xref: /linux/drivers/mtd/ubi/io.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69  * Thus, we prefer to use sub-pages only for EC and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93 
94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 			     const struct ubi_ec_hdr *ec_hdr);
98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 			      const struct ubi_vid_hdr *vid_hdr);
101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
102 			    int offset, int len);
103 
104 /**
105  * ubi_io_read - read data from a physical eraseblock.
106  * @ubi: UBI device description object
107  * @buf: buffer where to store the read data
108  * @pnum: physical eraseblock number to read from
109  * @offset: offset within the physical eraseblock from where to read
110  * @len: how many bytes to read
111  *
112  * This function reads data from offset @offset of physical eraseblock @pnum
113  * and stores the read data in the @buf buffer. The following return codes are
114  * possible:
115  *
116  * o %0 if all the requested data were successfully read;
117  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118  *   correctable bit-flips were detected; this is harmless but may indicate
119  *   that this eraseblock may become bad soon (but do not have to);
120  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121  *   example it can be an ECC error in case of NAND; this most probably means
122  *   that the data is corrupted;
123  * o %-EIO if some I/O error occurred;
124  * o other negative error codes in case of other errors.
125  */
126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127 		int len)
128 {
129 	int err, retries = 0;
130 	size_t read;
131 	loff_t addr;
132 
133 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
134 
135 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137 	ubi_assert(len > 0);
138 
139 	err = self_check_not_bad(ubi, pnum);
140 	if (err)
141 		return err;
142 
143 	/*
144 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 	 * do not do this, the following may happen:
146 	 * 1. The buffer contains data from previous operation, e.g., read from
147 	 *    another PEB previously. The data looks like expected, e.g., if we
148 	 *    just do not read anything and return - the caller would not
149 	 *    notice this. E.g., if we are reading a VID header, the buffer may
150 	 *    contain a valid VID header from another PEB.
151 	 * 2. The driver is buggy and returns us success or -EBADMSG or
152 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
153 	 *
154 	 * This may confuse UBI or upper layers - they may think the buffer
155 	 * contains valid data while in fact it is just old data. This is
156 	 * especially possible because UBI (and UBIFS) relies on CRC, and
157 	 * treats data as correct even in case of ECC errors if the CRC is
158 	 * correct.
159 	 *
160 	 * Try to prevent this situation by changing the first byte of the
161 	 * buffer.
162 	 */
163 	*((uint8_t *)buf) ^= 0xFF;
164 
165 	addr = (loff_t)pnum * ubi->peb_size + offset;
166 retry:
167 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
168 	if (err) {
169 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
170 
171 		if (mtd_is_bitflip(err)) {
172 			/*
173 			 * -EUCLEAN is reported if there was a bit-flip which
174 			 * was corrected, so this is harmless.
175 			 *
176 			 * We do not report about it here unless debugging is
177 			 * enabled. A corresponding message will be printed
178 			 * later, when it is has been scrubbed.
179 			 */
180 			dbg_msg("fixable bit-flip detected at PEB %d", pnum);
181 			ubi_assert(len == read);
182 			return UBI_IO_BITFLIPS;
183 		}
184 
185 		if (retries++ < UBI_IO_RETRIES) {
186 			ubi_warn("error %d%s while reading %d bytes from PEB "
187 				 "%d:%d, read only %zd bytes, retry",
188 				 err, errstr, len, pnum, offset, read);
189 			yield();
190 			goto retry;
191 		}
192 
193 		ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
194 			"read %zd bytes", err, errstr, len, pnum, offset, read);
195 		dump_stack();
196 
197 		/*
198 		 * The driver should never return -EBADMSG if it failed to read
199 		 * all the requested data. But some buggy drivers might do
200 		 * this, so we change it to -EIO.
201 		 */
202 		if (read != len && mtd_is_eccerr(err)) {
203 			ubi_assert(0);
204 			err = -EIO;
205 		}
206 	} else {
207 		ubi_assert(len == read);
208 
209 		if (ubi_dbg_is_bitflip(ubi)) {
210 			dbg_gen("bit-flip (emulated)");
211 			err = UBI_IO_BITFLIPS;
212 		}
213 	}
214 
215 	return err;
216 }
217 
218 /**
219  * ubi_io_write - write data to a physical eraseblock.
220  * @ubi: UBI device description object
221  * @buf: buffer with the data to write
222  * @pnum: physical eraseblock number to write to
223  * @offset: offset within the physical eraseblock where to write
224  * @len: how many bytes to write
225  *
226  * This function writes @len bytes of data from buffer @buf to offset @offset
227  * of physical eraseblock @pnum. If all the data were successfully written,
228  * zero is returned. If an error occurred, this function returns a negative
229  * error code. If %-EIO is returned, the physical eraseblock most probably went
230  * bad.
231  *
232  * Note, in case of an error, it is possible that something was still written
233  * to the flash media, but may be some garbage.
