xref: /linux/drivers/mtd/ubi/vtbl.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * This file includes volume table manipulation code. The volume table is an
24  * on-flash table containing volume meta-data like name, number of reserved
25  * physical eraseblocks, type, etc. The volume table is stored in the so-called
26  * "layout volume".
27  *
28  * The layout volume is an internal volume which is organized as follows. It
29  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31  * other. This redundancy guarantees robustness to unclean reboots. The volume
32  * table is basically an array of volume table records. Each record contains
33  * full information about the volume and protected by a CRC checksum.
34  *
35  * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36  * erased, and the updated volume table is written back to LEB 0. Then same for
37  * LEB 1. This scheme guarantees recoverability from unclean reboots.
38  *
39  * In this UBI implementation the on-flash volume table does not contain any
40  * information about how many data static volumes contain. This information may
41  * be found from the scanning data.
42  *
43  * But it would still be beneficial to store this information in the volume
44  * table. For example, suppose we have a static volume X, and all its physical
45  * eraseblocks became bad for some reasons. Suppose we are attaching the
46  * corresponding MTD device, the scanning has found no logical eraseblocks
47  * corresponding to the volume X. According to the volume table volume X does
48  * exist. So we don't know whether it is just empty or all its physical
49  * eraseblocks went bad. So we cannot alarm the user about this corruption.
50  *
51  * The volume table also stores so-called "update marker", which is used for
52  * volume updates. Before updating the volume, the update marker is set, and
53  * after the update operation is finished, the update marker is cleared. So if
54  * the update operation was interrupted (e.g. by an unclean reboot) - the
55  * update marker is still there and we know that the volume's contents is
56  * damaged.
57  */
58 
59 #include <linux/crc32.h>
60 #include <linux/err.h>
61 #include <asm/div64.h>
62 #include "ubi.h"
63 
64 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
65 static void paranoid_vtbl_check(const struct ubi_device *ubi);
66 #else
67 #define paranoid_vtbl_check(ubi)
68 #endif
69 
70 /* Empty volume table record */
71 static struct ubi_vtbl_record empty_vtbl_record;
72 
73 /**
74  * ubi_change_vtbl_record - change volume table record.
75  * @ubi: UBI device description object
76  * @idx: table index to change
77  * @vtbl_rec: new volume table record
78  *
79  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
80  * volume table record is written. The caller does not have to calculate CRC of
81  * the record as it is done by this function. Returns zero in case of success
82  * and a negative error code in case of failure.
83  */
84 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
85 			   struct ubi_vtbl_record *vtbl_rec)
86 {
87 	int i, err;
88 	uint32_t crc;
89 
90 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
91 
92 	if (!vtbl_rec)
93 		vtbl_rec = &empty_vtbl_record;
94 	else {
95 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
96 		vtbl_rec->crc = cpu_to_ubi32(crc);
97 	}
98 
99 	dbg_msg("change record %d", idx);
100 	ubi_dbg_dump_vtbl_record(vtbl_rec, idx);
101 
102 	mutex_lock(&ubi->vtbl_mutex);
103 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
104 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
105 		err = ubi_eba_unmap_leb(ubi, UBI_LAYOUT_VOL_ID, i);
106 		if (err) {
107 			mutex_unlock(&ubi->vtbl_mutex);
108 			return err;
109 		}
110 		err = ubi_eba_write_leb(ubi, UBI_LAYOUT_VOL_ID, i, ubi->vtbl, 0,
111 					ubi->vtbl_size, UBI_LONGTERM);
112 		if (err) {
113 			mutex_unlock(&ubi->vtbl_mutex);
114 			return err;
115 		}
116 	}
117 
118 	paranoid_vtbl_check(ubi);
119 	mutex_unlock(&ubi->vtbl_mutex);
120 	return ubi_wl_flush(ubi);
121 }
122 
123 /**
124  * vol_til_check - check if volume table is not corrupted and contains sensible
125  * data.
126  *
127  * @ubi: UBI device description object
128  * @vtbl: volume table
129  *
130  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
131  * and %-EINVAL if it contains inconsistent data.
