xref: /linux/drivers/mtd/ubi/io.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69  * Thus, we prefer to use sub-pages only for EC and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93 
94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 			     const struct ubi_ec_hdr *ec_hdr);
98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 			      const struct ubi_vid_hdr *vid_hdr);
101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
102 			    int offset, int len);
103 
104 /**
105  * ubi_io_read - read data from a physical eraseblock.
106  * @ubi: UBI device description object
107  * @buf: buffer where to store the read data
108  * @pnum: physical eraseblock number to read from
109  * @offset: offset within the physical eraseblock from where to read
110  * @len: how many bytes to read
111  *
112  * This function reads data from offset @offset of physical eraseblock @pnum
113  * and stores the read data in the @buf buffer. The following return codes are
114  * possible:
115  *
116  * o %0 if all the requested data were successfully read;
117  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118  *   correctable bit-flips were detected; this is harmless but may indicate
119  *   that this eraseblock may become bad soon (but do not have to);
120  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121  *   example it can be an ECC error in case of NAND; this most probably means
122  *   that the data is corrupted;
123  * o %-EIO if some I/O error occurred;
124  * o other negative error codes in case of other errors.
125  */
126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127 		int len)
128 {
129 	int err, retries = 0;
130 	size_t read;
131 	loff_t addr;
132 
133 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
134 
135 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137 	ubi_assert(len > 0);
138 
139 	err = self_check_not_bad(ubi, pnum);
140 	if (err)
141 		return err;
142 
143 	/*
144 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 	 * do not do this, the following may happen:
146 	 * 1. The buffer contains data from previous operation, e.g., read from
147 	 *    another PEB previously. The data looks like expected, e.g., if we
148 	 *    just do not read anything and return - the caller would not
149 	 *    notice this. E.g., if we are reading a VID header, the buffer may
150 	 *    contain a valid VID header from another PEB.
151 	 * 2. The driver is buggy and returns us success or -EBADMSG or
152 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
153 	 *
154 	 * This may confuse UBI or upper layers - they may think the buffer
155 	 * contains valid data while in fact it is just old data. This is
156 	 * especially possible because UBI (and UBIFS) relies on CRC, and
157 	 * treats data as correct even in case of ECC errors if the CRC is
158 	 * correct.
159 	 *
160 	 * Try to prevent this situation by changing the first byte of the
161 	 * buffer.
162 	 */
163 	*((uint8_t *)buf) ^= 0xFF;
164 
165 	addr = (loff_t)pnum * ubi->peb_size + offset;
166 retry:
167 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
168 	if (err) {
169 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
170 
171 		if (mtd_is_bitflip(err)) {
172 			/*
173 			 * -EUCLEAN is reported if there was a bit-flip which
174 			 * was corrected, so this is harmless.
175 			 *
176 			 * We do not report about it here unless debugging is
177 			 * enabled. A corresponding message will be printed
178 			 * later, when it is has been scrubbed.
179 			 */
180 			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
181 				pnum);
182 			ubi_assert(len == read);
183 			return UBI_IO_BITFLIPS;
184 		}
185 
186 		if (retries++ < UBI_IO_RETRIES) {
187 			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
188 				 err, errstr, len, pnum, offset, read);
189 			yield();
190 			goto retry;
191 		}
192 
193 		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
194 			err, errstr, len, pnum, offset, read);
195 		dump_stack();
196 
197 		/*
198 		 * The driver should never return -EBADMSG if it failed to read
199 		 * all the requested data. But some buggy drivers might do
200 		 * this, so we change it to -EIO.
201 		 */
202 		if (read != len && mtd_is_eccerr(err)) {
203 			ubi_assert(0);
204 			err = -EIO;
205 		}
206 	} else {
207 		ubi_assert(len == read);
208 
209 		if (ubi_dbg_is_bitflip(ubi)) {
210 			dbg_gen("bit-flip (emulated)");
211 			err = UBI_IO_BITFLIPS;
212 		}
213 	}
214 
215 	return err;
216 }
217 
218 /**
219  * ubi_io_write - write data to a physical eraseblock.
220  * @ubi: UBI device description object
221  * @buf: buffer with the data to write
222  * @pnum: physical eraseblock number to write to
223  * @offset: offset within the physical eraseblock where to write
224  * @len: how many bytes to write
225  *
226  * This function writes @len bytes of data from buffer @buf to offset @offset
227  * of physical eraseblock @pnum. If all the data were successfully written,
228  * zero is returned. If an error occurred, this function returns a negative
229  * error code. If %-EIO is returned, the physical eraseblock most probably went
230  * bad.
231  *
232  * Note, in case of an error, it is possible that something was still written
233  * to the flash media, but may be some garbage.
