xref: /linux/drivers/mtd/ubi/io.c (revision 97733180fafbeb7cc3fd1c8be60d05980615f5d6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  * Copyright (c) Nokia Corporation, 2006, 2007
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 /*
10  * UBI input/output sub-system.
11  *
12  * This sub-system provides a uniform way to work with all kinds of the
13  * underlying MTD devices. It also implements handy functions for reading and
14  * writing UBI headers.
15  *
16  * We are trying to have a paranoid mindset and not to trust to what we read
17  * from the flash media in order to be more secure and robust. So this
18  * sub-system validates every single header it reads from the flash media.
19  *
20  * Some words about how the eraseblock headers are stored.
21  *
22  * The erase counter header is always stored at offset zero. By default, the
23  * VID header is stored after the EC header at the closest aligned offset
24  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
25  * header at the closest aligned offset. But this default layout may be
26  * changed. For example, for different reasons (e.g., optimization) UBI may be
27  * asked to put the VID header at further offset, and even at an unaligned
28  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
29  * proper padding in front of it. Data offset may also be changed but it has to
30  * be aligned.
31  *
32  * About minimal I/O units. In general, UBI assumes flash device model where
33  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
34  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
35  * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
36  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
37  * to do different optimizations.
38  *
39  * This is extremely useful in case of NAND flashes which admit of several
40  * write operations to one NAND page. In this case UBI can fit EC and VID
41  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
42  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
43  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
44  * users.
45  *
46  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
47  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
48  * headers.
49  *
50  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
51  * device, e.g., make @ubi->min_io_size = 512 in the example above?
52  *
53  * A: because when writing a sub-page, MTD still writes a full 2K page but the
54  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
55  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
56  * Thus, we prefer to use sub-pages only for EC and VID headers.
57  *
58  * As it was noted above, the VID header may start at a non-aligned offset.
59  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
60  * the VID header may reside at offset 1984 which is the last 64 bytes of the
61  * last sub-page (EC header is always at offset zero). This causes some
62  * difficulties when reading and writing VID headers.
63  *
64  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
65  * the data and want to write this VID header out. As we can only write in
66  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
67  * to offset 448 of this buffer.
68  *
69  * The I/O sub-system does the following trick in order to avoid this extra
70  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
71  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
72  * When the VID header is being written out, it shifts the VID header pointer
73  * back and writes the whole sub-page.
74  */
75 
76 #include <linux/crc32.h>
77 #include <linux/err.h>
78 #include <linux/slab.h>
79 #include "ubi.h"
80 
81 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
82 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
83 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
84 			     const struct ubi_ec_hdr *ec_hdr);
85 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
86 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
87 			      const struct ubi_vid_hdr *vid_hdr);
88 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
89 			    int offset, int len);
90 
91 /**
92  * ubi_io_read - read data from a physical eraseblock.
93  * @ubi: UBI device description object
94  * @buf: buffer where to store the read data
95  * @pnum: physical eraseblock number to read from
96  * @offset: offset within the physical eraseblock from where to read
97  * @len: how many bytes to read
98  *
99  * This function reads data from offset @offset of physical eraseblock @pnum
100  * and stores the read data in the @buf buffer. The following return codes are
101  * possible:
102  *
103  * o %0 if all the requested data were successfully read;
104  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
105  *   correctable bit-flips were detected; this is harmless but may indicate
106  *   that this eraseblock may become bad soon (but do not have to);
107  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
108  *   example it can be an ECC error in case of NAND; this most probably means
109  *   that the data is corrupted;
110  * o %-EIO if some I/O error occurred;
111  * o other negative error codes in case of other errors.
112  */
113 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
114 		int len)
115 {
116 	int err, retries = 0;
117 	size_t read;
118 	loff_t addr;
119 
120 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
121 
122 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
123 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
124 	ubi_assert(len > 0);
125 
126 	err = self_check_not_bad(ubi, pnum);
127 	if (err)
128 		return err;
129 
130 	/*
131 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
132 	 * do not do this, the following may happen:
133 	 * 1. The buffer contains data from previous operation, e.g., read from
134 	 *    another PEB previously. The data looks like expected, e.g., if we
135 	 *    just do not read anything and return - the caller would not
136 	 *    notice this. E.g., if we are reading a VID header, the buffer may
137 	 *    contain a valid VID header from another PEB.
138 	 * 2. The driver is buggy and returns us success or -EBADMSG or
139 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
140 	 *
141 	 * This may confuse UBI or upper layers - they may think the buffer
142 	 * contains valid data while in fact it is just old data. This is
143 	 * especially possible because UBI (and UBIFS) relies on CRC, and
144 	 * treats data as correct even in case of ECC errors if the CRC is
145 	 * correct.
146 	 *
147 	 * Try to prevent this situation by changing the first byte of the
148 	 * buffer.
149 	 */
150 	*((uint8_t *)buf) ^= 0xFF;
151 
152 	addr = (loff_t)pnum * ubi->peb_size + offset;
153 retry:
154 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
155 	if (err) {
156 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
157 
158 		if (mtd_is_bitflip(err)) {
159 			/*
160 			 * -EUCLEAN is reported if there was a bit-flip which
161 			 * was corrected, so this is harmless.