132  */
133 static int vtbl_check(const struct ubi_device *ubi,
134 		      const struct ubi_vtbl_record *vtbl)
135 {
136 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
137 	int upd_marker;
138 	uint32_t crc;
139 	const char *name;
140 
141 	for (i = 0; i < ubi->vtbl_slots; i++) {
142 		cond_resched();
143 
144 		reserved_pebs = ubi32_to_cpu(vtbl[i].reserved_pebs);
145 		alignment = ubi32_to_cpu(vtbl[i].alignment);
146 		data_pad = ubi32_to_cpu(vtbl[i].data_pad);
147 		upd_marker = vtbl[i].upd_marker;
148 		vol_type = vtbl[i].vol_type;
149 		name_len = ubi16_to_cpu(vtbl[i].name_len);
150 		name = &vtbl[i].name[0];
151 
152 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
153 		if (ubi32_to_cpu(vtbl[i].crc) != crc) {
154 			ubi_err("bad CRC at record %u: %#08x, not %#08x",
155 				 i, crc, ubi32_to_cpu(vtbl[i].crc));
156 			ubi_dbg_dump_vtbl_record(&vtbl[i], i);
157 			return 1;
158 		}
159 
160 		if (reserved_pebs == 0) {
161 			if (memcmp(&vtbl[i], &empty_vtbl_record,
162 						UBI_VTBL_RECORD_SIZE)) {
163 				dbg_err("bad empty record");
164 				goto bad;
165 			}
166 			continue;
167 		}
168 
169 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
170 		    name_len < 0) {
171 			dbg_err("negative values");
172 			goto bad;
173 		}
174 
175 		if (alignment > ubi->leb_size || alignment == 0) {
176 			dbg_err("bad alignment");
177 			goto bad;
178 		}
179 
180 		n = alignment % ubi->min_io_size;
181 		if (alignment != 1 && n) {
182 			dbg_err("alignment is not multiple of min I/O unit");
183 			goto bad;
184 		}
185 
186 		n = ubi->leb_size % alignment;
187 		if (data_pad != n) {
188 			dbg_err("bad data_pad, has to be %d", n);
189 			goto bad;
190 		}
191 
192 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
193 			dbg_err("bad vol_type");
194 			goto bad;
195 		}
196 
197 		if (upd_marker != 0 && upd_marker != 1) {
198 			dbg_err("bad upd_marker");
199 			goto bad;
200 		}
201 
202 		if (reserved_pebs > ubi->good_peb_count) {
203 			dbg_err("too large reserved_pebs, good PEBs %d",
204 				ubi->good_peb_count);
205 			goto bad;
206 		}
207 
208 		if (name_len > UBI_VOL_NAME_MAX) {
209 			dbg_err("too long volume name, max %d",
210 				UBI_VOL_NAME_MAX);
211 			goto bad;
212 		}
213 
214 		if (name[0] == '\0') {
215 			dbg_err("NULL volume name");
216 			goto bad;
217 		}
218 
219 		if (name_len != strnlen(name, name_len + 1)) {
220 			dbg_err("bad name_len");
221 			goto bad;
222 		}
223 	}
224 
225 	/* Checks that all names are unique */
226 	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
227 		for (n = i + 1; n < ubi->vtbl_slots; n++) {
228 			int len1 = ubi16_to_cpu(vtbl[i].name_len);
229 			int len2 = ubi16_to_cpu(vtbl[n].name_len);
230 
231 			if (len1 > 0 && len1 == len2 &&
232 			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
233 				ubi_err("volumes %d and %d have the same name"
234 					" \"%s\"", i, n, vtbl[i].name);
235 				ubi_dbg_dump_vtbl_record(&vtbl[i], i);
236 				ubi_dbg_dump_vtbl_record(&vtbl[n], n);
237 				return -EINVAL;
238 			}
239 		}
240 	}
241 
242 	return 0;
243 
244 bad:
245 	ubi_err("volume table check failed, record %d", i);
246 	ubi_dbg_dump_vtbl_record(&vtbl[i], i);
247 	return -EINVAL;
248 }
249 
250 /**
251  * create_vtbl - create a copy of volume table.
252  * @ubi: UBI device description object
253  * @si: scanning information
254  * @copy: number of the volume table copy
255  * @vtbl: contents of the volume table
256  *
257  * This function returns zero in case of success and a negative error code in
258  * case of failure.
259  */
260 static int create_vtbl(const struct ubi_device *ubi, struct ubi_scan_info *si,
261 		       int copy, void *vtbl)
262 {
263 	int err, tries = 0;
264 	static struct ubi_vid_hdr *vid_hdr;
265 	struct ubi_scan_volume *sv;
266 	struct ubi_scan_leb *new_seb, *old_seb = NULL;
267 
268 	ubi_msg("create volume table (copy #%d)", copy + 1);
269 
270 	vid_hdr = ubi_zalloc_vid_hdr(ubi);
271 	if (!vid_hdr)
272 		return -ENOMEM;
273 
274 	/*
275 	 * Check if there is a logical eraseblock which would have to contain
276 	 * this volume table copy was found during scanning. It has to be wiped
277 	 * out.