234  */
235 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
236 		 int len)
237 {
238 	int err;
239 	size_t written;
240 	loff_t addr;
241 
242 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
243 
244 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
245 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
246 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
247 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
248 
249 	if (ubi->ro_mode) {
250 		ubi_err(ubi, "read-only mode");
251 		return -EROFS;
252 	}
253 
254 	err = self_check_not_bad(ubi, pnum);
255 	if (err)
256 		return err;
257 
258 	/* The area we are writing to has to contain all 0xFF bytes */
259 	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
260 	if (err)
261 		return err;
262 
263 	if (offset >= ubi->leb_start) {
264 		/*
265 		 * We write to the data area of the physical eraseblock. Make
266 		 * sure it has valid EC and VID headers.
267 		 */
268 		err = self_check_peb_ec_hdr(ubi, pnum);
269 		if (err)
270 			return err;
271 		err = self_check_peb_vid_hdr(ubi, pnum);
272 		if (err)
273 			return err;
274 	}
275 
276 	if (ubi_dbg_is_write_failure(ubi)) {
277 		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
278 			len, pnum, offset);
279 		dump_stack();
280 		return -EIO;
281 	}
282 
283 	addr = (loff_t)pnum * ubi->peb_size + offset;
284 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
285 	if (err) {
286 		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
287 			err, len, pnum, offset, written);
288 		dump_stack();
289 		ubi_dump_flash(ubi, pnum, offset, len);
290 	} else
291 		ubi_assert(written == len);
292 
293 	if (!err) {
294 		err = self_check_write(ubi, buf, pnum, offset, len);
295 		if (err)
296 			return err;
297 
298 		/*
299 		 * Since we always write sequentially, the rest of the PEB has
300 		 * to contain only 0xFF bytes.
301 		 */
302 		offset += len;
303 		len = ubi->peb_size - offset;
304 		if (len)
305 			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
306 	}
307 
308 	return err;
309 }
310 
311 /**
312  * erase_callback - MTD erasure call-back.
313  * @ei: MTD erase information object.
314  *
315  * Note, even though MTD erase interface is asynchronous, all the current
316  * implementations are synchronous anyway.
317  */
318 static void erase_callback(struct erase_info *ei)
319 {
320 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
321 }
322 
323 /**
324  * do_sync_erase - synchronously erase a physical eraseblock.
325  * @ubi: UBI device description object
326  * @pnum: the physical eraseblock number to erase
327  *
328  * This function synchronously erases physical eraseblock @pnum and returns
329  * zero in case of success and a negative error code in case of failure. If
330  * %-EIO is returned, the physical eraseblock most probably went bad.
331  */
332 static int do_sync_erase(struct ubi_device *ubi, int pnum)
333 {
334 	int err, retries = 0;
335 	struct erase_info ei;
336 	wait_queue_head_t wq;
337 
338 	dbg_io("erase PEB %d", pnum);
339 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
340 
341 	if (ubi->ro_mode) {
342 		ubi_err(ubi, "read-only mode");
343 		return -EROFS;
344 	}
345 
346 retry:
347 	init_waitqueue_head(&wq);
348 	memset(&ei, 0, sizeof(struct erase_info));
349 
350 	ei.mtd      = ubi->mtd;
351 	ei.addr     = (loff_t)pnum * ubi->peb_size;
352 	ei.len      = ubi->peb_size;
353 	ei.callback = erase_callback;
354 	ei.priv     = (unsigned long)&wq;
355 
356 	err = mtd_erase(ubi->mtd, &ei);
357 	if (err) {
358 		if (retries++ < UBI_IO_RETRIES) {
359 			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
360 				 err, pnum);
361 			yield();
362 			goto retry;
363 		}
364 		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
365 		dump_stack();
366 		return err;
367 	}
368 
369 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
370 					   ei.state == MTD_ERASE_FAILED);
371 	if (err) {
372 		ubi_err(ubi, "interrupted PEB %d erasure", pnum);
373 		return -EINTR;
374 	}
375 
376 	if (ei.state == MTD_ERASE_FAILED) {
377 		if (retries++ < UBI_IO_RETRIES) {
378 			ubi_warn(ubi, "error while erasing PEB %d, retry",
379 				 pnum);
380 			yield();
381 			goto retry;
382 		}
383 		ubi_err(ubi, "cannot erase PEB %d", pnum);
384 		dump_stack();
385 		return -EIO;
386 	}
387 
388 	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
389 	if (err)
390 		return err;
391 
392 	if (ubi_dbg_is_erase_failure(ubi)) {
393 		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
394 		return -EIO;
395 	}
396 
397 	return 0;
398 }
399 
400 /* Patterns to write to a physical eraseblock when torturing it */
401 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
402 
403 /**
404  * torture_peb - test a supposedly bad physical eraseblock.
405  * @ubi: UBI device description object
406  * @pnum: the physical eraseblock number to test
407  *
408  * This function returns %-EIO if the physical eraseblock did not pass the
409  * test, a positive number of erase operations done if the test was
410  * successfully passed, and other negative error codes in case of other errors.
