1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * UBI input/output sub-system. 24 * 25 * This sub-system provides a uniform way to work with all kinds of the 26 * underlying MTD devices. It also implements handy functions for reading and 27 * writing UBI headers. 28 * 29 * We are trying to have a paranoid mindset and not to trust to what we read 30 * from the flash media in order to be more secure and robust. So this 31 * sub-system validates every single header it reads from the flash media. 32 * 33 * Some words about how the eraseblock headers are stored. 34 * 35 * The erase counter header is always stored at offset zero. By default, the 36 * VID header is stored after the EC header at the closest aligned offset 37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 38 * header at the closest aligned offset. But this default layout may be 39 * changed. For example, for different reasons (e.g., optimization) UBI may be 40 * asked to put the VID header at further offset, and even at an unaligned 41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 42 * proper padding in front of it. Data offset may also be changed but it has to 43 * be aligned. 44 * 45 * About minimal I/O units. In general, UBI assumes flash device model where 46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 50 * to do different optimizations. 51 * 52 * This is extremely useful in case of NAND flashes which admit of several 53 * write operations to one NAND page. In this case UBI can fit EC and VID 54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 57 * users. 58 * 59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 61 * headers. 62 * 63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 64 * device, e.g., make @ubi->min_io_size = 512 in the example above? 65 * 66 * A: because when writing a sub-page, MTD still writes a full 2K page but the 67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing 68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we 69 * prefer to use sub-pages only for EV and VID headers. 70 * 71 * As it was noted above, the VID header may start at a non-aligned offset. 72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 73 * the VID header may reside at offset 1984 which is the last 64 bytes of the 74 * last sub-page (EC header is always at offset zero). This causes some 75 * difficulties when reading and writing VID headers. 76 * 77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 78 * the data and want to write this VID header out. As we can only write in 79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 80 * to offset 448 of this buffer. 81 * 82 * The I/O sub-system does the following trick in order to avoid this extra 83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 85 * When the VID header is being written out, it shifts the VID header pointer 86 * back and writes the whole sub-page. 87 */ 88 89 #include <linux/crc32.h> 90 #include <linux/err.h> 91 #include "ubi.h" 92 93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 94 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum); 95 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 96 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, 97 const struct ubi_ec_hdr *ec_hdr); 98 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 99 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, 100 const struct ubi_vid_hdr *vid_hdr); 101 #else 102 #define paranoid_check_not_bad(ubi, pnum) 0 103 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0 104 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0 105 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0 106 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0 107 #endif 108 109 /** 110 * ubi_io_read - read data from a physical eraseblock. 111 * @ubi: UBI device description object 112 * @buf: buffer where to store the read data 113 * @pnum: physical eraseblock number to read from 114 * @offset: offset within the physical eraseblock from where to read 115 * @len: how many bytes to read 116 * 117 * This function reads data from offset @offset of physical eraseblock @pnum 118 * and stores the read data in the @buf buffer. The following return codes are 119 * possible: 120 * 121 * o %0 if all the requested data were successfully read; 122 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 123 * correctable bit-flips were detected; this is harmless but may indicate 124 * that this eraseblock may become bad soon (but do not have to); 125 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 126 * example it can be an ECC error in case of NAND; this most probably means 127 * that the data is corrupted; 128 * o %-EIO if some I/O error occurred; 129 * o other negative error codes in case of other errors. 130 */ 131 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 132 int len) 133 { 134 int err, retries = 0; 135 size_t read; 136 loff_t addr; 137 138 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 139 140 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 141 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 142 ubi_assert(len > 0); 143 144 err = paranoid_check_not_bad(ubi, pnum); 145 if (err) 146 return err > 0 ? -EINVAL : err; 147 148 addr = (loff_t)pnum * ubi->peb_size + offset; 149 retry: 150 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf); 151 if (err) { 152 if (err == -EUCLEAN) { 153 /* 154 * -EUCLEAN is reported if there was a bit-flip which 155 * was corrected, so this is harmless. 