xref: /linux/drivers/mtd/ubi/kapi.c (revision cbac924200b838cfb8d8b1415113d788089dc50b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Author: Artem Bityutskiy (Битюцкий Артём)
6  */
7 
8 /* This file mostly implements UBI kernel API functions */
9 
10 #include <linux/module.h>
11 #include <linux/err.h>
12 #include <linux/slab.h>
13 #include <linux/namei.h>
14 #include <linux/fs.h>
15 #include <asm/div64.h>
16 #include "ubi.h"
17 
18 /**
19  * ubi_do_get_device_info - get information about UBI device.
20  * @ubi: UBI device description object
21  * @di: the information is stored here
22  *
23  * This function is the same as 'ubi_get_device_info()', but it assumes the UBI
24  * device is locked and cannot disappear.
25  */
26 void ubi_do_get_device_info(struct ubi_device *ubi, struct ubi_device_info *di)
27 {
28 	di->ubi_num = ubi->ubi_num;
29 	di->leb_size = ubi->leb_size;
30 	di->leb_start = ubi->leb_start;
31 	di->min_io_size = ubi->min_io_size;
32 	di->max_write_size = ubi->max_write_size;
33 	di->ro_mode = ubi->ro_mode;
34 	di->cdev = ubi->cdev.dev;
35 }
36 EXPORT_SYMBOL_GPL(ubi_do_get_device_info);
37 
38 /**
39  * ubi_get_device_info - get information about UBI device.
40  * @ubi_num: UBI device number
41  * @di: the information is stored here
42  *
43  * This function returns %0 in case of success, %-EINVAL if the UBI device
44  * number is invalid, and %-ENODEV if there is no such UBI device.
45  */
46 int ubi_get_device_info(int ubi_num, struct ubi_device_info *di)
47 {
48 	struct ubi_device *ubi;
49 
50 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
51 		return -EINVAL;
52 	ubi = ubi_get_device(ubi_num);
53 	if (!ubi)
54 		return -ENODEV;
55 	ubi_do_get_device_info(ubi, di);
56 	ubi_put_device(ubi);
57 	return 0;
58 }
59 EXPORT_SYMBOL_GPL(ubi_get_device_info);
60 
61 /**
62  * ubi_do_get_volume_info - get information about UBI volume.
63  * @ubi: UBI device description object
64  * @vol: volume description object
65  * @vi: the information is stored here
66  */
67 void ubi_do_get_volume_info(struct ubi_device *ubi, struct ubi_volume *vol,
68 			    struct ubi_volume_info *vi)
69 {
70 	vi->vol_id = vol->vol_id;
71 	vi->ubi_num = ubi->ubi_num;
72 	vi->size = vol->reserved_pebs;
73 	vi->used_bytes = vol->used_bytes;
74 	vi->vol_type = vol->vol_type;
75 	vi->corrupted = vol->corrupted;
76 	vi->upd_marker = vol->upd_marker;
77 	vi->alignment = vol->alignment;
78 	vi->usable_leb_size = vol->usable_leb_size;
79 	vi->name_len = vol->name_len;
80 	vi->name = vol->name;
81 	vi->cdev = vol->cdev.dev;
82 }
83 
84 /**
85  * ubi_get_volume_info - get information about UBI volume.
86  * @desc: volume descriptor
87  * @vi: the information is stored here
88  */
89 void ubi_get_volume_info(struct ubi_volume_desc *desc,
90 			 struct ubi_volume_info *vi)
91 {
92 	ubi_do_get_volume_info(desc->vol->ubi, desc->vol, vi);
93 }
94 EXPORT_SYMBOL_GPL(ubi_get_volume_info);
95 
96 /**
97  * ubi_open_volume - open UBI volume.
98  * @ubi_num: UBI device number
99  * @vol_id: volume ID
100  * @mode: open mode
101  *
102  * The @mode parameter specifies if the volume should be opened in read-only
103  * mode, read-write mode, or exclusive mode. The exclusive mode guarantees that
104  * nobody else will be able to open this volume. UBI allows to have many volume
105  * readers and one writer at a time.
