1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * This file includes volume table manipulation code. The volume table is an 24 * on-flash table containing volume meta-data like name, number of reserved 25 * physical eraseblocks, type, etc. The volume table is stored in the so-called 26 * "layout volume". 27 * 28 * The layout volume is an internal volume which is organized as follows. It 29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical 30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each 31 * other. This redundancy guarantees robustness to unclean reboots. The volume 32 * table is basically an array of volume table records. Each record contains 33 * full information about the volume and protected by a CRC checksum. 34 * 35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is 36 * erased, and the updated volume table is written back to LEB 0. Then same for 37 * LEB 1. This scheme guarantees recoverability from unclean reboots. 38 * 39 * In this UBI implementation the on-flash volume table does not contain any 40 * information about how many data static volumes contain. This information may 41 * be found from the scanning data. 42 * 43 * But it would still be beneficial to store this information in the volume 44 * table. For example, suppose we have a static volume X, and all its physical 45 * eraseblocks became bad for some reasons. Suppose we are attaching the 46 * corresponding MTD device, the scanning has found no logical eraseblocks 47 * corresponding to the volume X. According to the volume table volume X does 48 * exist. So we don't know whether it is just empty or all its physical 49 * eraseblocks went bad. So we cannot alarm the user about this corruption. 50 * 51 * The volume table also stores so-called "update marker", which is used for 52 * volume updates. Before updating the volume, the update marker is set, and 53 * after the update operation is finished, the update marker is cleared. So if 54 * the update operation was interrupted (e.g. by an unclean reboot) - the 55 * update marker is still there and we know that the volume's contents is 56 * damaged. 57 */ 58 59 #include <linux/crc32.h> 60 #include <linux/err.h> 61 #include <asm/div64.h> 62 #include "ubi.h" 63 64 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 65 static void paranoid_vtbl_check(const struct ubi_device *ubi); 66 #else 67 #define paranoid_vtbl_check(ubi) 68 #endif 69 70 /* Empty volume table record */ 71 static struct ubi_vtbl_record empty_vtbl_record; 72 73 /** 74 * ubi_change_vtbl_record - change volume table record. 75 * @ubi: UBI device description object 76 * @idx: table index to change 77 * @vtbl_rec: new volume table record 78 * 79 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty 80 * volume table record is written. The caller does not have to calculate CRC of 81 * the record as it is done by this function. Returns zero in case of success 82 * and a negative error code in case of failure. 83 */ 84 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, 85 struct ubi_vtbl_record *vtbl_rec) 86 { 87 int i, err; 88 uint32_t crc; 89 90 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); 91 92 if (!vtbl_rec) 93 vtbl_rec = &empty_vtbl_record; 94 else { 95 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); 96 vtbl_rec->crc = cpu_to_be32(crc); 97 } 98 99 mutex_lock(&ubi->vtbl_mutex); 100 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); 101 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 102 err = ubi_eba_unmap_leb(ubi, UBI_LAYOUT_VOL_ID, i); 103 if (err) { 104 mutex_unlock(&ubi->vtbl_mutex); 105 return err; 106 } 107 err = ubi_eba_write_leb(ubi, UBI_LAYOUT_VOL_ID, i, ubi->vtbl, 0, 108 ubi->vtbl_size, UBI_LONGTERM); 109 if (err) { 110 mutex_unlock(&ubi->vtbl_mutex); 111 return err; 112 } 113 } 114 115 paranoid_vtbl_check(ubi); 116 mutex_unlock(&ubi->vtbl_mutex); 117 return ubi_wl_flush(ubi); 118 } 119 120 /** 121 * vol_til_check - check if volume table