156 * 157 * We do not report about it here unless debugging is 158 * enabled. A corresponding message will be printed 159 * later, when it is has been scrubbed. 160 */ 161 dbg_msg("fixable bit-flip detected at PEB %d", pnum); 162 ubi_assert(len == read); 163 return UBI_IO_BITFLIPS; 164 } 165 166 if (read != len && retries++ < UBI_IO_RETRIES) { 167 dbg_io("error %d while reading %d bytes from PEB %d:%d," 168 " read only %zd bytes, retry", 169 err, len, pnum, offset, read); 170 yield(); 171 goto retry; 172 } 173 174 ubi_err("error %d while reading %d bytes from PEB %d:%d, " 175 "read %zd bytes", err, len, pnum, offset, read); 176 ubi_dbg_dump_stack(); 177 178 /* 179 * The driver should never return -EBADMSG if it failed to read 180 * all the requested data. But some buggy drivers might do 181 * this, so we change it to -EIO. 182 */ 183 if (read != len && err == -EBADMSG) { 184 ubi_assert(0); 185 err = -EIO; 186 } 187 } else { 188 ubi_assert(len == read); 189 190 if (ubi_dbg_is_bitflip()) { 191 dbg_gen("bit-flip (emulated)"); 192 err = UBI_IO_BITFLIPS; 193 } 194 } 195 196 return err; 197 } 198 199 /** 200 * ubi_io_write - write data to a physical eraseblock. 201 * @ubi: UBI device description object 202 * @buf: buffer with the data to write 203 * @pnum: physical eraseblock number to write to 204 * @offset: offset within the physical eraseblock where to write 205 * @len: how many bytes to write 206 * 207 * This function writes @len bytes of data from buffer @buf to offset @offset 208 * of physical eraseblock @pnum. If all the data were successfully written, 209 * zero is returned. If an error occurred, this function returns a negative 210 * error code. If %-EIO is returned, the physical eraseblock most probably went 211 * bad. 212 * 213 * Note, in case of an error, it is possible that something was still written 214 * to the flash media, but may be some garbage. 215 */ 216 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 217 int len) 218 { 219 int err; 220 size_t written; 221 loff_t addr; 222 223 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 224 225 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 226 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 227 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 228 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 229 230 if (ubi->ro_mode) { 231 ubi_err("read-only mode"); 232 return -EROFS; 233 } 234 235 /* The below has to be compiled out if paranoid checks are disabled */ 236 237 err = paranoid_check_not_bad(ubi, pnum); 238 if (err) 239 return err > 0 ? -EINVAL : err; 240 241 /* The area we are writing to has to contain all 0xFF bytes */ 242 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); 243 if (err) 244 return err > 0 ? -EINVAL : err; 245 246 if (offset >= ubi->leb_start) { 247 /* 248 * We write to the data area of the physical eraseblock. Make 249 * sure it has valid EC and VID headers. 250 */ 251 err = paranoid_check_peb_ec_hdr(ubi, pnum); 252 if (err) 253 return err > 0 ? -EINVAL : err; 254 err = paranoid_check_peb_vid_hdr(ubi, pnum); 255 if (err) 256 return err > 0 ? -EINVAL : err; 257 } 258 259 if (ubi_dbg_is_write_failure()) { 260 dbg_err("cannot write %d bytes to PEB %d:%d " 261 "(emulated)", len, pnum, offset); 262 ubi_dbg_dump_stack(); 263 return -EIO; 264 } 265 266 addr = (loff_t)pnum * ubi->peb_size + offset; 267 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf); 268 if (err) { 269 ubi_err("error %d while writing %d bytes to PEB %d:%d, written " 270 "%zd bytes", err, len, pnum, offset, written); 271 ubi_dbg_dump_stack(); 272 } else 273 ubi_assert(written == len); 274 275 return err; 276 } 277 278 /** 279 * erase_callback - MTD erasure call-back. 280 * @ei: MTD erase information object. 281 * 282 * Note, even though MTD erase interface is asynchronous, all the current 283 * implementations are synchronous anyway. 284 */ 285 static void erase_callback(struct erase_info *ei) 286 { 287 wake_up_interruptible((wait_queue_head_t *)ei->priv); 288 } 289 290 /** 291 * do_sync_erase - synchronously erase a physical eraseblock. 