1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * UBI input/output sub-system. 24 * 25 * This sub-system provides a uniform way to work with all kinds of the 26 * underlying MTD devices. It also implements handy functions for reading and 27 * writing UBI headers. 28 * 29 * We are trying to have a paranoid mindset and not to trust to what we read 30 * from the flash media in order to be more secure and robust. So this 31 * sub-system validates every single header it reads from the flash media. 32 * 33 * Some words about how the eraseblock headers are stored. 34 * 35 * The erase counter header is always stored at offset zero. By default, the 36 * VID header is stored after the EC header at the closest aligned offset 37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 38 * header at the closest aligned offset. But this default layout may be 39 * changed. For example, for different reasons (e.g., optimization) UBI may be 40 * asked to put the VID header at further offset, and even at an unaligned 41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 42 * proper padding in front of it. Data offset may also be changed but it has to 43 * be aligned. 44 * 45 * About minimal I/O units. In general, UBI assumes flash device model where 46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 50 * to do different optimizations. 51 * 52 * This is extremely useful in case of NAND flashes which admit of several 53 * write operations to one NAND page. In this case UBI can fit EC and VID 54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 57 * users. 58 * 59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 61 * headers. 62 * 63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 64 * device, e.g., make @ubi->min_io_size = 512 in the example above? 65 * 66 * A: because when writing a sub-page, MTD still writes a full 2K page but the 67 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 69 * Thus, we prefer to use sub-pages only for EC and VID headers. 70 * 71 * As it was noted above, the VID header may start at a non-aligned offset. 72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 73 * the VID header may reside at offset 1984 which is the last 64 bytes of the 74 * last sub-page (EC header is always at offset zero). This causes some 75 * difficulties when reading and writing VID headers. 76 * 77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 78 * the data and want to write this VID header out. As we can only write in 79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 80 * to offset 448 of this buffer. 81 * 82 * The I/O sub-system does the following trick in order to avoid this extra 83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 85 * When the VID header is being written out, it shifts the VID header pointer 86 * back and writes the whole sub-page. 87 */ 88 89 #include <linux/crc32.h> 90 #include <linux/err.h> 91 #include <linux/slab.h> 92 #include "ubi.h" 93 94 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum); 96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, 98 const struct ubi_ec_hdr *ec_hdr); 99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, 101 const struct ubi_vid_hdr *vid_hdr); 102 #else 103 #define paranoid_check_not_bad(ubi, pnum) 0 104 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0 105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0 106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0 107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0 108 #endif 109 110 /** 111 * ubi_io_read - read data from a physical eraseblock. 112 * @ubi: UBI device description object 113 * @buf: buffer where to store the read data 114 * @pnum: physical eraseblock number to read from 115 * @offset: offset within the physical eraseblock from where to read 116 * @len: how many bytes to read 117 * 118 * This function reads data from offset @offset of physical eraseblock @pnum 119 * and stores the read data in the @buf buffer. The following return codes are 120 * possible: 121 * 122 * o %0 if all the requested data were successfully read; 123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 124 * correctable bit-flips were detected; this is harmless but may indicate 125 * that this eraseblock may become bad soon (but do not have to); 126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 127 * example it can be an ECC error in case of NAND; this most probably means 128 * that the data is corrupted; 129 * o %-EIO if some I/O error occurred; 130 * o other negative error codes in case of other errors. 131 */ 132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 133 int len) 134 { 135 int err, retries = 0; 136 size_t read; 137 loff_t addr; 138 139 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 140 141 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 142 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 143 ubi_assert(len > 0); 144 145 err = paranoid_check_not_bad(ubi, pnum); 146 if (err) 147 return err; 148 149 addr = (loff_t)pnum * ubi->peb_size + offset; 150 retry: 151 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf); 152 if (err) { 153 const char *errstr = (err == -EBADMSG) ? " (ECC error)" : ""; 154 155 if (err == -EUCLEAN) { 156 /* 157 * -EUCLEAN is reported if there was a bit-flip which 158 * was corrected, so this is harmless. 159 * 160 * We do not report about it here unless debugging is 161 * enabled. A corresponding message will be printed 162 * later, when it is has been scrubbed. 