1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * UBI input/output sub-system. 24 * 25 * This sub-system provides a uniform way to work with all kinds of the 26 * underlying MTD devices. It also implements handy functions for reading and 27 * writing UBI headers. 28 * 29 * We are trying to have a paranoid mindset and not to trust to what we read 30 * from the flash media in order to be more secure and robust. So this 31 * sub-system validates every single header it reads from the flash media. 32 * 33 * Some words about how the eraseblock headers are stored. 34 * 35 * The erase counter header is always stored at offset zero. By default, the 36 * VID header is stored after the EC header at the closest aligned offset 37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 38 * header at the closest aligned offset. But this default layout may be 39 * changed. For example, for different reasons (e.g., optimization) UBI may be 40 * asked to put the VID header at further offset, and even at an unaligned 41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 42 * proper padding in front of it. Data offset may also be changed but it has to 43 * be aligned. 44 * 45 * About minimal I/O units. In general, UBI assumes flash device model where 46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 50 * to do different optimizations. 51 * 52 * This is extremely useful in case of NAND flashes which admit of several 53 * write operations to one NAND page. In this case UBI can fit EC and VID 54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 57 * users. 58 * 59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 61 * headers. 62 * 63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 64 * device, e.g., make @ubi->min_io_size = 512 in the example above? 65 * 66 * A: because when writing a sub-page, MTD still writes a full 2K page but the 67 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 69 * Thus, we prefer to use sub-pages only for EC and VID headers. 70 * 71 * As it was noted above, the VID header may start at a non-aligned offset. 72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 73 * the VID header may reside at offset 1984 which is the last 64 bytes of the 74 * last sub-page (EC header is always at offset zero). This causes some 75 * difficulties when reading and writing VID headers. 76 * 77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 78 * the data and want to write this VID header out. As we can only write in 79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 80 * to offset 448 of this buffer. 81 * 82 * The I/O sub-system does the following trick in order to avoid this extra 83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 85 * When the VID header is being written out, it shifts the VID header pointer 86 * back and writes the whole sub-page. 87 */ 88 89 #include <linux/crc32.h> 90 #include <linux/err.h> 91 #include <linux/slab.h> 92 #include "ubi.h" 93 94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum); 95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 97 const struct ubi_ec_hdr *ec_hdr); 98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 100 const struct ubi_vid_hdr *vid_hdr); 101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 102 int offset, int len); 103 104 /** 105 * ubi_io_read - read data from a physical eraseblock. 106 * @ubi: UBI device description object 107 * @buf: buffer where to store the read data 108 * @pnum: physical eraseblock number to read from 109 * @offset: offset within the physical eraseblock from where to read 110 * @len: how many bytes to read 111 * 112 * This function reads data from offset @offset of physical eraseblock @pnum 113 * and stores the read data in the @buf buffer. The following return codes are 114 * possible: 115 * 116 * o %0 if all the requested data were successfully read; 117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 118 * correctable bit-flips were detected; this is harmless but may indicate 119 * that this eraseblock may become bad soon (but do not have to); 120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 121 * example it can be an ECC error in case of NAND; this most probably means 122 * that the data is corrupted; 123 * o %-EIO if some I/O error occurred; 124 * o other negative error codes in case of other errors. 125 */ 126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 127 int len) 128 { 129 int err, retries = 0; 130 size_t read; 131 loff_t addr; 132 133 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 134 135 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 136 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 137 ubi_assert(len > 0); 138 139 err = self_check_not_bad(ubi, pnum); 140 if (err) 141 return err; 142 143 /* 144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 145 * do not do this, the following may happen: 146 * 1. The buffer contains data from previous operation, e.g., read from 147 * another PEB previously. The data looks like expected, e.g., if we 148 * just do not read anything and return - the caller would not 149 * notice this. E.g., if we are reading a VID header, the buffer may 150 * contain a valid VID header from another PEB. 151 * 2. The driver is buggy and returns us success or -EBADMSG or 152 * -EUCLEAN, but it does not actually put any data to the buffer. 