292 * @ubi: UBI device description object 293 * @pnum: the physical eraseblock number to erase 294 * 295 * This function synchronously erases physical eraseblock @pnum and returns 296 * zero in case of success and a negative error code in case of failure. If 297 * %-EIO is returned, the physical eraseblock most probably went bad. 298 */ 299 static int do_sync_erase(struct ubi_device *ubi, int pnum) 300 { 301 int err, retries = 0; 302 struct erase_info ei; 303 wait_queue_head_t wq; 304 305 dbg_io("erase PEB %d", pnum); 306 307 retry: 308 init_waitqueue_head(&wq); 309 memset(&ei, 0, sizeof(struct erase_info)); 310 311 ei.mtd = ubi->mtd; 312 ei.addr = (loff_t)pnum * ubi->peb_size; 313 ei.len = ubi->peb_size; 314 ei.callback = erase_callback; 315 ei.priv = (unsigned long)&wq; 316 317 err = ubi->mtd->erase(ubi->mtd, &ei); 318 if (err) { 319 if (retries++ < UBI_IO_RETRIES) { 320 dbg_io("error %d while erasing PEB %d, retry", 321 err, pnum); 322 yield(); 323 goto retry; 324 } 325 ubi_err("cannot erase PEB %d, error %d", pnum, err); 326 ubi_dbg_dump_stack(); 327 return err; 328 } 329 330 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 331 ei.state == MTD_ERASE_FAILED); 332 if (err) { 333 ubi_err("interrupted PEB %d erasure", pnum); 334 return -EINTR; 335 } 336 337 if (ei.state == MTD_ERASE_FAILED) { 338 if (retries++ < UBI_IO_RETRIES) { 339 dbg_io("error while erasing PEB %d, retry", pnum); 340 yield(); 341 goto retry; 342 } 343 ubi_err("cannot erase PEB %d", pnum); 344 ubi_dbg_dump_stack(); 345 return -EIO; 346 } 347 348 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size); 349 if (err) 350 return err > 0 ? -EINVAL : err; 351 352 if (ubi_dbg_is_erase_failure() && !err) { 353 dbg_err("cannot erase PEB %d (emulated)", pnum); 354 return -EIO; 355 } 356 357 return 0; 358 } 359 360 /** 361 * check_pattern - check if buffer contains only a certain byte pattern. 362 * @buf: buffer to check 363 * @patt: the pattern to check 364 * @size: buffer size in bytes 365 * 366 * This function returns %1 in there are only @patt bytes in @buf, and %0 if 367 * something else was also found. 368 */ 369 static int check_pattern(const void *buf, uint8_t patt, int size) 370 { 371 int i; 372 373 for (i = 0; i < size; i++) 374 if (((const uint8_t *)buf)[i] != patt) 375 return 0; 376 return 1; 377 } 378 379 /* Patterns to write to a physical eraseblock when torturing it */ 380 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 381 382 /** 383 * torture_peb - test a supposedly bad physical eraseblock. 384 * @ubi: UBI device description object 385 * @pnum: the physical eraseblock number to test 386 * 387 * This function returns %-EIO if the physical eraseblock did not pass the 388 * test, a positive number of erase operations done if the test was 389 * successfully passed, and other negative error codes in case of other errors. 390 */ 391 static int torture_peb(struct ubi_device *ubi, int pnum) 392 { 393 int err, i, patt_count; 394 395 ubi_msg("run torture test for PEB %d", pnum); 396 patt_count = ARRAY_SIZE(patterns); 397 ubi_assert(patt_count > 0); 398 399 mutex_lock(&ubi->buf_mutex); 400 for (i = 0; i < patt_count; i++) { 401 err = do_sync_erase(ubi, pnum); 402 if (err) 403 goto out; 404 405 /* Make sure the PEB contains only 0xFF bytes */ 406 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 407 if (err) 408 goto out; 409 410 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size); 411 if (err == 0) { 412 ubi_err("erased PEB %d, but a non-0xFF byte found", 413 pnum); 414 err = -EIO; 415 goto out; 416 } 417 418 /* Write a pattern and check it */ 419 memset(ubi->peb_buf1, patterns[i], ubi->peb_size); 420 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 421 if (err) 422 goto out; 423 424 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size); 425 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 426 if (err) 427 goto out; 428 429 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size); 430 if (err == 0) { 431 ubi_err("pattern %x checking failed for PEB %d", 432 patterns[i], pnum); 433 err = -EIO; 434 goto out; 435 } 436 } 437 438 err = patt_count; 439 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum); 440 441 out: 442 mutex_unlock(&ubi->buf_mutex); 443 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { 444 /* 445 * If a bit-flip or data integrity error was detected, the test 446 * has not passed because it happened on a freshly erased 447 * physical eraseblock which means something is wrong with it. 448 */ 449 ubi_err("read problems on freshly erased PEB %d, must be bad", 450 pnum); 451 err = -EIO; 452 } 453 return err; 454 } 455 456 /** 457 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 458 * @ubi: UBI device description object 459 * @pnum: physical eraseblock number to prepare 460 * 461 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 462 * algorithm: the PEB is first filled with zeroes, then it is erased. And 463 * filling with zeroes starts from the end of the PEB. This was observed with 464 * Spansion S29GL512N NOR flash. 465 * 466 * This means that in case of a power cut we may end up with intact data at the 467 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 468 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 469 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 470 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 471 * 472 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 473 * magic numbers in order to invalidate them and prevent the failures. Returns 474 * zero in case of success and a negative error code in case of failure. 