xref: /linux/drivers/mtd/ubi/io.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output unit.
24  *
25  * This unit provides a uniform way to work with all kinds of the underlying
26  * MTD devices. It also implements handy functions for reading and writing UBI
27  * headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this unit
31  * validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68  * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69  * prefer to use sub-pages only for EV and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O unit does the following trick in order to avoid this extra copy.
83  * It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header
84  * and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the
85  * VID header is being written out, it shifts the VID header pointer back and
86  * writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include "ubi.h"
92 
93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 				 const struct ubi_ec_hdr *ec_hdr);
98 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 				  const struct ubi_vid_hdr *vid_hdr);
101 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
102 				 int len);
103 #else
104 #define paranoid_check_not_bad(ubi, pnum) 0
105 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
106 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
107 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
108 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
109 #define paranoid_check_all_ff(ubi, pnum, offset, len) 0
110 #endif
111 
112 /**
113  * ubi_io_read - read data from a physical eraseblock.
114  * @ubi: UBI device description object
115  * @buf: buffer where to store the read data
116  * @pnum: physical eraseblock number to read from
117  * @offset: offset within the physical eraseblock from where to read
118  * @len: how many bytes to read
119  *
120  * This function reads data from offset @offset of physical eraseblock @pnum
121  * and stores the read data in the @buf buffer. The following return codes are
122  * possible:
123  *
124  * o %0 if all the requested data were successfully read;
125  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
126  *   correctable bit-flips were detected; this is harmless but may indicate
127  *   that this eraseblock may become bad soon (but do not have to);
128  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
129  *   example it can be an ECC error in case of NAND; this most probably means
130  *   that the data is corrupted;
131  * o %-EIO if some I/O error occurred;
132  * o other negative error codes in case of other errors.
133  */
134 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
135 		int len)
136 {
137 	int err, retries = 0;
138 	size_t read;
139 	loff_t addr;
140 
141 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
142 
143 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
144 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
145 	ubi_assert(len > 0);
146 
147 	err = paranoid_check_not_bad(ubi, pnum);
148 	if (err)
149 		return err > 0 ? -EINVAL : err;
150 
151 	addr = (loff_t)pnum * ubi->peb_size + offset;
152 retry:
153 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
154 	if (err) {
155 		if (err == -EUCLEAN) {
156 			/*
157 			 * -EUCLEAN is reported if there was a bit-flip which
158 			 * was corrected, so this is harmless.
159 			 */
160 			ubi_msg("fixable bit-flip detected at PEB %d", pnum);
161 			ubi_assert(len == read);
162 			return UBI_IO_BITFLIPS;
163 		}
164 
165 		if (read != len && retries++ < UBI_IO_RETRIES) {
166 			dbg_io("error %d while reading %d bytes from PEB %d:%d, "
167 			       "read only %zd bytes, retry",
168 			       err, len, pnum, offset, read);
169 			yield();
170 			goto retry;
171 		}
172 
173 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
174 			"read %zd bytes", err, len, pnum, offset, read);
175 		ubi_dbg_dump_stack();
176 
177 		/*
178 		 * The driver should never return -EBADMSG if it failed to read
179 		 * all the requested data. But some buggy drivers might do
180 		 * this, so we change it to -EIO.
181 		 */
182 		if (read != len && err == -EBADMSG) {
183 			ubi_assert(0);
184 			err = -EIO;
185 		}
186 	} else {
187 		ubi_assert(len == read);
188 
189 		if (ubi_dbg_is_bitflip()) {
190 			dbg_msg("bit-flip (emulated)");
191 			err = UBI_IO_BITFLIPS;
192 		}
193 	}
194 
195 	return err;
196 }
197 
198 /**
199  * ubi_io_write - write data to a physical eraseblock.
200  * @ubi: UBI device description object
201  * @buf: buffer with the data to write
202  * @pnum: physical eraseblock number to write to
203  * @offset: offset within the physical eraseblock where to write
204  * @len: how many bytes to write
205  *
206  * This function writes @len bytes of data from buffer @buf to offset @offset
207  * of physical eraseblock @pnum. If all the data were successfully written,
208  * zero is returned. If an error occurred, this function returns a negative
209  * error code. If %-EIO is returned, the physical eraseblock most probably went
210  * bad.
211  *
212  * Note, in case of an error, it is possible that something was still written
213  * to the flash media, but may be some garbage.
