xref: /linux/drivers/mtd/ubi/io.c (revision c4c11dd160a8cc98f402c4e12f94b1572e822ffd)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69  * Thus, we prefer to use sub-pages only for EC and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93 
94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 			     const struct ubi_ec_hdr *ec_hdr);
98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 			      const struct ubi_vid_hdr *vid_hdr);
101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
102 			    int offset, int len);
103 
104 /**
105  * ubi_io_read - read data from a physical eraseblock.
106  * @ubi: UBI device description object
107  * @buf: buffer where to store the read data
108  * @pnum: physical eraseblock number to read from
109  * @offset: offset within the physical eraseblock from where to read
110  * @len: how many bytes to read
111  *
112  * This function reads data from offset @offset of physical eraseblock @pnum
113  * and stores the read data in the @buf buffer. The following return codes are
114  * possible:
115  *
116  * o %0 if all the requested data were successfully read;
117  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118  *   correctable bit-flips were detected; this is harmless but may indicate
119  *   that this eraseblock may become bad soon (but do not have to);
120  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121  *   example it can be an ECC error in case of NAND; this most probably means
122  *   that the data is corrupted;
123  * o %-EIO if some I/O error occurred;
124  * o other negative error codes in case of other errors.
125  */
126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127 		int len)
128 {
129 	int err, retries = 0;
130 	size_t read;
131 	loff_t addr;
132 
133 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
134 
135 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137 	ubi_assert(len > 0);
138 
139 	err = self_check_not_bad(ubi, pnum);
140 	if (err)
141 		return err;
142 
143 	/*
144 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 	 * do not do this, the following may happen:
146 	 * 1. The buffer contains data from previous operation, e.g., read from
147 	 *    another PEB previously. The data looks like expected, e.g., if we
148 	 *    just do not read anything and return - the caller would not
149 	 *    notice this. E.g., if we are reading a VID header, the buffer may
150 	 *    contain a valid VID header from another PEB.
151 	 * 2. The driver is buggy and returns us success or -EBADMSG or
152 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
153 	 *
154 	 * This may confuse UBI or upper layers - they may think the buffer
155 	 * contains valid data while in fact it is just old data. This is
156 	 * especially possible because UBI (and UBIFS) relies on CRC, and
157 	 * treats data as correct even in case of ECC errors if the CRC is
158 	 * correct.
159 	 *
160 	 * Try to prevent this situation by changing the first byte of the
161 	 * buffer.
162 	 */
163 	*((uint8_t *)buf) ^= 0xFF;
164 
165 	addr = (loff_t)pnum * ubi->peb_size + offset;
166 retry:
167 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
168 	if (err) {
169 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
170 
171 		if (mtd_is_bitflip(err)) {
172 			/*
173 			 * -EUCLEAN is reported if there was a bit-flip which
174 			 * was corrected, so this is harmless.
175 			 *
176 			 * We do not report about it here unless debugging is
177 			 * enabled. A corresponding message will be printed
178 			 * later, when it is has been scrubbed.
179 			 */
180 			ubi_msg("fixable bit-flip detected at PEB %d", pnum);
181 			ubi_assert(len == read);
182 			return UBI_IO_BITFLIPS;
183 		}
184 
185 		if (retries++ < UBI_IO_RETRIES) {
186 			ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
187 				 err, errstr, len, pnum, offset, read);
188 			yield();
189 			goto retry;
190 		}
191 
192 		ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
193 			err, errstr, len, pnum, offset, read);
194 		dump_stack();
195 
196 		/*
197 		 * The driver should never return -EBADMSG if it failed to read
198 		 * all the requested data. But some buggy drivers might do
199 		 * this, so we change it to -EIO.
200 		 */
201 		if (read != len && mtd_is_eccerr(err)) {
202 			ubi_assert(0);
203 			err = -EIO;
204 		}
205 	} else {
206 		ubi_assert(len == read);
207 
208 		if (ubi_dbg_is_bitflip(ubi)) {
209 			dbg_gen("bit-flip (emulated)");
210 			err = UBI_IO_BITFLIPS;
211 		}
212 	}
213 
214 	return err;
215 }
216 
217 /**
218  * ubi_io_write - write data to a physical eraseblock.
219  * @ubi: UBI device description object
220  * @buf: buffer with the data to write
221  * @pnum: physical eraseblock number to write to
222  * @offset: offset within the physical eraseblock where to write
223  * @len: how many bytes to write
224  *
225  * This function writes @len bytes of data from buffer @buf to offset @offset
226  * of physical eraseblock @pnum. If all the data were successfully written,
227  * zero is returned. If an error occurred, this function returns a negative
228  * error code. If %-EIO is returned, the physical eraseblock most probably went
229  * bad.
230  *
231  * Note, in case of an error, it is possible that something was still written
232  * to the flash media, but may be some garbage.
