1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * UBI input/output sub-system. 24 * 25 * This sub-system provides a uniform way to work with all kinds of the 26 * underlying MTD devices. It also implements handy functions for reading and 27 * writing UBI headers. 28 * 29 * We are trying to have a paranoid mindset and not to trust to what we read 30 * from the flash media in order to be more secure and robust. So this 31 * sub-system validates every single header it reads from the flash media. 32 * 33 * Some words about how the eraseblock headers are stored. 34 * 35 * The erase counter header is always stored at offset zero. By default, the 36 * VID header is stored after the EC header at the closest aligned offset 37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 38 * header at the closest aligned offset. But this default layout may be 39 * changed. For example, for different reasons (e.g., optimization) UBI may be 40 * asked to put the VID header at further offset, and even at an unaligned 41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 42 * proper padding in front of it. Data offset may also be changed but it has to 43 * be aligned. 44 * 45 * About minimal I/O units. In general, UBI assumes flash device model where 46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 50 * to do different optimizations. 51 * 52 * This is extremely useful in case of NAND flashes which admit of several 53 * write operations to one NAND page. In this case UBI can fit EC and VID 54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 57 * users. 58 * 59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 61 * headers. 62 * 63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 64 * device, e.g., make @ubi->min_io_size = 512 in the example above? 65 * 66 * A: because when writing a sub-page, MTD still writes a full 2K page but the 67 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 69 * Thus, we prefer to use sub-pages only for EC and VID headers. 70 * 71 * As it was noted above, the VID header may start at a non-aligned offset. 72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 73 * the VID header may reside at offset 1984 which is the last 64 bytes of the 74 * last sub-page (EC header is always at offset zero). This causes some 75 * difficulties when reading and writing VID headers. 76 * 77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 78 * the data and want to write this VID header out. As we can only write in 79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 80 * to offset 448 of this buffer. 81 * 82 * The I/O sub-system does the following trick in order to avoid this extra 83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 85 * When the VID header is being written out, it shifts the VID header pointer 86 * back and writes the whole sub-page. 87 */ 88 89 #include <linux/crc32.h> 90 #include <linux/err.h> 91 #include <linux/slab.h> 92 #include "ubi.h" 93 94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum); 95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 97 const struct ubi_ec_hdr *ec_hdr); 98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 100 const struct ubi_vid_hdr *vid_hdr); 101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 102 int offset, int len); 103 104 /** 105 * ubi_io_read - read data from a physical eraseblock. 106 * @ubi: UBI device description object 107 * @buf: buffer where to store the read data 108 * @pnum: physical eraseblock number to read from 109 * @offset: offset within the physical eraseblock from where to read 110 * @len: how many bytes to read 111 * 112 * This function reads data from offset @offset of physical eraseblock @pnum 113 * and stores the read data in the @buf buffer. The following return codes are 114 * possible: 115 * 116 * o %0 if all the requested data were successfully read; 117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 118 * correctable bit-flips were detected; this is harmless but may indicate 119 * that this eraseblock may become bad soon (but do not have to); 120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 121 * example it can be an ECC error in case of NAND; this most probably means 122 * that the data is corrupted; 123 * o %-EIO if some I/O error occurred; 124 * o other negative error codes in case of other errors. 125 */ 126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 127 int len) 128 { 129 int err, retries = 0; 130 size_t read; 131 loff_t addr; 132 133 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 134 135 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 136 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 137 ubi_assert(len > 0); 138 139 err = self_check_not_bad(ubi, pnum); 140 if (err) 141 return err; 142 143 /* 144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 145 * do not do this, the following may happen: 146 * 1. The buffer contains data from previous operation, e.g., read from 147 * another PEB previously. The data looks like expected, e.g., if we 148 * just do not read anything and return - the caller would not 149 * notice this. E.g., if we are reading a VID header, the buffer may 150 * contain a valid VID header from another PEB. 151 * 2. The driver is buggy and returns us success or -EBADMSG or 152 * -EUCLEAN, but it does not actually put any data to the buffer. 