1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * UBI input/output sub-system. 24 * 25 * This sub-system provides a uniform way to work with all kinds of the 26 * underlying MTD devices. It also implements handy functions for reading and 27 * writing UBI headers. 28 * 29 * We are trying to have a paranoid mindset and not to trust to what we read 30 * from the flash media in order to be more secure and robust. So this 31 * sub-system validates every single header it reads from the flash media. 32 * 33 * Some words about how the eraseblock headers are stored. 34 * 35 * The erase counter header is always stored at offset zero. By default, the 36 * VID header is stored after the EC header at the closest aligned offset 37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 38 * header at the closest aligned offset. But this default layout may be 39 * changed. For example, for different reasons (e.g., optimization) UBI may be 40 * asked to put the VID header at further offset, and even at an unaligned 41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 42 * proper padding in front of it. Data offset may also be changed but it has to 43 * be aligned. 44 * 45 * About minimal I/O units. In general, UBI assumes flash device model where 46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 50 * to do different optimizations. 51 * 52 * This is extremely useful in case of NAND flashes which admit of several 53 * write operations to one NAND page. In this case UBI can fit EC and VID 54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 57 * users. 58 * 59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 61 * headers. 62 * 63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 64 * device, e.g., make @ubi->min_io_size = 512 in the example above? 65 * 66 * A: because when writing a sub-page, MTD still writes a full 2K page but the 67 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 69 * Thus, we prefer to use sub-pages only for EC and VID headers. 70 * 71 * As it was noted above, the VID header may start at a non-aligned offset. 72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 73 * the VID header may reside at offset 1984 which is the last 64 bytes of the 74 * last sub-page (EC header is always at offset zero). This causes some 75 * difficulties when reading and writing VID headers. 76 * 77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 78 * the data and want to write this VID header out. As we can only write in 79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 80 * to offset 448 of this buffer. 81 * 82 * The I/O sub-system does the following trick in order to avoid this extra 83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 85 * When the VID header is being written out, it shifts the VID header pointer 86 * back and writes the whole sub-page. 87 */ 88 89 #include <linux/crc32.h> 90 #include <linux/err.h> 91 #include <linux/slab.h> 92 #include "ubi.h" 93 94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum); 95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 97 const struct ubi_ec_hdr *ec_hdr); 98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 100 const struct ubi_vid_hdr *vid_hdr); 101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 102 int offset, int len); 103 104 /** 105 * ubi_io_read - read data from a physical eraseblock. 106 * @ubi: UBI device description object 107 * @buf: buffer where to store the read data 108 * @pnum: physical eraseblock number to read from 109 * @offset: offset within the physical eraseblock from where to read 110 * @len: how many bytes to read 111 * 112 * This function reads data from offset @offset of physical eraseblock @pnum 113 * and stores the read data in the @buf buffer. The following return codes are 114 * possible: 115 * 116 * o %0 if all the requested data were successfully read; 117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 118 * correctable bit-flips were detected; this is harmless but may indicate 119 * that this eraseblock may become bad soon (but do not have to); 120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 121 * example it can be an ECC error in case of NAND; this most probably means 122 * that the data is corrupted; 123 * o %-EIO if some I/O error occurred; 124 * o other negative error codes in case of other errors. 125 */ 126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 127 int len) 128 { 129 int err, retries = 0; 130 size_t read; 131 loff_t addr; 132 133 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 134 135 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 136 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 137 ubi_assert(len > 0); 138 139 err = self_check_not_bad(ubi, pnum); 140 if (err) 141 return err; 142 143 /* 144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 145 * do not do this, the following may happen: 146 * 1. The buffer contains data from previous operation, e.g., read from 147 * another PEB previously. The data looks like expected, e.g., if we 148 * just do not read anything and return - the caller would not 149 * notice this. E.g., if we are reading a VID header, the buffer may 150 * contain a valid VID header from another PEB. 151 * 2. The driver is buggy and returns us success or -EBADMSG or 152 * -EUCLEAN, but it does not actually put any data to the buffer. 