233  */
234 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
235 		 int len)
236 {
237 	int err;
238 	size_t written;
239 	loff_t addr;
240 
241 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
242 
243 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
244 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
245 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
246 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
247 
248 	if (ubi->ro_mode) {
249 		ubi_err("read-only mode");
250 		return -EROFS;
251 	}
252 
253 	err = self_check_not_bad(ubi, pnum);
254 	if (err)
255 		return err;
256 
257 	/* The area we are writing to has to contain all 0xFF bytes */
258 	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
259 	if (err)
260 		return err;
261 
262 	if (offset >= ubi->leb_start) {
263 		/*
264 		 * We write to the data area of the physical eraseblock. Make
265 		 * sure it has valid EC and VID headers.
266 		 */
267 		err = self_check_peb_ec_hdr(ubi, pnum);
268 		if (err)
269 			return err;
270 		err = self_check_peb_vid_hdr(ubi, pnum);
271 		if (err)
272 			return err;
273 	}
274 
275 	if (ubi_dbg_is_write_failure(ubi)) {
276 		ubi_err("cannot write %d bytes to PEB %d:%d (emulated)",
277 			len, pnum, offset);
278 		dump_stack();
279 		return -EIO;
280 	}
281 
282 	addr = (loff_t)pnum * ubi->peb_size + offset;
283 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
284 	if (err) {
285 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
286 			err, len, pnum, offset, written);
287 		dump_stack();
288 		ubi_dump_flash(ubi, pnum, offset, len);
289 	} else
290 		ubi_assert(written == len);
291 
292 	if (!err) {
293 		err = self_check_write(ubi, buf, pnum, offset, len);
294 		if (err)
295 			return err;
296 
297 		/*
298 		 * Since we always write sequentially, the rest of the PEB has
299 		 * to contain only 0xFF bytes.
300 		 */
301 		offset += len;
302 		len = ubi->peb_size - offset;
303 		if (len)
304 			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
305 	}
306 
307 	return err;
308 }
309 
310 /**
311  * erase_callback - MTD erasure call-back.
312  * @ei: MTD erase information object.
313  *
314  * Note, even though MTD erase interface is asynchronous, all the current
315  * implementations are synchronous anyway.
316  */
317 static void erase_callback(struct erase_info *ei)
318 {
319 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
320 }
321 
322 /**
323  * do_sync_erase - synchronously erase a physical eraseblock.
324  * @ubi: UBI device description object
325  * @pnum: the physical eraseblock number to erase
326  *
327  * This function synchronously erases physical eraseblock @pnum and returns
328  * zero in case of success and a negative error code in case of failure. If
329  * %-EIO is returned, the physical eraseblock most probably went bad.
330  */
331 static int do_sync_erase(struct ubi_device *ubi, int pnum)
332 {
333 	int err, retries = 0;
334 	struct erase_info ei;
335 	wait_queue_head_t wq;
336 
337 	dbg_io("erase PEB %d", pnum);
338 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
339 
340 	if (ubi->ro_mode) {
341 		ubi_err("read-only mode");
342 		return -EROFS;
343 	}
344 
345 retry:
346 	init_waitqueue_head(&wq);
347 	memset(&ei, 0, sizeof(struct erase_info));
348 
349 	ei.mtd      = ubi->mtd;
350 	ei.addr     = (loff_t)pnum * ubi->peb_size;
351 	ei.len      = ubi->peb_size;
352 	ei.callback = erase_callback;
353 	ei.priv     = (unsigned long)&wq;
354 
355 	err = mtd_erase(ubi->mtd, &ei);
356 	if (err) {
357 		if (retries++ < UBI_IO_RETRIES) {
358 			ubi_warn("error %d while erasing PEB %d, retry",
359 				 err, pnum);
360 			yield();
361 			goto retry;
362 		}
363 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
364 		dump_stack();
365 		return err;
366 	}
367 
368 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
369 					   ei.state == MTD_ERASE_FAILED);
370 	if (err) {
371 		ubi_err("interrupted PEB %d erasure", pnum);
372 		return -EINTR;
373 	}
374 
375 	if (ei.state == MTD_ERASE_FAILED) {
376 		if (retries++ < UBI_IO_RETRIES) {
377 			ubi_warn("error while erasing PEB %d, retry", pnum);
378 			yield();
379 			goto retry;
380 		}
381 		ubi_err("cannot erase PEB %d", pnum);
382 		dump_stack();
383 		return -EIO;
384 	}
385 
386 	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
387 	if (err)
388 		return err;
389 
390 	if (ubi_dbg_is_erase_failure(ubi)) {
391 		ubi_err("cannot erase PEB %d (emulated)", pnum);
392 		return -EIO;
393 	}
394 
395 	return 0;
396 }
397 
398 /* Patterns to write to a physical eraseblock when torturing it */
399 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
400 
401 /**
402  * torture_peb - test a supposedly bad physical eraseblock.
403  * @ubi: UBI device description object
404  * @pnum: the physical eraseblock number to test
405  *
406  * This function returns %-EIO if the physical eraseblock did not pass the
407  * test, a positive number of erase operations done if the test was
408  * successfully passed, and other negative error codes in case of other errors.
