1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2006, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём) 7 */ 8 9 /* 10 * UBI input/output sub-system. 11 * 12 * This sub-system provides a uniform way to work with all kinds of the 13 * underlying MTD devices. It also implements handy functions for reading and 14 * writing UBI headers. 15 * 16 * We are trying to have a paranoid mindset and not to trust to what we read 17 * from the flash media in order to be more secure and robust. So this 18 * sub-system validates every single header it reads from the flash media. 19 * 20 * Some words about how the eraseblock headers are stored. 21 * 22 * The erase counter header is always stored at offset zero. By default, the 23 * VID header is stored after the EC header at the closest aligned offset 24 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 25 * header at the closest aligned offset. But this default layout may be 26 * changed. For example, for different reasons (e.g., optimization) UBI may be 27 * asked to put the VID header at further offset, and even at an unaligned 28 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 29 * proper padding in front of it. Data offset may also be changed but it has to 30 * be aligned. 31 * 32 * About minimal I/O units. In general, UBI assumes flash device model where 33 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 34 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 35 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another 36 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 37 * to do different optimizations. 38 * 39 * This is extremely useful in case of NAND flashes which admit of several 40 * write operations to one NAND page. In this case UBI can fit EC and VID 41 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 42 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 43 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 44 * users. 45 * 46 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 47 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 48 * headers. 49 * 50 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 51 * device, e.g., make @ubi->min_io_size = 512 in the example above? 52 * 53 * A: because when writing a sub-page, MTD still writes a full 2K page but the 54 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 55 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 56 * Thus, we prefer to use sub-pages only for EC and VID headers. 57 * 58 * As it was noted above, the VID header may start at a non-aligned offset. 59 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 60 * the VID header may reside at offset 1984 which is the last 64 bytes of the 61 * last sub-page (EC header is always at offset zero). This causes some 62 * difficulties when reading and writing VID headers. 63 * 64 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 65 * the data and want to write this VID header out. As we can only write in 66 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 67 * to offset 448 of this buffer. 68 * 69 * The I/O sub-system does the following trick in order to avoid this extra 70 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 71 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 72 * When the VID header is being written out, it shifts the VID header pointer 73 * back and writes the whole sub-page. 74 */ 75 76 #include <linux/crc32.h> 77 #include <linux/err.h> 78 #include <linux/slab.h> 79 #include "ubi.h" 80 81 static int self_check_not_bad(const struct ubi_device *ubi, int pnum); 82 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 83 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 84 const struct ubi_ec_hdr *ec_hdr); 85 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 86 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 87 const struct ubi_vid_hdr *vid_hdr); 88 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 89 int offset, int len); 90 91 /** 92 * ubi_io_read - read data from a physical eraseblock. 93 * @ubi: UBI device description object 94 * @buf: buffer where to store the read data 95 * @pnum: physical eraseblock number to read from 96 * @offset: offset within the physical eraseblock from where to read 97 * @len: how many bytes to read 98 * 99 * This function reads data from offset @offset of physical eraseblock @pnum 100 * and stores the read data in the @buf buffer. The following return codes are 101 * possible: 102 * 103 * o %0 if all the requested data were successfully read; 104 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 105 * correctable bit-flips were detected; this is harmless but may indicate 106 * that this eraseblock may become bad soon (but do not have to); 107 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 108 * example it can be an ECC error in case of NAND; this most probably means 109 * that the data is corrupted; 110 * o %-EIO if some I/O error occurred; 111 * o other negative error codes in case of other errors. 112 */ 113 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 114 int len) 115 { 116 int err, retries = 0; 117 size_t read; 118 loff_t addr; 119 120 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 121 122 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 123 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 124 ubi_assert(len > 0); 125 126 err = self_check_not_bad(ubi, pnum); 127 if (err) 128 return err; 129 130 /* 131 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 132 * do not do this, the following may happen: 133 * 1. The buffer contains data from previous operation, e.g., read from 134 * another PEB previously. The data looks like expected, e.g., if we 135 * just do not read anything and return - the caller would not 136 * notice this. E.g., if we are reading a VID header, the buffer may 137 * contain a valid VID header from another PEB. 138 * 2. The driver is buggy and returns us success or -EBADMSG or 139 * -EUCLEAN, but it does not actually put any data to the buffer. 