153 * 154 * This may confuse UBI or upper layers - they may think the buffer 155 * contains valid data while in fact it is just old data. This is 156 * especially possible because UBI (and UBIFS) relies on CRC, and 157 * treats data as correct even in case of ECC errors if the CRC is 158 * correct. 159 * 160 * Try to prevent this situation by changing the first byte of the 161 * buffer. 162 */ 163 *((uint8_t *)buf) ^= 0xFF; 164 165 addr = (loff_t)pnum * ubi->peb_size + offset; 166 retry: 167 err = mtd_read(ubi->mtd, addr, len, &read, buf); 168 if (err) { 169 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; 170 171 if (mtd_is_bitflip(err)) { 172 /* 173 * -EUCLEAN is reported if there was a bit-flip which 174 * was corrected, so this is harmless. 175 * 176 * We do not report about it here unless debugging is 177 * enabled. A corresponding message will be printed 178 * later, when it is has been scrubbed. 179 */ 180 ubi_msg("fixable bit-flip detected at PEB %d", pnum); 181 ubi_assert(len == read); 182 return UBI_IO_BITFLIPS; 183 } 184 185 if (retries++ < UBI_IO_RETRIES) { 186 ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", 187 err, errstr, len, pnum, offset, read); 188 yield(); 189 goto retry; 190 } 191 192 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", 193 err, errstr, len, pnum, offset, read); 194 dump_stack(); 195 196 /* 197 * The driver should never return -EBADMSG if it failed to read 198 * all the requested data. But some buggy drivers might do 199 * this, so we change it to -EIO. 200 */ 201 if (read != len && mtd_is_eccerr(err)) { 202 ubi_assert(0); 203 err = -EIO; 204 } 205 } else { 206 ubi_assert(len == read); 207 208 if (ubi_dbg_is_bitflip(ubi)) { 209 dbg_gen("bit-flip (emulated)"); 210 err = UBI_IO_BITFLIPS; 211 } 212 } 213 214 return err; 215 } 216 217 /** 218 * ubi_io_write - write data to a physical eraseblock. 219 * @ubi: UBI device description object 220 * @buf: buffer with the data to write 221 * @pnum: physical eraseblock number to write to 222 * @offset: offset within the physical eraseblock where to write 223 * @len: how many bytes to write 224 * 225 * This function writes @len bytes of data from buffer @buf to offset @offset 226 * of physical eraseblock @pnum. If all the data were successfully written, 227 * zero is returned. If an error occurred, this function returns a negative 228 * error code. If %-EIO is returned, the physical eraseblock most probably went 229 * bad. 230 * 231 * Note, in case of an error, it is possible that something was still written 232 * to the flash media, but may be some garbage. 233 */ 234 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 235 int len) 236 { 237 int err; 238 size_t written; 239 loff_t addr; 240 241 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 242 243 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 244 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 245 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 246 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 247 248 if (ubi->ro_mode) { 249 ubi_err("read-only mode"); 250 return -EROFS; 251 } 252 253 err = self_check_not_bad(ubi, pnum); 254 if (err) 255 return err; 256 257 /* The area we are writing to has to contain all 0xFF bytes */ 258 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 259 if (err) 260 return err; 261 262 if (offset >= ubi->leb_start) { 263 /* 264 * We write to the data area of the physical eraseblock. Make 265 * sure it has valid EC and VID headers. 266 */ 267 err = self_check_peb_ec_hdr(ubi, pnum); 268 if (err) 269 return err; 270 err = self_check_peb_vid_hdr(ubi, pnum); 271 if (err) 272 return err; 273 } 274 275 if (ubi_dbg_is_write_failure(ubi)) { 276 ubi_err("cannot write %d bytes to PEB %d:%d (emulated)", 277 len, pnum, offset); 278 dump_stack(); 279 return -EIO; 280 } 281 282 addr = (loff_t)pnum * ubi->peb_size + offset; 283 err = mtd_write(ubi->mtd, addr, len, &written, buf); 284 if (err) { 285 ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes", 286 err, len, pnum, offset, written); 287 dump_stack(); 288 ubi_dump_flash(ubi, pnum, offset, len); 289 } else 290 ubi_assert(written == len); 291 292 if (!err) { 293 err = self_check_write(ubi, buf, pnum, offset, len); 294 if (err) 295 return err; 296 297 /* 298 * Since we always write sequentially, the rest of the PEB has 299 * to contain only 0xFF bytes. 300 */ 301 offset += len; 302 len = ubi->peb_size - offset; 303 if (len) 304 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 305 } 306 307 return err; 308 } 309 310 /** 311 * erase_callback - MTD erasure call-back. 312 * @ei: MTD erase information object. 313 * 314 * Note, even though MTD erase interface is asynchronous, all the current 315 * implementations are synchronous anyway. 316 */ 317 static void erase_callback(struct erase_info *ei) 318 { 319 wake_up_interruptible((wait_queue_head_t *)ei->priv); 320 } 321 322 /** 323 * do_sync_erase - synchronously erase a physical eraseblock. 