214  */
215 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
216 		 int len)
217 {
218 	int err;
219 	size_t written;
220 	loff_t addr;
221 
222 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
223 
224 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
225 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
226 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
227 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
228 
229 	if (ubi->ro_mode) {
230 		ubi_err("read-only mode");
231 		return -EROFS;
232 	}
233 
234 	/* The below has to be compiled out if paranoid checks are disabled */
235 
236 	err = paranoid_check_not_bad(ubi, pnum);
237 	if (err)
238 		return err > 0 ? -EINVAL : err;
239 
240 	/* The area we are writing to has to contain all 0xFF bytes */
241 	err = paranoid_check_all_ff(ubi, pnum, offset, len);
242 	if (err)
243 		return err > 0 ? -EINVAL : err;
244 
245 	if (offset >= ubi->leb_start) {
246 		/*
247 		 * We write to the data area of the physical eraseblock. Make
248 		 * sure it has valid EC and VID headers.
249 		 */
250 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
251 		if (err)
252 			return err > 0 ? -EINVAL : err;
253 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
254 		if (err)
255 			return err > 0 ? -EINVAL : err;
256 	}
257 
258 	if (ubi_dbg_is_write_failure()) {
259 		dbg_err("cannot write %d bytes to PEB %d:%d "
260 			"(emulated)", len, pnum, offset);
261 		ubi_dbg_dump_stack();
262 		return -EIO;
263 	}
264 
265 	addr = (loff_t)pnum * ubi->peb_size + offset;
266 	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
267 	if (err) {
268 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
269 			" %zd bytes", err, len, pnum, offset, written);
270 		ubi_dbg_dump_stack();
271 	} else
272 		ubi_assert(written == len);
273 
274 	return err;
275 }
276 
277 /**
278  * erase_callback - MTD erasure call-back.
279  * @ei: MTD erase information object.
280  *
281  * Note, even though MTD erase interface is asynchronous, all the current
282  * implementations are synchronous anyway.
283  */
284 static void erase_callback(struct erase_info *ei)
285 {
286 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
287 }
288 
289 /**
290  * do_sync_erase - synchronously erase a physical eraseblock.
291  * @ubi: UBI device description object
292  * @pnum: the physical eraseblock number to erase
293  *
294  * This function synchronously erases physical eraseblock @pnum and returns
295  * zero in case of success and a negative error code in case of failure. If
296  * %-EIO is returned, the physical eraseblock most probably went bad.
297  */
298 static int do_sync_erase(struct ubi_device *ubi, int pnum)
299 {
300 	int err, retries = 0;
301 	struct erase_info ei;
302 	wait_queue_head_t wq;
303 
304 	dbg_io("erase PEB %d", pnum);
305 
306 retry:
307 	init_waitqueue_head(&wq);
308 	memset(&ei, 0, sizeof(struct erase_info));
309 
310 	ei.mtd      = ubi->mtd;
311 	ei.addr     = (loff_t)pnum * ubi->peb_size;
312 	ei.len      = ubi->peb_size;
313 	ei.callback = erase_callback;
314 	ei.priv     = (unsigned long)&wq;
315 
316 	err = ubi->mtd->erase(ubi->mtd, &ei);
317 	if (err) {
318 		if (retries++ < UBI_IO_RETRIES) {
319 			dbg_io("error %d while erasing PEB %d, retry",
320 			       err, pnum);
321 			yield();
322 			goto retry;
323 		}
324 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
325 		ubi_dbg_dump_stack();
326 		return err;
327 	}
328 
329 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
330 					   ei.state == MTD_ERASE_FAILED);
331 	if (err) {
332 		ubi_err("interrupted PEB %d erasure", pnum);
333 		return -EINTR;
334 	}
335 
336 	if (ei.state == MTD_ERASE_FAILED) {
337 		if (retries++ < UBI_IO_RETRIES) {
338 			dbg_io("error while erasing PEB %d, retry", pnum);
339 			yield();
340 			goto retry;
341 		}
342 		ubi_err("cannot erase PEB %d", pnum);
343 		ubi_dbg_dump_stack();
344 		return -EIO;
345 	}
346 
347 	err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
348 	if (err)
349 		return err > 0 ? -EINVAL : err;
350 
351 	if (ubi_dbg_is_erase_failure() && !err) {
352 		dbg_err("cannot erase PEB %d (emulated)", pnum);
353 		return -EIO;
354 	}
355 
356 	return 0;
357 }
358 
359 /**
360  * check_pattern - check if buffer contains only a certain byte pattern.
361  * @buf: buffer to check
362  * @patt: the pattern to check
363  * @size: buffer size in bytes
364  *
365  * This function returns %1 in there are only @patt bytes in @buf, and %0 if
366  * something else was also found.
