xref: /linux/drivers/mtd/ubi/io.c (revision dfff0fa65ab15db45acd64b3189787d37ab163cd)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68  * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69  * prefer to use sub-pages only for EV and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include "ubi.h"
92 
93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 				 const struct ubi_ec_hdr *ec_hdr);
98 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 				  const struct ubi_vid_hdr *vid_hdr);
101 #else
102 #define paranoid_check_not_bad(ubi, pnum) 0
103 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
104 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
105 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
106 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
107 #endif
108 
109 /**
110  * ubi_io_read - read data from a physical eraseblock.
111  * @ubi: UBI device description object
112  * @buf: buffer where to store the read data
113  * @pnum: physical eraseblock number to read from
114  * @offset: offset within the physical eraseblock from where to read
115  * @len: how many bytes to read
116  *
117  * This function reads data from offset @offset of physical eraseblock @pnum
118  * and stores the read data in the @buf buffer. The following return codes are
119  * possible:
120  *
121  * o %0 if all the requested data were successfully read;
122  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
123  *   correctable bit-flips were detected; this is harmless but may indicate
124  *   that this eraseblock may become bad soon (but do not have to);
125  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
126  *   example it can be an ECC error in case of NAND; this most probably means
127  *   that the data is corrupted;
128  * o %-EIO if some I/O error occurred;
129  * o other negative error codes in case of other errors.
130  */
131 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
132 		int len)
133 {
134 	int err, retries = 0;
135 	size_t read;
136 	loff_t addr;
137 
138 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
139 
140 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
141 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
142 	ubi_assert(len > 0);
143 
144 	err = paranoid_check_not_bad(ubi, pnum);
145 	if (err)
146 		return err > 0 ? -EINVAL : err;
147 
148 	addr = (loff_t)pnum * ubi->peb_size + offset;
149 retry:
150 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
151 	if (err) {
152 		if (err == -EUCLEAN) {
153 			/*
154 			 * -EUCLEAN is reported if there was a bit-flip which
155 			 * was corrected, so this is harmless.
156 			 *
157 			 * We do not report about it here unless debugging is
158 			 * enabled. A corresponding message will be printed
159 			 * later, when it is has been scrubbed.
160 			 */
161 			dbg_msg("fixable bit-flip detected at PEB %d", pnum);
162 			ubi_assert(len == read);
163 			return UBI_IO_BITFLIPS;
164 		}
165 
166 		if (read != len && retries++ < UBI_IO_RETRIES) {
167 			dbg_io("error %d while reading %d bytes from PEB %d:%d,"
168 			       " read only %zd bytes, retry",
169 			       err, len, pnum, offset, read);
170 			yield();
171 			goto retry;
172 		}
173 
174 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
175 			"read %zd bytes", err, len, pnum, offset, read);
176 		ubi_dbg_dump_stack();
177 
178 		/*
179 		 * The driver should never return -EBADMSG if it failed to read
180 		 * all the requested data. But some buggy drivers might do
181 		 * this, so we change it to -EIO.
182 		 */
183 		if (read != len && err == -EBADMSG) {
184 			ubi_assert(0);
185 			err = -EIO;
186 		}
187 	} else {
188 		ubi_assert(len == read);
189 
190 		if (ubi_dbg_is_bitflip()) {
191 			dbg_gen("bit-flip (emulated)");
192 			err = UBI_IO_BITFLIPS;
193 		}
194 	}
195 
196 	return err;
197 }
198 
199 /**
200  * ubi_io_write - write data to a physical eraseblock.
201  * @ubi: UBI device description object
202  * @buf: buffer with the data to write
203  * @pnum: physical eraseblock number to write to
204  * @offset: offset within the physical eraseblock where to write
205  * @len: how many bytes to write
206  *
207  * This function writes @len bytes of data from buffer @buf to offset @offset
208  * of physical eraseblock @pnum. If all the data were successfully written,
209  * zero is returned. If an error occurred, this function returns a negative
210  * error code. If %-EIO is returned, the physical eraseblock most probably went
211  * bad.
212  *
213  * Note, in case of an error, it is possible that something was still written
214  * to the flash media, but may be some garbage.
215  */
216 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
217 		 int len)
218 {
219 	int err;
220 	size_t written;
221 	loff_t addr;
222 
223 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
224 
225 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
226 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
227 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
228 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
229 
230 	if (ubi->ro_mode) {
231 		ubi_err("read-only mode");
232 		return -EROFS;
233 	}
234 
235 	/* The below has to be compiled out if paranoid checks are disabled */
236 
237 	err = paranoid_check_not_bad(ubi, pnum);
238 	if (err)
239 		return err > 0 ? -EINVAL : err;
240 
241 	/* The area we are writing to has to contain all 0xFF bytes */
242 	err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
243 	if (err)
244 		return err > 0 ? -EINVAL : err;
245 
246 	if (offset >= ubi->leb_start) {
247 		/*
248 		 * We write to the data area of the physical eraseblock. Make
249 		 * sure it has valid EC and VID headers.