153 * 154 * This may confuse UBI or upper layers - they may think the buffer 155 * contains valid data while in fact it is just old data. This is 156 * especially possible because UBI (and UBIFS) relies on CRC, and 157 * treats data as correct even in case of ECC errors if the CRC is 158 * correct. 159 * 160 * Try to prevent this situation by changing the first byte of the 161 * buffer. 162 */ 163 *((uint8_t *)buf) ^= 0xFF; 164 165 addr = (loff_t)pnum * ubi->peb_size + offset; 166 retry: 167 err = mtd_read(ubi->mtd, addr, len, &read, buf); 168 if (err) { 169 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; 170 171 if (mtd_is_bitflip(err)) { 172 /* 173 * -EUCLEAN is reported if there was a bit-flip which 174 * was corrected, so this is harmless. 175 * 176 * We do not report about it here unless debugging is 177 * enabled. A corresponding message will be printed 178 * later, when it is has been scrubbed. 179 */ 180 ubi_msg("fixable bit-flip detected at PEB %d", pnum); 181 ubi_assert(len == read); 182 return UBI_IO_BITFLIPS; 183 } 184 185 if (retries++ < UBI_IO_RETRIES) { 186 ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", 187 err, errstr, len, pnum, offset, read); 188 yield(); 189 goto retry; 190 } 191 192 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", 193 err, errstr, len, pnum, offset, read); 194 dump_stack(); 195 196 /* 197 * The driver should never return -EBADMSG if it failed to read 198 * all the requested data. But some buggy drivers might do 199 * this, so we change it to -EIO. 200 */ 201 if (read != len && mtd_is_eccerr(err)) { 202 ubi_assert(0); 203 err = -EIO; 204 } 205 } else { 206 ubi_assert(len == read); 207 208 if (ubi_dbg_is_bitflip(ubi)) { 209 dbg_gen("bit-flip (emulated)"); 210 err = UBI_IO_BITFLIPS; 211 } 212 } 213 214 return err; 215 } 216 217 /** 218 * ubi_io_write - write data to a physical eraseblock. 219 * @ubi: UBI device description object 220 * @buf: buffer with the data to write 221 * @pnum: physical eraseblock number to write to 222 * @offset: offset within the physical eraseblock where to write 223 * @len: how many bytes to write 224 * 225 * This function writes @len bytes of data from buffer @buf to offset @offset 226 * of physical eraseblock @pnum. If all the data were successfully written, 227 * zero is returned. If an error occurred, this function returns a negative 228 * error code. If %-EIO is returned, the physical eraseblock most probably went 229 * bad. 230 * 231 * Note, in case of an error, it is possible that something was still written 232 * to the flash media, but may be some garbage. 233 */ 234 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 235 int len) 236 { 237 int err; 238 size_t written; 239 loff_t addr; 240 241 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 242 243 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 244 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 245 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 246 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 247 248 if (ubi->ro_mode) { 249 ubi_err("read-only mode"); 250 return -EROFS; 251 } 252 253 err = self_check_not_bad(ubi, pnum); 254 if (err) 255 return err; 256 257 /* The area we are writing to has to contain all 0xFF bytes */ 258 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 259 if (err) 260 return err; 261 262 if (offset >= ubi->leb_start) { 263 /* 264 * We write to the data area of the physical eraseblock. Make 265 * sure it has valid EC and VID headers. 266 */ 267 err = self_check_peb_ec_hdr(ubi, pnum); 268 if (err) 269 return err; 270 err = self_check_peb_vid_hdr(ubi, pnum); 271 if (err) 272 return err; 273 } 274 275 if (ubi_dbg_is_write_failure(ubi)) { 276 ubi_err("cannot write %d bytes to PEB %d:%d (emulated)", 277 len, pnum, offset); 278 dump_stack(); 279 return -EIO; 280 } 281 282 addr = (loff_t)pnum * ubi->peb_size + offset; 283 err = mtd_write(ubi->mtd, addr, len, &written, buf); 284 if (err) { 285 ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes", 286 err, len, pnum, offset, written); 287 dump_stack(); 288 ubi_dump_flash(ubi, pnum, offset, len); 289 } else 290 ubi_assert(written == len); 291 292 if (!err) { 293 err = self_check_write(ubi, buf, pnum, offset, len); 294 if (err) 295 return err; 296 297 /* 298 * Since we always write sequentially, the rest of the PEB has 299 * to contain only 0xFF bytes. 300 */ 301 offset += len; 302 len = ubi->peb_size - offset; 303 if (len) 304 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 305 } 306 307 return err; 308 } 309 310 /** 311 * erase_callback - MTD erasure call-back. 312 * @ei: MTD erase information object. 313 * 314 * Note, even though MTD erase interface is asynchronous, all the current 315 * implementations are synchronous anyway. 316 */ 317 static void erase_callback(struct erase_info *ei) 318 { 319 wake_up_interruptible((wait_queue_head_t *)ei->priv); 320 } 321 322 /** 323 * do_sync_erase - synchronously erase a physical eraseblock. 