is not corrupted and contains sensible 122 * data. 123 * 124 * @ubi: UBI device description object 125 * @vtbl: volume table 126 * 127 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, 128 * and %-EINVAL if it contains inconsistent data. 129 */ 130 static int vtbl_check(const struct ubi_device *ubi, 131 const struct ubi_vtbl_record *vtbl) 132 { 133 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; 134 int upd_marker; 135 uint32_t crc; 136 const char *name; 137 138 for (i = 0; i < ubi->vtbl_slots; i++) { 139 cond_resched(); 140 141 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 142 alignment = be32_to_cpu(vtbl[i].alignment); 143 data_pad = be32_to_cpu(vtbl[i].data_pad); 144 upd_marker = vtbl[i].upd_marker; 145 vol_type = vtbl[i].vol_type; 146 name_len = be16_to_cpu(vtbl[i].name_len); 147 name = &vtbl[i].name[0]; 148 149 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); 150 if (be32_to_cpu(vtbl[i].crc) != crc) { 151 ubi_err("bad CRC at record %u: %#08x, not %#08x", 152 i, crc, be32_to_cpu(vtbl[i].crc)); 153 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 154 return 1; 155 } 156 157 if (reserved_pebs == 0) { 158 if (memcmp(&vtbl[i], &empty_vtbl_record, 159 UBI_VTBL_RECORD_SIZE)) { 160 dbg_err("bad empty record"); 161 goto bad; 162 } 163 continue; 164 } 165 166 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || 167 name_len < 0) { 168 dbg_err("negative values"); 169 goto bad; 170 } 171 172 if (alignment > ubi->leb_size || alignment == 0) { 173 dbg_err("bad alignment"); 174 goto bad; 175 } 176 177 n = alignment % ubi->min_io_size; 178 if (alignment != 1 && n) { 179 dbg_err("alignment is not multiple of min I/O unit"); 180 goto bad; 181 } 182 183 n = ubi->leb_size % alignment; 184 if (data_pad != n) { 185 dbg_err("bad data_pad, has to be %d", n); 186 goto bad; 187 } 188 189 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 190 dbg_err("bad vol_type"); 191 goto bad; 192 } 193 194 if (upd_marker != 0 && upd_marker != 1) { 195 dbg_err("bad upd_marker"); 196 goto bad; 197 } 198 199 if (reserved_pebs > ubi->good_peb_count) { 200 dbg_err("too large reserved_pebs, good PEBs %d", 201 ubi->good_peb_count); 202 goto bad; 203 } 204 205 if (name_len > UBI_VOL_NAME_MAX) { 206 dbg_err("too long volume name, max %d", 207 UBI_VOL_NAME_MAX); 208 goto bad; 209 } 210 211 if (name[0] == '\0') { 212 dbg_err("NULL volume name"); 213 goto bad; 214 } 215 216 if (name_len != strnlen(name, name_len + 1)) { 217 dbg_err("bad name_len"); 218 goto bad; 219 } 220 } 221 222 /* Checks that all names are unique */ 223 for (i = 0; i < ubi->vtbl_slots - 1; i++) { 224 for (n = i + 1; n < ubi->vtbl_slots; n++) { 225 int len1 = be16_to_cpu(vtbl[i].name_len); 226 int len2 = be16_to_cpu(vtbl[n].name_len); 227 228 if (len1 > 0 && len1 == len2 && 229 !strncmp(vtbl[i].name, vtbl[n].name, len1)) { 230 ubi_err("volumes %d and %d have the same name" 231 " \"%s\"", i, n, vtbl[i].name); 232 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 233 ubi_dbg_dump_vtbl_record(&vtbl[n], n); 234 return -EINVAL; 235 } 236 } 237 } 238 239 return 0; 240 241 bad: 242 ubi_err("volume table check failed, record %d", i); 243 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 244 return -EINVAL; 245 } 246 247 /** 248 * create_vtbl - create a copy of volume table. 249 * @ubi: UBI device description object 250 * @si: scanning information 251 * @copy: number of the volume table copy 252 * @vtbl: contents of the volume table 253 * 254 * This function returns zero in case of success and a negative error code in 255 * case of failure. 