162 			 *
163 			 * We do not report about it here unless debugging is
164 			 * enabled. A corresponding message will be printed
165 			 * later, when it is has been scrubbed.
166 			 */
167 			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
168 				pnum);
169 			ubi_assert(len == read);
170 			return UBI_IO_BITFLIPS;
171 		}
172 
173 		if (retries++ < UBI_IO_RETRIES) {
174 			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
175 				 err, errstr, len, pnum, offset, read);
176 			yield();
177 			goto retry;
178 		}
179 
180 		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
181 			err, errstr, len, pnum, offset, read);
182 		dump_stack();
183 
184 		/*
185 		 * The driver should never return -EBADMSG if it failed to read
186 		 * all the requested data. But some buggy drivers might do
187 		 * this, so we change it to -EIO.
188 		 */
189 		if (read != len && mtd_is_eccerr(err)) {
190 			ubi_assert(0);
191 			err = -EIO;
192 		}
193 	} else {
194 		ubi_assert(len == read);
195 
196 		if (ubi_dbg_is_bitflip(ubi)) {
197 			dbg_gen("bit-flip (emulated)");
198 			err = UBI_IO_BITFLIPS;
199 		}
200 	}
201 
202 	return err;
203 }
204 
205 /**
206  * ubi_io_write - write data to a physical eraseblock.
207  * @ubi: UBI device description object
208  * @buf: buffer with the data to write
209  * @pnum: physical eraseblock number to write to
210  * @offset: offset within the physical eraseblock where to write
211  * @len: how many bytes to write
212  *
213  * This function writes @len bytes of data from buffer @buf to offset @offset
214  * of physical eraseblock @pnum. If all the data were successfully written,
215  * zero is returned. If an error occurred, this function returns a negative
216  * error code. If %-EIO is returned, the physical eraseblock most probably went
217  * bad.
218  *
219  * Note, in case of an error, it is possible that something was still written
220  * to the flash media, but may be some garbage.
221  */
222 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
223 		 int len)
224 {
225 	int err;
226 	size_t written;
227 	loff_t addr;
228 
229 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
230 
231 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
232 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
233 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
234 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
235 
236 	if (ubi->ro_mode) {
237 		ubi_err(ubi, "read-only mode");
238 		return -EROFS;
239 	}
240 
241 	err = self_check_not_bad(ubi, pnum);
242 	if (err)
243 		return err;
244 
245 	/* The area we are writing to has to contain all 0xFF bytes */
246 	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
247 	if (err)
248 		return err;
249 
250 	if (offset >= ubi->leb_start) {
251 		/*
252 		 * We write to the data area of the physical eraseblock. Make
253 		 * sure it has valid EC and VID headers.
254 		 */
255 		err = self_check_peb_ec_hdr(ubi, pnum);
256 		if (err)
257 			return err;
258 		err = self_check_peb_vid_hdr(ubi, pnum);
259 		if (err)
260 			return err;
261 	}
262 
263 	if (ubi_dbg_is_write_failure(ubi)) {
264 		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
265 			len, pnum, offset);
266 		dump_stack();
267 		return -EIO;
268 	}
269 
270 	addr = (loff_t)pnum * ubi->peb_size + offset;
271 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
272 	if (err) {
273 		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
274 			err, len, pnum, offset, written);
275 		dump_stack();
276 		ubi_dump_flash(ubi, pnum, offset, len);
277 	} else
278 		ubi_assert(written == len);
279 
280 	if (!err) {
281 		err = self_check_write(ubi, buf, pnum, offset, len);
282 		if (err)
283 			return err;
284 
285 		/*
286 		 * Since we always write sequentially, the rest of the PEB has
287 		 * to contain only 0xFF bytes.
288 		 */
289 		offset += len;
290 		len = ubi->peb_size - offset;
291 		if (len)
292 			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
293 	}
294 
295 	return err;
296 }
297 
298 /**
299  * do_sync_erase - synchronously erase a physical eraseblock.
300  * @ubi: UBI device description object
301  * @pnum: the physical eraseblock number to erase
302  *
303  * This function synchronously erases physical eraseblock @pnum and returns
304  * zero in case of success and a negative error code in case of failure. If
305  * %-EIO is returned, the physical eraseblock most probably went bad.
306  */
307 static int do_sync_erase(struct ubi_device *ubi, int pnum)
308 {
309 	int err, retries = 0;
310 	struct erase_info ei;
311 
312 	dbg_io("erase PEB %d", pnum);
313 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
314 
315 	if (ubi->ro_mode) {
316 		ubi_err(ubi, "read-only mode");
317 		return -EROFS;
318 	}
319 
320 retry:
321 	memset(&ei, 0, sizeof(struct erase_info));
322 
323 	ei.addr     = (loff_t)pnum * ubi->peb_size;
324 	ei.len      = ubi->peb_size;
325 
326 	err = mtd_erase(ubi->mtd, &ei);
327 	if (err) {
328 		if (retries++ < UBI_IO_RETRIES) {
329 			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
330 				 err, pnum);
331 			yield();
332 			goto retry;
333 		}
334 		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
335 		dump_stack();
336 		return err;
337 	}
338 
339 	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
340 	if (err)
341 		return err;
342 
343 	if (ubi_dbg_is_erase_failure(ubi)) {
344 		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
345 		return -EIO;
346 	}
347 
348 	return 0;
349 }
350 
351 /* Patterns to write to a physical eraseblock when torturing it */
352 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
353 
354 /**
355  * torture_peb - test a supposedly bad physical eraseblock.