163 */ 164 dbg_msg("fixable bit-flip detected at PEB %d", pnum); 165 ubi_assert(len == read); 166 return UBI_IO_BITFLIPS; 167 } 168 169 if (read != len && retries++ < UBI_IO_RETRIES) { 170 dbg_io("error %d%s while reading %d bytes from PEB %d:%d," 171 " read only %zd bytes, retry", 172 err, errstr, len, pnum, offset, read); 173 yield(); 174 goto retry; 175 } 176 177 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, " 178 "read %zd bytes", err, errstr, len, pnum, offset, read); 179 ubi_dbg_dump_stack(); 180 181 /* 182 * The driver should never return -EBADMSG if it failed to read 183 * all the requested data. But some buggy drivers might do 184 * this, so we change it to -EIO. 185 */ 186 if (read != len && err == -EBADMSG) { 187 ubi_assert(0); 188 err = -EIO; 189 } 190 } else { 191 ubi_assert(len == read); 192 193 if (ubi_dbg_is_bitflip()) { 194 dbg_gen("bit-flip (emulated)"); 195 err = UBI_IO_BITFLIPS; 196 } 197 } 198 199 return err; 200 } 201 202 /** 203 * ubi_io_write - write data to a physical eraseblock. 204 * @ubi: UBI device description object 205 * @buf: buffer with the data to write 206 * @pnum: physical eraseblock number to write to 207 * @offset: offset within the physical eraseblock where to write 208 * @len: how many bytes to write 209 * 210 * This function writes @len bytes of data from buffer @buf to offset @offset 211 * of physical eraseblock @pnum. If all the data were successfully written, 212 * zero is returned. If an error occurred, this function returns a negative 213 * error code. If %-EIO is returned, the physical eraseblock most probably went 214 * bad. 215 * 216 * Note, in case of an error, it is possible that something was still written 217 * to the flash media, but may be some garbage. 218 */ 219 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 220 int len) 221 { 222 int err; 223 size_t written; 224 loff_t addr; 225 226 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 227 228 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 229 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 230 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 231 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 232 233 if (ubi->ro_mode) { 234 ubi_err("read-only mode"); 235 return -EROFS; 236 } 237 238 /* The below has to be compiled out if paranoid checks are disabled */ 239 240 err = paranoid_check_not_bad(ubi, pnum); 241 if (err) 242 return err; 243 244 /* The area we are writing to has to contain all 0xFF bytes */ 245 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); 246 if (err) 247 return err; 248 249 if (offset >= ubi->leb_start) { 250 /* 251 * We write to the data area of the physical eraseblock. Make 252 * sure it has valid EC and VID headers. 253 */ 254 err = paranoid_check_peb_ec_hdr(ubi, pnum); 255 if (err) 256 return err; 257 err = paranoid_check_peb_vid_hdr(ubi, pnum); 258 if (err) 259 return err; 260 } 261 262 if (ubi_dbg_is_write_failure()) { 263 dbg_err("cannot write %d bytes to PEB %d:%d " 264 "(emulated)", len, pnum, offset); 265 ubi_dbg_dump_stack(); 266 return -EIO; 267 } 268 269 addr = (loff_t)pnum * ubi->peb_size + offset; 270 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf); 271 if (err) { 272 ubi_err("error %d while writing %d bytes to PEB %d:%d, written " 273 "%zd bytes", err, len, pnum, offset, written); 274 ubi_dbg_dump_stack(); 275 ubi_dbg_dump_flash(ubi, pnum, offset, len); 276 } else 277 ubi_assert(written == len); 278 279 if (!err) { 280 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len); 281 if (err) 282 return err; 283 284 /* 285 * Since we always write sequentially, the rest of the PEB has 286 * to contain only 0xFF bytes. 287 */ 288 offset += len; 289 len = ubi->peb_size - offset; 290 if (len) 291 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); 292 } 293 294 return err; 295 } 296 297 /** 298 * erase_callback - MTD erasure call-back. 299 * @ei: MTD erase information object. 300 * 301 * Note, even though MTD erase interface is asynchronous, all the current 302 * implementations are synchronous anyway. 303 */ 304 static void erase_callback(struct erase_info *ei) 305 { 306 wake_up_interruptible((wait_queue_head_t *)ei->priv); 307 } 308 309 /** 310 * do_sync_erase - synchronously erase a physical eraseblock. 311 * @ubi: UBI device description object 312 * @pnum: the physical eraseblock number to erase 313 * 314 * This function synchronously erases physical eraseblock @pnum and returns 315 * zero in case of success and a negative error code in case of failure. If 316 * %-EIO is returned, the physical eraseblock most probably went bad. 317 */ 318 static int do_sync_erase(struct ubi_device *ubi, int pnum) 319 { 320 int err, retries = 0; 321 struct erase_info ei; 322 wait_queue_head_t wq; 323 324 dbg_io("erase PEB %d", pnum); 325 326 retry: 327 init_waitqueue_head(&wq); 328 memset(&ei, 0, sizeof(struct erase_info)); 329 330 ei.mtd = ubi->mtd; 331 ei.addr = (loff_t)pnum * ubi->peb_size; 332 ei.len = ubi->peb_size; 333 ei.callback = erase_callback; 334 ei.priv = (unsigned long)&wq; 335 336 err = ubi->mtd->erase(ubi->mtd, &ei); 337 if (err) { 338 if (retries++ < UBI_IO_RETRIES) { 339 dbg_io("error %d while erasing PEB %d, retry", 340 err, pnum); 341 yield(); 342 goto retry; 343 } 344 ubi_err("cannot erase PEB %d, error %d", pnum, err); 345 ubi_dbg_dump_stack(); 346 return err; 347 } 348 349 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 350 ei.state == MTD_ERASE_FAILED); 351 if (err) { 352 ubi_err("interrupted PEB %d erasure", pnum); 353 return -EINTR; 354 } 355 356 if (ei.state == MTD_ERASE_FAILED) { 357 if (retries++ < UBI_IO_RETRIES) { 358 dbg_io("error while erasing PEB %d, retry", pnum); 359 yield(); 360 goto retry; 361 } 362 ubi_err("cannot erase PEB %d", pnum); 363 ubi_dbg_dump_stack(); 364 return -EIO; 365 } 366 367 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size); 368 if (err) 369 return err; 370 371 if (ubi_dbg_is_erase_failure() && !err) { 372 dbg_err("cannot erase PEB %d (emulated)", pnum); 373 return -EIO; 374 } 375 376 return 0; 377 } 378 379 /** 380 * check_pattern - check if buffer contains only a certain byte pattern. 