140 * 141 * This may confuse UBI or upper layers - they may think the buffer 142 * contains valid data while in fact it is just old data. This is 143 * especially possible because UBI (and UBIFS) relies on CRC, and 144 * treats data as correct even in case of ECC errors if the CRC is 145 * correct. 146 * 147 * Try to prevent this situation by changing the first byte of the 148 * buffer. 149 */ 150 *((uint8_t *)buf) ^= 0xFF; 151 152 addr = (loff_t)pnum * ubi->peb_size + offset; 153 retry: 154 err = mtd_read(ubi->mtd, addr, len, &read, buf); 155 if (err) { 156 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; 157 158 if (mtd_is_bitflip(err)) { 159 /* 160 * -EUCLEAN is reported if there was a bit-flip which 161 * was corrected, so this is harmless. 162 * 163 * We do not report about it here unless debugging is 164 * enabled. A corresponding message will be printed 165 * later, when it is has been scrubbed. 166 */ 167 ubi_msg(ubi, "fixable bit-flip detected at PEB %d", 168 pnum); 169 ubi_assert(len == read); 170 return UBI_IO_BITFLIPS; 171 } 172 173 if (retries++ < UBI_IO_RETRIES) { 174 ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", 175 err, errstr, len, pnum, offset, read); 176 yield(); 177 goto retry; 178 } 179 180 ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", 181 err, errstr, len, pnum, offset, read); 182 dump_stack(); 183 184 /* 185 * The driver should never return -EBADMSG if it failed to read 186 * all the requested data. But some buggy drivers might do 187 * this, so we change it to -EIO. 188 */ 189 if (read != len && mtd_is_eccerr(err)) { 190 ubi_assert(0); 191 err = -EIO; 192 } 193 } else { 194 ubi_assert(len == read); 195 196 if (ubi_dbg_is_bitflip(ubi)) { 197 dbg_gen("bit-flip (emulated)"); 198 return UBI_IO_BITFLIPS; 199 } 200 201 if (ubi_dbg_is_read_failure(ubi, MASK_READ_FAILURE)) { 202 ubi_warn(ubi, "cannot read %d bytes from PEB %d:%d (emulated)", 203 len, pnum, offset); 204 return -EIO; 205 } 206 207 if (ubi_dbg_is_eccerr(ubi)) { 208 ubi_warn(ubi, "ECC error (emulated) while reading %d bytes from PEB %d:%d, read %zd bytes", 209 len, pnum, offset, read); 210 return -EBADMSG; 211 } 212 } 213 214 return err; 215 } 216 217 /** 218 * ubi_io_write - write data to a physical eraseblock. 219 * @ubi: UBI device description object 220 * @buf: buffer with the data to write 221 * @pnum: physical eraseblock number to write to 222 * @offset: offset within the physical eraseblock where to write 223 * @len: how many bytes to write 224 * 225 * This function writes @len bytes of data from buffer @buf to offset @offset 226 * of physical eraseblock @pnum. If all the data were successfully written, 227 * zero is returned. If an error occurred, this function returns a negative 228 * error code. If %-EIO is returned, the physical eraseblock most probably went 229 * bad. 230 * 231 * Note, in case of an error, it is possible that something was still written 232 * to the flash media, but may be some garbage. 233 */ 234 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 235 int len) 236 { 237 int err; 238 size_t written; 239 loff_t addr; 240 241 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 242 243 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 244 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 245 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 246 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 247 248 if (ubi->ro_mode) { 249 ubi_err(ubi, "read-only mode"); 250 return -EROFS; 251 } 252 253 err = self_check_not_bad(ubi, pnum); 254 if (err) 255 return err; 256 257 /* The area we are writing to has to contain all 0xFF bytes */ 258 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 259 if (err) 260 return err; 261 262 if (offset >= ubi->leb_start) { 263 /* 264 * We write to the data area of the physical eraseblock. Make 265 * sure it has valid EC and VID headers. 266 */ 267 err = self_check_peb_ec_hdr(ubi, pnum); 268 if (err) 269 return err; 270 err = self_check_peb_vid_hdr(ubi, pnum); 271 if (err) 272 return err; 273 } 274 275 if (ubi_dbg_is_write_failure(ubi)) { 276 ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)", 277 len, pnum, offset); 278 dump_stack(); 279 return -EIO; 280 } 281 282 addr = (loff_t)pnum * ubi->peb_size + offset; 283 err = mtd_write(ubi->mtd, addr, len, &written, buf); 284 if (err) { 285 ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes", 286 err, len, pnum, offset, written); 287 dump_stack(); 288 ubi_dump_flash(ubi, pnum, offset, len); 289 } else 290 ubi_assert(written == len); 291 292 if (!err) { 293 err = self_check_write(ubi, buf, pnum, offset, len); 294 if (err) 295 return err; 296 297 /* 298 * Since we always write sequentially, the rest of the PEB has 299 * to contain only 0xFF bytes. 300 */ 301 offset += len; 302 len = ubi->peb_size - offset; 303 if (len) 304 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 305 } 306 307 return err; 308 } 309 310 /** 311 * do_sync_erase - synchronously erase a physical eraseblock. 