106  *
107  * If a static volume is being opened for the first time since boot, it will be
108  * checked by this function, which means it will be fully read and the CRC
109  * checksum of each logical eraseblock will be checked.
110  *
111  * This function returns volume descriptor in case of success and a negative
112  * error code in case of failure.
113  */
114 struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode)
115 {
116 	int err;
117 	struct ubi_volume_desc *desc;
118 	struct ubi_device *ubi;
119 	struct ubi_volume *vol;
120 
121 	dbg_gen("open device %d, volume %d, mode %d", ubi_num, vol_id, mode);
122 
123 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
124 		return ERR_PTR(-EINVAL);
125 
126 	if (mode != UBI_READONLY && mode != UBI_READWRITE &&
127 	    mode != UBI_EXCLUSIVE && mode != UBI_METAONLY)
128 		return ERR_PTR(-EINVAL);
129 
130 	/*
131 	 * First of all, we have to get the UBI device to prevent its removal.
132 	 */
133 	ubi = ubi_get_device(ubi_num);
134 	if (!ubi)
135 		return ERR_PTR(-ENODEV);
136 
137 	if (vol_id < 0 || vol_id >= ubi->vtbl_slots) {
138 		err = -EINVAL;
139 		goto out_put_ubi;
140 	}
141 
142 	desc = kmalloc(sizeof(struct ubi_volume_desc), GFP_KERNEL);
143 	if (!desc) {
144 		err = -ENOMEM;
145 		goto out_put_ubi;
146 	}
147 
148 	err = -ENODEV;
149 	if (!try_module_get(THIS_MODULE))
150 		goto out_free;
151 
152 	spin_lock(&ubi->volumes_lock);
153 	vol = ubi->volumes[vol_id];
154 	if (!vol)
155 		goto out_unlock;
156 
157 	err = -EBUSY;
158 	switch (mode) {
159 	case UBI_READONLY:
160 		if (vol->exclusive)
161 			goto out_unlock;
162 		vol->readers += 1;
163 		break;
164 
165 	case UBI_READWRITE:
166 		if (vol->exclusive || vol->writers > 0)
167 			goto out_unlock;
168 		vol->writers += 1;
169 		break;
170 
171 	case UBI_EXCLUSIVE:
172 		if (vol->exclusive || vol->writers || vol->readers ||
173 		    vol->metaonly)
174 			goto out_unlock;
175 		vol->exclusive = 1;
176 		break;
177 
178 	case UBI_METAONLY:
179 		if (vol->metaonly || vol->exclusive)
180 			goto out_unlock;
181 		vol->metaonly = 1;
182 		break;
183 	}
184 	get_device(&vol->dev);
185 	vol->ref_count += 1;
186 	spin_unlock(&ubi->volumes_lock);
187 
188 	desc->vol = vol;
189 	desc->mode = mode;
190 
191 	mutex_lock(&ubi->ckvol_mutex);
192 	if (!vol->checked && !vol->skip_check) {
193 		/* This is the first open - check the volume */
194 		err = ubi_check_volume(ubi, vol_id);
195 		if (err < 0) {
196 			mutex_unlock(&ubi->ckvol_mutex);
197 			ubi_close_volume(desc);
198 			return ERR_PTR(err);
199 		}
200 		if (err == 1) {
201 			ubi_warn(ubi, "volume %d on UBI device %d is corrupted",
202 				 vol_id, ubi->ubi_num);
203 			vol->corrupted = 1;
204 		}
205 		vol->checked = 1;
206 	}
207 	mutex_unlock(&ubi->ckvol_mutex);
208 
209 	return desc;
210 
211 out_unlock:
212 	spin_unlock(&ubi->volumes_lock);
213 	module_put(THIS_MODULE);
214 out_free:
215 	kfree(desc);
216 out_put_ubi:
217 	ubi_err(ubi, "cannot open device %d, volume %d, error %d",
218 		ubi_num, vol_id, err);
219 	ubi_put_device(ubi);
220 	return ERR_PTR(err);
221 }
222 EXPORT_SYMBOL_GPL(ubi_open_volume);
223 
224 /**
225  * ubi_open_volume_nm - open UBI volume by name.