411  */
412 static int torture_peb(struct ubi_device *ubi, int pnum)
413 {
414 	int err, i, patt_count;
415 
416 	ubi_msg(ubi, "run torture test for PEB %d", pnum);
417 	patt_count = ARRAY_SIZE(patterns);
418 	ubi_assert(patt_count > 0);
419 
420 	mutex_lock(&ubi->buf_mutex);
421 	for (i = 0; i < patt_count; i++) {
422 		err = do_sync_erase(ubi, pnum);
423 		if (err)
424 			goto out;
425 
426 		/* Make sure the PEB contains only 0xFF bytes */
427 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
428 		if (err)
429 			goto out;
430 
431 		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
432 		if (err == 0) {
433 			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
434 				pnum);
435 			err = -EIO;
436 			goto out;
437 		}
438 
439 		/* Write a pattern and check it */
440 		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
441 		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
442 		if (err)
443 			goto out;
444 
445 		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
446 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
447 		if (err)
448 			goto out;
449 
450 		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
451 					ubi->peb_size);
452 		if (err == 0) {
453 			ubi_err(ubi, "pattern %x checking failed for PEB %d",
454 				patterns[i], pnum);
455 			err = -EIO;
456 			goto out;
457 		}
458 	}
459 
460 	err = patt_count;
461 	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
462 
463 out:
464 	mutex_unlock(&ubi->buf_mutex);
465 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
466 		/*
467 		 * If a bit-flip or data integrity error was detected, the test
468 		 * has not passed because it happened on a freshly erased
469 		 * physical eraseblock which means something is wrong with it.
470 		 */
471 		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
472 			pnum);
473 		err = -EIO;
474 	}
475 	return err;
476 }
477 
478 /**
479  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
480  * @ubi: UBI device description object
481  * @pnum: physical eraseblock number to prepare
482  *
483  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
484  * algorithm: the PEB is first filled with zeroes, then it is erased. And
485  * filling with zeroes starts from the end of the PEB. This was observed with
486  * Spansion S29GL512N NOR flash.
487  *
488  * This means that in case of a power cut we may end up with intact data at the
489  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
490  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
491  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
492  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
493  *
494  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
495  * magic numbers in order to invalidate them and prevent the failures. Returns
496  * zero in case of success and a negative error code in case of failure.
497  */
498 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
499 {
500 	int err;
501 	size_t written;
502 	loff_t addr;
503 	uint32_t data = 0;
504 	struct ubi_ec_hdr ec_hdr;
505 
506 	/*
507 	 * Note, we cannot generally define VID header buffers on stack,
508 	 * because of the way we deal with these buffers (see the header
509 	 * comment in this file). But we know this is a NOR-specific piece of
510 	 * code, so we can do this. But yes, this is error-prone and we should
511 	 * (pre-)allocate VID header buffer instead.
512 	 */
513 	struct ubi_vid_hdr vid_hdr;
514 
515 	/*
516 	 * If VID or EC is valid, we have to corrupt them before erasing.
517 	 * It is important to first invalidate the EC header, and then the VID
518 	 * header. Otherwise a power cut may lead to valid EC header and
519 	 * invalid VID header, in which case UBI will treat this PEB as
520 	 * corrupted and will try to preserve it, and print scary warnings.
521 	 */
522 	addr = (loff_t)pnum * ubi->peb_size;
523 	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
524 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
525 	    err != UBI_IO_FF){
526 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
527 		if(err)
528 			goto error;
529 	}
530 
531 	err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
532 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
533 	    err != UBI_IO_FF){
534 		addr += ubi->vid_hdr_aloffset;
535 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
536 		if (err)
537 			goto error;
538 	}
539 	return 0;
540 
541 error:
542 	/*
543 	 * The PEB contains a valid VID or EC header, but we cannot invalidate
544 	 * it. Supposedly the flash media or the driver is screwed up, so
545 	 * return an error.
546 	 */
547 	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
548 	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
549 	return -EIO;
550 }
551 
552 /**
553  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
554  * @ubi: UBI device description object
555  * @pnum: physical eraseblock number to erase
556  * @torture: if this physical eraseblock has to be tortured
557  *
558  * This function synchronously erases physical eraseblock @pnum. If @torture
559  * flag is not zero, the physical eraseblock is checked by means of writing
560  * different patterns to it and reading them back. If the torturing is enabled,
561  * the physical eraseblock is erased more than once.
562  *
563  * This function returns the number of erasures made in case of success, %-EIO
564  * if the erasure failed or the torturing test failed, and other negative error
565  * codes in case of other errors. Note, %-EIO means that the physical
566  * eraseblock is bad.
567  */
568 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
569 {
570 	int err, ret = 0;
571 
572 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
573 
574 	err = self_check_not_bad(ubi, pnum);
575 	if (err != 0)
576 		return err;
577 
578 	if (ubi->ro_mode) {
579 		ubi_err(ubi, "read-only mode");
580 		return -EROFS;
581 	}
582 
583 	if (ubi->nor_flash) {
584 		err = nor_erase_prepare(ubi, pnum);
585 		if (err)
586 			return err;
587 	}
588 
589 	if (torture) {
590 		ret = torture_peb(ubi, pnum);
591 		if (ret < 0)
592 			return ret;
593 	}
594 
595 	err = do_sync_erase(ubi, pnum);
596 	if (err)
597 		return err;
598 
599 	return ret + 1;
600 }
601 
602 /**
603  * ubi_io_is_bad - check if a physical eraseblock is bad.