356  * @ubi: UBI device description object
357  * @pnum: the physical eraseblock number to test
358  *
359  * This function returns %-EIO if the physical eraseblock did not pass the
360  * test, a positive number of erase operations done if the test was
361  * successfully passed, and other negative error codes in case of other errors.
362  */
363 static int torture_peb(struct ubi_device *ubi, int pnum)
364 {
365 	int err, i, patt_count;
366 
367 	ubi_msg(ubi, "run torture test for PEB %d", pnum);
368 	patt_count = ARRAY_SIZE(patterns);
369 	ubi_assert(patt_count > 0);
370 
371 	mutex_lock(&ubi->buf_mutex);
372 	for (i = 0; i < patt_count; i++) {
373 		err = do_sync_erase(ubi, pnum);
374 		if (err)
375 			goto out;
376 
377 		/* Make sure the PEB contains only 0xFF bytes */
378 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
379 		if (err)
380 			goto out;
381 
382 		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
383 		if (err == 0) {
384 			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
385 				pnum);
386 			err = -EIO;
387 			goto out;
388 		}
389 
390 		/* Write a pattern and check it */
391 		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
392 		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
393 		if (err)
394 			goto out;
395 
396 		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
397 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
398 		if (err)
399 			goto out;
400 
401 		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
402 					ubi->peb_size);
403 		if (err == 0) {
404 			ubi_err(ubi, "pattern %x checking failed for PEB %d",
405 				patterns[i], pnum);
406 			err = -EIO;
407 			goto out;
408 		}
409 	}
410 
411 	err = patt_count;
412 	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
413 
414 out:
415 	mutex_unlock(&ubi->buf_mutex);
416 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
417 		/*
418 		 * If a bit-flip or data integrity error was detected, the test
419 		 * has not passed because it happened on a freshly erased
420 		 * physical eraseblock which means something is wrong with it.
421 		 */
422 		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
423 			pnum);
424 		err = -EIO;
425 	}
426 	return err;
427 }
428 
429 /**
430  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
431  * @ubi: UBI device description object
432  * @pnum: physical eraseblock number to prepare
433  *
434  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
435  * algorithm: the PEB is first filled with zeroes, then it is erased. And
436  * filling with zeroes starts from the end of the PEB. This was observed with
437  * Spansion S29GL512N NOR flash.
438  *
439  * This means that in case of a power cut we may end up with intact data at the
440  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
441  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
442  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
443  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
444  *
445  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
446  * magic numbers in order to invalidate them and prevent the failures. Returns
447  * zero in case of success and a negative error code in case of failure.
448  */
449 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
450 {
451 	int err;
452 	size_t written;
453 	loff_t addr;
454 	uint32_t data = 0;
455 	struct ubi_ec_hdr ec_hdr;
456 	struct ubi_vid_io_buf vidb;
457 
458 	/*
459 	 * Note, we cannot generally define VID header buffers on stack,
460 	 * because of the way we deal with these buffers (see the header
461 	 * comment in this file). But we know this is a NOR-specific piece of
462 	 * code, so we can do this. But yes, this is error-prone and we should
463 	 * (pre-)allocate VID header buffer instead.
464 	 */
465 	struct ubi_vid_hdr vid_hdr;
466 
467 	/*
468 	 * If VID or EC is valid, we have to corrupt them before erasing.
469 	 * It is important to first invalidate the EC header, and then the VID
470 	 * header. Otherwise a power cut may lead to valid EC header and
471 	 * invalid VID header, in which case UBI will treat this PEB as
472 	 * corrupted and will try to preserve it, and print scary warnings.
473 	 */
474 	addr = (loff_t)pnum * ubi->peb_size;
475 	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
476 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
477 	    err != UBI_IO_FF){
478 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
479 		if(err)
480 			goto error;
481 	}
482 
483 	ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
484 	ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
485 
486 	err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
487 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
488 	    err != UBI_IO_FF){
489 		addr += ubi->vid_hdr_aloffset;
490 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
491 		if (err)
492 			goto error;
493 	}
494 	return 0;
495 
496 error:
497 	/*
498 	 * The PEB contains a valid VID or EC header, but we cannot invalidate
499 	 * it. Supposedly the flash media or the driver is screwed up, so
500 	 * return an error.
501 	 */
502 	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
503 	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
504 	return -EIO;
505 }
506 
507 /**
508  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
509  * @ubi: UBI device description object
510  * @pnum: physical eraseblock number to erase
511  * @torture: if this physical eraseblock has to be tortured
512  *
513  * This function synchronously erases physical eraseblock @pnum. If @torture
514  * flag is not zero, the physical eraseblock is checked by means of writing
515  * different patterns to it and reading them back. If the torturing is enabled,
516  * the physical eraseblock is erased more than once.
517  *
518  * This function returns the number of erasures made in case of success, %-EIO
519  * if the erasure failed or the torturing test failed, and other negative error
520  * codes in case of other errors. Note, %-EIO means that the physical
521  * eraseblock is bad.
