 652 if (compare_ether_addr_64bits(arp->mac_dst, mac_bcast)) { 653 /* update mac address from arp */ 654 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 655 } 656 657 assigned_slave = client_info->slave; 658 if (assigned_slave) { 659 _unlock_rx_hashtbl(bond); 660 return assigned_slave; 661 } 662 } else { 663 /* the entry is already assigned to some other client, 664 * move the old client to primary (curr_active_slave) so 665 * that the new client can be assigned to this entry. 666 */ 667 if (bond->curr_active_slave && 668 client_info->slave != bond->curr_active_slave) { 669 client_info->slave = bond->curr_active_slave; 670 rlb_update_client(client_info); 671 } 672 } 673 } 674 /* assign a new slave */ 675 assigned_slave = rlb_next_rx_slave(bond); 676 677 if (assigned_slave) { 678 client_info->ip_src = arp->ip_src; 679 client_info->ip_dst = arp->ip_dst; 680 /* arp->mac_dst is broadcast for arp reqeusts. 681 * will be updated with clients actual unicast mac address 682 * upon receiving an arp reply. 683 */ 684 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 685 client_info->slave = assigned_slave; 686 687 if (compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) { 688 client_info->ntt = 1; 689 bond->alb_info.rx_ntt = 1; 690 } else { 691 client_info->ntt = 0; 692 } 693 694 if (!list_empty(&bond->vlan_list)) { 695 if (!vlan_get_tag(skb, &client_info->vlan_id)) 696 client_info->tag = 1; 697 } 698 699 if (!client_info->assigned) { 700 u32 prev_tbl_head = bond_info->rx_hashtbl_head; 701 bond_info->rx_hashtbl_head = hash_index; 702 client_info->next = prev_tbl_head; 703 if (prev_tbl_head != RLB_NULL_INDEX) { 704 bond_info->rx_hashtbl[prev_tbl_head].prev = 705 hash_index; 706 } 707 client_info->assigned = 1; 708 } 709 } 710 711 _unlock_rx_hashtbl(bond); 712 713 return assigned_slave; 714 } 715 716 /* chooses (and returns) transmit channel for arp reply 717 * does not choose channel for other arp types since they are 718 * sent on the curr_active_slave 719 */ 720 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond) 721 { 722 struct arp_pkt *arp = arp_pkt(skb); 723 struct slave *tx_slave = NULL; 724 725 if (arp->op_code == htons(ARPOP_REPLY)) { 726 /* the arp must be sent on the selected 727 * rx channel 728 */ 729 tx_slave = rlb_choose_channel(skb, bond); 730 if (tx_slave) { 731 memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN); 732 } 733 pr_debug("Server sent ARP Reply packet\n"); 734 } else if (arp->op_code == htons(ARPOP_REQUEST)) { 735 /* Create an entry in the rx_hashtbl for this client as a 736 * place holder. 737 * When the arp reply is received the entry will be updated 738 * with the correct unicast address of the client. 739 */ 740 rlb_choose_channel(skb, bond); 741 742 /* The ARP relpy packets must be delayed so that 743 * they can cancel out the influence of the ARP request. 744 */ 745 bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY; 746 747 /* arp requests are broadcast and are sent on the primary 748 * the arp request will collapse all clients on the subnet to 749 * the primary slave. We must register these clients to be 750 * updated with their assigned mac. 751 */ 752 rlb_req_update_subnet_clients(bond, arp->ip_src); 753 pr_debug("Server sent ARP Request packet\n"); 754 } 755 756 return tx_slave; 757 } 758 759 /* Caller must hold bond lock for read */ 760 static void rlb_rebalance(struct bonding *bond) 761 { 762 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 763 struct slave *assigned_slave; 764 struct rlb_client_info *client_info; 765 int ntt; 766 u32 hash_index; 767 768 _lock_rx_hashtbl(bond); 769 770 ntt = 0; 771 hash_index = bond_info->rx_hashtbl_head; 772 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 773 client_info = &(bond_info->rx_hashtbl[hash_index]); 774 assigned_slave = rlb_next_rx_slave(bond); 775 if (assigned_slave && (client_info->slave != assigned_slave)) { 776 client_info->slave = assigned_slave; 777 