475 */ 476 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 477 { 478 int err; 479 size_t written; 480 loff_t addr; 481 uint32_t data = 0; 482 483 addr = (loff_t)pnum * ubi->peb_size; 484 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data); 485 if (err) { 486 ubi_err("error %d while writing 4 bytes to PEB %d:%d, written " 487 "%zd bytes", err, pnum, 0, written); 488 ubi_dbg_dump_stack(); 489 return err; 490 } 491 492 addr += ubi->vid_hdr_aloffset; 493 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data); 494 if (err) { 495 ubi_err("error %d while writing 4 bytes to PEB %d:%d, written " 496 "%zd bytes", err, pnum, ubi->vid_hdr_aloffset, written); 497 ubi_dbg_dump_stack(); 498 return err; 499 } 500 501 return 0; 502 } 503 504 /** 505 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 506 * @ubi: UBI device description object 507 * @pnum: physical eraseblock number to erase 508 * @torture: if this physical eraseblock has to be tortured 509 * 510 * This function synchronously erases physical eraseblock @pnum. If @torture 511 * flag is not zero, the physical eraseblock is checked by means of writing 512 * different patterns to it and reading them back. If the torturing is enabled, 513 * the physical eraseblock is erased more than once. 514 * 515 * This function returns the number of erasures made in case of success, %-EIO 516 * if the erasure failed or the torturing test failed, and other negative error 517 * codes in case of other errors. Note, %-EIO means that the physical 518 * eraseblock is bad. 519 */ 520 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 521 { 522 int err, ret = 0; 523 524 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 525 526 err = paranoid_check_not_bad(ubi, pnum); 527 if (err != 0) 528 return err > 0 ? -EINVAL : err; 529 530 if (ubi->ro_mode) { 531 ubi_err("read-only mode"); 532 return -EROFS; 533 } 534 535 if (ubi->nor_flash) { 536 err = nor_erase_prepare(ubi, pnum); 537 if (err) 538 return err; 539 } 540 541 if (torture) { 542 ret = torture_peb(ubi, pnum); 543 if (ret < 0) 544 return ret; 545 } 546 547 err = do_sync_erase(ubi, pnum); 548 if (err) 549 return err; 550 551 return ret + 1; 552 } 553 554 /** 555 * ubi_io_is_bad - check if a physical eraseblock is bad. 556 * @ubi: UBI device description object 557 * @pnum: the physical eraseblock number to check 558 * 559 * This function returns a positive number if the physical eraseblock is bad, 560 * zero if not, and a negative error code if an error occurred. 561 */ 562 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 563 { 564 struct mtd_info *mtd = ubi->mtd; 565 566 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 567 568 if (ubi->bad_allowed) { 569 int ret; 570 571 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 572 if (ret < 0) 573 ubi_err("error %d while checking if PEB %d is bad", 574 ret, pnum); 575 else if (ret) 576 dbg_io("PEB %d is bad", pnum); 577 return ret; 578 } 579 580 return 0; 581 } 582 583 /** 584 * ubi_io_mark_bad - mark a physical eraseblock as bad. 585 * @ubi: UBI device description object 586 * @pnum: the physical eraseblock number to mark 587 * 588 * This function returns zero in case of success and a negative error code in 589 * case of failure. 590 */ 591 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 592 { 593 int err; 594 struct mtd_info *mtd = ubi->mtd; 595 596 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 597 598 if (ubi->ro_mode) { 599 ubi_err("read-only mode"); 600 return -EROFS; 601 } 602 603 if (!ubi->bad_allowed) 604 return 0; 605 606 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 607 if (err) 608 ubi_err("cannot mark PEB %d bad, error %d", pnum, err); 609 return err; 610 } 611 612 /** 613 * validate_ec_hdr - validate an erase counter header. 614 * @ubi: UBI device description object 615 * @ec_hdr: the erase counter header to check 616 * 617 * This function returns zero if the erase counter header is OK, and %1 if 618 * not. 619 */ 620 static int validate_ec_hdr(const struct ubi_device *ubi, 621 const struct ubi_ec_hdr *ec_hdr) 622 { 623 long long ec; 624 int vid_hdr_offset, leb_start; 625 626 ec = be64_to_cpu(ec_hdr->ec); 627 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 628 leb_start = be32_to_cpu(ec_hdr->data_offset); 629 630 if (ec_hdr->version != UBI_VERSION) { 631 ubi_err("node with incompatible UBI version found: " 632 "this UBI version is %d, image version is %d", 633 UBI_VERSION, (int)ec_hdr->version); 634 goto bad; 635 } 636 637 if (vid_hdr_offset != ubi->vid_hdr_offset) { 638 ubi_err("bad VID header offset %d, expected %d", 639 vid_hdr_offset, ubi->vid_hdr_offset); 640 goto bad; 641 } 642 643 if (leb_start != ubi->leb_start) { 644 ubi_err("bad data offset %d, expected %d", 645 leb_start, ubi->leb_start); 646 goto bad; 647 } 648 649 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 650 ubi_err("bad erase counter %lld", ec); 651 goto bad; 652 } 653 654 return 0; 655 656 bad: 657 ubi_err("bad EC header"); 658 ubi_dbg_dump_ec_hdr(ec_hdr); 659 ubi_dbg_dump_stack(); 660 return 1; 661 } 662 663 /** 664 * ubi_io_read_ec_hdr - read and check an erase counter header. 