324 * @ubi: UBI device description object 325 * @pnum: the physical eraseblock number to erase 326 * 327 * This function synchronously erases physical eraseblock @pnum and returns 328 * zero in case of success and a negative error code in case of failure. If 329 * %-EIO is returned, the physical eraseblock most probably went bad. 330 */ 331 static int do_sync_erase(struct ubi_device *ubi, int pnum) 332 { 333 int err, retries = 0; 334 struct erase_info ei; 335 wait_queue_head_t wq; 336 337 dbg_io("erase PEB %d", pnum); 338 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 339 340 if (ubi->ro_mode) { 341 ubi_err("read-only mode"); 342 return -EROFS; 343 } 344 345 retry: 346 init_waitqueue_head(&wq); 347 memset(&ei, 0, sizeof(struct erase_info)); 348 349 ei.mtd = ubi->mtd; 350 ei.addr = (loff_t)pnum * ubi->peb_size; 351 ei.len = ubi->peb_size; 352 ei.callback = erase_callback; 353 ei.priv = (unsigned long)&wq; 354 355 err = mtd_erase(ubi->mtd, &ei); 356 if (err) { 357 if (retries++ < UBI_IO_RETRIES) { 358 ubi_warn("error %d while erasing PEB %d, retry", 359 err, pnum); 360 yield(); 361 goto retry; 362 } 363 ubi_err("cannot erase PEB %d, error %d", pnum, err); 364 dump_stack(); 365 return err; 366 } 367 368 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 369 ei.state == MTD_ERASE_FAILED); 370 if (err) { 371 ubi_err("interrupted PEB %d erasure", pnum); 372 return -EINTR; 373 } 374 375 if (ei.state == MTD_ERASE_FAILED) { 376 if (retries++ < UBI_IO_RETRIES) { 377 ubi_warn("error while erasing PEB %d, retry", pnum); 378 yield(); 379 goto retry; 380 } 381 ubi_err("cannot erase PEB %d", pnum); 382 dump_stack(); 383 return -EIO; 384 } 385 386 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); 387 if (err) 388 return err; 389 390 if (ubi_dbg_is_erase_failure(ubi)) { 391 ubi_err("cannot erase PEB %d (emulated)", pnum); 392 return -EIO; 393 } 394 395 return 0; 396 } 397 398 /* Patterns to write to a physical eraseblock when torturing it */ 399 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 400 401 /** 402 * torture_peb - test a supposedly bad physical eraseblock. 403 * @ubi: UBI device description object 404 * @pnum: the physical eraseblock number to test 405 * 406 * This function returns %-EIO if the physical eraseblock did not pass the 407 * test, a positive number of erase operations done if the test was 408 * successfully passed, and other negative error codes in case of other errors. 409 */ 410 static int torture_peb(struct ubi_device *ubi, int pnum) 411 { 412 int err, i, patt_count; 413 414 ubi_msg("run torture test for PEB %d", pnum); 415 patt_count = ARRAY_SIZE(patterns); 416 ubi_assert(patt_count > 0); 417 418 mutex_lock(&ubi->buf_mutex); 419 for (i = 0; i < patt_count; i++) { 420 err = do_sync_erase(ubi, pnum); 421 if (err) 422 goto out; 423 424 /* Make sure the PEB contains only 0xFF bytes */ 425 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 426 if (err) 427 goto out; 428 429 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); 430 if (err == 0) { 431 ubi_err("erased PEB %d, but a non-0xFF byte found", 432 pnum); 433 err = -EIO; 434 goto out; 435 } 436 437 /* Write a pattern and check it */ 438 memset(ubi->peb_buf, patterns[i], ubi->peb_size); 439 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 440 if (err) 441 goto out; 442 443 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); 444 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 445 if (err) 446 goto out; 447 448 err = ubi_check_pattern(ubi->peb_buf, patterns[i], 449 ubi->peb_size); 450 if (err == 0) { 451 ubi_err("pattern %x checking failed for PEB %d", 452 patterns[i], pnum); 453 err = -EIO; 454 goto out; 455 } 456 } 457 458 err = patt_count; 459 ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum); 460 461 out: 462 mutex_unlock(&ubi->buf_mutex); 463 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 464 /* 465 * If a bit-flip or data integrity error was detected, the test 466 * has not passed because it happened on a freshly erased 467 * physical eraseblock which means something is wrong with it. 468 */ 469 ubi_err("read problems on freshly erased PEB %d, must be bad", 470 pnum); 471 err = -EIO; 472 } 473 return err; 474 } 475 476 /** 477 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 478 * @ubi: UBI device description object 479 * @pnum: physical eraseblock number to prepare 480 * 481 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 482 * algorithm: the PEB is first filled with zeroes, then it is erased. And 483 * filling with zeroes starts from the end of the PEB. This was observed with 484 * Spansion S29GL512N NOR flash. 485 * 486 * This means that in case of a power cut we may end up with intact data at the 487 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 488 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 489 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 490 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 491 * 492 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 493 * magic numbers in order to invalidate them and prevent the failures. Returns 494 * zero in case of success and a negative error code in case of failure. 495 */ 496 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 497 { 498 int err; 499 size_t written; 500 loff_t addr; 501 uint32_t data = 0; 502 struct ubi_ec_hdr ec_hdr; 503 504 /* 505 * Note, we cannot generally define VID header buffers on stack, 506 * because of the way we deal with these buffers (see the header 507 * comment in this file). But we know this is a NOR-specific piece of 508 * code, so we can do this. But yes, this is error-prone and we should 509 * (pre-)allocate VID header buffer instead. 510 */ 511 struct ubi_vid_hdr vid_hdr; 512 513 /* 514 * If VID or EC is valid, we have to corrupt them before erasing. 