1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21 /* 22 * The UBI Eraseblock Association (EBA) sub-system. 23 * 24 * This sub-system is responsible for I/O to/from logical eraseblock. 25 * 26 * Although in this implementation the EBA table is fully kept and managed in 27 * RAM, which assumes poor scalability, it might be (partially) maintained on 28 * flash in future implementations. 29 * 30 * The EBA sub-system implements per-logical eraseblock locking. Before 31 * accessing a logical eraseblock it is locked for reading or writing. The 32 * per-logical eraseblock locking is implemented by means of the lock tree. The 33 * lock tree is an RB-tree which refers all the currently locked logical 34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. 35 * They are indexed by (@vol_id, @lnum) pairs. 36 * 37 * EBA also maintains the global sequence counter which is incremented each 38 * time a logical eraseblock is mapped to a physical eraseblock and it is 39 * stored in the volume identifier header. This means that each VID header has 40 * a unique sequence number. The sequence number is only increased an we assume 41 * 64 bits is enough to never overflow. 42 */ 43 44 #include <linux/slab.h> 45 #include <linux/crc32.h> 46 #include <linux/err.h> 47 #include "ubi.h" 48 49 /* Number of physical eraseblocks reserved for atomic LEB change operation */ 50 #define EBA_RESERVED_PEBS 1 51 52 /** 53 * next_sqnum - get next sequence number. 54 * @ubi: UBI device description object 55 * 56 * This function returns next sequence number to use, which is just the current 57 * global sequence counter value. It also increases the global sequence 58 * counter. 59 */ 60 unsigned long long ubi_next_sqnum(struct ubi_device *ubi) 61 { 62 unsigned long long sqnum; 63 64 spin_lock(&ubi->ltree_lock); 65 sqnum = ubi->global_sqnum++; 66 spin_unlock(&ubi->ltree_lock); 67 68 return sqnum; 69 } 70 71 /** 72 * ubi_get_compat - get compatibility flags of a volume. 73 * @ubi: UBI device description object 74 * @vol_id: volume ID 75 * 76 * This function returns compatibility flags for an internal volume. User 77 * volumes have no compatibility flags, so %0 is returned. 78 */ 79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) 80 { 81 if (vol_id == UBI_LAYOUT_VOLUME_ID) 82 return UBI_LAYOUT_VOLUME_COMPAT; 83 return 0; 84 } 85 86 /** 87 * ltree_lookup - look up the lock tree. 88 * @ubi: UBI device description object 89 * @vol_id: volume ID 90 * @lnum: logical eraseblock number 91 * 92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry 93 * object if the logical eraseblock is locked and %NULL if it is not. 94 * @ubi->ltree_lock has to be locked. 95 */ 96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, 97 int lnum) 98 { 99 struct rb_node *p; 100 101 p = ubi->ltree.rb_node; 102 while (p) { 103 struct ubi_ltree_entry *le; 104 105 le = rb_entry(p, struct ubi_ltree_entry, rb); 106 107 if (vol_id < le->vol_id) 108 p = p->rb_left; 109 else if (vol_id > le->vol_id) 110 p = p->rb_right; 111 else { 112 if (lnum < le->lnum) 113 p = p->rb_left; 114 else if (lnum > le->lnum) 115 p = p->rb_right; 116 else 117 return le; 118 } 119 } 120 121 return NULL; 122 } 123 124 /** 125 * ltree_add_entry - add new entry to the lock tree. 126 * @ubi: UBI device description object 127 * @vol_id: volume ID 128 * @lnum: logical eraseblock number 129 * 130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the 131 * lock tree. If such entry is already there, its usage counter is increased. 132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation 133 * failed. 134 */ 135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, 136 int vol_id, int lnum) 137 { 138 struct ubi_ltree_entry *le, *le1, *le_free; 139 140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); 141 if (!le) 142 return ERR_PTR(-ENOMEM); 143 144 le->users = 0; 145 init_rwsem(&le->mutex); 146 le->vol_id = vol_id; 147 le->lnum = lnum; 148 149 spin_lock(&ubi->ltree_lock); 150 le1 = ltree_lookup(ubi, vol_id, lnum); 151 152 if (le1) { 153 /* 154 * This logical eraseblock is already locked. The newly 155 * allocated lock entry is not needed. 156 */ 157 le_free = le; 158 le = le1; 159 } else { 160 struct rb_node **p, *parent = NULL; 161 162 /* 163 * No lock entry, add the newly allocated one to the 164 * @ubi->ltree RB-tree. 165 */ 166 le_free = NULL; 167 168 p = &ubi->ltree.rb_node; 169 while (*p) { 170 parent = *p; 171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb); 172 173 if (vol_id < le1->vol_id) 174 p = &(*p)->rb_left; 175 else if (vol_id > le1->vol_id) 176 p = &(*p)->rb_right; 177 else { 178 ubi_assert(lnum != le1->lnum); 179 if (lnum < le1->lnum) 180 p = &(*p)->rb_left; 181 else 182 p = &(*p)->rb_right; 183 } 184 } 185 186 rb_link_node(&le->rb, parent, p); 187 rb_insert_color(&le->rb, &ubi->ltree); 188 } 189 le->users += 1; 190 spin_unlock(&ubi->ltree_lock); 191 192 kfree(le_free); 193 return le; 194 } 195 196 /** 197 * leb_read_lock - lock logical eraseblock for reading. 198 * @ubi: UBI device description object 199 * @vol_id: volume ID 200 * @lnum: logical eraseblock number 201 * 202 * This function locks a logical eraseblock for reading. Returns zero in case 203 * of success and a negative error code in case of failure. 