324 * @ubi: UBI device description object 325 * @pnum: the physical eraseblock number to erase 326 * 327 * This function synchronously erases physical eraseblock @pnum and returns 328 * zero in case of success and a negative error code in case of failure. If 329 * %-EIO is returned, the physical eraseblock most probably went bad. 330 */ 331 static int do_sync_erase(struct ubi_device *ubi, int pnum) 332 { 333 int err, retries = 0; 334 struct erase_info ei; 335 wait_queue_head_t wq; 336 337 dbg_io("erase PEB %d", pnum); 338 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 339 340 if (ubi->ro_mode) { 341 ubi_err("read-only mode"); 342 return -EROFS; 343 } 344 345 retry: 346 init_waitqueue_head(&wq); 347 memset(&ei, 0, sizeof(struct erase_info)); 348 349 ei.mtd = ubi->mtd; 350 ei.addr = (loff_t)pnum * ubi->peb_size; 351 ei.len = ubi->peb_size; 352 ei.callback = erase_callback; 353 ei.priv = (unsigned long)&wq; 354 355 err = mtd_erase(ubi->mtd, &ei); 356 if (err) { 357 if (retries++ < UBI_IO_RETRIES) { 358 ubi_warn("error %d while erasing PEB %d, retry", 359 err, pnum); 360 yield(); 361 goto retry; 362 } 363 ubi_err("cannot erase PEB %d, error %d", pnum, err); 364 dump_stack(); 365 return err; 366 } 367 368 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 369 ei.state == MTD_ERASE_FAILED); 370 if (err) { 371 ubi_err("interrupted PEB %d erasure", pnum); 372 return -EINTR; 373 } 374 375 if (ei.state == MTD_ERASE_FAILED) { 376 if (retries++ < UBI_IO_RETRIES) { 377 ubi_warn("error while erasing PEB %d, retry", pnum); 378 yield(); 379 goto retry; 380 } 381 ubi_err("cannot erase PEB %d", pnum); 382 dump_stack(); 383 return -EIO; 384 } 385 386 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); 387 if (err) 388 return err; 389 390 if (ubi_dbg_is_erase_failure(ubi)) { 391 ubi_err("cannot erase PEB %d (emulated)", pnum); 392 return -EIO; 393 } 394 395 return 0; 396 } 397 398 /* Patterns to write to a physical eraseblock when torturing it */ 399 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 400 401 /** 402 * torture_peb - test a supposedly bad physical eraseblock. 403 * @ubi: UBI device description object 404 * @pnum: the physical eraseblock number to test 405 * 406 * This function returns %-EIO if the physical eraseblock did not pass the 407 * test, a positive number of erase operations done if the test was 408 * successfully passed, and other negative error codes in case of other errors. 409 */ 410 static int torture_peb(struct ubi_device *ubi, int pnum) 411 { 412 int err, i, patt_count; 413 414 ubi_msg("run torture test for PEB %d", pnum); 415 patt_count = ARRAY_SIZE(patterns); 416 ubi_assert(patt_count > 0); 417 418 mutex_lock(&ubi->buf_mutex); 419 for (i = 0; i < patt_count; i++) { 420 err = do_sync_erase(ubi, pnum); 421 if (err) 422 goto out; 423 424 /* Make sure the PEB contains only 0xFF bytes */ 425 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 426 if (err) 427 goto out; 428 429 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); 430 if (err == 0) { 431 ubi_err("erased PEB %d, but a non-0xFF byte found", 432 pnum); 433 err = -EIO; 434 goto out; 435 } 436 437 /* Write a pattern and check it */ 438 memset(ubi->peb_buf, patterns[i], ubi->peb_size); 439 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 440 if (err) 441 goto out; 442 443 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); 444 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 445 if (err) 446 goto out; 447 448 err = ubi_check_pattern(ubi->peb_buf, patterns[i], 449 ubi->peb_size); 450 if (err == 0) { 451 ubi_err("pattern %x checking failed for PEB %d", 452 patterns[i], pnum); 453 err = -EIO; 454 goto out; 455 } 456 } 457 458 err = patt_count; 459 ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum); 460 461 out: 462 mutex_unlock(&ubi->buf_mutex); 463 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 464 /* 465 * If a bit-flip or data integrity error was detected, the test 466 * has not passed because it happened on a freshly erased 467 * physical eraseblock which means something is wrong with it. 468 */ 469 ubi_err("read problems on freshly erased PEB %d, must be bad", 470 pnum); 471 err = -EIO; 472 } 473 return err; 474 } 475 476 /** 477 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 478 * @ubi: UBI device description object 479 * @pnum: physical eraseblock number to prepare 480 * 481 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 482 * algorithm: the PEB is first filled with zeroes, then it is erased. And 483 * filling with zeroes starts from the end of the PEB. This was observed with 484 * Spansion S29GL512N NOR flash. 485 * 486 * This means that in case of a power cut we may end up with intact data at the 487 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 488 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 489 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 490 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 491 * 492 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 493 * magic numbers in order to invalidate them and prevent the failures. Returns 494 * zero in case of success and a negative error code in case of failure. 495 */ 496 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 497 { 498 int err, err1; 499 size_t written; 500 loff_t addr; 501 uint32_t data = 0; 502 /* 503 * Note, we cannot generally define VID header buffers on stack, 504 * because of the way we deal with these buffers (see the header 505 * comment in this file). But we know this is a NOR-specific piece of 506 * code, so we can do this. But yes, this is error-prone and we should 507 * (pre-)allocate VID header buffer instead. 508 */ 509 struct ubi_vid_hdr vid_hdr; 510 511 /* 512 * It is important to first invalidate the EC header, and then the VID 513 * header. Otherwise a power cut may lead to valid EC header and 514 * invalid VID header, in which case UBI will treat this PEB as 515 * corrupted and will try to preserve it, and print scary warnings. 