515 * It is important to first invalidate the EC header, and then the VID 516 * header. Otherwise a power cut may lead to valid EC header and 517 * invalid VID header, in which case UBI will treat this PEB as 518 * corrupted and will try to preserve it, and print scary warnings. 519 */ 520 addr = (loff_t)pnum * ubi->peb_size; 521 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 522 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 523 err != UBI_IO_FF){ 524 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 525 if(err) 526 goto error; 527 } 528 529 err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); 530 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 531 err != UBI_IO_FF){ 532 addr += ubi->vid_hdr_aloffset; 533 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 534 if (err) 535 goto error; 536 } 537 return 0; 538 539 error: 540 /* 541 * The PEB contains a valid VID or EC header, but we cannot invalidate 542 * it. Supposedly the flash media or the driver is screwed up, so 543 * return an error. 544 */ 545 ubi_err("cannot invalidate PEB %d, write returned %d", pnum, err); 546 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); 547 return -EIO; 548 } 549 550 /** 551 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 552 * @ubi: UBI device description object 553 * @pnum: physical eraseblock number to erase 554 * @torture: if this physical eraseblock has to be tortured 555 * 556 * This function synchronously erases physical eraseblock @pnum. If @torture 557 * flag is not zero, the physical eraseblock is checked by means of writing 558 * different patterns to it and reading them back. If the torturing is enabled, 559 * the physical eraseblock is erased more than once. 560 * 561 * This function returns the number of erasures made in case of success, %-EIO 562 * if the erasure failed or the torturing test failed, and other negative error 563 * codes in case of other errors. Note, %-EIO means that the physical 564 * eraseblock is bad. 565 */ 566 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 567 { 568 int err, ret = 0; 569 570 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 571 572 err = self_check_not_bad(ubi, pnum); 573 if (err != 0) 574 return err; 575 576 if (ubi->ro_mode) { 577 ubi_err("read-only mode"); 578 return -EROFS; 579 } 580 581 if (ubi->nor_flash) { 582 err = nor_erase_prepare(ubi, pnum); 583 if (err) 584 return err; 585 } 586 587 if (torture) { 588 ret = torture_peb(ubi, pnum); 589 if (ret < 0) 590 return ret; 591 } 592 593 err = do_sync_erase(ubi, pnum); 594 if (err) 595 return err; 596 597 return ret + 1; 598 } 599 600 /** 601 * ubi_io_is_bad - check if a physical eraseblock is bad. 602 * @ubi: UBI device description object 603 * @pnum: the physical eraseblock number to check 604 * 605 * This function returns a positive number if the physical eraseblock is bad, 606 * zero if not, and a negative error code if an error occurred. 607 */ 608 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 609 { 610 struct mtd_info *mtd = ubi->mtd; 611 612 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 613 614 if (ubi->bad_allowed) { 615 int ret; 616 617 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 618 if (ret < 0) 619 ubi_err("error %d while checking if PEB %d is bad", 620 ret, pnum); 621 else if (ret) 622 dbg_io("PEB %d is bad", pnum); 623 return ret; 624 } 625 626 return 0; 627 } 628 629 /** 630 * ubi_io_mark_bad - mark a physical eraseblock as bad. 631 * @ubi: UBI device description object 632 * @pnum: the physical eraseblock number to mark 633 * 634 * This function returns zero in case of success and a negative error code in 635 * case of failure. 636 */ 637 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 638 { 639 int err; 640 struct mtd_info *mtd = ubi->mtd; 641 642 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 643 644 if (ubi->ro_mode) { 645 ubi_err("read-only mode"); 646 return -EROFS; 647 } 648 649 if (!ubi->bad_allowed) 650 return 0; 651 652 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 653 if (err) 654 ubi_err("cannot mark PEB %d bad, error %d", pnum, err); 655 return err; 656 } 657 658 /** 659 * validate_ec_hdr - validate an erase counter header. 660 * @ubi: UBI device description object 661 * @ec_hdr: the erase counter header to check 662 * 663 * This function returns zero if the erase counter header is OK, and %1 if 664 * not. 665 */ 666 static int validate_ec_hdr(const struct ubi_device *ubi, 667 const struct ubi_ec_hdr *ec_hdr) 668 { 669 long long ec; 670 int vid_hdr_offset, leb_start; 671 672 ec = be64_to_cpu(ec_hdr->ec); 673 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 674 leb_start = be32_to_cpu(ec_hdr->data_offset); 675 676 if (ec_hdr->version != UBI_VERSION) { 677 ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d", 678 UBI_VERSION, (int)ec_hdr->version); 679 goto bad; 680 } 681 682 if (vid_hdr_offset != ubi->vid_hdr_offset) { 683 ubi_err("bad VID header offset %d, expected %d", 684 vid_hdr_offset, ubi->vid_hdr_offset); 685 goto bad; 686 } 687 688 if (leb_start != ubi->leb_start) { 689 ubi_err("bad data offset %d, expected %d", 690 leb_start, ubi->leb_start); 691 goto bad; 692 } 693 694 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 695 ubi_err("bad erase counter %lld", ec); 696 goto bad; 697 } 698 699 return 0; 700 701 bad: 702 ubi_err("bad EC header"); 703 ubi_dump_ec_hdr(ec_hdr); 704 dump_stack(); 705 return 1; 706 } 707 708 /** 709 * ubi_io_read_ec_hdr - read and check an erase counter header. 