204 */ 205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) 206 { 207 struct ubi_ltree_entry *le; 208 209 le = ltree_add_entry(ubi, vol_id, lnum); 210 if (IS_ERR(le)) 211 return PTR_ERR(le); 212 down_read(&le->mutex); 213 return 0; 214 } 215 216 /** 217 * leb_read_unlock - unlock logical eraseblock. 218 * @ubi: UBI device description object 219 * @vol_id: volume ID 220 * @lnum: logical eraseblock number 221 */ 222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) 223 { 224 struct ubi_ltree_entry *le; 225 226 spin_lock(&ubi->ltree_lock); 227 le = ltree_lookup(ubi, vol_id, lnum); 228 le->users -= 1; 229 ubi_assert(le->users >= 0); 230 up_read(&le->mutex); 231 if (le->users == 0) { 232 rb_erase(&le->rb, &ubi->ltree); 233 kfree(le); 234 } 235 spin_unlock(&ubi->ltree_lock); 236 } 237 238 /** 239 * leb_write_lock - lock logical eraseblock for writing. 240 * @ubi: UBI device description object 241 * @vol_id: volume ID 242 * @lnum: logical eraseblock number 243 * 244 * This function locks a logical eraseblock for writing. Returns zero in case 245 * of success and a negative error code in case of failure. 246 */ 247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) 248 { 249 struct ubi_ltree_entry *le; 250 251 le = ltree_add_entry(ubi, vol_id, lnum); 252 if (IS_ERR(le)) 253 return PTR_ERR(le); 254 down_write(&le->mutex); 255 return 0; 256 } 257 258 /** 259 * leb_write_lock - lock logical eraseblock for writing. 260 * @ubi: UBI device description object 261 * @vol_id: volume ID 262 * @lnum: logical eraseblock number 263 * 264 * This function locks a logical eraseblock for writing if there is no 265 * contention and does nothing if there is contention. Returns %0 in case of 266 * success, %1 in case of contention, and and a negative error code in case of 267 * failure. 268 */ 269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) 270 { 271 struct ubi_ltree_entry *le; 272 273 le = ltree_add_entry(ubi, vol_id, lnum); 274 if (IS_ERR(le)) 275 return PTR_ERR(le); 276 if (down_write_trylock(&le->mutex)) 277 return 0; 278 279 /* Contention, cancel */ 280 spin_lock(&ubi->ltree_lock); 281 le->users -= 1; 282 ubi_assert(le->users >= 0); 283 if (le->users == 0) { 284 rb_erase(&le->rb, &ubi->ltree); 285 kfree(le); 286 } 287 spin_unlock(&ubi->ltree_lock); 288 289 return 1; 290 } 291 292 /** 293 * leb_write_unlock - unlock logical eraseblock. 294 * @ubi: UBI device description object 295 * @vol_id: volume ID 296 * @lnum: logical eraseblock number 297 */ 298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) 299 { 300 struct ubi_ltree_entry *le; 301 302 spin_lock(&ubi->ltree_lock); 303 le = ltree_lookup(ubi, vol_id, lnum); 304 le->users -= 1; 305 ubi_assert(le->users >= 0); 306 up_write(&le->mutex); 307 if (le->users == 0) { 308 rb_erase(&le->rb, &ubi->ltree); 309 kfree(le); 310 } 311 spin_unlock(&ubi->ltree_lock); 312 } 313 314 /** 315 * ubi_eba_unmap_leb - un-map logical eraseblock. 316 * @ubi: UBI device description object 317 * @vol: volume description object 318 * @lnum: logical eraseblock number 319 * 320 * This function un-maps logical eraseblock @lnum and schedules corresponding 321 * physical eraseblock for erasure. Returns zero in case of success and a 322 * negative error code in case of failure. 323 */ 324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, 325 int lnum) 326 { 327 int err, pnum, vol_id = vol->vol_id; 328 329 if (ubi->ro_mode) 330 return -EROFS; 331 332 err = leb_write_lock(ubi, vol_id, lnum); 333 if (err) 334 return err; 335 336 pnum = vol->eba_tbl[lnum]; 337 if (pnum < 0) 338 /* This logical eraseblock is already unmapped */ 339 goto out_unlock; 340 341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); 342 343 down_read(&ubi->fm_sem); 344 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; 345 up_read(&ubi->fm_sem); 346 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); 347 348 out_unlock: 349 leb_write_unlock(ubi, vol_id, lnum); 350 return err; 351 } 352 353 /** 354 * ubi_eba_read_leb - read data. 355 * @ubi: UBI device description object 356 * @vol: volume description object 357 * @lnum: logical eraseblock number 358 * @buf: buffer to store the read data 359 * @offset: offset from where to read 360 * @len: how many bytes to read 361 * @check: data CRC check flag 362 * 363 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF 364 * bytes. The @check flag only makes sense for static volumes and forces 365 * eraseblock data CRC checking. 366 * 367 * In case of success this function returns zero. In case of a static volume, 368 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be 369 * returned for any volume type if an ECC error was detected by the MTD device 370 * driver. Other negative error cored may be returned in case of other errors. 371 */ 372 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 373 void *buf, int offset, int len, int check) 374 { 375 int err, pnum, scrub = 0, vol_id = vol->vol_id; 376 struct ubi_vid_hdr *vid_hdr; 377 uint32_t uninitialized_var(crc); 378 379 err = leb_read_lock(ubi, vol_id, lnum); 380 if (err) 381 return err; 382 383 pnum = vol->eba_tbl[lnum]; 384 if (pnum < 0) { 385 /* 386 * The logical eraseblock is not mapped, fill the whole buffer 387 * with 0xFF bytes. The exception is static volumes for which 388 * it is an error to read unmapped logical eraseblocks. 