367  */
368 static int check_pattern(const void *buf, uint8_t patt, int size)
369 {
370 	int i;
371 
372 	for (i = 0; i < size; i++)
373 		if (((const uint8_t *)buf)[i] != patt)
374 			return 0;
375 	return 1;
376 }
377 
378 /* Patterns to write to a physical eraseblock when torturing it */
379 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
380 
381 /**
382  * torture_peb - test a supposedly bad physical eraseblock.
383  * @ubi: UBI device description object
384  * @pnum: the physical eraseblock number to test
385  *
386  * This function returns %-EIO if the physical eraseblock did not pass the
387  * test, a positive number of erase operations done if the test was
388  * successfully passed, and other negative error codes in case of other errors.
389  */
390 static int torture_peb(struct ubi_device *ubi, int pnum)
391 {
392 	int err, i, patt_count;
393 
394 	patt_count = ARRAY_SIZE(patterns);
395 	ubi_assert(patt_count > 0);
396 
397 	mutex_lock(&ubi->buf_mutex);
398 	for (i = 0; i < patt_count; i++) {
399 		err = do_sync_erase(ubi, pnum);
400 		if (err)
401 			goto out;
402 
403 		/* Make sure the PEB contains only 0xFF bytes */
404 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
405 		if (err)
406 			goto out;
407 
408 		err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
409 		if (err == 0) {
410 			ubi_err("erased PEB %d, but a non-0xFF byte found",
411 				pnum);
412 			err = -EIO;
413 			goto out;
414 		}
415 
416 		/* Write a pattern and check it */
417 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
418 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
419 		if (err)
420 			goto out;
421 
422 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
423 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
424 		if (err)
425 			goto out;
426 
427 		err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
428 		if (err == 0) {
429 			ubi_err("pattern %x checking failed for PEB %d",
430 				patterns[i], pnum);
431 			err = -EIO;
432 			goto out;
433 		}
434 	}
435 
436 	err = patt_count;
437 
438 out:
439 	mutex_unlock(&ubi->buf_mutex);
440 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
441 		/*
442 		 * If a bit-flip or data integrity error was detected, the test
443 		 * has not passed because it happened on a freshly erased
444 		 * physical eraseblock which means something is wrong with it.
445 		 */
446 		ubi_err("read problems on freshly erased PEB %d, must be bad",
447 			pnum);
448 		err = -EIO;
449 	}
450 	return err;
451 }
452 
453 /**
454  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
455  * @ubi: UBI device description object
456  * @pnum: physical eraseblock number to erase
457  * @torture: if this physical eraseblock has to be tortured
458  *
459  * This function synchronously erases physical eraseblock @pnum. If @torture
460  * flag is not zero, the physical eraseblock is checked by means of writing
461  * different patterns to it and reading them back. If the torturing is enabled,
462  * the physical eraseblock is erased more then once.
463  *
464  * This function returns the number of erasures made in case of success, %-EIO
465  * if the erasure failed or the torturing test failed, and other negative error
466  * codes in case of other errors. Note, %-EIO means that the physical
467  * eraseblock is bad.
468  */
469 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
470 {
471 	int err, ret = 0;
472 
473 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
474 
475 	err = paranoid_check_not_bad(ubi, pnum);
476 	if (err != 0)
477 		return err > 0 ? -EINVAL : err;
478 
479 	if (ubi->ro_mode) {
480 		ubi_err("read-only mode");
481 		return -EROFS;
482 	}
483 
484 	if (torture) {
485 		ret = torture_peb(ubi, pnum);
486 		if (ret < 0)
487 			return ret;
488 	}
489 
490 	err = do_sync_erase(ubi, pnum);
491 	if (err)
492 		return err;
493 
494 	return ret + 1;
495 }
496 
497 /**
498  * ubi_io_is_bad - check if a physical eraseblock is bad.
499  * @ubi: UBI device description object
500  * @pnum: the physical eraseblock number to check
501  *
502  * This function returns a positive number if the physical eraseblock is bad,
503  * zero if not, and a negative error code if an error occurred.
504  */
505 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
506 {
507 	struct mtd_info *mtd = ubi->mtd;
508 
509 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
510 
511 	if (ubi->bad_allowed) {
512 		int ret;
513 
514 		ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
515 		if (ret < 0)
516 			ubi_err("error %d while checking if PEB %d is bad",
517 				ret, pnum);
518 		else if (ret)
519 			dbg_io("PEB %d is bad", pnum);
520 		return ret;
521 	}
522 
523 	return 0;
524 }
525 
526 /**
527  * ubi_io_mark_bad - mark a physical eraseblock as bad.