278 	 */
279 	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID);
280 	if (sv)
281 		old_seb = ubi_scan_find_seb(sv, copy);
282 
283 retry:
284 	new_seb = ubi_scan_get_free_peb(ubi, si);
285 	if (IS_ERR(new_seb)) {
286 		err = PTR_ERR(new_seb);
287 		goto out_free;
288 	}
289 
290 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
291 	vid_hdr->vol_id = cpu_to_ubi32(UBI_LAYOUT_VOL_ID);
292 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
293 	vid_hdr->data_size = vid_hdr->used_ebs =
294 			     vid_hdr->data_pad = cpu_to_ubi32(0);
295 	vid_hdr->lnum = cpu_to_ubi32(copy);
296 	vid_hdr->sqnum = cpu_to_ubi64(++si->max_sqnum);
297 	vid_hdr->leb_ver = cpu_to_ubi32(old_seb ? old_seb->leb_ver + 1: 0);
298 
299 	/* The EC header is already there, write the VID header */
300 	err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
301 	if (err)
302 		goto write_error;
303 
304 	/* Write the layout volume contents */
305 	err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
306 	if (err)
307 		goto write_error;
308 
309 	/*
310 	 * And add it to the scanning information. Don't delete the old
311 	 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
312 	 */
313 	err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
314 				vid_hdr, 0);
315 	kfree(new_seb);
316 	ubi_free_vid_hdr(ubi, vid_hdr);
317 	return err;
318 
319 write_error:
320 	kfree(new_seb);
321 	/* May be this physical eraseblock went bad, try to pick another one */
322 	if (++tries <= 5) {
323 		err = ubi_scan_add_to_list(si, new_seb->pnum, new_seb->ec,
324 					   &si->corr);
325 		if (!err)
326 			goto retry;
327 	}
328 out_free:
329 	ubi_free_vid_hdr(ubi, vid_hdr);
330 	return err;
331 
332 }
333 
334 /**
335  * process_lvol - process the layout volume.
336  * @ubi: UBI device description object
337  * @si: scanning information
338  * @sv: layout volume scanning information
339  *
340  * This function is responsible for reading the layout volume, ensuring it is
341  * not corrupted, and recovering from corruptions if needed. Returns volume
342  * table in case of success and a negative error code in case of failure.
343  */
344 static struct ubi_vtbl_record *process_lvol(const struct ubi_device *ubi,
345 					    struct ubi_scan_info *si,
346 					    struct ubi_scan_volume *sv)
347 {
348 	int err;
349 	struct rb_node *rb;
350 	struct ubi_scan_leb *seb;
351 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
352 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
353 
354 	/*
355 	 * UBI goes through the following steps when it changes the layout
356 	 * volume:
357 	 * a. erase LEB 0;
358 	 * b. write new data to LEB 0;
359 	 * c. erase LEB 1;
360 	 * d. write new data to LEB 1.
361 	 *
362 	 * Before the change, both LEBs contain the same data.
363 	 *
364 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
365 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
366 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
367 	 * finally, unclean reboots may result in a situation when neither LEB
368 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
369 	 * 0 contains more recent information.
370 	 *
371 	 * So the plan is to first check LEB 0. Then
372 	 * a. if LEB 0 is OK, it must be containing the most resent data; then
373 	 *    we compare it with LEB 1, and if they are different, we copy LEB
374 	 *    0 to LEB 1;
375 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
376 	 *    to LEB 0.