381 * @buf: buffer to check 382 * @patt: the pattern to check 383 * @size: buffer size in bytes 384 * 385 * This function returns %1 in there are only @patt bytes in @buf, and %0 if 386 * something else was also found. 387 */ 388 static int check_pattern(const void *buf, uint8_t patt, int size) 389 { 390 int i; 391 392 for (i = 0; i < size; i++) 393 if (((const uint8_t *)buf)[i] != patt) 394 return 0; 395 return 1; 396 } 397 398 /* Patterns to write to a physical eraseblock when torturing it */ 399 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 400 401 /** 402 * torture_peb - test a supposedly bad physical eraseblock. 403 * @ubi: UBI device description object 404 * @pnum: the physical eraseblock number to test 405 * 406 * This function returns %-EIO if the physical eraseblock did not pass the 407 * test, a positive number of erase operations done if the test was 408 * successfully passed, and other negative error codes in case of other errors. 409 */ 410 static int torture_peb(struct ubi_device *ubi, int pnum) 411 { 412 int err, i, patt_count; 413 414 ubi_msg("run torture test for PEB %d", pnum); 415 patt_count = ARRAY_SIZE(patterns); 416 ubi_assert(patt_count > 0); 417 418 mutex_lock(&ubi->buf_mutex); 419 for (i = 0; i < patt_count; i++) { 420 err = do_sync_erase(ubi, pnum); 421 if (err) 422 goto out; 423 424 /* Make sure the PEB contains only 0xFF bytes */ 425 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 426 if (err) 427 goto out; 428 429 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size); 430 if (err == 0) { 431 ubi_err("erased PEB %d, but a non-0xFF byte found", 432 pnum); 433 err = -EIO; 434 goto out; 435 } 436 437 /* Write a pattern and check it */ 438 memset(ubi->peb_buf1, patterns[i], ubi->peb_size); 439 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 440 if (err) 441 goto out; 442 443 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size); 444 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 445 if (err) 446 goto out; 447 448 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size); 449 if (err == 0) { 450 ubi_err("pattern %x checking failed for PEB %d", 451 patterns[i], pnum); 452 err = -EIO; 453 goto out; 454 } 455 } 456 457 err = patt_count; 458 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum); 459 460 out: 461 mutex_unlock(&ubi->buf_mutex); 462 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { 463 /* 464 * If a bit-flip or data integrity error was detected, the test 465 * has not passed because it happened on a freshly erased 466 * physical eraseblock which means something is wrong with it. 467 */ 468 ubi_err("read problems on freshly erased PEB %d, must be bad", 469 pnum); 470 err = -EIO; 471 } 472 return err; 473 } 474 475 /** 476 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 477 * @ubi: UBI device description object 478 * @pnum: physical eraseblock number to prepare 479 * 480 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 481 * algorithm: the PEB is first filled with zeroes, then it is erased. And 482 * filling with zeroes starts from the end of the PEB. This was observed with 483 * Spansion S29GL512N NOR flash. 484 * 485 * This means that in case of a power cut we may end up with intact data at the 486 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 487 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 488 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 489 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 490 * 491 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 492 * magic numbers in order to invalidate them and prevent the failures. Returns 493 * zero in case of success and a negative error code in case of failure. 494 */ 495 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 496 { 497 int err, err1; 498 size_t written; 499 loff_t addr; 500 uint32_t data = 0; 501 struct ubi_vid_hdr vid_hdr; 502 503 addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset; 504 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data); 505 if (!err) { 506 addr -= ubi->vid_hdr_aloffset; 507 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, 508 (void *)&data); 509 if (!err) 510 return 0; 511 } 512 513 /* 514 * We failed to write to the media. This was observed with Spansion 515 * S29GL512N NOR flash. Most probably the eraseblock erasure was 516 * interrupted at a very inappropriate moment, so it became unwritable. 517 * In this case we probably anyway have garbage in this PEB. 518 */ 519 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); 520 if (err1 == UBI_IO_BAD_HDR_READ || err1 == UBI_IO_BAD_HDR) 521 /* 522 * The VID header is corrupted, so we can safely erase this 523 * PEB and not afraid that it will be treated as a valid PEB in 524 * case of an unclean reboot. 