604  * @ubi: UBI device description object
605  * @pnum: the physical eraseblock number to check
606  *
607  * This function returns a positive number if the physical eraseblock is bad,
608  * zero if not, and a negative error code if an error occurred.
609  */
610 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
611 {
612 	struct mtd_info *mtd = ubi->mtd;
613 
614 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
615 
616 	if (ubi->bad_allowed) {
617 		int ret;
618 
619 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
620 		if (ret < 0)
621 			ubi_err(ubi, "error %d while checking if PEB %d is bad",
622 				ret, pnum);
623 		else if (ret)
624 			dbg_io("PEB %d is bad", pnum);
625 		return ret;
626 	}
627 
628 	return 0;
629 }
630 
631 /**
632  * ubi_io_mark_bad - mark a physical eraseblock as bad.
633  * @ubi: UBI device description object
634  * @pnum: the physical eraseblock number to mark
635  *
636  * This function returns zero in case of success and a negative error code in
637  * case of failure.
638  */
639 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
640 {
641 	int err;
642 	struct mtd_info *mtd = ubi->mtd;
643 
644 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
645 
646 	if (ubi->ro_mode) {
647 		ubi_err(ubi, "read-only mode");
648 		return -EROFS;
649 	}
650 
651 	if (!ubi->bad_allowed)
652 		return 0;
653 
654 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
655 	if (err)
656 		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
657 	return err;
658 }
659 
660 /**
661  * validate_ec_hdr - validate an erase counter header.
662  * @ubi: UBI device description object
663  * @ec_hdr: the erase counter header to check
664  *
665  * This function returns zero if the erase counter header is OK, and %1 if
666  * not.
667  */
668 static int validate_ec_hdr(const struct ubi_device *ubi,
669 			   const struct ubi_ec_hdr *ec_hdr)
670 {
671 	long long ec;
672 	int vid_hdr_offset, leb_start;
673 
674 	ec = be64_to_cpu(ec_hdr->ec);
675 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
676 	leb_start = be32_to_cpu(ec_hdr->data_offset);
677 
678 	if (ec_hdr->version != UBI_VERSION) {
679 		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
680 			UBI_VERSION, (int)ec_hdr->version);
681 		goto bad;
682 	}
683 
684 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
685 		ubi_err(ubi, "bad VID header offset %d, expected %d",
686 			vid_hdr_offset, ubi->vid_hdr_offset);
687 		goto bad;
688 	}
689 
690 	if (leb_start != ubi->leb_start) {
691 		ubi_err(ubi, "bad data offset %d, expected %d",
692 			leb_start, ubi->leb_start);
693 		goto bad;
694 	}
695 
696 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
697 		ubi_err(ubi, "bad erase counter %lld", ec);
698 		goto bad;
699 	}
700 
701 	return 0;
702 
703 bad:
704 	ubi_err(ubi, "bad EC header");
705 	ubi_dump_ec_hdr(ec_hdr);
706 	dump_stack();
707 	return 1;
708 }
709 
710 /**
711  * ubi_io_read_ec_hdr - read and check an erase counter header.
712  * @ubi: UBI device description object
713  * @pnum: physical eraseblock to read from
714  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
715  * header
716  * @verbose: be verbose if the header is corrupted or was not found
717  *
718  * This function reads erase counter header from physical eraseblock @pnum and
719  * stores it in @ec_hdr. This function also checks CRC checksum of the read
720  * erase counter header. The following codes may be returned:
721  *
722  * o %0 if the CRC checksum is correct and the header was successfully read;
723  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
724  *   and corrected by the flash driver; this is harmless but may indicate that
725  *   this eraseblock may become bad soon (but may be not);
726  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
727  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
728  *   a data integrity error (uncorrectable ECC error in case of NAND);
729  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
730  * o a negative error code in case of failure.
731  */
732 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
733 		       struct ubi_ec_hdr *ec_hdr, int verbose)
734 {
735 	int err, read_err;
736 	uint32_t crc, magic, hdr_crc;
737 
738 	dbg_io("read EC header from PEB %d", pnum);
739 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
740 
741 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
742 	if (read_err) {
743 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
744 			return read_err;
745 
746 		/*
747 		 * We read all the data, but either a correctable bit-flip
748 		 * occurred, or MTD reported a data integrity error
749 		 * (uncorrectable ECC error in case of NAND). The former is
750 		 * harmless, the later may mean that the read data is
751 		 * corrupted. But we have a CRC check-sum and we will detect
752 		 * this. If the EC header is still OK, we just report this as
753 		 * there was a bit-flip, to force scrubbing.