665 * @ubi: UBI device description object 666 * @pnum: physical eraseblock to read from 667 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 668 * header 669 * @verbose: be verbose if the header is corrupted or was not found 670 * 671 * This function reads erase counter header from physical eraseblock @pnum and 672 * stores it in @ec_hdr. This function also checks CRC checksum of the read 673 * erase counter header. The following codes may be returned: 674 * 675 * o %0 if the CRC checksum is correct and the header was successfully read; 676 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 677 * and corrected by the flash driver; this is harmless but may indicate that 678 * this eraseblock may become bad soon (but may be not); 679 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error); 680 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty; 681 * o a negative error code in case of failure. 682 */ 683 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 684 struct ubi_ec_hdr *ec_hdr, int verbose) 685 { 686 int err, read_err = 0; 687 uint32_t crc, magic, hdr_crc; 688 689 dbg_io("read EC header from PEB %d", pnum); 690 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 691 692 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 693 if (err) { 694 if (err != UBI_IO_BITFLIPS && err != -EBADMSG) 695 return err; 696 697 /* 698 * We read all the data, but either a correctable bit-flip 699 * occurred, or MTD reported about some data integrity error, 700 * like an ECC error in case of NAND. The former is harmless, 701 * the later may mean that the read data is corrupted. But we 702 * have a CRC check-sum and we will detect this. If the EC 703 * header is still OK, we just report this as there was a 704 * bit-flip. 705 */ 706 read_err = err; 707 } 708 709 magic = be32_to_cpu(ec_hdr->magic); 710 if (magic != UBI_EC_HDR_MAGIC) { 711 /* 712 * The magic field is wrong. Let's check if we have read all 713 * 0xFF. If yes, this physical eraseblock is assumed to be 714 * empty. 715 * 716 * But if there was a read error, we do not test it for all 717 * 0xFFs. Even if it does contain all 0xFFs, this error 718 * indicates that something is still wrong with this physical 719 * eraseblock and we anyway cannot treat it as empty. 720 */ 721 if (read_err != -EBADMSG && 722 check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 723 /* The physical eraseblock is supposedly empty */ 724 if (verbose) 725 ubi_warn("no EC header found at PEB %d, " 726 "only 0xFF bytes", pnum); 727 else if (UBI_IO_DEBUG) 728 dbg_msg("no EC header found at PEB %d, " 729 "only 0xFF bytes", pnum); 730 return UBI_IO_PEB_EMPTY; 731 } 732 733 /* 734 * This is not a valid erase counter header, and these are not 735 * 0xFF bytes. Report that the header is corrupted. 736 */ 737 if (verbose) { 738 ubi_warn("bad magic number at PEB %d: %08x instead of " 739 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 740 ubi_dbg_dump_ec_hdr(ec_hdr); 741 } else if (UBI_IO_DEBUG) 742 dbg_msg("bad magic number at PEB %d: %08x instead of " 743 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 744 return UBI_IO_BAD_EC_HDR; 745 } 746 747 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 748 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 749 750 if (hdr_crc != crc) { 751 if (verbose) { 752 ubi_warn("bad EC header CRC at PEB %d, calculated " 753 "%#08x, read %#08x", pnum, crc, hdr_crc); 754 ubi_dbg_dump_ec_hdr(ec_hdr); 755 } else if (UBI_IO_DEBUG) 756 dbg_msg("bad EC header CRC at PEB %d, calculated " 757 "%#08x, read %#08x", pnum, crc, hdr_crc); 758 return UBI_IO_BAD_EC_HDR; 759 } 760 761 /* And of course validate what has just been read from the media */ 762 err = validate_ec_hdr(ubi, ec_hdr); 763 if (err) { 764 ubi_err("validation failed for PEB %d", pnum); 765 return -EINVAL; 766 } 767 768 return read_err ? UBI_IO_BITFLIPS : 0; 769 } 770 771 /** 772 * ubi_io_write_ec_hdr - write an erase counter header. 773 * @ubi: UBI device description object 774 * @pnum: physical eraseblock to write to 775 * @ec_hdr: the erase counter header to write 776 * 777 * This function writes erase counter header described by @ec_hdr to physical 778 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 779 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 780 * field. 781 * 782 * This function returns zero in case of success and a negative error code in 783 * case of failure. If %-EIO is returned, the physical eraseblock most probably 784 * went bad. 785 */ 786 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 787 struct ubi_ec_hdr *ec_hdr) 788 { 789 int err; 790 uint32_t crc; 791 792 dbg_io("write EC header to PEB %d", pnum); 793 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 794 795 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 796 ec_hdr->version = UBI_VERSION; 797 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 798 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 799 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 800 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 801 ec_hdr->hdr_crc = cpu_to_be32(crc); 802 803 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); 804 if (err) 805 return -EINVAL; 806 807 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 808 return err; 809 } 810 811 /** 812 * validate_vid_hdr - validate a volume identifier header. 