525 */ 526 return 0; 527 528 /* 529 * The PEB contains a valid VID header, but we cannot invalidate it. 530 * Supposedly the flash media or the driver is screwed up, so return an 531 * error. 532 */ 533 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", 534 pnum, err, err1); 535 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size); 536 return -EIO; 537 } 538 539 /** 540 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 541 * @ubi: UBI device description object 542 * @pnum: physical eraseblock number to erase 543 * @torture: if this physical eraseblock has to be tortured 544 * 545 * This function synchronously erases physical eraseblock @pnum. If @torture 546 * flag is not zero, the physical eraseblock is checked by means of writing 547 * different patterns to it and reading them back. If the torturing is enabled, 548 * the physical eraseblock is erased more than once. 549 * 550 * This function returns the number of erasures made in case of success, %-EIO 551 * if the erasure failed or the torturing test failed, and other negative error 552 * codes in case of other errors. Note, %-EIO means that the physical 553 * eraseblock is bad. 554 */ 555 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 556 { 557 int err, ret = 0; 558 559 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 560 561 err = paranoid_check_not_bad(ubi, pnum); 562 if (err != 0) 563 return err; 564 565 if (ubi->ro_mode) { 566 ubi_err("read-only mode"); 567 return -EROFS; 568 } 569 570 if (ubi->nor_flash) { 571 err = nor_erase_prepare(ubi, pnum); 572 if (err) 573 return err; 574 } 575 576 if (torture) { 577 ret = torture_peb(ubi, pnum); 578 if (ret < 0) 579 return ret; 580 } 581 582 err = do_sync_erase(ubi, pnum); 583 if (err) 584 return err; 585 586 return ret + 1; 587 } 588 589 /** 590 * ubi_io_is_bad - check if a physical eraseblock is bad. 591 * @ubi: UBI device description object 592 * @pnum: the physical eraseblock number to check 593 * 594 * This function returns a positive number if the physical eraseblock is bad, 595 * zero if not, and a negative error code if an error occurred. 596 */ 597 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 598 { 599 struct mtd_info *mtd = ubi->mtd; 600 601 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 602 603 if (ubi->bad_allowed) { 604 int ret; 605 606 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 607 if (ret < 0) 608 ubi_err("error %d while checking if PEB %d is bad", 609 ret, pnum); 610 else if (ret) 611 dbg_io("PEB %d is bad", pnum); 612 return ret; 613 } 614 615 return 0; 616 } 617 618 /** 619 * ubi_io_mark_bad - mark a physical eraseblock as bad. 620 * @ubi: UBI device description object 621 * @pnum: the physical eraseblock number to mark 622 * 623 * This function returns zero in case of success and a negative error code in 624 * case of failure. 625 */ 626 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 627 { 628 int err; 629 struct mtd_info *mtd = ubi->mtd; 630 631 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 632 633 if (ubi->ro_mode) { 634 ubi_err("read-only mode"); 635 return -EROFS; 636 } 637 638 if (!ubi->bad_allowed) 639 return 0; 640 641 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 642 if (err) 643 ubi_err("cannot mark PEB %d bad, error %d", pnum, err); 644 return err; 645 } 646 647 /** 648 * validate_ec_hdr - validate an erase counter header. 649 * @ubi: UBI device description object 650 * @ec_hdr: the erase counter header to check 651 * 652 * This function returns zero if the erase counter header is OK, and %1 if 653 * not. 654 */ 655 static int validate_ec_hdr(const struct ubi_device *ubi, 656 const struct ubi_ec_hdr *ec_hdr) 657 { 658 long long ec; 659 int vid_hdr_offset, leb_start; 660 661 ec = be64_to_cpu(ec_hdr->ec); 662 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 663 leb_start = be32_to_cpu(ec_hdr->data_offset); 664 665 if (ec_hdr->version != UBI_VERSION) { 666 ubi_err("node with incompatible UBI version found: " 667 "this UBI version is %d, image version is %d", 668 UBI_VERSION, (int)ec_hdr->version); 669 goto bad; 670 } 671 672 if (vid_hdr_offset != ubi->vid_hdr_offset) { 673 ubi_err("bad VID header offset %d, expected %d", 674 vid_hdr_offset, ubi->vid_hdr_offset); 675 goto bad; 676 } 677 678 if (leb_start != ubi->leb_start) { 679 ubi_err("bad data offset %d, expected %d", 680 leb_start, ubi->leb_start); 681 goto bad; 682 } 683 684 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 685 ubi_err("bad erase counter %lld", ec); 686 goto bad; 687 } 688 689 return 0; 690 691 bad: 692 ubi_err("bad EC header"); 693 ubi_dbg_dump_ec_hdr(ec_hdr); 694 ubi_dbg_dump_stack(); 695 return 1; 696 } 697 698 /** 699 * ubi_io_read_ec_hdr - read and check an erase counter header. 700 * @ubi: UBI device description object 701 * @pnum: physical eraseblock to read from 702 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 703 * header 704 * @verbose: be verbose if the header is corrupted or was not found 705 * 706 * This function reads erase counter header from physical eraseblock @pnum and 707 * stores it in @ec_hdr. This function also checks CRC checksum of the read 708 * erase counter header. The following codes may be returned: 709 * 710 * o %0 if the CRC checksum is correct and the header was successfully read; 711 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 712 * and corrected by the flash driver; this is harmless but may indicate that 713 * this eraseblock may become bad soon (but may be not); 714 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 715 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty; 716 * o a negative error code in case of failure. 