389 */ 390 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", 391 len, offset, vol_id, lnum); 392 leb_read_unlock(ubi, vol_id, lnum); 393 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); 394 memset(buf, 0xFF, len); 395 return 0; 396 } 397 398 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", 399 len, offset, vol_id, lnum, pnum); 400 401 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 402 check = 0; 403 404 retry: 405 if (check) { 406 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 407 if (!vid_hdr) { 408 err = -ENOMEM; 409 goto out_unlock; 410 } 411 412 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 413 if (err && err != UBI_IO_BITFLIPS) { 414 if (err > 0) { 415 /* 416 * The header is either absent or corrupted. 417 * The former case means there is a bug - 418 * switch to read-only mode just in case. 419 * The latter case means a real corruption - we 420 * may try to recover data. FIXME: but this is 421 * not implemented. 422 */ 423 if (err == UBI_IO_BAD_HDR_EBADMSG || 424 err == UBI_IO_BAD_HDR) { 425 ubi_warn("corrupted VID header at PEB %d, LEB %d:%d", 426 pnum, vol_id, lnum); 427 err = -EBADMSG; 428 } else 429 ubi_ro_mode(ubi); 430 } 431 goto out_free; 432 } else if (err == UBI_IO_BITFLIPS) 433 scrub = 1; 434 435 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); 436 ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); 437 438 crc = be32_to_cpu(vid_hdr->data_crc); 439 ubi_free_vid_hdr(ubi, vid_hdr); 440 } 441 442 err = ubi_io_read_data(ubi, buf, pnum, offset, len); 443 if (err) { 444 if (err == UBI_IO_BITFLIPS) { 445 scrub = 1; 446 err = 0; 447 } else if (mtd_is_eccerr(err)) { 448 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 449 goto out_unlock; 450 scrub = 1; 451 if (!check) { 452 ubi_msg("force data checking"); 453 check = 1; 454 goto retry; 455 } 456 } else 457 goto out_unlock; 458 } 459 460 if (check) { 461 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); 462 if (crc1 != crc) { 463 ubi_warn("CRC error: calculated %#08x, must be %#08x", 464 crc1, crc); 465 err = -EBADMSG; 466 goto out_unlock; 467 } 468 } 469 470 if (scrub) 471 err = ubi_wl_scrub_peb(ubi, pnum); 472 473 leb_read_unlock(ubi, vol_id, lnum); 474 return err; 475 476 out_free: 477 ubi_free_vid_hdr(ubi, vid_hdr); 478 out_unlock: 479 leb_read_unlock(ubi, vol_id, lnum); 480 return err; 481 } 482 483 /** 484 * recover_peb - recover from write failure. 485 * @ubi: UBI device description object 486 * @pnum: the physical eraseblock to recover 487 * @vol_id: volume ID 488 * @lnum: logical eraseblock number 489 * @buf: data which was not written because of the write failure 490 * @offset: offset of the failed write 491 * @len: how many bytes should have been written 492 * 493 * This function is called in case of a write failure and moves all good data 494 * from the potentially bad physical eraseblock to a good physical eraseblock. 495 * This function also writes the data which was not written due to the failure. 496 * Returns new physical eraseblock number in case of success, and a negative 497 * error code in case of failure. 498 */ 499 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, 500 const void *buf, int offset, int len) 501 { 502 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0; 503 struct ubi_volume *vol = ubi->volumes[idx]; 504 struct ubi_vid_hdr *vid_hdr; 505 506 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 507 if (!vid_hdr) 508 return -ENOMEM; 509 510 retry: 511 new_pnum = ubi_wl_get_peb(ubi); 512 if (new_pnum < 0) { 513 ubi_free_vid_hdr(ubi, vid_hdr); 514 return new_pnum; 515 } 516 517 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum); 518 519 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 520 if (err && err != UBI_IO_BITFLIPS) { 521 if (err > 0) 522 err = -EIO; 523 goto out_put; 524 } 525 526 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 527 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); 528 if (err) 529 goto write_error; 530 531 data_size = offset + len; 532 mutex_lock(&ubi->buf_mutex); 533 memset(ubi->peb_buf + offset, 0xFF, len); 534 535 /* Read everything before the area where the write failure happened */ 536 if (offset > 0) { 537 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); 538 if (err && err != UBI_IO_BITFLIPS) 539 goto out_unlock; 540 } 541 542 memcpy(ubi->peb_buf + offset, buf, len); 543 544 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); 545 if (err) { 546 mutex_unlock(&ubi->buf_mutex); 547 goto write_error; 548 } 549 550 mutex_unlock(&ubi->buf_mutex); 551 ubi_free_vid_hdr(ubi, vid_hdr); 552 553 down_read(&ubi->fm_sem); 554 vol->eba_tbl[lnum] = new_pnum; 555 up_read(&ubi->fm_sem); 556 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 557 558 ubi_msg("data was successfully recovered"); 559 return 0; 560 561 out_unlock: 562 mutex_unlock(&ubi->buf_mutex); 563 out_put: 564 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); 565 ubi_free_vid_hdr(ubi, vid_hdr); 566 return err; 567 568 write_error: 569 /* 570 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to 571 * get another one. 572 */ 573 ubi_warn("failed to write to PEB %d", new_pnum); 574 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); 575 if (++tries > UBI_IO_RETRIES) { 576 ubi_free_vid_hdr(ubi, vid_hdr); 577 return err; 578 } 579 ubi_msg("try again"); 580 goto retry; 581 } 582 583 /** 584 * ubi_eba_write_leb - write data to dynamic volume. 