522  */
523 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
524 {
525 	int err, ret = 0;
526 
527 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
528 
529 	err = self_check_not_bad(ubi, pnum);
530 	if (err != 0)
531 		return err;
532 
533 	if (ubi->ro_mode) {
534 		ubi_err(ubi, "read-only mode");
535 		return -EROFS;
536 	}
537 
538 	/*
539 	 * If the flash is ECC-ed then we have to erase the ECC block before we
540 	 * can write to it. But the write is in preparation to an erase in the
541 	 * first place. This means we cannot zero out EC and VID before the
542 	 * erase and we just have to hope the flash starts erasing from the
543 	 * start of the page.
544 	 */
545 	if (ubi->nor_flash && ubi->mtd->writesize == 1) {
546 		err = nor_erase_prepare(ubi, pnum);
547 		if (err)
548 			return err;
549 	}
550 
551 	if (torture) {
552 		ret = torture_peb(ubi, pnum);
553 		if (ret < 0)
554 			return ret;
555 	}
556 
557 	err = do_sync_erase(ubi, pnum);
558 	if (err)
559 		return err;
560 
561 	return ret + 1;
562 }
563 
564 /**
565  * ubi_io_is_bad - check if a physical eraseblock is bad.
566  * @ubi: UBI device description object
567  * @pnum: the physical eraseblock number to check
568  *
569  * This function returns a positive number if the physical eraseblock is bad,
570  * zero if not, and a negative error code if an error occurred.
571  */
572 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
573 {
574 	struct mtd_info *mtd = ubi->mtd;
575 
576 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
577 
578 	if (ubi->bad_allowed) {
579 		int ret;
580 
581 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
582 		if (ret < 0)
583 			ubi_err(ubi, "error %d while checking if PEB %d is bad",
584 				ret, pnum);
585 		else if (ret)
586 			dbg_io("PEB %d is bad", pnum);
587 		return ret;
588 	}
589 
590 	return 0;
591 }
592 
593 /**
594  * ubi_io_mark_bad - mark a physical eraseblock as bad.
595  * @ubi: UBI device description object
596  * @pnum: the physical eraseblock number to mark
597  *
598  * This function returns zero in case of success and a negative error code in
599  * case of failure.
600  */
601 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
602 {
603 	int err;
604 	struct mtd_info *mtd = ubi->mtd;
605 
606 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
607 
608 	if (ubi->ro_mode) {
609 		ubi_err(ubi, "read-only mode");
610 		return -EROFS;
611 	}
612 
613 	if (!ubi->bad_allowed)
614 		return 0;
615 
616 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
617 	if (err)
618 		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
619 	return err;
620 }
621 
622 /**
623  * validate_ec_hdr - validate an erase counter header.
624  * @ubi: UBI device description object
625  * @ec_hdr: the erase counter header to check
626  *
627  * This function returns zero if the erase counter header is OK, and %1 if
628  * not.
629  */
630 static int validate_ec_hdr(const struct ubi_device *ubi,
631 			   const struct ubi_ec_hdr *ec_hdr)
632 {
633 	long long ec;
634 	int vid_hdr_offset, leb_start;
635 
636 	ec = be64_to_cpu(ec_hdr->ec);
637 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
638 	leb_start = be32_to_cpu(ec_hdr->data_offset);
639 
640 	if (ec_hdr->version != UBI_VERSION) {
641 		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
642 			UBI_VERSION, (int)ec_hdr->version);
643 		goto bad;
644 	}
645 
646 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
647 		ubi_err(ubi, "bad VID header offset %d, expected %d",
648 			vid_hdr_offset, ubi->vid_hdr_offset);
649 		goto bad;
650 	}
651 
652 	if (leb_start != ubi->leb_start) {
653 		ubi_err(ubi, "bad data offset %d, expected %d",
654 			leb_start, ubi->leb_start);
655 		goto bad;
656 	}
657 
658 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
659 		ubi_err(ubi, "bad erase counter %lld", ec);
660 		goto bad;
661 	}
662 
663 	return 0;
664 
665 bad:
666 	ubi_err(ubi, "bad EC header");
667 	ubi_dump_ec_hdr(ec_hdr);
668 	dump_stack();
669 	return 1;
670 }
671 
672 /**
673  * ubi_io_read_ec_hdr - read and check an erase counter header.
674  * @ubi: UBI device description object
675  * @pnum: physical eraseblock to read from
676  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
677  * header
678  * @verbose: be verbose if the header is corrupted or was not found
679  *
680  * This function reads erase counter header from physical eraseblock @pnum and
681  * stores it in @ec_hdr. This function also checks CRC checksum of the read
682  * erase counter header. The following codes may be returned:
683  *
684  * o %0 if the CRC checksum is correct and the header was successfully read;
685  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
686  *   and corrected by the flash driver; this is harmless but may indicate that
687  *   this eraseblock may become bad soon (but may be not);
688  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
689  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
690  *   a data integrity error (uncorrectable ECC error in case of NAND);
691  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
692  * o a negative error code in case of failure.