256 */ 257 static int create_vtbl(const struct ubi_device *ubi, struct ubi_scan_info *si, 258 int copy, void *vtbl) 259 { 260 int err, tries = 0; 261 static struct ubi_vid_hdr *vid_hdr; 262 struct ubi_scan_volume *sv; 263 struct ubi_scan_leb *new_seb, *old_seb = NULL; 264 265 ubi_msg("create volume table (copy #%d)", copy + 1); 266 267 vid_hdr = ubi_zalloc_vid_hdr(ubi); 268 if (!vid_hdr) 269 return -ENOMEM; 270 271 /* 272 * Check if there is a logical eraseblock which would have to contain 273 * this volume table copy was found during scanning. It has to be wiped 274 * out. 275 */ 276 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID); 277 if (sv) 278 old_seb = ubi_scan_find_seb(sv, copy); 279 280 retry: 281 new_seb = ubi_scan_get_free_peb(ubi, si); 282 if (IS_ERR(new_seb)) { 283 err = PTR_ERR(new_seb); 284 goto out_free; 285 } 286 287 vid_hdr->vol_type = UBI_VID_DYNAMIC; 288 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOL_ID); 289 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; 290 vid_hdr->data_size = vid_hdr->used_ebs = 291 vid_hdr->data_pad = cpu_to_be32(0); 292 vid_hdr->lnum = cpu_to_be32(copy); 293 vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum); 294 vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0); 295 296 /* The EC header is already there, write the VID header */ 297 err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr); 298 if (err) 299 goto write_error; 300 301 /* Write the layout volume contents */ 302 err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size); 303 if (err) 304 goto write_error; 305 306 /* 307 * And add it to the scanning information. Don't delete the old 308 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'. 309 */ 310 err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec, 311 vid_hdr, 0); 312 kfree(new_seb); 313 ubi_free_vid_hdr(ubi, vid_hdr); 314 return err; 315 316 write_error: 317 if (err == -EIO && ++tries <= 5) { 318 /* 319 * Probably this physical eraseblock went bad, try to pick 320 * another one. 321 */ 322 list_add_tail(&new_seb->u.list, &si->corr); 323 goto retry; 324 } 325 kfree(new_seb); 326 out_free: 327 ubi_free_vid_hdr(ubi, vid_hdr); 328 return err; 329 330 } 331 332 /** 333 * process_lvol - process the layout volume. 334 * @ubi: UBI device description object 335 * @si: scanning information 336 * @sv: layout volume scanning information 337 * 338 * This function is responsible for reading the layout volume, ensuring it is 339 * not corrupted, and recovering from corruptions if needed. Returns volume 340 * table in case of success and a negative error code in case of failure. 341 */ 342 static struct ubi_vtbl_record *process_lvol(const struct ubi_device *ubi, 343 struct ubi_scan_info *si, 344 struct ubi_scan_volume *sv) 345 { 346 int err; 347 struct rb_node *rb; 348 struct ubi_scan_leb *seb; 349 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; 350 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; 351 352 /* 353 * UBI goes through the following steps when it changes the layout 354 * volume: 355 * a. erase LEB 0; 356 * b. write new data to LEB 0; 357 * c. erase LEB 1; 358 * d. write new data to LEB 1. 359 * 360 * Before the change, both LEBs contain the same data. 361 * 362 * Due to unclean reboots, the contents of LEB 0 may be lost, but there 363 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. 364 * Similarly, LEB 1 may be lost, but there should be LEB 0. And 365 * finally, unclean reboots may result in a situation when neither LEB 366 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB 367 * 0 contains more recent information. 368 * 369 * So the plan is to first check LEB 0. Then 370 * a. if LEB 0 is OK, it must be containing the most resent data; then 371 * we compare it with LEB 1, and if they are different, we copy LEB 372 * 0 to LEB 1; 373 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 374 * to LEB 0. 