1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * This file includes volume table manipulation code. The volume table is an 24 * on-flash table containing volume meta-data like name, number of reserved 25 * physical eraseblocks, type, etc. The volume table is stored in the so-called 26 * "layout volume". 27 * 28 * The layout volume is an internal volume which is organized as follows. It 29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical 30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each 31 * other. This redundancy guarantees robustness to unclean reboots. The volume 32 * table is basically an array of volume table records. Each record contains 33 * full information about the volume and protected by a CRC checksum. 34 * 35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is 36 * erased, and the updated volume table is written back to LEB 0. Then same for 37 * LEB 1. This scheme guarantees recoverability from unclean reboots. 38 * 39 * In this UBI implementation the on-flash volume table does not contain any 40 * information about how many data static volumes contain. This information may 41 * be found from the scanning data. 42 * 43 * But it would still be beneficial to store this information in the volume 44 * table. For example, suppose we have a static volume X, and all its physical 45 * eraseblocks became bad for some reasons. Suppose we are attaching the 46 * corresponding MTD device, the scanning has found no logical eraseblocks 47 * corresponding to the volume X. According to the volume table volume X does 48 * exist. So we don't know whether it is just empty or all its physical 49 * eraseblocks went bad. So we cannot alarm the user about this corruption. 50 * 51 * The volume table also stores so-called "update marker", which is used for 52 * volume updates. Before updating the volume, the update marker is set, and 53 * after the update operation is finished, the update marker is cleared. So if 54 * the update operation was interrupted (e.g. by an unclean reboot) - the 55 * update marker is still there and we know that the volume's contents is 56 * damaged. 57 */ 58 59 #include <linux/crc32.h> 60 #include <linux/err.h> 61 #include <asm/div64.h> 62 #include "ubi.h" 63 64 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 65 static void paranoid_vtbl_check(const struct ubi_device *ubi); 66 #else 67 #define paranoid_vtbl_check(ubi) 68 #endif 69 70 /* Empty volume table record */ 71 static struct ubi_vtbl_record empty_vtbl_record; 72 73 /** 74 * ubi_change_vtbl_record - change volume table record. 75 * @ubi: UBI device description object 76 * @idx: table index to change 77 * @vtbl_rec: new volume table record 78 * 79 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty 80 * volume table record is written. The caller does not have to calculate CRC of 81 * the record as it is done by this function. Returns zero in case of success 82 * and a negative error code in case of failure. 83 */ 84 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, 85 struct ubi_vtbl_record *vtbl_rec) 86 { 87 int i, err; 88 uint32_t crc; 89 90 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); 91 92 if (!vtbl_rec) 93 vtbl_rec = &empty_vtbl_record; 94 else { 95 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); 96 vtbl_rec->crc = cpu_to_ubi32(crc); 97 } 98 99 dbg_msg("change record %d", idx); 100 ubi_dbg_dump_vtbl_record(vtbl_rec, idx); 101 102 mutex_lock(&ubi->vtbl_mutex); 103 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); 104 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 105 err = ubi_eba_unmap_leb(ubi, UBI_LAYOUT_VOL_ID, i); 106 if (err) { 107 mutex_unlock(&ubi->vtbl_mutex); 108 return err; 109 } 110 err = ubi_eba_write_leb(ubi, UBI_LAYOUT_VOL_ID, i, ubi->vtbl, 0, 111 ubi->vtbl_size, UBI_LONGTERM); 112 if (err) { 113 mutex_unlock(&ubi->vtbl_mutex); 114 return err; 115 } 116 } 117 118 paranoid_vtbl_check(ubi); 119 mutex_unlock(&ubi->vtbl_mutex); 