754 		 */
755 	}
756 
757 	magic = be32_to_cpu(ec_hdr->magic);
758 	if (magic != UBI_EC_HDR_MAGIC) {
759 		if (mtd_is_eccerr(read_err))
760 			return UBI_IO_BAD_HDR_EBADMSG;
761 
762 		/*
763 		 * The magic field is wrong. Let's check if we have read all
764 		 * 0xFF. If yes, this physical eraseblock is assumed to be
765 		 * empty.
766 		 */
767 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
768 			/* The physical eraseblock is supposedly empty */
769 			if (verbose)
770 				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
771 					 pnum);
772 			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
773 				pnum);
774 			if (!read_err)
775 				return UBI_IO_FF;
776 			else
777 				return UBI_IO_FF_BITFLIPS;
778 		}
779 
780 		/*
781 		 * This is not a valid erase counter header, and these are not
782 		 * 0xFF bytes. Report that the header is corrupted.
783 		 */
784 		if (verbose) {
785 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
786 				 pnum, magic, UBI_EC_HDR_MAGIC);
787 			ubi_dump_ec_hdr(ec_hdr);
788 		}
789 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
790 			pnum, magic, UBI_EC_HDR_MAGIC);
791 		return UBI_IO_BAD_HDR;
792 	}
793 
794 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
795 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
796 
797 	if (hdr_crc != crc) {
798 		if (verbose) {
799 			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
800 				 pnum, crc, hdr_crc);
801 			ubi_dump_ec_hdr(ec_hdr);
802 		}
803 		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
804 			pnum, crc, hdr_crc);
805 
806 		if (!read_err)
807 			return UBI_IO_BAD_HDR;
808 		else
809 			return UBI_IO_BAD_HDR_EBADMSG;
810 	}
811 
812 	/* And of course validate what has just been read from the media */
813 	err = validate_ec_hdr(ubi, ec_hdr);
814 	if (err) {
815 		ubi_err(ubi, "validation failed for PEB %d", pnum);
816 		return -EINVAL;
817 	}
818 
819 	/*
820 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
821 	 * a bit-flip to force scrubbing on this PEB.
822 	 */
823 	return read_err ? UBI_IO_BITFLIPS : 0;
824 }
825 
826 /**
827  * ubi_io_write_ec_hdr - write an erase counter header.
828  * @ubi: UBI device description object
829  * @pnum: physical eraseblock to write to
830  * @ec_hdr: the erase counter header to write
831  *
832  * This function writes erase counter header described by @ec_hdr to physical
833  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
834  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
835  * field.
836  *
837  * This function returns zero in case of success and a negative error code in
838  * case of failure. If %-EIO is returned, the physical eraseblock most probably
839  * went bad.
840  */
841 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
842 			struct ubi_ec_hdr *ec_hdr)
843 {
844 	int err;
845 	uint32_t crc;
846 
847 	dbg_io("write EC header to PEB %d", pnum);
848 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
849 
850 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
851 	ec_hdr->version = UBI_VERSION;
852 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
853 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
854 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
855 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
856 	ec_hdr->hdr_crc = cpu_to_be32(crc);
857 
858 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
859 	if (err)
860 		return err;
861 
862 	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
863 		return -EROFS;
864 
865 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
866 	return err;
867 }
868 
869 /**
870  * validate_vid_hdr - validate a volume identifier header.
871  * @ubi: UBI device description object
872  * @vid_hdr: the volume identifier header to check
873  *
874  * This function checks that data stored in the volume identifier header
875  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
876  */
877 static int validate_vid_hdr(const struct ubi_device *ubi,
878 			    const struct ubi_vid_hdr *vid_hdr)
879 {
880 	int vol_type = vid_hdr->vol_type;
881 	int copy_flag = vid_hdr->copy_flag;
882 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
883 	int lnum = be32_to_cpu(vid_hdr->lnum);
884 	int compat = vid_hdr->compat;
885 	int data_size = be32_to_cpu(vid_hdr->data_size);
886 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
887 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
888 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
889 	int usable_leb_size = ubi->leb_size - data_pad;
890 
891 	if (copy_flag != 0 && copy_flag != 1) {
892 		ubi_err(ubi, "bad copy_flag");
893 		goto bad;
894 	}
895 
896 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
897 	    data_pad < 0) {
898 		ubi_err(ubi, "negative values");
899 		goto bad;
900 	}
901 
902 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
903 		ubi_err(ubi, "bad vol_id");
904 		goto bad;
905 	}
906 
907 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
908 		ubi_err(ubi, "bad compat");
909 		goto bad;
910 	}
911 
912 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
913 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
914 	    compat != UBI_COMPAT_REJECT) {
915 		ubi_err(ubi, "bad compat");
916 		goto bad;
917 	}
918 
919 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
920 		ubi_err(ubi, "bad vol_type");
921 		goto bad;
922 	}
923 
924 	if (data_pad >= ubi->leb_size / 2) {
925 		ubi_err(ubi, "bad data_pad");
926 		goto bad;
927 	}
928 
929 	if (data_size > ubi->leb_size) {
930 		ubi_err(ubi, "bad data_size");
931 		goto bad;
932 	}
933 
934 	if (vol_type == UBI_VID_STATIC) {
935 		/*
936 		 * Although from high-level point of view static volumes may
937 		 * contain zero bytes of data, but no VID headers can contain
938 		 * zero at these fields, because they empty volumes do not have
939 		 * mapped logical eraseblocks.