375 */ 376 377 dbg_msg("check layout volume"); 378 379 /* Read both LEB 0 and LEB 1 into memory */ 380 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { 381 leb[seb->lnum] = vmalloc(ubi->vtbl_size); 382 if (!leb[seb->lnum]) { 383 err = -ENOMEM; 384 goto out_free; 385 } 386 memset(leb[seb->lnum], 0, ubi->vtbl_size); 387 388 err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0, 389 ubi->vtbl_size); 390 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) 391 /* Scrub the PEB later */ 392 seb->scrub = 1; 393 else if (err) 394 goto out_free; 395 } 396 397 err = -EINVAL; 398 if (leb[0]) { 399 leb_corrupted[0] = vtbl_check(ubi, leb[0]); 400 if (leb_corrupted[0] < 0) 401 goto out_free; 402 } 403 404 if (!leb_corrupted[0]) { 405 /* LEB 0 is OK */ 406 if (leb[1]) 407 leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size); 408 if (leb_corrupted[1]) { 409 ubi_warn("volume table copy #2 is corrupted"); 410 err = create_vtbl(ubi, si, 1, leb[0]); 411 if (err) 412 goto out_free; 413 ubi_msg("volume table was restored"); 414 } 415 416 /* Both LEB 1 and LEB 2 are OK and consistent */ 417 vfree(leb[1]); 418 return leb[0]; 419 } else { 420 /* LEB 0 is corrupted or does not exist */ 421 if (leb[1]) { 422 leb_corrupted[1] = vtbl_check(ubi, leb[1]); 423 if (leb_corrupted[1] < 0) 424 goto out_free; 425 } 426 if (leb_corrupted[1]) { 427 /* Both LEB 0 and LEB 1 are corrupted */ 428 ubi_err("both volume tables are corrupted"); 429 goto out_free; 430 } 431 432 ubi_warn("volume table copy #1 is corrupted"); 433 err = create_vtbl(ubi, si, 0, leb[1]); 434 if (err) 435 goto out_free; 436 ubi_msg("volume table was restored"); 437 438 vfree(leb[0]); 439 return leb[1]; 440 } 441 442 out_free: 443 vfree(leb[0]); 444 vfree(leb[1]); 445 return ERR_PTR(err); 446 } 447 448 /** 449 * create_empty_lvol - create empty layout volume. 450 * @ubi: UBI device description object 451 * @si: scanning information 452 * 453 * This function returns volume table contents in case of success and a 454 * negative error code in case of failure. 455 */ 456 static struct ubi_vtbl_record *create_empty_lvol(const struct ubi_device *ubi, 457 struct ubi_scan_info *si) 458 { 459 int i; 460 struct ubi_vtbl_record *vtbl; 461 462 vtbl = vmalloc(ubi->vtbl_size); 463 if (!vtbl) 464 return ERR_PTR(-ENOMEM); 465 memset(vtbl, 0, ubi->vtbl_size); 466 467 for (i = 0; i < ubi->vtbl_slots; i++) 468 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); 469 470 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 471 int err; 472 473 err = create_vtbl(ubi, si, i, vtbl); 474 if (err) { 475 vfree(vtbl); 476 return ERR_PTR(err); 477 } 478 } 479 480 return vtbl; 481 } 482 483 /** 484 * init_volumes - initialize volume information for existing volumes. 485 * @ubi: UBI device description object 486 * @si: scanning information 487 * @vtbl: volume table 488 * 489 * This function allocates volume description objects for existing volumes. 490 * Returns zero in case of success and a negative error code in case of 491 * failure. 492 */ 493 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, 494 const struct ubi_vtbl_record *vtbl) 495 { 496 int i, reserved_pebs = 0; 497 struct ubi_scan_volume *sv; 498 struct ubi_volume *vol; 499 500 for (i = 0; i < ubi->vtbl_slots; i++) { 501 cond_resched(); 502 503 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) 504 continue; /* Empty record */ 505 506 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 507 if (!vol) 508 return -ENOMEM; 509 510 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 511 vol->alignment = be32_to_cpu(vtbl[i].alignment); 512 vol->data_pad = be32_to_cpu(vtbl[i].data_pad); 513 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? 514 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 515 vol->name_len = be16_to_cpu(vtbl[i].name_len); 516 vol->usable_leb_size = ubi->leb_size - vol->data_pad; 517 memcpy(vol->name, vtbl[i].name, vol->name_len); 518 vol->name[vol->name_len] = '\0'; 519 vol->vol_id = i; 520 521 ubi_assert(!ubi->volumes[i]); 522 ubi->volumes[i] = vol; 523 ubi->vol_count += 1; 524 vol->ubi = ubi; 525 reserved_pebs += vol->reserved_pebs; 526 527 /* 528 * In case of dynamic volume UBI knows nothing about how many 529 * data is stored there. So assume the whole volume is used. 530 */ 531 if (vol->vol_type == UBI_DYNAMIC_VOLUME) { 532 vol->used_ebs = vol->reserved_pebs; 533 vol->last_eb_bytes = vol->usable_leb_size; 534 vol->used_bytes = 535 (long long)vol->used_ebs * vol->usable_leb_size; 536 continue; 537 } 538 539 /* Static volumes only */ 540 sv = ubi_scan_find_sv(si, i); 541 if (!sv) { 542 /* 543 * No eraseblocks belonging to this volume found. We 544 * don't actually know whether this static volume is 545 * completely corrupted or just contains no data. And 546 * we cannot know this as long as data size is not 547 * stored on flash. So we just assume the volume is 548 * empty. FIXME: this should be handled. 