717 */ 718 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 719 struct ubi_ec_hdr *ec_hdr, int verbose) 720 { 721 int err, read_err = 0; 722 uint32_t crc, magic, hdr_crc; 723 724 dbg_io("read EC header from PEB %d", pnum); 725 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 726 727 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 728 if (err) { 729 if (err != UBI_IO_BITFLIPS && err != -EBADMSG) 730 return err; 731 732 /* 733 * We read all the data, but either a correctable bit-flip 734 * occurred, or MTD reported about some data integrity error, 735 * like an ECC error in case of NAND. The former is harmless, 736 * the later may mean that the read data is corrupted. But we 737 * have a CRC check-sum and we will detect this. If the EC 738 * header is still OK, we just report this as there was a 739 * bit-flip. 740 */ 741 if (err == -EBADMSG) 742 read_err = UBI_IO_BAD_HDR_READ; 743 } 744 745 magic = be32_to_cpu(ec_hdr->magic); 746 if (magic != UBI_EC_HDR_MAGIC) { 747 if (read_err) 748 return read_err; 749 750 /* 751 * The magic field is wrong. Let's check if we have read all 752 * 0xFF. If yes, this physical eraseblock is assumed to be 753 * empty. 754 */ 755 if (check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 756 /* The physical eraseblock is supposedly empty */ 757 if (verbose) 758 ubi_warn("no EC header found at PEB %d, " 759 "only 0xFF bytes", pnum); 760 else if (UBI_IO_DEBUG) 761 dbg_msg("no EC header found at PEB %d, " 762 "only 0xFF bytes", pnum); 763 return UBI_IO_PEB_EMPTY; 764 } 765 766 /* 767 * This is not a valid erase counter header, and these are not 768 * 0xFF bytes. Report that the header is corrupted. 769 */ 770 if (verbose) { 771 ubi_warn("bad magic number at PEB %d: %08x instead of " 772 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 773 ubi_dbg_dump_ec_hdr(ec_hdr); 774 } else if (UBI_IO_DEBUG) 775 dbg_msg("bad magic number at PEB %d: %08x instead of " 776 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 777 return UBI_IO_BAD_HDR; 778 } 779 780 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 781 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 782 783 if (hdr_crc != crc) { 784 if (verbose) { 785 ubi_warn("bad EC header CRC at PEB %d, calculated " 786 "%#08x, read %#08x", pnum, crc, hdr_crc); 787 ubi_dbg_dump_ec_hdr(ec_hdr); 788 } else if (UBI_IO_DEBUG) 789 dbg_msg("bad EC header CRC at PEB %d, calculated " 790 "%#08x, read %#08x", pnum, crc, hdr_crc); 791 return read_err ?: UBI_IO_BAD_HDR; 792 } 793 794 /* And of course validate what has just been read from the media */ 795 err = validate_ec_hdr(ubi, ec_hdr); 796 if (err) { 797 ubi_err("validation failed for PEB %d", pnum); 798 return -EINVAL; 799 } 800 801 /* 802 * If there was %-EBADMSG, but the header CRC is still OK, report about 803 * a bit-flip to force scrubbing on this PEB. 804 */ 805 return read_err ? UBI_IO_BITFLIPS : 0; 806 } 807 808 /** 809 * ubi_io_write_ec_hdr - write an erase counter header. 810 * @ubi: UBI device description object 811 * @pnum: physical eraseblock to write to 812 * @ec_hdr: the erase counter header to write 813 * 814 * This function writes erase counter header described by @ec_hdr to physical 815 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 816 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 817 * field. 818 * 819 * This function returns zero in case of success and a negative error code in 820 * case of failure. If %-EIO is returned, the physical eraseblock most probably 821 * went bad. 822 */ 823 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 824 struct ubi_ec_hdr *ec_hdr) 825 { 826 int err; 827 uint32_t crc; 828 829 dbg_io("write EC header to PEB %d", pnum); 830 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 831 832 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 833 ec_hdr->version = UBI_VERSION; 834 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 835 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 836 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 837 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 838 ec_hdr->hdr_crc = cpu_to_be32(crc); 839 840 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); 841 if (err) 842 return err; 843 844 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 845 return err; 846 } 847 848 /** 849 * validate_vid_hdr - validate a volume identifier header. 850 * @ubi: UBI device description object 851 * @vid_hdr: the volume identifier header to check 852 * 853 * This function checks that data stored in the volume identifier header 854 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 855 */ 856 static int validate_vid_hdr(const struct ubi_device *ubi, 857 const struct ubi_vid_hdr *vid_hdr) 858 { 859 int vol_type = vid_hdr->vol_type; 860 int copy_flag = vid_hdr->copy_flag; 861 int vol_id = be32_to_cpu(vid_hdr->vol_id); 862 int lnum = be32_to_cpu(vid_hdr->lnum); 863 int compat = vid_hdr->compat; 864 int data_size = be32_to_cpu(vid_hdr->data_size); 865 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 866 int data_pad = be32_to_cpu(vid_hdr->data_pad); 867 int data_crc = be32_to_cpu(vid_hdr->data_crc); 868 int usable_leb_size = ubi->leb_size - data_pad; 869 870 if (copy_flag != 0 && copy_flag != 1) { 871 dbg_err("bad