234  */
235 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
236 		 int len)
237 {
238 	int err;
239 	size_t written;
240 	loff_t addr;
241 
242 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
243 
244 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
245 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
246 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
247 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
248 
249 	if (ubi->ro_mode) {
250 		ubi_err("read-only mode");
251 		return -EROFS;
252 	}
253 
254 	err = self_check_not_bad(ubi, pnum);
255 	if (err)
256 		return err;
257 
258 	/* The area we are writing to has to contain all 0xFF bytes */
259 	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
260 	if (err)
261 		return err;
262 
263 	if (offset >= ubi->leb_start) {
264 		/*
265 		 * We write to the data area of the physical eraseblock. Make
266 		 * sure it has valid EC and VID headers.
267 		 */
268 		err = self_check_peb_ec_hdr(ubi, pnum);
269 		if (err)
270 			return err;
271 		err = self_check_peb_vid_hdr(ubi, pnum);
272 		if (err)
273 			return err;
274 	}
275 
276 	if (ubi_dbg_is_write_failure(ubi)) {
277 		ubi_err("cannot write %d bytes to PEB %d:%d "
278 			"(emulated)", len, pnum, offset);
279 		dump_stack();
280 		return -EIO;
281 	}
282 
283 	addr = (loff_t)pnum * ubi->peb_size + offset;
284 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
285 	if (err) {
286 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
287 			"%zd bytes", err, len, pnum, offset, written);
288 		dump_stack();
289 		ubi_dump_flash(ubi, pnum, offset, len);
290 	} else
291 		ubi_assert(written == len);
292 
293 	if (!err) {
294 		err = self_check_write(ubi, buf, pnum, offset, len);
295 		if (err)
296 			return err;
297 
298 		/*
299 		 * Since we always write sequentially, the rest of the PEB has
300 		 * to contain only 0xFF bytes.
301 		 */
302 		offset += len;
303 		len = ubi->peb_size - offset;
304 		if (len)
305 			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
306 	}
307 
308 	return err;
309 }
310 
311 /**
312  * erase_callback - MTD erasure call-back.
313  * @ei: MTD erase information object.
314  *
315  * Note, even though MTD erase interface is asynchronous, all the current
316  * implementations are synchronous anyway.
317  */
318 static void erase_callback(struct erase_info *ei)
319 {
320 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
321 }
322 
323 /**
324  * do_sync_erase - synchronously erase a physical eraseblock.
325  * @ubi: UBI device description object
326  * @pnum: the physical eraseblock number to erase
327  *
328  * This function synchronously erases physical eraseblock @pnum and returns
329  * zero in case of success and a negative error code in case of failure. If
330  * %-EIO is returned, the physical eraseblock most probably went bad.
331  */
332 static int do_sync_erase(struct ubi_device *ubi, int pnum)
333 {
334 	int err, retries = 0;
335 	struct erase_info ei;
336 	wait_queue_head_t wq;
337 
338 	dbg_io("erase PEB %d", pnum);
339 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
340 
341 	if (ubi->ro_mode) {
342 		ubi_err("read-only mode");
343 		return -EROFS;
344 	}
345 
346 retry:
347 	init_waitqueue_head(&wq);
348 	memset(&ei, 0, sizeof(struct erase_info));
349 
350 	ei.mtd      = ubi->mtd;
351 	ei.addr     = (loff_t)pnum * ubi->peb_size;
352 	ei.len      = ubi->peb_size;
353 	ei.callback = erase_callback;
354 	ei.priv     = (unsigned long)&wq;
355 
356 	err = mtd_erase(ubi->mtd, &ei);
357 	if (err) {
358 		if (retries++ < UBI_IO_RETRIES) {
359 			ubi_warn("error %d while erasing PEB %d, retry",
360 				 err, pnum);
361 			yield();
362 			goto retry;
363 		}
364 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
365 		dump_stack();
366 		return err;
367 	}
368 
369 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
370 					   ei.state == MTD_ERASE_FAILED);
371 	if (err) {
372 		ubi_err("interrupted PEB %d erasure", pnum);
373 		return -EINTR;
374 	}
375 
376 	if (ei.state == MTD_ERASE_FAILED) {
377 		if (retries++ < UBI_IO_RETRIES) {
378 			ubi_warn("error while erasing PEB %d, retry", pnum);
379 			yield();
380 			goto retry;
381 		}
382 		ubi_err("cannot erase PEB %d", pnum);
383 		dump_stack();
384 		return -EIO;
385 	}
386 
387 	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
388 	if (err)
389 		return err;
390 
391 	if (ubi_dbg_is_erase_failure(ubi)) {
392 		ubi_err("cannot erase PEB %d (emulated)", pnum);
393 		return -EIO;
394 	}
395 
396 	return 0;
397 }
398 
399 /* Patterns to write to a physical eraseblock when torturing it */
400 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
401 
402 /**
403  * torture_peb - test a supposedly bad physical eraseblock.
404  * @ubi: UBI device description object
405  * @pnum: the physical eraseblock number to test
406  *
407  * This function returns %-EIO if the physical eraseblock did not pass the
408  * test, a positive number of erase operations done if the test was
409  * successfully passed, and other negative error codes in case of other errors.