409  */
410 static int torture_peb(struct ubi_device *ubi, int pnum)
411 {
412 	int err, i, patt_count;
413 
414 	ubi_msg("run torture test for PEB %d", pnum);
415 	patt_count = ARRAY_SIZE(patterns);
416 	ubi_assert(patt_count > 0);
417 
418 	mutex_lock(&ubi->buf_mutex);
419 	for (i = 0; i < patt_count; i++) {
420 		err = do_sync_erase(ubi, pnum);
421 		if (err)
422 			goto out;
423 
424 		/* Make sure the PEB contains only 0xFF bytes */
425 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
426 		if (err)
427 			goto out;
428 
429 		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
430 		if (err == 0) {
431 			ubi_err("erased PEB %d, but a non-0xFF byte found",
432 				pnum);
433 			err = -EIO;
434 			goto out;
435 		}
436 
437 		/* Write a pattern and check it */
438 		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
439 		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
440 		if (err)
441 			goto out;
442 
443 		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
444 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
445 		if (err)
446 			goto out;
447 
448 		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
449 					ubi->peb_size);
450 		if (err == 0) {
451 			ubi_err("pattern %x checking failed for PEB %d",
452 				patterns[i], pnum);
453 			err = -EIO;
454 			goto out;
455 		}
456 	}
457 
458 	err = patt_count;
459 	ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum);
460 
461 out:
462 	mutex_unlock(&ubi->buf_mutex);
463 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
464 		/*
465 		 * If a bit-flip or data integrity error was detected, the test
466 		 * has not passed because it happened on a freshly erased
467 		 * physical eraseblock which means something is wrong with it.
468 		 */
469 		ubi_err("read problems on freshly erased PEB %d, must be bad",
470 			pnum);
471 		err = -EIO;
472 	}
473 	return err;
474 }
475 
476 /**
477  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
478  * @ubi: UBI device description object
479  * @pnum: physical eraseblock number to prepare
480  *
481  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
482  * algorithm: the PEB is first filled with zeroes, then it is erased. And
483  * filling with zeroes starts from the end of the PEB. This was observed with
484  * Spansion S29GL512N NOR flash.
485  *
486  * This means that in case of a power cut we may end up with intact data at the
487  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
488  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
489  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
490  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
491  *
492  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
493  * magic numbers in order to invalidate them and prevent the failures. Returns
494  * zero in case of success and a negative error code in case of failure.
495  */
496 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
497 {
498 	int err, err1;
499 	size_t written;
500 	loff_t addr;
501 	uint32_t data = 0;
502 	/*
503 	 * Note, we cannot generally define VID header buffers on stack,
504 	 * because of the way we deal with these buffers (see the header
505 	 * comment in this file). But we know this is a NOR-specific piece of
506 	 * code, so we can do this. But yes, this is error-prone and we should
507 	 * (pre-)allocate VID header buffer instead.
508 	 */
509 	struct ubi_vid_hdr vid_hdr;
510 
511 	/*
512 	 * It is important to first invalidate the EC header, and then the VID
513 	 * header. Otherwise a power cut may lead to valid EC header and
514 	 * invalid VID header, in which case UBI will treat this PEB as
515 	 * corrupted and will try to preserve it, and print scary warnings.
516 	 */
517 	addr = (loff_t)pnum * ubi->peb_size;
518 	err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
519 	if (!err) {
520 		addr += ubi->vid_hdr_aloffset;
521 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
522 		if (!err)
523 			return 0;
524 	}
525 
526 	/*
527 	 * We failed to write to the media. This was observed with Spansion
528 	 * S29GL512N NOR flash. Most probably the previously eraseblock erasure
529 	 * was interrupted at a very inappropriate moment, so it became
530 	 * unwritable. In this case we probably anyway have garbage in this
531 	 * PEB.
532 	 */
533 	err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
534 	if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
535 	    err1 == UBI_IO_FF) {
536 		struct ubi_ec_hdr ec_hdr;
537 
538 		err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
539 		if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
540 		    err1 == UBI_IO_FF)
541 			/*
542 			 * Both VID and EC headers are corrupted, so we can
543 			 * safely erase this PEB and not afraid that it will be
544 			 * treated as a valid PEB in case of an unclean reboot.
545 			 */
546 			return 0;
547 	}
548 
549 	/*
550 	 * The PEB contains a valid VID header, but we cannot invalidate it.
551 	 * Supposedly the flash media or the driver is screwed up, so return an
552 	 * error.
553 	 */
554 	ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
555 		pnum, err, err1);
556 	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
557 	return -EIO;
558 }
559 
560 /**
561  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
562  * @ubi: UBI device description object
563  * @pnum: physical eraseblock number to erase
564  * @torture: if this physical eraseblock has to be tortured
565  *
566  * This function synchronously erases physical eraseblock @pnum. If @torture
567  * flag is not zero, the physical eraseblock is checked by means of writing
568  * different patterns to it and reading them back. If the torturing is enabled,
569  * the physical eraseblock is erased more than once.
570  *
571  * This function returns the number of erasures made in case of success, %-EIO
572  * if the erasure failed or the torturing test failed, and other negative error
573  * codes in case of other errors. Note, %-EIO means that the physical
574  * eraseblock is bad.