516 */ 517 addr = (loff_t)pnum * ubi->peb_size; 518 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 519 if (!err) { 520 addr += ubi->vid_hdr_aloffset; 521 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 522 if (!err) 523 return 0; 524 } 525 526 /* 527 * We failed to write to the media. This was observed with Spansion 528 * S29GL512N NOR flash. Most probably the previously eraseblock erasure 529 * was interrupted at a very inappropriate moment, so it became 530 * unwritable. In this case we probably anyway have garbage in this 531 * PEB. 532 */ 533 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); 534 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || 535 err1 == UBI_IO_FF) { 536 struct ubi_ec_hdr ec_hdr; 537 538 err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 539 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || 540 err1 == UBI_IO_FF) 541 /* 542 * Both VID and EC headers are corrupted, so we can 543 * safely erase this PEB and not afraid that it will be 544 * treated as a valid PEB in case of an unclean reboot. 545 */ 546 return 0; 547 } 548 549 /* 550 * The PEB contains a valid VID header, but we cannot invalidate it. 551 * Supposedly the flash media or the driver is screwed up, so return an 552 * error. 553 */ 554 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", 555 pnum, err, err1); 556 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); 557 return -EIO; 558 } 559 560 /** 561 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 562 * @ubi: UBI device description object 563 * @pnum: physical eraseblock number to erase 564 * @torture: if this physical eraseblock has to be tortured 565 * 566 * This function synchronously erases physical eraseblock @pnum. If @torture 567 * flag is not zero, the physical eraseblock is checked by means of writing 568 * different patterns to it and reading them back. If the torturing is enabled, 569 * the physical eraseblock is erased more than once. 570 * 571 * This function returns the number of erasures made in case of success, %-EIO 572 * if the erasure failed or the torturing test failed, and other negative error 573 * codes in case of other errors. Note, %-EIO means that the physical 574 * eraseblock is bad. 575 */ 576 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 577 { 578 int err, ret = 0; 579 580 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 581 582 err = self_check_not_bad(ubi, pnum); 583 if (err != 0) 584 return err; 585 586 if (ubi->ro_mode) { 587 ubi_err("read-only mode"); 588 return -EROFS; 589 } 590 591 if (ubi->nor_flash) { 592 err = nor_erase_prepare(ubi, pnum); 593 if (err) 594 return err; 595 } 596 597 if (torture) { 598 ret = torture_peb(ubi, pnum); 599 if (ret < 0) 600 return ret; 601 } 602 603 err = do_sync_erase(ubi, pnum); 604 if (err) 605 return err; 606 607 return ret + 1; 608 } 609 610 /** 611 * ubi_io_is_bad - check if a physical eraseblock is bad. 612 * @ubi: UBI device description object 613 * @pnum: the physical eraseblock number to check 614 * 615 * This function returns a positive number if the physical eraseblock is bad, 616 * zero if not, and a negative error code if an error occurred. 617 */ 618 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 619 { 620 struct mtd_info *mtd = ubi->mtd; 621 622 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 623 624 if (ubi->bad_allowed) { 625 int ret; 626 627 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 628 if (ret < 0) 629 ubi_err("error %d while checking if PEB %d is bad", 630 ret, pnum); 631 else if (ret) 632 dbg_io("PEB %d is bad", pnum); 633 return ret; 634 } 635 636 return 0; 637 } 638 639 /** 640 * ubi_io_mark_bad - mark a physical eraseblock as bad. 641 * @ubi: UBI device description object 642 * @pnum: the physical eraseblock number to mark 643 * 644 * This function returns zero in case of success and a negative error code in 645 * case of failure. 646 */ 647 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 648 { 649 int err; 650 struct mtd_info *mtd = ubi->mtd; 651 652 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 653 654 if (ubi->ro_mode) { 655 ubi_err("read-only mode"); 656 return -EROFS; 657 } 658 659 if (!ubi->bad_allowed) 660 return 0; 661 662 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 663 if (err) 664 ubi_err("cannot mark PEB %d bad, error %d", pnum, err); 665 return err; 666 } 667 668 /** 669 * validate_ec_hdr - validate an erase counter header. 670 * @ubi: UBI device description object 671 * @ec_hdr: the erase counter header to check 672 * 673 * This function returns zero if the erase counter header is OK, and %1 if 674 * not. 675 */ 676 static int validate_ec_hdr(const struct ubi_device *ubi, 677 const struct ubi_ec_hdr *ec_hdr) 678 { 679 long long ec; 680 int vid_hdr_offset, leb_start; 681 682 ec = be64_to_cpu(ec_hdr->ec); 683 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 684 leb_start = be32_to_cpu(ec_hdr->data_offset); 685 686 if (ec_hdr->version != UBI_VERSION) { 687 ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d", 688 UBI_VERSION, (int)ec_hdr->version); 689 goto bad; 690 } 691 692 if (vid_hdr_offset != ubi->vid_hdr_offset) { 693 ubi_err("bad VID header offset %d, expected %d", 694 vid_hdr_offset, ubi->vid_hdr_offset); 695 goto bad; 696 } 697 698 if (leb_start != ubi->leb_start) { 699 ubi_err("bad data offset %d, expected %d", 700 leb_start, ubi->leb_start); 701 goto bad; 702 } 703 704 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 705 ubi_err("bad erase counter %lld", ec); 706 goto bad; 707 } 708 709 return 0; 710 711 bad: 712 ubi_err("bad EC header"); 713 ubi_dump_ec_hdr(ec_hdr); 714 dump_stack(); 715 return 1; 716 } 717 718 /** 719 * ubi_io_read_ec_hdr - read and check an erase counter header. 