585 * @ubi: UBI device description object 586 * @vol: volume description object 587 * @lnum: logical eraseblock number 588 * @buf: the data to write 589 * @offset: offset within the logical eraseblock where to write 590 * @len: how many bytes to write 591 * 592 * This function writes data to logical eraseblock @lnum of a dynamic volume 593 * @vol. Returns zero in case of success and a negative error code in case 594 * of failure. In case of error, it is possible that something was still 595 * written to the flash media, but may be some garbage. 596 */ 597 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 598 const void *buf, int offset, int len) 599 { 600 int err, pnum, tries = 0, vol_id = vol->vol_id; 601 struct ubi_vid_hdr *vid_hdr; 602 603 if (ubi->ro_mode) 604 return -EROFS; 605 606 err = leb_write_lock(ubi, vol_id, lnum); 607 if (err) 608 return err; 609 610 pnum = vol->eba_tbl[lnum]; 611 if (pnum >= 0) { 612 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", 613 len, offset, vol_id, lnum, pnum); 614 615 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 616 if (err) { 617 ubi_warn("failed to write data to PEB %d", pnum); 618 if (err == -EIO && ubi->bad_allowed) 619 err = recover_peb(ubi, pnum, vol_id, lnum, buf, 620 offset, len); 621 if (err) 622 ubi_ro_mode(ubi); 623 } 624 leb_write_unlock(ubi, vol_id, lnum); 625 return err; 626 } 627 628 /* 629 * The logical eraseblock is not mapped. We have to get a free physical 630 * eraseblock and write the volume identifier header there first. 631 */ 632 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 633 if (!vid_hdr) { 634 leb_write_unlock(ubi, vol_id, lnum); 635 return -ENOMEM; 636 } 637 638 vid_hdr->vol_type = UBI_VID_DYNAMIC; 639 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 640 vid_hdr->vol_id = cpu_to_be32(vol_id); 641 vid_hdr->lnum = cpu_to_be32(lnum); 642 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 643 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 644 645 retry: 646 pnum = ubi_wl_get_peb(ubi); 647 if (pnum < 0) { 648 ubi_free_vid_hdr(ubi, vid_hdr); 649 leb_write_unlock(ubi, vol_id, lnum); 650 return pnum; 651 } 652 653 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", 654 len, offset, vol_id, lnum, pnum); 655 656 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 657 if (err) { 658 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 659 vol_id, lnum, pnum); 660 goto write_error; 661 } 662 663 if (len) { 664 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 665 if (err) { 666 ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", 667 len, offset, vol_id, lnum, pnum); 668 goto write_error; 669 } 670 } 671 672 down_read(&ubi->fm_sem); 673 vol->eba_tbl[lnum] = pnum; 674 up_read(&ubi->fm_sem); 675 676 leb_write_unlock(ubi, vol_id, lnum); 677 ubi_free_vid_hdr(ubi, vid_hdr); 678 return 0; 679 680 write_error: 681 if (err != -EIO || !ubi->bad_allowed) { 682 ubi_ro_mode(ubi); 683 leb_write_unlock(ubi, vol_id, lnum); 684 ubi_free_vid_hdr(ubi, vid_hdr); 685 return err; 686 } 687 688 /* 689 * Fortunately, this is the first write operation to this physical 690 * eraseblock, so just put it and request a new one. We assume that if 691 * this physical eraseblock went bad, the erase code will handle that. 692 */ 693 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 694 if (err || ++tries > UBI_IO_RETRIES) { 695 ubi_ro_mode(ubi); 696 leb_write_unlock(ubi, vol_id, lnum); 697 ubi_free_vid_hdr(ubi, vid_hdr); 698 return err; 699 } 700 701 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 702 ubi_msg("try another PEB"); 703 goto retry; 704 } 705 706 /** 707 * ubi_eba_write_leb_st - write data to static volume. 708 * @ubi: UBI device description object 709 * @vol: volume description object 710 * @lnum: logical eraseblock number 711 * @buf: data to write 712 * @len: how many bytes to write 713 * @used_ebs: how many logical eraseblocks will this volume contain 714 * 715 * This function writes data to logical eraseblock @lnum of static volume 716 * @vol. The @used_ebs argument should contain total number of logical 717 * eraseblock in this static volume. 718 * 719 * When writing to the last logical eraseblock, the @len argument doesn't have 720 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent 721 * to the real data size, although the @buf buffer has to contain the 722 * alignment. In all other cases, @len has to be aligned. 723 * 724 * It is prohibited to write more than once to logical eraseblocks of static 725 * volumes. This function returns zero in case of success and a negative error 726 * code in case of failure. 727 */ 728 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, 729 int lnum, const void *buf, int len, int used_ebs) 730 { 731 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id; 732 struct ubi_vid_hdr *vid_hdr; 733 uint32_t crc; 734 735 if (ubi->ro_mode) 736 return -EROFS; 737 738 if (lnum == used_ebs - 1) 739 /* If this is the last LEB @len may be unaligned */ 740 len = ALIGN(data_size, ubi->min_io_size); 741 else 742 ubi_assert(!