575  */
576 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
577 {
578 	int err, ret = 0;
579 
580 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
581 
582 	err = self_check_not_bad(ubi, pnum);
583 	if (err != 0)
584 		return err;
585 
586 	if (ubi->ro_mode) {
587 		ubi_err("read-only mode");
588 		return -EROFS;
589 	}
590 
591 	if (ubi->nor_flash) {
592 		err = nor_erase_prepare(ubi, pnum);
593 		if (err)
594 			return err;
595 	}
596 
597 	if (torture) {
598 		ret = torture_peb(ubi, pnum);
599 		if (ret < 0)
600 			return ret;
601 	}
602 
603 	err = do_sync_erase(ubi, pnum);
604 	if (err)
605 		return err;
606 
607 	return ret + 1;
608 }
609 
610 /**
611  * ubi_io_is_bad - check if a physical eraseblock is bad.
612  * @ubi: UBI device description object
613  * @pnum: the physical eraseblock number to check
614  *
615  * This function returns a positive number if the physical eraseblock is bad,
616  * zero if not, and a negative error code if an error occurred.
617  */
618 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
619 {
620 	struct mtd_info *mtd = ubi->mtd;
621 
622 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
623 
624 	if (ubi->bad_allowed) {
625 		int ret;
626 
627 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
628 		if (ret < 0)
629 			ubi_err("error %d while checking if PEB %d is bad",
630 				ret, pnum);
631 		else if (ret)
632 			dbg_io("PEB %d is bad", pnum);
633 		return ret;
634 	}
635 
636 	return 0;
637 }
638 
639 /**
640  * ubi_io_mark_bad - mark a physical eraseblock as bad.
641  * @ubi: UBI device description object
642  * @pnum: the physical eraseblock number to mark
643  *
644  * This function returns zero in case of success and a negative error code in
645  * case of failure.
646  */
647 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
648 {
649 	int err;
650 	struct mtd_info *mtd = ubi->mtd;
651 
652 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
653 
654 	if (ubi->ro_mode) {
655 		ubi_err("read-only mode");
656 		return -EROFS;
657 	}
658 
659 	if (!ubi->bad_allowed)
660 		return 0;
661 
662 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
663 	if (err)
664 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
665 	return err;
666 }
667 
668 /**
669  * validate_ec_hdr - validate an erase counter header.
670  * @ubi: UBI device description object
671  * @ec_hdr: the erase counter header to check
672  *
673  * This function returns zero if the erase counter header is OK, and %1 if
674  * not.
675  */
676 static int validate_ec_hdr(const struct ubi_device *ubi,
677 			   const struct ubi_ec_hdr *ec_hdr)
678 {
679 	long long ec;
680 	int vid_hdr_offset, leb_start;
681 
682 	ec = be64_to_cpu(ec_hdr->ec);
683 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
684 	leb_start = be32_to_cpu(ec_hdr->data_offset);
685 
686 	if (ec_hdr->version != UBI_VERSION) {
687 		ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d",
688 			UBI_VERSION, (int)ec_hdr->version);
689 		goto bad;
690 	}
691 
692 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
693 		ubi_err("bad VID header offset %d, expected %d",
694 			vid_hdr_offset, ubi->vid_hdr_offset);
695 		goto bad;
696 	}
697 
698 	if (leb_start != ubi->leb_start) {
699 		ubi_err("bad data offset %d, expected %d",
700 			leb_start, ubi->leb_start);
701 		goto bad;
702 	}
703 
704 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
705 		ubi_err("bad erase counter %lld", ec);
706 		goto bad;
707 	}
708 
709 	return 0;
710 
711 bad:
712 	ubi_err("bad EC header");
713 	ubi_dump_ec_hdr(ec_hdr);
714 	dump_stack();
715 	return 1;
716 }
717 
718 /**
719  * ubi_io_read_ec_hdr - read and check an erase counter header.
720  * @ubi: UBI device description object
721  * @pnum: physical eraseblock to read from
722  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
723  * header
724  * @verbose: be verbose if the header is corrupted or was not found
725  *
726  * This function reads erase counter header from physical eraseblock @pnum and
727  * stores it in @ec_hdr. This function also checks CRC checksum of the read
728  * erase counter header. The following codes may be returned:
729  *
730  * o %0 if the CRC checksum is correct and the header was successfully read;
731  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
732  *   and corrected by the flash driver; this is harmless but may indicate that
733  *   this eraseblock may become bad soon (but may be not);
734  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
735  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
736  *   a data integrity error (uncorrectable ECC error in case of NAND);
737  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
738  * o a negative error code in case of failure.
739  */
740 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
741 		       struct ubi_ec_hdr *ec_hdr, int verbose)
742 {
743 	int err, read_err;
744 	uint32_t crc, magic, hdr_crc;
745 
746 	dbg_io("read EC header from PEB %d", pnum);
747 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
748 
749 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
750 	if (read_err) {
751 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
752 			return read_err;
753 
754 		/*
755 		 * We read all the data, but either a correctable bit-flip
756 		 * occurred, or MTD reported a data integrity error
757 		 * (uncorrectable ECC error in case of NAND). The former is
758 		 * harmless, the later may mean that the read data is
759 		 * corrupted. But we have a CRC check-sum and we will detect
760 		 * this. If the EC header is still OK, we just report this as
761 		 * there was a bit-flip, to force scrubbing.