693  */
694 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
695 		       struct ubi_ec_hdr *ec_hdr, int verbose)
696 {
697 	int err, read_err;
698 	uint32_t crc, magic, hdr_crc;
699 
700 	dbg_io("read EC header from PEB %d", pnum);
701 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
702 
703 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
704 	if (read_err) {
705 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
706 			return read_err;
707 
708 		/*
709 		 * We read all the data, but either a correctable bit-flip
710 		 * occurred, or MTD reported a data integrity error
711 		 * (uncorrectable ECC error in case of NAND). The former is
712 		 * harmless, the later may mean that the read data is
713 		 * corrupted. But we have a CRC check-sum and we will detect
714 		 * this. If the EC header is still OK, we just report this as
715 		 * there was a bit-flip, to force scrubbing.
716 		 */
717 	}
718 
719 	magic = be32_to_cpu(ec_hdr->magic);
720 	if (magic != UBI_EC_HDR_MAGIC) {
721 		if (mtd_is_eccerr(read_err))
722 			return UBI_IO_BAD_HDR_EBADMSG;
723 
724 		/*
725 		 * The magic field is wrong. Let's check if we have read all
726 		 * 0xFF. If yes, this physical eraseblock is assumed to be
727 		 * empty.
728 		 */
729 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
730 			/* The physical eraseblock is supposedly empty */
731 			if (verbose)
732 				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
733 					 pnum);
734 			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
735 				pnum);
736 			if (!read_err)
737 				return UBI_IO_FF;
738 			else
739 				return UBI_IO_FF_BITFLIPS;
740 		}
741 
742 		/*
743 		 * This is not a valid erase counter header, and these are not
744 		 * 0xFF bytes. Report that the header is corrupted.
745 		 */
746 		if (verbose) {
747 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
748 				 pnum, magic, UBI_EC_HDR_MAGIC);
749 			ubi_dump_ec_hdr(ec_hdr);
750 		}
751 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
752 			pnum, magic, UBI_EC_HDR_MAGIC);
753 		return UBI_IO_BAD_HDR;
754 	}
755 
756 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
757 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
758 
759 	if (hdr_crc != crc) {
760 		if (verbose) {
761 			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
762 				 pnum, crc, hdr_crc);
763 			ubi_dump_ec_hdr(ec_hdr);
764 		}
765 		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
766 			pnum, crc, hdr_crc);
767 
768 		if (!read_err)
769 			return UBI_IO_BAD_HDR;
770 		else
771 			return UBI_IO_BAD_HDR_EBADMSG;
772 	}
773 
774 	/* And of course validate what has just been read from the media */
775 	err = validate_ec_hdr(ubi, ec_hdr);
776 	if (err) {
777 		ubi_err(ubi, "validation failed for PEB %d", pnum);
778 		return -EINVAL;
779 	}
780 
781 	/*
782 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
783 	 * a bit-flip to force scrubbing on this PEB.
784 	 */
785 	return read_err ? UBI_IO_BITFLIPS : 0;
786 }
787 
788 /**
789  * ubi_io_write_ec_hdr - write an erase counter header.
790  * @ubi: UBI device description object
791  * @pnum: physical eraseblock to write to
792  * @ec_hdr: the erase counter header to write
793  *
794  * This function writes erase counter header described by @ec_hdr to physical
795  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
796  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
797  * field.
798  *
799  * This function returns zero in case of success and a negative error code in
800  * case of failure. If %-EIO is returned, the physical eraseblock most probably
801  * went bad.
802  */
803 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
804 			struct ubi_ec_hdr *ec_hdr)
805 {
806 	int err;
807 	uint32_t crc;
808 
809 	dbg_io("write EC header to PEB %d", pnum);
810 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
811 
812 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
813 	ec_hdr->version = UBI_VERSION;
814 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
815 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
816 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
817 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
818 	ec_hdr->hdr_crc = cpu_to_be32(crc);
819 
820 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
821 	if (err)
822 		return err;
823 
824 	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
825 		return -EROFS;
826 
827 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
828 	return err;
829 }
830 
831 /**
832  * validate_vid_hdr - validate a volume identifier header.
833  * @ubi: UBI device description object
834  * @vid_hdr: the volume identifier header to check
835  *
836  * This function checks that data stored in the volume identifier header
837  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
838  */
839 static int validate_vid_hdr(const struct ubi_device *ubi,
840 			    const struct ubi_vid_hdr *vid_hdr)
841 {
842 	int vol_type = vid_hdr->vol_type;
843 	int copy_flag = vid_hdr->copy_flag;
844 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
845 	int lnum = be32_to_cpu(vid_hdr->lnum);
846 	int compat = vid_hdr->compat;
847 	int data_size = be32_to_cpu(vid_hdr->data_size);
848 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
849 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
850 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
851 	int usable_leb_size = ubi->leb_size - data_pad;
852 
853 	if (copy_flag != 0 && copy_flag != 1) {
854 		ubi_err(ubi, "bad copy_flag");
855 		goto bad;
856 	}
857 
858 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
859 	    data_pad < 0) {
860 		ubi_err(ubi, "negative values");
861 		goto bad;
862 	}
863 
864 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
865 		ubi_err(ubi, "bad vol_id");
866 		goto bad;
867 	}
868 
869 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
870 		ubi_err(ubi, "bad compat");
871 		goto bad;
872 	}
873 
874 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
875 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
876 	    compat != UBI_COMPAT_REJECT) {
877 		ubi_err(ubi, "bad compat");
878 		goto bad;
879 	}
880 
881 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
882 		ubi_err(ubi, "bad vol_type");
883 		goto bad;
884 	}
885 
886 	if (data_pad >= ubi->leb_size / 2) {
887 		ubi_err(ubi, "bad data_pad");
888 		goto bad;
889 	}
890 
891 	if (data_size > ubi->leb_size) {
892 		ubi_err(ubi, "bad data_size");
893 		goto bad;
894 	}
895 
896 	if (vol_type == UBI_VID_STATIC) {
897 		/*
898 		 * Although from high-level point of view static volumes may
899 		 * contain zero bytes of data, but no VID headers can contain
900 		 * zero at these fields, because they empty volumes do not have
901 		 * mapped logical eraseblocks.