250 		 */
251 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
252 		if (err)
253 			return err > 0 ? -EINVAL : err;
254 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
255 		if (err)
256 			return err > 0 ? -EINVAL : err;
257 	}
258 
259 	if (ubi_dbg_is_write_failure()) {
260 		dbg_err("cannot write %d bytes to PEB %d:%d "
261 			"(emulated)", len, pnum, offset);
262 		ubi_dbg_dump_stack();
263 		return -EIO;
264 	}
265 
266 	addr = (loff_t)pnum * ubi->peb_size + offset;
267 	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
268 	if (err) {
269 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
270 			"%zd bytes", err, len, pnum, offset, written);
271 		ubi_dbg_dump_stack();
272 	} else
273 		ubi_assert(written == len);
274 
275 	return err;
276 }
277 
278 /**
279  * erase_callback - MTD erasure call-back.
280  * @ei: MTD erase information object.
281  *
282  * Note, even though MTD erase interface is asynchronous, all the current
283  * implementations are synchronous anyway.
284  */
285 static void erase_callback(struct erase_info *ei)
286 {
287 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
288 }
289 
290 /**
291  * do_sync_erase - synchronously erase a physical eraseblock.
292  * @ubi: UBI device description object
293  * @pnum: the physical eraseblock number to erase
294  *
295  * This function synchronously erases physical eraseblock @pnum and returns
296  * zero in case of success and a negative error code in case of failure. If
297  * %-EIO is returned, the physical eraseblock most probably went bad.
298  */
299 static int do_sync_erase(struct ubi_device *ubi, int pnum)
300 {
301 	int err, retries = 0;
302 	struct erase_info ei;
303 	wait_queue_head_t wq;
304 
305 	dbg_io("erase PEB %d", pnum);
306 
307 retry:
308 	init_waitqueue_head(&wq);
309 	memset(&ei, 0, sizeof(struct erase_info));
310 
311 	ei.mtd      = ubi->mtd;
312 	ei.addr     = (loff_t)pnum * ubi->peb_size;
313 	ei.len      = ubi->peb_size;
314 	ei.callback = erase_callback;
315 	ei.priv     = (unsigned long)&wq;
316 
317 	err = ubi->mtd->erase(ubi->mtd, &ei);
318 	if (err) {
319 		if (retries++ < UBI_IO_RETRIES) {
320 			dbg_io("error %d while erasing PEB %d, retry",
321 			       err, pnum);
322 			yield();
323 			goto retry;
324 		}
325 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
326 		ubi_dbg_dump_stack();
327 		return err;
328 	}
329 
330 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
331 					   ei.state == MTD_ERASE_FAILED);
332 	if (err) {
333 		ubi_err("interrupted PEB %d erasure", pnum);
334 		return -EINTR;
335 	}
336 
337 	if (ei.state == MTD_ERASE_FAILED) {
338 		if (retries++ < UBI_IO_RETRIES) {
339 			dbg_io("error while erasing PEB %d, retry", pnum);
340 			yield();
341 			goto retry;
342 		}
343 		ubi_err("cannot erase PEB %d", pnum);
344 		ubi_dbg_dump_stack();
345 		return -EIO;
346 	}
347 
348 	err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
349 	if (err)
350 		return err > 0 ? -EINVAL : err;
351 
352 	if (ubi_dbg_is_erase_failure() && !err) {
353 		dbg_err("cannot erase PEB %d (emulated)", pnum);
354 		return -EIO;
355 	}
356 
357 	return 0;
358 }
359 
360 /**
361  * check_pattern - check if buffer contains only a certain byte pattern.
362  * @buf: buffer to check
363  * @patt: the pattern to check
364  * @size: buffer size in bytes
365  *
366  * This function returns %1 in there are only @patt bytes in @buf, and %0 if
367  * something else was also found.
368  */
369 static int check_pattern(const void *buf, uint8_t patt, int size)
370 {
371 	int i;
372 
373 	for (i = 0; i < size; i++)
374 		if (((const uint8_t *)buf)[i] != patt)
375 			return 0;
376 	return 1;
377 }
378 
379 /* Patterns to write to a physical eraseblock when torturing it */
380 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
381 
382 /**
383  * torture_peb - test a supposedly bad physical eraseblock.
384  * @ubi: UBI device description object
385  * @pnum: the physical eraseblock number to test
386  *
387  * This function returns %-EIO if the physical eraseblock did not pass the
388  * test, a positive number of erase operations done if the test was
389  * successfully passed, and other negative error codes in case of other errors.