153 * 154 * This may confuse UBI or upper layers - they may think the buffer 155 * contains valid data while in fact it is just old data. This is 156 * especially possible because UBI (and UBIFS) relies on CRC, and 157 * treats data as correct even in case of ECC errors if the CRC is 158 * correct. 159 * 160 * Try to prevent this situation by changing the first byte of the 161 * buffer. 162 */ 163 *((uint8_t *)buf) ^= 0xFF; 164 165 addr = (loff_t)pnum * ubi->peb_size + offset; 166 retry: 167 err = mtd_read(ubi->mtd, addr, len, &read, buf); 168 if (err) { 169 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; 170 171 if (mtd_is_bitflip(err)) { 172 /* 173 * -EUCLEAN is reported if there was a bit-flip which 174 * was corrected, so this is harmless. 175 * 176 * We do not report about it here unless debugging is 177 * enabled. A corresponding message will be printed 178 * later, when it is has been scrubbed. 179 */ 180 dbg_msg("fixable bit-flip detected at PEB %d", pnum); 181 ubi_assert(len == read); 182 return UBI_IO_BITFLIPS; 183 } 184 185 if (retries++ < UBI_IO_RETRIES) { 186 ubi_warn("error %d%s while reading %d bytes from PEB " 187 "%d:%d, read only %zd bytes, retry", 188 err, errstr, len, pnum, offset, read); 189 yield(); 190 goto retry; 191 } 192 193 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, " 194 "read %zd bytes", err, errstr, len, pnum, offset, read); 195 dump_stack(); 196 197 /* 198 * The driver should never return -EBADMSG if it failed to read 199 * all the requested data. But some buggy drivers might do 200 * this, so we change it to -EIO. 201 */ 202 if (read != len && mtd_is_eccerr(err)) { 203 ubi_assert(0); 204 err = -EIO; 205 } 206 } else { 207 ubi_assert(len == read); 208 209 if (ubi_dbg_is_bitflip(ubi)) { 210 dbg_gen("bit-flip (emulated)"); 211 err = UBI_IO_BITFLIPS; 212 } 213 } 214 215 return err; 216 } 217 218 /** 219 * ubi_io_write - write data to a physical eraseblock. 220 * @ubi: UBI device description object 221 * @buf: buffer with the data to write 222 * @pnum: physical eraseblock number to write to 223 * @offset: offset within the physical eraseblock where to write 224 * @len: how many bytes to write 225 * 226 * This function writes @len bytes of data from buffer @buf to offset @offset 227 * of physical eraseblock @pnum. If all the data were successfully written, 228 * zero is returned. If an error occurred, this function returns a negative 229 * error code. If %-EIO is returned, the physical eraseblock most probably went 230 * bad. 231 * 232 * Note, in case of an error, it is possible that something was still written 233 * to the flash media, but may be some garbage. 234 */ 235 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 236 int len) 237 { 238 int err; 239 size_t written; 240 loff_t addr; 241 242 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 243 244 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 245 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 246 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 247 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 248 249 if (ubi->ro_mode) { 250 ubi_err("read-only mode"); 251 return -EROFS; 252 } 253 254 err = self_check_not_bad(ubi, pnum); 255 if (err) 256 return err; 257 258 /* The area we are writing to has to contain all 0xFF bytes */ 259 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 260 if (err) 261 return err; 262 263 if (offset >= ubi->leb_start) { 264 /* 265 * We write to the data area of the physical eraseblock. Make 266 * sure it has valid EC and VID headers. 267 */ 268 err = self_check_peb_ec_hdr(ubi, pnum); 269 if (err) 270 return err; 271 err = self_check_peb_vid_hdr(ubi, pnum); 272 if (err) 273 return err; 274 } 275 276 if (ubi_dbg_is_write_failure(ubi)) { 277 ubi_err("cannot write %d bytes to PEB %d:%d " 278 "(emulated)", len, pnum, offset); 279 dump_stack(); 280 return -EIO; 281 } 282 283 addr = (loff_t)pnum * ubi->peb_size + offset; 284 err = mtd_write(ubi->mtd, addr, len, &written, buf); 285 if (err) { 286 ubi_err("error %d while writing %d bytes to PEB %d:%d, written " 287 "%zd bytes", err, len, pnum, offset, written); 288 dump_stack(); 289 ubi_dump_flash(ubi, pnum, offset, len); 290 } else 291 ubi_assert(written == len); 292 293 if (!err) { 294 err = self_check_write(ubi, buf, pnum, offset, len); 295 if (err) 296 return err; 297 298 /* 299 * Since we always write sequentially, the rest of the PEB has 300 * to contain only 0xFF bytes. 301 */ 302 offset += len; 303 len = ubi->peb_size - offset; 304 if (len) 305 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 306 } 307 308 return err; 309 } 310 311 /** 312 * erase_callback - MTD erasure call-back. 313 * @ei: MTD erase information object. 314 * 315 * Note, even though MTD erase interface is asynchronous, all the current 316 * implementations are synchronous anyway. 317 */ 318 static void erase_callback(struct erase_info *ei) 319 { 320 wake_up_interruptible((wait_queue_head_t *)ei->priv); 321 } 322 323 /** 324 * do_sync_erase - synchronously erase a physical eraseblock. 