940 		 */
941 		if (used_ebs == 0) {
942 			ubi_err(ubi, "zero used_ebs");
943 			goto bad;
944 		}
945 		if (data_size == 0) {
946 			ubi_err(ubi, "zero data_size");
947 			goto bad;
948 		}
949 		if (lnum < used_ebs - 1) {
950 			if (data_size != usable_leb_size) {
951 				ubi_err(ubi, "bad data_size");
952 				goto bad;
953 			}
954 		} else if (lnum == used_ebs - 1) {
955 			if (data_size == 0) {
956 				ubi_err(ubi, "bad data_size at last LEB");
957 				goto bad;
958 			}
959 		} else {
960 			ubi_err(ubi, "too high lnum");
961 			goto bad;
962 		}
963 	} else {
964 		if (copy_flag == 0) {
965 			if (data_crc != 0) {
966 				ubi_err(ubi, "non-zero data CRC");
967 				goto bad;
968 			}
969 			if (data_size != 0) {
970 				ubi_err(ubi, "non-zero data_size");
971 				goto bad;
972 			}
973 		} else {
974 			if (data_size == 0) {
975 				ubi_err(ubi, "zero data_size of copy");
976 				goto bad;
977 			}
978 		}
979 		if (used_ebs != 0) {
980 			ubi_err(ubi, "bad used_ebs");
981 			goto bad;
982 		}
983 	}
984 
985 	return 0;
986 
987 bad:
988 	ubi_err(ubi, "bad VID header");
989 	ubi_dump_vid_hdr(vid_hdr);
990 	dump_stack();
991 	return 1;
992 }
993 
994 /**
995  * ubi_io_read_vid_hdr - read and check a volume identifier header.
996  * @ubi: UBI device description object
997  * @pnum: physical eraseblock number to read from
998  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
999  * identifier header
1000  * @verbose: be verbose if the header is corrupted or wasn't found
1001  *
1002  * This function reads the volume identifier header from physical eraseblock
1003  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
1004  * volume identifier header. The error codes are the same as in
1005  * 'ubi_io_read_ec_hdr()'.
1006  *
1007  * Note, the implementation of this function is also very similar to
1008  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1009  */
1010 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1011 			struct ubi_vid_hdr *vid_hdr, int verbose)
1012 {
1013 	int err, read_err;
1014 	uint32_t crc, magic, hdr_crc;
1015 	void *p;
1016 
1017 	dbg_io("read VID header from PEB %d", pnum);
1018 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1019 
1020 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1021 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1022 			  ubi->vid_hdr_alsize);
1023 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1024 		return read_err;
1025 
1026 	magic = be32_to_cpu(vid_hdr->magic);
1027 	if (magic != UBI_VID_HDR_MAGIC) {
1028 		if (mtd_is_eccerr(read_err))
1029 			return UBI_IO_BAD_HDR_EBADMSG;
1030 
1031 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1032 			if (verbose)
1033 				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
1034 					 pnum);
1035 			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1036 				pnum);
1037 			if (!read_err)
1038 				return UBI_IO_FF;
1039 			else
1040 				return UBI_IO_FF_BITFLIPS;
1041 		}
1042 
1043 		if (verbose) {
1044 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1045 				 pnum, magic, UBI_VID_HDR_MAGIC);
1046 			ubi_dump_vid_hdr(vid_hdr);
1047 		}
1048 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1049 			pnum, magic, UBI_VID_HDR_MAGIC);
1050 		return UBI_IO_BAD_HDR;
1051 	}
1052 
1053 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1054 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1055 
1056 	if (hdr_crc != crc) {
1057 		if (verbose) {
1058 			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1059 				 pnum, crc, hdr_crc);
1060 			ubi_dump_vid_hdr(vid_hdr);
1061 		}
1062 		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1063 			pnum, crc, hdr_crc);
1064 		if (!read_err)
1065 			return UBI_IO_BAD_HDR;
1066 		else
1067 			return UBI_IO_BAD_HDR_EBADMSG;
1068 	}
1069 
1070 	err = validate_vid_hdr(ubi, vid_hdr);
1071 	if (err) {
1072 		ubi_err(ubi, "validation failed for PEB %d", pnum);
1073 		return -EINVAL;
1074 	}
1075 
1076 	return read_err ? UBI_IO_BITFLIPS : 0;
1077 }
1078 
1079 /**
1080  * ubi_io_write_vid_hdr - write a volume identifier header.
1081  * @ubi: UBI device description object
1082  * @pnum: the physical eraseblock number to write to
1083  * @vid_hdr: the volume identifier header to write
1084  *
1085  * This function writes the volume identifier header described by @vid_hdr to
1086  * physical eraseblock @pnum. This function automatically fills the
1087  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1088  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1089  *
1090  * This function returns zero in case of success and a negative error code in
1091  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1092  * bad.