720 * @ubi: UBI device description object 721 * @pnum: physical eraseblock to read from 722 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 723 * header 724 * @verbose: be verbose if the header is corrupted or was not found 725 * 726 * This function reads erase counter header from physical eraseblock @pnum and 727 * stores it in @ec_hdr. This function also checks CRC checksum of the read 728 * erase counter header. The following codes may be returned: 729 * 730 * o %0 if the CRC checksum is correct and the header was successfully read; 731 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 732 * and corrected by the flash driver; this is harmless but may indicate that 733 * this eraseblock may become bad soon (but may be not); 734 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 735 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 736 * a data integrity error (uncorrectable ECC error in case of NAND); 737 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 738 * o a negative error code in case of failure. 739 */ 740 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 741 struct ubi_ec_hdr *ec_hdr, int verbose) 742 { 743 int err, read_err; 744 uint32_t crc, magic, hdr_crc; 745 746 dbg_io("read EC header from PEB %d", pnum); 747 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 748 749 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 750 if (read_err) { 751 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 752 return read_err; 753 754 /* 755 * We read all the data, but either a correctable bit-flip 756 * occurred, or MTD reported a data integrity error 757 * (uncorrectable ECC error in case of NAND). The former is 758 * harmless, the later may mean that the read data is 759 * corrupted. But we have a CRC check-sum and we will detect 760 * this. If the EC header is still OK, we just report this as 761 * there was a bit-flip, to force scrubbing. 762 */ 763 } 764 765 magic = be32_to_cpu(ec_hdr->magic); 766 if (magic != UBI_EC_HDR_MAGIC) { 767 if (mtd_is_eccerr(read_err)) 768 return UBI_IO_BAD_HDR_EBADMSG; 769 770 /* 771 * The magic field is wrong. Let's check if we have read all 772 * 0xFF. If yes, this physical eraseblock is assumed to be 773 * empty. 774 */ 775 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 776 /* The physical eraseblock is supposedly empty */ 777 if (verbose) 778 ubi_warn("no EC header found at PEB %d, only 0xFF bytes", 779 pnum); 780 dbg_bld("no EC header found at PEB %d, only 0xFF bytes", 781 pnum); 782 if (!read_err) 783 return UBI_IO_FF; 784 else 785 return UBI_IO_FF_BITFLIPS; 786 } 787 788 /* 789 * This is not a valid erase counter header, and these are not 790 * 0xFF bytes. Report that the header is corrupted. 791 */ 792 if (verbose) { 793 ubi_warn("bad magic number at PEB %d: %08x instead of %08x", 794 pnum, magic, UBI_EC_HDR_MAGIC); 795 ubi_dump_ec_hdr(ec_hdr); 796 } 797 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 798 pnum, magic, UBI_EC_HDR_MAGIC); 799 return UBI_IO_BAD_HDR; 800 } 801 802 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 803 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 804 805 if (hdr_crc != crc) { 806 if (verbose) { 807 ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 808 pnum, crc, hdr_crc); 809 ubi_dump_ec_hdr(ec_hdr); 810 } 811 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 812 pnum, crc, hdr_crc); 813 814 if (!read_err) 815 return UBI_IO_BAD_HDR; 816 else 817 return UBI_IO_BAD_HDR_EBADMSG; 818 } 819 820 /* And of course validate what has just been read from the media */ 821 err = validate_ec_hdr(ubi, ec_hdr); 822 if (err) { 823 ubi_err("validation failed for PEB %d", pnum); 824 return -EINVAL; 825 } 826 827 /* 828 * If there was %-EBADMSG, but the header CRC is still OK, report about 829 * a bit-flip to force scrubbing on this PEB. 830 */ 831 return read_err ? UBI_IO_BITFLIPS : 0; 832 } 833 834 /** 835 * ubi_io_write_ec_hdr - write an erase counter header. 836 * @ubi: UBI device description object 837 * @pnum: physical eraseblock to write to 838 * @ec_hdr: the erase counter header to write 839 * 840 * This function writes erase counter header described by @ec_hdr to physical 841 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 842 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 843 * field. 844 * 845 * This function returns zero in case of success and a negative error code in 846 * case of failure. If %-EIO is returned, the physical eraseblock most probably 847 * went bad. 848 */ 849 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 850 struct ubi_ec_hdr *ec_hdr) 851 { 852 int err; 853 uint32_t crc; 854 855 dbg_io("write EC header to PEB %d", pnum); 856 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 857 858 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 859 ec_hdr->version = UBI_VERSION; 860 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 861 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 862 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 863 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 864 ec_hdr->hdr_crc = cpu_to_be32(crc); 865 866 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 867 if (err) 868 return err; 869 870 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 871 return err; 872 } 873 874 /** 875 * validate_vid_hdr - validate a volume identifier header. 