325 * @ubi: UBI device description object 326 * @pnum: the physical eraseblock number to erase 327 * 328 * This function synchronously erases physical eraseblock @pnum and returns 329 * zero in case of success and a negative error code in case of failure. If 330 * %-EIO is returned, the physical eraseblock most probably went bad. 331 */ 332 static int do_sync_erase(struct ubi_device *ubi, int pnum) 333 { 334 int err, retries = 0; 335 struct erase_info ei; 336 wait_queue_head_t wq; 337 338 dbg_io("erase PEB %d", pnum); 339 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 340 341 if (ubi->ro_mode) { 342 ubi_err("read-only mode"); 343 return -EROFS; 344 } 345 346 retry: 347 init_waitqueue_head(&wq); 348 memset(&ei, 0, sizeof(struct erase_info)); 349 350 ei.mtd = ubi->mtd; 351 ei.addr = (loff_t)pnum * ubi->peb_size; 352 ei.len = ubi->peb_size; 353 ei.callback = erase_callback; 354 ei.priv = (unsigned long)&wq; 355 356 err = mtd_erase(ubi->mtd, &ei); 357 if (err) { 358 if (retries++ < UBI_IO_RETRIES) { 359 ubi_warn("error %d while erasing PEB %d, retry", 360 err, pnum); 361 yield(); 362 goto retry; 363 } 364 ubi_err("cannot erase PEB %d, error %d", pnum, err); 365 dump_stack(); 366 return err; 367 } 368 369 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 370 ei.state == MTD_ERASE_FAILED); 371 if (err) { 372 ubi_err("interrupted PEB %d erasure", pnum); 373 return -EINTR; 374 } 375 376 if (ei.state == MTD_ERASE_FAILED) { 377 if (retries++ < UBI_IO_RETRIES) { 378 ubi_warn("error while erasing PEB %d, retry", pnum); 379 yield(); 380 goto retry; 381 } 382 ubi_err("cannot erase PEB %d", pnum); 383 dump_stack(); 384 return -EIO; 385 } 386 387 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); 388 if (err) 389 return err; 390 391 if (ubi_dbg_is_erase_failure(ubi)) { 392 ubi_err("cannot erase PEB %d (emulated)", pnum); 393 return -EIO; 394 } 395 396 return 0; 397 } 398 399 /* Patterns to write to a physical eraseblock when torturing it */ 400 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 401 402 /** 403 * torture_peb - test a supposedly bad physical eraseblock. 404 * @ubi: UBI device description object 405 * @pnum: the physical eraseblock number to test 406 * 407 * This function returns %-EIO if the physical eraseblock did not pass the 408 * test, a positive number of erase operations done if the test was 409 * successfully passed, and other negative error codes in case of other errors. 410 */ 411 static int torture_peb(struct ubi_device *ubi, int pnum) 412 { 413 int err, i, patt_count; 414 415 ubi_msg("run torture test for PEB %d", pnum); 416 patt_count = ARRAY_SIZE(patterns); 417 ubi_assert(patt_count > 0); 418 419 mutex_lock(&ubi->buf_mutex); 420 for (i = 0; i < patt_count; i++) { 421 err = do_sync_erase(ubi, pnum); 422 if (err) 423 goto out; 424 425 /* Make sure the PEB contains only 0xFF bytes */ 426 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 427 if (err) 428 goto out; 429 430 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); 431 if (err == 0) { 432 ubi_err("erased PEB %d, but a non-0xFF byte found", 433 pnum); 434 err = -EIO; 435 goto out; 436 } 437 438 /* Write a pattern and check it */ 439 memset(ubi->peb_buf, patterns[i], ubi->peb_size); 440 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 441 if (err) 442 goto out; 443 444 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); 445 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 446 if (err) 447 goto out; 448 449 err = ubi_check_pattern(ubi->peb_buf, patterns[i], 450 ubi->peb_size); 451 if (err == 0) { 452 ubi_err("pattern %x checking failed for PEB %d", 453 patterns[i], pnum); 454 err = -EIO; 455 goto out; 456 } 457 } 458 459 err = patt_count; 460 ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum); 461 462 out: 463 mutex_unlock(&ubi->buf_mutex); 464 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 465 /* 466 * If a bit-flip or data integrity error was detected, the test 467 * has not passed because it happened on a freshly erased 468 * physical eraseblock which means something is wrong with it. 469 */ 470 ubi_err("read problems on freshly erased PEB %d, must be bad", 471 pnum); 472 err = -EIO; 473 } 474 return err; 475 } 476 477 /** 478 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 479 * @ubi: UBI device description object 480 * @pnum: physical eraseblock number to prepare 481 * 482 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 483 * algorithm: the PEB is first filled with zeroes, then it is erased. And 484 * filling with zeroes starts from the end of the PEB. This was observed with 485 * Spansion S29GL512N NOR flash. 486 * 487 * This means that in case of a power cut we may end up with intact data at the 488 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 489 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 490 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 491 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 492 * 493 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 494 * magic numbers in order to invalidate them and prevent the failures. Returns 495 * zero in case of success and a negative error code in case of failure. 496 */ 497 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 498 { 499 int err, err1; 500 size_t written; 501 loff_t addr; 502 uint32_t data = 0; 503 /* 504 * Note, we cannot generally define VID header buffers on stack, 505 * because of the way we deal with these buffers (see the header 506 * comment in this file). But we know this is a NOR-specific piece of 507 * code, so we can do this. But yes, this is error-prone and we should 508 * (pre-)allocate VID header buffer instead. 509 */ 510 struct ubi_vid_hdr vid_hdr; 511 512 /* 513 * It is important to first invalidate the EC header, and then the VID 514 * header. Otherwise a power cut may lead to valid EC header and 515 * invalid VID header, in which case UBI will treat this PEB as 516 * corrupted and will try to preserve it, and print scary warnings. 