(len & (ubi->min_io_size - 1))); 743 744 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 745 if (!vid_hdr) 746 return -ENOMEM; 747 748 err = leb_write_lock(ubi, vol_id, lnum); 749 if (err) { 750 ubi_free_vid_hdr(ubi, vid_hdr); 751 return err; 752 } 753 754 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 755 vid_hdr->vol_id = cpu_to_be32(vol_id); 756 vid_hdr->lnum = cpu_to_be32(lnum); 757 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 758 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 759 760 crc = crc32(UBI_CRC32_INIT, buf, data_size); 761 vid_hdr->vol_type = UBI_VID_STATIC; 762 vid_hdr->data_size = cpu_to_be32(data_size); 763 vid_hdr->used_ebs = cpu_to_be32(used_ebs); 764 vid_hdr->data_crc = cpu_to_be32(crc); 765 766 retry: 767 pnum = ubi_wl_get_peb(ubi); 768 if (pnum < 0) { 769 ubi_free_vid_hdr(ubi, vid_hdr); 770 leb_write_unlock(ubi, vol_id, lnum); 771 return pnum; 772 } 773 774 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d", 775 len, vol_id, lnum, pnum, used_ebs); 776 777 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 778 if (err) { 779 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 780 vol_id, lnum, pnum); 781 goto write_error; 782 } 783 784 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 785 if (err) { 786 ubi_warn("failed to write %d bytes of data to PEB %d", 787 len, pnum); 788 goto write_error; 789 } 790 791 ubi_assert(vol->eba_tbl[lnum] < 0); 792 down_read(&ubi->fm_sem); 793 vol->eba_tbl[lnum] = pnum; 794 up_read(&ubi->fm_sem); 795 796 leb_write_unlock(ubi, vol_id, lnum); 797 ubi_free_vid_hdr(ubi, vid_hdr); 798 return 0; 799 800 write_error: 801 if (err != -EIO || !ubi->bad_allowed) { 802 /* 803 * This flash device does not admit of bad eraseblocks or 804 * something nasty and unexpected happened. Switch to read-only 805 * mode just in case. 806 */ 807 ubi_ro_mode(ubi); 808 leb_write_unlock(ubi, vol_id, lnum); 809 ubi_free_vid_hdr(ubi, vid_hdr); 810 return err; 811 } 812 813 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 814 if (err || ++tries > UBI_IO_RETRIES) { 815 ubi_ro_mode(ubi); 816 leb_write_unlock(ubi, vol_id, lnum); 817 ubi_free_vid_hdr(ubi, vid_hdr); 818 return err; 819 } 820 821 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 822 ubi_msg("try another PEB"); 823 goto retry; 824 } 825 826 /* 827 * ubi_eba_atomic_leb_change - change logical eraseblock atomically. 828 * @ubi: UBI device description object 829 * @vol: volume description object 830 * @lnum: logical eraseblock number 831 * @buf: data to write 832 * @len: how many bytes to write 833 * 834 * This function changes the contents of a logical eraseblock atomically. @buf 835 * has to contain new logical eraseblock data, and @len - the length of the 836 * data, which has to be aligned. This function guarantees that in case of an 837 * unclean reboot the old contents is preserved. Returns zero in case of 838 * success and a negative error code in case of failure. 839 * 840 * UBI reserves one LEB for the "atomic LEB change" operation, so only one 841 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. 842 */ 843 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, 844 int lnum, const void *buf, int len) 845 { 846 int err, pnum, tries = 0, vol_id = vol->vol_id; 847 struct ubi_vid_hdr *vid_hdr; 848 uint32_t crc; 849 850 if (ubi->ro_mode) 851 return -EROFS; 852 853 if (len == 0) { 854 /* 855 * Special case when data length is zero. In this case the LEB 856 * has to be unmapped and mapped somewhere else. 857 */ 858 err = ubi_eba_unmap_leb(ubi, vol, lnum); 859 if (err) 860 return err; 861 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); 862 } 863 864 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 865 if (!vid_hdr) 866 return -ENOMEM; 867 868 mutex_lock(&ubi->alc_mutex); 869 err = leb_write_lock(ubi, vol_id, lnum); 870 if (err) 871 goto out_mutex; 872 873 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 874 vid_hdr->vol_id = cpu_to_be32(vol_id); 875 vid_hdr->lnum = cpu_to_be32(lnum); 876 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 877 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 878 879 crc = crc32(UBI_CRC32_INIT, buf, len); 880 vid_hdr->vol_type = UBI_VID_DYNAMIC; 881 vid_hdr->data_size = cpu_to_be32(len); 882 vid_hdr->copy_flag = 1; 883 vid_hdr->data_crc = cpu_to_be32(crc); 884 885 retry: 886 pnum = ubi_wl_get_peb(ubi); 887 if (pnum < 0) { 888 err = pnum; 889 goto out_leb_unlock; 890 } 891 892 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d", 893 vol_id, lnum, vol->eba_tbl[lnum], pnum); 894 895 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 896 if (err) { 897 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 898 vol_id, lnum, pnum); 899 goto write_error; 900 } 901 902 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 903 if (err) { 904 ubi_warn("failed to write %d bytes of data to PEB %d", 905 len, pnum); 906 goto write_error; 907 } 908 909 if (vol->eba_tbl[lnum] >= 0) { 910 err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0); 911 if (err) 912 goto out_leb_unlock; 