312 * @ubi: UBI device description object 313 * @pnum: the physical eraseblock number to erase 314 * 315 * This function synchronously erases physical eraseblock @pnum and returns 316 * zero in case of success and a negative error code in case of failure. If 317 * %-EIO is returned, the physical eraseblock most probably went bad. 318 */ 319 static int do_sync_erase(struct ubi_device *ubi, int pnum) 320 { 321 int err, retries = 0; 322 struct erase_info ei; 323 324 dbg_io("erase PEB %d", pnum); 325 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 326 327 if (ubi->ro_mode) { 328 ubi_err(ubi, "read-only mode"); 329 return -EROFS; 330 } 331 332 retry: 333 memset(&ei, 0, sizeof(struct erase_info)); 334 335 ei.addr = (loff_t)pnum * ubi->peb_size; 336 ei.len = ubi->peb_size; 337 338 err = mtd_erase(ubi->mtd, &ei); 339 if (err) { 340 if (retries++ < UBI_IO_RETRIES) { 341 ubi_warn(ubi, "error %d while erasing PEB %d, retry", 342 err, pnum); 343 yield(); 344 goto retry; 345 } 346 ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err); 347 dump_stack(); 348 return err; 349 } 350 351 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); 352 if (err) 353 return err; 354 355 if (ubi_dbg_is_erase_failure(ubi)) { 356 ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum); 357 return -EIO; 358 } 359 360 return 0; 361 } 362 363 /* Patterns to write to a physical eraseblock when torturing it */ 364 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 365 366 /** 367 * torture_peb - test a supposedly bad physical eraseblock. 368 * @ubi: UBI device description object 369 * @pnum: the physical eraseblock number to test 370 * 371 * This function returns %-EIO if the physical eraseblock did not pass the 372 * test, a positive number of erase operations done if the test was 373 * successfully passed, and other negative error codes in case of other errors. 374 */ 375 static int torture_peb(struct ubi_device *ubi, int pnum) 376 { 377 int err, i, patt_count; 378 379 ubi_msg(ubi, "run torture test for PEB %d", pnum); 380 patt_count = ARRAY_SIZE(patterns); 381 ubi_assert(patt_count > 0); 382 383 mutex_lock(&ubi->buf_mutex); 384 for (i = 0; i < patt_count; i++) { 385 err = do_sync_erase(ubi, pnum); 386 if (err) 387 goto out; 388 389 /* Make sure the PEB contains only 0xFF bytes */ 390 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 391 if (err) 392 goto out; 393 394 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); 395 if (err == 0) { 396 ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found", 397 pnum); 398 err = -EIO; 399 goto out; 400 } 401 402 /* Write a pattern and check it */ 403 memset(ubi->peb_buf, patterns[i], ubi->peb_size); 404 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 405 if (err) 406 goto out; 407 408 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); 409 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 410 if (err) 411 goto out; 412 413 err = ubi_check_pattern(ubi->peb_buf, patterns[i], 414 ubi->peb_size); 415 if (err == 0) { 416 ubi_err(ubi, "pattern %x checking failed for PEB %d", 417 patterns[i], pnum); 418 err = -EIO; 419 goto out; 420 } 421 } 422 423 err = patt_count; 424 ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum); 425 426 out: 427 mutex_unlock(&ubi->buf_mutex); 428 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 429 /* 430 * If a bit-flip or data integrity error was detected, the test 431 * has not passed because it happened on a freshly erased 432 * physical eraseblock which means something is wrong with it. 433 */ 434 ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad", 435 pnum); 436 err = -EIO; 437 } 438 return err; 439 } 440 441 /** 442 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 443 * @ubi: UBI device description object 444 * @pnum: physical eraseblock number to prepare 445 * 446 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 447 * algorithm: the PEB is first filled with zeroes, then it is erased. And 448 * filling with zeroes starts from the end of the PEB. This was observed with 449 * Spansion S29GL512N NOR flash. 450 * 451 * This means that in case of a power cut we may end up with intact data at the 452 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 453 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 454 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 455 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 456 * 457 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 458 * magic numbers in order to invalidate them and prevent the failures. Returns 459 * zero in case of success and a negative error code in case of failure. 460 */ 461 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 462 { 463 int err; 464 size_t written; 465 loff_t addr; 466 uint32_t data = 0; 467 struct ubi_ec_hdr ec_hdr; 468 struct ubi_vid_io_buf vidb; 469 470 /* 471 * Note, we cannot generally define VID header buffers on stack, 472 * because of the way we deal with these buffers (see the header 473 * comment in this file). But we know this is a NOR-specific piece of 474 * code, so we can do this. But yes, this is error-prone and we should 475 * (pre-)allocate VID header buffer instead. 476 */ 477 struct ubi_vid_hdr vid_hdr; 478 479 /* 480 * If VID or EC is valid, we have to corrupt them before erasing. 481 * It is important to first invalidate the EC header, and then the VID 482 * header. Otherwise a power cut may lead to valid EC header and 483 * invalid VID header, in which case UBI will treat this PEB as 484 * corrupted and will try to preserve it, and print scary warnings. 485 */ 486 addr = (loff_t)pnum * ubi->peb_size; 487 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 488 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 489 err != UBI_IO_FF){ 490 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 491 if(err) 492 goto error; 493 } 494 495 ubi_init_vid_buf(ubi, &vidb, &vid_hdr); 496 ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb)); 497 498 err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0); 499 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 500 err != UBI_IO_FF){ 501 addr += ubi->vid_hdr_aloffset; 502 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 503 if (err) 504 goto error; 505 } 506 return 0; 507 508 error: 509 /* 510 * The PEB contains a valid VID or EC header, but we cannot invalidate 511 * it. Supposedly the flash media or the driver is screwed up, so 512 * return an error. 