813 * @ubi: UBI device description object 814 * @vid_hdr: the volume identifier header to check 815 * 816 * This function checks that data stored in the volume identifier header 817 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 818 */ 819 static int validate_vid_hdr(const struct ubi_device *ubi, 820 const struct ubi_vid_hdr *vid_hdr) 821 { 822 int vol_type = vid_hdr->vol_type; 823 int copy_flag = vid_hdr->copy_flag; 824 int vol_id = be32_to_cpu(vid_hdr->vol_id); 825 int lnum = be32_to_cpu(vid_hdr->lnum); 826 int compat = vid_hdr->compat; 827 int data_size = be32_to_cpu(vid_hdr->data_size); 828 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 829 int data_pad = be32_to_cpu(vid_hdr->data_pad); 830 int data_crc = be32_to_cpu(vid_hdr->data_crc); 831 int usable_leb_size = ubi->leb_size - data_pad; 832 833 if (copy_flag != 0 && copy_flag != 1) { 834 dbg_err("bad copy_flag"); 835 goto bad; 836 } 837 838 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 839 data_pad < 0) { 840 dbg_err("negative values"); 841 goto bad; 842 } 843 844 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 845 dbg_err("bad vol_id"); 846 goto bad; 847 } 848 849 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 850 dbg_err("bad compat"); 851 goto bad; 852 } 853 854 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 855 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 856 compat != UBI_COMPAT_REJECT) { 857 dbg_err("bad compat"); 858 goto bad; 859 } 860 861 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 862 dbg_err("bad vol_type"); 863 goto bad; 864 } 865 866 if (data_pad >= ubi->leb_size / 2) { 867 dbg_err("bad data_pad"); 868 goto bad; 869 } 870 871 if (vol_type == UBI_VID_STATIC) { 872 /* 873 * Although from high-level point of view static volumes may 874 * contain zero bytes of data, but no VID headers can contain 875 * zero at these fields, because they empty volumes do not have 876 * mapped logical eraseblocks. 877 */ 878 if (used_ebs == 0) { 879 dbg_err("zero used_ebs"); 880 goto bad; 881 } 882 if (data_size == 0) { 883 dbg_err("zero data_size"); 884 goto bad; 885 } 886 if (lnum < used_ebs - 1) { 887 if (data_size != usable_leb_size) { 888 dbg_err("bad data_size"); 889 goto bad; 890 } 891 } else if (lnum == used_ebs - 1) { 892 if (data_size == 0) { 893 dbg_err("bad data_size at last LEB"); 894 goto bad; 895 } 896 } else { 897 dbg_err("too high lnum"); 898 goto bad; 899 } 900 } else { 901 if (copy_flag == 0) { 902 if (data_crc != 0) { 903 dbg_err("non-zero data CRC"); 904 goto bad; 905 } 906 if (data_size != 0) { 907 dbg_err("non-zero data_size"); 908 goto bad; 909 } 910 } else { 911 if (data_size == 0) { 912 dbg_err("zero data_size of copy"); 913 goto bad; 914 } 915 } 916 if (used_ebs != 0) { 917 dbg_err("bad used_ebs"); 918 goto bad; 919 } 920 } 921 922 return 0; 923 924 bad: 925 ubi_err("bad VID header"); 926 ubi_dbg_dump_vid_hdr(vid_hdr); 927 ubi_dbg_dump_stack(); 928 return 1; 929 } 930 931 /** 932 * ubi_io_read_vid_hdr - read and check a volume identifier header. 933 * @ubi: UBI device description object 934 * @pnum: physical eraseblock number to read from 935 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 936 * identifier header 937 * @verbose: be verbose if the header is corrupted or wasn't found 938 * 939 * This function reads the volume identifier header from physical eraseblock 940 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 941 * volume identifier header. The following codes may be returned: 942 * 943 * o %0 if the CRC checksum is correct and the header was successfully read; 944 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 945 * and corrected by the flash driver; this is harmless but may indicate that 946 * this eraseblock may become bad soon; 947 * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC 948 * error detected); 949 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID 950 * header there); 951 * o a negative error code in case of failure. 952 */ 953 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 954 struct ubi_vid_hdr *vid_hdr, int verbose) 955 { 956 int err, read_err = 0; 957 uint32_t crc, magic, hdr_crc; 958 void *p; 959 960 dbg_io("read VID header from PEB %d", pnum); 961 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 962 963 p = (char *)vid_hdr - ubi->vid_hdr_shift; 964 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 965 ubi->vid_hdr_alsize); 966 if (err) { 967 if (err != UBI_IO_BITFLIPS && err != -EBADMSG) 968 return err; 969 970 /* 971 * We read all the data, but either a correctable bit-flip 972 * occurred, or MTD reported about some data integrity error, 973 * like an ECC error in case of NAND. The former is harmless, 974 * the later may mean the read data is corrupted. But we have a 975 * CRC check-sum and we will identify this. If the VID header is 976 * still OK, we just report this as there was a bit-flip. 977 */ 978 read_err = err; 979 } 980 981 magic = be32_to_cpu(vid_hdr->magic); 982 if (magic != UBI_VID_HDR_MAGIC) { 983 /* 984 * If we have read all 0xFF bytes, the VID header probably does 985 * not exist and the physical eraseblock is assumed to be free. 986 * 987 * But if there was a read error, we do not test the data for 988 * 0xFFs. Even if it does contain all 0xFFs, this error 989 * indicates that something is still wrong with this physical 990 * eraseblock and it cannot be regarded as free. 991 */ 992 if (read_err != -EBADMSG && 993 check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 994 /* The physical eraseblock is supposedly free */ 995 if (verbose) 996 ubi_warn("no VID header found at PEB %d, " 997 "only 0xFF bytes", pnum); 998 else if (UBI_IO_DEBUG) 999 dbg_msg("no VID header found at PEB %d, " 1000 "only 0xFF bytes", pnum); 1001 return UBI_IO_PEB_FREE; 1002 } 1003 1004 /* 1005 * This is not a valid VID header, and these are not 0xFF 1006 * bytes. Report that the header is corrupted. 