710 * @ubi: UBI device description object 711 * @pnum: physical eraseblock to read from 712 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 713 * header 714 * @verbose: be verbose if the header is corrupted or was not found 715 * 716 * This function reads erase counter header from physical eraseblock @pnum and 717 * stores it in @ec_hdr. This function also checks CRC checksum of the read 718 * erase counter header. The following codes may be returned: 719 * 720 * o %0 if the CRC checksum is correct and the header was successfully read; 721 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 722 * and corrected by the flash driver; this is harmless but may indicate that 723 * this eraseblock may become bad soon (but may be not); 724 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 725 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 726 * a data integrity error (uncorrectable ECC error in case of NAND); 727 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 728 * o a negative error code in case of failure. 729 */ 730 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 731 struct ubi_ec_hdr *ec_hdr, int verbose) 732 { 733 int err, read_err; 734 uint32_t crc, magic, hdr_crc; 735 736 dbg_io("read EC header from PEB %d", pnum); 737 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 738 739 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 740 if (read_err) { 741 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 742 return read_err; 743 744 /* 745 * We read all the data, but either a correctable bit-flip 746 * occurred, or MTD reported a data integrity error 747 * (uncorrectable ECC error in case of NAND). The former is 748 * harmless, the later may mean that the read data is 749 * corrupted. But we have a CRC check-sum and we will detect 750 * this. If the EC header is still OK, we just report this as 751 * there was a bit-flip, to force scrubbing. 752 */ 753 } 754 755 magic = be32_to_cpu(ec_hdr->magic); 756 if (magic != UBI_EC_HDR_MAGIC) { 757 if (mtd_is_eccerr(read_err)) 758 return UBI_IO_BAD_HDR_EBADMSG; 759 760 /* 761 * The magic field is wrong. Let's check if we have read all 762 * 0xFF. If yes, this physical eraseblock is assumed to be 763 * empty. 764 */ 765 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 766 /* The physical eraseblock is supposedly empty */ 767 if (verbose) 768 ubi_warn("no EC header found at PEB %d, only 0xFF bytes", 769 pnum); 770 dbg_bld("no EC header found at PEB %d, only 0xFF bytes", 771 pnum); 772 if (!read_err) 773 return UBI_IO_FF; 774 else 775 return UBI_IO_FF_BITFLIPS; 776 } 777 778 /* 779 * This is not a valid erase counter header, and these are not 780 * 0xFF bytes. Report that the header is corrupted. 781 */ 782 if (verbose) { 783 ubi_warn("bad magic number at PEB %d: %08x instead of %08x", 784 pnum, magic, UBI_EC_HDR_MAGIC); 785 ubi_dump_ec_hdr(ec_hdr); 786 } 787 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 788 pnum, magic, UBI_EC_HDR_MAGIC); 789 return UBI_IO_BAD_HDR; 790 } 791 792 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 793 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 794 795 if (hdr_crc != crc) { 796 if (verbose) { 797 ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 798 pnum, crc, hdr_crc); 799 ubi_dump_ec_hdr(ec_hdr); 800 } 801 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 802 pnum, crc, hdr_crc); 803 804 if (!read_err) 805 return UBI_IO_BAD_HDR; 806 else 807 return UBI_IO_BAD_HDR_EBADMSG; 808 } 809 810 /* And of course validate what has just been read from the media */ 811 err = validate_ec_hdr(ubi, ec_hdr); 812 if (err) { 813 ubi_err("validation failed for PEB %d", pnum); 814 return -EINVAL; 815 } 816 817 /* 818 * If there was %-EBADMSG, but the header CRC is still OK, report about 819 * a bit-flip to force scrubbing on this PEB. 820 */ 821 return read_err ? UBI_IO_BITFLIPS : 0; 822 } 823 824 /** 825 * ubi_io_write_ec_hdr - write an erase counter header. 826 * @ubi: UBI device description object 827 * @pnum: physical eraseblock to write to 828 * @ec_hdr: the erase counter header to write 829 * 830 * This function writes erase counter header described by @ec_hdr to physical 831 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 832 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 833 * field. 834 * 835 * This function returns zero in case of success and a negative error code in 836 * case of failure. If %-EIO is returned, the physical eraseblock most probably 837 * went bad. 838 */ 839 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 840 struct ubi_ec_hdr *ec_hdr) 841 { 842 int err; 843 uint32_t crc; 844 845 dbg_io("write EC header to PEB %d", pnum); 846 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 847 848 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 849 ec_hdr->version = UBI_VERSION; 850 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 851 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 852 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 853 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 854 ec_hdr->hdr_crc = cpu_to_be32(crc); 855 856 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 857 if (err) 858 return err; 859 860 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 861 return err; 862 } 863 864 /** 865 * validate_vid_hdr - validate a volume identifier header. 