226  * @ubi_num: UBI device number
227  * @name: volume name
228  * @mode: open mode
229  *
230  * This function is similar to 'ubi_open_volume()', but opens a volume by name.
231  */
232 struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name,
233 					   int mode)
234 {
235 	int i, vol_id = -1, len;
236 	struct ubi_device *ubi;
237 	struct ubi_volume_desc *ret;
238 
239 	dbg_gen("open device %d, volume %s, mode %d", ubi_num, name, mode);
240 
241 	if (!name)
242 		return ERR_PTR(-EINVAL);
243 
244 	len = strnlen(name, UBI_VOL_NAME_MAX + 1);
245 	if (len > UBI_VOL_NAME_MAX)
246 		return ERR_PTR(-EINVAL);
247 
248 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
249 		return ERR_PTR(-EINVAL);
250 
251 	ubi = ubi_get_device(ubi_num);
252 	if (!ubi)
253 		return ERR_PTR(-ENODEV);
254 
255 	spin_lock(&ubi->volumes_lock);
256 	/* Walk all volumes of this UBI device */
257 	for (i = 0; i < ubi->vtbl_slots; i++) {
258 		struct ubi_volume *vol = ubi->volumes[i];
259 
260 		if (vol && len == vol->name_len && !strcmp(name, vol->name)) {
261 			vol_id = i;
262 			break;
263 		}
264 	}
265 	spin_unlock(&ubi->volumes_lock);
266 
267 	if (vol_id >= 0)
268 		ret = ubi_open_volume(ubi_num, vol_id, mode);
269 	else
270 		ret = ERR_PTR(-ENODEV);
271 
272 	/*
273 	 * We should put the UBI device even in case of success, because
274 	 * 'ubi_open_volume()' took a reference as well.
275 	 */
276 	ubi_put_device(ubi);
277 	return ret;
278 }
279 EXPORT_SYMBOL_GPL(ubi_open_volume_nm);
280 
281 /**
282  * ubi_open_volume_path - open UBI volume by its character device node path.
283  * @pathname: volume character device node path
284  * @mode: open mode
285  *
286  * This function is similar to 'ubi_open_volume()', but opens a volume the path
287  * to its character device node.
288  */
289 struct ubi_volume_desc *ubi_open_volume_path(const char *pathname, int mode)
290 {
291 	int error, ubi_num, vol_id;
292 	struct path path;
293 	struct kstat stat;
294 
295 	dbg_gen("open volume %s, mode %d", pathname, mode);
296 
297 	if (!pathname || !*pathname)
298 		return ERR_PTR(-EINVAL);
299 
300 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
301 	if (error)
302 		return ERR_PTR(error);
303 
304 	error = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
305 	path_put(&path);
306 	if (error)
307 		return ERR_PTR(error);
308 
309 	if (!S_ISCHR(stat.mode))
310 		return ERR_PTR(-EINVAL);
311 
312 	ubi_num = ubi_major2num(MAJOR(stat.rdev));
313 	vol_id = MINOR(stat.rdev) - 1;
314 
315 	if (vol_id >= 0 && ubi_num >= 0)
316 		return ubi_open_volume(ubi_num, vol_id, mode);
317 	return ERR_PTR(-ENODEV);
318 }
319 EXPORT_SYMBOL_GPL(ubi_open_volume_path);
320 
321 /**
322  * ubi_close_volume - close UBI volume.