390  */
391 static int torture_peb(struct ubi_device *ubi, int pnum)
392 {
393 	int err, i, patt_count;
394 
395 	ubi_msg("run torture test for PEB %d", pnum);
396 	patt_count = ARRAY_SIZE(patterns);
397 	ubi_assert(patt_count > 0);
398 
399 	mutex_lock(&ubi->buf_mutex);
400 	for (i = 0; i < patt_count; i++) {
401 		err = do_sync_erase(ubi, pnum);
402 		if (err)
403 			goto out;
404 
405 		/* Make sure the PEB contains only 0xFF bytes */
406 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
407 		if (err)
408 			goto out;
409 
410 		err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
411 		if (err == 0) {
412 			ubi_err("erased PEB %d, but a non-0xFF byte found",
413 				pnum);
414 			err = -EIO;
415 			goto out;
416 		}
417 
418 		/* Write a pattern and check it */
419 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
420 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
421 		if (err)
422 			goto out;
423 
424 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
425 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
426 		if (err)
427 			goto out;
428 
429 		err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
430 		if (err == 0) {
431 			ubi_err("pattern %x checking failed for PEB %d",
432 				patterns[i], pnum);
433 			err = -EIO;
434 			goto out;
435 		}
436 	}
437 
438 	err = patt_count;
439 	ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
440 
441 out:
442 	mutex_unlock(&ubi->buf_mutex);
443 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
444 		/*
445 		 * If a bit-flip or data integrity error was detected, the test
446 		 * has not passed because it happened on a freshly erased
447 		 * physical eraseblock which means something is wrong with it.
448 		 */
449 		ubi_err("read problems on freshly erased PEB %d, must be bad",
450 			pnum);
451 		err = -EIO;
452 	}
453 	return err;
454 }
455 
456 /**
457  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
458  * @ubi: UBI device description object
459  * @pnum: physical eraseblock number to prepare
460  *
461  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
462  * algorithm: the PEB is first filled with zeroes, then it is erased. And
463  * filling with zeroes starts from the end of the PEB. This was observed with
464  * Spansion S29GL512N NOR flash.
465  *
466  * This means that in case of a power cut we may end up with intact data at the
467  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
468  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
469  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
470  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
471  *
472  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
473  * magic numbers in order to invalidate them and prevent the failures. Returns
474  * zero in case of success and a negative error code in case of failure.
475  */
476 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
477 {
478 	int err;
479 	size_t written;
480 	loff_t addr;
481 	uint32_t data = 0;
482 
483 	addr = (loff_t)pnum * ubi->peb_size;
484 	err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
485 	if (err) {
486 		ubi_err("error %d while writing 4 bytes to PEB %d:%d, written "
487 			"%zd bytes", err, pnum, 0, written);
488 		ubi_dbg_dump_stack();
489 		return err;
490 	}
491 
492 	addr += ubi->vid_hdr_aloffset;
493 	err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
494 	if (err) {
495 		ubi_err("error %d while writing 4 bytes to PEB %d:%d, written "
496 			"%zd bytes", err, pnum, ubi->vid_hdr_aloffset, written);
497 		ubi_dbg_dump_stack();
498 		return err;
499 	}
500 
501 	return 0;
502 }
503 
504 /**
505  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
506  * @ubi: UBI device description object
507  * @pnum: physical eraseblock number to erase
508  * @torture: if this physical eraseblock has to be tortured
509  *
510  * This function synchronously erases physical eraseblock @pnum. If @torture
511  * flag is not zero, the physical eraseblock is checked by means of writing
512  * different patterns to it and reading them back. If the torturing is enabled,
513  * the physical eraseblock is erased more than once.
514  *
515  * This function returns the number of erasures made in case of success, %-EIO
516  * if the erasure failed or the torturing test failed, and other negative error
517  * codes in case of other errors. Note, %-EIO means that the physical
518  * eraseblock is bad.
519  */
520 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
521 {
522 	int err, ret = 0;
523 
524 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
525 
526 	err = paranoid_check_not_bad(ubi, pnum);
527 	if (err != 0)
528 		return err > 0 ? -EINVAL : err;
529 
530 	if (ubi->ro_mode) {
531 		ubi_err("read-only mode");
532 		return -EROFS;
533 	}
534 
535 	if (ubi->nor_flash) {
536 		err = nor_erase_prepare(ubi, pnum);
537 		if (err)
538 			return err;
539 	}
540 
541 	if (torture) {
542 		ret = torture_peb(ubi, pnum);
543 		if (ret < 0)
544 			return ret;
545 	}
546 
547 	err = do_sync_erase(ubi, pnum);
548 	if (err)
549 		return err;
550 
551 	return ret + 1;
552 }
553 
554 /**
555  * ubi_io_is_bad - check if a physical eraseblock is bad.