120 return ubi_wl_flush(ubi); 121 } 122 123 /** 124 * vol_til_check - check if volume table is not corrupted and contains sensible 125 * data. 126 * 127 * @ubi: UBI device description object 128 * @vtbl: volume table 129 * 130 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, 131 * and %-EINVAL if it contains inconsistent data. 132 */ 133 static int vtbl_check(const struct ubi_device *ubi, 134 const struct ubi_vtbl_record *vtbl) 135 { 136 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; 137 int upd_marker; 138 uint32_t crc; 139 const char *name; 140 141 for (i = 0; i < ubi->vtbl_slots; i++) { 142 cond_resched(); 143 144 reserved_pebs = ubi32_to_cpu(vtbl[i].reserved_pebs); 145 alignment = ubi32_to_cpu(vtbl[i].alignment); 146 data_pad = ubi32_to_cpu(vtbl[i].data_pad); 147 upd_marker = vtbl[i].upd_marker; 148 vol_type = vtbl[i].vol_type; 149 name_len = ubi16_to_cpu(vtbl[i].name_len); 150 name = &vtbl[i].name[0]; 151 152 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); 153 if (ubi32_to_cpu(vtbl[i].crc) != crc) { 154 ubi_err("bad CRC at record %u: %#08x, not %#08x", 155 i, crc, ubi32_to_cpu(vtbl[i].crc)); 156 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 157 return 1; 158 } 159 160 if (reserved_pebs == 0) { 161 if (memcmp(&vtbl[i], &empty_vtbl_record, 162 UBI_VTBL_RECORD_SIZE)) { 163 dbg_err("bad empty record"); 164 goto bad; 165 } 166 continue; 167 } 168 169 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || 170 name_len < 0) { 171 dbg_err("negative values"); 172 goto bad; 173 } 174 175 if (alignment > ubi->leb_size || alignment == 0) { 176 dbg_err("bad alignment"); 177 goto bad; 178 } 179 180 n = alignment % ubi->min_io_size; 181 if (alignment != 1 && n) { 182 dbg_err("alignment is not multiple of min I/O unit"); 183 goto bad; 184 } 185 186 n = ubi->leb_size % alignment; 187 if (data_pad != n) { 188 dbg_err("bad data_pad, has to be %d", n); 189 goto bad; 190 } 191 192 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 193 dbg_err("bad vol_type"); 194 goto bad; 195 } 196 197 if (upd_marker != 0 && upd_marker != 1) { 198 dbg_err("bad upd_marker"); 199 goto bad; 200 } 201 202 if (reserved_pebs > ubi->good_peb_count) { 203 dbg_err("too large reserved_pebs, good PEBs %d", 204 ubi->good_peb_count); 205 goto bad; 206 } 207 208 if (name_len > UBI_VOL_NAME_MAX) { 209 dbg_err("too long volume name, max %d", 210 UBI_VOL_NAME_MAX); 211 goto bad; 212 } 213 214 if (name[0] == '\0') { 215 dbg_err("NULL volume name"); 216 goto bad; 217 } 218 219 if (name_len != strnlen(name, name_len + 1)) { 220 dbg_err("bad name_len"); 221 goto bad; 222 } 223 } 224 225 /* Checks that all names are unique */ 226 for (i = 0; i < ubi->vtbl_slots - 1; i++) { 227 for (n = i + 1; n < ubi->vtbl_slots; n++) { 228 int len1 = ubi16_to_cpu(vtbl[i].name_len); 229 int len2 = ubi16_to_cpu(vtbl[n].name_len); 230 231 if (len1 > 0 && len1 == len2 && 232 !strncmp(vtbl[i].name, vtbl[n].name, len1)) { 233 ubi_err("volumes %d and %d have the same name" 234 " \"%s\"", i, n, vtbl[i].name); 235 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 236 ubi_dbg_dump_vtbl_record(&vtbl[n], n); 237 return -EINVAL; 238 } 239 } 240 } 241 242 return 0; 243 244 bad: 245 ubi_err("volume table check failed, record %d", i); 246 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 247 return -EINVAL; 248 } 249 250 /** 251 * create_vtbl - create a copy of volume table. 252 * @ubi: UBI device description object 253 * @si: scanning information 254 * @copy: number of the volume table copy 255 * @vtbl: contents of the volume table 256 * 257 * This function returns zero in case of success and a negative error code in 258 * case of failure. 