513 */ 514 ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err); 515 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); 516 return -EIO; 517 } 518 519 /** 520 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 521 * @ubi: UBI device description object 522 * @pnum: physical eraseblock number to erase 523 * @torture: if this physical eraseblock has to be tortured 524 * 525 * This function synchronously erases physical eraseblock @pnum. If @torture 526 * flag is not zero, the physical eraseblock is checked by means of writing 527 * different patterns to it and reading them back. If the torturing is enabled, 528 * the physical eraseblock is erased more than once. 529 * 530 * This function returns the number of erasures made in case of success, %-EIO 531 * if the erasure failed or the torturing test failed, and other negative error 532 * codes in case of other errors. Note, %-EIO means that the physical 533 * eraseblock is bad. 534 */ 535 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 536 { 537 int err, ret = 0; 538 539 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 540 541 err = self_check_not_bad(ubi, pnum); 542 if (err != 0) 543 return err; 544 545 if (ubi->ro_mode) { 546 ubi_err(ubi, "read-only mode"); 547 return -EROFS; 548 } 549 550 /* 551 * If the flash is ECC-ed then we have to erase the ECC block before we 552 * can write to it. But the write is in preparation to an erase in the 553 * first place. This means we cannot zero out EC and VID before the 554 * erase and we just have to hope the flash starts erasing from the 555 * start of the page. 556 */ 557 if (ubi->nor_flash && ubi->mtd->writesize == 1) { 558 err = nor_erase_prepare(ubi, pnum); 559 if (err) 560 return err; 561 } 562 563 if (torture) { 564 ret = torture_peb(ubi, pnum); 565 if (ret < 0) 566 return ret; 567 } 568 569 err = do_sync_erase(ubi, pnum); 570 if (err) 571 return err; 572 573 return ret + 1; 574 } 575 576 /** 577 * ubi_io_is_bad - check if a physical eraseblock is bad. 578 * @ubi: UBI device description object 579 * @pnum: the physical eraseblock number to check 580 * 581 * This function returns a positive number if the physical eraseblock is bad, 582 * zero if not, and a negative error code if an error occurred. 583 */ 584 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 585 { 586 struct mtd_info *mtd = ubi->mtd; 587 588 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 589 590 if (ubi->bad_allowed) { 591 int ret; 592 593 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 594 if (ret < 0) 595 ubi_err(ubi, "error %d while checking if PEB %d is bad", 596 ret, pnum); 597 else if (ret) 598 dbg_io("PEB %d is bad", pnum); 599 return ret; 600 } 601 602 return 0; 603 } 604 605 /** 606 * ubi_io_mark_bad - mark a physical eraseblock as bad. 607 * @ubi: UBI device description object 608 * @pnum: the physical eraseblock number to mark 609 * 610 * This function returns zero in case of success and a negative error code in 611 * case of failure. 612 */ 613 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 614 { 615 int err; 616 struct mtd_info *mtd = ubi->mtd; 617 618 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 619 620 if (ubi->ro_mode) { 621 ubi_err(ubi, "read-only mode"); 622 return -EROFS; 623 } 624 625 if (!ubi->bad_allowed) 626 return 0; 627 628 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 629 if (err) 630 ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err); 631 return err; 632 } 633 634 /** 635 * validate_ec_hdr - validate an erase counter header. 636 * @ubi: UBI device description object 637 * @ec_hdr: the erase counter header to check 638 * 639 * This function returns zero if the erase counter header is OK, and %1 if 640 * not. 641 */ 642 static int validate_ec_hdr(const struct ubi_device *ubi, 643 const struct ubi_ec_hdr *ec_hdr) 644 { 645 long long ec; 646 int vid_hdr_offset, leb_start; 647 648 ec = be64_to_cpu(ec_hdr->ec); 649 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 650 leb_start = be32_to_cpu(ec_hdr->data_offset); 651 652 if (ec_hdr->version != UBI_VERSION) { 653 ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d", 654 UBI_VERSION, (int)ec_hdr->version); 655 goto bad; 656 } 657 658 if (vid_hdr_offset != ubi->vid_hdr_offset) { 659 ubi_err(ubi, "bad VID header offset %d, expected %d", 660 vid_hdr_offset, ubi->vid_hdr_offset); 661 goto bad; 662 } 663 664 if (leb_start != ubi->leb_start) { 665 ubi_err(ubi, "bad data offset %d, expected %d", 666 leb_start, ubi->leb_start); 667 goto bad; 668 } 669 670 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 671 ubi_err(ubi, "bad erase counter %lld", ec); 672 goto bad; 673 } 674 675 return 0; 676 677 bad: 678 ubi_err(ubi, "bad EC header"); 679 ubi_dump_ec_hdr(ec_hdr); 680 dump_stack(); 681 return 1; 682 } 683 684 /** 685 * ubi_io_read_ec_hdr - read and check an erase counter header. 686 * @ubi: UBI device description object 687 * @pnum: physical eraseblock to read from 688 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 689 * header 690 * @verbose: be verbose if the header is corrupted or was not found 691 * 692 * This function reads erase counter header from physical eraseblock @pnum and 693 * stores it in @ec_hdr. This function also checks CRC checksum of the read 694 * erase counter header. The following codes may be returned: 695 * 696 * o %0 if the CRC checksum is correct and the header was successfully read; 697 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 698 * and corrected by the flash driver; this is harmless but may indicate that 699 * this eraseblock may become bad soon (but may be not); 700 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 701 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 702 * a data integrity error (uncorrectable ECC error in case of NAND); 703 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 704 * o a negative error code in case of failure. 