866 * @ubi: UBI device description object 867 * @vid_hdr: the volume identifier header to check 868 * 869 * This function checks that data stored in the volume identifier header 870 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 871 */ 872 static int validate_vid_hdr(const struct ubi_device *ubi, 873 const struct ubi_vid_hdr *vid_hdr) 874 { 875 int vol_type = vid_hdr->vol_type; 876 int copy_flag = vid_hdr->copy_flag; 877 int vol_id = be32_to_cpu(vid_hdr->vol_id); 878 int lnum = be32_to_cpu(vid_hdr->lnum); 879 int compat = vid_hdr->compat; 880 int data_size = be32_to_cpu(vid_hdr->data_size); 881 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 882 int data_pad = be32_to_cpu(vid_hdr->data_pad); 883 int data_crc = be32_to_cpu(vid_hdr->data_crc); 884 int usable_leb_size = ubi->leb_size - data_pad; 885 886 if (copy_flag != 0 && copy_flag != 1) { 887 ubi_err("bad copy_flag"); 888 goto bad; 889 } 890 891 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 892 data_pad < 0) { 893 ubi_err("negative values"); 894 goto bad; 895 } 896 897 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 898 ubi_err("bad vol_id"); 899 goto bad; 900 } 901 902 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 903 ubi_err("bad compat"); 904 goto bad; 905 } 906 907 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 908 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 909 compat != UBI_COMPAT_REJECT) { 910 ubi_err("bad compat"); 911 goto bad; 912 } 913 914 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 915 ubi_err("bad vol_type"); 916 goto bad; 917 } 918 919 if (data_pad >= ubi->leb_size / 2) { 920 ubi_err("bad data_pad"); 921 goto bad; 922 } 923 924 if (vol_type == UBI_VID_STATIC) { 925 /* 926 * Although from high-level point of view static volumes may 927 * contain zero bytes of data, but no VID headers can contain 928 * zero at these fields, because they empty volumes do not have 929 * mapped logical eraseblocks. 930 */ 931 if (used_ebs == 0) { 932 ubi_err("zero used_ebs"); 933 goto bad; 934 } 935 if (data_size == 0) { 936 ubi_err("zero data_size"); 937 goto bad; 938 } 939 if (lnum < used_ebs - 1) { 940 if (data_size != usable_leb_size) { 941 ubi_err("bad data_size"); 942 goto bad; 943 } 944 } else if (lnum == used_ebs - 1) { 945 if (data_size == 0) { 946 ubi_err("bad data_size at last LEB"); 947 goto bad; 948 } 949 } else { 950 ubi_err("too high lnum"); 951 goto bad; 952 } 953 } else { 954 if (copy_flag == 0) { 955 if (data_crc != 0) { 956 ubi_err("non-zero data CRC"); 957 goto bad; 958 } 959 if (data_size != 0) { 960 ubi_err("non-zero data_size"); 961 goto bad; 962 } 963 } else { 964 if (data_size == 0) { 965 ubi_err("zero data_size of copy"); 966 goto bad; 967 } 968 } 969 if (used_ebs != 0) { 970 ubi_err("bad used_ebs"); 971 goto bad; 972 } 973 } 974 975 return 0; 976 977 bad: 978 ubi_err("bad VID header"); 979 ubi_dump_vid_hdr(vid_hdr); 980 dump_stack(); 981 return 1; 982 } 983 984 /** 985 * ubi_io_read_vid_hdr - read and check a volume identifier header. 986 * @ubi: UBI device description object 987 * @pnum: physical eraseblock number to read from 988 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 989 * identifier header 990 * @verbose: be verbose if the header is corrupted or wasn't found 991 * 992 * This function reads the volume identifier header from physical eraseblock 993 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 994 * volume identifier header. The error codes are the same as in 995 * 'ubi_io_read_ec_hdr()'. 996 * 997 * Note, the implementation of this function is also very similar to 998 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 999 */ 1000 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 1001 struct ubi_vid_hdr *vid_hdr, int verbose) 1002 { 1003 int err, read_err; 1004 uint32_t crc, magic, hdr_crc; 1005 void *p; 1006 1007 dbg_io("read VID header from PEB %d", pnum); 1008 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1009 1010 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1011 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1012 ubi->vid_hdr_alsize); 1013 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 1014 return read_err; 1015 1016 magic = be32_to_cpu(vid_hdr->magic); 1017 if (magic != UBI_VID_HDR_MAGIC) { 1018 if (mtd_is_eccerr(read_err)) 1019 return UBI_IO_BAD_HDR_EBADMSG; 1020 1021 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1022 if (verbose) 1023 ubi_warn("no VID header found at PEB %d, only 0xFF bytes", 1024 pnum); 1025 dbg_bld("no VID header found at PEB %d, only 0xFF bytes", 1026 pnum); 1027 if (!read_err) 1028 return UBI_IO_FF; 1029 else 1030 return UBI_IO_FF_BITFLIPS; 1031 } 1032 1033 if (verbose) { 1034 ubi_warn("bad magic number at PEB %d: %08x instead of %08x", 1035 pnum, magic, UBI_VID_HDR_MAGIC); 1036 ubi_dump_vid_hdr(vid_hdr); 1037 } 1038 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 1039 pnum, magic, UBI_VID_HDR_MAGIC); 1040 return UBI_IO_BAD_HDR; 1041 } 1042 1043 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1044 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1045 1046 if (hdr_crc != crc) { 1047 if (verbose) { 1048 ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x", 1049 pnum, crc, hdr_crc); 1050 ubi_dump_vid_hdr(vid_hdr); 1051 } 1052 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", 1053 pnum, crc, hdr_crc); 1054 if (!read_err) 1055 return UBI_IO_BAD_HDR; 1056 else 1057 return UBI_IO_BAD_HDR_EBADMSG; 1058 } 1059 1060 err = validate_vid_hdr(ubi, vid_hdr); 1061 if (err) { 1062 ubi_err("validation failed for PEB %d", pnum); 1063 return -EINVAL; 1064 } 1065 1066 return read_err ? UBI_IO_BITFLIPS : 0; 1067 } 1068 1069 /** 1070 * ubi_io_write_vid_hdr - write a volume identifier header. 