517 */ 518 addr = (loff_t)pnum * ubi->peb_size; 519 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 520 if (!err) { 521 addr += ubi->vid_hdr_aloffset; 522 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 523 if (!err) 524 return 0; 525 } 526 527 /* 528 * We failed to write to the media. This was observed with Spansion 529 * S29GL512N NOR flash. Most probably the previously eraseblock erasure 530 * was interrupted at a very inappropriate moment, so it became 531 * unwritable. In this case we probably anyway have garbage in this 532 * PEB. 533 */ 534 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); 535 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || 536 err1 == UBI_IO_FF) { 537 struct ubi_ec_hdr ec_hdr; 538 539 err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 540 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || 541 err1 == UBI_IO_FF) 542 /* 543 * Both VID and EC headers are corrupted, so we can 544 * safely erase this PEB and not afraid that it will be 545 * treated as a valid PEB in case of an unclean reboot. 546 */ 547 return 0; 548 } 549 550 /* 551 * The PEB contains a valid VID header, but we cannot invalidate it. 552 * Supposedly the flash media or the driver is screwed up, so return an 553 * error. 554 */ 555 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", 556 pnum, err, err1); 557 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); 558 return -EIO; 559 } 560 561 /** 562 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 563 * @ubi: UBI device description object 564 * @pnum: physical eraseblock number to erase 565 * @torture: if this physical eraseblock has to be tortured 566 * 567 * This function synchronously erases physical eraseblock @pnum. If @torture 568 * flag is not zero, the physical eraseblock is checked by means of writing 569 * different patterns to it and reading them back. If the torturing is enabled, 570 * the physical eraseblock is erased more than once. 571 * 572 * This function returns the number of erasures made in case of success, %-EIO 573 * if the erasure failed or the torturing test failed, and other negative error 574 * codes in case of other errors. Note, %-EIO means that the physical 575 * eraseblock is bad. 576 */ 577 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 578 { 579 int err, ret = 0; 580 581 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 582 583 err = self_check_not_bad(ubi, pnum); 584 if (err != 0) 585 return err; 586 587 if (ubi->ro_mode) { 588 ubi_err("read-only mode"); 589 return -EROFS; 590 } 591 592 if (ubi->nor_flash) { 593 err = nor_erase_prepare(ubi, pnum); 594 if (err) 595 return err; 596 } 597 598 if (torture) { 599 ret = torture_peb(ubi, pnum); 600 if (ret < 0) 601 return ret; 602 } 603 604 err = do_sync_erase(ubi, pnum); 605 if (err) 606 return err; 607 608 return ret + 1; 609 } 610 611 /** 612 * ubi_io_is_bad - check if a physical eraseblock is bad. 613 * @ubi: UBI device description object 614 * @pnum: the physical eraseblock number to check 615 * 616 * This function returns a positive number if the physical eraseblock is bad, 617 * zero if not, and a negative error code if an error occurred. 618 */ 619 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 620 { 621 struct mtd_info *mtd = ubi->mtd; 622 623 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 624 625 if (ubi->bad_allowed) { 626 int ret; 627 628 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 629 if (ret < 0) 630 ubi_err("error %d while checking if PEB %d is bad", 631 ret, pnum); 632 else if (ret) 633 dbg_io("PEB %d is bad", pnum); 634 return ret; 635 } 636 637 return 0; 638 } 639 640 /** 641 * ubi_io_mark_bad - mark a physical eraseblock as bad. 642 * @ubi: UBI device description object 643 * @pnum: the physical eraseblock number to mark 644 * 645 * This function returns zero in case of success and a negative error code in 646 * case of failure. 647 */ 648 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 649 { 650 int err; 651 struct mtd_info *mtd = ubi->mtd; 652 653 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 654 655 if (ubi->ro_mode) { 656 ubi_err("read-only mode"); 657 return -EROFS; 658 } 659 660 if (!ubi->bad_allowed) 661 return 0; 662 663 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 664 if (err) 665 ubi_err("cannot mark PEB %d bad, error %d", pnum, err); 666 return err; 667 } 668 669 /** 670 * validate_ec_hdr - validate an erase counter header. 671 * @ubi: UBI device description object 672 * @ec_hdr: the erase counter header to check 673 * 674 * This function returns zero if the erase counter header is OK, and %1 if 675 * not. 676 */ 677 static int validate_ec_hdr(const struct ubi_device *ubi, 678 const struct ubi_ec_hdr *ec_hdr) 679 { 680 long long ec; 681 int vid_hdr_offset, leb_start; 682 683 ec = be64_to_cpu(ec_hdr->ec); 684 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 685 leb_start = be32_to_cpu(ec_hdr->data_offset); 686 687 if (ec_hdr->version != UBI_VERSION) { 688 ubi_err("node with incompatible UBI version found: " 689 "this UBI version is %d, image version is %d", 690 UBI_VERSION, (int)ec_hdr->version); 691 goto bad; 692 } 693 694 if (vid_hdr_offset != ubi->vid_hdr_offset) { 695 ubi_err("bad VID header offset %d, expected %d", 696 vid_hdr_offset, ubi->vid_hdr_offset); 697 goto bad; 698 } 699 700 if (leb_start != ubi->leb_start) { 701 ubi_err("bad data offset %d, expected %d", 702 leb_start, ubi->leb_start); 703 goto bad; 704 } 705 706 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 707 ubi_err("bad erase counter %lld", ec); 708 goto bad; 709 } 710 711 return 0; 712 713 bad: 714 ubi_err("bad EC header"); 715 ubi_dump_ec_hdr(ec_hdr); 716 dump_stack(); 717 return 1; 718 } 719 720 /** 721 * ubi_io_read_ec_hdr - read and check an erase counter header. 