323  * @desc: volume descriptor
324  */
325 void ubi_close_volume(struct ubi_volume_desc *desc)
326 {
327 	struct ubi_volume *vol = desc->vol;
328 	struct ubi_device *ubi = vol->ubi;
329 
330 	dbg_gen("close device %d, volume %d, mode %d",
331 		ubi->ubi_num, vol->vol_id, desc->mode);
332 
333 	spin_lock(&ubi->volumes_lock);
334 	switch (desc->mode) {
335 	case UBI_READONLY:
336 		vol->readers -= 1;
337 		break;
338 	case UBI_READWRITE:
339 		vol->writers -= 1;
340 		break;
341 	case UBI_EXCLUSIVE:
342 		vol->exclusive = 0;
343 		break;
344 	case UBI_METAONLY:
345 		vol->metaonly = 0;
346 		break;
347 	}
348 	vol->ref_count -= 1;
349 	spin_unlock(&ubi->volumes_lock);
350 
351 	kfree(desc);
352 	put_device(&vol->dev);
353 	ubi_put_device(ubi);
354 	module_put(THIS_MODULE);
355 }
356 EXPORT_SYMBOL_GPL(ubi_close_volume);
357 
358 /**
359  * leb_read_sanity_check - does sanity checks on read requests.
360  * @desc: volume descriptor
361  * @lnum: logical eraseblock number to read from
362  * @offset: offset within the logical eraseblock to read from
363  * @len: how many bytes to read
364  *
365  * This function is used by ubi_leb_read() and ubi_leb_read_sg()
366  * to perform sanity checks.
367  */
368 static int leb_read_sanity_check(struct ubi_volume_desc *desc, int lnum,
369 				 int offset, int len)
370 {
371 	struct ubi_volume *vol = desc->vol;
372 	struct ubi_device *ubi = vol->ubi;
373 	int vol_id = vol->vol_id;
374 
375 	if (vol_id < 0 || vol_id >= ubi->vtbl_slots || lnum < 0 ||
376 	    lnum >= vol->used_ebs || offset < 0 || len < 0 ||
377 	    offset + len > vol->usable_leb_size)
378 		return -EINVAL;
379 
380 	if (vol->vol_type == UBI_STATIC_VOLUME) {
381 		if (vol->used_ebs == 0)
382 			/* Empty static UBI volume */
383 			return 0;
384 		if (lnum == vol->used_ebs - 1 &&
385 		    offset + len > vol->last_eb_bytes)
386 			return -EINVAL;
387 	}
388 
389 	if (vol->upd_marker)
390 		return -EBADF;
391 
392 	return 0;
393 }
394 
395 /**
396  * ubi_leb_read - read data.
397  * @desc: volume descriptor
398  * @lnum: logical eraseblock number to read from
399  * @buf: buffer where to store the read data
400  * @offset: offset within the logical eraseblock to read from
401  * @len: how many bytes to read
402  * @check: whether UBI has to check the read data's CRC or not.
403  *
404  * This function reads data from offset @offset of logical eraseblock @lnum and
405  * stores the data at @buf. When reading from static volumes, @check specifies
406  * whether the data has to be checked or not. If yes, the whole logical
407  * eraseblock will be read and its CRC checksum will be checked (i.e., the CRC
408  * checksum is per-eraseblock). So checking may substantially slow down the
409  * read speed. The @check argument is ignored for dynamic volumes.
410  *
411  * In case of success, this function returns zero. In case of failure, this
412  * function returns a negative error code.
413  *
414  * %-EBADMSG error code is returned:
415  * o for both static and dynamic volumes if MTD driver has detected a data
416  *   integrity problem (unrecoverable ECC checksum mismatch in case of NAND);
417  * o for static volumes in case of data CRC mismatch.
418  *
419  * If the volume is damaged because of an interrupted update this function just
420  * returns immediately with %-EBADF error code.