client_info->ntt = 1; 778 ntt = 1; 779 } 780 } 781 782 /* update the team's flag only after the whole iteration */ 783 if (ntt) { 784 bond_info->rx_ntt = 1; 785 } 786 _unlock_rx_hashtbl(bond); 787 } 788 789 /* Caller must hold rx_hashtbl lock */ 790 static void rlb_init_table_entry(struct rlb_client_info *entry) 791 { 792 memset(entry, 0, sizeof(struct rlb_client_info)); 793 entry->next = RLB_NULL_INDEX; 794 entry->prev = RLB_NULL_INDEX; 795 } 796 797 static int rlb_initialize(struct bonding *bond) 798 { 799 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 800 struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type); 801 struct rlb_client_info *new_hashtbl; 802 int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info); 803 int i; 804 805 spin_lock_init(&(bond_info->rx_hashtbl_lock)); 806 807 new_hashtbl = kmalloc(size, GFP_KERNEL); 808 if (!new_hashtbl) { 809 pr_err(DRV_NAME 810 ": %s: Error: Failed to allocate RLB hash table\n", 811 bond->dev->name); 812 return -1; 813 } 814 _lock_rx_hashtbl(bond); 815 816 bond_info->rx_hashtbl = new_hashtbl; 817 818 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 819 820 for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) { 821 rlb_init_table_entry(bond_info->rx_hashtbl + i); 822 } 823 824 _unlock_rx_hashtbl(bond); 825 826 /*initialize packet type*/ 827 pk_type->type = cpu_to_be16(ETH_P_ARP); 828 pk_type->dev = NULL; 829 pk_type->func = rlb_arp_recv; 830 831 /* register to receive ARPs */ 832 dev_add_pack(pk_type); 833 834 return 0; 835 } 836 837 static void rlb_deinitialize(struct bonding *bond) 838 { 839 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 840 841 dev_remove_pack(&(bond_info->rlb_pkt_type)); 842 843 _lock_rx_hashtbl(bond); 844 845 kfree(bond_info->rx_hashtbl); 846 bond_info->rx_hashtbl = NULL; 847 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 848 849 _unlock_rx_hashtbl(bond); 850 } 851 852 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 853 { 854 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 855 u32 curr_index; 856 857 _lock_rx_hashtbl(bond); 858 859 curr_index = bond_info->rx_hashtbl_head; 860 while (curr_index != RLB_NULL_INDEX) { 861 struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]); 862 u32 next_index = bond_info->rx_hashtbl[curr_index].next; 863 u32 prev_index = bond_info->rx_hashtbl[curr_index].prev; 864 865 if (curr->tag && (curr->vlan_id == vlan_id)) { 866 if (curr_index == bond_info->rx_hashtbl_head) { 867 bond_info->rx_hashtbl_head = next_index; 868 } 869 if (prev_index != RLB_NULL_INDEX) { 870 bond_info->rx_hashtbl[prev_index].next = next_index; 871 } 872 if (next_index != RLB_NULL_INDEX) { 873 bond_info->rx_hashtbl[next_index].prev = prev_index; 874 } 875 876 rlb_init_table_entry(curr); 877 } 878 879 curr_index = next_index; 880 } 881 882 _unlock_rx_hashtbl(bond); 883 } 884 885 /*********************** tlb/rlb shared functions *********************/ 886 887 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]) 888 { 889 struct bonding *bond = bond_get_bond_by_slave(slave); 890 struct learning_pkt pkt; 891 int size = sizeof(struct learning_pkt); 892 int i; 893 894 memset(&pkt, 0, size); 895 memcpy(pkt.mac_dst, mac_addr, ETH_ALEN); 896 memcpy(pkt.mac_src, mac_addr, ETH_ALEN); 897 pkt.type = cpu_to_be16(ETH_P_LOOP); 898 899 for (i = 0; i < MAX_LP_BURST; i++) { 900 struct sk_buff *skb; 901 char *data; 902 903 skb = dev_alloc_skb(size); 904 if (!skb) { 905 return; 906 } 907 908 data = skb_put(skb, size); 909 memcpy(data, &pkt, size); 910 911 skb_reset_mac_header(skb); 912 skb->network_header = skb->mac_header + ETH_HLEN; 913 skb->protocol = pkt.type; 914 skb->priority = TC_PRIO_CONTROL; 915 skb->dev = slave->dev; 916 917 if (!list_empty(&bond->vlan_list)) { 918 struct vlan_entry *vlan; 919 920 vlan = bond_next_vlan(bond, 921 bond->alb_info.current_alb_vlan); 922 923 bond->alb_info.current_alb_vlan = vlan; 924 if (!vlan) { 925 kfree_skb(skb); 926 continue; 