722 * @ubi: UBI device description object 723 * @pnum: physical eraseblock to read from 724 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 725 * header 726 * @verbose: be verbose if the header is corrupted or was not found 727 * 728 * This function reads erase counter header from physical eraseblock @pnum and 729 * stores it in @ec_hdr. This function also checks CRC checksum of the read 730 * erase counter header. The following codes may be returned: 731 * 732 * o %0 if the CRC checksum is correct and the header was successfully read; 733 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 734 * and corrected by the flash driver; this is harmless but may indicate that 735 * this eraseblock may become bad soon (but may be not); 736 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 737 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 738 * a data integrity error (uncorrectable ECC error in case of NAND); 739 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 740 * o a negative error code in case of failure. 741 */ 742 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 743 struct ubi_ec_hdr *ec_hdr, int verbose) 744 { 745 int err, read_err; 746 uint32_t crc, magic, hdr_crc; 747 748 dbg_io("read EC header from PEB %d", pnum); 749 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 750 751 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 752 if (read_err) { 753 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 754 return read_err; 755 756 /* 757 * We read all the data, but either a correctable bit-flip 758 * occurred, or MTD reported a data integrity error 759 * (uncorrectable ECC error in case of NAND). The former is 760 * harmless, the later may mean that the read data is 761 * corrupted. But we have a CRC check-sum and we will detect 762 * this. If the EC header is still OK, we just report this as 763 * there was a bit-flip, to force scrubbing. 764 */ 765 } 766 767 magic = be32_to_cpu(ec_hdr->magic); 768 if (magic != UBI_EC_HDR_MAGIC) { 769 if (mtd_is_eccerr(read_err)) 770 return UBI_IO_BAD_HDR_EBADMSG; 771 772 /* 773 * The magic field is wrong. Let's check if we have read all 774 * 0xFF. If yes, this physical eraseblock is assumed to be 775 * empty. 776 */ 777 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 778 /* The physical eraseblock is supposedly empty */ 779 if (verbose) 780 ubi_warn("no EC header found at PEB %d, " 781 "only 0xFF bytes", pnum); 782 dbg_bld("no EC header found at PEB %d, " 783 "only 0xFF bytes", pnum); 784 if (!read_err) 785 return UBI_IO_FF; 786 else 787 return UBI_IO_FF_BITFLIPS; 788 } 789 790 /* 791 * This is not a valid erase counter header, and these are not 792 * 0xFF bytes. Report that the header is corrupted. 793 */ 794 if (verbose) { 795 ubi_warn("bad magic number at PEB %d: %08x instead of " 796 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 797 ubi_dump_ec_hdr(ec_hdr); 798 } 799 dbg_bld("bad magic number at PEB %d: %08x instead of " 800 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 801 return UBI_IO_BAD_HDR; 802 } 803 804 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 805 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 806 807 if (hdr_crc != crc) { 808 if (verbose) { 809 ubi_warn("bad EC header CRC at PEB %d, calculated " 810 "%#08x, read %#08x", pnum, crc, hdr_crc); 811 ubi_dump_ec_hdr(ec_hdr); 812 } 813 dbg_bld("bad EC header CRC at PEB %d, calculated " 814 "%#08x, read %#08x", pnum, crc, hdr_crc); 815 816 if (!read_err) 817 return UBI_IO_BAD_HDR; 818 else 819 return UBI_IO_BAD_HDR_EBADMSG; 820 } 821 822 /* And of course validate what has just been read from the media */ 823 err = validate_ec_hdr(ubi, ec_hdr); 824 if (err) { 825 ubi_err("validation failed for PEB %d", pnum); 826 return -EINVAL; 827 } 828 829 /* 830 * If there was %-EBADMSG, but the header CRC is still OK, report about 831 * a bit-flip to force scrubbing on this PEB. 832 */ 833 return read_err ? UBI_IO_BITFLIPS : 0; 834 } 835 836 /** 837 * ubi_io_write_ec_hdr - write an erase counter header. 838 * @ubi: UBI device description object 839 * @pnum: physical eraseblock to write to 840 * @ec_hdr: the erase counter header to write 841 * 842 * This function writes erase counter header described by @ec_hdr to physical 843 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 844 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 845 * field. 846 * 847 * This function returns zero in case of success and a negative error code in 848 * case of failure. If %-EIO is returned, the physical eraseblock most probably 849 * went bad. 850 */ 851 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 852 struct ubi_ec_hdr *ec_hdr) 853 { 854 int err; 855 uint32_t crc; 856 857 dbg_io("write EC header to PEB %d", pnum); 858 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 859 860 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 861 ec_hdr->version = UBI_VERSION; 862 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 863 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 864 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 865 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 866 ec_hdr->hdr_crc = cpu_to_be32(crc); 867 868 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 869 if (err) 870 return err; 871 872 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 873 return err; 874 } 875 876 /** 877 * validate_vid_hdr - validate a volume identifier header. 