410  */
411 static int torture_peb(struct ubi_device *ubi, int pnum)
412 {
413 	int err, i, patt_count;
414 
415 	ubi_msg("run torture test for PEB %d", pnum);
416 	patt_count = ARRAY_SIZE(patterns);
417 	ubi_assert(patt_count > 0);
418 
419 	mutex_lock(&ubi->buf_mutex);
420 	for (i = 0; i < patt_count; i++) {
421 		err = do_sync_erase(ubi, pnum);
422 		if (err)
423 			goto out;
424 
425 		/* Make sure the PEB contains only 0xFF bytes */
426 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
427 		if (err)
428 			goto out;
429 
430 		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
431 		if (err == 0) {
432 			ubi_err("erased PEB %d, but a non-0xFF byte found",
433 				pnum);
434 			err = -EIO;
435 			goto out;
436 		}
437 
438 		/* Write a pattern and check it */
439 		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
440 		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
441 		if (err)
442 			goto out;
443 
444 		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
445 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
446 		if (err)
447 			goto out;
448 
449 		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
450 					ubi->peb_size);
451 		if (err == 0) {
452 			ubi_err("pattern %x checking failed for PEB %d",
453 				patterns[i], pnum);
454 			err = -EIO;
455 			goto out;
456 		}
457 	}
458 
459 	err = patt_count;
460 	ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum);
461 
462 out:
463 	mutex_unlock(&ubi->buf_mutex);
464 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
465 		/*
466 		 * If a bit-flip or data integrity error was detected, the test
467 		 * has not passed because it happened on a freshly erased
468 		 * physical eraseblock which means something is wrong with it.
469 		 */
470 		ubi_err("read problems on freshly erased PEB %d, must be bad",
471 			pnum);
472 		err = -EIO;
473 	}
474 	return err;
475 }
476 
477 /**
478  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
479  * @ubi: UBI device description object
480  * @pnum: physical eraseblock number to prepare
481  *
482  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
483  * algorithm: the PEB is first filled with zeroes, then it is erased. And
484  * filling with zeroes starts from the end of the PEB. This was observed with
485  * Spansion S29GL512N NOR flash.
486  *
487  * This means that in case of a power cut we may end up with intact data at the
488  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
489  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
490  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
491  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
492  *
493  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
494  * magic numbers in order to invalidate them and prevent the failures. Returns
495  * zero in case of success and a negative error code in case of failure.
496  */
497 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
498 {
499 	int err, err1;
500 	size_t written;
501 	loff_t addr;
502 	uint32_t data = 0;
503 	/*
504 	 * Note, we cannot generally define VID header buffers on stack,
505 	 * because of the way we deal with these buffers (see the header
506 	 * comment in this file). But we know this is a NOR-specific piece of
507 	 * code, so we can do this. But yes, this is error-prone and we should
508 	 * (pre-)allocate VID header buffer instead.
509 	 */
510 	struct ubi_vid_hdr vid_hdr;
511 
512 	/*
513 	 * It is important to first invalidate the EC header, and then the VID
514 	 * header. Otherwise a power cut may lead to valid EC header and
515 	 * invalid VID header, in which case UBI will treat this PEB as
516 	 * corrupted and will try to preserve it, and print scary warnings.
517 	 */
518 	addr = (loff_t)pnum * ubi->peb_size;
519 	err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
520 	if (!err) {
521 		addr += ubi->vid_hdr_aloffset;
522 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
523 		if (!err)
524 			return 0;
525 	}
526 
527 	/*
528 	 * We failed to write to the media. This was observed with Spansion
529 	 * S29GL512N NOR flash. Most probably the previously eraseblock erasure
530 	 * was interrupted at a very inappropriate moment, so it became
531 	 * unwritable. In this case we probably anyway have garbage in this
532 	 * PEB.
533 	 */
534 	err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
535 	if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
536 	    err1 == UBI_IO_FF) {
537 		struct ubi_ec_hdr ec_hdr;
538 
539 		err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
540 		if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
541 		    err1 == UBI_IO_FF)
542 			/*
543 			 * Both VID and EC headers are corrupted, so we can
544 			 * safely erase this PEB and not afraid that it will be
545 			 * treated as a valid PEB in case of an unclean reboot.
546 			 */
547 			return 0;
548 	}
549 
550 	/*
551 	 * The PEB contains a valid VID header, but we cannot invalidate it.
552 	 * Supposedly the flash media or the driver is screwed up, so return an
553 	 * error.
554 	 */
555 	ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
556 		pnum, err, err1);
557 	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
558 	return -EIO;
559 }
560 
561 /**
562  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
563  * @ubi: UBI device description object
564  * @pnum: physical eraseblock number to erase
565  * @torture: if this physical eraseblock has to be tortured
566  *
567  * This function synchronously erases physical eraseblock @pnum. If @torture
568  * flag is not zero, the physical eraseblock is checked by means of writing
569  * different patterns to it and reading them back. If the torturing is enabled,
570  * the physical eraseblock is erased more than once.
571  *
572  * This function returns the number of erasures made in case of success, %-EIO
573  * if the erasure failed or the torturing test failed, and other negative error
574  * codes in case of other errors. Note, %-EIO means that the physical
575  * eraseblock is bad.