927 } 928 929 skb = vlan_put_tag(skb, vlan->vlan_id); 930 if (!skb) { 931 pr_err(DRV_NAME 932 ": %s: Error: failed to insert VLAN tag\n", 933 bond->dev->name); 934 continue; 935 } 936 } 937 938 dev_queue_xmit(skb); 939 } 940 } 941 942 /* hw is a boolean parameter that determines whether we should try and 943 * set the hw address of the device as well as the hw address of the 944 * net_device 945 */ 946 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw) 947 { 948 struct net_device *dev = slave->dev; 949 struct sockaddr s_addr; 950 951 if (!hw) { 952 memcpy(dev->dev_addr, addr, dev->addr_len); 953 return 0; 954 } 955 956 /* for rlb each slave must have a unique hw mac addresses so that */ 957 /* each slave will receive packets destined to a different mac */ 958 memcpy(s_addr.sa_data, addr, dev->addr_len); 959 s_addr.sa_family = dev->type; 960 if (dev_set_mac_address(dev, &s_addr)) { 961 pr_err(DRV_NAME 962 ": %s: Error: dev_set_mac_address of dev %s failed! ALB " 963 "mode requires that the base driver support setting " 964 "the hw address also when the network device's " 965 "interface is open\n", 966 dev->master->name, dev->name); 967 return -EOPNOTSUPP; 968 } 969 return 0; 970 } 971 972 /* 973 * Swap MAC addresses between two slaves. 974 * 975 * Called with RTNL held, and no other locks. 976 * 977 */ 978 979 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2) 980 { 981 u8 tmp_mac_addr[ETH_ALEN]; 982 983 memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN); 984 alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled); 985 alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled); 986 987 } 988 989 /* 990 * Send learning packets after MAC address swap. 991 * 992 * Called with RTNL and no other locks 993 */ 994 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1, 995 struct slave *slave2) 996 { 997 int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2)); 998 struct slave *disabled_slave = NULL; 999 1000 ASSERT_RTNL(); 1001 1002 /* fasten the change in the switch */ 1003 if (SLAVE_IS_OK(slave1)) { 1004 alb_send_learning_packets(slave1, slave1->dev->dev_addr); 1005 if (bond->alb_info.rlb_enabled) { 1006 /* inform the clients that the mac address 1007 * has changed 1008 */ 1009 rlb_req_update_slave_clients(bond, slave1); 1010 } 1011 } else { 1012 disabled_slave = slave1; 1013 } 1014 1015 if (SLAVE_IS_OK(slave2)) { 1016 alb_send_learning_packets(slave2, slave2->dev->dev_addr); 1017 if (bond->alb_info.rlb_enabled) { 1018 /* inform the clients that the mac address 1019 * has changed 1020 */ 1021 rlb_req_update_slave_clients(bond, slave2); 1022 } 1023 } else { 1024 disabled_slave = slave2; 1025 } 1026 1027 if (bond->alb_info.rlb_enabled && slaves_state_differ) { 1028 /* A disabled slave was assigned an active mac addr */ 1029 rlb_teach_disabled_mac_on_primary(bond, 1030 disabled_slave->dev->dev_addr); 1031 } 1032 } 1033 1034 /** 1035 * alb_change_hw_addr_on_detach 1036 * @bond: bonding we're working on 1037 * @slave: the slave that was just detached 1038 * 1039 * We assume that @slave was already detached from the slave list. 1040 * 1041 * If @slave's permanent hw address is different both from its current 1042 * address and from @bond's address, then somewhere in the bond there's 1043 * a slave that has @slave's permanet address as its current address. 1044 * We'll make sure that that slave no longer uses @slave's permanent address. 