878 * @ubi: UBI device description object 879 * @vid_hdr: the volume identifier header to check 880 * 881 * This function checks that data stored in the volume identifier header 882 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 883 */ 884 static int validate_vid_hdr(const struct ubi_device *ubi, 885 const struct ubi_vid_hdr *vid_hdr) 886 { 887 int vol_type = vid_hdr->vol_type; 888 int copy_flag = vid_hdr->copy_flag; 889 int vol_id = be32_to_cpu(vid_hdr->vol_id); 890 int lnum = be32_to_cpu(vid_hdr->lnum); 891 int compat = vid_hdr->compat; 892 int data_size = be32_to_cpu(vid_hdr->data_size); 893 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 894 int data_pad = be32_to_cpu(vid_hdr->data_pad); 895 int data_crc = be32_to_cpu(vid_hdr->data_crc); 896 int usable_leb_size = ubi->leb_size - data_pad; 897 898 if (copy_flag != 0 && copy_flag != 1) { 899 ubi_err("bad copy_flag"); 900 goto bad; 901 } 902 903 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 904 data_pad < 0) { 905 ubi_err("negative values"); 906 goto bad; 907 } 908 909 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 910 ubi_err("bad vol_id"); 911 goto bad; 912 } 913 914 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 915 ubi_err("bad compat"); 916 goto bad; 917 } 918 919 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 920 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 921 compat != UBI_COMPAT_REJECT) { 922 ubi_err("bad compat"); 923 goto bad; 924 } 925 926 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 927 ubi_err("bad vol_type"); 928 goto bad; 929 } 930 931 if (data_pad >= ubi->leb_size / 2) { 932 ubi_err("bad data_pad"); 933 goto bad; 934 } 935 936 if (vol_type == UBI_VID_STATIC) { 937 /* 938 * Although from high-level point of view static volumes may 939 * contain zero bytes of data, but no VID headers can contain 940 * zero at these fields, because they empty volumes do not have 941 * mapped logical eraseblocks. 942 */ 943 if (used_ebs == 0) { 944 ubi_err("zero used_ebs"); 945 goto bad; 946 } 947 if (data_size == 0) { 948 ubi_err("zero data_size"); 949 goto bad; 950 } 951 if (lnum < used_ebs - 1) { 952 if (data_size != usable_leb_size) { 953 ubi_err("bad data_size"); 954 goto bad; 955 } 956 } else if (lnum == used_ebs - 1) { 957 if (data_size == 0) { 958 ubi_err("bad data_size at last LEB"); 959 goto bad; 960 } 961 } else { 962 ubi_err("too high lnum"); 963 goto bad; 964 } 965 } else { 966 if (copy_flag == 0) { 967 if (data_crc != 0) { 968 ubi_err("non-zero data CRC"); 969 goto bad; 970 } 971 if (data_size != 0) { 972 ubi_err("non-zero data_size"); 973 goto bad; 974 } 975 } else { 976 if (data_size == 0) { 977 ubi_err("zero data_size of copy"); 978 goto bad; 979 } 980 } 981 if (used_ebs != 0) { 982 ubi_err("bad used_ebs"); 983 goto bad; 984 } 985 } 986 987 return 0; 988 989 bad: 990 ubi_err("bad VID header"); 991 ubi_dump_vid_hdr(vid_hdr); 992 dump_stack(); 993 return 1; 994 } 995 996 /** 997 * ubi_io_read_vid_hdr - read and check a volume identifier header. 998 * @ubi: UBI device description object 999 * @pnum: physical eraseblock number to read from 1000 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 1001 * identifier header 1002 * @verbose: be verbose if the header is corrupted or wasn't found 1003 * 1004 * This function reads the volume identifier header from physical eraseblock 1005 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 1006 * volume identifier header. The error codes are the same as in 1007 * 'ubi_io_read_ec_hdr()'. 1008 * 1009 * Note, the implementation of this function is also very similar to 1010 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 1011 */ 1012 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 1013 struct ubi_vid_hdr *vid_hdr, int verbose) 1014 { 1015 int err, read_err; 1016 uint32_t crc, magic, hdr_crc; 1017 void *p; 1018 1019 dbg_io("read VID header from PEB %d", pnum); 1020 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1021 1022 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1023 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1024 ubi->vid_hdr_alsize); 1025 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 1026 return read_err; 1027 1028 magic = be32_to_cpu(vid_hdr->magic); 1029 if (magic != UBI_VID_HDR_MAGIC) { 1030 if (mtd_is_eccerr(read_err)) 1031 return UBI_IO_BAD_HDR_EBADMSG; 1032 1033 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1034 if (verbose) 1035 ubi_warn("no VID header found at PEB %d, " 1036 "only 0xFF bytes", pnum); 1037 dbg_bld("no VID header found at PEB %d, " 1038 "only 0xFF bytes", pnum); 1039 if (!read_err) 1040 return UBI_IO_FF; 1041 else 1042 return UBI_IO_FF_BITFLIPS; 1043 } 1044 1045 if (verbose) { 1046 ubi_warn("bad magic number at PEB %d: %08x instead of " 1047 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1048 ubi_dump_vid_hdr(vid_hdr); 1049 } 1050 dbg_bld("bad magic number at PEB %d: %08x instead of " 1051 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1052 return UBI_IO_BAD_HDR; 1053 } 1054 1055 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1056 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1057 1058 if (hdr_crc != crc) { 1059 if (verbose) { 1060 ubi_warn("bad CRC at PEB %d, calculated %#08x, " 1061 "read %#08x", pnum, crc, hdr_crc); 1062 ubi_dump_vid_hdr(vid_hdr); 1063 } 1064 dbg_bld("bad CRC at PEB %d, calculated %#08x, " 1065 "read %#08x", pnum, crc, hdr_crc); 1066 if (!read_err) 1067 return UBI_IO_BAD_HDR; 1068 else 1069 return UBI_IO_BAD_HDR_EBADMSG; 1070 } 1071 1072 err = validate_vid_hdr(ubi, vid_hdr); 1073 if (err) { 1074 ubi_err("validation failed for PEB %d", pnum); 1075 return -EINVAL; 1076 } 1077 1078 return read_err ? UBI_IO_BITFLIPS : 0; 1079 } 1080 1081 /** 1082 * ubi_io_write_vid_hdr - write a volume identifier header. 