528  * @ubi: UBI device description object
529  * @pnum: the physical eraseblock number to mark
530  *
531  * This function returns zero in case of success and a negative error code in
532  * case of failure.
533  */
534 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
535 {
536 	int err;
537 	struct mtd_info *mtd = ubi->mtd;
538 
539 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
540 
541 	if (ubi->ro_mode) {
542 		ubi_err("read-only mode");
543 		return -EROFS;
544 	}
545 
546 	if (!ubi->bad_allowed)
547 		return 0;
548 
549 	err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
550 	if (err)
551 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
552 	return err;
553 }
554 
555 /**
556  * validate_ec_hdr - validate an erase counter header.
557  * @ubi: UBI device description object
558  * @ec_hdr: the erase counter header to check
559  *
560  * This function returns zero if the erase counter header is OK, and %1 if
561  * not.
562  */
563 static int validate_ec_hdr(const struct ubi_device *ubi,
564 			   const struct ubi_ec_hdr *ec_hdr)
565 {
566 	long long ec;
567 	int vid_hdr_offset, leb_start;
568 
569 	ec = be64_to_cpu(ec_hdr->ec);
570 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
571 	leb_start = be32_to_cpu(ec_hdr->data_offset);
572 
573 	if (ec_hdr->version != UBI_VERSION) {
574 		ubi_err("node with incompatible UBI version found: "
575 			"this UBI version is %d, image version is %d",
576 			UBI_VERSION, (int)ec_hdr->version);
577 		goto bad;
578 	}
579 
580 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
581 		ubi_err("bad VID header offset %d, expected %d",
582 			vid_hdr_offset, ubi->vid_hdr_offset);
583 		goto bad;
584 	}
585 
586 	if (leb_start != ubi->leb_start) {
587 		ubi_err("bad data offset %d, expected %d",
588 			leb_start, ubi->leb_start);
589 		goto bad;
590 	}
591 
592 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
593 		ubi_err("bad erase counter %lld", ec);
594 		goto bad;
595 	}
596 
597 	return 0;
598 
599 bad:
600 	ubi_err("bad EC header");
601 	ubi_dbg_dump_ec_hdr(ec_hdr);
602 	ubi_dbg_dump_stack();
603 	return 1;
604 }
605 
606 /**
607  * ubi_io_read_ec_hdr - read and check an erase counter header.
608  * @ubi: UBI device description object
609  * @pnum: physical eraseblock to read from
610  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
611  * header
612  * @verbose: be verbose if the header is corrupted or was not found
613  *
614  * This function reads erase counter header from physical eraseblock @pnum and
615  * stores it in @ec_hdr. This function also checks CRC checksum of the read
616  * erase counter header. The following codes may be returned:
617  *
618  * o %0 if the CRC checksum is correct and the header was successfully read;
619  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
620  *   and corrected by the flash driver; this is harmless but may indicate that
621  *   this eraseblock may become bad soon (but may be not);
622  * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
623  * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
624  * o a negative error code in case of failure.
625  */
626 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
627 		       struct ubi_ec_hdr *ec_hdr, int verbose)
628 {
629 	int err, read_err = 0;
630 	uint32_t crc, magic, hdr_crc;
631 
632 	dbg_io("read EC header from PEB %d", pnum);
633 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
634 
635 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
636 	if (err) {
637 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
638 			return err;
639 
640 		/*
641 		 * We read all the data, but either a correctable bit-flip
642 		 * occurred, or MTD reported about some data integrity error,
643 		 * like an ECC error in case of NAND. The former is harmless,
644 		 * the later may mean that the read data is corrupted. But we
645 		 * have a CRC check-sum and we will detect this. If the EC
646 		 * header is still OK, we just report this as there was a
647 		 * bit-flip.
648 		 */
649 		read_err = err;
650 	}
651 
652 	magic = be32_to_cpu(ec_hdr->magic);
653 	if (magic != UBI_EC_HDR_MAGIC) {
654 		/*
655 		 * The magic field is wrong. Let's check if we have read all
656 		 * 0xFF. If yes, this physical eraseblock is assumed to be
657 		 * empty.
658 		 *
659 		 * But if there was a read error, we do not test it for all
660 		 * 0xFFs. Even if it does contain all 0xFFs, this error
661 		 * indicates that something is still wrong with this physical
662 		 * eraseblock and we anyway cannot treat it as empty.
663 		 */
664 		if (read_err != -EBADMSG &&
665 		    check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
666 			/* The physical eraseblock is supposedly empty */
667 
668 			/*
669 			 * The below is just a paranoid check, it has to be
670 			 * compiled out if paranoid checks are disabled.