913 } 914 915 down_read(&ubi->fm_sem); 916 vol->eba_tbl[lnum] = pnum; 917 up_read(&ubi->fm_sem); 918 919 out_leb_unlock: 920 leb_write_unlock(ubi, vol_id, lnum); 921 out_mutex: 922 mutex_unlock(&ubi->alc_mutex); 923 ubi_free_vid_hdr(ubi, vid_hdr); 924 return err; 925 926 write_error: 927 if (err != -EIO || !ubi->bad_allowed) { 928 /* 929 * This flash device does not admit of bad eraseblocks or 930 * something nasty and unexpected happened. Switch to read-only 931 * mode just in case. 932 */ 933 ubi_ro_mode(ubi); 934 goto out_leb_unlock; 935 } 936 937 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 938 if (err || ++tries > UBI_IO_RETRIES) { 939 ubi_ro_mode(ubi); 940 goto out_leb_unlock; 941 } 942 943 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 944 ubi_msg("try another PEB"); 945 goto retry; 946 } 947 948 /** 949 * is_error_sane - check whether a read error is sane. 950 * @err: code of the error happened during reading 951 * 952 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we 953 * cannot read data from the target PEB (an error @err happened). If the error 954 * code is sane, then we treat this error as non-fatal. Otherwise the error is 955 * fatal and UBI will be switched to R/O mode later. 956 * 957 * The idea is that we try not to switch to R/O mode if the read error is 958 * something which suggests there was a real read problem. E.g., %-EIO. Or a 959 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O 960 * mode, simply because we do not know what happened at the MTD level, and we 961 * cannot handle this. E.g., the underlying driver may have become crazy, and 962 * it is safer to switch to R/O mode to preserve the data. 963 * 964 * And bear in mind, this is about reading from the target PEB, i.e. the PEB 965 * which we have just written. 966 */ 967 static int is_error_sane(int err) 968 { 969 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || 970 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) 971 return 0; 972 return 1; 973 } 974 975 /** 976 * ubi_eba_copy_leb - copy logical eraseblock. 977 * @ubi: UBI device description object 978 * @from: physical eraseblock number from where to copy 979 * @to: physical eraseblock number where to copy 980 * @vid_hdr: VID header of the @from physical eraseblock 981 * 982 * This function copies logical eraseblock from physical eraseblock @from to 983 * physical eraseblock @to. The @vid_hdr buffer may be changed by this 984 * function. Returns: 985 * o %0 in case of success; 986 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; 987 * o a negative error code in case of failure. 988 */ 989 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, 990 struct ubi_vid_hdr *vid_hdr) 991 { 992 int err, vol_id, lnum, data_size, aldata_size, idx; 993 struct ubi_volume *vol; 994 uint32_t crc; 995 996 vol_id = be32_to_cpu(vid_hdr->vol_id); 997 lnum = be32_to_cpu(vid_hdr->lnum); 998 999 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); 1000 1001 if (vid_hdr->vol_type == UBI_VID_STATIC) { 1002 data_size = be32_to_cpu(vid_hdr->data_size); 1003 aldata_size = ALIGN(data_size, ubi->min_io_size); 1004 } else 1005 data_size = aldata_size = 1006 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); 1007 1008 idx = vol_id2idx(ubi, vol_id); 1009 spin_lock(&ubi->volumes_lock); 1010 /* 1011 * Note, we may race with volume deletion, which means that the volume 1012 * this logical eraseblock belongs to might be being deleted. Since the 1013 * volume deletion un-maps all the volume's logical eraseblocks, it will 1014 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. 1015 */ 1016 vol = ubi->volumes[idx]; 1017 spin_unlock(&ubi->volumes_lock); 1018 if (!vol) { 1019 /* No need to do further work, cancel */ 1020 dbg_wl("volume %d is being removed, cancel", vol_id); 1021 return MOVE_CANCEL_RACE; 1022 } 1023 1024 /* 1025 * We do not want anybody to write to this logical eraseblock while we 1026 * are moving it, so lock it. 1027 * 1028 * Note, we are using non-waiting locking here, because we cannot sleep 1029 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is 1030 * unmapping the LEB which is mapped to the PEB we are going to move 1031 * (@from). This task locks the LEB and goes sleep in the 1032 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are 1033 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the 1034 * LEB is already locked, we just do not move it and return 1035 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because 1036 * we do not know the reasons of the contention - it may be just a 1037 * normal I/O on this LEB, so we want to re-try. 1038 */ 1039 err = leb_write_trylock(ubi, vol_id, lnum); 1040 if (err) { 1041 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); 1042 return MOVE_RETRY; 1043 } 1044 1045 /* 1046 * The LEB might have been put meanwhile, and the task which put it is 1047 * probably waiting on @ubi->move_mutex. No need to continue the work, 1048 * cancel it. 1049 */ 1050 if (vol->eba_tbl[lnum] != from) { 1051 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", 1052 vol_id, lnum, from, vol->eba_tbl[lnum]); 1053 err = MOVE_CANCEL_RACE; 1054 goto out_unlock_leb; 1055 } 1056 1057 /* 1058 * OK, now the LEB is locked and we can safely start moving it. Since 1059 * this function utilizes the @ubi->peb_buf buffer which is shared 1060 * with some other functions - we lock the buffer by taking the 1061 * @ubi->buf_mutex. 