421  */
422 int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
423 		 int len, int check)
424 {
425 	struct ubi_volume *vol = desc->vol;
426 	struct ubi_device *ubi = vol->ubi;
427 	int err, vol_id = vol->vol_id;
428 
429 	dbg_gen("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset);
430 
431 	err = leb_read_sanity_check(desc, lnum, offset, len);
432 	if (err < 0)
433 		return err;
434 
435 	if (len == 0)
436 		return 0;
437 
438 	err = ubi_eba_read_leb(ubi, vol, lnum, buf, offset, len, check);
439 	if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) {
440 		ubi_warn(ubi, "mark volume %d as corrupted", vol_id);
441 		vol->corrupted = 1;
442 	}
443 
444 	return err;
445 }
446 EXPORT_SYMBOL_GPL(ubi_leb_read);
447 
448 
449 /**
450  * ubi_leb_read_sg - read data into a scatter gather list.
451  * @desc: volume descriptor
452  * @lnum: logical eraseblock number to read from
453  * @sgl: UBI scatter gather list to store the read data
454  * @offset: offset within the logical eraseblock to read from
455  * @len: how many bytes to read
456  * @check: whether UBI has to check the read data's CRC or not.
457  *
458  * This function works exactly like ubi_leb_read_sg(). But instead of
459  * storing the read data into a buffer it writes to an UBI scatter gather
460  * list.
461  */
462 int ubi_leb_read_sg(struct ubi_volume_desc *desc, int lnum, struct ubi_sgl *sgl,
463 		    int offset, int len, int check)
464 {
465 	struct ubi_volume *vol = desc->vol;
466 	struct ubi_device *ubi = vol->ubi;
467 	int err, vol_id = vol->vol_id;
468 
469 	dbg_gen("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset);
470 
471 	err = leb_read_sanity_check(desc, lnum, offset, len);
472 	if (err < 0)
473 		return err;
474 
475 	if (len == 0)
476 		return 0;
477 
478 	err = ubi_eba_read_leb_sg(ubi, vol, sgl, lnum, offset, len, check);
479 	if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) {
480 		ubi_warn(ubi, "mark volume %d as corrupted", vol_id);
481 		vol->corrupted = 1;
482 	}
483 
484 	return err;
485 }
486 EXPORT_SYMBOL_GPL(ubi_leb_read_sg);
487 
488 /**
489  * ubi_leb_write - write data.
490  * @desc: volume descriptor
491  * @lnum: logical eraseblock number to write to
492  * @buf: data to write
493  * @offset: offset within the logical eraseblock where to write
494  * @len: how many bytes to write
495  *
496  * This function writes @len bytes of data from @buf to offset @offset of
497  * logical eraseblock @lnum.
498  *
499  * This function takes care of physical eraseblock write failures. If write to
500  * the physical eraseblock write operation fails, the logical eraseblock is
501  * re-mapped to another physical eraseblock, the data is recovered, and the
502  * write finishes. UBI has a pool of reserved physical eraseblocks for this.
503  *
504  * If all the data were successfully written, zero is returned. If an error
505  * occurred and UBI has not been able to recover from it, this function returns
506  * a negative error code. Note, in case of an error, it is possible that
507  * something was still written to the flash media, but that may be some
508  * garbage.
509  *
510  * If the volume is damaged because of an interrupted update this function just
511  * returns immediately with %-EBADF code.
512  */
513 int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
514 		  int offset, int len)
515 {
516 	struct ubi_volume *vol = desc->vol;
517 	struct ubi_device *ubi = vol->ubi;
518 	int vol_id = vol->vol_id;
519 
520 	dbg_gen("write %d bytes to LEB %d:%d:%d", len, vol_id, lnum, offset);
521 
522 	if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
523 		return -EINVAL;
524 
525 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
526 		return -EROFS;
527 
528 	if (!ubi_leb_valid(vol, lnum) || offset < 0 || len < 0 ||
529 	    offset + len > vol->usable_leb_size ||
530 	    offset & (ubi->min_io_size - 1) || len & (ubi->min_io_size - 1))
531 		return -EINVAL;
532 
533 	if (vol->upd_marker)
534 		return -EBADF;
535 
536 	if (len == 0)
537 		return 0;
538 
539 	return ubi_eba_write_leb(ubi, vol, lnum, buf, offset, len);
540 }
541 EXPORT_SYMBOL_GPL(ubi_leb_write);
542 
543 /*
544  * ubi_leb_change - change logical eraseblock atomically.