259 */ 260 static int create_vtbl(const struct ubi_device *ubi, struct ubi_scan_info *si, 261 int copy, void *vtbl) 262 { 263 int err, tries = 0; 264 static struct ubi_vid_hdr *vid_hdr; 265 struct ubi_scan_volume *sv; 266 struct ubi_scan_leb *new_seb, *old_seb = NULL; 267 268 ubi_msg("create volume table (copy #%d)", copy + 1); 269 270 vid_hdr = ubi_zalloc_vid_hdr(ubi); 271 if (!vid_hdr) 272 return -ENOMEM; 273 274 /* 275 * Check if there is a logical eraseblock which would have to contain 276 * this volume table copy was found during scanning. It has to be wiped 277 * out. 278 */ 279 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID); 280 if (sv) 281 old_seb = ubi_scan_find_seb(sv, copy); 282 283 retry: 284 new_seb = ubi_scan_get_free_peb(ubi, si); 285 if (IS_ERR(new_seb)) { 286 err = PTR_ERR(new_seb); 287 goto out_free; 288 } 289 290 vid_hdr->vol_type = UBI_VID_DYNAMIC; 291 vid_hdr->vol_id = cpu_to_ubi32(UBI_LAYOUT_VOL_ID); 292 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; 293 vid_hdr->data_size = vid_hdr->used_ebs = 294 vid_hdr->data_pad = cpu_to_ubi32(0); 295 vid_hdr->lnum = cpu_to_ubi32(copy); 296 vid_hdr->sqnum = cpu_to_ubi64(++si->max_sqnum); 297 vid_hdr->leb_ver = cpu_to_ubi32(old_seb ? old_seb->leb_ver + 1: 0); 298 299 /* The EC header is already there, write the VID header */ 300 err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr); 301 if (err) 302 goto write_error; 303 304 /* Write the layout volume contents */ 305 err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size); 306 if (err) 307 goto write_error; 308 309 /* 310 * And add it to the scanning information. Don't delete the old 311 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'. 312 */ 313 err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec, 314 vid_hdr, 0); 315 kfree(new_seb); 316 ubi_free_vid_hdr(ubi, vid_hdr); 317 return err; 318 319 write_error: 320 kfree(new_seb); 321 /* May be this physical eraseblock went bad, try to pick another one */ 322 if (++tries <= 5) { 323 err = ubi_scan_add_to_list(si, new_seb->pnum, new_seb->ec, 324 &si->corr); 325 if (!err) 326 goto retry; 327 } 328 out_free: 329 ubi_free_vid_hdr(ubi, vid_hdr); 330 return err; 331 332 } 333 334 /** 335 * process_lvol - process the layout volume. 336 * @ubi: UBI device description object 337 * @si: scanning information 338 * @sv: layout volume scanning information 339 * 340 * This function is responsible for reading the layout volume, ensuring it is 341 * not corrupted, and recovering from corruptions if needed. Returns volume 342 * table in case of success and a negative error code in case of failure. 343 */ 344 static struct ubi_vtbl_record *process_lvol(const struct ubi_device *ubi, 345 struct ubi_scan_info *si, 346 struct ubi_scan_volume *sv) 347 { 348 int err; 349 struct rb_node *rb; 350 struct ubi_scan_leb *seb; 351 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; 352 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; 353 354 /* 355 * UBI goes through the following steps when it changes the layout 356 * volume: 357 * a. erase LEB 0; 358 * b. write new data to LEB 0; 359 * c. erase LEB 1; 360 * d. write new data to LEB 1. 361 * 362 * Before the change, both LEBs contain the same data. 363 * 364 * Due to unclean reboots, the contents of LEB 0 may be lost, but there 365 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. 366 * Similarly, LEB 1 may be lost, but there should be LEB 0. And 367 * finally, unclean reboots may result in a situation when neither LEB 368 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB 369 * 0 contains more recent information. 370 * 371 * So the plan is to first check LEB 0. Then 372 * a. if LEB 0 is OK, it must be containing the most resent data; then 373 * we compare it with LEB 1, and if they are different, we copy LEB 374 * 0 to LEB 1; 375 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 376 * to LEB 0. 