705 */ 706 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 707 struct ubi_ec_hdr *ec_hdr, int verbose) 708 { 709 int err, read_err; 710 uint32_t crc, magic, hdr_crc; 711 712 dbg_io("read EC header from PEB %d", pnum); 713 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 714 715 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 716 if (read_err) { 717 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 718 return read_err; 719 720 /* 721 * We read all the data, but either a correctable bit-flip 722 * occurred, or MTD reported a data integrity error 723 * (uncorrectable ECC error in case of NAND). The former is 724 * harmless, the later may mean that the read data is 725 * corrupted. But we have a CRC check-sum and we will detect 726 * this. If the EC header is still OK, we just report this as 727 * there was a bit-flip, to force scrubbing. 728 */ 729 } 730 731 magic = be32_to_cpu(ec_hdr->magic); 732 if (magic != UBI_EC_HDR_MAGIC) { 733 if (mtd_is_eccerr(read_err)) 734 return UBI_IO_BAD_HDR_EBADMSG; 735 736 /* 737 * The magic field is wrong. Let's check if we have read all 738 * 0xFF. If yes, this physical eraseblock is assumed to be 739 * empty. 740 */ 741 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 742 /* The physical eraseblock is supposedly empty */ 743 if (verbose) 744 ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes", 745 pnum); 746 dbg_bld("no EC header found at PEB %d, only 0xFF bytes", 747 pnum); 748 if (!read_err) 749 return UBI_IO_FF; 750 else 751 return UBI_IO_FF_BITFLIPS; 752 } 753 754 /* 755 * This is not a valid erase counter header, and these are not 756 * 0xFF bytes. Report that the header is corrupted. 757 */ 758 if (verbose) { 759 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 760 pnum, magic, UBI_EC_HDR_MAGIC); 761 ubi_dump_ec_hdr(ec_hdr); 762 } 763 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 764 pnum, magic, UBI_EC_HDR_MAGIC); 765 return UBI_IO_BAD_HDR; 766 } 767 768 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 769 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 770 771 if (hdr_crc != crc) { 772 if (verbose) { 773 ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 774 pnum, crc, hdr_crc); 775 ubi_dump_ec_hdr(ec_hdr); 776 } 777 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 778 pnum, crc, hdr_crc); 779 780 if (!read_err) 781 return UBI_IO_BAD_HDR; 782 else 783 return UBI_IO_BAD_HDR_EBADMSG; 784 } 785 786 /* And of course validate what has just been read from the media */ 787 err = validate_ec_hdr(ubi, ec_hdr); 788 if (err) { 789 ubi_err(ubi, "validation failed for PEB %d", pnum); 790 return -EINVAL; 791 } 792 793 /* 794 * If there was %-EBADMSG, but the header CRC is still OK, report about 795 * a bit-flip to force scrubbing on this PEB. 796 */ 797 if (read_err) 798 return UBI_IO_BITFLIPS; 799 800 if (ubi_dbg_is_read_failure(ubi, MASK_READ_FAILURE_EC)) { 801 ubi_warn(ubi, "cannot read EC header from PEB %d (emulated)", 802 pnum); 803 return -EIO; 804 } 805 806 if (ubi_dbg_is_ff(ubi, MASK_IO_FF_EC)) { 807 ubi_warn(ubi, "bit-all-ff (emulated)"); 808 return UBI_IO_FF; 809 } 810 811 if (ubi_dbg_is_ff_bitflips(ubi, MASK_IO_FF_BITFLIPS_EC)) { 812 ubi_warn(ubi, "bit-all-ff with error reported by MTD driver (emulated)"); 813 return UBI_IO_FF_BITFLIPS; 814 } 815 816 if (ubi_dbg_is_bad_hdr(ubi, MASK_BAD_HDR_EC)) { 817 ubi_warn(ubi, "bad_hdr (emulated)"); 818 return UBI_IO_BAD_HDR; 819 } 820 821 if (ubi_dbg_is_bad_hdr_ebadmsg(ubi, MASK_BAD_HDR_EBADMSG_EC)) { 822 ubi_warn(ubi, "bad_hdr with ECC error (emulated)"); 823 return UBI_IO_BAD_HDR_EBADMSG; 824 } 825 826 return 0; 827 } 828 829 /** 830 * ubi_io_write_ec_hdr - write an erase counter header. 831 * @ubi: UBI device description object 832 * @pnum: physical eraseblock to write to 833 * @ec_hdr: the erase counter header to write 834 * 835 * This function writes erase counter header described by @ec_hdr to physical 836 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 837 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 838 * field. 839 * 840 * This function returns zero in case of success and a negative error code in 841 * case of failure. If %-EIO is returned, the physical eraseblock most probably 842 * went bad. 843 */ 844 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 845 struct ubi_ec_hdr *ec_hdr) 846 { 847 int err; 848 uint32_t crc; 849 850 dbg_io("write EC header to PEB %d", pnum); 851 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 852 853 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 854 ec_hdr->version = UBI_VERSION; 855 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 856 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 857 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 858 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 859 ec_hdr->hdr_crc = cpu_to_be32(crc); 860 861 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 862 if (err) 863 return err; 864 865 if (ubi_dbg_is_power_cut(ubi, MASK_POWER_CUT_EC)) { 866 ubi_warn(ubi, "emulating a power cut when writing EC header"); 867 ubi_ro_mode(ubi); 868 return -EROFS; 869 } 870 871 memset((char *)ec_hdr + UBI_EC_HDR_SIZE, 0xFF, ubi->ec_hdr_alsize - UBI_EC_HDR_SIZE); 872 873 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 874 return err; 875 } 876 877 /** 878 * validate_vid_hdr - validate a volume identifier header. 