545  * @desc: volume descriptor
546  * @lnum: logical eraseblock number to change
547  * @buf: data to write
548  * @len: how many bytes to write
549  *
550  * This function changes the contents of a logical eraseblock atomically. @buf
551  * has to contain new logical eraseblock data, and @len - the length of the
552  * data, which has to be aligned. The length may be shorter than the logical
553  * eraseblock size, ant the logical eraseblock may be appended to more times
554  * later on. This function guarantees that in case of an unclean reboot the old
555  * contents is preserved. Returns zero in case of success and a negative error
556  * code in case of failure.
557  */
558 int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
559 		   int len)
560 {
561 	struct ubi_volume *vol = desc->vol;
562 	struct ubi_device *ubi = vol->ubi;
563 	int vol_id = vol->vol_id;
564 
565 	dbg_gen("atomically write %d bytes to LEB %d:%d", len, vol_id, lnum);
566 
567 	if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
568 		return -EINVAL;
569 
570 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
571 		return -EROFS;
572 
573 	if (!ubi_leb_valid(vol, lnum) || len < 0 ||
574 	    len > vol->usable_leb_size || len & (ubi->min_io_size - 1))
575 		return -EINVAL;
576 
577 	if (vol->upd_marker)
578 		return -EBADF;
579 
580 	if (len == 0)
581 		return 0;
582 
583 	return ubi_eba_atomic_leb_change(ubi, vol, lnum, buf, len);
584 }
585 EXPORT_SYMBOL_GPL(ubi_leb_change);
586 
587 /**
588  * ubi_leb_erase - erase logical eraseblock.
589  * @desc: volume descriptor
590  * @lnum: logical eraseblock number
591  *
592  * This function un-maps logical eraseblock @lnum and synchronously erases the
593  * correspondent physical eraseblock. Returns zero in case of success and a
594  * negative error code in case of failure.
595  *
596  * If the volume is damaged because of an interrupted update this function just
597  * returns immediately with %-EBADF code.
598  */
599 int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum)
600 {
601 	struct ubi_volume *vol = desc->vol;
602 	struct ubi_device *ubi = vol->ubi;
603 	int err;
604 
605 	dbg_gen("erase LEB %d:%d", vol->vol_id, lnum);
606 
607 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
608 		return -EROFS;
609 
610 	if (!ubi_leb_valid(vol, lnum))
611 		return -EINVAL;
612 
613 	if (vol->upd_marker)
614 		return -EBADF;
615 
616 	err = ubi_eba_unmap_leb(ubi, vol, lnum);
617 	if (err)
618 		return err;
619 
620 	return ubi_wl_flush(ubi, vol->vol_id, lnum);
621 }
622 EXPORT_SYMBOL_GPL(ubi_leb_erase);
623 
624 /**
625  * ubi_leb_unmap - un-map logical eraseblock.
626  * @desc: volume descriptor
627  * @lnum: logical eraseblock number
628  *
629  * This function un-maps logical eraseblock @lnum and schedules the
630  * corresponding physical eraseblock for erasure, so that it will eventually be
631  * physically erased in background. This operation is much faster than the
632  * erase operation.
633  *
634  * Unlike erase, the un-map operation does not guarantee that the logical
635  * eraseblock will contain all 0xFF bytes when UBI is initialized again. For
636  * example, if several logical eraseblocks are un-mapped, and an unclean reboot
637  * happens after this, the logical eraseblocks will not necessarily be
638  * un-mapped again when this MTD device is attached. They may actually be
639  * mapped to the same physical eraseblocks again. So, this function has to be
640  * used with care.
641  *
642  * In other words, when un-mapping a logical eraseblock, UBI does not store
643  * any information about this on the flash media, it just marks the logical
644  * eraseblock as "un-mapped" in RAM. If UBI is detached before the physical
645  * eraseblock is physically erased, it will be mapped again to the same logical
646  * eraseblock when the MTD device is attached again.