671 			 */
672 			err = paranoid_check_all_ff(ubi, pnum, 0,
673 						    ubi->peb_size);
674 			if (err)
675 				return err > 0 ? UBI_IO_BAD_EC_HDR : err;
676 
677 			if (verbose)
678 				ubi_warn("no EC header found at PEB %d, "
679 					 "only 0xFF bytes", pnum);
680 			return UBI_IO_PEB_EMPTY;
681 		}
682 
683 		/*
684 		 * This is not a valid erase counter header, and these are not
685 		 * 0xFF bytes. Report that the header is corrupted.
686 		 */
687 		if (verbose) {
688 			ubi_warn("bad magic number at PEB %d: %08x instead of "
689 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
690 			ubi_dbg_dump_ec_hdr(ec_hdr);
691 		}
692 		return UBI_IO_BAD_EC_HDR;
693 	}
694 
695 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
696 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
697 
698 	if (hdr_crc != crc) {
699 		if (verbose) {
700 			ubi_warn("bad EC header CRC at PEB %d, calculated %#08x,"
701 				 " read %#08x", pnum, crc, hdr_crc);
702 			ubi_dbg_dump_ec_hdr(ec_hdr);
703 		}
704 		return UBI_IO_BAD_EC_HDR;
705 	}
706 
707 	/* And of course validate what has just been read from the media */
708 	err = validate_ec_hdr(ubi, ec_hdr);
709 	if (err) {
710 		ubi_err("validation failed for PEB %d", pnum);
711 		return -EINVAL;
712 	}
713 
714 	return read_err ? UBI_IO_BITFLIPS : 0;
715 }
716 
717 /**
718  * ubi_io_write_ec_hdr - write an erase counter header.
719  * @ubi: UBI device description object
720  * @pnum: physical eraseblock to write to
721  * @ec_hdr: the erase counter header to write
722  *
723  * This function writes erase counter header described by @ec_hdr to physical
724  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
725  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
726  * field.
727  *
728  * This function returns zero in case of success and a negative error code in
729  * case of failure. If %-EIO is returned, the physical eraseblock most probably
730  * went bad.
731  */
732 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
733 			struct ubi_ec_hdr *ec_hdr)
734 {
735 	int err;
736 	uint32_t crc;
737 
738 	dbg_io("write EC header to PEB %d", pnum);
739 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
740 
741 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
742 	ec_hdr->version = UBI_VERSION;
743 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
744 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
745 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
746 	ec_hdr->hdr_crc = cpu_to_be32(crc);
747 
748 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
749 	if (err)
750 		return -EINVAL;
751 
752 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
753 	return err;
754 }
755 
756 /**
757  * validate_vid_hdr - validate a volume identifier header.
758  * @ubi: UBI device description object
759  * @vid_hdr: the volume identifier header to check
760  *
761  * This function checks that data stored in the volume identifier header
762  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
763  */
764 static int validate_vid_hdr(const struct ubi_device *ubi,
765 			    const struct ubi_vid_hdr *vid_hdr)
766 {
767 	int vol_type = vid_hdr->vol_type;
768 	int copy_flag = vid_hdr->copy_flag;
769 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
770 	int lnum = be32_to_cpu(vid_hdr->lnum);
771 	int compat = vid_hdr->compat;
772 	int data_size = be32_to_cpu(vid_hdr->data_size);
773 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
774 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
775 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
776 	int usable_leb_size = ubi->leb_size - data_pad;
777 
778 	if (copy_flag != 0 && copy_flag != 1) {
779 		dbg_err("bad copy_flag");
780 		goto bad;
781 	}
782 
783 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
784 	    data_pad < 0) {
785 		dbg_err("negative values");
786 		goto bad;
787 	}
788 
789 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
790 		dbg_err("bad vol_id");
791 		goto bad;
792 	}
793 
794 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
795 		dbg_err("bad compat");
796 		goto bad;
797 	}
798 
799 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
800 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
801 	    compat != UBI_COMPAT_REJECT) {
802 		dbg_err("bad compat");
803 		goto bad;
804 	}
805 
806 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
807 		dbg_err("bad vol_type");
808 		goto bad;
809 	}
810 
811 	if (data_pad >= ubi->leb_size / 2) {
812 		dbg_err("bad data_pad");
813 		goto bad;
814 	}
815 
816 	if (vol_type == UBI_VID_STATIC) {
817 		/*
818 		 * Although from high-level point of view static volumes may
819 		 * contain zero bytes of data, but no VID headers can contain
820 		 * zero at these fields, because they empty volumes do not have
821 		 * mapped logical eraseblocks.