879 * @ubi: UBI device description object 880 * @vid_hdr: the volume identifier header to check 881 * 882 * This function checks that data stored in the volume identifier header 883 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 884 */ 885 static int validate_vid_hdr(const struct ubi_device *ubi, 886 const struct ubi_vid_hdr *vid_hdr) 887 { 888 int vol_type = vid_hdr->vol_type; 889 int copy_flag = vid_hdr->copy_flag; 890 int vol_id = be32_to_cpu(vid_hdr->vol_id); 891 int lnum = be32_to_cpu(vid_hdr->lnum); 892 int compat = vid_hdr->compat; 893 int data_size = be32_to_cpu(vid_hdr->data_size); 894 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 895 int data_pad = be32_to_cpu(vid_hdr->data_pad); 896 int data_crc = be32_to_cpu(vid_hdr->data_crc); 897 int usable_leb_size = ubi->leb_size - data_pad; 898 899 if (copy_flag != 0 && copy_flag != 1) { 900 ubi_err(ubi, "bad copy_flag"); 901 goto bad; 902 } 903 904 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 905 data_pad < 0) { 906 ubi_err(ubi, "negative values"); 907 goto bad; 908 } 909 910 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 911 ubi_err(ubi, "bad vol_id"); 912 goto bad; 913 } 914 915 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 916 ubi_err(ubi, "bad compat"); 917 goto bad; 918 } 919 920 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 921 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 922 compat != UBI_COMPAT_REJECT) { 923 ubi_err(ubi, "bad compat"); 924 goto bad; 925 } 926 927 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 928 ubi_err(ubi, "bad vol_type"); 929 goto bad; 930 } 931 932 if (data_pad >= ubi->leb_size / 2) { 933 ubi_err(ubi, "bad data_pad"); 934 goto bad; 935 } 936 937 if (data_size > ubi->leb_size) { 938 ubi_err(ubi, "bad data_size"); 939 goto bad; 940 } 941 942 if (vol_type == UBI_VID_STATIC) { 943 /* 944 * Although from high-level point of view static volumes may 945 * contain zero bytes of data, but no VID headers can contain 946 * zero at these fields, because they empty volumes do not have 947 * mapped logical eraseblocks. 948 */ 949 if (used_ebs == 0) { 950 ubi_err(ubi, "zero used_ebs"); 951 goto bad; 952 } 953 if (data_size == 0) { 954 ubi_err(ubi, "zero data_size"); 955 goto bad; 956 } 957 if (lnum < used_ebs - 1) { 958 if (data_size != usable_leb_size) { 959 ubi_err(ubi, "bad data_size"); 960 goto bad; 961 } 962 } else if (lnum > used_ebs - 1) { 963 ubi_err(ubi, "too high lnum"); 964 goto bad; 965 } 966 } else { 967 if (copy_flag == 0) { 968 if (data_crc != 0) { 969 ubi_err(ubi, "non-zero data CRC"); 970 goto bad; 971 } 972 if (data_size != 0) { 973 ubi_err(ubi, "non-zero data_size"); 974 goto bad; 975 } 976 } else { 977 if (data_size == 0) { 978 ubi_err(ubi, "zero data_size of copy"); 979 goto bad; 980 } 981 } 982 if (used_ebs != 0) { 983 ubi_err(ubi, "bad used_ebs"); 984 goto bad; 985 } 986 } 987 988 return 0; 989 990 bad: 991 ubi_err(ubi, "bad VID header"); 992 ubi_dump_vid_hdr(vid_hdr); 993 dump_stack(); 994 return 1; 995 } 996 997 /** 998 * ubi_io_read_vid_hdr - read and check a volume identifier header. 999 * @ubi: UBI device description object 1000 * @pnum: physical eraseblock number to read from 1001 * @vidb: the volume identifier buffer to store data in 1002 * @verbose: be verbose if the header is corrupted or wasn't found 1003 * 1004 * This function reads the volume identifier header from physical eraseblock 1005 * @pnum and stores it in @vidb. It also checks CRC checksum of the read 1006 * volume identifier header. The error codes are the same as in 1007 * 'ubi_io_read_ec_hdr()'. 1008 * 1009 * Note, the implementation of this function is also very similar to 1010 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 1011 */ 1012 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 1013 struct ubi_vid_io_buf *vidb, int verbose) 1014 { 1015 int err, read_err; 1016 uint32_t crc, magic, hdr_crc; 1017 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); 1018 void *p = vidb->buffer; 1019 1020 dbg_io("read VID header from PEB %d", pnum); 1021 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1022 1023 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1024 ubi->vid_hdr_shift + UBI_VID_HDR_SIZE); 1025 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 1026 return read_err; 1027 1028 magic = be32_to_cpu(vid_hdr->magic); 1029 if (magic != UBI_VID_HDR_MAGIC) { 1030 if (mtd_is_eccerr(read_err)) 1031 return UBI_IO_BAD_HDR_EBADMSG; 1032 1033 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1034 if (verbose) 1035 ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes", 1036 pnum); 1037 dbg_bld("no VID header found at PEB %d, only 0xFF bytes", 1038 pnum); 1039 if (!read_err) 1040 return UBI_IO_FF; 1041 else 1042 return UBI_IO_FF_BITFLIPS; 1043 } 1044 1045 if (verbose) { 1046 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 1047 pnum, magic, UBI_VID_HDR_MAGIC); 1048 ubi_dump_vid_hdr(vid_hdr); 1049 } 1050 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 1051 pnum, magic, UBI_VID_HDR_MAGIC); 1052 return UBI_IO_BAD_HDR; 1053 } 1054 1055 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1056 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1057 1058 if (hdr_crc != crc) { 1059 if (verbose) { 1060 ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x", 1061 pnum, crc, hdr_crc); 1062 ubi_dump_vid_hdr(vid_hdr); 1063 } 1064 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", 1065 pnum, crc, hdr_crc); 1066 if (!read_err) 1067 return UBI_IO_BAD_HDR; 1068 else 1069 return UBI_IO_BAD_HDR_EBADMSG; 1070 } 1071 1072 err = validate_vid_hdr(ubi, vid_hdr); 1073 if (err) { 1074 ubi_err(ubi, "validation failed for PEB %d", pnum); 1075 return -EINVAL; 1076 } 1077 1078 if (read_err) 1079 return UBI_IO_BITFLIPS; 1080 1081 if (ubi_dbg_is_read_failure(ubi, MASK_READ_FAILURE_VID)) { 1082 ubi_warn(ubi, "cannot read VID header from PEB %d (emulated)", 1083 pnum); 1084 return -EIO; 1085 } 1086 1087 if (ubi_dbg_is_ff(ubi, MASK_IO_FF_VID)) { 1088 ubi_warn(ubi, "bit-all-ff (emulated)"); 1089 return UBI_IO_FF; 1090 } 1091 1092 if (ubi_dbg_is_ff_bitflips(ubi, MASK_IO_FF_BITFLIPS_VID)) { 1093 ubi_warn(ubi, "bit-all-ff with error reported by MTD driver (emulated)"); 1094 return UBI_IO_FF_BITFLIPS; 1095 } 1096 1097 if (ubi_dbg_is_bad_hdr(ubi, MASK_BAD_HDR_VID)) { 1098 ubi_warn(ubi, "bad_hdr (emulated)"); 1099 return UBI_IO_BAD_HDR; 1100 } 1101 1102 if (ubi_dbg_is_bad_hdr_ebadmsg(ubi, MASK_BAD_HDR_EBADMSG_VID)) { 1103 ubi_warn(ubi, "bad_hdr with ECC error (emulated)"); 1104 return UBI_IO_BAD_HDR_EBADMSG; 1105 } 1106 1107 return 0; 1108 } 1109 1110 /** 1111 * ubi_io_write_vid_hdr - write a volume identifier header. 