762 		 */
763 	}
764 
765 	magic = be32_to_cpu(ec_hdr->magic);
766 	if (magic != UBI_EC_HDR_MAGIC) {
767 		if (mtd_is_eccerr(read_err))
768 			return UBI_IO_BAD_HDR_EBADMSG;
769 
770 		/*
771 		 * The magic field is wrong. Let's check if we have read all
772 		 * 0xFF. If yes, this physical eraseblock is assumed to be
773 		 * empty.
774 		 */
775 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
776 			/* The physical eraseblock is supposedly empty */
777 			if (verbose)
778 				ubi_warn("no EC header found at PEB %d, only 0xFF bytes",
779 					 pnum);
780 			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
781 				pnum);
782 			if (!read_err)
783 				return UBI_IO_FF;
784 			else
785 				return UBI_IO_FF_BITFLIPS;
786 		}
787 
788 		/*
789 		 * This is not a valid erase counter header, and these are not
790 		 * 0xFF bytes. Report that the header is corrupted.
791 		 */
792 		if (verbose) {
793 			ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
794 				 pnum, magic, UBI_EC_HDR_MAGIC);
795 			ubi_dump_ec_hdr(ec_hdr);
796 		}
797 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
798 			pnum, magic, UBI_EC_HDR_MAGIC);
799 		return UBI_IO_BAD_HDR;
800 	}
801 
802 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
803 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
804 
805 	if (hdr_crc != crc) {
806 		if (verbose) {
807 			ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
808 				 pnum, crc, hdr_crc);
809 			ubi_dump_ec_hdr(ec_hdr);
810 		}
811 		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
812 			pnum, crc, hdr_crc);
813 
814 		if (!read_err)
815 			return UBI_IO_BAD_HDR;
816 		else
817 			return UBI_IO_BAD_HDR_EBADMSG;
818 	}
819 
820 	/* And of course validate what has just been read from the media */
821 	err = validate_ec_hdr(ubi, ec_hdr);
822 	if (err) {
823 		ubi_err("validation failed for PEB %d", pnum);
824 		return -EINVAL;
825 	}
826 
827 	/*
828 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
829 	 * a bit-flip to force scrubbing on this PEB.
830 	 */
831 	return read_err ? UBI_IO_BITFLIPS : 0;
832 }
833 
834 /**
835  * ubi_io_write_ec_hdr - write an erase counter header.
836  * @ubi: UBI device description object
837  * @pnum: physical eraseblock to write to
838  * @ec_hdr: the erase counter header to write
839  *
840  * This function writes erase counter header described by @ec_hdr to physical
841  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
842  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
843  * field.
844  *
845  * This function returns zero in case of success and a negative error code in
846  * case of failure. If %-EIO is returned, the physical eraseblock most probably
847  * went bad.
848  */
849 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
850 			struct ubi_ec_hdr *ec_hdr)
851 {
852 	int err;
853 	uint32_t crc;
854 
855 	dbg_io("write EC header to PEB %d", pnum);
856 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
857 
858 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
859 	ec_hdr->version = UBI_VERSION;
860 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
861 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
862 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
863 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
864 	ec_hdr->hdr_crc = cpu_to_be32(crc);
865 
866 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
867 	if (err)
868 		return err;
869 
870 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
871 	return err;
872 }
873 
874 /**
875  * validate_vid_hdr - validate a volume identifier header.
876  * @ubi: UBI device description object
877  * @vid_hdr: the volume identifier header to check
878  *
879  * This function checks that data stored in the volume identifier header
880  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
881  */
882 static int validate_vid_hdr(const struct ubi_device *ubi,
883 			    const struct ubi_vid_hdr *vid_hdr)
884 {
885 	int vol_type = vid_hdr->vol_type;
886 	int copy_flag = vid_hdr->copy_flag;
887 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
888 	int lnum = be32_to_cpu(vid_hdr->lnum);
889 	int compat = vid_hdr->compat;
890 	int data_size = be32_to_cpu(vid_hdr->data_size);
891 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
892 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
893 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
894 	int usable_leb_size = ubi->leb_size - data_pad;
895 
896 	if (copy_flag != 0 && copy_flag != 1) {
897 		ubi_err("bad copy_flag");
898 		goto bad;
899 	}
900 
901 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
902 	    data_pad < 0) {
903 		ubi_err("negative values");
904 		goto bad;
905 	}
906 
907 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
908 		ubi_err("bad vol_id");
909 		goto bad;
910 	}
911 
912 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
913 		ubi_err("bad compat");
914 		goto bad;
915 	}
916 
917 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
918 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
919 	    compat != UBI_COMPAT_REJECT) {
920 		ubi_err("bad compat");
921 		goto bad;
922 	}
923 
924 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
925 		ubi_err("bad vol_type");
926 		goto bad;
927 	}
928 
929 	if (data_pad >= ubi->leb_size / 2) {
930 		ubi_err("bad data_pad");
931 		goto bad;
932 	}
933 
934 	if (vol_type == UBI_VID_STATIC) {
935 		/*
936 		 * Although from high-level point of view static volumes may
937 		 * contain zero bytes of data, but no VID headers can contain
938 		 * zero at these fields, because they empty volumes do not have
939 		 * mapped logical eraseblocks.