822 		 */
823 		if (used_ebs == 0) {
824 			dbg_err("zero used_ebs");
825 			goto bad;
826 		}
827 		if (data_size == 0) {
828 			dbg_err("zero data_size");
829 			goto bad;
830 		}
831 		if (lnum < used_ebs - 1) {
832 			if (data_size != usable_leb_size) {
833 				dbg_err("bad data_size");
834 				goto bad;
835 			}
836 		} else if (lnum == used_ebs - 1) {
837 			if (data_size == 0) {
838 				dbg_err("bad data_size at last LEB");
839 				goto bad;
840 			}
841 		} else {
842 			dbg_err("too high lnum");
843 			goto bad;
844 		}
845 	} else {
846 		if (copy_flag == 0) {
847 			if (data_crc != 0) {
848 				dbg_err("non-zero data CRC");
849 				goto bad;
850 			}
851 			if (data_size != 0) {
852 				dbg_err("non-zero data_size");
853 				goto bad;
854 			}
855 		} else {
856 			if (data_size == 0) {
857 				dbg_err("zero data_size of copy");
858 				goto bad;
859 			}
860 		}
861 		if (used_ebs != 0) {
862 			dbg_err("bad used_ebs");
863 			goto bad;
864 		}
865 	}
866 
867 	return 0;
868 
869 bad:
870 	ubi_err("bad VID header");
871 	ubi_dbg_dump_vid_hdr(vid_hdr);
872 	ubi_dbg_dump_stack();
873 	return 1;
874 }
875 
876 /**
877  * ubi_io_read_vid_hdr - read and check a volume identifier header.
878  * @ubi: UBI device description object
879  * @pnum: physical eraseblock number to read from
880  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
881  * identifier header
882  * @verbose: be verbose if the header is corrupted or wasn't found
883  *
884  * This function reads the volume identifier header from physical eraseblock
885  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
886  * volume identifier header. The following codes may be returned:
887  *
888  * o %0 if the CRC checksum is correct and the header was successfully read;
889  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
890  *   and corrected by the flash driver; this is harmless but may indicate that
891  *   this eraseblock may become bad soon;
892  * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
893  *   error detected);
894  * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
895  *   header there);
896  * o a negative error code in case of failure.
897  */
898 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
899 			struct ubi_vid_hdr *vid_hdr, int verbose)
900 {
901 	int err, read_err = 0;
902 	uint32_t crc, magic, hdr_crc;
903 	void *p;
904 
905 	dbg_io("read VID header from PEB %d", pnum);
906 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
907 
908 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
909 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
910 			  ubi->vid_hdr_alsize);
911 	if (err) {
912 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
913 			return err;
914 
915 		/*
916 		 * We read all the data, but either a correctable bit-flip
917 		 * occurred, or MTD reported about some data integrity error,
918 		 * like an ECC error in case of NAND. The former is harmless,
919 		 * the later may mean the read data is corrupted. But we have a
920 		 * CRC check-sum and we will identify this. If the VID header is
921 		 * still OK, we just report this as there was a bit-flip.
922 		 */
923 		read_err = err;
924 	}
925 
926 	magic = be32_to_cpu(vid_hdr->magic);
927 	if (magic != UBI_VID_HDR_MAGIC) {
928 		/*
929 		 * If we have read all 0xFF bytes, the VID header probably does
930 		 * not exist and the physical eraseblock is assumed to be free.
931 		 *
932 		 * But if there was a read error, we do not test the data for
933 		 * 0xFFs. Even if it does contain all 0xFFs, this error
934 		 * indicates that something is still wrong with this physical
935 		 * eraseblock and it cannot be regarded as free.
936 		 */
937 		if (read_err != -EBADMSG &&
938 		    check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
939 			/* The physical eraseblock is supposedly free */
940 
941 			/*
942 			 * The below is just a paranoid check, it has to be
943 			 * compiled out if paranoid checks are disabled.
944 			 */
945 			err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
946 						    ubi->leb_size);
947 			if (err)
948 				return err > 0 ? UBI_IO_BAD_VID_HDR : err;
949 
950 			if (verbose)
951 				ubi_warn("no VID header found at PEB %d, "
952 					 "only 0xFF bytes", pnum);
953 			return UBI_IO_PEB_FREE;
954 		}
955 
956 		/*
957 		 * This is not a valid VID header, and these are not 0xFF
958 		 * bytes. Report that the header is corrupted.