549 */ 550 continue; 551 } 552 553 if (sv->leb_count != sv->used_ebs) { 554 /* 555 * We found a static volume which misses several 556 * eraseblocks. Treat it as corrupted. 557 */ 558 ubi_warn("static volume %d misses %d LEBs - corrupted", 559 sv->vol_id, sv->used_ebs - sv->leb_count); 560 vol->corrupted = 1; 561 continue; 562 } 563 564 vol->used_ebs = sv->used_ebs; 565 vol->used_bytes = 566 (long long)(vol->used_ebs - 1) * vol->usable_leb_size; 567 vol->used_bytes += sv->last_data_size; 568 vol->last_eb_bytes = sv->last_data_size; 569 } 570 571 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 572 if (!vol) 573 return -ENOMEM; 574 575 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; 576 vol->alignment = 1; 577 vol->vol_type = UBI_DYNAMIC_VOLUME; 578 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; 579 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); 580 vol->usable_leb_size = ubi->leb_size; 581 vol->used_ebs = vol->reserved_pebs; 582 vol->last_eb_bytes = vol->reserved_pebs; 583 vol->used_bytes = 584 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); 585 vol->vol_id = UBI_LAYOUT_VOL_ID; 586 587 ubi_assert(!ubi->volumes[i]); 588 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; 589 reserved_pebs += vol->reserved_pebs; 590 ubi->vol_count += 1; 591 vol->ubi = ubi; 592 593 if (reserved_pebs > ubi->avail_pebs) 594 ubi_err("not enough PEBs, required %d, available %d", 595 reserved_pebs, ubi->avail_pebs); 596 ubi->rsvd_pebs += reserved_pebs; 597 ubi->avail_pebs -= reserved_pebs; 598 599 return 0; 600 } 601 602 /** 603 * check_sv - check volume scanning information. 604 * @vol: UBI volume description object 605 * @sv: volume scanning information 606 * 607 * This function returns zero if the volume scanning information is consistent 608 * to the data read from the volume tabla, and %-EINVAL if not. 609 */ 610 static int check_sv(const struct ubi_volume *vol, 611 const struct ubi_scan_volume *sv) 612 { 613 if (sv->highest_lnum >= vol->reserved_pebs) { 614 dbg_err("bad highest_lnum"); 615 goto bad; 616 } 617 if (sv->leb_count > vol->reserved_pebs) { 618 dbg_err("bad leb_count"); 619 goto bad; 620 } 621 if (sv->vol_type != vol->vol_type) { 622 dbg_err("bad vol_type"); 623 goto bad; 624 } 625 if (sv->used_ebs > vol->reserved_pebs) { 626 dbg_err("bad used_ebs"); 627 goto bad; 628 } 629 if (sv->data_pad != vol->data_pad) { 630 dbg_err("bad data_pad"); 631 goto bad; 632 } 633 return 0; 634 635 bad: 636 ubi_err("bad scanning information"); 637 ubi_dbg_dump_sv(sv); 638 ubi_dbg_dump_vol_info(vol); 639 return -EINVAL; 640 } 641 642 /** 643 * check_scanning_info - check that scanning information. 644 * @ubi: UBI device description object 645 * @si: scanning information 646 * 647 * Even though we protect on-flash data by CRC checksums, we still don't trust 648 * the media. This function ensures that scanning information is consistent to 649 * the information read from the volume table. Returns zero if the scanning 650 * information is OK and %-EINVAL if it is not. 651 */ 652 static int check_scanning_info(const struct ubi_device *ubi, 653 struct ubi_scan_info *si) 654 { 655 int err, i; 656 struct ubi_scan_volume *sv; 657 struct ubi_volume *vol; 658 659 if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { 660 ubi_err("scanning found %d volumes, maximum is %d + %d", 661 si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); 662 return -EINVAL; 663 } 664 665 