556  * @ubi: UBI device description object
557  * @pnum: the physical eraseblock number to check
558  *
559  * This function returns a positive number if the physical eraseblock is bad,
560  * zero if not, and a negative error code if an error occurred.
561  */
562 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
563 {
564 	struct mtd_info *mtd = ubi->mtd;
565 
566 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
567 
568 	if (ubi->bad_allowed) {
569 		int ret;
570 
571 		ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
572 		if (ret < 0)
573 			ubi_err("error %d while checking if PEB %d is bad",
574 				ret, pnum);
575 		else if (ret)
576 			dbg_io("PEB %d is bad", pnum);
577 		return ret;
578 	}
579 
580 	return 0;
581 }
582 
583 /**
584  * ubi_io_mark_bad - mark a physical eraseblock as bad.
585  * @ubi: UBI device description object
586  * @pnum: the physical eraseblock number to mark
587  *
588  * This function returns zero in case of success and a negative error code in
589  * case of failure.
590  */
591 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
592 {
593 	int err;
594 	struct mtd_info *mtd = ubi->mtd;
595 
596 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
597 
598 	if (ubi->ro_mode) {
599 		ubi_err("read-only mode");
600 		return -EROFS;
601 	}
602 
603 	if (!ubi->bad_allowed)
604 		return 0;
605 
606 	err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
607 	if (err)
608 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
609 	return err;
610 }
611 
612 /**
613  * validate_ec_hdr - validate an erase counter header.
614  * @ubi: UBI device description object
615  * @ec_hdr: the erase counter header to check
616  *
617  * This function returns zero if the erase counter header is OK, and %1 if
618  * not.
619  */
620 static int validate_ec_hdr(const struct ubi_device *ubi,
621 			   const struct ubi_ec_hdr *ec_hdr)
622 {
623 	long long ec;
624 	int vid_hdr_offset, leb_start;
625 
626 	ec = be64_to_cpu(ec_hdr->ec);
627 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
628 	leb_start = be32_to_cpu(ec_hdr->data_offset);
629 
630 	if (ec_hdr->version != UBI_VERSION) {
631 		ubi_err("node with incompatible UBI version found: "
632 			"this UBI version is %d, image version is %d",
633 			UBI_VERSION, (int)ec_hdr->version);
634 		goto bad;
635 	}
636 
637 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
638 		ubi_err("bad VID header offset %d, expected %d",
639 			vid_hdr_offset, ubi->vid_hdr_offset);
640 		goto bad;
641 	}
642 
643 	if (leb_start != ubi->leb_start) {
644 		ubi_err("bad data offset %d, expected %d",
645 			leb_start, ubi->leb_start);
646 		goto bad;
647 	}
648 
649 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
650 		ubi_err("bad erase counter %lld", ec);
651 		goto bad;
652 	}
653 
654 	return 0;
655 
656 bad:
657 	ubi_err("bad EC header");
658 	ubi_dbg_dump_ec_hdr(ec_hdr);
659 	ubi_dbg_dump_stack();
660 	return 1;
661 }
662 
663 /**
664  * ubi_io_read_ec_hdr - read and check an erase counter header.
665  * @ubi: UBI device description object
666  * @pnum: physical eraseblock to read from
667  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
668  * header
669  * @verbose: be verbose if the header is corrupted or was not found
670  *
671  * This function reads erase counter header from physical eraseblock @pnum and
672  * stores it in @ec_hdr. This function also checks CRC checksum of the read
673  * erase counter header. The following codes may be returned:
674  *
675  * o %0 if the CRC checksum is correct and the header was successfully read;
676  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
677  *   and corrected by the flash driver; this is harmless but may indicate that
678  *   this eraseblock may become bad soon (but may be not);
679  * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
680  * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
681  * o a negative error code in case of failure.
682  */
683 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
684 		       struct ubi_ec_hdr *ec_hdr, int verbose)
685 {
686 	int err, read_err = 0;
687 	uint32_t crc, magic, hdr_crc;
688 
689 	dbg_io("read EC header from PEB %d", pnum);
690 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
691 
692 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
693 	if (err) {
694 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
695 			return err;
696 
697 		/*
698 		 * We read all the data, but either a correctable bit-flip
699 		 * occurred, or MTD reported about some data integrity error,
700 		 * like an ECC error in case of NAND. The former is harmless,
701 		 * the later may mean that the read data is corrupted. But we
702 		 * have a CRC check-sum and we will detect this. If the EC
703 		 * header is still OK, we just report this as there was a
704 		 * bit-flip.
705 		 */
706 		read_err = err;
707 	}
708 
709 	magic = be32_to_cpu(ec_hdr->magic);
710 	if (magic != UBI_EC_HDR_MAGIC) {
711 		/*
712 		 * The magic field is wrong. Let's check if we have read all
713 		 * 0xFF. If yes, this physical eraseblock is assumed to be
714 		 * empty.