copy_flag"); 872 goto bad; 873 } 874 875 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 876 data_pad < 0) { 877 dbg_err("negative values"); 878 goto bad; 879 } 880 881 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 882 dbg_err("bad vol_id"); 883 goto bad; 884 } 885 886 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 887 dbg_err("bad compat"); 888 goto bad; 889 } 890 891 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 892 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 893 compat != UBI_COMPAT_REJECT) { 894 dbg_err("bad compat"); 895 goto bad; 896 } 897 898 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 899 dbg_err("bad vol_type"); 900 goto bad; 901 } 902 903 if (data_pad >= ubi->leb_size / 2) { 904 dbg_err("bad data_pad"); 905 goto bad; 906 } 907 908 if (vol_type == UBI_VID_STATIC) { 909 /* 910 * Although from high-level point of view static volumes may 911 * contain zero bytes of data, but no VID headers can contain 912 * zero at these fields, because they empty volumes do not have 913 * mapped logical eraseblocks. 914 */ 915 if (used_ebs == 0) { 916 dbg_err("zero used_ebs"); 917 goto bad; 918 } 919 if (data_size == 0) { 920 dbg_err("zero data_size"); 921 goto bad; 922 } 923 if (lnum < used_ebs - 1) { 924 if (data_size != usable_leb_size) { 925 dbg_err("bad data_size"); 926 goto bad; 927 } 928 } else if (lnum == used_ebs - 1) { 929 if (data_size == 0) { 930 dbg_err("bad data_size at last LEB"); 931 goto bad; 932 } 933 } else { 934 dbg_err("too high lnum"); 935 goto bad; 936 } 937 } else { 938 if (copy_flag == 0) { 939 if (data_crc != 0) { 940 dbg_err("non-zero data CRC"); 941 goto bad; 942 } 943 if (data_size != 0) { 944 dbg_err("non-zero data_size"); 945 goto bad; 946 } 947 } else { 948 if (data_size == 0) { 949 dbg_err("zero data_size of copy"); 950 goto bad; 951 } 952 } 953 if (used_ebs != 0) { 954 dbg_err("bad used_ebs"); 955 goto bad; 956 } 957 } 958 959 return 0; 960 961 bad: 962 ubi_err("bad VID header"); 963 ubi_dbg_dump_vid_hdr(vid_hdr); 964 ubi_dbg_dump_stack(); 965 return 1; 966 } 967 968 /** 969 * ubi_io_read_vid_hdr - read and check a volume identifier header. 970 * @ubi: UBI device description object 971 * @pnum: physical eraseblock number to read from 972 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 973 * identifier header 974 * @verbose: be verbose if the header is corrupted or wasn't found 975 * 976 * This function reads the volume identifier header from physical eraseblock 977 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 978 * volume identifier header. The following codes may be returned: 979 * 980 * o %0 if the CRC checksum is correct and the header was successfully read; 981 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 982 * and corrected by the flash driver; this is harmless but may indicate that 983 * this eraseblock may become bad soon; 984 * o %UBI_IO_BAD_HDR if the volume identifier header is corrupted (a CRC 985 * error detected); 986 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID 987 * header there); 988 * o a negative error code in case of failure. 989 */ 990 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 991 struct ubi_vid_hdr *vid_hdr, int verbose) 992 { 993 int err, read_err = 0; 994 uint32_t crc, magic, hdr_crc; 995 void *p; 996 997 dbg_io("read VID header from PEB %d", pnum); 998 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 999 1000 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1001 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1002 ubi->vid_hdr_alsize); 1003 if (err) { 1004 if (err != UBI_IO_BITFLIPS && err != -EBADMSG) 1005 return err; 1006 1007 /* 1008 * We read all the data, but either a correctable bit-flip 1009 * occurred, or MTD reported about some data integrity error, 1010 * like an ECC error in case of NAND. The former is harmless, 1011 * the later may mean the read data is corrupted. But we have a 1012 * CRC check-sum and we will identify this. If the VID header is 1013 * still OK, we just report this as there was a bit-flip. 1014 */ 1015 if (err == -EBADMSG) 1016 read_err = UBI_IO_BAD_HDR_READ; 1017 } 1018 1019 magic = be32_to_cpu(vid_hdr->magic); 1020 if (magic != UBI_VID_HDR_MAGIC) { 1021 if (read_err) 1022 return read_err; 1023 1024 /* 1025 * If we have read all 0xFF bytes, the VID header probably does 1026 * not exist and the physical eraseblock is assumed to be free. 1027 */ 1028 if (check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1029 /* The physical eraseblock is supposedly free */ 1030 if (verbose) 1031 ubi_warn("no VID header found at PEB %d, " 1032 "only 0xFF bytes", pnum); 1033 else if (UBI_IO_DEBUG) 1034 dbg_msg("no VID header found at PEB %d, " 1035 "only 0xFF bytes", pnum); 1036 return UBI_IO_PEB_FREE; 1037 } 1038 1039 /* 1040 * This is not a valid VID header, and these are not 0xFF 1041 * bytes. Report that the header is corrupted. 