576  */
577 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
578 {
579 	int err, ret = 0;
580 
581 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
582 
583 	err = self_check_not_bad(ubi, pnum);
584 	if (err != 0)
585 		return err;
586 
587 	if (ubi->ro_mode) {
588 		ubi_err("read-only mode");
589 		return -EROFS;
590 	}
591 
592 	if (ubi->nor_flash) {
593 		err = nor_erase_prepare(ubi, pnum);
594 		if (err)
595 			return err;
596 	}
597 
598 	if (torture) {
599 		ret = torture_peb(ubi, pnum);
600 		if (ret < 0)
601 			return ret;
602 	}
603 
604 	err = do_sync_erase(ubi, pnum);
605 	if (err)
606 		return err;
607 
608 	return ret + 1;
609 }
610 
611 /**
612  * ubi_io_is_bad - check if a physical eraseblock is bad.
613  * @ubi: UBI device description object
614  * @pnum: the physical eraseblock number to check
615  *
616  * This function returns a positive number if the physical eraseblock is bad,
617  * zero if not, and a negative error code if an error occurred.
618  */
619 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
620 {
621 	struct mtd_info *mtd = ubi->mtd;
622 
623 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
624 
625 	if (ubi->bad_allowed) {
626 		int ret;
627 
628 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
629 		if (ret < 0)
630 			ubi_err("error %d while checking if PEB %d is bad",
631 				ret, pnum);
632 		else if (ret)
633 			dbg_io("PEB %d is bad", pnum);
634 		return ret;
635 	}
636 
637 	return 0;
638 }
639 
640 /**
641  * ubi_io_mark_bad - mark a physical eraseblock as bad.
642  * @ubi: UBI device description object
643  * @pnum: the physical eraseblock number to mark
644  *
645  * This function returns zero in case of success and a negative error code in
646  * case of failure.
647  */
648 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
649 {
650 	int err;
651 	struct mtd_info *mtd = ubi->mtd;
652 
653 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
654 
655 	if (ubi->ro_mode) {
656 		ubi_err("read-only mode");
657 		return -EROFS;
658 	}
659 
660 	if (!ubi->bad_allowed)
661 		return 0;
662 
663 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
664 	if (err)
665 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
666 	return err;
667 }
668 
669 /**
670  * validate_ec_hdr - validate an erase counter header.
671  * @ubi: UBI device description object
672  * @ec_hdr: the erase counter header to check
673  *
674  * This function returns zero if the erase counter header is OK, and %1 if
675  * not.
676  */
677 static int validate_ec_hdr(const struct ubi_device *ubi,
678 			   const struct ubi_ec_hdr *ec_hdr)
679 {
680 	long long ec;
681 	int vid_hdr_offset, leb_start;
682 
683 	ec = be64_to_cpu(ec_hdr->ec);
684 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
685 	leb_start = be32_to_cpu(ec_hdr->data_offset);
686 
687 	if (ec_hdr->version != UBI_VERSION) {
688 		ubi_err("node with incompatible UBI version found: "
689 			"this UBI version is %d, image version is %d",
690 			UBI_VERSION, (int)ec_hdr->version);
691 		goto bad;
692 	}
693 
694 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
695 		ubi_err("bad VID header offset %d, expected %d",
696 			vid_hdr_offset, ubi->vid_hdr_offset);
697 		goto bad;
698 	}
699 
700 	if (leb_start != ubi->leb_start) {
701 		ubi_err("bad data offset %d, expected %d",
702 			leb_start, ubi->leb_start);
703 		goto bad;
704 	}
705 
706 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
707 		ubi_err("bad erase counter %lld", ec);
708 		goto bad;
709 	}
710 
711 	return 0;
712 
713 bad:
714 	ubi_err("bad EC header");
715 	ubi_dump_ec_hdr(ec_hdr);
716 	dump_stack();
717 	return 1;
718 }
719 
720 /**
721  * ubi_io_read_ec_hdr - read and check an erase counter header.
722  * @ubi: UBI device description object
723  * @pnum: physical eraseblock to read from
724  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
725  * header
726  * @verbose: be verbose if the header is corrupted or was not found
727  *
728  * This function reads erase counter header from physical eraseblock @pnum and
729  * stores it in @ec_hdr. This function also checks CRC checksum of the read
730  * erase counter header. The following codes may be returned:
731  *
732  * o %0 if the CRC checksum is correct and the header was successfully read;
733  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
734  *   and corrected by the flash driver; this is harmless but may indicate that
735  *   this eraseblock may become bad soon (but may be not);
736  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
737  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
738  *   a data integrity error (uncorrectable ECC error in case of NAND);
739  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
740  * o a negative error code in case of failure.
741  */
742 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
743 		       struct ubi_ec_hdr *ec_hdr, int verbose)
744 {
745 	int err, read_err;
746 	uint32_t crc, magic, hdr_crc;
747 
748 	dbg_io("read EC header from PEB %d", pnum);
749 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
750 
751 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
752 	if (read_err) {
753 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
754 			return read_err;
755 
756 		/*
757 		 * We read all the data, but either a correctable bit-flip
758 		 * occurred, or MTD reported a data integrity error
759 		 * (uncorrectable ECC error in case of NAND). The former is
760 		 * harmless, the later may mean that the read data is
761 		 * corrupted. But we have a CRC check-sum and we will detect
762 		 * this. If the EC header is still OK, we just report this as
763 		 * there was a bit-flip, to force scrubbing.