1045 * 1046 * Caller must hold RTNL and no other locks 1047 */ 1048 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave) 1049 { 1050 int perm_curr_diff; 1051 int perm_bond_diff; 1052 1053 perm_curr_diff = compare_ether_addr_64bits(slave->perm_hwaddr, 1054 slave->dev->dev_addr); 1055 perm_bond_diff = compare_ether_addr_64bits(slave->perm_hwaddr, 1056 bond->dev->dev_addr); 1057 1058 if (perm_curr_diff && perm_bond_diff) { 1059 struct slave *tmp_slave; 1060 int i, found = 0; 1061 1062 bond_for_each_slave(bond, tmp_slave, i) { 1063 if (!compare_ether_addr_64bits(slave->perm_hwaddr, 1064 tmp_slave->dev->dev_addr)) { 1065 found = 1; 1066 break; 1067 } 1068 } 1069 1070 if (found) { 1071 /* locking: needs RTNL and nothing else */ 1072 alb_swap_mac_addr(bond, slave, tmp_slave); 1073 alb_fasten_mac_swap(bond, slave, tmp_slave); 1074 } 1075 } 1076 } 1077 1078 /** 1079 * alb_handle_addr_collision_on_attach 1080 * @bond: bonding we're working on 1081 * @slave: the slave that was just attached 1082 * 1083 * checks uniqueness of slave's mac address and handles the case the 1084 * new slave uses the bonds mac address. 1085 * 1086 * If the permanent hw address of @slave is @bond's hw address, we need to 1087 * find a different hw address to give @slave, that isn't in use by any other 1088 * slave in the bond. This address must be, of course, one of the premanent 1089 * addresses of the other slaves. 1090 * 1091 * We go over the slave list, and for each slave there we compare its 1092 * permanent hw address with the current address of all the other slaves. 1093 * If no match was found, then we've found a slave with a permanent address 1094 * that isn't used by any other slave in the bond, so we can assign it to 1095 * @slave. 1096 * 1097 * assumption: this function is called before @slave is attached to the 1098 * bond slave list. 1099 * 1100 * caller must hold the bond lock for write since the mac addresses are compared 1101 * and may be swapped. 1102 */ 1103 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave) 1104 { 1105 struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave; 1106 struct slave *has_bond_addr = bond->curr_active_slave; 1107 int i, j, found = 0; 1108 1109 if (bond->slave_cnt == 0) { 1110 /* this is the first slave */ 1111 return 0; 1112 } 1113 1114 /* if slave's mac address differs from bond's mac address 1115 * check uniqueness of slave's mac address against the other 1116 * slaves in the bond. 1117 */ 1118 if (compare_ether_addr_64bits(slave->perm_hwaddr, bond->dev->dev_addr)) { 1119 bond_for_each_slave(bond, tmp_slave1, i) { 1120 if (!compare_ether_addr_64bits(tmp_slave1->dev->dev_addr, 1121 slave->dev->dev_addr)) { 1122 found = 1; 1123 break; 1124 } 1125 } 1126 1127 if (!found) 1128 return 0; 1129 1130 /* Try setting slave mac to bond address and fall-through 1131 to code handling that situation below... */ 1132 alb_set_slave_mac_addr(slave, bond->dev->dev_addr, 1133 bond->alb_info.rlb_enabled); 1134 } 1135 1136 /* The slave's address is equal to the address of the bond. 1137 * Search for a spare address in the bond for this slave. 1138 */ 1139 free_mac_slave = NULL; 1140 1141 bond_for_each_slave(bond, tmp_slave1, i) { 1142 found = 0; 1143 bond_for_each_slave(bond, tmp_slave2, j) { 1144 if (!compare_ether_addr_64bits(tmp_slave1->perm_hwaddr, 1145 tmp_slave2->dev->dev_addr)) { 1146 found = 1; 1147 break; 1148 } 1149 } 1150 1151 if (!found) { 1152 /* no slave has tmp_slave1's perm addr 1153 * as its curr addr 1154 */ 1155 free_mac_slave = tmp_slave1; 1156 break; 1157 } 1158 1159 if (!has_bond_addr) { 1160 if (!compare_ether_addr_64bits(tmp_slave1->dev->dev_addr, 1161 bond->dev->dev_addr)) { 1162 1163 has_bond_addr = tmp_slave1; 1164 } 1165 } 1166 } 1167 1168 if (free_mac_slave) { 1169 alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr, 1170 bond->alb_info.rlb_enabled); 1171 1172 pr_warning(DRV_NAME 1173 ": %s: Warning: the hw address of slave %s is " 1174 "in use by the bond; giving it the hw address " 1175 "of %s\n", 1176 bond->dev->name, slave->dev->name, 1177 free_mac_slave->dev->name); 1178 1179 } else if (has_bond_addr) { 1180 pr_err(DRV_NAME 1181 ": %s: Error: the hw address of slave %s is in use by the " 1182 "bond; couldn't find a slave with a free hw address to " 1183 "give it (this should not have happened)\n", 1184 bond->dev->name, slave->dev->name); 1185 return -EFAULT; 1186 } 1187 1188 return 0; 1189 } 1190 1191 /** 1192 * alb_set_mac_address 1193 * @bond: 1194 * @addr: 1195 * 1196 * In TLB mode all slaves are configured to the bond's hw address, but set 1197 * their dev_addr field to different addresses (based on their permanent hw 1198 * addresses). 