1042 */ 1043 if (verbose) { 1044 ubi_warn("bad magic number at PEB %d: %08x instead of " 1045 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1046 ubi_dbg_dump_vid_hdr(vid_hdr); 1047 } else if (UBI_IO_DEBUG) 1048 dbg_msg("bad magic number at PEB %d: %08x instead of " 1049 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1050 return UBI_IO_BAD_HDR; 1051 } 1052 1053 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1054 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1055 1056 if (hdr_crc != crc) { 1057 if (verbose) { 1058 ubi_warn("bad CRC at PEB %d, calculated %#08x, " 1059 "read %#08x", pnum, crc, hdr_crc); 1060 ubi_dbg_dump_vid_hdr(vid_hdr); 1061 } else if (UBI_IO_DEBUG) 1062 dbg_msg("bad CRC at PEB %d, calculated %#08x, " 1063 "read %#08x", pnum, crc, hdr_crc); 1064 return read_err ?: UBI_IO_BAD_HDR; 1065 } 1066 1067 /* Validate the VID header that we have just read */ 1068 err = validate_vid_hdr(ubi, vid_hdr); 1069 if (err) { 1070 ubi_err("validation failed for PEB %d", pnum); 1071 return -EINVAL; 1072 } 1073 1074 /* 1075 * If there was a read error (%-EBADMSG), but the header CRC is still 1076 * OK, report about a bit-flip to force scrubbing on this PEB. 1077 */ 1078 return read_err ? UBI_IO_BITFLIPS : 0; 1079 } 1080 1081 /** 1082 * ubi_io_write_vid_hdr - write a volume identifier header. 1083 * @ubi: UBI device description object 1084 * @pnum: the physical eraseblock number to write to 1085 * @vid_hdr: the volume identifier header to write 1086 * 1087 * This function writes the volume identifier header described by @vid_hdr to 1088 * physical eraseblock @pnum. This function automatically fills the 1089 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1090 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1091 * 1092 * This function returns zero in case of success and a negative error code in 1093 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1094 * bad. 1095 */ 1096 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1097 struct ubi_vid_hdr *vid_hdr) 1098 { 1099 int err; 1100 uint32_t crc; 1101 void *p; 1102 1103 dbg_io("write VID header to PEB %d", pnum); 1104 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1105 1106 err = paranoid_check_peb_ec_hdr(ubi, pnum); 1107 if (err) 1108 return err; 1109 1110 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1111 vid_hdr->version = UBI_VERSION; 1112 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1113 vid_hdr->hdr_crc = cpu_to_be32(crc); 1114 1115 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); 1116 if (err) 1117 return err; 1118 1119 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1120 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1121 ubi->vid_hdr_alsize); 1122 return err; 1123 } 1124 1125 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1126 1127 /** 1128 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad. 1129 * @ubi: UBI device description object 1130 * @pnum: physical eraseblock number to check 1131 * 1132 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1133 * it is bad and a negative error code if an error occurred. 1134 */ 1135 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) 1136 { 1137 int err; 1138 1139 err = ubi_io_is_bad(ubi, pnum); 1140 if (!err) 1141 return err; 1142 1143 ubi_err("paranoid check failed for PEB %d", pnum); 1144 ubi_dbg_dump_stack(); 1145 return err > 0 ? -EINVAL : err; 1146 } 1147 1148 /** 1149 * paranoid_check_ec_hdr - check if an erase counter header is all right. 1150 * @ubi: UBI device description object 1151 * @pnum: physical eraseblock number the erase counter header belongs to 1152 * @ec_hdr: the erase counter header to check 1153 * 1154 * This function returns zero if the erase counter header contains valid 1155 * values, and %-EINVAL if not. 1156 */ 1157 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1158 const struct ubi_ec_hdr *ec_hdr) 1159 { 1160 int err; 1161 uint32_t magic; 1162 1163 magic = be32_to_cpu(ec_hdr->magic); 1164 if (magic != UBI_EC_HDR_MAGIC) { 1165 ubi_err("bad magic %#08x, must be %#08x", 1166 magic, UBI_EC_HDR_MAGIC); 1167 goto fail; 1168 } 1169 1170 err = validate_ec_hdr(ubi, ec_hdr); 1171 if (err) { 1172 ubi_err("paranoid check failed for PEB %d", pnum); 1173 goto fail; 1174 } 1175 1176 return 0; 1177 1178 fail: 1179 ubi_dbg_dump_ec_hdr(ec_hdr); 1180 ubi_dbg_dump_stack(); 1181 return -EINVAL; 1182 } 1183 1184 /** 1185 * paranoid_check_peb_ec_hdr - check erase counter header. 1186 * @ubi: UBI device description object 1187 * @pnum: the physical eraseblock number to check 1188 * 1189 * This function returns zero if the erase counter header is all right and and 1190 * a negative error code if not or if an error occurred. 1191 */ 1192 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1193 { 1194 int err; 1195 uint32_t crc, hdr_crc; 1196 struct ubi_ec_hdr *ec_hdr; 1197 1198 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1199 if (!ec_hdr) 1200 return -ENOMEM; 1201 1202 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1203 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 1204 goto exit; 1205 1206 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1207 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1208 if (hdr_crc != crc) { 1209 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); 1210 ubi_err("paranoid check failed for PEB %d", pnum); 1211 ubi_dbg_dump_ec_hdr(ec_hdr); 1212 ubi_dbg_dump_stack(); 1213 err = -EINVAL; 1214 goto exit; 1215 } 1216 1217 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); 1218 1219 exit: 1220 kfree(ec_hdr); 1221 return err; 1222 } 1223 1224 /** 1225 * paranoid_check_vid_hdr - check that a volume identifier header is all right. 