1112 * @ubi: UBI device description object 1113 * @pnum: the physical eraseblock number to write to 1114 * @vidb: the volume identifier buffer to write 1115 * 1116 * This function writes the volume identifier header described by @vid_hdr to 1117 * physical eraseblock @pnum. This function automatically fills the 1118 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates 1119 * header CRC checksum and stores it at vidb->hdr->hdr_crc. 1120 * 1121 * This function returns zero in case of success and a negative error code in 1122 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1123 * bad. 1124 */ 1125 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1126 struct ubi_vid_io_buf *vidb) 1127 { 1128 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); 1129 int err; 1130 uint32_t crc; 1131 void *p = vidb->buffer; 1132 1133 dbg_io("write VID header to PEB %d", pnum); 1134 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1135 1136 err = self_check_peb_ec_hdr(ubi, pnum); 1137 if (err) 1138 return err; 1139 1140 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1141 vid_hdr->version = UBI_VERSION; 1142 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1143 vid_hdr->hdr_crc = cpu_to_be32(crc); 1144 1145 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1146 if (err) 1147 return err; 1148 1149 if (ubi_dbg_is_power_cut(ubi, MASK_POWER_CUT_VID)) { 1150 ubi_warn(ubi, "emulating a power cut when writing VID header"); 1151 ubi_ro_mode(ubi); 1152 return -EROFS; 1153 } 1154 1155 if (ubi->vid_hdr_shift) { 1156 memset((char *)p, 0xFF, ubi->vid_hdr_shift); 1157 memset((char *)p + ubi->vid_hdr_shift + UBI_VID_HDR_SIZE, 0xFF, 1158 ubi->vid_hdr_alsize - (ubi->vid_hdr_shift + UBI_VID_HDR_SIZE)); 1159 } else { 1160 memset((char *)p + UBI_VID_HDR_SIZE, 0xFF, ubi->vid_hdr_alsize - UBI_VID_HDR_SIZE); 1161 } 1162 1163 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1164 ubi->vid_hdr_alsize); 1165 return err; 1166 } 1167 1168 /** 1169 * self_check_not_bad - ensure that a physical eraseblock is not bad. 1170 * @ubi: UBI device description object 1171 * @pnum: physical eraseblock number to check 1172 * 1173 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1174 * it is bad and a negative error code if an error occurred. 1175 */ 1176 static int self_check_not_bad(const struct ubi_device *ubi, int pnum) 1177 { 1178 int err; 1179 1180 if (!ubi_dbg_chk_io(ubi)) 1181 return 0; 1182 1183 err = ubi_io_is_bad(ubi, pnum); 1184 if (!err) 1185 return err; 1186 1187 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1188 dump_stack(); 1189 return err > 0 ? -EINVAL : err; 1190 } 1191 1192 /** 1193 * self_check_ec_hdr - check if an erase counter header is all right. 1194 * @ubi: UBI device description object 1195 * @pnum: physical eraseblock number the erase counter header belongs to 1196 * @ec_hdr: the erase counter header to check 1197 * 1198 * This function returns zero if the erase counter header contains valid 1199 * values, and %-EINVAL if not. 1200 */ 1201 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1202 const struct ubi_ec_hdr *ec_hdr) 1203 { 1204 int err; 1205 uint32_t magic; 1206 1207 if (!ubi_dbg_chk_io(ubi)) 1208 return 0; 1209 1210 magic = be32_to_cpu(ec_hdr->magic); 1211 if (magic != UBI_EC_HDR_MAGIC) { 1212 ubi_err(ubi, "bad magic %#08x, must be %#08x", 1213 magic, UBI_EC_HDR_MAGIC); 1214 goto fail; 1215 } 1216 1217 err = validate_ec_hdr(ubi, ec_hdr); 1218 if (err) { 1219 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1220 goto fail; 1221 } 1222 1223 return 0; 1224 1225 fail: 1226 ubi_dump_ec_hdr(ec_hdr); 1227 dump_stack(); 1228 return -EINVAL; 1229 } 1230 1231 /** 1232 * self_check_peb_ec_hdr - check erase counter header. 1233 * @ubi: UBI device description object 1234 * @pnum: the physical eraseblock number to check 1235 * 1236 * This function returns zero if the erase counter header is all right and 1237 * a negative error code if not or if an error occurred. 1238 */ 1239 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1240 { 1241 int err; 1242 uint32_t crc, hdr_crc; 1243 struct ubi_ec_hdr *ec_hdr; 1244 1245 if (!ubi_dbg_chk_io(ubi)) 1246 return 0; 1247 1248 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1249 if (!ec_hdr) 1250 return -ENOMEM; 1251 1252 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1253 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1254 goto exit; 1255 1256 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1257 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1258 if (hdr_crc != crc) { 1259 ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x", 1260 crc, hdr_crc); 1261 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1262 ubi_dump_ec_hdr(ec_hdr); 1263 dump_stack(); 1264 err = -EINVAL; 1265 goto exit; 1266 } 1267 1268 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 1269 1270 exit: 1271 kfree(ec_hdr); 1272 return err; 1273 } 1274 1275 /** 1276 * self_check_vid_hdr - check that a volume identifier header is all right. 