1199 * 1200 * For each slave, this function sets the interface to the new address and then 1201 * changes its dev_addr field to its previous value. 1202 * 1203 * Unwinding assumes bond's mac address has not yet changed. 1204 */ 1205 static int alb_set_mac_address(struct bonding *bond, void *addr) 1206 { 1207 struct sockaddr sa; 1208 struct slave *slave, *stop_at; 1209 char tmp_addr[ETH_ALEN]; 1210 int res; 1211 int i; 1212 1213 if (bond->alb_info.rlb_enabled) { 1214 return 0; 1215 } 1216 1217 bond_for_each_slave(bond, slave, i) { 1218 /* save net_device's current hw address */ 1219 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1220 1221 res = dev_set_mac_address(slave->dev, addr); 1222 1223 /* restore net_device's hw address */ 1224 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1225 1226 if (res) 1227 goto unwind; 1228 } 1229 1230 return 0; 1231 1232 unwind: 1233 memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len); 1234 sa.sa_family = bond->dev->type; 1235 1236 /* unwind from head to the slave that failed */ 1237 stop_at = slave; 1238 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 1239 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1240 dev_set_mac_address(slave->dev, &sa); 1241 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1242 } 1243 1244 return res; 1245 } 1246 1247 /************************ exported alb funcions ************************/ 1248 1249 int bond_alb_initialize(struct bonding *bond, int rlb_enabled) 1250 { 1251 int res; 1252 1253 res = tlb_initialize(bond); 1254 if (res) { 1255 return res; 1256 } 1257 1258 if (rlb_enabled) { 1259 bond->alb_info.rlb_enabled = 1; 1260 /* initialize rlb */ 1261 res = rlb_initialize(bond); 1262 if (res) { 1263 tlb_deinitialize(bond); 1264 return res; 1265 } 1266 } else { 1267 bond->alb_info.rlb_enabled = 0; 1268 } 1269 1270 return 0; 1271 } 1272 1273 void bond_alb_deinitialize(struct bonding *bond) 1274 { 1275 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1276 1277 tlb_deinitialize(bond); 1278 1279 if (bond_info->rlb_enabled) { 1280 rlb_deinitialize(bond); 1281 } 1282 } 1283 1284 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) 1285 { 1286 struct bonding *bond = netdev_priv(bond_dev); 1287 struct ethhdr *eth_data; 1288 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1289 struct slave *tx_slave = NULL; 1290 static const __be32 ip_bcast = htonl(0xffffffff); 1291 int hash_size = 0; 1292 int do_tx_balance = 1; 1293 u32 hash_index = 0; 1294 const u8 *hash_start = NULL; 1295 int res = 1; 1296 struct ipv6hdr *ip6hdr; 1297 1298 skb_reset_mac_header(skb); 1299 eth_data = eth_hdr(skb); 1300 1301 /* make sure that the curr_active_slave and the slaves list do 1302 * not change during tx 1303 */ 1304 read_lock(&bond->lock); 1305 read_lock(&bond->curr_slave_lock); 1306 1307 if (!BOND_IS_OK(bond)) { 1308 goto out; 1309 } 1310 1311 switch (ntohs(skb->protocol)) { 1312 case ETH_P_IP: { 1313 const struct iphdr *iph = ip_hdr(skb); 1314 1315 if (!compare_ether_addr_64bits(eth_data->h_dest, mac_bcast) || 1316 (iph->daddr == ip_bcast) || 1317 (iph->protocol == IPPROTO_IGMP)) { 1318 do_tx_balance = 0; 1319 break; 1320 } 1321 hash_start = (char *)&(iph->daddr); 1322 hash_size = sizeof(iph->daddr); 1323 } 1324 break; 1325 case ETH_P_IPV6: 1326 /* IPv6 doesn't really use broadcast mac address, but leave 1327 * that here just in case. 1328 */ 1329 if (!compare_ether_addr_64bits(eth_data->h_dest, mac_bcast)) { 1330 do_tx_balance = 0; 1331 break; 1332 } 1333 1334 /* IPv6 uses all-nodes multicast as an equivalent to 1335 * broadcasts in IPv4. 1336 */ 1337 if (!compare_ether_addr_64bits(eth_data->h_dest, mac_v6_allmcast)) { 1338 do_tx_balance = 0; 1339 break; 1340 } 1341 1342 /* Additianally, DAD probes should not be tx-balanced as that 1343 * will lead to false positives for duplicate addresses and 1344 * prevent address configuration from working. 