876 * @ubi: UBI device description object 877 * @vid_hdr: the volume identifier header to check 878 * 879 * This function checks that data stored in the volume identifier header 880 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 881 */ 882 static int validate_vid_hdr(const struct ubi_device *ubi, 883 const struct ubi_vid_hdr *vid_hdr) 884 { 885 int vol_type = vid_hdr->vol_type; 886 int copy_flag = vid_hdr->copy_flag; 887 int vol_id = be32_to_cpu(vid_hdr->vol_id); 888 int lnum = be32_to_cpu(vid_hdr->lnum); 889 int compat = vid_hdr->compat; 890 int data_size = be32_to_cpu(vid_hdr->data_size); 891 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 892 int data_pad = be32_to_cpu(vid_hdr->data_pad); 893 int data_crc = be32_to_cpu(vid_hdr->data_crc); 894 int usable_leb_size = ubi->leb_size - data_pad; 895 896 if (copy_flag != 0 && copy_flag != 1) { 897 ubi_err("bad copy_flag"); 898 goto bad; 899 } 900 901 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 902 data_pad < 0) { 903 ubi_err("negative values"); 904 goto bad; 905 } 906 907 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 908 ubi_err("bad vol_id"); 909 goto bad; 910 } 911 912 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 913 ubi_err("bad compat"); 914 goto bad; 915 } 916 917 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 918 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 919 compat != UBI_COMPAT_REJECT) { 920 ubi_err("bad compat"); 921 goto bad; 922 } 923 924 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 925 ubi_err("bad vol_type"); 926 goto bad; 927 } 928 929 if (data_pad >= ubi->leb_size / 2) { 930 ubi_err("bad data_pad"); 931 goto bad; 932 } 933 934 if (vol_type == UBI_VID_STATIC) { 935 /* 936 * Although from high-level point of view static volumes may 937 * contain zero bytes of data, but no VID headers can contain 938 * zero at these fields, because they empty volumes do not have 939 * mapped logical eraseblocks. 940 */ 941 if (used_ebs == 0) { 942 ubi_err("zero used_ebs"); 943 goto bad; 944 } 945 if (data_size == 0) { 946 ubi_err("zero data_size"); 947 goto bad; 948 } 949 if (lnum < used_ebs - 1) { 950 if (data_size != usable_leb_size) { 951 ubi_err("bad data_size"); 952 goto bad; 953 } 954 } else if (lnum == used_ebs - 1) { 955 if (data_size == 0) { 956 ubi_err("bad data_size at last LEB"); 957 goto bad; 958 } 959 } else { 960 ubi_err("too high lnum"); 961 goto bad; 962 } 963 } else { 964 if (copy_flag == 0) { 965 if (data_crc != 0) { 966 ubi_err("non-zero data CRC"); 967 goto bad; 968 } 969 if (data_size != 0) { 970 ubi_err("non-zero data_size"); 971 goto bad; 972 } 973 } else { 974 if (data_size == 0) { 975 ubi_err("zero data_size of copy"); 976 goto bad; 977 } 978 } 979 if (used_ebs != 0) { 980 ubi_err("bad used_ebs"); 981 goto bad; 982 } 983 } 984 985 return 0; 986 987 bad: 988 ubi_err("bad VID header"); 989 ubi_dump_vid_hdr(vid_hdr); 990 dump_stack(); 991 return 1; 992 } 993 994 /** 995 * ubi_io_read_vid_hdr - read and check a volume identifier header. 996 * @ubi: UBI device description object 997 * @pnum: physical eraseblock number to read from 998 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 999 * identifier header 1000 * @verbose: be verbose if the header is corrupted or wasn't found 1001 * 1002 * This function reads the volume identifier header from physical eraseblock 1003 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 1004 * volume identifier header. The error codes are the same as in 1005 * 'ubi_io_read_ec_hdr()'. 1006 * 1007 * Note, the implementation of this function is also very similar to 1008 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 1009 */ 1010 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 1011 struct ubi_vid_hdr *vid_hdr, int verbose) 1012 { 1013 int err, read_err; 1014 uint32_t crc, magic, hdr_crc; 1015 void *p; 1016 1017 dbg_io("read VID header from PEB %d", pnum); 1018 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1019 1020 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1021 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1022 ubi->vid_hdr_alsize); 1023 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 1024 return read_err; 1025 1026 magic = be32_to_cpu(vid_hdr->magic); 1027 if (magic != UBI_VID_HDR_MAGIC) { 1028 if (mtd_is_eccerr(read_err)) 1029 return UBI_IO_BAD_HDR_EBADMSG; 1030 1031 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1032 if (verbose) 1033 ubi_warn("no VID header found at PEB %d, only 0xFF bytes", 1034 pnum); 1035 dbg_bld("no VID header found at PEB %d, only 0xFF bytes", 1036 pnum); 1037 if (!read_err) 1038 return UBI_IO_FF; 1039 else 1040 return UBI_IO_FF_BITFLIPS; 1041 } 1042 1043 if (verbose) { 1044 ubi_warn("bad magic number at PEB %d: %08x instead of %08x", 1045 pnum, magic, UBI_VID_HDR_MAGIC); 1046 ubi_dump_vid_hdr(vid_hdr); 1047 } 1048 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 1049 pnum, magic, UBI_VID_HDR_MAGIC); 1050 return UBI_IO_BAD_HDR; 1051 } 1052 1053 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1054 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1055 1056 if (hdr_crc != crc) { 1057 if (verbose) { 1058 ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x", 1059 pnum, crc, hdr_crc); 1060 ubi_dump_vid_hdr(vid_hdr); 1061 } 1062 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", 1063 pnum, crc, hdr_crc); 1064 if (!read_err) 1065 return UBI_IO_BAD_HDR; 1066 else 1067 return UBI_IO_BAD_HDR_EBADMSG; 1068 } 1069 1070 err = validate_vid_hdr(ubi, vid_hdr); 1071 if (err) { 1072 ubi_err("validation failed for PEB %d", pnum); 1073 return -EINVAL; 1074 } 1075 1076 return read_err ? UBI_IO_BITFLIPS : 0; 1077 } 1078 1079 /** 1080 * ubi_io_write_vid_hdr - write a volume identifier header. 