647  *
648  * The main and obvious use-case of this function is when the contents of a
649  * logical eraseblock has to be re-written. Then it is much more efficient to
650  * first un-map it, then write new data, rather than first erase it, then write
651  * new data. Note, once new data has been written to the logical eraseblock,
652  * UBI guarantees that the old contents has gone forever. In other words, if an
653  * unclean reboot happens after the logical eraseblock has been un-mapped and
654  * then written to, it will contain the last written data.
655  *
656  * This function returns zero in case of success and a negative error code in
657  * case of failure. If the volume is damaged because of an interrupted update
658  * this function just returns immediately with %-EBADF code.
659  */
660 int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum)
661 {
662 	struct ubi_volume *vol = desc->vol;
663 	struct ubi_device *ubi = vol->ubi;
664 
665 	dbg_gen("unmap LEB %d:%d", vol->vol_id, lnum);
666 
667 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
668 		return -EROFS;
669 
670 	if (!ubi_leb_valid(vol, lnum))
671 		return -EINVAL;
672 
673 	if (vol->upd_marker)
674 		return -EBADF;
675 
676 	return ubi_eba_unmap_leb(ubi, vol, lnum);
677 }
678 EXPORT_SYMBOL_GPL(ubi_leb_unmap);
679 
680 /**
681  * ubi_leb_map - map logical eraseblock to a physical eraseblock.
682  * @desc: volume descriptor
683  * @lnum: logical eraseblock number
684  *
685  * This function maps an un-mapped logical eraseblock @lnum to a physical
686  * eraseblock. This means, that after a successful invocation of this
687  * function the logical eraseblock @lnum will be empty (contain only %0xFF
688  * bytes) and be mapped to a physical eraseblock, even if an unclean reboot
689  * happens.
690  *
691  * This function returns zero in case of success, %-EBADF if the volume is
692  * damaged because of an interrupted update, %-EBADMSG if the logical
693  * eraseblock is already mapped, and other negative error codes in case of
694  * other failures.
695  */
696 int ubi_leb_map(struct ubi_volume_desc *desc, int lnum)
697 {
698 	struct ubi_volume *vol = desc->vol;
699 	struct ubi_device *ubi = vol->ubi;
700 
701 	dbg_gen("map LEB %d:%d", vol->vol_id, lnum);
702 
703 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
704 		return -EROFS;
705 
706 	if (!ubi_leb_valid(vol, lnum))
707 		return -EINVAL;
708 
709 	if (vol->upd_marker)
710 		return -EBADF;
711 
712 	if (ubi_eba_is_mapped(vol, lnum))
713 		return -EBADMSG;
714 
715 	return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
716 }
717 EXPORT_SYMBOL_GPL(ubi_leb_map);
718 
719 /**
720  * ubi_is_mapped - check if logical eraseblock is mapped.
721  * @desc: volume descriptor
722  * @lnum: logical eraseblock number
723  *
724  * This function checks if logical eraseblock @lnum is mapped to a physical
725  * eraseblock. If a logical eraseblock is un-mapped, this does not necessarily
726  * mean it will still be un-mapped after the UBI device is re-attached. The
727  * logical eraseblock may become mapped to the physical eraseblock it was last
728  * mapped to.
729  *
730  * This function returns %1 if the LEB is mapped, %0 if not, and a negative
731  * error code in case of failure. If the volume is damaged because of an
732  * interrupted update this function just returns immediately with %-EBADF error
733  * code.
734  */
735 int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum)
736 {
737 	struct ubi_volume *vol = desc->vol;
738 
739 	dbg_gen("test LEB %d:%d", vol->vol_id, lnum);
740 
741 	if (!ubi_leb_valid(vol, lnum))
742 		return -EINVAL;
743 
744 	if (vol->upd_marker)
745 		return -EBADF;
746 
747 	return ubi_eba_is_mapped(vol, lnum);
748 }
749 EXPORT_SYMBOL_GPL(ubi_is_mapped);
750 
751 /**
752  * ubi_sync - synchronize UBI device buffers.