1071 * @ubi: UBI device description object 1072 * @pnum: the physical eraseblock number to write to 1073 * @vid_hdr: the volume identifier header to write 1074 * 1075 * This function writes the volume identifier header described by @vid_hdr to 1076 * physical eraseblock @pnum. This function automatically fills the 1077 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1078 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1079 * 1080 * This function returns zero in case of success and a negative error code in 1081 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1082 * bad. 1083 */ 1084 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1085 struct ubi_vid_hdr *vid_hdr) 1086 { 1087 int err; 1088 uint32_t crc; 1089 void *p; 1090 1091 dbg_io("write VID header to PEB %d", pnum); 1092 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1093 1094 err = self_check_peb_ec_hdr(ubi, pnum); 1095 if (err) 1096 return err; 1097 1098 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1099 vid_hdr->version = UBI_VERSION; 1100 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1101 vid_hdr->hdr_crc = cpu_to_be32(crc); 1102 1103 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1104 if (err) 1105 return err; 1106 1107 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1108 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1109 ubi->vid_hdr_alsize); 1110 return err; 1111 } 1112 1113 /** 1114 * self_check_not_bad - ensure that a physical eraseblock is not bad. 1115 * @ubi: UBI device description object 1116 * @pnum: physical eraseblock number to check 1117 * 1118 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1119 * it is bad and a negative error code if an error occurred. 1120 */ 1121 static int self_check_not_bad(const struct ubi_device *ubi, int pnum) 1122 { 1123 int err; 1124 1125 if (!ubi_dbg_chk_io(ubi)) 1126 return 0; 1127 1128 err = ubi_io_is_bad(ubi, pnum); 1129 if (!err) 1130 return err; 1131 1132 ubi_err("self-check failed for PEB %d", pnum); 1133 dump_stack(); 1134 return err > 0 ? -EINVAL : err; 1135 } 1136 1137 /** 1138 * self_check_ec_hdr - check if an erase counter header is all right. 1139 * @ubi: UBI device description object 1140 * @pnum: physical eraseblock number the erase counter header belongs to 1141 * @ec_hdr: the erase counter header to check 1142 * 1143 * This function returns zero if the erase counter header contains valid 1144 * values, and %-EINVAL if not. 1145 */ 1146 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1147 const struct ubi_ec_hdr *ec_hdr) 1148 { 1149 int err; 1150 uint32_t magic; 1151 1152 if (!ubi_dbg_chk_io(ubi)) 1153 return 0; 1154 1155 magic = be32_to_cpu(ec_hdr->magic); 1156 if (magic != UBI_EC_HDR_MAGIC) { 1157 ubi_err("bad magic %#08x, must be %#08x", 1158 magic, UBI_EC_HDR_MAGIC); 1159 goto fail; 1160 } 1161 1162 err = validate_ec_hdr(ubi, ec_hdr); 1163 if (err) { 1164 ubi_err("self-check failed for PEB %d", pnum); 1165 goto fail; 1166 } 1167 1168 return 0; 1169 1170 fail: 1171 ubi_dump_ec_hdr(ec_hdr); 1172 dump_stack(); 1173 return -EINVAL; 1174 } 1175 1176 /** 1177 * self_check_peb_ec_hdr - check erase counter header. 1178 * @ubi: UBI device description object 1179 * @pnum: the physical eraseblock number to check 1180 * 1181 * This function returns zero if the erase counter header is all right and and 1182 * a negative error code if not or if an error occurred. 1183 */ 1184 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1185 { 1186 int err; 1187 uint32_t crc, hdr_crc; 1188 struct ubi_ec_hdr *ec_hdr; 1189 1190 if (!ubi_dbg_chk_io(ubi)) 1191 return 0; 1192 1193 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1194 if (!ec_hdr) 1195 return -ENOMEM; 1196 1197 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1198 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1199 goto exit; 1200 1201 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1202 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1203 if (hdr_crc != crc) { 1204 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); 1205 ubi_err("self-check failed for PEB %d", pnum); 1206 ubi_dump_ec_hdr(ec_hdr); 1207 dump_stack(); 1208 err = -EINVAL; 1209 goto exit; 1210 } 1211 1212 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 1213 1214 exit: 1215 kfree(ec_hdr); 1216 return err; 1217 } 1218 1219 /** 1220 * self_check_vid_hdr - check that a volume identifier header is all right. 1221 * @ubi: UBI device description object 1222 * @pnum: physical eraseblock number the volume identifier header belongs to 1223 * @vid_hdr: the volume identifier header to check 1224 * 1225 * This function returns zero if the volume identifier header is all right, and 1226 * %-EINVAL if not. 1227 */ 1228 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1229 const struct ubi_vid_hdr *vid_hdr) 1230 { 1231 int err; 1232 uint32_t magic; 1233 1234 if (!ubi_dbg_chk_io(ubi)) 1235 return 0; 1236 1237 magic = be32_to_cpu(vid_hdr->magic); 1238 if (magic != UBI_VID_HDR_MAGIC) { 1239 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", 1240 magic, pnum, UBI_VID_HDR_MAGIC); 1241 goto fail; 1242 } 1243 1244 err = validate_vid_hdr(ubi, vid_hdr); 1245 if (err) { 1246 ubi_err("self-check failed for PEB %d", pnum); 1247 goto fail; 1248 } 1249 1250 return err; 1251 1252 fail: 1253 ubi_err("self-check failed for PEB %d", pnum); 1254 ubi_dump_vid_hdr(vid_hdr); 1255 dump_stack(); 1256 return -EINVAL; 1257 1258 } 1259 1260 /** 1261 * self_check_peb_vid_hdr - check volume identifier header. 