1062 */ 1063 mutex_lock(&ubi->buf_mutex); 1064 dbg_wl("read %d bytes of data", aldata_size); 1065 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); 1066 if (err && err != UBI_IO_BITFLIPS) { 1067 ubi_warn("error %d while reading data from PEB %d", 1068 err, from); 1069 err = MOVE_SOURCE_RD_ERR; 1070 goto out_unlock_buf; 1071 } 1072 1073 /* 1074 * Now we have got to calculate how much data we have to copy. In 1075 * case of a static volume it is fairly easy - the VID header contains 1076 * the data size. In case of a dynamic volume it is more difficult - we 1077 * have to read the contents, cut 0xFF bytes from the end and copy only 1078 * the first part. We must do this to avoid writing 0xFF bytes as it 1079 * may have some side-effects. And not only this. It is important not 1080 * to include those 0xFFs to CRC because later the they may be filled 1081 * by data. 1082 */ 1083 if (vid_hdr->vol_type == UBI_VID_DYNAMIC) 1084 aldata_size = data_size = 1085 ubi_calc_data_len(ubi, ubi->peb_buf, data_size); 1086 1087 cond_resched(); 1088 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); 1089 cond_resched(); 1090 1091 /* 1092 * It may turn out to be that the whole @from physical eraseblock 1093 * contains only 0xFF bytes. Then we have to only write the VID header 1094 * and do not write any data. This also means we should not set 1095 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. 1096 */ 1097 if (data_size > 0) { 1098 vid_hdr->copy_flag = 1; 1099 vid_hdr->data_size = cpu_to_be32(data_size); 1100 vid_hdr->data_crc = cpu_to_be32(crc); 1101 } 1102 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 1103 1104 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); 1105 if (err) { 1106 if (err == -EIO) 1107 err = MOVE_TARGET_WR_ERR; 1108 goto out_unlock_buf; 1109 } 1110 1111 cond_resched(); 1112 1113 /* Read the VID header back and check if it was written correctly */ 1114 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); 1115 if (err) { 1116 if (err != UBI_IO_BITFLIPS) { 1117 ubi_warn("error %d while reading VID header back from PEB %d", 1118 err, to); 1119 if (is_error_sane(err)) 1120 err = MOVE_TARGET_RD_ERR; 1121 } else 1122 err = MOVE_TARGET_BITFLIPS; 1123 goto out_unlock_buf; 1124 } 1125 1126 if (data_size > 0) { 1127 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); 1128 if (err) { 1129 if (err == -EIO) 1130 err = MOVE_TARGET_WR_ERR; 1131 goto out_unlock_buf; 1132 } 1133 1134 cond_resched(); 1135 1136 /* 1137 * We've written the data and are going to read it back to make 1138 * sure it was written correctly. 1139 */ 1140 memset(ubi->peb_buf, 0xFF, aldata_size); 1141 err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size); 1142 if (err) { 1143 if (err != UBI_IO_BITFLIPS) { 1144 ubi_warn("error %d while reading data back from PEB %d", 1145 err, to); 1146 if (is_error_sane(err)) 1147 err = MOVE_TARGET_RD_ERR; 1148 } else 1149 err = MOVE_TARGET_BITFLIPS; 1150 goto out_unlock_buf; 1151 } 1152 1153 cond_resched(); 1154 1155 if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) { 1156 ubi_warn("read data back from PEB %d and it is different", 1157 to); 1158 err = -EINVAL; 1159 goto out_unlock_buf; 1160 } 1161 } 1162 1163 ubi_assert(vol->eba_tbl[lnum] == from); 1164 down_read(&ubi->fm_sem); 1165 vol->eba_tbl[lnum] = to; 1166 up_read(&ubi->fm_sem); 1167 1168 out_unlock_buf: 1169 mutex_unlock(&ubi->buf_mutex); 1170 out_unlock_leb: 1171 leb_write_unlock(ubi, vol_id, lnum); 1172 return err; 1173 } 1174 1175 /** 1176 * print_rsvd_warning - warn about not having enough reserved PEBs. 1177 * @ubi: UBI device description object 1178 * 1179 * This is a helper function for 'ubi_eba_init()' which is called when UBI 1180 * cannot reserve enough PEBs for bad block handling. This function makes a 1181 * decision whether we have to print a warning or not. The algorithm is as 1182 * follows: 1183 * o if this is a new UBI image, then just print the warning 1184 * o if this is an UBI image which has already been used for some time, print 1185 * a warning only if we can reserve less than 10% of the expected amount of 1186 * the reserved PEB. 1187 * 1188 * The idea is that when UBI is used, PEBs become bad, and the reserved pool 1189 * of PEBs becomes smaller, which is normal and we do not want to scare users 1190 * with a warning every time they attach the MTD device. This was an issue 1191 * reported by real users. 1192 */ 1193 static void print_rsvd_warning(struct ubi_device *ubi, 1194 struct ubi_attach_info *ai) 1195 { 1196 /* 1197 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably 1198 * large number to distinguish between newly flashed and used images. 1199 */ 1200 if (ai->max_sqnum > (1 << 18)) { 1201 int min = ubi->beb_rsvd_level / 10; 1202 1203 if (!min) 1204 min = 1; 1205 if (ubi->beb_rsvd_pebs > min) 1206 return; 1207 } 1208 1209 ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", 1210 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); 1211 if (ubi->corr_peb_count) 1212 ubi_warn("%d PEBs are corrupted and not used", 1213 ubi->corr_peb_count); 1214 } 1215 1216 /** 1217 * self_check_eba - run a self check on the EBA table constructed by fastmap. 