1277 * @ubi: UBI device description object 1278 * @pnum: physical eraseblock number the volume identifier header belongs to 1279 * @vid_hdr: the volume identifier header to check 1280 * 1281 * This function returns zero if the volume identifier header is all right, and 1282 * %-EINVAL if not. 1283 */ 1284 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1285 const struct ubi_vid_hdr *vid_hdr) 1286 { 1287 int err; 1288 uint32_t magic; 1289 1290 if (!ubi_dbg_chk_io(ubi)) 1291 return 0; 1292 1293 magic = be32_to_cpu(vid_hdr->magic); 1294 if (magic != UBI_VID_HDR_MAGIC) { 1295 ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x", 1296 magic, pnum, UBI_VID_HDR_MAGIC); 1297 goto fail; 1298 } 1299 1300 err = validate_vid_hdr(ubi, vid_hdr); 1301 if (err) { 1302 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1303 goto fail; 1304 } 1305 1306 return err; 1307 1308 fail: 1309 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1310 ubi_dump_vid_hdr(vid_hdr); 1311 dump_stack(); 1312 return -EINVAL; 1313 1314 } 1315 1316 /** 1317 * self_check_peb_vid_hdr - check volume identifier header. 1318 * @ubi: UBI device description object 1319 * @pnum: the physical eraseblock number to check 1320 * 1321 * This function returns zero if the volume identifier header is all right, 1322 * and a negative error code if not or if an error occurred. 1323 */ 1324 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1325 { 1326 int err; 1327 uint32_t crc, hdr_crc; 1328 struct ubi_vid_io_buf *vidb; 1329 struct ubi_vid_hdr *vid_hdr; 1330 void *p; 1331 1332 if (!ubi_dbg_chk_io(ubi)) 1333 return 0; 1334 1335 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 1336 if (!vidb) 1337 return -ENOMEM; 1338 1339 vid_hdr = ubi_get_vid_hdr(vidb); 1340 p = vidb->buffer; 1341 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1342 ubi->vid_hdr_alsize); 1343 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1344 goto exit; 1345 1346 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1347 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1348 if (hdr_crc != crc) { 1349 ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x", 1350 pnum, crc, hdr_crc); 1351 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1352 ubi_dump_vid_hdr(vid_hdr); 1353 dump_stack(); 1354 err = -EINVAL; 1355 goto exit; 1356 } 1357 1358 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1359 1360 exit: 1361 ubi_free_vid_buf(vidb); 1362 return err; 1363 } 1364 1365 /** 1366 * self_check_write - make sure write succeeded. 1367 * @ubi: UBI device description object 1368 * @buf: buffer with data which were written 1369 * @pnum: physical eraseblock number the data were written to 1370 * @offset: offset within the physical eraseblock the data were written to 1371 * @len: how many bytes were written 1372 * 1373 * This functions reads data which were recently written and compares it with 1374 * the original data buffer - the data have to match. Returns zero if the data 1375 * match and a negative error code if not or in case of failure. 1376 */ 1377 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1378 int offset, int len) 1379 { 1380 int err, i; 1381 size_t read; 1382 void *buf1; 1383 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1384 1385 if (!ubi_dbg_chk_io(ubi)) 1386 return 0; 1387 1388 buf1 = __vmalloc(len, GFP_NOFS); 1389 if (!buf1) { 1390 ubi_err(ubi, "cannot allocate memory to check writes"); 1391 return 0; 1392 } 1393 1394 err = mtd_read(ubi->mtd, addr, len, &read, buf1); 1395 if (err && !mtd_is_bitflip(err)) 1396 goto out_free; 1397 1398 for (i = 0; i < len; i++) { 1399 uint8_t c = ((uint8_t *)buf)[i]; 1400 uint8_t c1 = ((uint8_t *)buf1)[i]; 1401 int dump_len; 1402 1403 if (c == c1) 1404 continue; 1405 1406 ubi_err(ubi, "self-check failed for PEB %d:%d, len %d", 1407 pnum, offset, len); 1408 ubi_msg(ubi, "data differ at position %d", i); 1409 dump_len = max_t(int, 128, len - i); 1410 ubi_msg(ubi, "hex dump of the original buffer from %d to %d", 1411 i, i + dump_len); 1412 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1413 buf + i, dump_len, 1); 1414 ubi_msg(ubi, "hex dump of the read buffer from %d to %d", 1415 i, i + dump_len); 1416 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1417 buf1 + i, dump_len, 1); 1418 dump_stack(); 1419 err = -EINVAL; 1420 goto out_free; 1421 } 1422 1423 vfree(buf1); 1424 return 0; 1425 1426 out_free: 1427 vfree(buf1); 1428 return err; 1429 } 1430 1431 /** 1432 * ubi_self_check_all_ff - check that a region of flash is empty. 1433 * @ubi: UBI device description object 1434 * @pnum: the physical eraseblock number to check 1435 * @offset: the starting offset within the physical eraseblock to check 1436 * @len: the length of the region to check 1437 * 1438 * This function returns zero if only 0xFF bytes are present at offset 1439 * @offset of the physical eraseblock @pnum, and a negative error code if not 1440 * or if an error occurred. 1441 */ 1442 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1443 { 1444 size_t read; 1445 int err; 1446 void *buf; 1447 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1448 1449 if (!ubi_dbg_chk_io(ubi)) 1450 return 0; 1451 1452 buf = __vmalloc(len, GFP_NOFS); 1453 if (!buf) { 1454 ubi_err(ubi, "cannot allocate memory to check for 0xFFs"); 1455 return 0; 1456 } 1457 1458 err = mtd_read(ubi->mtd, addr, len, &read, buf); 1459 if (err && !mtd_is_bitflip(err)) { 1460 ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes", 1461 err, len, pnum, offset, read); 1462 goto error; 1463 } 1464 1465 err = ubi_check_pattern(buf, 0xFF, len); 1466 if (err == 0) { 1467 ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", 1468 pnum, offset, len); 1469 goto fail; 1470 } 1471 1472 vfree(buf); 1473 return 0; 1474 1475 fail: 1476 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1477 ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len); 1478 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1479 err = -EINVAL; 1480 error: 1481 dump_stack(); 1482 vfree(buf); 1483 return err; 1484 } 1485