764 		 */
765 	}
766 
767 	magic = be32_to_cpu(ec_hdr->magic);
768 	if (magic != UBI_EC_HDR_MAGIC) {
769 		if (mtd_is_eccerr(read_err))
770 			return UBI_IO_BAD_HDR_EBADMSG;
771 
772 		/*
773 		 * The magic field is wrong. Let's check if we have read all
774 		 * 0xFF. If yes, this physical eraseblock is assumed to be
775 		 * empty.
776 		 */
777 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
778 			/* The physical eraseblock is supposedly empty */
779 			if (verbose)
780 				ubi_warn("no EC header found at PEB %d, "
781 					 "only 0xFF bytes", pnum);
782 			dbg_bld("no EC header found at PEB %d, "
783 				"only 0xFF bytes", pnum);
784 			if (!read_err)
785 				return UBI_IO_FF;
786 			else
787 				return UBI_IO_FF_BITFLIPS;
788 		}
789 
790 		/*
791 		 * This is not a valid erase counter header, and these are not
792 		 * 0xFF bytes. Report that the header is corrupted.
793 		 */
794 		if (verbose) {
795 			ubi_warn("bad magic number at PEB %d: %08x instead of "
796 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
797 			ubi_dump_ec_hdr(ec_hdr);
798 		}
799 		dbg_bld("bad magic number at PEB %d: %08x instead of "
800 			"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
801 		return UBI_IO_BAD_HDR;
802 	}
803 
804 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
805 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
806 
807 	if (hdr_crc != crc) {
808 		if (verbose) {
809 			ubi_warn("bad EC header CRC at PEB %d, calculated "
810 				 "%#08x, read %#08x", pnum, crc, hdr_crc);
811 			ubi_dump_ec_hdr(ec_hdr);
812 		}
813 		dbg_bld("bad EC header CRC at PEB %d, calculated "
814 			"%#08x, read %#08x", pnum, crc, hdr_crc);
815 
816 		if (!read_err)
817 			return UBI_IO_BAD_HDR;
818 		else
819 			return UBI_IO_BAD_HDR_EBADMSG;
820 	}
821 
822 	/* And of course validate what has just been read from the media */
823 	err = validate_ec_hdr(ubi, ec_hdr);
824 	if (err) {
825 		ubi_err("validation failed for PEB %d", pnum);
826 		return -EINVAL;
827 	}
828 
829 	/*
830 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
831 	 * a bit-flip to force scrubbing on this PEB.
832 	 */
833 	return read_err ? UBI_IO_BITFLIPS : 0;
834 }
835 
836 /**
837  * ubi_io_write_ec_hdr - write an erase counter header.
838  * @ubi: UBI device description object
839  * @pnum: physical eraseblock to write to
840  * @ec_hdr: the erase counter header to write
841  *
842  * This function writes erase counter header described by @ec_hdr to physical
843  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
844  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
845  * field.
846  *
847  * This function returns zero in case of success and a negative error code in
848  * case of failure. If %-EIO is returned, the physical eraseblock most probably
849  * went bad.
850  */
851 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
852 			struct ubi_ec_hdr *ec_hdr)
853 {
854 	int err;
855 	uint32_t crc;
856 
857 	dbg_io("write EC header to PEB %d", pnum);
858 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
859 
860 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
861 	ec_hdr->version = UBI_VERSION;
862 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
863 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
864 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
865 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
866 	ec_hdr->hdr_crc = cpu_to_be32(crc);
867 
868 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
869 	if (err)
870 		return err;
871 
872 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
873 	return err;
874 }
875 
876 /**
877  * validate_vid_hdr - validate a volume identifier header.
878  * @ubi: UBI device description object
879  * @vid_hdr: the volume identifier header to check
880  *
881  * This function checks that data stored in the volume identifier header
882  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
883  */
884 static int validate_vid_hdr(const struct ubi_device *ubi,
885 			    const struct ubi_vid_hdr *vid_hdr)
886 {
887 	int vol_type = vid_hdr->vol_type;
888 	int copy_flag = vid_hdr->copy_flag;
889 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
890 	int lnum = be32_to_cpu(vid_hdr->lnum);
891 	int compat = vid_hdr->compat;
892 	int data_size = be32_to_cpu(vid_hdr->data_size);
893 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
894 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
895 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
896 	int usable_leb_size = ubi->leb_size - data_pad;
897 
898 	if (copy_flag != 0 && copy_flag != 1) {
899 		ubi_err("bad copy_flag");
900 		goto bad;
901 	}
902 
903 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
904 	    data_pad < 0) {
905 		ubi_err("negative values");
906 		goto bad;
907 	}
908 
909 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
910 		ubi_err("bad vol_id");
911 		goto bad;
912 	}
913 
914 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
915 		ubi_err("bad compat");
916 		goto bad;
917 	}
918 
919 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
920 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
921 	    compat != UBI_COMPAT_REJECT) {
922 		ubi_err("bad compat");
923 		goto bad;
924 	}
925 
926 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
927 		ubi_err("bad vol_type");
928 		goto bad;
929 	}
930 
931 	if (data_pad >= ubi->leb_size / 2) {
932 		ubi_err("bad data_pad");
933 		goto bad;
934 	}
935 
936 	if (vol_type == UBI_VID_STATIC) {
937 		/*
938 		 * Although from high-level point of view static volumes may
939 		 * contain zero bytes of data, but no VID headers can contain
940 		 * zero at these fields, because they empty volumes do not have
941 		 * mapped logical eraseblocks.