715 		 *
716 		 * But if there was a read error, we do not test it for all
717 		 * 0xFFs. Even if it does contain all 0xFFs, this error
718 		 * indicates that something is still wrong with this physical
719 		 * eraseblock and we anyway cannot treat it as empty.
720 		 */
721 		if (read_err != -EBADMSG &&
722 		    check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
723 			/* The physical eraseblock is supposedly empty */
724 			if (verbose)
725 				ubi_warn("no EC header found at PEB %d, "
726 					 "only 0xFF bytes", pnum);
727 			else if (UBI_IO_DEBUG)
728 				dbg_msg("no EC header found at PEB %d, "
729 					"only 0xFF bytes", pnum);
730 			return UBI_IO_PEB_EMPTY;
731 		}
732 
733 		/*
734 		 * This is not a valid erase counter header, and these are not
735 		 * 0xFF bytes. Report that the header is corrupted.
736 		 */
737 		if (verbose) {
738 			ubi_warn("bad magic number at PEB %d: %08x instead of "
739 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
740 			ubi_dbg_dump_ec_hdr(ec_hdr);
741 		} else if (UBI_IO_DEBUG)
742 			dbg_msg("bad magic number at PEB %d: %08x instead of "
743 				"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
744 		return UBI_IO_BAD_EC_HDR;
745 	}
746 
747 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
748 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
749 
750 	if (hdr_crc != crc) {
751 		if (verbose) {
752 			ubi_warn("bad EC header CRC at PEB %d, calculated "
753 				 "%#08x, read %#08x", pnum, crc, hdr_crc);
754 			ubi_dbg_dump_ec_hdr(ec_hdr);
755 		} else if (UBI_IO_DEBUG)
756 			dbg_msg("bad EC header CRC at PEB %d, calculated "
757 				"%#08x, read %#08x", pnum, crc, hdr_crc);
758 		return UBI_IO_BAD_EC_HDR;
759 	}
760 
761 	/* And of course validate what has just been read from the media */
762 	err = validate_ec_hdr(ubi, ec_hdr);
763 	if (err) {
764 		ubi_err("validation failed for PEB %d", pnum);
765 		return -EINVAL;
766 	}
767 
768 	return read_err ? UBI_IO_BITFLIPS : 0;
769 }
770 
771 /**
772  * ubi_io_write_ec_hdr - write an erase counter header.
773  * @ubi: UBI device description object
774  * @pnum: physical eraseblock to write to
775  * @ec_hdr: the erase counter header to write
776  *
777  * This function writes erase counter header described by @ec_hdr to physical
778  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
779  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
780  * field.
781  *
782  * This function returns zero in case of success and a negative error code in
783  * case of failure. If %-EIO is returned, the physical eraseblock most probably
784  * went bad.
785  */
786 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
787 			struct ubi_ec_hdr *ec_hdr)
788 {
789 	int err;
790 	uint32_t crc;
791 
792 	dbg_io("write EC header to PEB %d", pnum);
793 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
794 
795 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
796 	ec_hdr->version = UBI_VERSION;
797 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
798 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
799 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
800 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
801 	ec_hdr->hdr_crc = cpu_to_be32(crc);
802 
803 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
804 	if (err)
805 		return -EINVAL;
806 
807 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
808 	return err;
809 }
810 
811 /**
812  * validate_vid_hdr - validate a volume identifier header.
813  * @ubi: UBI device description object
814  * @vid_hdr: the volume identifier header to check
815  *
816  * This function checks that data stored in the volume identifier header
817  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
818  */
819 static int validate_vid_hdr(const struct ubi_device *ubi,
820 			    const struct ubi_vid_hdr *vid_hdr)
821 {
822 	int vol_type = vid_hdr->vol_type;
823 	int copy_flag = vid_hdr->copy_flag;
824 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
825 	int lnum = be32_to_cpu(vid_hdr->lnum);
826 	int compat = vid_hdr->compat;
827 	int data_size = be32_to_cpu(vid_hdr->data_size);
828 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
829 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
830 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
831 	int usable_leb_size = ubi->leb_size - data_pad;
832 
833 	if (copy_flag != 0 && copy_flag != 1) {
834 		dbg_err("bad copy_flag");
835 		goto bad;
836 	}
837 
838 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
839 	    data_pad < 0) {
840 		dbg_err("negative values");
841 		goto bad;
842 	}
843 
844 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
845 		dbg_err("bad vol_id");
846 		goto bad;
847 	}
848 
849 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
850 		dbg_err("bad compat");
851 		goto bad;
852 	}
853 
854 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
855 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
856 	    compat != UBI_COMPAT_REJECT) {
857 		dbg_err("bad compat");
858 		goto bad;
859 	}
860 
861 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
862 		dbg_err("bad vol_type");
863 		goto bad;
864 	}
865 
866 	if (data_pad >= ubi->leb_size / 2) {
867 		dbg_err("bad data_pad");
868 		goto bad;
869 	}
870 
871 	if (vol_type == UBI_VID_STATIC) {
872 		/*
873 		 * Although from high-level point of view static volumes may
874 		 * contain zero bytes of data, but no VID headers can contain
875 		 * zero at these fields, because they empty volumes do not have
876 		 * mapped logical eraseblocks.