1081 * @ubi: UBI device description object 1082 * @pnum: the physical eraseblock number to write to 1083 * @vid_hdr: the volume identifier header to write 1084 * 1085 * This function writes the volume identifier header described by @vid_hdr to 1086 * physical eraseblock @pnum. This function automatically fills the 1087 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1088 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1089 * 1090 * This function returns zero in case of success and a negative error code in 1091 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1092 * bad. 1093 */ 1094 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1095 struct ubi_vid_hdr *vid_hdr) 1096 { 1097 int err; 1098 uint32_t crc; 1099 void *p; 1100 1101 dbg_io("write VID header to PEB %d", pnum); 1102 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1103 1104 err = self_check_peb_ec_hdr(ubi, pnum); 1105 if (err) 1106 return err; 1107 1108 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1109 vid_hdr->version = UBI_VERSION; 1110 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1111 vid_hdr->hdr_crc = cpu_to_be32(crc); 1112 1113 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1114 if (err) 1115 return err; 1116 1117 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1118 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1119 ubi->vid_hdr_alsize); 1120 return err; 1121 } 1122 1123 /** 1124 * self_check_not_bad - ensure that a physical eraseblock is not bad. 1125 * @ubi: UBI device description object 1126 * @pnum: physical eraseblock number to check 1127 * 1128 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1129 * it is bad and a negative error code if an error occurred. 1130 */ 1131 static int self_check_not_bad(const struct ubi_device *ubi, int pnum) 1132 { 1133 int err; 1134 1135 if (!ubi_dbg_chk_io(ubi)) 1136 return 0; 1137 1138 err = ubi_io_is_bad(ubi, pnum); 1139 if (!err) 1140 return err; 1141 1142 ubi_err("self-check failed for PEB %d", pnum); 1143 dump_stack(); 1144 return err > 0 ? -EINVAL : err; 1145 } 1146 1147 /** 1148 * self_check_ec_hdr - check if an erase counter header is all right. 1149 * @ubi: UBI device description object 1150 * @pnum: physical eraseblock number the erase counter header belongs to 1151 * @ec_hdr: the erase counter header to check 1152 * 1153 * This function returns zero if the erase counter header contains valid 1154 * values, and %-EINVAL if not. 1155 */ 1156 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1157 const struct ubi_ec_hdr *ec_hdr) 1158 { 1159 int err; 1160 uint32_t magic; 1161 1162 if (!ubi_dbg_chk_io(ubi)) 1163 return 0; 1164 1165 magic = be32_to_cpu(ec_hdr->magic); 1166 if (magic != UBI_EC_HDR_MAGIC) { 1167 ubi_err("bad magic %#08x, must be %#08x", 1168 magic, UBI_EC_HDR_MAGIC); 1169 goto fail; 1170 } 1171 1172 err = validate_ec_hdr(ubi, ec_hdr); 1173 if (err) { 1174 ubi_err("self-check failed for PEB %d", pnum); 1175 goto fail; 1176 } 1177 1178 return 0; 1179 1180 fail: 1181 ubi_dump_ec_hdr(ec_hdr); 1182 dump_stack(); 1183 return -EINVAL; 1184 } 1185 1186 /** 1187 * self_check_peb_ec_hdr - check erase counter header. 1188 * @ubi: UBI device description object 1189 * @pnum: the physical eraseblock number to check 1190 * 1191 * This function returns zero if the erase counter header is all right and and 1192 * a negative error code if not or if an error occurred. 1193 */ 1194 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1195 { 1196 int err; 1197 uint32_t crc, hdr_crc; 1198 struct ubi_ec_hdr *ec_hdr; 1199 1200 if (!ubi_dbg_chk_io(ubi)) 1201 return 0; 1202 1203 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1204 if (!ec_hdr) 1205 return -ENOMEM; 1206 1207 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1208 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1209 goto exit; 1210 1211 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1212 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1213 if (hdr_crc != crc) { 1214 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); 1215 ubi_err("self-check failed for PEB %d", pnum); 1216 ubi_dump_ec_hdr(ec_hdr); 1217 dump_stack(); 1218 err = -EINVAL; 1219 goto exit; 1220 } 1221 1222 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 1223 1224 exit: 1225 kfree(ec_hdr); 1226 return err; 1227 } 1228 1229 /** 1230 * self_check_vid_hdr - check that a volume identifier header is all right. 1231 * @ubi: UBI device description object 1232 * @pnum: physical eraseblock number the volume identifier header belongs to 1233 * @vid_hdr: the volume identifier header to check 1234 * 1235 * This function returns zero if the volume identifier header is all right, and 1236 * %-EINVAL if not. 1237 */ 1238 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1239 const struct ubi_vid_hdr *vid_hdr) 1240 { 1241 int err; 1242 uint32_t magic; 1243 1244 if (!ubi_dbg_chk_io(ubi)) 1245 return 0; 1246 1247 magic = be32_to_cpu(vid_hdr->magic); 1248 if (magic != UBI_VID_HDR_MAGIC) { 1249 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", 1250 magic, pnum, UBI_VID_HDR_MAGIC); 1251 goto fail; 1252 } 1253 1254 err = validate_vid_hdr(ubi, vid_hdr); 1255 if (err) { 1256 ubi_err("self-check failed for PEB %d", pnum); 1257 goto fail; 1258 } 1259 1260 return err; 1261 1262 fail: 1263 ubi_err("self-check failed for PEB %d", pnum); 1264 ubi_dump_vid_hdr(vid_hdr); 1265 dump_stack(); 1266 return -EINVAL; 1267 1268 } 1269 1270 /** 1271 * self_check_peb_vid_hdr - check volume identifier header. 