377 	 */
378 
379 	dbg_msg("check layout volume");
380 
381 	/* Read both LEB 0 and LEB 1 into memory */
382 	ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
383 		leb[seb->lnum] = kzalloc(ubi->vtbl_size, GFP_KERNEL);
384 		if (!leb[seb->lnum]) {
385 			err = -ENOMEM;
386 			goto out_free;
387 		}
388 
389 		err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
390 				       ubi->vtbl_size);
391 		if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
392 			/* Scrub the PEB later */
393 			seb->scrub = 1;
394 		else if (err)
395 			goto out_free;
396 	}
397 
398 	err = -EINVAL;
399 	if (leb[0]) {
400 		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
401 		if (leb_corrupted[0] < 0)
402 			goto out_free;
403 	}
404 
405 	if (!leb_corrupted[0]) {
406 		/* LEB 0 is OK */
407 		if (leb[1])
408 			leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size);
409 		if (leb_corrupted[1]) {
410 			ubi_warn("volume table copy #2 is corrupted");
411 			err = create_vtbl(ubi, si, 1, leb[0]);
412 			if (err)
413 				goto out_free;
414 			ubi_msg("volume table was restored");
415 		}
416 
417 		/* Both LEB 1 and LEB 2 are OK and consistent */
418 		kfree(leb[1]);
419 		return leb[0];
420 	} else {
421 		/* LEB 0 is corrupted or does not exist */
422 		if (leb[1]) {
423 			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
424 			if (leb_corrupted[1] < 0)
425 				goto out_free;
426 		}
427 		if (leb_corrupted[1]) {
428 			/* Both LEB 0 and LEB 1 are corrupted */
429 			ubi_err("both volume tables are corrupted");
430 			goto out_free;
431 		}
432 
433 		ubi_warn("volume table copy #1 is corrupted");
434 		err = create_vtbl(ubi, si, 0, leb[1]);
435 		if (err)
436 			goto out_free;
437 		ubi_msg("volume table was restored");
438 
439 		kfree(leb[0]);
440 		return leb[1];
441 	}
442 
443 out_free:
444 	kfree(leb[0]);
445 	kfree(leb[1]);
446 	return ERR_PTR(err);
447 }
448 
449 /**
450  * create_empty_lvol - create empty layout volume.
451  * @ubi: UBI device description object
452  * @si: scanning information
453  *
454  * This function returns volume table contents in case of success and a
455  * negative error code in case of failure.
456  */
457 static struct ubi_vtbl_record *create_empty_lvol(const struct ubi_device *ubi,
458 						 struct ubi_scan_info *si)
459 {
460 	int i;
461 	struct ubi_vtbl_record *vtbl;
462 
463 	vtbl = kzalloc(ubi->vtbl_size, GFP_KERNEL);
464 	if (!vtbl)
465 		return ERR_PTR(-ENOMEM);
466 
467 	for (i = 0; i < ubi->vtbl_slots; i++)
468 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
469 
470 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
471 		int err;
472 
473 		err = create_vtbl(ubi, si, i, vtbl);
474 		if (err) {
475 			kfree(vtbl);
476 			return ERR_PTR(err);
477 		}
478 	}
479 
480 	return vtbl;
481 }
482 
483 /**
484  * init_volumes - initialize volume information for existing volumes.
485  * @ubi: UBI device description object
486  * @si: scanning information
487  * @vtbl: volume table
488  *
489  * This function allocates volume description objects for existing volumes.
490  * Returns zero in case of success and a negative error code in case of
491  * failure.
492  */
493 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
494 			const struct ubi_vtbl_record *vtbl)
495 {
496 	int i, reserved_pebs = 0;
497 	struct ubi_scan_volume *sv;
498 	struct ubi_volume *vol;
499 
500 	for (i = 0; i < ubi->vtbl_slots; i++) {
501 		cond_resched();
502 
503 		if (ubi32_to_cpu(vtbl[i].reserved_pebs) == 0)
504 			continue; /* Empty record */
505 
506 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
507 		if (!vol)
508 			return -ENOMEM;
509 
510 		vol->reserved_pebs = ubi32_to_cpu(vtbl[i].reserved_pebs);
511 		vol->alignment = ubi32_to_cpu(vtbl[i].alignment);
512 		vol->data_pad = ubi32_to_cpu(vtbl[i].data_pad);
513 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
514 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
515 		vol->name_len = ubi16_to_cpu(vtbl[i].name_len);
516 		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
517 		memcpy(vol->name, vtbl[i].name, vol->name_len);
518 		vol->name[vol->name_len] = '\0';
519 		vol->vol_id = i;
520 
521 		ubi_assert(!ubi->volumes[i]);
522 		ubi->volumes[i] = vol;
523 		ubi->vol_count += 1;
524 		vol->ubi = ubi;
525 		reserved_pebs += vol->reserved_pebs;
526 
527 		/*
528 		 * In case of dynamic volume UBI knows nothing about how many
529 		 * data is stored there. So assume the whole volume is used.