877 		 */
878 		if (used_ebs == 0) {
879 			dbg_err("zero used_ebs");
880 			goto bad;
881 		}
882 		if (data_size == 0) {
883 			dbg_err("zero data_size");
884 			goto bad;
885 		}
886 		if (lnum < used_ebs - 1) {
887 			if (data_size != usable_leb_size) {
888 				dbg_err("bad data_size");
889 				goto bad;
890 			}
891 		} else if (lnum == used_ebs - 1) {
892 			if (data_size == 0) {
893 				dbg_err("bad data_size at last LEB");
894 				goto bad;
895 			}
896 		} else {
897 			dbg_err("too high lnum");
898 			goto bad;
899 		}
900 	} else {
901 		if (copy_flag == 0) {
902 			if (data_crc != 0) {
903 				dbg_err("non-zero data CRC");
904 				goto bad;
905 			}
906 			if (data_size != 0) {
907 				dbg_err("non-zero data_size");
908 				goto bad;
909 			}
910 		} else {
911 			if (data_size == 0) {
912 				dbg_err("zero data_size of copy");
913 				goto bad;
914 			}
915 		}
916 		if (used_ebs != 0) {
917 			dbg_err("bad used_ebs");
918 			goto bad;
919 		}
920 	}
921 
922 	return 0;
923 
924 bad:
925 	ubi_err("bad VID header");
926 	ubi_dbg_dump_vid_hdr(vid_hdr);
927 	ubi_dbg_dump_stack();
928 	return 1;
929 }
930 
931 /**
932  * ubi_io_read_vid_hdr - read and check a volume identifier header.
933  * @ubi: UBI device description object
934  * @pnum: physical eraseblock number to read from
935  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
936  * identifier header
937  * @verbose: be verbose if the header is corrupted or wasn't found
938  *
939  * This function reads the volume identifier header from physical eraseblock
940  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
941  * volume identifier header. The following codes may be returned:
942  *
943  * o %0 if the CRC checksum is correct and the header was successfully read;
944  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
945  *   and corrected by the flash driver; this is harmless but may indicate that
946  *   this eraseblock may become bad soon;
947  * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC
948  *   error detected);
949  * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
950  *   header there);
951  * o a negative error code in case of failure.
952  */
953 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
954 			struct ubi_vid_hdr *vid_hdr, int verbose)
955 {
956 	int err, read_err = 0;
957 	uint32_t crc, magic, hdr_crc;
958 	void *p;
959 
960 	dbg_io("read VID header from PEB %d", pnum);
961 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
962 
963 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
964 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
965 			  ubi->vid_hdr_alsize);
966 	if (err) {
967 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
968 			return err;
969 
970 		/*
971 		 * We read all the data, but either a correctable bit-flip
972 		 * occurred, or MTD reported about some data integrity error,
973 		 * like an ECC error in case of NAND. The former is harmless,
974 		 * the later may mean the read data is corrupted. But we have a
975 		 * CRC check-sum and we will identify this. If the VID header is
976 		 * still OK, we just report this as there was a bit-flip.
977 		 */
978 		read_err = err;
979 	}
980 
981 	magic = be32_to_cpu(vid_hdr->magic);
982 	if (magic != UBI_VID_HDR_MAGIC) {
983 		/*
984 		 * If we have read all 0xFF bytes, the VID header probably does
985 		 * not exist and the physical eraseblock is assumed to be free.
986 		 *
987 		 * But if there was a read error, we do not test the data for
988 		 * 0xFFs. Even if it does contain all 0xFFs, this error
989 		 * indicates that something is still wrong with this physical
990 		 * eraseblock and it cannot be regarded as free.
991 		 */
992 		if (read_err != -EBADMSG &&
993 		    check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
994 			/* The physical eraseblock is supposedly free */
995 			if (verbose)
996 				ubi_warn("no VID header found at PEB %d, "
997 					 "only 0xFF bytes", pnum);
998 			else if (UBI_IO_DEBUG)
999 				dbg_msg("no VID header found at PEB %d, "
1000 					"only 0xFF bytes", pnum);
1001 			return UBI_IO_PEB_FREE;
1002 		}
1003 
1004 		/*
1005 		 * This is not a valid VID header, and these are not 0xFF
1006 		 * bytes. Report that the header is corrupted.