1345 */ 1346 ip6hdr = ipv6_hdr(skb); 1347 if (ipv6_addr_any(&ip6hdr->saddr)) { 1348 do_tx_balance = 0; 1349 break; 1350 } 1351 1352 hash_start = (char *)&(ipv6_hdr(skb)->daddr); 1353 hash_size = sizeof(ipv6_hdr(skb)->daddr); 1354 break; 1355 case ETH_P_IPX: 1356 if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) { 1357 /* something is wrong with this packet */ 1358 do_tx_balance = 0; 1359 break; 1360 } 1361 1362 if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) { 1363 /* The only protocol worth balancing in 1364 * this family since it has an "ARP" like 1365 * mechanism 1366 */ 1367 do_tx_balance = 0; 1368 break; 1369 } 1370 1371 hash_start = (char*)eth_data->h_dest; 1372 hash_size = ETH_ALEN; 1373 break; 1374 case ETH_P_ARP: 1375 do_tx_balance = 0; 1376 if (bond_info->rlb_enabled) { 1377 tx_slave = rlb_arp_xmit(skb, bond); 1378 } 1379 break; 1380 default: 1381 do_tx_balance = 0; 1382 break; 1383 } 1384 1385 if (do_tx_balance) { 1386 hash_index = _simple_hash(hash_start, hash_size); 1387 tx_slave = tlb_choose_channel(bond, hash_index, skb->len); 1388 } 1389 1390 if (!tx_slave) { 1391 /* unbalanced or unassigned, send through primary */ 1392 tx_slave = bond->curr_active_slave; 1393 bond_info->unbalanced_load += skb->len; 1394 } 1395 1396 if (tx_slave && SLAVE_IS_OK(tx_slave)) { 1397 if (tx_slave != bond->curr_active_slave) { 1398 memcpy(eth_data->h_source, 1399 tx_slave->dev->dev_addr, 1400 ETH_ALEN); 1401 } 1402 1403 res = bond_dev_queue_xmit(bond, skb, tx_slave->dev); 1404 } else { 1405 if (tx_slave) { 1406 tlb_clear_slave(bond, tx_slave, 0); 1407 } 1408 } 1409 1410 out: 1411 if (res) { 1412 /* no suitable interface, frame not sent */ 1413 dev_kfree_skb(skb); 1414 } 1415 read_unlock(&bond->curr_slave_lock); 1416 read_unlock(&bond->lock); 1417 return NETDEV_TX_OK; 1418 } 1419 1420 void bond_alb_monitor(struct work_struct *work) 1421 { 1422 struct bonding *bond = container_of(work, struct bonding, 1423 alb_work.work); 1424 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1425 struct slave *slave; 1426 int i; 1427 1428 read_lock(&bond->lock); 1429 1430 if (bond->kill_timers) { 1431 goto out; 1432 } 1433 1434 if (bond->slave_cnt == 0) { 1435 bond_info->tx_rebalance_counter = 0; 1436 bond_info->lp_counter = 0; 1437 goto re_arm; 1438 } 1439 1440 bond_info->tx_rebalance_counter++; 1441 bond_info->lp_counter++; 1442 1443 /* send learning packets */ 1444 if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) { 1445 /* change of curr_active_slave involves swapping of mac addresses. 1446 * in order to avoid this swapping from happening while 1447 * sending the learning packets, the curr_slave_lock must be held for 1448 * read. 1449 */ 1450 read_lock(&bond->curr_slave_lock); 1451 1452 bond_for_each_slave(bond, slave, i) { 1453 alb_send_learning_packets(slave, slave->dev->dev_addr); 1454 } 1455 1456 read_unlock(&bond->curr_slave_lock); 1457 1458 bond_info->lp_counter = 0; 1459 } 1460 1461 /* rebalance tx traffic */ 1462 if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) { 1463 1464 read_lock(&bond->curr_slave_lock); 1465 1466 bond_for_each_slave(bond, slave, i) { 1467 tlb_clear_slave(bond, slave, 1); 1468 if (slave == bond->curr_active_slave) { 1469 SLAVE_TLB_INFO(slave).load = 1470 bond_info->unbalanced_load / 1471 BOND_TLB_REBALANCE_INTERVAL; 1472 bond_info->unbalanced_load = 0; 1473 } 1474 } 1475 1476 read_unlock(&bond->curr_slave_lock); 1477 1478 bond_info->tx_rebalance_counter = 0; 1479 } 1480 1481 /* handle rlb stuff */ 1482 if (bond_info->rlb_enabled) { 1483 if (bond_info->primary_is_promisc && 1484 (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) { 1485 1486 /* 1487 * dev_set_promiscuity requires rtnl and 1488 * nothing else. 1489 */ 1490 read_unlock(&bond->lock); 1491 rtnl_lock(); 1492 1493 bond_info->rlb_promisc_timeout_counter = 0; 1494 1495 /* If the primary was set to promiscuous mode 1496 * because a slave was disabled then 1497 * it can now leave promiscuous mode. 1498 */ 1499 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1500 bond_info->primary_is_promisc = 0; 1501 1502 rtnl_unlock(); 1503 read_lock(&bond->lock); 1504 } 1505 1506 if (bond_info->rlb_rebalance) { 1507 bond_info->rlb_rebalance = 0; 1508 rlb_rebalance(bond); 1509 } 1510 1511 /* check if clients need updating */ 1512 if (bond_info->rx_ntt) { 1513 if (bond_info->rlb_update_delay_counter) { 1514 --bond_info->rlb_update_delay_counter; 1515 } else { 1516 rlb_update_rx_clients(bond); 1517 if (bond_info->rlb_update_retry_counter) { 1518 --bond_info->rlb_update_retry_counter; 1519 } else { 1520 bond_info->rx_ntt = 0; 1521 } 1522 } 1523 } 1524 } 1525 1526 re_arm: 1527 queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks); 1528 out: 1529 read_unlock(&bond->lock); 1530 } 1531 1532 /* assumption: called before the slave is attached to the bond 1533 * and not locked by the bond lock 1534 */ 1535 int bond_alb_init_slave(struct bonding *bond, struct slave *slave) 1536 { 1537 int res; 1538 1539 res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr, 1540 bond->alb_info.rlb_enabled); 1541 if (res) { 1542 return res; 1543 } 1544 1545 /* caller must hold the bond lock for write since the mac addresses 1546 * are compared and may be swapped. 1547 */ 1548 read_lock(&bond->lock); 1549 1550 res = alb_handle_addr_collision_on_attach(bond, slave); 1551 1552 read_unlock(&bond->lock); 1553 1554 if (res) { 1555 return res; 1556 } 1557 1558 tlb_init_slave(slave); 1559 1560 /* order a rebalance ASAP */ 1561 bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1562 1563 if (bond->alb_info.rlb_enabled) { 1564 bond->alb_info.rlb_rebalance = 1; 1565 } 1566 1567 return 0; 1568 } 1569 1570 /* 1571 * Remove slave from tlb and rlb hash tables, and fix up MAC addresses 1572 * if necessary. 1573 * 1574 * Caller must hold RTNL and no other locks 1575 */ 1576 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave) 1577 { 1578 if (bond->slave_cnt > 1) { 1579 alb_change_hw_addr_on_detach(bond, slave); 1580 } 1581 1582 tlb_clear_slave(bond, slave, 0); 1583 1584 if (bond->alb_info.rlb_enabled) { 1585 bond->alb_info.next_rx_slave = NULL; 1586 rlb_clear_slave(bond, slave); 1587 } 1588 } 1589 1590 /* Caller must hold bond lock for read */ 1591 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link) 1592 { 1593 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1594 1595 if (link == BOND_LINK_DOWN) { 1596 tlb_clear_slave(bond, slave, 0); 1597 if (bond->alb_info.rlb_enabled) { 1598 rlb_clear_slave(bond, slave); 1599 } 1600 } else if (link == BOND_LINK_UP) { 1601 /* order a rebalance ASAP */ 1602 bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1603 if (bond->alb_info.rlb_enabled) { 1604 bond->alb_info.rlb_rebalance = 1; 1605 /* If the updelay module parameter is smaller than the 1606 * forwarding delay of the switch the rebalance will 1607 * not work because the rebalance arp replies will 1608 * not be forwarded to the clients.. 1609 */ 1610 } 1611 } 1612 } 1613 1614 /** 1615 * bond_alb_handle_active_change - assign new curr_active_slave 1616 * @bond: our bonding struct 1617 * @new_slave: new slave to assign 1618 * 1619 * Set the bond->curr_active_slave to @new_slave and handle 1620 * mac address swapping and promiscuity changes as needed. 1621 * 1622 * If new_slave is NULL, caller must hold curr_slave_lock or 1623 * bond->lock for write. 