942 		 */
943 		if (used_ebs == 0) {
944 			ubi_err("zero used_ebs");
945 			goto bad;
946 		}
947 		if (data_size == 0) {
948 			ubi_err("zero data_size");
949 			goto bad;
950 		}
951 		if (lnum < used_ebs - 1) {
952 			if (data_size != usable_leb_size) {
953 				ubi_err("bad data_size");
954 				goto bad;
955 			}
956 		} else if (lnum == used_ebs - 1) {
957 			if (data_size == 0) {
958 				ubi_err("bad data_size at last LEB");
959 				goto bad;
960 			}
961 		} else {
962 			ubi_err("too high lnum");
963 			goto bad;
964 		}
965 	} else {
966 		if (copy_flag == 0) {
967 			if (data_crc != 0) {
968 				ubi_err("non-zero data CRC");
969 				goto bad;
970 			}
971 			if (data_size != 0) {
972 				ubi_err("non-zero data_size");
973 				goto bad;
974 			}
975 		} else {
976 			if (data_size == 0) {
977 				ubi_err("zero data_size of copy");
978 				goto bad;
979 			}
980 		}
981 		if (used_ebs != 0) {
982 			ubi_err("bad used_ebs");
983 			goto bad;
984 		}
985 	}
986 
987 	return 0;
988 
989 bad:
990 	ubi_err("bad VID header");
991 	ubi_dump_vid_hdr(vid_hdr);
992 	dump_stack();
993 	return 1;
994 }
995 
996 /**
997  * ubi_io_read_vid_hdr - read and check a volume identifier header.
998  * @ubi: UBI device description object
999  * @pnum: physical eraseblock number to read from
1000  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
1001  * identifier header
1002  * @verbose: be verbose if the header is corrupted or wasn't found
1003  *
1004  * This function reads the volume identifier header from physical eraseblock
1005  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
1006  * volume identifier header. The error codes are the same as in
1007  * 'ubi_io_read_ec_hdr()'.
1008  *
1009  * Note, the implementation of this function is also very similar to
1010  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1011  */
1012 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1013 			struct ubi_vid_hdr *vid_hdr, int verbose)
1014 {
1015 	int err, read_err;
1016 	uint32_t crc, magic, hdr_crc;
1017 	void *p;
1018 
1019 	dbg_io("read VID header from PEB %d", pnum);
1020 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1021 
1022 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1023 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1024 			  ubi->vid_hdr_alsize);
1025 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1026 		return read_err;
1027 
1028 	magic = be32_to_cpu(vid_hdr->magic);
1029 	if (magic != UBI_VID_HDR_MAGIC) {
1030 		if (mtd_is_eccerr(read_err))
1031 			return UBI_IO_BAD_HDR_EBADMSG;
1032 
1033 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1034 			if (verbose)
1035 				ubi_warn("no VID header found at PEB %d, "
1036 					 "only 0xFF bytes", pnum);
1037 			dbg_bld("no VID header found at PEB %d, "
1038 				"only 0xFF bytes", pnum);
1039 			if (!read_err)
1040 				return UBI_IO_FF;
1041 			else
1042 				return UBI_IO_FF_BITFLIPS;
1043 		}
1044 
1045 		if (verbose) {
1046 			ubi_warn("bad magic number at PEB %d: %08x instead of "
1047 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1048 			ubi_dump_vid_hdr(vid_hdr);
1049 		}
1050 		dbg_bld("bad magic number at PEB %d: %08x instead of "
1051 			"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1052 		return UBI_IO_BAD_HDR;
1053 	}
1054 
1055 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1056 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1057 
1058 	if (hdr_crc != crc) {
1059 		if (verbose) {
1060 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1061 				 "read %#08x", pnum, crc, hdr_crc);
1062 			ubi_dump_vid_hdr(vid_hdr);
1063 		}
1064 		dbg_bld("bad CRC at PEB %d, calculated %#08x, "
1065 			"read %#08x", pnum, crc, hdr_crc);
1066 		if (!read_err)
1067 			return UBI_IO_BAD_HDR;
1068 		else
1069 			return UBI_IO_BAD_HDR_EBADMSG;
1070 	}
1071 
1072 	err = validate_vid_hdr(ubi, vid_hdr);
1073 	if (err) {
1074 		ubi_err("validation failed for PEB %d", pnum);
1075 		return -EINVAL;
1076 	}
1077 
1078 	return read_err ? UBI_IO_BITFLIPS : 0;
1079 }
1080 
1081 /**
1082  * ubi_io_write_vid_hdr - write a volume identifier header.
1083  * @ubi: UBI device description object
1084  * @pnum: the physical eraseblock number to write to
1085  * @vid_hdr: the volume identifier header to write
1086  *
1087  * This function writes the volume identifier header described by @vid_hdr to
1088  * physical eraseblock @pnum. This function automatically fills the
1089  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1090  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1091  *
1092  * This function returns zero in case of success and a negative error code in
1093  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1094  * bad.