902 		 */
903 		if (used_ebs == 0) {
904 			ubi_err(ubi, "zero used_ebs");
905 			goto bad;
906 		}
907 		if (data_size == 0) {
908 			ubi_err(ubi, "zero data_size");
909 			goto bad;
910 		}
911 		if (lnum < used_ebs - 1) {
912 			if (data_size != usable_leb_size) {
913 				ubi_err(ubi, "bad data_size");
914 				goto bad;
915 			}
916 		} else if (lnum > used_ebs - 1) {
917 			ubi_err(ubi, "too high lnum");
918 			goto bad;
919 		}
920 	} else {
921 		if (copy_flag == 0) {
922 			if (data_crc != 0) {
923 				ubi_err(ubi, "non-zero data CRC");
924 				goto bad;
925 			}
926 			if (data_size != 0) {
927 				ubi_err(ubi, "non-zero data_size");
928 				goto bad;
929 			}
930 		} else {
931 			if (data_size == 0) {
932 				ubi_err(ubi, "zero data_size of copy");
933 				goto bad;
934 			}
935 		}
936 		if (used_ebs != 0) {
937 			ubi_err(ubi, "bad used_ebs");
938 			goto bad;
939 		}
940 	}
941 
942 	return 0;
943 
944 bad:
945 	ubi_err(ubi, "bad VID header");
946 	ubi_dump_vid_hdr(vid_hdr);
947 	dump_stack();
948 	return 1;
949 }
950 
951 /**
952  * ubi_io_read_vid_hdr - read and check a volume identifier header.
953  * @ubi: UBI device description object
954  * @pnum: physical eraseblock number to read from
955  * @vidb: the volume identifier buffer to store data in
956  * @verbose: be verbose if the header is corrupted or wasn't found
957  *
958  * This function reads the volume identifier header from physical eraseblock
959  * @pnum and stores it in @vidb. It also checks CRC checksum of the read
960  * volume identifier header. The error codes are the same as in
961  * 'ubi_io_read_ec_hdr()'.
962  *
963  * Note, the implementation of this function is also very similar to
964  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
965  */
966 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
967 			struct ubi_vid_io_buf *vidb, int verbose)
968 {
969 	int err, read_err;
970 	uint32_t crc, magic, hdr_crc;
971 	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
972 	void *p = vidb->buffer;
973 
974 	dbg_io("read VID header from PEB %d", pnum);
975 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
976 
977 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
978 			  ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
979 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
980 		return read_err;
981 
982 	magic = be32_to_cpu(vid_hdr->magic);
983 	if (magic != UBI_VID_HDR_MAGIC) {
984 		if (mtd_is_eccerr(read_err))
985 			return UBI_IO_BAD_HDR_EBADMSG;
986 
987 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
988 			if (verbose)
989 				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
990 					 pnum);
991 			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
992 				pnum);
993 			if (!read_err)
994 				return UBI_IO_FF;
995 			else
996 				return UBI_IO_FF_BITFLIPS;
997 		}
998 
999 		if (verbose) {
1000 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1001 				 pnum, magic, UBI_VID_HDR_MAGIC);
1002 			ubi_dump_vid_hdr(vid_hdr);
1003 		}
1004 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1005 			pnum, magic, UBI_VID_HDR_MAGIC);
1006 		return UBI_IO_BAD_HDR;
1007 	}
1008 
1009 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1010 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1011 
1012 	if (hdr_crc != crc) {
1013 		if (verbose) {
1014 			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1015 				 pnum, crc, hdr_crc);
1016 			ubi_dump_vid_hdr(vid_hdr);
1017 		}
1018 		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1019 			pnum, crc, hdr_crc);
1020 		if (!read_err)
1021 			return UBI_IO_BAD_HDR;
1022 		else
1023 			return UBI_IO_BAD_HDR_EBADMSG;
1024 	}
1025 
1026 	err = validate_vid_hdr(ubi, vid_hdr);
1027 	if (err) {
1028 		ubi_err(ubi, "validation failed for PEB %d", pnum);
1029 		return -EINVAL;
1030 	}
1031 
1032 	return read_err ? UBI_IO_BITFLIPS : 0;
1033 }
1034 
1035 /**
1036  * ubi_io_write_vid_hdr - write a volume identifier header.