377 */ 378 379 dbg_msg("check layout volume"); 380 381 /* Read both LEB 0 and LEB 1 into memory */ 382 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { 383 leb[seb->lnum] = kzalloc(ubi->vtbl_size, GFP_KERNEL); 384 if (!leb[seb->lnum]) { 385 err = -ENOMEM; 386 goto out_free; 387 } 388 389 err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0, 390 ubi->vtbl_size); 391 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) 392 /* Scrub the PEB later */ 393 seb->scrub = 1; 394 else if (err) 395 goto out_free; 396 } 397 398 err = -EINVAL; 399 if (leb[0]) { 400 leb_corrupted[0] = vtbl_check(ubi, leb[0]); 401 if (leb_corrupted[0] < 0) 402 goto out_free; 403 } 404 405 if (!leb_corrupted[0]) { 406 /* LEB 0 is OK */ 407 if (leb[1]) 408 leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size); 409 if (leb_corrupted[1]) { 410 ubi_warn("volume table copy #2 is corrupted"); 411 err = create_vtbl(ubi, si, 1, leb[0]); 412 if (err) 413 goto out_free; 414 ubi_msg("volume table was restored"); 415 } 416 417 /* Both LEB 1 and LEB 2 are OK and consistent */ 418 kfree(leb[1]); 419 return leb[0]; 420 } else { 421 /* LEB 0 is corrupted or does not exist */ 422 if (leb[1]) { 423 leb_corrupted[1] = vtbl_check(ubi, leb[1]); 424 if (leb_corrupted[1] < 0) 425 goto out_free; 426 } 427 if (leb_corrupted[1]) { 428 /* Both LEB 0 and LEB 1 are corrupted */ 429 ubi_err("both volume tables are corrupted"); 430 goto out_free; 431 } 432 433 ubi_warn("volume table copy #1 is corrupted"); 434 err = create_vtbl(ubi, si, 0, leb[1]); 435 if (err) 436 goto out_free; 437 ubi_msg("volume table was restored"); 438 439 kfree(leb[0]); 440 return leb[1]; 441 } 442 443 out_free: 444 kfree(leb[0]); 445 kfree(leb[1]); 446 return ERR_PTR(err); 447 } 448 449 /** 450 * create_empty_lvol - create empty layout volume. 451 * @ubi: UBI device description object 452 * @si: scanning information 453 * 454 * This function returns volume table contents in case of success and a 455 * negative error code in case of failure. 456 */ 457 static struct ubi_vtbl_record *create_empty_lvol(const struct ubi_device *ubi, 458 struct ubi_scan_info *si) 459 { 460 int i; 461 struct ubi_vtbl_record *vtbl; 462 463 vtbl = kzalloc(ubi->vtbl_size, GFP_KERNEL); 464 if (!vtbl) 465 return ERR_PTR(-ENOMEM); 466 467 for (i = 0; i < ubi->vtbl_slots; i++) 468 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); 469 470 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 471 int err; 472 473 err = create_vtbl(ubi, si, i, vtbl); 474 if (err) { 475 kfree(vtbl); 476 return ERR_PTR(err); 477 } 478 } 479 480 return vtbl; 481 } 482 483 /** 484 * init_volumes - initialize volume information for existing volumes. 485 * @ubi: UBI device description object 486 * @si: scanning information 487 * @vtbl: volume table 488 * 489 * This function allocates volume description objects for existing volumes. 490 * Returns zero in case of success and a negative error code in case of 491 * failure. 492 */ 493 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, 494 const struct ubi_vtbl_record *vtbl) 495 { 496 int i, reserved_pebs = 0; 497 struct ubi_scan_volume *sv; 498 struct ubi_volume *vol; 499 500 for (i = 0; i < ubi->vtbl_slots; i++) { 501 cond_resched(); 502 503 if (ubi32_to_cpu(vtbl[i].reserved_pebs) == 0) 504 continue; /* Empty record */ 505 506 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 507 if (!vol) 508 return -ENOMEM; 509 510 vol->reserved_pebs = ubi32_to_cpu(vtbl[i].reserved_pebs); 511 vol->alignment = ubi32_to_cpu(vtbl[i].alignment); 512 vol->data_pad = ubi32_to_cpu(vtbl[i].data_pad); 513 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? 514 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 515 vol->name_len = ubi16_to_cpu(vtbl[i].name_len); 516 vol->usable_leb_size = ubi->leb_size - vol->data_pad; 517 memcpy(vol->name, vtbl[i].name, vol->name_len); 518 vol->name[vol->name_len] = '\0'; 519 vol->vol_id = i; 520 521 ubi_assert(!ubi->volumes[i]); 522 ubi->volumes[i] = vol; 523 ubi->vol_count += 1; 524 vol->ubi = ubi; 525 reserved_pebs += vol->reserved_pebs; 526 527 /* 528 * In case of dynamic volume UBI knows nothing about how many 529 * data is stored there. So assume the whole volume is used. 530 */ 531 if (vol->vol_type == UBI_DYNAMIC_VOLUME) { 532 vol->used_ebs = vol->reserved_pebs; 533 vol->last_eb_bytes = vol->usable_leb_size; 534 vol->used_bytes = vol->used_ebs * vol->usable_leb_size; 535 continue; 536 } 537 538 /* Static volumes only */ 539 sv = ubi_scan_find_sv(si, i); 540 if (!sv) { 541 /* 542 * No eraseblocks belonging to this volume found. We 543 * don't actually know whether this static volume is 544 * completely corrupted or just contains no data. And 545 * we cannot know this as long as data size is not 546 * stored on flash. So we just assume the volume is 547 * empty. FIXME: this should be handled. 