1095  */
1096 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1097 			 struct ubi_vid_hdr *vid_hdr)
1098 {
1099 	int err;
1100 	uint32_t crc;
1101 	void *p;
1102 
1103 	dbg_io("write VID header to PEB %d", pnum);
1104 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1105 
1106 	err = self_check_peb_ec_hdr(ubi, pnum);
1107 	if (err)
1108 		return err;
1109 
1110 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1111 	vid_hdr->version = UBI_VERSION;
1112 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1113 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1114 
1115 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1116 	if (err)
1117 		return err;
1118 
1119 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1120 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1121 			   ubi->vid_hdr_alsize);
1122 	return err;
1123 }
1124 
1125 /**
1126  * self_check_not_bad - ensure that a physical eraseblock is not bad.
1127  * @ubi: UBI device description object
1128  * @pnum: physical eraseblock number to check
1129  *
1130  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1131  * it is bad and a negative error code if an error occurred.
1132  */
1133 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1134 {
1135 	int err;
1136 
1137 	if (!ubi->dbg->chk_io)
1138 		return 0;
1139 
1140 	err = ubi_io_is_bad(ubi, pnum);
1141 	if (!err)
1142 		return err;
1143 
1144 	ubi_err("self-check failed for PEB %d", pnum);
1145 	dump_stack();
1146 	return err > 0 ? -EINVAL : err;
1147 }
1148 
1149 /**
1150  * self_check_ec_hdr - check if an erase counter header is all right.
1151  * @ubi: UBI device description object
1152  * @pnum: physical eraseblock number the erase counter header belongs to
1153  * @ec_hdr: the erase counter header to check
1154  *
1155  * This function returns zero if the erase counter header contains valid
1156  * values, and %-EINVAL if not.
1157  */
1158 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1159 			     const struct ubi_ec_hdr *ec_hdr)
1160 {
1161 	int err;
1162 	uint32_t magic;
1163 
1164 	if (!ubi->dbg->chk_io)
1165 		return 0;
1166 
1167 	magic = be32_to_cpu(ec_hdr->magic);
1168 	if (magic != UBI_EC_HDR_MAGIC) {
1169 		ubi_err("bad magic %#08x, must be %#08x",
1170 			magic, UBI_EC_HDR_MAGIC);
1171 		goto fail;
1172 	}
1173 
1174 	err = validate_ec_hdr(ubi, ec_hdr);
1175 	if (err) {
1176 		ubi_err("self-check failed for PEB %d", pnum);
1177 		goto fail;
1178 	}
1179 
1180 	return 0;
1181 
1182 fail:
1183 	ubi_dump_ec_hdr(ec_hdr);
1184 	dump_stack();
1185 	return -EINVAL;
1186 }
1187 
1188 /**
1189  * self_check_peb_ec_hdr - check erase counter header.
1190  * @ubi: UBI device description object
1191  * @pnum: the physical eraseblock number to check
1192  *
1193  * This function returns zero if the erase counter header is all right and and
1194  * a negative error code if not or if an error occurred.
1195  */
1196 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1197 {
1198 	int err;
1199 	uint32_t crc, hdr_crc;
1200 	struct ubi_ec_hdr *ec_hdr;
1201 
1202 	if (!ubi->dbg->chk_io)
1203 		return 0;
1204 
1205 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1206 	if (!ec_hdr)
1207 		return -ENOMEM;
1208 
1209 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1210 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1211 		goto exit;
1212 
1213 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1214 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1215 	if (hdr_crc != crc) {
1216 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1217 		ubi_err("self-check failed for PEB %d", pnum);
1218 		ubi_dump_ec_hdr(ec_hdr);
1219 		dump_stack();
1220 		err = -EINVAL;
1221 		goto exit;
1222 	}
1223 
1224 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1225 
1226 exit:
1227 	kfree(ec_hdr);
1228 	return err;
1229 }
1230 
1231 /**
1232  * self_check_vid_hdr - check that a volume identifier header is all right.
1233  * @ubi: UBI device description object
1234  * @pnum: physical eraseblock number the volume identifier header belongs to
1235  * @vid_hdr: the volume identifier header to check
1236  *
1237  * This function returns zero if the volume identifier header is all right, and
1238  * %-EINVAL if not.
1239  */
1240 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1241 			      const struct ubi_vid_hdr *vid_hdr)
1242 {
1243 	int err;
1244 	uint32_t magic;
1245 
1246 	if (!ubi->dbg->chk_io)
1247 		return 0;
1248 
1249 	magic = be32_to_cpu(vid_hdr->magic);
1250 	if (magic != UBI_VID_HDR_MAGIC) {
1251 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1252 			magic, pnum, UBI_VID_HDR_MAGIC);
1253 		goto fail;
1254 	}
1255 
1256 	err = validate_vid_hdr(ubi, vid_hdr);
1257 	if (err) {
1258 		ubi_err("self-check failed for PEB %d", pnum);
1259 		goto fail;
1260 	}
1261 
1262 	return err;
1263 
1264 fail:
1265 	ubi_err("self-check failed for PEB %d", pnum);
1266 	ubi_dump_vid_hdr(vid_hdr);
1267 	dump_stack();
1268 	return -EINVAL;
1269 
1270 }
1271 
1272 /**
1273  * self_check_peb_vid_hdr - check volume identifier header.