1093  */
1094 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1095 			 struct ubi_vid_hdr *vid_hdr)
1096 {
1097 	int err;
1098 	uint32_t crc;
1099 	void *p;
1100 
1101 	dbg_io("write VID header to PEB %d", pnum);
1102 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1103 
1104 	err = self_check_peb_ec_hdr(ubi, pnum);
1105 	if (err)
1106 		return err;
1107 
1108 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1109 	vid_hdr->version = UBI_VERSION;
1110 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1111 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1112 
1113 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1114 	if (err)
1115 		return err;
1116 
1117 	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1118 		return -EROFS;
1119 
1120 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1121 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1122 			   ubi->vid_hdr_alsize);
1123 	return err;
1124 }
1125 
1126 /**
1127  * self_check_not_bad - ensure that a physical eraseblock is not bad.
1128  * @ubi: UBI device description object
1129  * @pnum: physical eraseblock number to check
1130  *
1131  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1132  * it is bad and a negative error code if an error occurred.
1133  */
1134 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1135 {
1136 	int err;
1137 
1138 	if (!ubi_dbg_chk_io(ubi))
1139 		return 0;
1140 
1141 	err = ubi_io_is_bad(ubi, pnum);
1142 	if (!err)
1143 		return err;
1144 
1145 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1146 	dump_stack();
1147 	return err > 0 ? -EINVAL : err;
1148 }
1149 
1150 /**
1151  * self_check_ec_hdr - check if an erase counter header is all right.
1152  * @ubi: UBI device description object
1153  * @pnum: physical eraseblock number the erase counter header belongs to
1154  * @ec_hdr: the erase counter header to check
1155  *
1156  * This function returns zero if the erase counter header contains valid
1157  * values, and %-EINVAL if not.
1158  */
1159 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1160 			     const struct ubi_ec_hdr *ec_hdr)
1161 {
1162 	int err;
1163 	uint32_t magic;
1164 
1165 	if (!ubi_dbg_chk_io(ubi))
1166 		return 0;
1167 
1168 	magic = be32_to_cpu(ec_hdr->magic);
1169 	if (magic != UBI_EC_HDR_MAGIC) {
1170 		ubi_err(ubi, "bad magic %#08x, must be %#08x",
1171 			magic, UBI_EC_HDR_MAGIC);
1172 		goto fail;
1173 	}
1174 
1175 	err = validate_ec_hdr(ubi, ec_hdr);
1176 	if (err) {
1177 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1178 		goto fail;
1179 	}
1180 
1181 	return 0;
1182 
1183 fail:
1184 	ubi_dump_ec_hdr(ec_hdr);
1185 	dump_stack();
1186 	return -EINVAL;
1187 }
1188 
1189 /**
1190  * self_check_peb_ec_hdr - check erase counter header.
1191  * @ubi: UBI device description object
1192  * @pnum: the physical eraseblock number to check
1193  *
1194  * This function returns zero if the erase counter header is all right and and
1195  * a negative error code if not or if an error occurred.
1196  */
1197 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1198 {
1199 	int err;
1200 	uint32_t crc, hdr_crc;
1201 	struct ubi_ec_hdr *ec_hdr;
1202 
1203 	if (!ubi_dbg_chk_io(ubi))
1204 		return 0;
1205 
1206 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1207 	if (!ec_hdr)
1208 		return -ENOMEM;
1209 
1210 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1211 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1212 		goto exit;
1213 
1214 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1215 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1216 	if (hdr_crc != crc) {
1217 		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1218 			crc, hdr_crc);
1219 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1220 		ubi_dump_ec_hdr(ec_hdr);
1221 		dump_stack();
1222 		err = -EINVAL;
1223 		goto exit;
1224 	}
1225 
1226 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1227 
1228 exit:
1229 	kfree(ec_hdr);
1230 	return err;
1231 }
1232 
1233 /**
1234  * self_check_vid_hdr - check that a volume identifier header is all right.
1235  * @ubi: UBI device description object
1236  * @pnum: physical eraseblock number the volume identifier header belongs to
1237  * @vid_hdr: the volume identifier header to check
1238  *
1239  * This function returns zero if the volume identifier header is all right, and
1240  * %-EINVAL if not.
1241  */
1242 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1243 			      const struct ubi_vid_hdr *vid_hdr)
1244 {
1245 	int err;
1246 	uint32_t magic;
1247 
1248 	if (!ubi_dbg_chk_io(ubi))
1249 		return 0;
1250 
1251 	magic = be32_to_cpu(vid_hdr->magic);
1252 	if (magic != UBI_VID_HDR_MAGIC) {
1253 		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1254 			magic, pnum, UBI_VID_HDR_MAGIC);
1255 		goto fail;
1256 	}
1257 
1258 	err = validate_vid_hdr(ubi, vid_hdr);
1259 	if (err) {
1260 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1261 		goto fail;
1262 	}
1263 
1264 	return err;
1265 
1266 fail:
1267 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1268 	ubi_dump_vid_hdr(vid_hdr);
1269 	dump_stack();
1270 	return -EINVAL;
1271 
1272 }
1273 
1274 /**
1275  * self_check_peb_vid_hdr - check volume identifier header.