if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT&& 666 si->highest_vol_id < UBI_INTERNAL_VOL_START) { 667 ubi_err("too large volume ID %d found by scanning", 668 si->highest_vol_id); 669 return -EINVAL; 670 } 671 672 673 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 674 cond_resched(); 675 676 sv = ubi_scan_find_sv(si, i); 677 vol = ubi->volumes[i]; 678 if (!vol) { 679 if (sv) 680 ubi_scan_rm_volume(si, sv); 681 continue; 682 } 683 684 if (vol->reserved_pebs == 0) { 685 ubi_assert(i < ubi->vtbl_slots); 686 687 if (!sv) 688 continue; 689 690 /* 691 * During scanning we found a volume which does not 692 * exist according to the information in the volume 693 * table. This must have happened due to an unclean 694 * reboot while the volume was being removed. Discard 695 * these eraseblocks. 696 */ 697 ubi_msg("finish volume %d removal", sv->vol_id); 698 ubi_scan_rm_volume(si, sv); 699 } else if (sv) { 700 err = check_sv(vol, sv); 701 if (err) 702 return err; 703 } 704 } 705 706 return 0; 707 } 708 709 /** 710 * ubi_read_volume_table - read volume table. 711 * information. 712 * @ubi: UBI device description object 713 * @si: scanning information 714 * 715 * This function reads volume table, checks it, recover from errors if needed, 716 * or creates it if needed. Returns zero in case of success and a negative 717 * error code in case of failure. 718 */ 719 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si) 720 { 721 int i, err; 722 struct ubi_scan_volume *sv; 723 724 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); 725 726 /* 727 * The number of supported volumes is limited by the eraseblock size 728 * and by the UBI_MAX_VOLUMES constant. 729 */ 730 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; 731 if (ubi->vtbl_slots > UBI_MAX_VOLUMES) 732 ubi->vtbl_slots = UBI_MAX_VOLUMES; 733 734 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; 735 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); 736 737 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID); 738 if (!sv) { 739 /* 740 * No logical eraseblocks belonging to the layout volume were 741 * found. This could mean that the flash is just empty. In 742 * this case we create empty layout volume. 743 * 744 * But if flash is not empty this must be a corruption or the 745 * MTD device just contains garbage. 746 */ 747 if (si->is_empty) { 748 ubi->vtbl = create_empty_lvol(ubi, si); 749 if (IS_ERR(ubi->vtbl)) 750 return PTR_ERR(ubi->vtbl); 751 } else { 752 ubi_err("the layout volume was not found"); 753 return -EINVAL; 754 } 755 } else { 756 if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) { 757 /* This must not happen with proper UBI images */ 758 dbg_err("too many LEBs (%d) in layout volume", 759 sv->leb_count); 760 return -EINVAL; 761 } 762 763 ubi->vtbl = process_lvol(ubi, si, sv); 764 if (IS_ERR(ubi->vtbl)) 765 return PTR_ERR(ubi->vtbl); 766 } 767 768 ubi->avail_pebs = ubi->good_peb_count; 769 770 /* 771 * The layout volume is OK, initialize the corresponding in-RAM data 772 * structures. 773 */ 774 err = init_volumes(ubi, si, ubi->vtbl); 775 if (err) 776 goto out_free; 777 778 /* 779 * Get sure that the scanning information is consistent to the 780 * information stored in the volume table. 781 */ 782 err = check_scanning_info(ubi, si); 783 if (err) 784 goto out_free; 785 786 return 0; 787 788 out_free: 789 vfree(ubi->vtbl); 790 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) 791 if (ubi->volumes[i]) { 792 kfree(ubi->volumes[i]); 793 ubi->volumes[i] = NULL; 794 } 795 return err; 796 } 797 798 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 799 800 /** 801 * paranoid_vtbl_check - check volume table. 802 * @ubi: UBI device description object 803 */ 804 static void paranoid_vtbl_check(const struct ubi_device *ubi) 805 { 806 if (vtbl_check(ubi, ubi->vtbl)) { 807 ubi_err("paranoid check failed"); 808 BUG(); 809 } 810 } 811 812 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 813