1037  * @ubi: UBI device description object
1038  * @pnum: the physical eraseblock number to write to
1039  * @vidb: the volume identifier buffer to write
1040  *
1041  * This function writes the volume identifier header described by @vid_hdr to
1042  * physical eraseblock @pnum. This function automatically fills the
1043  * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1044  * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1045  *
1046  * This function returns zero in case of success and a negative error code in
1047  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1048  * bad.
1049  */
1050 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1051 			 struct ubi_vid_io_buf *vidb)
1052 {
1053 	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1054 	int err;
1055 	uint32_t crc;
1056 	void *p = vidb->buffer;
1057 
1058 	dbg_io("write VID header to PEB %d", pnum);
1059 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1060 
1061 	err = self_check_peb_ec_hdr(ubi, pnum);
1062 	if (err)
1063 		return err;
1064 
1065 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1066 	vid_hdr->version = UBI_VERSION;
1067 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1068 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1069 
1070 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1071 	if (err)
1072 		return err;
1073 
1074 	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1075 		return -EROFS;
1076 
1077 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1078 			   ubi->vid_hdr_alsize);
1079 	return err;
1080 }
1081 
1082 /**
1083  * self_check_not_bad - ensure that a physical eraseblock is not bad.
1084  * @ubi: UBI device description object
1085  * @pnum: physical eraseblock number to check
1086  *
1087  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1088  * it is bad and a negative error code if an error occurred.
1089  */
1090 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1091 {
1092 	int err;
1093 
1094 	if (!ubi_dbg_chk_io(ubi))
1095 		return 0;
1096 
1097 	err = ubi_io_is_bad(ubi, pnum);
1098 	if (!err)
1099 		return err;
1100 
1101 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1102 	dump_stack();
1103 	return err > 0 ? -EINVAL : err;
1104 }
1105 
1106 /**
1107  * self_check_ec_hdr - check if an erase counter header is all right.
1108  * @ubi: UBI device description object
1109  * @pnum: physical eraseblock number the erase counter header belongs to
1110  * @ec_hdr: the erase counter header to check
1111  *
1112  * This function returns zero if the erase counter header contains valid
1113  * values, and %-EINVAL if not.
1114  */
1115 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1116 			     const struct ubi_ec_hdr *ec_hdr)
1117 {
1118 	int err;
1119 	uint32_t magic;
1120 
1121 	if (!ubi_dbg_chk_io(ubi))
1122 		return 0;
1123 
1124 	magic = be32_to_cpu(ec_hdr->magic);
1125 	if (magic != UBI_EC_HDR_MAGIC) {
1126 		ubi_err(ubi, "bad magic %#08x, must be %#08x",
1127 			magic, UBI_EC_HDR_MAGIC);
1128 		goto fail;
1129 	}
1130 
1131 	err = validate_ec_hdr(ubi, ec_hdr);
1132 	if (err) {
1133 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1134 		goto fail;
1135 	}
1136 
1137 	return 0;
1138 
1139 fail:
1140 	ubi_dump_ec_hdr(ec_hdr);
1141 	dump_stack();
1142 	return -EINVAL;
1143 }
1144 
1145 /**
1146  * self_check_peb_ec_hdr - check erase counter header.
1147  * @ubi: UBI device description object
1148  * @pnum: the physical eraseblock number to check
1149  *
1150  * This function returns zero if the erase counter header is all right and and
1151  * a negative error code if not or if an error occurred.
1152  */
1153 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1154 {
1155 	int err;
1156 	uint32_t crc, hdr_crc;
1157 	struct ubi_ec_hdr *ec_hdr;
1158 
1159 	if (!ubi_dbg_chk_io(ubi))
1160 		return 0;
1161 
1162 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1163 	if (!ec_hdr)
1164 		return -ENOMEM;
1165 
1166 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1167 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1168 		goto exit;
1169 
1170 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1171 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1172 	if (hdr_crc != crc) {
1173 		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1174 			crc, hdr_crc);
1175 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1176 		ubi_dump_ec_hdr(ec_hdr);
1177 		dump_stack();
1178 		err = -EINVAL;
1179 		goto exit;
1180 	}
1181 
1182 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1183 
1184 exit:
1185 	kfree(ec_hdr);
1186 	return err;
1187 }
1188 
1189 /**
1190  * self_check_vid_hdr - check that a volume identifier header is all right.
1191  * @ubi: UBI device description object
1192  * @pnum: physical eraseblock number the volume identifier header belongs to
1193  * @vid_hdr: the volume identifier header to check
1194  *
1195  * This function returns zero if the volume identifier header is all right, and
1196  * %-EINVAL if not.
1197  */
1198 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1199 			      const struct ubi_vid_hdr *vid_hdr)
1200 {
1201 	int err;
1202 	uint32_t magic;
1203 
1204 	if (!ubi_dbg_chk_io(ubi))
1205 		return 0;
1206 
1207 	magic = be32_to_cpu(vid_hdr->magic);
1208 	if (magic != UBI_VID_HDR_MAGIC) {
1209 		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1210 			magic, pnum, UBI_VID_HDR_MAGIC);
1211 		goto fail;
1212 	}
1213 
1214 	err = validate_vid_hdr(ubi, vid_hdr);
1215 	if (err) {
1216 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1217 		goto fail;
1218 	}
1219 
1220 	return err;
1221 
1222 fail:
1223 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1224 	ubi_dump_vid_hdr(vid_hdr);
1225 	dump_stack();
1226 	return -EINVAL;
1227 
1228 }
1229 
1230 /**
1231  * self_check_peb_vid_hdr - check volume identifier header.