1083 * @ubi: UBI device description object 1084 * @pnum: the physical eraseblock number to write to 1085 * @vid_hdr: the volume identifier header to write 1086 * 1087 * This function writes the volume identifier header described by @vid_hdr to 1088 * physical eraseblock @pnum. This function automatically fills the 1089 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1090 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1091 * 1092 * This function returns zero in case of success and a negative error code in 1093 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1094 * bad. 1095 */ 1096 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1097 struct ubi_vid_hdr *vid_hdr) 1098 { 1099 int err; 1100 uint32_t crc; 1101 void *p; 1102 1103 dbg_io("write VID header to PEB %d", pnum); 1104 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1105 1106 err = self_check_peb_ec_hdr(ubi, pnum); 1107 if (err) 1108 return err; 1109 1110 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1111 vid_hdr->version = UBI_VERSION; 1112 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1113 vid_hdr->hdr_crc = cpu_to_be32(crc); 1114 1115 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1116 if (err) 1117 return err; 1118 1119 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1120 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1121 ubi->vid_hdr_alsize); 1122 return err; 1123 } 1124 1125 /** 1126 * self_check_not_bad - ensure that a physical eraseblock is not bad. 1127 * @ubi: UBI device description object 1128 * @pnum: physical eraseblock number to check 1129 * 1130 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1131 * it is bad and a negative error code if an error occurred. 1132 */ 1133 static int self_check_not_bad(const struct ubi_device *ubi, int pnum) 1134 { 1135 int err; 1136 1137 if (!ubi->dbg->chk_io) 1138 return 0; 1139 1140 err = ubi_io_is_bad(ubi, pnum); 1141 if (!err) 1142 return err; 1143 1144 ubi_err("self-check failed for PEB %d", pnum); 1145 dump_stack(); 1146 return err > 0 ? -EINVAL : err; 1147 } 1148 1149 /** 1150 * self_check_ec_hdr - check if an erase counter header is all right. 1151 * @ubi: UBI device description object 1152 * @pnum: physical eraseblock number the erase counter header belongs to 1153 * @ec_hdr: the erase counter header to check 1154 * 1155 * This function returns zero if the erase counter header contains valid 1156 * values, and %-EINVAL if not. 1157 */ 1158 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1159 const struct ubi_ec_hdr *ec_hdr) 1160 { 1161 int err; 1162 uint32_t magic; 1163 1164 if (!ubi->dbg->chk_io) 1165 return 0; 1166 1167 magic = be32_to_cpu(ec_hdr->magic); 1168 if (magic != UBI_EC_HDR_MAGIC) { 1169 ubi_err("bad magic %#08x, must be %#08x", 1170 magic, UBI_EC_HDR_MAGIC); 1171 goto fail; 1172 } 1173 1174 err = validate_ec_hdr(ubi, ec_hdr); 1175 if (err) { 1176 ubi_err("self-check failed for PEB %d", pnum); 1177 goto fail; 1178 } 1179 1180 return 0; 1181 1182 fail: 1183 ubi_dump_ec_hdr(ec_hdr); 1184 dump_stack(); 1185 return -EINVAL; 1186 } 1187 1188 /** 1189 * self_check_peb_ec_hdr - check erase counter header. 1190 * @ubi: UBI device description object 1191 * @pnum: the physical eraseblock number to check 1192 * 1193 * This function returns zero if the erase counter header is all right and and 1194 * a negative error code if not or if an error occurred. 1195 */ 1196 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1197 { 1198 int err; 1199 uint32_t crc, hdr_crc; 1200 struct ubi_ec_hdr *ec_hdr; 1201 1202 if (!ubi->dbg->chk_io) 1203 return 0; 1204 1205 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1206 if (!ec_hdr) 1207 return -ENOMEM; 1208 1209 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1210 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1211 goto exit; 1212 1213 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1214 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1215 if (hdr_crc != crc) { 1216 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); 1217 ubi_err("self-check failed for PEB %d", pnum); 1218 ubi_dump_ec_hdr(ec_hdr); 1219 dump_stack(); 1220 err = -EINVAL; 1221 goto exit; 1222 } 1223 1224 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 1225 1226 exit: 1227 kfree(ec_hdr); 1228 return err; 1229 } 1230 1231 /** 1232 * self_check_vid_hdr - check that a volume identifier header is all right. 1233 * @ubi: UBI device description object 1234 * @pnum: physical eraseblock number the volume identifier header belongs to 1235 * @vid_hdr: the volume identifier header to check 1236 * 1237 * This function returns zero if the volume identifier header is all right, and 1238 * %-EINVAL if not. 1239 */ 1240 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1241 const struct ubi_vid_hdr *vid_hdr) 1242 { 1243 int err; 1244 uint32_t magic; 1245 1246 if (!ubi->dbg->chk_io) 1247 return 0; 1248 1249 magic = be32_to_cpu(vid_hdr->magic); 1250 if (magic != UBI_VID_HDR_MAGIC) { 1251 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", 1252 magic, pnum, UBI_VID_HDR_MAGIC); 1253 goto fail; 1254 } 1255 1256 err = validate_vid_hdr(ubi, vid_hdr); 1257 if (err) { 1258 ubi_err("self-check failed for PEB %d", pnum); 1259 goto fail; 1260 } 1261 1262 return err; 1263 1264 fail: 1265 ubi_err("self-check failed for PEB %d", pnum); 1266 ubi_dump_vid_hdr(vid_hdr); 1267 dump_stack(); 1268 return -EINVAL; 1269 1270 } 1271 1272 /** 1273 * self_check_peb_vid_hdr - check volume identifier header. 