753  * @ubi_num: UBI device to synchronize
754  *
755  * The underlying MTD device may cache data in hardware or in software. This
756  * function ensures the caches are flushed. Returns zero in case of success and
757  * a negative error code in case of failure.
758  */
759 int ubi_sync(int ubi_num)
760 {
761 	struct ubi_device *ubi;
762 
763 	ubi = ubi_get_device(ubi_num);
764 	if (!ubi)
765 		return -ENODEV;
766 
767 	mtd_sync(ubi->mtd);
768 	ubi_put_device(ubi);
769 	return 0;
770 }
771 EXPORT_SYMBOL_GPL(ubi_sync);
772 
773 /**
774  * ubi_flush - flush UBI work queue.
775  * @ubi_num: UBI device to flush work queue
776  * @vol_id: volume id to flush for
777  * @lnum: logical eraseblock number to flush for
778  *
779  * This function executes all pending works for a particular volume id / logical
780  * eraseblock number pair. If either value is set to %UBI_ALL, then it acts as
781  * a wildcard for all of the corresponding volume numbers or logical
782  * eraseblock numbers. It returns zero in case of success and a negative error
783  * code in case of failure.
784  */
785 int ubi_flush(int ubi_num, int vol_id, int lnum)
786 {
787 	struct ubi_device *ubi;
788 	int err = 0;
789 
790 	ubi = ubi_get_device(ubi_num);
791 	if (!ubi)
792 		return -ENODEV;
793 
794 	err = ubi_wl_flush(ubi, vol_id, lnum);
795 	ubi_put_device(ubi);
796 	return err;
797 }
798 EXPORT_SYMBOL_GPL(ubi_flush);
799 
800 BLOCKING_NOTIFIER_HEAD(ubi_notifiers);
801 
802 /**
803  * ubi_register_volume_notifier - register a volume notifier.
804  * @nb: the notifier description object
805  * @ignore_existing: if non-zero, do not send "added" notification for all
806  *                   already existing volumes
807  *
808  * This function registers a volume notifier, which means that
809  * 'nb->notifier_call()' will be invoked when an UBI  volume is created,
810  * removed, re-sized, re-named, or updated. The first argument of the function
811  * is the notification type. The second argument is pointer to a
812  * &struct ubi_notification object which describes the notification event.
813  * Using UBI API from the volume notifier is prohibited.
814  *
815  * This function returns zero in case of success and a negative error code
816  * in case of failure.
817  */
818 int ubi_register_volume_notifier(struct notifier_block *nb,
819 				 int ignore_existing)
820 {
821 	int err;
822 
823 	err = blocking_notifier_chain_register(&ubi_notifiers, nb);
824 	if (err != 0)
825 		return err;
826 	if (ignore_existing)
827 		return 0;
828 
829 	/*
830 	 * We are going to walk all UBI devices and all volumes, and
831 	 * notify the user about existing volumes by the %UBI_VOLUME_ADDED
832 	 * event. We have to lock the @ubi_devices_mutex to make sure UBI
833 	 * devices do not disappear.
834 	 */
835 	mutex_lock(&ubi_devices_mutex);
836 	ubi_enumerate_volumes(nb);
837 	mutex_unlock(&ubi_devices_mutex);
838 
839 	return err;
840 }
841 EXPORT_SYMBOL_GPL(ubi_register_volume_notifier);
842 
843 /**
844  * ubi_unregister_volume_notifier - unregister the volume notifier.
845  * @nb: the notifier description object
846  *
847  * This function unregisters volume notifier @nm and returns zero in case of
848  * success and a negative error code in case of failure.
849  */
850 int ubi_unregister_volume_notifier(struct notifier_block *nb)
851 {
852 	return blocking_notifier_chain_unregister(&ubi_notifiers, nb);
853 }
854 EXPORT_SYMBOL_GPL(ubi_unregister_volume_notifier);
855