1274  * @ubi: UBI device description object
1275  * @pnum: the physical eraseblock number to check
1276  *
1277  * This function returns zero if the volume identifier header is all right,
1278  * and a negative error code if not or if an error occurred.
1279  */
1280 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1281 {
1282 	int err;
1283 	uint32_t crc, hdr_crc;
1284 	struct ubi_vid_hdr *vid_hdr;
1285 	void *p;
1286 
1287 	if (!ubi->dbg->chk_io)
1288 		return 0;
1289 
1290 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1291 	if (!vid_hdr)
1292 		return -ENOMEM;
1293 
1294 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1295 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1296 			  ubi->vid_hdr_alsize);
1297 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1298 		goto exit;
1299 
1300 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1301 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1302 	if (hdr_crc != crc) {
1303 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1304 			"read %#08x", pnum, crc, hdr_crc);
1305 		ubi_err("self-check failed for PEB %d", pnum);
1306 		ubi_dump_vid_hdr(vid_hdr);
1307 		dump_stack();
1308 		err = -EINVAL;
1309 		goto exit;
1310 	}
1311 
1312 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1313 
1314 exit:
1315 	ubi_free_vid_hdr(ubi, vid_hdr);
1316 	return err;
1317 }
1318 
1319 /**
1320  * self_check_write - make sure write succeeded.
1321  * @ubi: UBI device description object
1322  * @buf: buffer with data which were written
1323  * @pnum: physical eraseblock number the data were written to
1324  * @offset: offset within the physical eraseblock the data were written to
1325  * @len: how many bytes were written
1326  *
1327  * This functions reads data which were recently written and compares it with
1328  * the original data buffer - the data have to match. Returns zero if the data
1329  * match and a negative error code if not or in case of failure.
1330  */
1331 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1332 			    int offset, int len)
1333 {
1334 	int err, i;
1335 	size_t read;
1336 	void *buf1;
1337 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1338 
1339 	if (!ubi->dbg->chk_io)
1340 		return 0;
1341 
1342 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1343 	if (!buf1) {
1344 		ubi_err("cannot allocate memory to check writes");
1345 		return 0;
1346 	}
1347 
1348 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1349 	if (err && !mtd_is_bitflip(err))
1350 		goto out_free;
1351 
1352 	for (i = 0; i < len; i++) {
1353 		uint8_t c = ((uint8_t *)buf)[i];
1354 		uint8_t c1 = ((uint8_t *)buf1)[i];
1355 		int dump_len;
1356 
1357 		if (c == c1)
1358 			continue;
1359 
1360 		ubi_err("self-check failed for PEB %d:%d, len %d",
1361 			pnum, offset, len);
1362 		ubi_msg("data differ at position %d", i);
1363 		dump_len = max_t(int, 128, len - i);
1364 		ubi_msg("hex dump of the original buffer from %d to %d",
1365 			i, i + dump_len);
1366 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1367 			       buf + i, dump_len, 1);
1368 		ubi_msg("hex dump of the read buffer from %d to %d",
1369 			i, i + dump_len);
1370 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1371 			       buf1 + i, dump_len, 1);
1372 		dump_stack();
1373 		err = -EINVAL;
1374 		goto out_free;
1375 	}
1376 
1377 	vfree(buf1);
1378 	return 0;
1379 
1380 out_free:
1381 	vfree(buf1);
1382 	return err;
1383 }
1384 
1385 /**
1386  * ubi_self_check_all_ff - check that a region of flash is empty.
1387  * @ubi: UBI device description object
1388  * @pnum: the physical eraseblock number to check
1389  * @offset: the starting offset within the physical eraseblock to check
1390  * @len: the length of the region to check
1391  *
1392  * This function returns zero if only 0xFF bytes are present at offset
1393  * @offset of the physical eraseblock @pnum, and a negative error code if not
1394  * or if an error occurred.
1395  */
1396 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1397 {
1398 	size_t read;
1399 	int err;
1400 	void *buf;
1401 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1402 
1403 	if (!ubi->dbg->chk_io)
1404 		return 0;
1405 
1406 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1407 	if (!buf) {
1408 		ubi_err("cannot allocate memory to check for 0xFFs");
1409 		return 0;
1410 	}
1411 
1412 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1413 	if (err && !mtd_is_bitflip(err)) {
1414 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1415 			"read %zd bytes", err, len, pnum, offset, read);
1416 		goto error;
1417 	}
1418 
1419 	err = ubi_check_pattern(buf, 0xFF, len);
1420 	if (err == 0) {
1421 		ubi_err("flash region at PEB %d:%d, length %d does not "
1422 			"contain all 0xFF bytes", pnum, offset, len);
1423 		goto fail;
1424 	}
1425 
1426 	vfree(buf);
1427 	return 0;
1428 
1429 fail:
1430 	ubi_err("self-check failed for PEB %d", pnum);
1431 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1432 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1433 	err = -EINVAL;
1434 error:
1435 	dump_stack();
1436 	vfree(buf);
1437 	return err;
1438 }
1439