940 		 */
941 		if (used_ebs == 0) {
942 			ubi_err("zero used_ebs");
943 			goto bad;
944 		}
945 		if (data_size == 0) {
946 			ubi_err("zero data_size");
947 			goto bad;
948 		}
949 		if (lnum < used_ebs - 1) {
950 			if (data_size != usable_leb_size) {
951 				ubi_err("bad data_size");
952 				goto bad;
953 			}
954 		} else if (lnum == used_ebs - 1) {
955 			if (data_size == 0) {
956 				ubi_err("bad data_size at last LEB");
957 				goto bad;
958 			}
959 		} else {
960 			ubi_err("too high lnum");
961 			goto bad;
962 		}
963 	} else {
964 		if (copy_flag == 0) {
965 			if (data_crc != 0) {
966 				ubi_err("non-zero data CRC");
967 				goto bad;
968 			}
969 			if (data_size != 0) {
970 				ubi_err("non-zero data_size");
971 				goto bad;
972 			}
973 		} else {
974 			if (data_size == 0) {
975 				ubi_err("zero data_size of copy");
976 				goto bad;
977 			}
978 		}
979 		if (used_ebs != 0) {
980 			ubi_err("bad used_ebs");
981 			goto bad;
982 		}
983 	}
984 
985 	return 0;
986 
987 bad:
988 	ubi_err("bad VID header");
989 	ubi_dump_vid_hdr(vid_hdr);
990 	dump_stack();
991 	return 1;
992 }
993 
994 /**
995  * ubi_io_read_vid_hdr - read and check a volume identifier header.
996  * @ubi: UBI device description object
997  * @pnum: physical eraseblock number to read from
998  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
999  * identifier header
1000  * @verbose: be verbose if the header is corrupted or wasn't found
1001  *
1002  * This function reads the volume identifier header from physical eraseblock
1003  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
1004  * volume identifier header. The error codes are the same as in
1005  * 'ubi_io_read_ec_hdr()'.
1006  *
1007  * Note, the implementation of this function is also very similar to
1008  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1009  */
1010 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1011 			struct ubi_vid_hdr *vid_hdr, int verbose)
1012 {
1013 	int err, read_err;
1014 	uint32_t crc, magic, hdr_crc;
1015 	void *p;
1016 
1017 	dbg_io("read VID header from PEB %d", pnum);
1018 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1019 
1020 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1021 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1022 			  ubi->vid_hdr_alsize);
1023 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1024 		return read_err;
1025 
1026 	magic = be32_to_cpu(vid_hdr->magic);
1027 	if (magic != UBI_VID_HDR_MAGIC) {
1028 		if (mtd_is_eccerr(read_err))
1029 			return UBI_IO_BAD_HDR_EBADMSG;
1030 
1031 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1032 			if (verbose)
1033 				ubi_warn("no VID header found at PEB %d, only 0xFF bytes",
1034 					 pnum);
1035 			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1036 				pnum);
1037 			if (!read_err)
1038 				return UBI_IO_FF;
1039 			else
1040 				return UBI_IO_FF_BITFLIPS;
1041 		}
1042 
1043 		if (verbose) {
1044 			ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
1045 				 pnum, magic, UBI_VID_HDR_MAGIC);
1046 			ubi_dump_vid_hdr(vid_hdr);
1047 		}
1048 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1049 			pnum, magic, UBI_VID_HDR_MAGIC);
1050 		return UBI_IO_BAD_HDR;
1051 	}
1052 
1053 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1054 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1055 
1056 	if (hdr_crc != crc) {
1057 		if (verbose) {
1058 			ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x",
1059 				 pnum, crc, hdr_crc);
1060 			ubi_dump_vid_hdr(vid_hdr);
1061 		}
1062 		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1063 			pnum, crc, hdr_crc);
1064 		if (!read_err)
1065 			return UBI_IO_BAD_HDR;
1066 		else
1067 			return UBI_IO_BAD_HDR_EBADMSG;
1068 	}
1069 
1070 	err = validate_vid_hdr(ubi, vid_hdr);
1071 	if (err) {
1072 		ubi_err("validation failed for PEB %d", pnum);
1073 		return -EINVAL;
1074 	}
1075 
1076 	return read_err ? UBI_IO_BITFLIPS : 0;
1077 }
1078 
1079 /**
1080  * ubi_io_write_vid_hdr - write a volume identifier header.
1081  * @ubi: UBI device description object
1082  * @pnum: the physical eraseblock number to write to
1083  * @vid_hdr: the volume identifier header to write
1084  *
1085  * This function writes the volume identifier header described by @vid_hdr to
1086  * physical eraseblock @pnum. This function automatically fills the
1087  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1088  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1089  *
1090  * This function returns zero in case of success and a negative error code in
1091  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1092  * bad.