1276  * @ubi: UBI device description object
1277  * @pnum: the physical eraseblock number to check
1278  *
1279  * This function returns zero if the volume identifier header is all right,
1280  * and a negative error code if not or if an error occurred.
1281  */
1282 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1283 {
1284 	int err;
1285 	uint32_t crc, hdr_crc;
1286 	struct ubi_vid_hdr *vid_hdr;
1287 	void *p;
1288 
1289 	if (!ubi_dbg_chk_io(ubi))
1290 		return 0;
1291 
1292 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1293 	if (!vid_hdr)
1294 		return -ENOMEM;
1295 
1296 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1297 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1298 			  ubi->vid_hdr_alsize);
1299 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1300 		goto exit;
1301 
1302 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1303 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1304 	if (hdr_crc != crc) {
1305 		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1306 			pnum, crc, hdr_crc);
1307 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1308 		ubi_dump_vid_hdr(vid_hdr);
1309 		dump_stack();
1310 		err = -EINVAL;
1311 		goto exit;
1312 	}
1313 
1314 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1315 
1316 exit:
1317 	ubi_free_vid_hdr(ubi, vid_hdr);
1318 	return err;
1319 }
1320 
1321 /**
1322  * self_check_write - make sure write succeeded.
1323  * @ubi: UBI device description object
1324  * @buf: buffer with data which were written
1325  * @pnum: physical eraseblock number the data were written to
1326  * @offset: offset within the physical eraseblock the data were written to
1327  * @len: how many bytes were written
1328  *
1329  * This functions reads data which were recently written and compares it with
1330  * the original data buffer - the data have to match. Returns zero if the data
1331  * match and a negative error code if not or in case of failure.
1332  */
1333 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1334 			    int offset, int len)
1335 {
1336 	int err, i;
1337 	size_t read;
1338 	void *buf1;
1339 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1340 
1341 	if (!ubi_dbg_chk_io(ubi))
1342 		return 0;
1343 
1344 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1345 	if (!buf1) {
1346 		ubi_err(ubi, "cannot allocate memory to check writes");
1347 		return 0;
1348 	}
1349 
1350 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1351 	if (err && !mtd_is_bitflip(err))
1352 		goto out_free;
1353 
1354 	for (i = 0; i < len; i++) {
1355 		uint8_t c = ((uint8_t *)buf)[i];
1356 		uint8_t c1 = ((uint8_t *)buf1)[i];
1357 		int dump_len;
1358 
1359 		if (c == c1)
1360 			continue;
1361 
1362 		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1363 			pnum, offset, len);
1364 		ubi_msg(ubi, "data differ at position %d", i);
1365 		dump_len = max_t(int, 128, len - i);
1366 		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1367 			i, i + dump_len);
1368 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1369 			       buf + i, dump_len, 1);
1370 		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1371 			i, i + dump_len);
1372 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1373 			       buf1 + i, dump_len, 1);
1374 		dump_stack();
1375 		err = -EINVAL;
1376 		goto out_free;
1377 	}
1378 
1379 	vfree(buf1);
1380 	return 0;
1381 
1382 out_free:
1383 	vfree(buf1);
1384 	return err;
1385 }
1386 
1387 /**
1388  * ubi_self_check_all_ff - check that a region of flash is empty.
1389  * @ubi: UBI device description object
1390  * @pnum: the physical eraseblock number to check
1391  * @offset: the starting offset within the physical eraseblock to check
1392  * @len: the length of the region to check
1393  *
1394  * This function returns zero if only 0xFF bytes are present at offset
1395  * @offset of the physical eraseblock @pnum, and a negative error code if not
1396  * or if an error occurred.
1397  */
1398 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1399 {
1400 	size_t read;
1401 	int err;
1402 	void *buf;
1403 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1404 
1405 	if (!ubi_dbg_chk_io(ubi))
1406 		return 0;
1407 
1408 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1409 	if (!buf) {
1410 		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1411 		return 0;
1412 	}
1413 
1414 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1415 	if (err && !mtd_is_bitflip(err)) {
1416 		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1417 			err, len, pnum, offset, read);
1418 		goto error;
1419 	}
1420 
1421 	err = ubi_check_pattern(buf, 0xFF, len);
1422 	if (err == 0) {
1423 		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1424 			pnum, offset, len);
1425 		goto fail;
1426 	}
1427 
1428 	vfree(buf);
1429 	return 0;
1430 
1431 fail:
1432 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1433 	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1434 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1435 	err = -EINVAL;
1436 error:
1437 	dump_stack();
1438 	vfree(buf);
1439 	return err;
1440 }
1441