1007 		 */
1008 		if (verbose) {
1009 			ubi_warn("bad magic number at PEB %d: %08x instead of "
1010 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1011 			ubi_dbg_dump_vid_hdr(vid_hdr);
1012 		} else if (UBI_IO_DEBUG)
1013 			dbg_msg("bad magic number at PEB %d: %08x instead of "
1014 				"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1015 		return UBI_IO_BAD_VID_HDR;
1016 	}
1017 
1018 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1019 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1020 
1021 	if (hdr_crc != crc) {
1022 		if (verbose) {
1023 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1024 				 "read %#08x", pnum, crc, hdr_crc);
1025 			ubi_dbg_dump_vid_hdr(vid_hdr);
1026 		} else if (UBI_IO_DEBUG)
1027 			dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1028 				"read %#08x", pnum, crc, hdr_crc);
1029 		return UBI_IO_BAD_VID_HDR;
1030 	}
1031 
1032 	/* Validate the VID header that we have just read */
1033 	err = validate_vid_hdr(ubi, vid_hdr);
1034 	if (err) {
1035 		ubi_err("validation failed for PEB %d", pnum);
1036 		return -EINVAL;
1037 	}
1038 
1039 	return read_err ? UBI_IO_BITFLIPS : 0;
1040 }
1041 
1042 /**
1043  * ubi_io_write_vid_hdr - write a volume identifier header.
1044  * @ubi: UBI device description object
1045  * @pnum: the physical eraseblock number to write to
1046  * @vid_hdr: the volume identifier header to write
1047  *
1048  * This function writes the volume identifier header described by @vid_hdr to
1049  * physical eraseblock @pnum. This function automatically fills the
1050  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1051  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1052  *
1053  * This function returns zero in case of success and a negative error code in
1054  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1055  * bad.
1056  */
1057 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1058 			 struct ubi_vid_hdr *vid_hdr)
1059 {
1060 	int err;
1061 	uint32_t crc;
1062 	void *p;
1063 
1064 	dbg_io("write VID header to PEB %d", pnum);
1065 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1066 
1067 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1068 	if (err)
1069 		return err > 0 ? -EINVAL : err;
1070 
1071 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1072 	vid_hdr->version = UBI_VERSION;
1073 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1074 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1075 
1076 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1077 	if (err)
1078 		return -EINVAL;
1079 
1080 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1081 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1082 			   ubi->vid_hdr_alsize);
1083 	return err;
1084 }
1085 
1086 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1087 
1088 /**
1089  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1090  * @ubi: UBI device description object
1091  * @pnum: physical eraseblock number to check
1092  *
1093  * This function returns zero if the physical eraseblock is good, a positive
1094  * number if it is bad and a negative error code if an error occurred.
1095  */
1096 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1097 {
1098 	int err;
1099 
1100 	err = ubi_io_is_bad(ubi, pnum);
1101 	if (!err)
1102 		return err;
1103 
1104 	ubi_err("paranoid check failed for PEB %d", pnum);
1105 	ubi_dbg_dump_stack();
1106 	return err;
1107 }
1108 
1109 /**
1110  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1111  * @ubi: UBI device description object
1112  * @pnum: physical eraseblock number the erase counter header belongs to
1113  * @ec_hdr: the erase counter header to check
1114  *
1115  * This function returns zero if the erase counter header contains valid
1116  * values, and %1 if not.
1117  */
1118 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1119 				 const struct ubi_ec_hdr *ec_hdr)
1120 {
1121 	int err;
1122 	uint32_t magic;
1123 
1124 	magic = be32_to_cpu(ec_hdr->magic);
1125 	if (magic != UBI_EC_HDR_MAGIC) {
1126 		ubi_err("bad magic %#08x, must be %#08x",
1127 			magic, UBI_EC_HDR_MAGIC);
1128 		goto fail;
1129 	}
1130 
1131 	err = validate_ec_hdr(ubi, ec_hdr);
1132 	if (err) {
1133 		ubi_err("paranoid check failed for PEB %d", pnum);
1134 		goto fail;
1135 	}
1136 
1137 	return 0;
1138 
1139 fail:
1140 	ubi_dbg_dump_ec_hdr(ec_hdr);
1141 	ubi_dbg_dump_stack();
1142 	return 1;
1143 }
1144 
1145 /**
1146  * paranoid_check_peb_ec_hdr - check erase counter header.
1147  * @ubi: UBI device description object
1148  * @pnum: the physical eraseblock number to check
1149  *
1150  * This function returns zero if the erase counter header is all right, %1 if
1151  * not, and a negative error code if an error occurred.