959 		 */
960 		if (verbose) {
961 			ubi_warn("bad magic number at PEB %d: %08x instead of "
962 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
963 			ubi_dbg_dump_vid_hdr(vid_hdr);
964 		}
965 		return UBI_IO_BAD_VID_HDR;
966 	}
967 
968 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
969 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
970 
971 	if (hdr_crc != crc) {
972 		if (verbose) {
973 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
974 				 "read %#08x", pnum, crc, hdr_crc);
975 			ubi_dbg_dump_vid_hdr(vid_hdr);
976 		}
977 		return UBI_IO_BAD_VID_HDR;
978 	}
979 
980 	/* Validate the VID header that we have just read */
981 	err = validate_vid_hdr(ubi, vid_hdr);
982 	if (err) {
983 		ubi_err("validation failed for PEB %d", pnum);
984 		return -EINVAL;
985 	}
986 
987 	return read_err ? UBI_IO_BITFLIPS : 0;
988 }
989 
990 /**
991  * ubi_io_write_vid_hdr - write a volume identifier header.
992  * @ubi: UBI device description object
993  * @pnum: the physical eraseblock number to write to
994  * @vid_hdr: the volume identifier header to write
995  *
996  * This function writes the volume identifier header described by @vid_hdr to
997  * physical eraseblock @pnum. This function automatically fills the
998  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
999  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1000  *
1001  * This function returns zero in case of success and a negative error code in
1002  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1003  * bad.
1004  */
1005 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1006 			 struct ubi_vid_hdr *vid_hdr)
1007 {
1008 	int err;
1009 	uint32_t crc;
1010 	void *p;
1011 
1012 	dbg_io("write VID header to PEB %d", pnum);
1013 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1014 
1015 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1016 	if (err)
1017 		return err > 0 ? -EINVAL: err;
1018 
1019 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1020 	vid_hdr->version = UBI_VERSION;
1021 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1022 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1023 
1024 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1025 	if (err)
1026 		return -EINVAL;
1027 
1028 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1029 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1030 			   ubi->vid_hdr_alsize);
1031 	return err;
1032 }
1033 
1034 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1035 
1036 /**
1037  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1038  * @ubi: UBI device description object
1039  * @pnum: physical eraseblock number to check
1040  *
1041  * This function returns zero if the physical eraseblock is good, a positive
1042  * number if it is bad and a negative error code if an error occurred.
1043  */
1044 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1045 {
1046 	int err;
1047 
1048 	err = ubi_io_is_bad(ubi, pnum);
1049 	if (!err)
1050 		return err;
1051 
1052 	ubi_err("paranoid check failed for PEB %d", pnum);
1053 	ubi_dbg_dump_stack();
1054 	return err;
1055 }
1056 
1057 /**
1058  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1059  * @ubi: UBI device description object
1060  * @pnum: physical eraseblock number the erase counter header belongs to
1061  * @ec_hdr: the erase counter header to check
1062  *
1063  * This function returns zero if the erase counter header contains valid
1064  * values, and %1 if not.
1065  */
1066 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1067 				 const struct ubi_ec_hdr *ec_hdr)
1068 {
1069 	int err;
1070 	uint32_t magic;
1071 
1072 	magic = be32_to_cpu(ec_hdr->magic);
1073 	if (magic != UBI_EC_HDR_MAGIC) {
1074 		ubi_err("bad magic %#08x, must be %#08x",
1075 			magic, UBI_EC_HDR_MAGIC);
1076 		goto fail;
1077 	}
1078 
1079 	err = validate_ec_hdr(ubi, ec_hdr);
1080 	if (err) {
1081 		ubi_err("paranoid check failed for PEB %d", pnum);
1082 		goto fail;
1083 	}
1084 
1085 	return 0;
1086 
1087 fail:
1088 	ubi_dbg_dump_ec_hdr(ec_hdr);
1089 	ubi_dbg_dump_stack();
1090 	return 1;
1091 }
1092 
1093 /**
1094  * paranoid_check_peb_ec_hdr - check that the erase counter header of a
1095  * physical eraseblock is in-place and is all right.
1096  * @ubi: UBI device description object
1097  * @pnum: the physical eraseblock number to check
1098  *
1099  * This function returns zero if the erase counter header is all right, %1 if
1100  * not, and a negative error code if an error occurred.