1226 * @ubi: UBI device description object 1227 * @pnum: physical eraseblock number the volume identifier header belongs to 1228 * @vid_hdr: the volume identifier header to check 1229 * 1230 * This function returns zero if the volume identifier header is all right, and 1231 * %-EINVAL if not. 1232 */ 1233 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1234 const struct ubi_vid_hdr *vid_hdr) 1235 { 1236 int err; 1237 uint32_t magic; 1238 1239 magic = be32_to_cpu(vid_hdr->magic); 1240 if (magic != UBI_VID_HDR_MAGIC) { 1241 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", 1242 magic, pnum, UBI_VID_HDR_MAGIC); 1243 goto fail; 1244 } 1245 1246 err = validate_vid_hdr(ubi, vid_hdr); 1247 if (err) { 1248 ubi_err("paranoid check failed for PEB %d", pnum); 1249 goto fail; 1250 } 1251 1252 return err; 1253 1254 fail: 1255 ubi_err("paranoid check failed for PEB %d", pnum); 1256 ubi_dbg_dump_vid_hdr(vid_hdr); 1257 ubi_dbg_dump_stack(); 1258 return -EINVAL; 1259 1260 } 1261 1262 /** 1263 * paranoid_check_peb_vid_hdr - check volume identifier header. 1264 * @ubi: UBI device description object 1265 * @pnum: the physical eraseblock number to check 1266 * 1267 * This function returns zero if the volume identifier header is all right, 1268 * and a negative error code if not or if an error occurred. 1269 */ 1270 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1271 { 1272 int err; 1273 uint32_t crc, hdr_crc; 1274 struct ubi_vid_hdr *vid_hdr; 1275 void *p; 1276 1277 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1278 if (!vid_hdr) 1279 return -ENOMEM; 1280 1281 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1282 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1283 ubi->vid_hdr_alsize); 1284 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 1285 goto exit; 1286 1287 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1288 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1289 if (hdr_crc != crc) { 1290 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " 1291 "read %#08x", pnum, crc, hdr_crc); 1292 ubi_err("paranoid check failed for PEB %d", pnum); 1293 ubi_dbg_dump_vid_hdr(vid_hdr); 1294 ubi_dbg_dump_stack(); 1295 err = -EINVAL; 1296 goto exit; 1297 } 1298 1299 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); 1300 1301 exit: 1302 ubi_free_vid_hdr(ubi, vid_hdr); 1303 return err; 1304 } 1305 1306 /** 1307 * ubi_dbg_check_write - make sure write succeeded. 1308 * @ubi: UBI device description object 1309 * @buf: buffer with data which were written 1310 * @pnum: physical eraseblock number the data were written to 1311 * @offset: offset within the physical eraseblock the data were written to 1312 * @len: how many bytes were written 1313 * 1314 * This functions reads data which were recently written and compares it with 1315 * the original data buffer - the data have to match. Returns zero if the data 1316 * match and a negative error code if not or in case of failure. 1317 */ 1318 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1319 int offset, int len) 1320 { 1321 int err, i; 1322 1323 mutex_lock(&ubi->dbg_buf_mutex); 1324 err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len); 1325 if (err) 1326 goto out_unlock; 1327 1328 for (i = 0; i < len; i++) { 1329 uint8_t c = ((uint8_t *)buf)[i]; 1330 uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i]; 1331 int dump_len; 1332 1333 if (c == c1) 1334 continue; 1335 1336 ubi_err("paranoid check failed for PEB %d:%d, len %d", 1337 pnum, offset, len); 1338 ubi_msg("data differ at position %d", i); 1339 dump_len = max_t(int, 128, len - i); 1340 ubi_msg("hex dump of the original buffer from %d to %d", 1341 i, i + dump_len); 1342 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1343 buf + i, dump_len, 1); 1344 ubi_msg("hex dump of the read buffer from %d to %d", 1345 i, i + dump_len); 1346 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1347 ubi->dbg_peb_buf + i, dump_len, 1); 1348 ubi_dbg_dump_stack(); 1349 err = -EINVAL; 1350 goto out_unlock; 1351 } 1352 mutex_unlock(&ubi->dbg_buf_mutex); 1353 1354 return 0; 1355 1356 out_unlock: 1357 mutex_unlock(&ubi->dbg_buf_mutex); 1358 return err; 1359 } 1360 1361 /** 1362 * ubi_dbg_check_all_ff - check that a region of flash is empty. 1363 * @ubi: UBI device description object 1364 * @pnum: the physical eraseblock number to check 1365 * @offset: the starting offset within the physical eraseblock to check 1366 * @len: the length of the region to check 1367 * 1368 * This function returns zero if only 0xFF bytes are present at offset 1369 * @offset of the physical eraseblock @pnum, and a negative error code if not 1370 * or if an error occurred. 1371 */ 1372 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1373 { 1374 size_t read; 1375 int err; 1376 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1377 1378 mutex_lock(&ubi->dbg_buf_mutex); 1379 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf); 1380 if (err && err != -EUCLEAN) { 1381 ubi_err("error %d while reading %d bytes from PEB %d:%d, " 1382 "read %zd bytes", err, len, pnum, offset, read); 1383 goto error; 1384 } 1385 1386 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len); 1387 if (err == 0) { 1388 ubi_err("flash region at PEB %d:%d, length %d does not " 1389 "contain all 0xFF bytes", pnum, offset, len); 1390 goto fail; 1391 } 1392 mutex_unlock(&ubi->dbg_buf_mutex); 1393 1394 return 0; 1395 1396 fail: 1397 ubi_err("paranoid check failed for PEB %d", pnum); 1398 ubi_msg("hex dump of the %d-%d region", offset, offset + len); 1399 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1400 ubi->dbg_peb_buf, len, 1); 1401 err = -EINVAL; 1402 error: 1403 ubi_dbg_dump_stack(); 1404 mutex_unlock(&ubi->dbg_buf_mutex); 1405 return err; 1406 } 1407 1408 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 1409