1152  */
1153 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1154 {
1155 	int err;
1156 	uint32_t crc, hdr_crc;
1157 	struct ubi_ec_hdr *ec_hdr;
1158 
1159 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1160 	if (!ec_hdr)
1161 		return -ENOMEM;
1162 
1163 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1164 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1165 		goto exit;
1166 
1167 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1168 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1169 	if (hdr_crc != crc) {
1170 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1171 		ubi_err("paranoid check failed for PEB %d", pnum);
1172 		ubi_dbg_dump_ec_hdr(ec_hdr);
1173 		ubi_dbg_dump_stack();
1174 		err = 1;
1175 		goto exit;
1176 	}
1177 
1178 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1179 
1180 exit:
1181 	kfree(ec_hdr);
1182 	return err;
1183 }
1184 
1185 /**
1186  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1187  * @ubi: UBI device description object
1188  * @pnum: physical eraseblock number the volume identifier header belongs to
1189  * @vid_hdr: the volume identifier header to check
1190  *
1191  * This function returns zero if the volume identifier header is all right, and
1192  * %1 if not.
1193  */
1194 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1195 				  const struct ubi_vid_hdr *vid_hdr)
1196 {
1197 	int err;
1198 	uint32_t magic;
1199 
1200 	magic = be32_to_cpu(vid_hdr->magic);
1201 	if (magic != UBI_VID_HDR_MAGIC) {
1202 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1203 			magic, pnum, UBI_VID_HDR_MAGIC);
1204 		goto fail;
1205 	}
1206 
1207 	err = validate_vid_hdr(ubi, vid_hdr);
1208 	if (err) {
1209 		ubi_err("paranoid check failed for PEB %d", pnum);
1210 		goto fail;
1211 	}
1212 
1213 	return err;
1214 
1215 fail:
1216 	ubi_err("paranoid check failed for PEB %d", pnum);
1217 	ubi_dbg_dump_vid_hdr(vid_hdr);
1218 	ubi_dbg_dump_stack();
1219 	return 1;
1220 
1221 }
1222 
1223 /**
1224  * paranoid_check_peb_vid_hdr - check volume identifier header.
1225  * @ubi: UBI device description object
1226  * @pnum: the physical eraseblock number to check
1227  *
1228  * This function returns zero if the volume identifier header is all right,
1229  * %1 if not, and a negative error code if an error occurred.
1230  */
1231 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1232 {
1233 	int err;
1234 	uint32_t crc, hdr_crc;
1235 	struct ubi_vid_hdr *vid_hdr;
1236 	void *p;
1237 
1238 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1239 	if (!vid_hdr)
1240 		return -ENOMEM;
1241 
1242 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1243 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1244 			  ubi->vid_hdr_alsize);
1245 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1246 		goto exit;
1247 
1248 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1249 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1250 	if (hdr_crc != crc) {
1251 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1252 			"read %#08x", pnum, crc, hdr_crc);
1253 		ubi_err("paranoid check failed for PEB %d", pnum);
1254 		ubi_dbg_dump_vid_hdr(vid_hdr);
1255 		ubi_dbg_dump_stack();
1256 		err = 1;
1257 		goto exit;
1258 	}
1259 
1260 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1261 
1262 exit:
1263 	ubi_free_vid_hdr(ubi, vid_hdr);
1264 	return err;
1265 }
1266 
1267 /**
1268  * ubi_dbg_check_all_ff - check that a region of flash is empty.
1269  * @ubi: UBI device description object
1270  * @pnum: the physical eraseblock number to check
1271  * @offset: the starting offset within the physical eraseblock to check
1272  * @len: the length of the region to check
1273  *
1274  * This function returns zero if only 0xFF bytes are present at offset
1275  * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1276  * code if an error occurred.
1277  */
1278 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1279 {
1280 	size_t read;
1281 	int err;
1282 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1283 
1284 	mutex_lock(&ubi->dbg_buf_mutex);
1285 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1286 	if (err && err != -EUCLEAN) {
1287 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1288 			"read %zd bytes", err, len, pnum, offset, read);
1289 		goto error;
1290 	}
1291 
1292 	err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1293 	if (err == 0) {
1294 		ubi_err("flash region at PEB %d:%d, length %d does not "
1295 			"contain all 0xFF bytes", pnum, offset, len);
1296 		goto fail;
1297 	}
1298 	mutex_unlock(&ubi->dbg_buf_mutex);
1299 
1300 	return 0;
1301 
1302 fail:
1303 	ubi_err("paranoid check failed for PEB %d", pnum);
1304 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1305 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1306 		       ubi->dbg_peb_buf, len, 1);
1307 	err = 1;
1308 error:
1309 	ubi_dbg_dump_stack();
1310 	mutex_unlock(&ubi->dbg_buf_mutex);
1311 	return err;
1312 }
1313 
1314 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1315