1007 */ 1008 if (verbose) { 1009 ubi_warn("bad magic number at PEB %d: %08x instead of " 1010 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1011 ubi_dbg_dump_vid_hdr(vid_hdr); 1012 } else if (UBI_IO_DEBUG) 1013 dbg_msg("bad magic number at PEB %d: %08x instead of " 1014 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1015 return UBI_IO_BAD_VID_HDR; 1016 } 1017 1018 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1019 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1020 1021 if (hdr_crc != crc) { 1022 if (verbose) { 1023 ubi_warn("bad CRC at PEB %d, calculated %#08x, " 1024 "read %#08x", pnum, crc, hdr_crc); 1025 ubi_dbg_dump_vid_hdr(vid_hdr); 1026 } else if (UBI_IO_DEBUG) 1027 dbg_msg("bad CRC at PEB %d, calculated %#08x, " 1028 "read %#08x", pnum, crc, hdr_crc); 1029 return UBI_IO_BAD_VID_HDR; 1030 } 1031 1032 /* Validate the VID header that we have just read */ 1033 err = validate_vid_hdr(ubi, vid_hdr); 1034 if (err) { 1035 ubi_err("validation failed for PEB %d", pnum); 1036 return -EINVAL; 1037 } 1038 1039 return read_err ? UBI_IO_BITFLIPS : 0; 1040 } 1041 1042 /** 1043 * ubi_io_write_vid_hdr - write a volume identifier header. 1044 * @ubi: UBI device description object 1045 * @pnum: the physical eraseblock number to write to 1046 * @vid_hdr: the volume identifier header to write 1047 * 1048 * This function writes the volume identifier header described by @vid_hdr to 1049 * physical eraseblock @pnum. This function automatically fills the 1050 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1051 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1052 * 1053 * This function returns zero in case of success and a negative error code in 1054 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1055 * bad. 1056 */ 1057 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1058 struct ubi_vid_hdr *vid_hdr) 1059 { 1060 int err; 1061 uint32_t crc; 1062 void *p; 1063 1064 dbg_io("write VID header to PEB %d", pnum); 1065 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1066 1067 err = paranoid_check_peb_ec_hdr(ubi, pnum); 1068 if (err) 1069 return err > 0 ? -EINVAL : err; 1070 1071 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1072 vid_hdr->version = UBI_VERSION; 1073 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1074 vid_hdr->hdr_crc = cpu_to_be32(crc); 1075 1076 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); 1077 if (err) 1078 return -EINVAL; 1079 1080 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1081 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1082 ubi->vid_hdr_alsize); 1083 return err; 1084 } 1085 1086 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1087 1088 /** 1089 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad. 1090 * @ubi: UBI device description object 1091 * @pnum: physical eraseblock number to check 1092 * 1093 * This function returns zero if the physical eraseblock is good, a positive 1094 * number if it is bad and a negative error code if an error occurred. 1095 */ 1096 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) 1097 { 1098 int err; 1099 1100 err = ubi_io_is_bad(ubi, pnum); 1101 if (!err) 1102 return err; 1103 1104 ubi_err("paranoid check failed for PEB %d", pnum); 1105 ubi_dbg_dump_stack(); 1106 return err; 1107 } 1108 1109 /** 1110 * paranoid_check_ec_hdr - check if an erase counter header is all right. 1111 * @ubi: UBI device description object 1112 * @pnum: physical eraseblock number the erase counter header belongs to 1113 * @ec_hdr: the erase counter header to check 1114 * 1115 * This function returns zero if the erase counter header contains valid 1116 * values, and %1 if not. 1117 */ 1118 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1119 const struct ubi_ec_hdr *ec_hdr) 1120 { 1121 int err; 1122 uint32_t magic; 1123 1124 magic = be32_to_cpu(ec_hdr->magic); 1125 if (magic != UBI_EC_HDR_MAGIC) { 1126 ubi_err("bad magic %#08x, must be %#08x", 1127 magic, UBI_EC_HDR_MAGIC); 1128 goto fail; 1129 } 1130 1131 err = validate_ec_hdr(ubi, ec_hdr); 1132 if (err) { 1133 ubi_err("paranoid check failed for PEB %d", pnum); 1134 goto fail; 1135 } 1136 1137 return 0; 1138 1139 fail: 1140 ubi_dbg_dump_ec_hdr(ec_hdr); 1141 ubi_dbg_dump_stack(); 1142 return 1; 1143 } 1144 1145 /** 1146 * paranoid_check_peb_ec_hdr - check erase counter header. 