1232  * @ubi: UBI device description object
1233  * @pnum: the physical eraseblock number to check
1234  *
1235  * This function returns zero if the volume identifier header is all right,
1236  * and a negative error code if not or if an error occurred.
1237  */
1238 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1239 {
1240 	int err;
1241 	uint32_t crc, hdr_crc;
1242 	struct ubi_vid_io_buf *vidb;
1243 	struct ubi_vid_hdr *vid_hdr;
1244 	void *p;
1245 
1246 	if (!ubi_dbg_chk_io(ubi))
1247 		return 0;
1248 
1249 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1250 	if (!vidb)
1251 		return -ENOMEM;
1252 
1253 	vid_hdr = ubi_get_vid_hdr(vidb);
1254 	p = vidb->buffer;
1255 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1256 			  ubi->vid_hdr_alsize);
1257 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1258 		goto exit;
1259 
1260 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1261 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1262 	if (hdr_crc != crc) {
1263 		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1264 			pnum, crc, hdr_crc);
1265 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1266 		ubi_dump_vid_hdr(vid_hdr);
1267 		dump_stack();
1268 		err = -EINVAL;
1269 		goto exit;
1270 	}
1271 
1272 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1273 
1274 exit:
1275 	ubi_free_vid_buf(vidb);
1276 	return err;
1277 }
1278 
1279 /**
1280  * self_check_write - make sure write succeeded.
1281  * @ubi: UBI device description object
1282  * @buf: buffer with data which were written
1283  * @pnum: physical eraseblock number the data were written to
1284  * @offset: offset within the physical eraseblock the data were written to
1285  * @len: how many bytes were written
1286  *
1287  * This functions reads data which were recently written and compares it with
1288  * the original data buffer - the data have to match. Returns zero if the data
1289  * match and a negative error code if not or in case of failure.
1290  */
1291 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1292 			    int offset, int len)
1293 {
1294 	int err, i;
1295 	size_t read;
1296 	void *buf1;
1297 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1298 
1299 	if (!ubi_dbg_chk_io(ubi))
1300 		return 0;
1301 
1302 	buf1 = __vmalloc(len, GFP_NOFS);
1303 	if (!buf1) {
1304 		ubi_err(ubi, "cannot allocate memory to check writes");
1305 		return 0;
1306 	}
1307 
1308 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1309 	if (err && !mtd_is_bitflip(err))
1310 		goto out_free;
1311 
1312 	for (i = 0; i < len; i++) {
1313 		uint8_t c = ((uint8_t *)buf)[i];
1314 		uint8_t c1 = ((uint8_t *)buf1)[i];
1315 		int dump_len;
1316 
1317 		if (c == c1)
1318 			continue;
1319 
1320 		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1321 			pnum, offset, len);
1322 		ubi_msg(ubi, "data differ at position %d", i);
1323 		dump_len = max_t(int, 128, len - i);
1324 		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1325 			i, i + dump_len);
1326 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1327 			       buf + i, dump_len, 1);
1328 		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1329 			i, i + dump_len);
1330 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1331 			       buf1 + i, dump_len, 1);
1332 		dump_stack();
1333 		err = -EINVAL;
1334 		goto out_free;
1335 	}
1336 
1337 	vfree(buf1);
1338 	return 0;
1339 
1340 out_free:
1341 	vfree(buf1);
1342 	return err;
1343 }
1344 
1345 /**
1346  * ubi_self_check_all_ff - check that a region of flash is empty.
1347  * @ubi: UBI device description object
1348  * @pnum: the physical eraseblock number to check
1349  * @offset: the starting offset within the physical eraseblock to check
1350  * @len: the length of the region to check
1351  *
1352  * This function returns zero if only 0xFF bytes are present at offset
1353  * @offset of the physical eraseblock @pnum, and a negative error code if not
1354  * or if an error occurred.
1355  */
1356 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1357 {
1358 	size_t read;
1359 	int err;
1360 	void *buf;
1361 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1362 
1363 	if (!ubi_dbg_chk_io(ubi))
1364 		return 0;
1365 
1366 	buf = __vmalloc(len, GFP_NOFS);
1367 	if (!buf) {
1368 		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1369 		return 0;
1370 	}
1371 
1372 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1373 	if (err && !mtd_is_bitflip(err)) {
1374 		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1375 			err, len, pnum, offset, read);
1376 		goto error;
1377 	}
1378 
1379 	err = ubi_check_pattern(buf, 0xFF, len);
1380 	if (err == 0) {
1381 		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1382 			pnum, offset, len);
1383 		goto fail;
1384 	}
1385 
1386 	vfree(buf);
1387 	return 0;
1388 
1389 fail:
1390 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1391 	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1392 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1393 	err = -EINVAL;
1394 error:
1395 	dump_stack();
1396 	vfree(buf);
1397 	return err;
1398 }
1399