548 */ 549 continue; 550 } 551 552 if (sv->leb_count != sv->used_ebs) { 553 /* 554 * We found a static volume which misses several 555 * eraseblocks. Treat it as corrupted. 556 */ 557 ubi_warn("static volume %d misses %d LEBs - corrupted", 558 sv->vol_id, sv->used_ebs - sv->leb_count); 559 vol->corrupted = 1; 560 continue; 561 } 562 563 vol->used_ebs = sv->used_ebs; 564 vol->used_bytes = (vol->used_ebs - 1) * vol->usable_leb_size; 565 vol->used_bytes += sv->last_data_size; 566 vol->last_eb_bytes = sv->last_data_size; 567 } 568 569 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 570 if (!vol) 571 return -ENOMEM; 572 573 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; 574 vol->alignment = 1; 575 vol->vol_type = UBI_DYNAMIC_VOLUME; 576 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; 577 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); 578 vol->usable_leb_size = ubi->leb_size; 579 vol->used_ebs = vol->reserved_pebs; 580 vol->last_eb_bytes = vol->reserved_pebs; 581 vol->used_bytes = vol->used_ebs * (ubi->leb_size - vol->data_pad); 582 vol->vol_id = UBI_LAYOUT_VOL_ID; 583 584 ubi_assert(!ubi->volumes[i]); 585 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; 586 reserved_pebs += vol->reserved_pebs; 587 ubi->vol_count += 1; 588 vol->ubi = ubi; 589 590 if (reserved_pebs > ubi->avail_pebs) 591 ubi_err("not enough PEBs, required %d, available %d", 592 reserved_pebs, ubi->avail_pebs); 593 ubi->rsvd_pebs += reserved_pebs; 594 ubi->avail_pebs -= reserved_pebs; 595 596 return 0; 597 } 598 599 /** 600 * check_sv - check volume scanning information. 601 * @vol: UBI volume description object 602 * @sv: volume scanning information 603 * 604 * This function returns zero if the volume scanning information is consistent 605 * to the data read from the volume tabla, and %-EINVAL if not. 606 */ 607 static int check_sv(const struct ubi_volume *vol, 608 const struct ubi_scan_volume *sv) 609 { 610 if (sv->highest_lnum >= vol->reserved_pebs) { 611 dbg_err("bad highest_lnum"); 612 goto bad; 613 } 614 if (sv->leb_count > vol->reserved_pebs) { 615 dbg_err("bad leb_count"); 616 goto bad; 617 } 618 if (sv->vol_type != vol->vol_type) { 619 dbg_err("bad vol_type"); 620 goto bad; 621 } 622 if (sv->used_ebs > vol->reserved_pebs) { 623 dbg_err("bad used_ebs"); 624 goto bad; 625 } 626 if (sv->data_pad != vol->data_pad) { 627 dbg_err("bad data_pad"); 628 goto bad; 629 } 630 return 0; 631 632 bad: 633 ubi_err("bad scanning information"); 634 ubi_dbg_dump_sv(sv); 635 ubi_dbg_dump_vol_info(vol); 636 return -EINVAL; 637 } 638 639 /** 640 * check_scanning_info - check that scanning information. 641 * @ubi: UBI device description object 642 * @si: scanning information 643 * 644 * Even though we protect on-flash data by CRC checksums, we still don't trust 645 * the media. This function ensures that scanning information is consistent to 646 * the information read from the volume table. Returns zero if the scanning 647 * information is OK and %-EINVAL if it is not. 648 */ 649 static int check_scanning_info(const struct ubi_device *ubi, 650 struct ubi_scan_info *si) 651 { 652 int err, i; 653 struct ubi_scan_volume *sv; 654 struct ubi_volume *vol; 655 656 if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { 657 ubi_err("scanning found %d volumes, maximum is %d + %d", 658 si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); 659 return -EINVAL; 660 } 661 