530 		 */
531 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
532 			vol->used_ebs = vol->reserved_pebs;
533 			vol->last_eb_bytes = vol->usable_leb_size;
534 			vol->used_bytes = vol->used_ebs * vol->usable_leb_size;
535 			continue;
536 		}
537 
538 		/* Static volumes only */
539 		sv = ubi_scan_find_sv(si, i);
540 		if (!sv) {
541 			/*
542 			 * No eraseblocks belonging to this volume found. We
543 			 * don't actually know whether this static volume is
544 			 * completely corrupted or just contains no data. And
545 			 * we cannot know this as long as data size is not
546 			 * stored on flash. So we just assume the volume is
547 			 * empty. FIXME: this should be handled.
548 			 */
549 			continue;
550 		}
551 
552 		if (sv->leb_count != sv->used_ebs) {
553 			/*
554 			 * We found a static volume which misses several
555 			 * eraseblocks. Treat it as corrupted.
556 			 */
557 			ubi_warn("static volume %d misses %d LEBs - corrupted",
558 				 sv->vol_id, sv->used_ebs - sv->leb_count);
559 			vol->corrupted = 1;
560 			continue;
561 		}
562 
563 		vol->used_ebs = sv->used_ebs;
564 		vol->used_bytes = (vol->used_ebs - 1) * vol->usable_leb_size;
565 		vol->used_bytes += sv->last_data_size;
566 		vol->last_eb_bytes = sv->last_data_size;
567 	}
568 
569 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
570 	if (!vol)
571 		return -ENOMEM;
572 
573 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
574 	vol->alignment = 1;
575 	vol->vol_type = UBI_DYNAMIC_VOLUME;
576 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
577 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
578 	vol->usable_leb_size = ubi->leb_size;
579 	vol->used_ebs = vol->reserved_pebs;
580 	vol->last_eb_bytes = vol->reserved_pebs;
581 	vol->used_bytes = vol->used_ebs * (ubi->leb_size - vol->data_pad);
582 	vol->vol_id = UBI_LAYOUT_VOL_ID;
583 
584 	ubi_assert(!ubi->volumes[i]);
585 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
586 	reserved_pebs += vol->reserved_pebs;
587 	ubi->vol_count += 1;
588 	vol->ubi = ubi;
589 
590 	if (reserved_pebs > ubi->avail_pebs)
591 		ubi_err("not enough PEBs, required %d, available %d",
592 			reserved_pebs, ubi->avail_pebs);
593 	ubi->rsvd_pebs += reserved_pebs;
594 	ubi->avail_pebs -= reserved_pebs;
595 
596 	return 0;
597 }
598 
599 /**
600  * check_sv - check volume scanning information.
601  * @vol: UBI volume description object
602  * @sv: volume scanning information
603  *
604  * This function returns zero if the volume scanning information is consistent
605  * to the data read from the volume tabla, and %-EINVAL if not.
606  */
607 static int check_sv(const struct ubi_volume *vol,
608 		    const struct ubi_scan_volume *sv)
609 {
610 	if (sv->highest_lnum >= vol->reserved_pebs) {
611 		dbg_err("bad highest_lnum");
612 		goto bad;
613 	}
614 	if (sv->leb_count > vol->reserved_pebs) {
615 		dbg_err("bad leb_count");
616 		goto bad;
617 	}
618 	if (sv->vol_type != vol->vol_type) {
619 		dbg_err("bad vol_type");
620 		goto bad;
621 	}
622 	if (sv->used_ebs > vol->reserved_pebs) {
623 		dbg_err("bad used_ebs");
624 		goto bad;
625 	}
626 	if (sv->data_pad != vol->data_pad) {
627 		dbg_err("bad data_pad");
628 		goto bad;
629 	}
630 	return 0;
631 
632 bad:
633 	ubi_err("bad scanning information");
634 	ubi_dbg_dump_sv(sv);
635 	ubi_dbg_dump_vol_info(vol);
636 	return -EINVAL;
637 }
638 
639 /**
640  * check_scanning_info - check that scanning information.
641  * @ubi: UBI device description object
642  * @si: scanning information
643  *
644  * Even though we protect on-flash data by CRC checksums, we still don't trust
645  * the media. This function ensures that scanning information is consistent to
646  * the information read from the volume table. Returns zero if the scanning
647  * information is OK and %-EINVAL if it is not.