1262 * @ubi: UBI device description object 1263 * @pnum: the physical eraseblock number to check 1264 * 1265 * This function returns zero if the volume identifier header is all right, 1266 * and a negative error code if not or if an error occurred. 1267 */ 1268 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1269 { 1270 int err; 1271 uint32_t crc, hdr_crc; 1272 struct ubi_vid_hdr *vid_hdr; 1273 void *p; 1274 1275 if (!ubi_dbg_chk_io(ubi)) 1276 return 0; 1277 1278 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1279 if (!vid_hdr) 1280 return -ENOMEM; 1281 1282 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1283 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1284 ubi->vid_hdr_alsize); 1285 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1286 goto exit; 1287 1288 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1289 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1290 if (hdr_crc != crc) { 1291 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x", 1292 pnum, crc, hdr_crc); 1293 ubi_err("self-check failed for PEB %d", pnum); 1294 ubi_dump_vid_hdr(vid_hdr); 1295 dump_stack(); 1296 err = -EINVAL; 1297 goto exit; 1298 } 1299 1300 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1301 1302 exit: 1303 ubi_free_vid_hdr(ubi, vid_hdr); 1304 return err; 1305 } 1306 1307 /** 1308 * self_check_write - make sure write succeeded. 1309 * @ubi: UBI device description object 1310 * @buf: buffer with data which were written 1311 * @pnum: physical eraseblock number the data were written to 1312 * @offset: offset within the physical eraseblock the data were written to 1313 * @len: how many bytes were written 1314 * 1315 * This functions reads data which were recently written and compares it with 1316 * the original data buffer - the data have to match. Returns zero if the data 1317 * match and a negative error code if not or in case of failure. 1318 */ 1319 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1320 int offset, int len) 1321 { 1322 int err, i; 1323 size_t read; 1324 void *buf1; 1325 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1326 1327 if (!ubi_dbg_chk_io(ubi)) 1328 return 0; 1329 1330 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1331 if (!buf1) { 1332 ubi_err("cannot allocate memory to check writes"); 1333 return 0; 1334 } 1335 1336 err = mtd_read(ubi->mtd, addr, len, &read, buf1); 1337 if (err && !mtd_is_bitflip(err)) 1338 goto out_free; 1339 1340 for (i = 0; i < len; i++) { 1341 uint8_t c = ((uint8_t *)buf)[i]; 1342 uint8_t c1 = ((uint8_t *)buf1)[i]; 1343 int dump_len; 1344 1345 if (c == c1) 1346 continue; 1347 1348 ubi_err("self-check failed for PEB %d:%d, len %d", 1349 pnum, offset, len); 1350 ubi_msg("data differ at position %d", i); 1351 dump_len = max_t(int, 128, len - i); 1352 ubi_msg("hex dump of the original buffer from %d to %d", 1353 i, i + dump_len); 1354 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1355 buf + i, dump_len, 1); 1356 ubi_msg("hex dump of the read buffer from %d to %d", 1357 i, i + dump_len); 1358 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1359 buf1 + i, dump_len, 1); 1360 dump_stack(); 1361 err = -EINVAL; 1362 goto out_free; 1363 } 1364 1365 vfree(buf1); 1366 return 0; 1367 1368 out_free: 1369 vfree(buf1); 1370 return err; 1371 } 1372 1373 /** 1374 * ubi_self_check_all_ff - check that a region of flash is empty. 1375 * @ubi: UBI device description object 1376 * @pnum: the physical eraseblock number to check 1377 * @offset: the starting offset within the physical eraseblock to check 1378 * @len: the length of the region to check 1379 * 1380 * This function returns zero if only 0xFF bytes are present at offset 1381 * @offset of the physical eraseblock @pnum, and a negative error code if not 1382 * or if an error occurred. 1383 */ 1384 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1385 { 1386 size_t read; 1387 int err; 1388 void *buf; 1389 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1390 1391 if (!ubi_dbg_chk_io(ubi)) 1392 return 0; 1393 1394 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1395 if (!buf) { 1396 ubi_err("cannot allocate memory to check for 0xFFs"); 1397 return 0; 1398 } 1399 1400 err = mtd_read(ubi->mtd, addr, len, &read, buf); 1401 if (err && !mtd_is_bitflip(err)) { 1402 ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes", 1403 err, len, pnum, offset, read); 1404 goto error; 1405 } 1406 1407 err = ubi_check_pattern(buf, 0xFF, len); 1408 if (err == 0) { 1409 ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", 1410 pnum, offset, len); 1411 goto fail; 1412 } 1413 1414 vfree(buf); 1415 return 0; 1416 1417 fail: 1418 ubi_err("self-check failed for PEB %d", pnum); 1419 ubi_msg("hex dump of the %d-%d region", offset, offset + len); 1420 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1421 err = -EINVAL; 1422 error: 1423 dump_stack(); 1424 vfree(buf); 1425 return err; 1426 } 1427