1147 * @ubi: UBI device description object 1148 * @pnum: the physical eraseblock number to check 1149 * 1150 * This function returns zero if the erase counter header is all right, %1 if 1151 * not, and a negative error code if an error occurred. 1152 */ 1153 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1154 { 1155 int err; 1156 uint32_t crc, hdr_crc; 1157 struct ubi_ec_hdr *ec_hdr; 1158 1159 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1160 if (!ec_hdr) 1161 return -ENOMEM; 1162 1163 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1164 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 1165 goto exit; 1166 1167 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1168 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1169 if (hdr_crc != crc) { 1170 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); 1171 ubi_err("paranoid check failed for PEB %d", pnum); 1172 ubi_dbg_dump_ec_hdr(ec_hdr); 1173 ubi_dbg_dump_stack(); 1174 err = 1; 1175 goto exit; 1176 } 1177 1178 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); 1179 1180 exit: 1181 kfree(ec_hdr); 1182 return err; 1183 } 1184 1185 /** 1186 * paranoid_check_vid_hdr - check that a volume identifier header is all right. 1187 * @ubi: UBI device description object 1188 * @pnum: physical eraseblock number the volume identifier header belongs to 1189 * @vid_hdr: the volume identifier header to check 1190 * 1191 * This function returns zero if the volume identifier header is all right, and 1192 * %1 if not. 1193 */ 1194 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1195 const struct ubi_vid_hdr *vid_hdr) 1196 { 1197 int err; 1198 uint32_t magic; 1199 1200 magic = be32_to_cpu(vid_hdr->magic); 1201 if (magic != UBI_VID_HDR_MAGIC) { 1202 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", 1203 magic, pnum, UBI_VID_HDR_MAGIC); 1204 goto fail; 1205 } 1206 1207 err = validate_vid_hdr(ubi, vid_hdr); 1208 if (err) { 1209 ubi_err("paranoid check failed for PEB %d", pnum); 1210 goto fail; 1211 } 1212 1213 return err; 1214 1215 fail: 1216 ubi_err("paranoid check failed for PEB %d", pnum); 1217 ubi_dbg_dump_vid_hdr(vid_hdr); 1218 ubi_dbg_dump_stack(); 1219 return 1; 1220 1221 } 1222 1223 /** 1224 * paranoid_check_peb_vid_hdr - check volume identifier header. 1225 * @ubi: UBI device description object 1226 * @pnum: the physical eraseblock number to check 1227 * 1228 * This function returns zero if the volume identifier header is all right, 1229 * %1 if not, and a negative error code if an error occurred. 1230 */ 1231 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1232 { 1233 int err; 1234 uint32_t crc, hdr_crc; 1235 struct ubi_vid_hdr *vid_hdr; 1236 void *p; 1237 1238 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1239 if (!vid_hdr) 1240 return -ENOMEM; 1241 1242 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1243 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1244 ubi->vid_hdr_alsize); 1245 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 1246 goto exit; 1247 1248 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1249 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1250 if (hdr_crc != crc) { 1251 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " 1252 "read %#08x", pnum, crc, hdr_crc); 1253 ubi_err("paranoid check failed for PEB %d", pnum); 1254 ubi_dbg_dump_vid_hdr(vid_hdr); 1255 ubi_dbg_dump_stack(); 1256 err = 1; 1257 goto exit; 1258 } 1259 1260 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); 1261 1262 exit: 1263 ubi_free_vid_hdr(ubi, vid_hdr); 1264 return err; 1265 } 1266 1267 /** 1268 * ubi_dbg_check_all_ff - check that a region of flash is empty. 1269 * @ubi: UBI device description object 1270 * @pnum: the physical eraseblock number to check 1271 * @offset: the starting offset within the physical eraseblock to check 1272 * @len: the length of the region to check 1273 * 1274 * This function returns zero if only 0xFF bytes are present at offset 1275 * @offset of the physical eraseblock @pnum, %1 if not, and a negative error 1276 * code if an error occurred. 1277 */ 1278 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1279 { 1280 size_t read; 1281 int err; 1282 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1283 1284 mutex_lock(&ubi->dbg_buf_mutex); 1285 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf); 1286 if (err && err != -EUCLEAN) { 1287 ubi_err("error %d while reading %d bytes from PEB %d:%d, " 1288 "read %zd bytes", err, len, pnum, offset, read); 1289 goto error; 1290 } 1291 1292 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len); 1293 if (err == 0) { 1294 ubi_err("flash region at PEB %d:%d, length %d does not " 1295 "contain all 0xFF bytes", pnum, offset, len); 1296 goto fail; 1297 } 1298 mutex_unlock(&ubi->dbg_buf_mutex); 1299 1300 return 0; 1301 1302 fail: 1303 ubi_err("paranoid check failed for PEB %d", pnum); 1304 ubi_msg("hex dump of the %d-%d region", offset, offset + len); 1305 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1306 ubi->dbg_peb_buf, len, 1); 1307 err = 1; 1308 error: 1309 ubi_dbg_dump_stack(); 1310 mutex_unlock(&ubi->dbg_buf_mutex); 1311 return err; 1312 } 1313 1314 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 1315