1101  */
1102 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1103 {
1104 	int err;
1105 	uint32_t crc, hdr_crc;
1106 	struct ubi_ec_hdr *ec_hdr;
1107 
1108 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1109 	if (!ec_hdr)
1110 		return -ENOMEM;
1111 
1112 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1113 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1114 		goto exit;
1115 
1116 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1117 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1118 	if (hdr_crc != crc) {
1119 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1120 		ubi_err("paranoid check failed for PEB %d", pnum);
1121 		ubi_dbg_dump_ec_hdr(ec_hdr);
1122 		ubi_dbg_dump_stack();
1123 		err = 1;
1124 		goto exit;
1125 	}
1126 
1127 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1128 
1129 exit:
1130 	kfree(ec_hdr);
1131 	return err;
1132 }
1133 
1134 /**
1135  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1136  * @ubi: UBI device description object
1137  * @pnum: physical eraseblock number the volume identifier header belongs to
1138  * @vid_hdr: the volume identifier header to check
1139  *
1140  * This function returns zero if the volume identifier header is all right, and
1141  * %1 if not.
1142  */
1143 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1144 				  const struct ubi_vid_hdr *vid_hdr)
1145 {
1146 	int err;
1147 	uint32_t magic;
1148 
1149 	magic = be32_to_cpu(vid_hdr->magic);
1150 	if (magic != UBI_VID_HDR_MAGIC) {
1151 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1152 			magic, pnum, UBI_VID_HDR_MAGIC);
1153 		goto fail;
1154 	}
1155 
1156 	err = validate_vid_hdr(ubi, vid_hdr);
1157 	if (err) {
1158 		ubi_err("paranoid check failed for PEB %d", pnum);
1159 		goto fail;
1160 	}
1161 
1162 	return err;
1163 
1164 fail:
1165 	ubi_err("paranoid check failed for PEB %d", pnum);
1166 	ubi_dbg_dump_vid_hdr(vid_hdr);
1167 	ubi_dbg_dump_stack();
1168 	return 1;
1169 
1170 }
1171 
1172 /**
1173  * paranoid_check_peb_vid_hdr - check that the volume identifier header of a
1174  * physical eraseblock is in-place and is all right.
1175  * @ubi: UBI device description object
1176  * @pnum: the physical eraseblock number to check
1177  *
1178  * This function returns zero if the volume identifier header is all right,
1179  * %1 if not, and a negative error code if an error occurred.
1180  */
1181 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1182 {
1183 	int err;
1184 	uint32_t crc, hdr_crc;
1185 	struct ubi_vid_hdr *vid_hdr;
1186 	void *p;
1187 
1188 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1189 	if (!vid_hdr)
1190 		return -ENOMEM;
1191 
1192 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1193 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1194 			  ubi->vid_hdr_alsize);
1195 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1196 		goto exit;
1197 
1198 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1199 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1200 	if (hdr_crc != crc) {
1201 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1202 			"read %#08x", pnum, crc, hdr_crc);
1203 		ubi_err("paranoid check failed for PEB %d", pnum);
1204 		ubi_dbg_dump_vid_hdr(vid_hdr);
1205 		ubi_dbg_dump_stack();
1206 		err = 1;
1207 		goto exit;
1208 	}
1209 
1210 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1211 
1212 exit:
1213 	ubi_free_vid_hdr(ubi, vid_hdr);
1214 	return err;
1215 }
1216 
1217 /**
1218  * paranoid_check_all_ff - check that a region of flash is empty.
1219  * @ubi: UBI device description object
1220  * @pnum: the physical eraseblock number to check
1221  * @offset: the starting offset within the physical eraseblock to check
1222  * @len: the length of the region to check
1223  *
1224  * This function returns zero if only 0xFF bytes are present at offset
1225  * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1226  * code if an error occurred.
1227  */
1228 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
1229 				 int len)
1230 {
1231 	size_t read;
1232 	int err;
1233 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1234 
1235 	mutex_lock(&ubi->dbg_buf_mutex);
1236 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1237 	if (err && err != -EUCLEAN) {
1238 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1239 			"read %zd bytes", err, len, pnum, offset, read);
1240 		goto error;
1241 	}
1242 
1243 	err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1244 	if (err == 0) {
1245 		ubi_err("flash region at PEB %d:%d, length %d does not "
1246 			"contain all 0xFF bytes", pnum, offset, len);
1247 		goto fail;
1248 	}
1249 	mutex_unlock(&ubi->dbg_buf_mutex);
1250 
1251 	return 0;
1252 
1253 fail:
1254 	ubi_err("paranoid check failed for PEB %d", pnum);
1255 	dbg_msg("hex dump of the %d-%d region", offset, offset + len);
1256 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1257 		       ubi->dbg_peb_buf, len, 1);
1258 	err = 1;
1259 error:
1260 	ubi_dbg_dump_stack();
1261 	mutex_unlock(&ubi->dbg_buf_mutex);
1262 	return err;
1263 }
1264 
1265 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1266