1093  */
1094 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1095 			 struct ubi_vid_hdr *vid_hdr)
1096 {
1097 	int err;
1098 	uint32_t crc;
1099 	void *p;
1100 
1101 	dbg_io("write VID header to PEB %d", pnum);
1102 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1103 
1104 	err = self_check_peb_ec_hdr(ubi, pnum);
1105 	if (err)
1106 		return err;
1107 
1108 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1109 	vid_hdr->version = UBI_VERSION;
1110 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1111 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1112 
1113 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1114 	if (err)
1115 		return err;
1116 
1117 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1118 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1119 			   ubi->vid_hdr_alsize);
1120 	return err;
1121 }
1122 
1123 /**
1124  * self_check_not_bad - ensure that a physical eraseblock is not bad.
1125  * @ubi: UBI device description object
1126  * @pnum: physical eraseblock number to check
1127  *
1128  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1129  * it is bad and a negative error code if an error occurred.
1130  */
1131 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1132 {
1133 	int err;
1134 
1135 	if (!ubi_dbg_chk_io(ubi))
1136 		return 0;
1137 
1138 	err = ubi_io_is_bad(ubi, pnum);
1139 	if (!err)
1140 		return err;
1141 
1142 	ubi_err("self-check failed for PEB %d", pnum);
1143 	dump_stack();
1144 	return err > 0 ? -EINVAL : err;
1145 }
1146 
1147 /**
1148  * self_check_ec_hdr - check if an erase counter header is all right.
1149  * @ubi: UBI device description object
1150  * @pnum: physical eraseblock number the erase counter header belongs to
1151  * @ec_hdr: the erase counter header to check
1152  *
1153  * This function returns zero if the erase counter header contains valid
1154  * values, and %-EINVAL if not.
1155  */
1156 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1157 			     const struct ubi_ec_hdr *ec_hdr)
1158 {
1159 	int err;
1160 	uint32_t magic;
1161 
1162 	if (!ubi_dbg_chk_io(ubi))
1163 		return 0;
1164 
1165 	magic = be32_to_cpu(ec_hdr->magic);
1166 	if (magic != UBI_EC_HDR_MAGIC) {
1167 		ubi_err("bad magic %#08x, must be %#08x",
1168 			magic, UBI_EC_HDR_MAGIC);
1169 		goto fail;
1170 	}
1171 
1172 	err = validate_ec_hdr(ubi, ec_hdr);
1173 	if (err) {
1174 		ubi_err("self-check failed for PEB %d", pnum);
1175 		goto fail;
1176 	}
1177 
1178 	return 0;
1179 
1180 fail:
1181 	ubi_dump_ec_hdr(ec_hdr);
1182 	dump_stack();
1183 	return -EINVAL;
1184 }
1185 
1186 /**
1187  * self_check_peb_ec_hdr - check erase counter header.
1188  * @ubi: UBI device description object
1189  * @pnum: the physical eraseblock number to check
1190  *
1191  * This function returns zero if the erase counter header is all right and and
1192  * a negative error code if not or if an error occurred.
1193  */
1194 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1195 {
1196 	int err;
1197 	uint32_t crc, hdr_crc;
1198 	struct ubi_ec_hdr *ec_hdr;
1199 
1200 	if (!ubi_dbg_chk_io(ubi))
1201 		return 0;
1202 
1203 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1204 	if (!ec_hdr)
1205 		return -ENOMEM;
1206 
1207 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1208 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1209 		goto exit;
1210 
1211 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1212 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1213 	if (hdr_crc != crc) {
1214 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1215 		ubi_err("self-check failed for PEB %d", pnum);
1216 		ubi_dump_ec_hdr(ec_hdr);
1217 		dump_stack();
1218 		err = -EINVAL;
1219 		goto exit;
1220 	}
1221 
1222 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1223 
1224 exit:
1225 	kfree(ec_hdr);
1226 	return err;
1227 }
1228 
1229 /**
1230  * self_check_vid_hdr - check that a volume identifier header is all right.
1231  * @ubi: UBI device description object
1232  * @pnum: physical eraseblock number the volume identifier header belongs to
1233  * @vid_hdr: the volume identifier header to check
1234  *
1235  * This function returns zero if the volume identifier header is all right, and
1236  * %-EINVAL if not.
1237  */
1238 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1239 			      const struct ubi_vid_hdr *vid_hdr)
1240 {
1241 	int err;
1242 	uint32_t magic;
1243 
1244 	if (!ubi_dbg_chk_io(ubi))
1245 		return 0;
1246 
1247 	magic = be32_to_cpu(vid_hdr->magic);
1248 	if (magic != UBI_VID_HDR_MAGIC) {
1249 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1250 			magic, pnum, UBI_VID_HDR_MAGIC);
1251 		goto fail;
1252 	}
1253 
1254 	err = validate_vid_hdr(ubi, vid_hdr);
1255 	if (err) {
1256 		ubi_err("self-check failed for PEB %d", pnum);
1257 		goto fail;
1258 	}
1259 
1260 	return err;
1261 
1262 fail:
1263 	ubi_err("self-check failed for PEB %d", pnum);
1264 	ubi_dump_vid_hdr(vid_hdr);
1265 	dump_stack();
1266 	return -EINVAL;
1267 
1268 }
1269 
1270 /**
1271  * self_check_peb_vid_hdr - check volume identifier header.