648  */
649 static int check_scanning_info(const struct ubi_device *ubi,
650 			       struct ubi_scan_info *si)
651 {
652 	int err, i;
653 	struct ubi_scan_volume *sv;
654 	struct ubi_volume *vol;
655 
656 	if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
657 		ubi_err("scanning found %d volumes, maximum is %d + %d",
658 			si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
659 		return -EINVAL;
660 	}
661 
662 	if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT&&
663 	    si->highest_vol_id < UBI_INTERNAL_VOL_START) {
664 		ubi_err("too large volume ID %d found by scanning",
665 			si->highest_vol_id);
666 		return -EINVAL;
667 	}
668 
669 
670 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
671 		cond_resched();
672 
673 		sv = ubi_scan_find_sv(si, i);
674 		vol = ubi->volumes[i];
675 		if (!vol) {
676 			if (sv)
677 				ubi_scan_rm_volume(si, sv);
678 			continue;
679 		}
680 
681 		if (vol->reserved_pebs == 0) {
682 			ubi_assert(i < ubi->vtbl_slots);
683 
684 			if (!sv)
685 				continue;
686 
687 			/*
688 			 * During scanning we found a volume which does not
689 			 * exist according to the information in the volume
690 			 * table. This must have happened due to an unclean
691 			 * reboot while the volume was being removed. Discard
692 			 * these eraseblocks.
693 			 */
694 			ubi_msg("finish volume %d removal", sv->vol_id);
695 			ubi_scan_rm_volume(si, sv);
696 		} else if (sv) {
697 			err = check_sv(vol, sv);
698 			if (err)
699 				return err;
700 		}
701 	}
702 
703 	return 0;
704 }
705 
706 /**
707  * ubi_read_volume_table - read volume table.
708  * information.
709  * @ubi: UBI device description object
710  * @si: scanning information
711  *
712  * This function reads volume table, checks it, recover from errors if needed,
713  * or creates it if needed. Returns zero in case of success and a negative
714  * error code in case of failure.
715  */
716 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
717 {
718 	int i, err;
719 	struct ubi_scan_volume *sv;
720 
721 	empty_vtbl_record.crc = cpu_to_ubi32(0xf116c36b);
722 
723 	/*
724 	 * The number of supported volumes is limited by the eraseblock size
725 	 * and by the UBI_MAX_VOLUMES constant.
726 	 */
727 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
728 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
729 		ubi->vtbl_slots = UBI_MAX_VOLUMES;
730 
731 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
732 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
733 
734 	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID);
735 	if (!sv) {
736 		/*
737 		 * No logical eraseblocks belonging to the layout volume were
738 		 * found. This could mean that the flash is just empty. In
739 		 * this case we create empty layout volume.
740 		 *
741 		 * But if flash is not empty this must be a corruption or the
742 		 * MTD device just contains garbage.
743 		 */
744 		if (si->is_empty) {
745 			ubi->vtbl = create_empty_lvol(ubi, si);
746 			if (IS_ERR(ubi->vtbl))
747 				return PTR_ERR(ubi->vtbl);
748 		} else {
749 			ubi_err("the layout volume was not found");
750 			return -EINVAL;
751 		}
752 	} else {
753 		if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
754 			/* This must not happen with proper UBI images */
755 			dbg_err("too many LEBs (%d) in layout volume",
756 				sv->leb_count);
757 			return -EINVAL;
758 		}
759 
760 		ubi->vtbl = process_lvol(ubi, si, sv);
761 		if (IS_ERR(ubi->vtbl))
762 			return PTR_ERR(ubi->vtbl);
763 	}
764 
765 	ubi->avail_pebs = ubi->good_peb_count;
766 
767 	/*
768 	 * The layout volume is OK, initialize the corresponding in-RAM data
769 	 * structures.
770 	 */
771 	err = init_volumes(ubi, si, ubi->vtbl);
772 	if (err)
773 		goto out_free;
774 
775 	/*
776 	 * Get sure that the scanning information is consistent to the
777 	 * information stored in the volume table.
778 	 */
779 	err = check_scanning_info(ubi, si);
780 	if (err)
781 		goto out_free;
782 
783 	return 0;
784 
785 out_free:
786 	kfree(ubi->vtbl);
787 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++)
788 		if (ubi->volumes[i]) {
789 			kfree(ubi->volumes[i]);
790 			ubi->volumes[i] = NULL;
791 		}
792 	return err;
793 }
794 
795 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
796 
797 /**
798  * paranoid_vtbl_check - check volume table.
799  * @ubi: UBI device description object
800  */
801 static void paranoid_vtbl_check(const struct ubi_device *ubi)
802 {
803 	if (vtbl_check(ubi, ubi->vtbl)) {
804 		ubi_err("paranoid check failed");
805 		BUG();
806 	}
807 }
808 
809 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
810