662 if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT&& 663 si->highest_vol_id < UBI_INTERNAL_VOL_START) { 664 ubi_err("too large volume ID %d found by scanning", 665 si->highest_vol_id); 666 return -EINVAL; 667 } 668 669 670 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 671 cond_resched(); 672 673 sv = ubi_scan_find_sv(si, i); 674 vol = ubi->volumes[i]; 675 if (!vol) { 676 if (sv) 677 ubi_scan_rm_volume(si, sv); 678 continue; 679 } 680 681 if (vol->reserved_pebs == 0) { 682 ubi_assert(i < ubi->vtbl_slots); 683 684 if (!sv) 685 continue; 686 687 /* 688 * During scanning we found a volume which does not 689 * exist according to the information in the volume 690 * table. This must have happened due to an unclean 691 * reboot while the volume was being removed. Discard 692 * these eraseblocks. 693 */ 694 ubi_msg("finish volume %d removal", sv->vol_id); 695 ubi_scan_rm_volume(si, sv); 696 } else if (sv) { 697 err = check_sv(vol, sv); 698 if (err) 699 return err; 700 } 701 } 702 703 return 0; 704 } 705 706 /** 707 * ubi_read_volume_table - read volume table. 708 * information. 709 * @ubi: UBI device description object 710 * @si: scanning information 711 * 712 * This function reads volume table, checks it, recover from errors if needed, 713 * or creates it if needed. Returns zero in case of success and a negative 714 * error code in case of failure. 715 */ 716 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si) 717 { 718 int i, err; 719 struct ubi_scan_volume *sv; 720 721 empty_vtbl_record.crc = cpu_to_ubi32(0xf116c36b); 722 723 /* 724 * The number of supported volumes is limited by the eraseblock size 725 * and by the UBI_MAX_VOLUMES constant. 726 */ 727 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; 728 if (ubi->vtbl_slots > UBI_MAX_VOLUMES) 729 ubi->vtbl_slots = UBI_MAX_VOLUMES; 730 731 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; 732 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); 733 734 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID); 735 if (!sv) { 736 /* 737 * No logical eraseblocks belonging to the layout volume were 738 * found. This could mean that the flash is just empty. In 739 * this case we create empty layout volume. 740 * 741 * But if flash is not empty this must be a corruption or the 742 * MTD device just contains garbage. 743 */ 744 if (si->is_empty) { 745 ubi->vtbl = create_empty_lvol(ubi, si); 746 if (IS_ERR(ubi->vtbl)) 747 return PTR_ERR(ubi->vtbl); 748 } else { 749 ubi_err("the layout volume was not found"); 750 return -EINVAL; 751 } 752 } else { 753 if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) { 754 /* This must not happen with proper UBI images */ 755 dbg_err("too many LEBs (%d) in layout volume", 756 sv->leb_count); 757 return -EINVAL; 758 } 759 760 ubi->vtbl = process_lvol(ubi, si, sv); 761 if (IS_ERR(ubi->vtbl)) 762 return PTR_ERR(ubi->vtbl); 763 } 764 765 ubi->avail_pebs = ubi->good_peb_count; 766 767 /* 768 * The layout volume is OK, initialize the corresponding in-RAM data 769 * structures. 770 */ 771 err = init_volumes(ubi, si, ubi->vtbl); 772 if (err) 773 goto out_free; 774 775 /* 776 * Get sure that the scanning information is consistent to the 777 * information stored in the volume table. 778 */ 779 err = check_scanning_info(ubi, si); 780 if (err) 781 goto out_free; 782 783 return 0; 784 785 out_free: 786 kfree(ubi->vtbl); 787 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) 788 if (ubi->volumes[i]) { 789 kfree(ubi->volumes[i]); 790 ubi->volumes[i] = NULL; 791 } 792 return err; 793 } 794 795 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 796 797 /** 798 * paranoid_vtbl_check - check volume table. 799 * @ubi: UBI device description object 800 */ 801 static void paranoid_vtbl_check(const struct ubi_device *ubi) 802 { 803 if (vtbl_check(ubi, ubi->vtbl)) { 804 ubi_err("paranoid check failed"); 805 BUG(); 806 } 807 } 808 809 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 810