1272  * @ubi: UBI device description object
1273  * @pnum: the physical eraseblock number to check
1274  *
1275  * This function returns zero if the volume identifier header is all right,
1276  * and a negative error code if not or if an error occurred.
1277  */
1278 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1279 {
1280 	int err;
1281 	uint32_t crc, hdr_crc;
1282 	struct ubi_vid_hdr *vid_hdr;
1283 	void *p;
1284 
1285 	if (!ubi_dbg_chk_io(ubi))
1286 		return 0;
1287 
1288 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1289 	if (!vid_hdr)
1290 		return -ENOMEM;
1291 
1292 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1293 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1294 			  ubi->vid_hdr_alsize);
1295 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1296 		goto exit;
1297 
1298 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1299 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1300 	if (hdr_crc != crc) {
1301 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1302 			pnum, crc, hdr_crc);
1303 		ubi_err("self-check failed for PEB %d", pnum);
1304 		ubi_dump_vid_hdr(vid_hdr);
1305 		dump_stack();
1306 		err = -EINVAL;
1307 		goto exit;
1308 	}
1309 
1310 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1311 
1312 exit:
1313 	ubi_free_vid_hdr(ubi, vid_hdr);
1314 	return err;
1315 }
1316 
1317 /**
1318  * self_check_write - make sure write succeeded.
1319  * @ubi: UBI device description object
1320  * @buf: buffer with data which were written
1321  * @pnum: physical eraseblock number the data were written to
1322  * @offset: offset within the physical eraseblock the data were written to
1323  * @len: how many bytes were written
1324  *
1325  * This functions reads data which were recently written and compares it with
1326  * the original data buffer - the data have to match. Returns zero if the data
1327  * match and a negative error code if not or in case of failure.
1328  */
1329 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1330 			    int offset, int len)
1331 {
1332 	int err, i;
1333 	size_t read;
1334 	void *buf1;
1335 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1336 
1337 	if (!ubi_dbg_chk_io(ubi))
1338 		return 0;
1339 
1340 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1341 	if (!buf1) {
1342 		ubi_err("cannot allocate memory to check writes");
1343 		return 0;
1344 	}
1345 
1346 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1347 	if (err && !mtd_is_bitflip(err))
1348 		goto out_free;
1349 
1350 	for (i = 0; i < len; i++) {
1351 		uint8_t c = ((uint8_t *)buf)[i];
1352 		uint8_t c1 = ((uint8_t *)buf1)[i];
1353 		int dump_len;
1354 
1355 		if (c == c1)
1356 			continue;
1357 
1358 		ubi_err("self-check failed for PEB %d:%d, len %d",
1359 			pnum, offset, len);
1360 		ubi_msg("data differ at position %d", i);
1361 		dump_len = max_t(int, 128, len - i);
1362 		ubi_msg("hex dump of the original buffer from %d to %d",
1363 			i, i + dump_len);
1364 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1365 			       buf + i, dump_len, 1);
1366 		ubi_msg("hex dump of the read buffer from %d to %d",
1367 			i, i + dump_len);
1368 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1369 			       buf1 + i, dump_len, 1);
1370 		dump_stack();
1371 		err = -EINVAL;
1372 		goto out_free;
1373 	}
1374 
1375 	vfree(buf1);
1376 	return 0;
1377 
1378 out_free:
1379 	vfree(buf1);
1380 	return err;
1381 }
1382 
1383 /**
1384  * ubi_self_check_all_ff - check that a region of flash is empty.
1385  * @ubi: UBI device description object
1386  * @pnum: the physical eraseblock number to check
1387  * @offset: the starting offset within the physical eraseblock to check
1388  * @len: the length of the region to check
1389  *
1390  * This function returns zero if only 0xFF bytes are present at offset
1391  * @offset of the physical eraseblock @pnum, and a negative error code if not
1392  * or if an error occurred.
1393  */
1394 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1395 {
1396 	size_t read;
1397 	int err;
1398 	void *buf;
1399 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1400 
1401 	if (!ubi_dbg_chk_io(ubi))
1402 		return 0;
1403 
1404 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1405 	if (!buf) {
1406 		ubi_err("cannot allocate memory to check for 0xFFs");
1407 		return 0;
1408 	}
1409 
1410 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1411 	if (err && !mtd_is_bitflip(err)) {
1412 		ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1413 			err, len, pnum, offset, read);
1414 		goto error;
1415 	}
1416 
1417 	err = ubi_check_pattern(buf, 0xFF, len);
1418 	if (err == 0) {
1419 		ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1420 			pnum, offset, len);
1421 		goto fail;
1422 	}
1423 
1424 	vfree(buf);
1425 	return 0;
1426 
1427 fail:
1428 	ubi_err("self-check failed for PEB %d", pnum);
1429 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1430 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1431 	err = -EINVAL;
1432 error:
1433 	dump_stack();
1434 	vfree(buf);
1435 	return err;
1436 }
1437