1274 * @ubi: UBI device description object 1275 * @pnum: the physical eraseblock number to check 1276 * 1277 * This function returns zero if the volume identifier header is all right, 1278 * and a negative error code if not or if an error occurred. 1279 */ 1280 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1281 { 1282 int err; 1283 uint32_t crc, hdr_crc; 1284 struct ubi_vid_hdr *vid_hdr; 1285 void *p; 1286 1287 if (!ubi->dbg->chk_io) 1288 return 0; 1289 1290 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1291 if (!vid_hdr) 1292 return -ENOMEM; 1293 1294 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1295 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1296 ubi->vid_hdr_alsize); 1297 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1298 goto exit; 1299 1300 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1301 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1302 if (hdr_crc != crc) { 1303 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " 1304 "read %#08x", pnum, crc, hdr_crc); 1305 ubi_err("self-check failed for PEB %d", pnum); 1306 ubi_dump_vid_hdr(vid_hdr); 1307 dump_stack(); 1308 err = -EINVAL; 1309 goto exit; 1310 } 1311 1312 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1313 1314 exit: 1315 ubi_free_vid_hdr(ubi, vid_hdr); 1316 return err; 1317 } 1318 1319 /** 1320 * self_check_write - make sure write succeeded. 1321 * @ubi: UBI device description object 1322 * @buf: buffer with data which were written 1323 * @pnum: physical eraseblock number the data were written to 1324 * @offset: offset within the physical eraseblock the data were written to 1325 * @len: how many bytes were written 1326 * 1327 * This functions reads data which were recently written and compares it with 1328 * the original data buffer - the data have to match. Returns zero if the data 1329 * match and a negative error code if not or in case of failure. 1330 */ 1331 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1332 int offset, int len) 1333 { 1334 int err, i; 1335 size_t read; 1336 void *buf1; 1337 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1338 1339 if (!ubi->dbg->chk_io) 1340 return 0; 1341 1342 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1343 if (!buf1) { 1344 ubi_err("cannot allocate memory to check writes"); 1345 return 0; 1346 } 1347 1348 err = mtd_read(ubi->mtd, addr, len, &read, buf1); 1349 if (err && !mtd_is_bitflip(err)) 1350 goto out_free; 1351 1352 for (i = 0; i < len; i++) { 1353 uint8_t c = ((uint8_t *)buf)[i]; 1354 uint8_t c1 = ((uint8_t *)buf1)[i]; 1355 int dump_len; 1356 1357 if (c == c1) 1358 continue; 1359 1360 ubi_err("self-check failed for PEB %d:%d, len %d", 1361 pnum, offset, len); 1362 ubi_msg("data differ at position %d", i); 1363 dump_len = max_t(int, 128, len - i); 1364 ubi_msg("hex dump of the original buffer from %d to %d", 1365 i, i + dump_len); 1366 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1367 buf + i, dump_len, 1); 1368 ubi_msg("hex dump of the read buffer from %d to %d", 1369 i, i + dump_len); 1370 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1371 buf1 + i, dump_len, 1); 1372 dump_stack(); 1373 err = -EINVAL; 1374 goto out_free; 1375 } 1376 1377 vfree(buf1); 1378 return 0; 1379 1380 out_free: 1381 vfree(buf1); 1382 return err; 1383 } 1384 1385 /** 1386 * ubi_self_check_all_ff - check that a region of flash is empty. 1387 * @ubi: UBI device description object 1388 * @pnum: the physical eraseblock number to check 1389 * @offset: the starting offset within the physical eraseblock to check 1390 * @len: the length of the region to check 1391 * 1392 * This function returns zero if only 0xFF bytes are present at offset 1393 * @offset of the physical eraseblock @pnum, and a negative error code if not 1394 * or if an error occurred. 1395 */ 1396 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1397 { 1398 size_t read; 1399 int err; 1400 void *buf; 1401 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1402 1403 if (!ubi->dbg->chk_io) 1404 return 0; 1405 1406 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1407 if (!buf) { 1408 ubi_err("cannot allocate memory to check for 0xFFs"); 1409 return 0; 1410 } 1411 1412 err = mtd_read(ubi->mtd, addr, len, &read, buf); 1413 if (err && !mtd_is_bitflip(err)) { 1414 ubi_err("error %d while reading %d bytes from PEB %d:%d, " 1415 "read %zd bytes", err, len, pnum, offset, read); 1416 goto error; 1417 } 1418 1419 err = ubi_check_pattern(buf, 0xFF, len); 1420 if (err == 0) { 1421 ubi_err("flash region at PEB %d:%d, length %d does not " 1422 "contain all 0xFF bytes", pnum, offset, len); 1423 goto fail; 1424 } 1425 1426 vfree(buf); 1427 return 0; 1428 1429 fail: 1430 ubi_err("self-check failed for PEB %d", pnum); 1431 ubi_msg("hex dump of the %d-%d region", offset, offset + len); 1432 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1433 err = -EINVAL; 1434 error: 1435 dump_stack(); 1436 vfree(buf); 1437 return err; 1438 } 1439