1218 * @ubi: UBI device description object 1219 * @ai_fastmap: UBI attach info object created by fastmap 1220 * @ai_scan: UBI attach info object created by scanning 1221 * 1222 * Returns < 0 in case of an internal error, 0 otherwise. 1223 * If a bad EBA table entry was found it will be printed out and 1224 * ubi_assert() triggers. 1225 */ 1226 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, 1227 struct ubi_attach_info *ai_scan) 1228 { 1229 int i, j, num_volumes, ret = 0; 1230 int **scan_eba, **fm_eba; 1231 struct ubi_ainf_volume *av; 1232 struct ubi_volume *vol; 1233 struct ubi_ainf_peb *aeb; 1234 struct rb_node *rb; 1235 1236 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1237 1238 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL); 1239 if (!scan_eba) 1240 return -ENOMEM; 1241 1242 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL); 1243 if (!fm_eba) { 1244 kfree(scan_eba); 1245 return -ENOMEM; 1246 } 1247 1248 for (i = 0; i < num_volumes; i++) { 1249 vol = ubi->volumes[i]; 1250 if (!vol) 1251 continue; 1252 1253 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba), 1254 GFP_KERNEL); 1255 if (!scan_eba[i]) { 1256 ret = -ENOMEM; 1257 goto out_free; 1258 } 1259 1260 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba), 1261 GFP_KERNEL); 1262 if (!fm_eba[i]) { 1263 ret = -ENOMEM; 1264 goto out_free; 1265 } 1266 1267 for (j = 0; j < vol->reserved_pebs; j++) 1268 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; 1269 1270 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); 1271 if (!av) 1272 continue; 1273 1274 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) 1275 scan_eba[i][aeb->lnum] = aeb->pnum; 1276 1277 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); 1278 if (!av) 1279 continue; 1280 1281 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) 1282 fm_eba[i][aeb->lnum] = aeb->pnum; 1283 1284 for (j = 0; j < vol->reserved_pebs; j++) { 1285 if (scan_eba[i][j] != fm_eba[i][j]) { 1286 if (scan_eba[i][j] == UBI_LEB_UNMAPPED || 1287 fm_eba[i][j] == UBI_LEB_UNMAPPED) 1288 continue; 1289 1290 ubi_err("LEB:%i:%i is PEB:%i instead of %i!", 1291 vol->vol_id, i, fm_eba[i][j], 1292 scan_eba[i][j]); 1293 ubi_assert(0); 1294 } 1295 } 1296 } 1297 1298 out_free: 1299 for (i = 0; i < num_volumes; i++) { 1300 if (!ubi->volumes[i]) 1301 continue; 1302 1303 kfree(scan_eba[i]); 1304 kfree(fm_eba[i]); 1305 } 1306 1307 kfree(scan_eba); 1308 kfree(fm_eba); 1309 return ret; 1310 } 1311 1312 /** 1313 * ubi_eba_init - initialize the EBA sub-system using attaching information. 1314 * @ubi: UBI device description object 1315 * @ai: attaching information 1316 * 1317 * This function returns zero in case of success and a negative error code in 1318 * case of failure. 1319 */ 1320 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1321 { 1322 int i, j, err, num_volumes; 1323 struct ubi_ainf_volume *av; 1324 struct ubi_volume *vol; 1325 struct ubi_ainf_peb *aeb; 1326 struct rb_node *rb; 1327 1328 dbg_eba("initialize EBA sub-system"); 1329 1330 spin_lock_init(&ubi->ltree_lock); 1331 mutex_init(&ubi->alc_mutex); 1332 ubi->ltree = RB_ROOT; 1333 1334 ubi->global_sqnum = ai->max_sqnum + 1; 1335 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1336 1337 for (i = 0; i < num_volumes; i++) { 1338 vol = ubi->volumes[i]; 1339 if (!vol) 1340 continue; 1341 1342 cond_resched(); 1343 1344 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int), 1345 GFP_KERNEL); 1346 if (!vol->eba_tbl) { 1347 err = -ENOMEM; 1348 goto out_free; 1349 } 1350 1351 for (j = 0; j < vol->reserved_pebs; j++) 1352 vol->eba_tbl[j] = UBI_LEB_UNMAPPED; 1353 1354 av = ubi_find_av(ai, idx2vol_id(ubi, i)); 1355 if (!av) 1356 continue; 1357 1358 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { 1359 if (aeb->lnum >= vol->reserved_pebs) 1360 /* 1361 * This may happen in case of an unclean reboot 1362 * during re-size. 1363 */ 1364 ubi_move_aeb_to_list(av, aeb, &ai->erase); 1365 vol->eba_tbl[aeb->lnum] = aeb->pnum; 1366 } 1367 } 1368 1369 if (ubi->avail_pebs < EBA_RESERVED_PEBS) { 1370 ubi_err("no enough physical eraseblocks (%d, need %d)", 1371 ubi->avail_pebs, EBA_RESERVED_PEBS); 1372 if (ubi->corr_peb_count) 1373 ubi_err("%d PEBs are corrupted and not used", 1374 ubi->corr_peb_count); 1375 err = -ENOSPC; 1376 goto out_free; 1377 } 1378 ubi->avail_pebs -= EBA_RESERVED_PEBS; 1379 ubi->rsvd_pebs += EBA_RESERVED_PEBS; 1380 1381 if (ubi->bad_allowed) { 1382 ubi_calculate_reserved(ubi); 1383 1384 if (ubi->avail_pebs < ubi->beb_rsvd_level) { 1385 /* No enough free physical eraseblocks */ 1386 ubi->beb_rsvd_pebs = ubi->avail_pebs; 1387 print_rsvd_warning(ubi, ai); 1388 } else 1389 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; 1390 1391 ubi->avail_pebs -= ubi->beb_rsvd_pebs; 1392 ubi->rsvd_pebs += ubi->beb_rsvd_pebs; 1393 } 1394 1395 dbg_eba("EBA sub-system is initialized"); 1396 return 0; 1397 1398 out_free: 1399 for (i = 0; i < num_volumes; i++) { 1400 if (!ubi->volumes[i]) 1401 continue; 1402 kfree(ubi->volumes[i]->eba_tbl); 1403 ubi->volumes[i]->eba_tbl = NULL; 1404 } 1405 return err; 1406 } 1407