1272 * @ubi: UBI device description object 1273 * @pnum: the physical eraseblock number to check 1274 * 1275 * This function returns zero if the volume identifier header is all right, 1276 * and a negative error code if not or if an error occurred. 1277 */ 1278 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1279 { 1280 int err; 1281 uint32_t crc, hdr_crc; 1282 struct ubi_vid_hdr *vid_hdr; 1283 void *p; 1284 1285 if (!ubi_dbg_chk_io(ubi)) 1286 return 0; 1287 1288 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1289 if (!vid_hdr) 1290 return -ENOMEM; 1291 1292 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1293 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1294 ubi->vid_hdr_alsize); 1295 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1296 goto exit; 1297 1298 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1299 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1300 if (hdr_crc != crc) { 1301 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x", 1302 pnum, crc, hdr_crc); 1303 ubi_err("self-check failed for PEB %d", pnum); 1304 ubi_dump_vid_hdr(vid_hdr); 1305 dump_stack(); 1306 err = -EINVAL; 1307 goto exit; 1308 } 1309 1310 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1311 1312 exit: 1313 ubi_free_vid_hdr(ubi, vid_hdr); 1314 return err; 1315 } 1316 1317 /** 1318 * self_check_write - make sure write succeeded. 1319 * @ubi: UBI device description object 1320 * @buf: buffer with data which were written 1321 * @pnum: physical eraseblock number the data were written to 1322 * @offset: offset within the physical eraseblock the data were written to 1323 * @len: how many bytes were written 1324 * 1325 * This functions reads data which were recently written and compares it with 1326 * the original data buffer - the data have to match. Returns zero if the data 1327 * match and a negative error code if not or in case of failure. 1328 */ 1329 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1330 int offset, int len) 1331 { 1332 int err, i; 1333 size_t read; 1334 void *buf1; 1335 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1336 1337 if (!ubi_dbg_chk_io(ubi)) 1338 return 0; 1339 1340 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1341 if (!buf1) { 1342 ubi_err("cannot allocate memory to check writes"); 1343 return 0; 1344 } 1345 1346 err = mtd_read(ubi->mtd, addr, len, &read, buf1); 1347 if (err && !mtd_is_bitflip(err)) 1348 goto out_free; 1349 1350 for (i = 0; i < len; i++) { 1351 uint8_t c = ((uint8_t *)buf)[i]; 1352 uint8_t c1 = ((uint8_t *)buf1)[i]; 1353 int dump_len; 1354 1355 if (c == c1) 1356 continue; 1357 1358 ubi_err("self-check failed for PEB %d:%d, len %d", 1359 pnum, offset, len); 1360 ubi_msg("data differ at position %d", i); 1361 dump_len = max_t(int, 128, len - i); 1362 ubi_msg("hex dump of the original buffer from %d to %d", 1363 i, i + dump_len); 1364 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1365 buf + i, dump_len, 1); 1366 ubi_msg("hex dump of the read buffer from %d to %d", 1367 i, i + dump_len); 1368 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1369 buf1 + i, dump_len, 1); 1370 dump_stack(); 1371 err = -EINVAL; 1372 goto out_free; 1373 } 1374 1375 vfree(buf1); 1376 return 0; 1377 1378 out_free: 1379 vfree(buf1); 1380 return err; 1381 } 1382 1383 /** 1384 * ubi_self_check_all_ff - check that a region of flash is empty. 1385 * @ubi: UBI device description object 1386 * @pnum: the physical eraseblock number to check 1387 * @offset: the starting offset within the physical eraseblock to check 1388 * @len: the length of the region to check 1389 * 1390 * This function returns zero if only 0xFF bytes are present at offset 1391 * @offset of the physical eraseblock @pnum, and a negative error code if not 1392 * or if an error occurred. 1393 */ 1394 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1395 { 1396 size_t read; 1397 int err; 1398 void *buf; 1399 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1400 1401 if (!ubi_dbg_chk_io(ubi)) 1402 return 0; 1403 1404 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1405 if (!buf) { 1406 ubi_err("cannot allocate memory to check for 0xFFs"); 1407 return 0; 1408 } 1409 1410 err = mtd_read(ubi->mtd, addr, len, &read, buf); 1411 if (err && !mtd_is_bitflip(err)) { 1412 ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes", 1413 err, len, pnum, offset, read); 1414 goto error; 1415 } 1416 1417 err = ubi_check_pattern(buf, 0xFF, len); 1418 if (err == 0) { 1419 ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", 1420 pnum, offset, len); 1421 goto fail; 1422 } 1423 1424 vfree(buf); 1425 return 0; 1426 1427 fail: 1428 ubi_err("self-check failed for PEB %d", pnum); 1429 ubi_msg("hex dump of the %d-%d region", offset, offset + len); 1430 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1431 err = -EINVAL; 1432 error: 1433 dump_stack(); 1434 vfree(buf); 1435 return err; 1436 } 1437