1624 * 1625 * If new_slave is not NULL, caller must hold RTNL, bond->lock for 1626 * read and curr_slave_lock for write. Processing here may sleep, so 1627 * no other locks may be held. 1628 */ 1629 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave) 1630 __releases(&bond->curr_slave_lock) 1631 __releases(&bond->lock) 1632 __acquires(&bond->lock) 1633 __acquires(&bond->curr_slave_lock) 1634 { 1635 struct slave *swap_slave; 1636 int i; 1637 1638 if (bond->curr_active_slave == new_slave) { 1639 return; 1640 } 1641 1642 if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) { 1643 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1644 bond->alb_info.primary_is_promisc = 0; 1645 bond->alb_info.rlb_promisc_timeout_counter = 0; 1646 } 1647 1648 swap_slave = bond->curr_active_slave; 1649 bond->curr_active_slave = new_slave; 1650 1651 if (!new_slave || (bond->slave_cnt == 0)) { 1652 return; 1653 } 1654 1655 /* set the new curr_active_slave to the bonds mac address 1656 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave 1657 */ 1658 if (!swap_slave) { 1659 struct slave *tmp_slave; 1660 /* find slave that is holding the bond's mac address */ 1661 bond_for_each_slave(bond, tmp_slave, i) { 1662 if (!compare_ether_addr_64bits(tmp_slave->dev->dev_addr, 1663 bond->dev->dev_addr)) { 1664 swap_slave = tmp_slave; 1665 break; 1666 } 1667 } 1668 } 1669 1670 /* 1671 * Arrange for swap_slave and new_slave to temporarily be 1672 * ignored so we can mess with their MAC addresses without 1673 * fear of interference from transmit activity. 1674 */ 1675 if (swap_slave) { 1676 tlb_clear_slave(bond, swap_slave, 1); 1677 } 1678 tlb_clear_slave(bond, new_slave, 1); 1679 1680 write_unlock_bh(&bond->curr_slave_lock); 1681 read_unlock(&bond->lock); 1682 1683 ASSERT_RTNL(); 1684 1685 /* curr_active_slave must be set before calling alb_swap_mac_addr */ 1686 if (swap_slave) { 1687 /* swap mac address */ 1688 alb_swap_mac_addr(bond, swap_slave, new_slave); 1689 } else { 1690 /* set the new_slave to the bond mac address */ 1691 alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr, 1692 bond->alb_info.rlb_enabled); 1693 } 1694 1695 if (swap_slave) { 1696 alb_fasten_mac_swap(bond, swap_slave, new_slave); 1697 read_lock(&bond->lock); 1698 } else { 1699 read_lock(&bond->lock); 1700 alb_send_learning_packets(new_slave, bond->dev->dev_addr); 1701 } 1702 1703 write_lock_bh(&bond->curr_slave_lock); 1704 } 1705 1706 /* 1707 * Called with RTNL 1708 */ 1709 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr) 1710 __acquires(&bond->lock) 1711 __releases(&bond->lock) 1712 { 1713 struct bonding *bond = netdev_priv(bond_dev); 1714 struct sockaddr *sa = addr; 1715 struct slave *slave, *swap_slave; 1716 int res; 1717 int i; 1718 1719 if (!is_valid_ether_addr(sa->sa_data)) { 1720 return -EADDRNOTAVAIL; 1721 } 1722 1723 res = alb_set_mac_address(bond, addr); 1724 if (res) { 1725 return res; 1726 } 1727 1728 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 1729 1730 /* If there is no curr_active_slave there is nothing else to do. 1731 * Otherwise we'll need to pass the new address to it and handle 1732 * duplications. 1733 */ 1734 if (!bond->curr_active_slave) { 1735 return 0; 1736 } 1737 1738 swap_slave = NULL; 1739 1740 bond_for_each_slave(bond, slave, i) { 1741 if (!compare_ether_addr_64bits(slave->dev->dev_addr, 1742 bond_dev->dev_addr)) { 1743 swap_slave = slave; 1744 break; 1745 } 1746 } 1747 1748 if (swap_slave) { 1749 alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave); 1750 alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave); 1751 } else { 1752 alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr, 1753 bond->alb_info.rlb_enabled); 1754 1755 read_lock(&bond->lock); 1756 alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr); 1757 if (bond->alb_info.rlb_enabled) { 1758 /* inform clients mac address has changed */ 1759 rlb_req_update_slave_clients(bond, bond->curr_active_slave); 1760 } 1761 read_unlock(&bond->lock); 1762 } 1763 1764 return 0; 1765 } 1766 1767 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 1768 { 1769 if (bond->alb_info.current_alb_vlan && 1770 (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) { 1771 bond->alb_info.current_alb_vlan = NULL; 1772 } 1773 1774 if (bond->alb_info.rlb_enabled) { 1775 rlb_clear_vlan(bond, vlan_id); 1776 } 1777 } 1778 1779